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THE SECOND-ORDER GRAVITATIONAL REDSHIFT .

I. INTRODUCTION

Gravitation has always been one of the most fascinating

phenomena of nature. Recently, a resurgence of interest in this

field has occurred, spurred on by many new astronomical observa-

tions. Because the force of gravity is weak compared to nuclear

and electromagnetic forces, it is virtually impossible to per-

form laboratory experiments involving relativistic gravitation.

However, with advances in space technology, we have now enlarged

our laboratory for controlled experiments to the size of the

solar system. .

New tests of gravitation are presently being made, using

new technology: Light bending by a gravitational field is mea-

sured, using very long baseline interferometry to observe the

microwave signals from quasi stellar objects.as the signals pass

close to the sun. Powerful radars are being used to send pulses

across the solar system to measure the time delay produced by

the sun's gravity. Space tracking of probes flying past Mars

and Venus have yielded valuable orbital data on the general

relativistic corrections to the motion of objects in a gravita-

tional field.



It is significant that atomic clocks have been involved in

nearly all of these experiments. Indeed, today, atomic clocks

offer a measuring capability within a precision of better than

• 1 part in 10 . As no other instruments of comparable capability

exist, it seems logical to further explore space-time with clocks,

and to make measurements in terms of data expressed as time inter-

vals »

It appears that a direct measurement of the non-linear term

of the gravitational field equations can now be made by the use

of very stable clocks. A vehicle containing such a clock could

be put into a highly eccentric orbit around the sun, or allowed

to fall into the sun, and its frequency would be compared with

an identical clock on earth. This is a measure of the so-called

"second-order gravitational redshift".

The only other presently feasible test for the second-order

term is that which measures the perhelion advance of a planet or

satellite; all the other current experimental tests of relativity

can only measure first-order effects. This frequency shift

experiment would be a distinct,_ additional test for the nonlinear

term. A great advantage of this experiment is that it does not

depend at all on the integrated characteristics of the orbit.

As we will show, the only requirements are the knowledge of the

instantaneous gravitational potential and the velocities of the

clocks.



At present, a highly accurate test of the first-order gravi-

tational redshift is in development, using a terrestrial rocket

probe. Some of the techniques perfected for that experiment will

be useful in a heliocentric second-order redshift experiment.

The terrestrial probe experiment uses atomic hydrogen maser

clocks in the probe and on the ground that are connected by

microwave signals. The nongravitational effects due to the rela-

tive motion of the probe and ground clocks are accounted for by

continuously measuring the path length in terms of the phase of

coherently returned signals originally transmitted to the probe.

The phase variations due to path length changes are then auto-

matically removed from the clock signal.

The terrestrial experiment is expected to test the so-called

principle of equivalence. This principle, first stated by

Einstein in 1907, asserts that all freely falling, nonrotating,

*

"sufficiently small" laboratories are equivalent; i.e., all the

laws of physics will appear the same in all freely falling, infin-

itesimal laboratories. At present, the best tests of the princi-

ple of equivalence are the elegant experiments performed by

R. V. Pound and co-workers, using M'ossbauer emission and absorp-

57
tion from Fe . These experiments, performed over a vertical

distance of 75 feet, have verified Einstein's postulate of equi-

valence to 1%. The terrestrial probe experiment seeks to extend

the distance to 10,000 miles, and the accuracy to 20 ppm. The



successful completion of this test will do much to put the equi-

valence principle on a sound experimental basis, and establish

the validity of the cornerstone of Einstein's General Theory of

Relativity.

However, the terrestrial probe experiment will not be suffi-

, ciently sensitive to permit distinguishing between the several

theories of gravitation now in contention. Other presently viable

theories of gravitation have the principle of equivalence as a

basis. The first-order gravitational redshift can be derived

immediately from the principle of equivalence, alone; a knowledge

of the field equations of the theory is not necessary. Thus, it

is important to emphasize that a measurement of the second-order

redshift, the nonlinear term, is a test"of the actual field equa-

tions of a theory of gravitation, and could help establish the

validity of such a theory.



II. FREQUENCY SHIFT IN A GRAVITATIONAL FIELD.

We derive the exact expression for the gravitational frequency

shift of light emitted by a source at one position .and received

by an observer elsewhere. The rigorous, covariant approach is

used in order to avoid any ambiguities in the definition or inter-

pretation of any terms appearing in the final expression.

The ratio of the frequency of•light emitted by a source(s)

and received by an observer (o) can be given as:

v., (P • V) (p va)s _ ° _ a s , (1)
V°' " (P ' *>0 ~

 (pavCX)o
dxa a dxa

where pa = g^— is the photon "four-momentum" v = g^— is the

"four-velocity" of the source or observer, and ds is the invariant

infinitesimal element of length in four-space. ds = cdx , where

T is the so-called "proper time" for a particle; for light,

ds = 0, and, in that case, ds is simply an arbitrary variable.

.The symbol ot represents numbers from 1to 4. Similar subscripts

and superscripts imply summation over that index; this is the

usual convention.

