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A SEARCH FOR GLOBAL AND SEASONAL VARIATION OF

METHANE FROM NIMBUS 4 IRIS MEASUREMENTS

C. Prabhakara, G. Dalu* and V. G. Kunde

ABSTRACT

The Nimbus 4 Infrared Interferometer Spectrometer (IRIS) measurements

in the region around 1304 cm- 1 show absorption due to methane in the earth's

atmosphere.

From the laboratory measurements of the absorption coefficient and a

selected vertical distribution corresponding to 1.13 atm cm of methane, a theo-

retical model for the transmittance at 1304 cm - 1 is developed. The weighting

function deduced from this model shows a maximum around 300 mb. Some weak

absorption due to nitrous oxide (N20) in the atmosphere has been taken into

account.

The vertical temperature profile, derived from the 15 pm CO 2 band in the

IRIS spectrum, together with the methane weighting function have been used in

a consistent way to compute the upwelling intensity at 1304 cm - 1 . The brightness

temperature corresponding to the IRIS observed radiance at 1304 cm - 1 has been

compared with the brightness temperature deduced from the calculated upwelling

*NRC-Research Associate. Permanent address: C.N.R.-Istituto di Fisica dell'Atmosfera-Rome, Italy.

iii



intensity from 800 North to 800 South and for different periods of the year. This

comparison shows that the two brightness temperatures agree with one another

to within the accuracy of measurements, about 20 K and that their difference

reveals no geographic pattern. An error of 20 K in brightness temperature,

relates to an error of 0.25 atm cm of methane. From this result we find that

global or seasonal variability of methane is less than ±0.25 atm cm.

iv



CONTENTS

Page

ABSTRACT ........................... iii

INTRODUCTION . . . . . . . . ........ . ...... . .. 1

DESCRIPTION OF SPECTRA .................... 2

METHOD . .. ..................... . . .. 7

RESULTS ......... * * ....... ........... 11

CONCLUSIONS . ......... ... ............ . 15

ACKNOWLEDGMENTS ......... ............. . . . 16

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . 16

APPENDIX A-Statistical Band Model Parameters for CH 4 and N2 0 . . . A-1

ILLUSTRATIONS

Figure Page

1 Observed IRIS Spectrum and the Computed Spectrum
Including Only Water Vapour Absorption . . . . . . . . . . 4

2 Absorption Spectra for Methane and Nitrous Oxide,
and the Residual Spectrum AT . . . . . .. .... . .. 6

3 Weighting Functions for Methane and Nitrous Oxide
at 1304 cm - 1 * * *. . ... 10

4 Difference Between the Computed and the Observed
Brightness Temperatures at 1304 cm - 1 . . . . . . .  . . . 12

5 Comparison Between the Observed and the
Calculated Brightness Temperatures ........... 14

v



A SEARCH FOR GLOBAL AND SEASONAL VARIATION OF

METHANE FROM NIMBUS 4 IRIS MEASUREMENTS

INTRODUCTION

Methane is present in the earth's atmosphere as a minor constituent (Migeotte,

1948). Measurements of the total amount of methane and its vertical distribution

derived from balloon and rocket flights (Ehhalt and Heidt, 1973; For short sum-

mary see Drayson et al., 1972, and also Friend, 1972) indicate the mixing ratio

of methane in the atmospheric layers near the surface changes from about 0. 6

to 2.0 ppm by volume. In the troposphere this gas appears to be well mixed with

a mixing ratio of about 1.41ppm. Above the tropopause the mixing ratio decreases

reaching a value of -0. 25 ppm near 50 km altitude. The total amount of the gas

per unit area corresponding to an average mixing ratio of 1.41 ppm is about

1.13 atm cm.

The main source of methane is on land from the decomposition of organic

matter (Koyama, 1963) with no known sources in the atmosphere. Atmospheric

photochemical investigations suggest oxidation of methane as a sink, both in the

troposphere (Weinstock and Nicki, 1972) and in the stratosphere (McConnell et al.,

1972, Wofsy, etal., 1972). Because methane is produced on land, a variation with

geographic location, or at least an asymmetry between the northern and southern

hemisphere would be expected. However, the mean atmospheric residence times of

1-7 years derived from photochemical theories (Weinstock and Nicki, 1972; Wofsy,
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et al., 1972; Junge, 1972; Wofsy and McElroy, 1973) should be sufficiently long

to smooth out any source variations and distribute the gas uniformly over the

globe.