->• ->•
The proof of Eq. (1) is quite direct. (p • v) is the product

of two four-vectors; it is a scalar—an invariant quantity. Being

invariant, it has the same value in any coordinate system. We can

•> -»•
easily find the invariant value of (p • v) by considering an

inertial system in which the particle is at rest. (By the principle



of equivalence, one can always make a transformation into an iner-

tial system at any point in a gravitational field.) In this sys-

tem, from special relativity, we have, with c = 1, P . =aLj_gnt

(Pi , P0, P,» E = hv ) and va = (0, 0, 0, 1), so that (p • v)1 2 3 Particle

(Pa v
a) - hv. Thus,

(p • v) hv vs s
- > • - * • h \> V *

(P ' v)Q
 nvo o

Eq. (1) is quite general; we now apply it to the special case

of the spherically symmetric gravitational field. The general form

for this field, in the (r, 9, 0, t) coordinate system, is given as

ds2 = B(r)dt2 - A(r)dr2 - r2(d(j>2 + s.in26d62) . (2.)

Upon solving the geodesic equations of motion, for either light or

a particle, it is found that the motion can be confined to a

plane, <{> = constant (chosen as = IT /2) , just as in the Newtonian

case of central force motion. Eq. (2) can then be taken as

ds2 = B(r)dt2 - A(r)dr2 - r2d62 . (3)

-»• -»•
Evaluation of p_ . , . and v ^. .*,^Light Particle

The geodesic equations for 6 and t give

r2 -3— = q = constant (4)

B T— = k = constant . (5)



If, for a moment, we consider a test particle at infinity, of

finite mass m, with velocity v as measured at' infinity, Eqs. (4)

and (5) can be written as

2 d6 £v
r 55" = q =

/I - v2 . (6)

B S J - . f l
1 - v2

where & is the classical impact parameter of the particle as

measured at infinity. Therefore, for light, where v = 1, we have

3- •= A . (8)

2
Using Eqs. (3), (4), (5), (8) and ds = o for light, we have for

=PLight ~ ds

dr _ k
ds /-AB r*

ds 2 .r '

dxa
and, finally, for P = g —

Po = 9oo P° =- k

/" APi = gn P1 = -k - (9b)
r^

P2 = g22 P
2 = - kjt . (9c)

2
For a particle, ds ^ o. Using Eq. (3), we find for

« dx
a

v = ux. •
' Particle ds



V - H - 1 ("a)
B - A vr

2 - r2Vg

" . • af - at It - vr '' • <"»>

V 2 = l i = = i e £ t = v v ° dociv ds dt ds V6 v . (10c)

where v = g£ and. v Q = g^- . Therefore,

- » - - * • ap -. v = p v
a

(1' - 7B /I - — - £ ) v 0 ( l r v r . f v Q )

BA . -.B-Av -r V0 . r

In the absence of gravity, A = B = 1, and the ratio of the frequency

sent by a source, moving with velocity (vr/ ve) at a point r, versus

the frequency received by an observer at rest is

k
(P«v)s

[1-1-— v - (rv)l

(P'V)0

- v 2 - rzv

This is just the special relativistic doppler equation, as we

should expect: The numerator is (1 = v^ cos 9), as is
^ Particle

verified, by a simple geometrical construction. The denominator

is /I - v2 , the inverse Lorentz factor (c = 1)

8



Eq. (11) shows that the presence of a gravitational field

"modifies" the well-known doppler-shift equation through the func-

tions A(r) and B(r). The parameter H is the single constant of

.the motion for light. In the absence of gravity, it is clearly

the impact parameter of-the photon; in the presence of a gravita-

tional field, this unambiguous physical interpretation of £ can

only be made at infinity, as will be discussed below (Section VII).

No physical interpretation can be made for r ̂  °°, even though &

is still a valid mathematical constant of the motion for the

photon.

We can write Eq. (11) in a more compact form, if we define

T E
 1" ===== f (12)

/ B - A vr
2 - r2vQ

2

| = (v . rvfl, v, = 0) , (13)r u <p

(c will always be taken = 1, unless otherwise specified), and

"A~/1
" L — , p , 0) . (14)

r

Eq. (11) becomes

p • v = k y (1 - £ ' e) . (15)

In the absence of gravitation, y reduces to the Lorentz

factor, and e is the unit direction vector of the photon at the

point r. We emphasize that, when A and B ̂  1, y and e are

modified by these functions, and such a simple interpretation

cannot be made.

9



III. THE DOPPLER-CANCELLING TECHNIQUE

Because of the motion of the space vehicle relative to earth,

the first-order (in v/c) doppler effect is clearly -the largest

contribution to the signal sent by the vehicle clock. The lowest-

order gravitational contribution is of order v/c ( ~ ::~— ) .
c2r

It is thus essential to set up an experiment that eliminates the

first-order terms. ' ' This can be done by placing both a

clock and a transponder on the probe. The transponder serves as

a reflector that allows us to measure the two-way distance in terms

of signal phase. By combining the received signals appropriately,

we can remove the first-order doppler terms, as follows:

We first consider the situation where the earth station is

equipped with a clock and the probe is equipped with both a clock

and a transponder. The earth station sends out a signal of proper

frequency v at proper time t (with the station at position 1,

with velocity 3i ) to the probe's transponder, which receives it

at time t~ ( position 2, velocity $2 ). The probe transponder

re-transmits the signal to the earth, along with the probe's clock

signal; both signals are received at the earth station at time t_

(pos-ition 3, velocity 3a ). (Figure 1)

Eqs. (1) and (15) give the frequency shift of the clock signal

received from the probe as

Y£ (1-13 *E2 3) ,,g»

clock _ 7rT.?-.i

10



where e^j is the "direction vector" of the light signal from

position i to j. (82 ' £23 is evaluated at position 2, PS * £23

is evaluated at position 3, etc.).

In a similar manner, the frequency shift of the earth-probe-

earth transponder signal, received on the earth at time t7 is

v3

Transponder

Y3 (1-P~2-£12)
(17)

2) (1-P2*£23)

The doppler-cancelling technique consists of combining these

two received signals in the form:

1 V3 1
(18)

Av
v Earth V2 Clock

1 V3

2 V! Transponder
1
2

The observed
Av_
v is very small, and contains the information we

seek; it contains only terms in 3 and higher order.

11



IV. THE DUAL TRANSPONDER SYSTEM

It is also possible to equip the earth station with a trans-

ponder, and use the doppler-cancelling scheme for earth-based

clock and transponder signals received by the probe. (This infor-

4
mation is subsequently transmitted to the earth station for analy-

sis.) This dual transponder-clock arrangement provides twice the

number of observables for a self-consistent analysis of the experi-

ment; the added information gained from the second system permits

a more direct and tractable means for explicitly evaluating the

various parameters in the experiment. The dual system would also

12
aid in eliminating possible nonreciprocal propagation effects.

For the probe-based system, with a signal sent from the probe

at time tQ (position 0, velocity PO ), received at earth at time

t, , and received back at the probe at time t along' with the

earth-clock signal, the doppler-cancelling technique gives

Av
v Probe

1 Vz

Clock 2 v0 Transponder
^
2 . (19)

12



V. THE SECOND-ORDER REDSHIFT IN A SPHERICALLY
SYMMETRIC GRAVITATIONAL FIELD

We will consider the gravitational field of the sun as spher-

ically symmetric in the first approximation. A possibly signifi-

cant correction to this model will be considered later. The solu-

tion of the field equations of general relativity for the spheri-

2
cally symmetric case was first given by Schwarzschild shortly

after Einstein's publication of the basic theory. In a plane (4> = T /2),

the exact solution is given as

ds2 = B(r)dt2 - A(r)dr2 "- r2d.62 , (3)

with

B(r) = l - 2|M ' (2Q)

A(r) = l/B(r) . (21)

3 4 .
Eddington and Robertson put the spherically symmetric solu-

tion in a more general, parameterized form in order to show more

explicitly the contribution of the various-order terms in (GM/r).

In the "standard" (r, 9, t) coordinate system, we have

ds2 = B dt2 - A dr2 - r2d92

13



with

A = i _ 2a + 2(p-ay) - + ... (22)
r r2

B = 1 + 2Y §^ + ... , ' ' (23)

where a, B, and Y are unknown,dimensionless parameters.

If the Einstein field equations give the physically correct

description of the spherically symmetric gravitational field, then

the solution would be the exact Schwarzschild .solution, and in the

parameterized representation we would have a = B = y =1. This,

of course, is what is to be tested. In contrast, the Brans-Dicke

5 cofl
theory would have a = B =1, and Y = —~ , where w is the

w+2

unknown dimensionless parameter of that theory, which governs the

admixture of the scalar field to the tensor field.

Actually, a = l simply follows from the empirical definition

of the mass, M. We will thus set a = 1 in all further calcula-

tions.

Earth-Based Station

Combining Eqs. (16) - (18), we have for the doppler-cancelled

signal at the earth station:

v Earth
I v

Clock 2 v Transponder

= is. (1-Ae ' ) l_ y_3. (1-Ap') (1-Ae1) _ !_
Y2 (1-Ap) 2 Yi (1-Ae) (1-Ap) 2

j l -Ae') fYl _ 1 YJL JI-AP'K _ 1
(1-Ap) 1

Y2 2 YI d-Ae) J 2 ,

14



_ • * • - > • _ • * • - * • •*••*•
where Ae1 =$ 3'£23 , Ap = 32*^23 , Ae = 31 * e i 2 , and

Ap'= B 2*£i2

We will initially assume that the directions and vector velo-

cities do not change during the signal propagation time (i.e.,
->• ->

infinite propagation velocity). In this case, Ba = Bi , Ys = Yi ,

£23 = -ej2 , which gives Ae
1 = -Ae and Ap1 = -Ap. Eq". (24) becomes

v
(1+Ae) r Yj_ _ 1 U-Ap') , 1

Earth (1+Ap1)l y2 2 (1-Ae) J " 2

Expanding to fourth order in 3 (or, equivalently, second

order in GM/r), and using the Eddington-Robertson parameterized

form for the gravitational field, we have (Appendix A):