The available measurements on methane concentration, made with different

measuring techniques and confined to limited geographic regions, are not suffi-

cient to present a comprehensive picture of the temporal and spatial variation

of methane in the earth's atmosphere. Remote sensing satellite instruments are

ideally suited to examine the large scale variability of methane. Measurements

made by the Infrared Interferometer Spectrometer (IRIS), aboard the Nimbus 3

and Nimbus 4 satellites, clearly show the absorption features produced by meth-

ane in the atmosphere in the 1225-1325 cm - 1 region (Conrath et al., 1970; Hanel

and Conrath, 1970). These satellite measurements covered the globe from 800 N

to 800 S and in the case of Nimbus 4 satellite were available for about one year.

In this investigation the Nimbus IV IRIS spectra have been examined for any

global or seasonal deviations of methane from its mean value of 1.41 ppm.

DESCRIPTION OF SPECTRA

The Infrared Interferometer Spectrometer (IRIS) measured the thermal emis-

sion of the earth's atmosphere and surface from 400-1600 cm - 1 with an apodized

spectral resolution of 2.8 cm-' . The instrument and its performance have been

described by Hanel, et al., 1972, together with the instrumental calibration and

an overview of some observed spectra. The radiometric precision of the instrument
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is high with the noise equivalent radiance (NER) of - 0.5 erg sec - 1 cm 2 sr - 1 /

cm - 1 as estimated from the in-flight calibration.

Absorption features of v 4 fundamental vibration rotation band of methane

have been observed in the 1225-1325 cm- 1 region of the IRIS spectra. This

band has a narrow Q-branch with intense absorption around 1304 cm 1- . An ob-

served brightness temperature spectrum of IRIS, in the 1200-1350 cm - 1 region,

taken over the Pacific ocean near Guam on April 27, 1970 is shown in Figure 1

to illustrate this strong feature. This spectral feature is easily noticeable in

the IRIS spectra taken over the globe from 80 0 N to 800 S.

From an examination of the observed brightness temperature spectrum in

Figure 1 one can readily notice the presence of several lines of water vapour

superimposed on the methane band. To appreciate quantitatively the water

vapour interference a theoretical spectrum resulting purely from water vapour

absorption is calculated with the help of temperature and relative humidity

measurements made by a radio-sonde at Guam. Detailed line by line direct

integration slant path program is used for this purpose. The theoretical bright-

ness temperature spectrum obtained from such a calculation is shown in Figure

1. From a comparison of these two spectra one can see that the spectral region

1200-1350 cm- 1 is profoundly influenced by the water vapour lines with the excep-

tion of several narrow water vapour windows. The presence of one water vapour

window particularly at 1300 cm- 1 favours the Q-branch of the CH 4 band to mani-

fest itself in the IRIS spectra.
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The water vapour absorption in the observed spectrum can be eliminated by

taking the difference between the two brightness temperature spectra shown in

Figure 1. This difference or "residual" spectrum AT, as shown in Figure 2,

can then be examined for many absorption features that are weaker than the Q-

branch of CH 4. In the spectral region 1200-1350 cm - 1 the v1 band of N20, another

known minor constituent of the atmosphere, also produces absorption. For this

reason the CH 4 and N20 features in the residual spectrum are scrutinized with

the help of the absorption bands of these two gases which are included in Figure

2. These absorption bands are calculated with the band model parameters de-

scribed in Appendix A. To simulate the atmospheric conditions in these calcu-

lations the pressure is taken as 500 mb, and the assumed CH 4 and N2 0 path

lengths are 1.13 cm and 0.25 cm respectively.

In the methane v4 fundamental band the rotational lines for each rotational

quantum number (J) of the P- and R-branches are spaced -5 cm - 1 apart. A

general correspondence between the calculated methane band and the residual

spectrum (see Fig. 2) is evident. The P- and R-branches of the v, band of

N20 produce absorption peaks at 1276 and 1304 cm - 1 respectively. The resi-

dual spectrum also reflects the presence of these features. As the mean line

spacing of N2 0 is ~0. 8 cm - 1 individual N20 lines are not identifiable in the

spectrum.
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METHOD

Remote sensing of a minor gaseous constituent in the earth's atmosphere,

from thermal infrared measurements, is feasible when that gas produces meas-

urable absorption. It is, however, necessary to have simultaneously a tempera-

ture sounding of the atmosphere to make a quantitative estimate of the amount of

the gas. In addition, if we wish to measure the global or seasonal variability of

the gas with a meaningful accuracy, the absorption due to other variable atmos-

pheric gases, particularly the water vapour, should not adversely interfere.