Av
v Earth = t(FT - F^ + \ <ei2-322)] + Ae(Ap'-Ae) (26a)

- (Ap'-Ae) [(- ?-)• + i (3i2-B2
2) + Ae(Ap'-Ae)] (26b)r i r 2 f-

+ m I Y ( "~ / T" ty ~j ~ "" 'o" \ "r ~ I J \ '- D C )

+ J [ 3 3 1
l t - 3 2 ' f - 2 B i 2 3 2 2 1 (26d)

+ m2 [ (3-y) (~ ~) + - — - - 1 - -i ]
r2

2 n2 2 n2 2 r2
2 rir2

+ (Ap'-Ae) { Ap' [(̂ -- 2_) + i (Bi2-B2
2)

+ Ae(Ap'-Ae)] + Ae3 } (26f)

15



where G has been set = 1 (GM/c •* m) and 8. 2 = 6 2 3o 2

i i

Eq. (26a) is the second-order term, (26b) is the third-order term,

and the rest are all fourth-order in P (or second order in m/r).

The nonlinear Eddington-Robertson parameter, g , characterizing

the second-order (in m/r) purely gravitational redshift, appears

only . in the term (26e).

Probe-Based Station

A similar analysis can be made for the probe-based doppler-

cancelling system. Eq. (19) becomes

Av _ (i-Ap1) r li _ i li (1-Ae"), _ I
V~ Probe (1-Ae) l Yi 2 Yo (l-Ap")J~ 2 '

where Ae" = j p i - e o i and Ap" = P O * E O I . For an infinite

signal-propagation velocity, Pa = PO , Y2 = Yo , EOJ = -e

which gives Ae" = -Ae and Ap" = -Ap1. Eq. (27) then becomes

Av _ (l-Ap') .- Y_2_ !_ (1+Ae) , 1_
v~ Probe ~ (1-Ae) L YT " 2 (1+Ap'j ~ 2

Eq. (28) has the same form as the earth station relation,

Eq. (25), with the substitutions Ae ->• (-Ap1), Ap1 -*• (-Ae) and

the (1, 2) indices reversed. The fourth-order expansion of

Eq. (28) can then'be found from Eq. (26) using these substitutions:

16



m

i- I8

(29C,

I -

.

"

1"?



VI. FINITE SIGNAL TRANSIT TIME

We will, in fact, have a finite go-return time for the propa-

gation of the signal. For a heliocentric probe, there would only

be a relatively small displacement of the earth or probe during
t

this time, as compared with the total displacement over a whole

period of its motion (approximately 3 parts in 10 for any of the

vector positions and velocities, at best). Therefore, r, p , and

e. . would not change appreciably in direction during the signal

transit time. We will use a perturbation analysis to investigate

the additional contributions due to the finite displacement of

the earth or probe during the signal transit time.

We will assume here that the earth moves in a circular orbit

around the sun and ignore the earth-moon motion and earth rotation.

We write"

$3 = $1 + S - (30)

and |3a|2 = |3i|2 in this case. Defining e by

£23 = - £12 + e , (31)

we have

18



Ae1 -£23

PI £ -

= - Ae -f (32)

and

Ap •2 3

e

= - Ap' + (33)

All the terms have been retained in. these expansions, since we are

carrying our results through to fourth order in 6 .

We substitute Eqs. (32) and (33) into the general relation

for the earth station, Eq. (24) . Further calculations (Appendix B)

ultimately yield

v
,Av,

Earth ;. (26)]

(34b)

Ap (34c)

(—- - ~
•LI i 2

{ - [Ae(2 Ap'-Ae) +

19



+ (82-e)[2 Ae (Ap'-Ae) + Ap12]

+ (ei2'$) [Ae (2 Ap'-Ae) + (£•£) Ae

32-e) (32-3i) •£> . (34e)

Eq. (34b) is of lowest order 32 ; (34c) is of lowest order 83 ;

(34d) and (34e) are of order 8** . This is relatively simple to

verify:

To find the order of 6 , we can rewrite 3s = PI + o as

$3 *• $1 + yr1 A T, where A T is the signal go-return time. For

the earth, moving with velocity v in a circular orbit around the

sun, with "radius" R, T~- = — ™- . With AT a — , we have

""" * " t lV2 R V 2 - r > 2i - A T a i ^ — ( — ) = * — =8 . This simple analysis
C ix V_ 2

c
shows that the lowest order dependence for 6 is C^(32 ).

-> ^ ->•
To see the dependence of e = £12 + £23. , we will use a

6
plane geometry argument ; this is not rigorously correct (as dis-

cussed in Section VII), but it will at least give the lowest-order

dependence. We have

- * • _ - » - , •>e = £12 + £23

z

-> ->•
-r ra-r,

Ir -r I -r -r
2 1 3 2

20



With r ~ r- + c A T I

~ (r 2-r (ra-ri) -

r-2-ri

Expanding the denominator of the second term yields

- £12
| r2-ri | | r2-ri |

With A T ~ 2 | rz - ft \ /c, we finally have

G ~ i - 2 £ 12

e is at least of order 3 . .

We see that the inclusion of the finite signal-propagation

time introduces further terms of all orders in the doppler-

cancelling data; these terms must, of course, be carefully treated

on the same footing as the pure doppler and relativistic effects

calculated in the preceding section.

A similar analysis has been made for the probe-based station.

In this case, no restriction to circular motion can be assumed

for the probe. With r2 s ro + P / 32 =3o + $' , ^i2 - -£o i

+ e1 Appendix C gives

v Probe

(35b)

{ [3 Ap'-2

"
(Ae-2 Ap1

r • p
— (— -ro 2

(35c)

21
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' • • ' • • •

ft

' •••>•'*.,„.t P 2 *e '
* *=•

, *i J » e » j ^ + ^
a * e

. 3

*<**'-*•> a..*,,
f

2 - £ l ) ' £ «

+ 2

* « T J.
Of
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VII. THE REALITY AND INTERPRETATION OF COORDINATES
IN THE SECOND-ORDER REDSHIFT EXPERIMENT

Throughout this work, we have used the so-called "standard

(r, 6, <J>, t) coordinate system". While this or any other coordi-

nate system is quite valid to work in, within the framework of

general relativity, there is the question of whether the (r, 6, <j>, t)

system physically corresponds with our familiar Euclidean concept

of a spherical coordinate system. In fact, it does not, and the

lack of correspondence with our familiar geometrical concepts must

be accounted for carefully in the analysis of the second-order

redshift experiment. These questions must be carefully considered

when we analyze the tracking of the probe from the earth. Posi-

tions, velocities, angles, etc., will all be affected.

We can illustrate the nature of the problem. Let us consider,

for a moment, the exact Schwarzschild solution in a plane,

ds2 = (i - |51) dt2 - (1 - |H) dr2 - r2d62 .

The infinitesimal elements of spatial distance in the r and

direction are given by

]L

d*r = (1 - f™-) 2 dr (36)

dS,0 = r de . (37)y
These expressions are found by setting up an operational defini-

tion for the measurement of spatial displacement at a point in a

gravitational field, using light signals. For the static

23



Schwarzschild solution, these da happen to be simply the spatial

components of Eq. (3), but this is not generally true for an

arbitrary gravitational field.

Using Eqs. (36) and (37), we can find the ratio of the cir-

cumference of a "circle" at coordinate r from the origin, to the

radial distance. This is
2 r 2ir r

* = r . de/

0 0 r 0 (1-—)2 ••'r

0 (1-)2

The integral in the denominator is obviously not going to be equal

to r, but some value greater than r (since 2m < r). Therefore,

the ratio of the circumference to the radial distance will be lesŝ

than 2 IT , in disagreement with classical Euclidean geometry. The

"radial coordinate, r" cannot be interpreted simply as the straight

line distance from the origin to a point r.

Further study shows that there is indeed no way physically

to interpret the coordinates in terms of our familiar geometrical

concepts. The coordinates are a valid means of cataloging the

points and events in space-time, but they can only be given a

real physical meaning if they are somehow eventually written

completely in terms of observables (proper-clock time intervals

and proper frequencies, in this case). This is the self-consistent

analysis of the redshift experiment that ultimately must be made.

24



We now.consider the specific equations of the second-order

redshift experiment. In the compact notation defined by Eqs. (12) -

(14), the frequency was written as

v 5 p.y = k y (1 -£'e ) • (15)

However, it is incorrect to say that J is simply the plane direc-

tion cosine of the photon, since its explicit form in the (r, 0, <f>, t)

"standard" coordinate system is

->• /~A / R 9 2 9•e E (/| /l - °L, , .§ , 0) . (14)

Only when A = B = 1 will e be the actual classical direction cosine

for the photon. In the presence of a gravitational field, where

A and B ̂  1, the form of e is modified, and no unambiguous geo-

metric association can be made.

Indeed, even 5, cannot be associated with the classical impact

parameter of the photon, when a gravitational field is present.

By combining Eqs. (3), (8), (20), and (21), we find the r - 9

equation for light (ds 2 = o) in the Schwarzschild field to be

1 .dr. 2 _ 2m _ 1 1
• 7" (dQ) ~ ^7 rT 77 • (38)

The impact parameter r, is the point where -—• = 0. From Eq. (38),

we have .

o =•!»-• i- + !- ,
r3 r2 H2

or

0
l _

F
25
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£ ^ r except as r "*• °° . We see that & cannot be considered the

"impact parameter", except at infinity; it is merely a constant

of the motion for the photon, and no deeper meaning can be attri-

buted to it.

All the parameters appearing in the redshift equations

( H, r., g., etc.) must eventually be evaluated rigorously in

terms of the observables, using the redshift and light propagation

equations in a self-consistent scheme.