Success in remote sensing of the global distribution of ozone (Prabhakara, et al.,

1970), from the 9. 6 pm IRIS measurements, in the presence of some water

vapour absorption supports this point of view.

In this study, we make an estimation of the CH 4 amount from the 1304 cm - 1

Q-branch feature. A radiative transfer model is developed for this purpose.

From the radiative transfer formalism, in a non-scattering atmosphere

under local thermodynamic equilibrium we can relate the upwelling intensity I(v)

as

I(v) = B(v, T(po)) r(v, Po) + B(v, T(p)) dr(v, p) (1)

where po and p are surface pressure and pressure at any height (mb),

v is the wave number (cm - ),

T is the temperature (K),
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B is the Planck intensity,

7 is the transmission from any pressure level p to the top of the atmosphere.

The temperature sounding T (p) needed in Equation 1 is obtained by performing

an inversion of the IRIS measurements in the 667 cm - 1 CO 2 band (Conrath, et

al., 1972). The transmission function r = 7 N20 * 1 CH4 is calculated with the

band model parameters of CH4 and N 20 given in Appendix A. For the purpose

of these calculations, it is assumed that in the lower atmosphere up to about

100 mb CH 4 has a constant mixing ratio of 1.41 ppm and above 100 mb the mixing

ratio decreases linearly with respect to height to 0. 25 ppm at 50 km level (Ehhalt

and Heidt, 1973). N20 is assumed to be uniformly mixed with a mixing ratio of

0. 3 ppm. In Table 1 the distribution of the gases and the calculated transmission

functions for 1304 cm - 1 are tabulated.

In Figure 3 the weighting function, dr/dknp for each gas and for both

gases is shown. The emission of N20 primarily originates from the lowest

layers in the atmosphere where the water vapour is present. Water vapour

absorption, although weak, can range from a maximum of about 50% in the tropics

to less than 20% at high latitudes. Thus the N2 0 information at 1304 cm - 1 is

damaged by water vapour absorption. At 1276 cm - 1 , atmospheric N20 has about

the same absorption as that at 1304 cm - 1 (see Table 1) and so the weighting func-

tion for N20 in this spectral region also has a maximum near the surface. The

water vapour absorption in the lower atmosphere precludes the possibility of

measuring N20 either from 1304 or from 1276 cm - . For this reason we have
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Table 1

Pressure CH 4 Path N20 Path CH 4 Trans- N 2 0 Trans- Total Total
(mb) Length Length missivity at missivity at Transmissivity Transmissivity Height

(atm cm) (atm cm) 1304cm-1 1304cm- 1  at 1304 cm- 1  at 1276em- 1  (km)

3.7 0. 0011 0.0009 0. 995 0. 996 0. 992 0. 996 38.2

5.5 0.0023 0.0014 0.992 0.994 0.987 0.994 35.2

8.2 0.0045 0.0020 0.987 0.992 0.979 0.991 32.6

12.2 0.0081 0.0030 0.979 0.988 0.967 0.987 29.9

18.2 0.0143 0.0045 0.967 0.981 0.949 0.980 27.2

27.2 0.0244 0.0068 0.947 0.972 0.921 0.969 24.6

40.5 0.0410 0.0101 0.918 0.959 0.881 0.954 22.0

60.5 0.0683 0.0151 0.877 0.940 0.824 0.932 19.4

90.4 0. 1020 0. 0226 0. 822 0. 911 0. 750 0. 900 16.9

134.9 0.1520 0.0337 0.747 0.871 0.650 0.855 14.3

201.4 0.2280 0.0503 0.647 0.813 0.526 0.791 11.8

300.6 0.3400 0.0751 0.522 0.734 0.383 0.705 9.1

448.8 0.5070 0. 1120 0.379 0. 631 0.239 0. 593 6.4

669.9 0.7570 0.1670 0.235 0.503 0.118 0.458 3.3

1000.0 1.1300 0.2500 0.115 0.358 0.041 0.312 0.1
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assumed the mixing ratio of N 2 0 in the atmosphere is 0. 3 ppm (corresponding

to 0. 25 atm cm) invariable with respect to time and geographic location. However,

large part of the methane information originates around 450 mb as can be seen

from Figure 3, which is considerably separated from the water vapour in the

lower atmosphere. Thus the 1304 cm - 1 measurements can yield some informa-

tion about methane.

In the present study the spectral measurements at 1304 cm - 1 are examined

for deviations of CH 4 from the global mean value of 1.13 cm atm in the following

fashion. Synthetic radiances are computed at 1304 cm - 1 from Equation 1, using

T (p) from the inversion of the 667 cm - 1 CO 2 band. The CH 4 and N 20 transmis-

sion functions (see Table 1) used in these calculations correspond to the total

amounts of 1.13 and 0. 25 cm atm, respectively. The 1304 cm - 1 calculated radi-

ance and the corresponding brightness temperature are compared with the IRIS

observed data. The difference between the observed and calculated brightness

temperatures can be related to the deviation of methane amount from its global

mean.

RESULTS

The difference in the observed and computed brightness temperature, ST,

is shown in Figure 4 for orbit 1207, July 7, 1970, going from 80 0 N to 800S. The

6T shown has a standard deviation of 2. 50 K and reveals no latitudinally dependent

variation. The data corresponding to large 5T are associated with high clouds.
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The 15 pm CO 2 temperature soundings derived from spectra contaminated by

high clouds are in considerable error and so are the upwelling intensities calcu-

lated at 1304 cm - 1 using such temperature data. However, when the clouds are

at lower levels in the atmosphere these errors are reduced.

In further analysis of IRIS data we have eliminated high cold cloud contami-

nated spectra. These high cold clouds can be easily identified from the 900 cm - 1

(11 pm) IRIS window measurements. When the high altitude cloud contaminated

data are not considered the 5 T shown in Figure 4 has a standard deviation of

about 20 K. This error is comparable to the noise equivalent temperature (NET)

of IRIS measurements at 1304 cm- . The model calculations indicate that in order

to change the brightness temperature by ±20 K the mixing ratio of methane should

be changed by + 0.25 ppm. This result implies the sensitivity in measuring CH 4

from IRIS data is about ±25% of the global mean value.

With this technique we have processed Nimbus 4 IRIS data to examine if there

are any organized patterns in 6T over the globe on a daily or monthly mean basis.

We find from this study that there are no organized patterns in methane distribution.

These results can be demonstrated from the scatter diagram shown in

Figure 5 where the calculated brightness temperature and the observed bright-

ness temperature at 1304 cm - 1 are plotted for different geographic areas and

for different seasons. The brightness temperatures range from 225 0 K near the

polar regions to 2550K in the tropics. If the calculated and observed brightness

13
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temperatures are equal the data points in Figure 5 should fall on the line having

450 slope. If there is more methane than 1.13 atm cm, we should find the ob-

served brightness temperature systematically colder than the calculated one.

From Figure 5a and 5b, representing the variability of methane over land, we

see the data closely follows the line having 450 slope. Similar results are found

from the oceanic cases shown in Figure 5e and 5d.

The standard deviation of the data in all these cases with respect to the 450

line is about 20 K. Further in all these cases the scatter of the data does not

suggest any systematic increase of decrease in mixing ratio with respect to

latitude or season.

CONCLUSIONS

In the present study, information on the global distribution of methane from

a satellite is obtained for the first time. The results obtained over the land,

where the sources of methane are present, show no appreciable differences

from the results obtained over the ocean. Also no seasonal variation has been

detected. From this study it can be stated that there is no global or seasonal

variability of methane to within an accuracy of 0.25 ppm. This suggests that

methane has a life time long enough to produce a uniform global distribution.

Remote measurements at high spectral resolution ('0.1 cm - '), which can

isolate the absorption features of H2 0, CH 4 and N20, would permit one to
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measure the global and seasonal variability of CH 4 , with an accuracy better than

the ±0.25 ppm limits set by the Nimbus 4 IRIS measurements. Additionally the

higher spectral resolution may be useful in the determination of the vertical dis-

tribution of CH 4 and the total amount of N2 0.
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APPENDIX A