We note that in the above discussions of the various-order

terms appearing in the doppler-cancelled data, we have assumed

the £. -e. . terms to be only of order 3.. There are, of

course, higher order corrections to ^j_*?. . , involving terms

in m/r, due to the presence of A (r) and B (r); we have not

.explicitly expanded them out in this present work, in order to

avoid further complicating the equations. These questions will

be addressed in the tracking study phase of this work.

26



VIII. FURTHER CORRECTIONS TO THE REDSHIFT;
SOLAR QUADRUPOLE MOMENT

There are many corrections that should be included in any

realistic analysis of the second-order redshift experiment. Of

particular importance is the possibility of a solar quadrupole

8
moment, as suggested by Dicke and Goldenberg . We will now con-

sider this correction, reserving such effects as the earth's rota-

tion, etc., for a later analysis. We will use the "weak-field"

approach to find the quadrupole contribution..

In a"weak-field", the general metric components for the gravi-

tational field can be written as the classical, special relativistic

term (- 6 , the Kronecker delta function), plus a small perturba-

9
tion, v ; i.e., g = -<5 + v .It was shown by Einstein ,

'yv yv yv 'yv J

that, if we define

Yyv

then

4G fT (x',y',z',t-R/c)
Yyv'(x,y,z,t) =-.i£J-H s dv' . , (41)

where T is the energy-momentum tensor, with the primes denoting

the source coordinates, and R = [ (x - x') "* + (y - y ') 2 + (z - zff]2

To lowest order in v/c, we have

~ yv dx^ dxv

yv ~ T ' p ds di^ ' (42)
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where p (r1) is the density. For a nonrotating mass distribution,

we have

T = - p(r') • (43)
4 4

as the only nonzero component. In this case, Eq. (52) shows that

the only nonzero component of y ' will be y
|-l v |j 1|

We combine Eqs. (41) and (42), and expand /R in spherical

coordinates:

/•» • °° H
y ' = -£ | p(r')t ^ 2 (£-) Po(cos x)l dv1 , (44)

i»i* c 2 7 r . ^

where x i-s the angle between a source point (r1, 0', <f>') and the

observer point (r, 6, <{>) , with

cos x = cos 6 cos 9* + sin 0 sin 01 cos ((j)-̂ 1) . (45)

Expanding Eq. (44), we have

p(r1) [ 1 + (—) r1 cos Y

r|2(3 cos2y-l) + ...] r'2sin0' dr'dO'd^1 . (46)i_ i. ̂ 12^-3 /-^^o2•^,_^^ J. 1 v-l2,

3 ) ̂r

Inserting Eq. (45)' into (46) and integrating over 0 (o •-»• ".IT ) ,

(o —>• 2IT ), and r, we find

c2r

Zx(1 - — > + Jv (1 -X 2 -

. [ xy P + xz P + yz P ] , (47)
C2rs xy xz -* yzj
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where M = P(r') dv1 , Ii = P(r') xi'
2dvl , and P . . = p <r ' )x. 'x . ' dv1

If we consider the sun to be an oblate spheroid around the

z axis, then 1=1 and P. . = 0. The nonzero components of g. .
x • Y 13 *. yi]

are then, to lowest order,

*n = 92a = 9,, = - 1 -^ (48)
c r

2
, 2GM G ,T T , 1 ... 3z , . . n ,9^ = i - ~ --- r (W T (1 - — } • (49)

c r c r r

Confining our attention to the plane z = 0 ( 4> = TT /2) , g . becomes

- _ fl _T ) _
41v — U I ) — .

c r c r

8 -5
According to Dicke and Goldenberg , 1 - 1 ~ 4 x 10 M®R© ,

x z

and Eq. (50) can be written as

g ~ ' i _ |m _ (4 x 10-5) m (RS)
2 ^ (51)

«f'n r r r

where our previous notation (G = C = 1) has now been used.

We have carried out this analysis only to first-order in m/r,

as this is all that is necessary; even if Dicke and Goldenberg are

correct, the quadrupole term in Eq. (51) would only be of the

-15 -16
order of -10 - 10 ; i.e., of order 3"* . The possibility of

such a quadrupole contribution should be included in any analysis

of the measured data.
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IX. MODEL ORBIT CALCULATIONS

We have used a computer to calculate the time dependence and

magnitude of all the terms in the second-order redshift experiment

(with y =3 = 1), for various orbits of a heliocentric probe,

such as the proposed NASA-ESRO heliocentric satellite mission

(Figures 2 - 4). These calculations have been made for an earth-

based station that moves in a circular orbit of radius 1 AU around

the sun. Even though this model is idealized, as are the assumed

probe orbits, we can still obtain a reasonable estimate of the

magnitude of the various terms as the mission progresses.