STATISTICAL BAND MODEL PARAMETERS FOR CH 4 AND N20

The absorption bands of methane and N20 of relevance to the present study

have been investigated among others by Burch et al., 1962, in the laboratory for

several path lengths and pressures. Their measurements were made with a

spectral resolution of about 10 cm -1 which is crude for the purpose of explaining

the IRIS spectra having a resolution of 2. 8 cm-' . Absorption spectra in our

laboratory were obtained (Blaine and Hovis, 1973) for CH 4 and N20 with a reso-

lution of 2.8 cm-'. With the help of both these sets of data we are able to fit the

absorption bands of CH 4 and N2 0 to a statistical band model (Goody, 1964). The

band model permits us to express the transmission r as

T = Exp kw I + 4 w /P (Al)
1 -0 4 /6 P/Po

where k is the absorption coefficient (atm- 1 cm- 1 ),

w is the absorber path (atm cm),

CO is the line half width at STP (cm-' atm - ),

6 is the average line spacing (cm-1 ),

p is the pressure and po the standard pressure (mb).

The various band model parameters that have been used to compute CH 4

and N20 spectrum are listed in Tables A-1 and A-2.

A-1



Table A-1

METHANE NITROUS OXIDE

Wave
Wavnumber Absorption Absorption

number Absorption for 1.1 atm cm Absotion for 0.25 atm cm(cm-1) coefficient coefficient(atm1 cm- 1 ) of methane at a (atm 1 cm of nitrous oxide at a
pressure of 0.5 atm pressure of 0.5 atm

1210.6 0.23 0.078 0.018 0.012
1213.0 0.01 0.016 0.018 0.012
1222.0 0.36 0.100 0.100 0.023
1226.0 0.04 0.040 0.145 0.035
1231.0 0.85 0.153 0.230 0.054
1234.4 0.04 0.038 0.240 0.066
1238.0 1.32 0.184 0.430 0.088
1239.6 0.20 0.085 0.480 0.100
1243.2 0.92 0.160 0.670 0.127
1244.5 0.46 0.110 0.740 0.140
1248.0 1.54 0.200 1.040 0.175
1251.5 0.09 0.050 1.320 0.215
1255.5 2.02 0.225 1.940 0.270
1257.5 0.17 0.066 2.280 0.300
1262.0 2.62 0.250 3.360 0.372
1267.5 0.80 0.147 5.450 0.465
1270.0 2.62 0.250 6.620 0.503
1271.3 1.50 0.198 7.200 0.520
1273.0 2.42 0.240 8.350 0.548
1274.0 0.15 0.062 8.600 0.558
1276.5 0.85 0.152 9.900 0.588
1278.5 2.00 0.220 8.720 0.560
1280.0 0.14 0.060 7.800 0.537
1284.6 4.03 0.302 5.200 0.455
1286.0 0.14 0.060 4.300 0.417
1290.5 3.41 0.280 5.050 0.448
1292.5 0.46 0.110 6.350 0.494
1296.2 4.51 0.318 8.600 0.554
1297.5 3.89 0.296 9.000 0.568
1299.0 6.21 0.362 10.000 0.590
1300.5 5.41 0.342 11.000 0.606
1304.3 138.00 0.880 13.000 0.640
1308.2 0.01 0.022 9.700 0.582
1311.0 0.33 0.096 6.850 0.510
1313.5 0.02 0.026 5.800 0.478
1317.0 0.33 0.095 5.450 0.465
1322.0 0.83 0.151 3.100 0.352
1324.0 0.14 0.060 2.280 0.300
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Table A-1 (Continued)

METHANE NITROUS OXIDE
Wave

number Absorption Absorption Absorption Absorption
cm-1) coefficient for 1.1 atm cm coefficient for 0.25 atm cm

(cm - ) coefficient coefficient
(atm- 1 cm- 1) of methane at a (atm-1 cm- 1) of nitrous oxide at a

pressure of 0.5 atm pressure of 0.5 atm

1327.0 3.62 0.287 1.440 0.225
1329.0 0.20 0.068 1.040 0.178
1333.0 6.44 0.366 0.520 0.105
1334.5 0.36 0.100 0.400 0.082
1338.0 5.98 0.358 0.190 0.045
1340.5 0.74 0.141 0.100 0.025

Table A-2

METHANE NITROUS OXIDE

ao  = 0. 085 atm (Varanasi ao  = 0.152atm (Goody
and Tejwani, 1972) and Wormell, 1951)

6 = 5.8 cm - 1 (Nielsen 8 = 0. 836 cm - 1 (Goody
and Nielsen, 1935) and Wormell, 1951)

o/ = 0.015atm m a/6 = 0.18atmcm
(Adopted value) (Adopted value)
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