These calculations show that the combination of sufficiently

accurate and stable clocks, and judiciously chosen orbits, make

a second-order redshift experiment quite feasible.
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APPENDIX A

Av_
v Earth (1+Ap

) r H _ 1 jl-Ap') . _ 1
1) l Y2 2 (1-Ae) J 2

Expanding (1 + Ap ' ) and (1 - Ae) to fourth-order in $ , we have

= (1+Ae) (l-Ap'+Ap1 2-Ap' 3+Ap' " ) x

Yi
[yT -

= (1-Ap ' +Ap ' 2-Ap ' 3+Ap ' "+Ae-AeAp ' +AeAp '

-AeAp ' 3 ) x

S.TV^SiTV,, 1*[(Y1/Y2-D - (-!+Ae+Ae2+Ae3+Ae

-Ap'-Ap'Ae-Ap'Ae^-Ap'Ae3) ] - -i-

( 1- Ap ' +Ap ' 2 - Ap ' 3 +Ap ' u +Ae-AeAp ' +AeAp ' 2 -AeAp ' 3 ) x

(Y1/Y2-D

+Ae (Ap'-Ae)-Ae(Ap'-Ae) 2+Ap.'Ae (Ap'-Ae) 2

+Ae3(Ap'-Ae) . (A2)
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Explicitly, from Eqs. (12), (22), and (23), Y^ is given as

12 2 2 ~ 2

a. i

. .. . Y r
2 i

2 , (A3)ri x

where 3- •= 3 + 8g . (The unsubscripted 3 and y a^e the

Eddington-Robertson coefficients.).

Expanding to second order in m/r yields

ri
2

r 2 2

8 rj2 r,

T4

0 2 4. 33* - iHl _ iS 2 -

r r
c 2

rr r

[Y (~~-i— . - —£•!— } + ~ _ - i _ _ , '- i (_ _ +
ic \ r 2 2 IT i 2 r^ 2 rj

02 ~ 23j $2" ~

[ (3-Y) (— - — ) + | — - i — '- —-3 . (A4)
2 2 2 2 2 2
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The first line of Eq.- (A4) is of second-order in 3 ; the other

lines are all fourth-order, with the second line being a mixed

doppler-gravitational term, the third line a pure doppler term,

and the fourth line being the purely second-order (in m/r) redshift

term.

Combining Eqs. (A4) and (A2) , we finally obtain

Av
v Earth = <rT - FT' + I

(Ap'-Ae) [(— -- j) + (3i2-32
2) + Ae (Ap'-Ae)]

3 2 3 2 , 3 2 , 6 2 . , . .3. 2 . 3 2

+ m2 [ (3-Y) (- .+ -- - -- - -- ]
r2

2 n2 2 n2 2 r2
2 rir2

+ (Ap'-Ae) { Ap' [.(~ - 2_) + i (3iz-62
2) + Ae (Ap'-Ae)]~r i r 2 ^

+ Ae3} .
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APPENDIX B

The general relation for the doppler-cancelled signals received

at the earth station is

Av [
Ys

Earth (1-Ap) Y2
1 _ (1-Ap') ] _ 1
2 Yi (1-Ae) .2

From Eqs. (32) and (33),

• - > - > • - > • •> -> •*•
Ae1 = - Ae + g: • e - e i 2 • 6 + e • 6

Ap = - Ap1 + 3 •£
2

(Bl)

(B2)

(B3)

Substituting Eqs. (B2) and (B3) into Eq. (Bl), we have

Av_
v

12

Earth (1+Ap.) _

Ys

Y7 •]- ± • (B4)

Ys = Yir since we have assumed that the earth moves in a circle

with a constant velocity. Expanding the denominator to fourth-

order yields

L-Ap' +Ae+Ap' 2 - Ap' 3 +Ap' "* -AeAp ' +AeAp' 2 -AeAp' 3)

($I-E) Ap'2 + (£I2-$) Ap'
2 - (e-$) + (£•$) Ap1

- 2 ($2'£) Ap1 + ($2*e) Ae + 3 ($2 • £) Ap'

•£) +

Earth

- 2 (32'£) AeAp
1 -

1 Y3

+ (32*e)
2] x i [2 * 1 + Ap1 - Ae + AeAp1

- Ae - Ae - Ae + Ap' Ae + Ap' Ae ] - y (B5)
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The explicit functional form of Y3/Y2 can be taken from Eq. (A4)

of Appendix A; inserting this into Eq. (B5), multiplying out, and

cancelling and combining terms, finally yields.

v Earth
m _ m
ri " r~2~ ) + ( 3 i 2 ~ 3 2

2 ) + Ae(Ap'-Ae)

- - ) +
r i r 2 <s- (Ap'-Ae) [

- [ ( £ 1 2 - $ ) Ae + ("§2- Ap

Ae (Ap'-Ae)]

Ae + ( e - S ) ]

3r/ 3]+ rn [ Y (_£i
A 2

PI . 3 2
2

' 1 -2 '

- 3." - 2 6 i 2 3 2
2 ]

+ m2 [ (3 -Y) (- , 3 1 _ 1 1
-; T -K- - T?-

2- y 2 2 r-r 1 r 2

(Ap'-Ae) { Ap' [ < 5 L . - 5 L ) . + ( 3 i 2 - 3 2
2 )

+ Ae (Ap'-Ae) + Ae3 }

r r
1 2

~ - ~

- ( - ( l i - £ ) [ Ae (2 Ap'-Ae)] + ( |2 'e)[ 2 Ae (Ap'-Ae)

+ A p ' 2 ] + ( e ' i 2 - $ ) t Ae(2 Ap ' -Ae)]

Ae
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APPENDIX C

The general relation for the doppler-cancelled signals received

at the probe-based station is

Av_
v Probe — —(1-Ae) Y.I 2 Yo (1-Ap")

With PZ = PO + 61 and e'i 2 = - e o i + e ' , we have

Ap"
-»•

>0 * £01

= - 3
2 1 2

e
12

= - Ap1 e
12

(ci)

(C2)

Ae" • e01

= - Ae (C3)

Substituting Eqs. (C2) and (C3) into (Cl), and expanding to

fourth-order, yields

v Probe (1-Ap1) (!+Ae+Ae2+Ae3+Ae't) x

Y2

YT
Y2

YT
+Ae

- AeAp'+AeAp'2-AeAp'3
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- (e'-S') - 2 Ap1 ($2-e') - 2 Ap'

+ Ae ($2-e') + Ae (e12«$')

+ Ap' (?!•£')

+ 2 Ap' (£'•£') + (|2-e')
2 + 2 ($;

+ (eia-^1)2 + 3 Ap'2 (^2-e')

+ 3 Ap'2 (£i2-^') - Ae (e
1'^')

- 2 AeAp1 (32-e1) - 2 AeAp1

- Ap'2 ($i-e'))]-! . (C4)
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The explicit form for Yz/Yi / can be immediately picked up from

Eq. (A4) of Appendix A. To find Y2/Yo explicitly, we use

rz = r0 + p :

r22 = r2 ' ra = ro2 + 2 ro * P + P'

r- 2 r- 2r o r o

Therefore, similarly to Eq. (A4), we have

Y2 m m 1
— . •= 1 + (— - —) + j (32 -Bo )Y o *• 2 r o *•

B ' 2 32 _ p 2 1p2

+ \ t 3321* - B o 1 * - 2 B ^ 2 3 o 2 ]

2 2 2 2 2 2

- » • - » • o ' _ ' " - > • - > - ,m v « / - \ /^^ ^ V m f\ ^~
_ r i. 0 * P P , J / J / o P \ 1

*** J_ — [_ —••"— — ——^— -f « \ / J

r° r0
2 2 r 0

2 2 r0
2

+ ( 3 o * ^ ' ) + | ( 6 1 2 ) . (C6)

The fourth-order terms in Eq. (C5) do not give any additional

corrections in the perturbation expansion.

Inserting Eq. (C6) and the_explicit form for Ya/Yi into

Eq. (C4) finally yields

Av
v Probe > - [ (FT - FT> + 7 (31

2-32
2)] - Ap'(Ap'-Ae)

- [(eiz-^1) + (l2-?i)-e']

(Ap'-Ae) [(—- - S_) +| (3i2-32
2) + Ap'(Ap'-Ae)]
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"{ [3 Ap'-2 Ae] 1) + (Iz-e1)]

+ (Ae-2 Ap1)

r0

T-r
o
P2

(3-T)

(Ap'-Ae) { Ae [(- -

+ Ap1 (Ap'-Ae) - Ap13 }

- { (eiz-'J1) [5 Ap1 (Ap'-Ae) + 2 Ae

+ ( 2 Sz-liJ-e1 + ei2*2'] + (e1-^') Ap'

1) [ 5 Ap' (Ap'-Ae) + 2 Ae2 +

- (3i*e') [ Ae (Ae - Ap1) + 2 Ap'2]

2r0
2

±-.<S12 - 2 (Ap'-Ae) (-?--£)

- 2 (Ap'-Ae)
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CAPTIONS

Figure 2a.

Figure 2b.

Figure 3a.

Figure 3b.

Figure 4a.

Figure 4b.

Distance from the sun (in AU), versus period, for an

earth-launched heliocentric probe, that has a per-

helion of its motion at 0.29 AU. (Period =0.52
t

years)

Curve a is the total redshift for an earth-launched

heliocentric probe that has a perhelion of its motion

at 0.29 AU, plotted as a function of the probe's

period. (Actually - Av /v is plotted.) The

infinite signal-propagation-velocity case is shown

here. Curve b is the third-order(in 3 ) terms that

contribute to the total redshift. Curve c is the

(negative of the) purely gravitational fourth-order

2
contribution (i.e., the m term). Some of the points

at the beginning and end of the. orbit have been

omitted for simplicity; they either drop below the

scale of the figure, or have opposite sign to the

general curve.

Same as Figure 2a, with perhelion =0.5 AU. (Period

= 0.65 years)

Same as Figure 2b, with perhelion =0.5 AU.

Same as Figure 2a, with perhelion =0.1 AU. (Period

= 0.41 years)

Same as Figure 2b, with perhelion =0.1 AU.
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