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ABSTRACT

A computer program'is described for the calculation of the zeroes of the
associated Legendre functions, an , and their derivatives, for the calculation
of the extrema of an and also the integral between pgjrs of successive zeroes,
The program has been run for all n,m from (0,0) to (20,20) and selected
cases beyond that for n up to 40. Up to (20,20), the program (written in
double precision) retains nearly full accuracy, and indications are that up to
(40,40) there Is still sufficient precision (4-5 decimal digits for a 54-bit man-
tissa) for estimation of various bounds and errors involved in geopotential model-

ling, the purpose for which the program was written.
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I INTRODUCTION

This report describes a computer program for the caloulation of data on
the associated Legendre functions of the first kind. These data are useful in the
estimation of bounds for truncation error in the spherical harmonic expansion of
the geopotential, and also for the estimation of bounds on the coefficients in such.
~ an expansion. The applicatlpn of the results of this calculation to these estima-
tion prﬁblems is discussed iﬁ References 1 and 2. The accuracy requirements
for estimation purposes are not very stringent, a few significant digits should be
adequate., The program'can operate up to degree and order 100; this limitation
is imposed by the dimensioning of various arrays and would be easy to change,
The program has been run from 0,0 through 20,20 and appears to have accu-
racy of 8 or 9 significant digits for this range of degrees and orders, Runs
for degrees 30 and 40 with order zero indicate that one can probably run it to
40,40 with an accuracy of four significant 'digits. The accuracy can probably be
significantly increased by implementing one or another of the sﬁggested modifica-

. tions to the subroutine for finding roots. A}

In constructing the progi'am. two formulations for the associated Legendre
functions were implemented. In one, z =cos 6, where 8 is the polar angle of
spherical coordinates, is the independent variable. In the other, x= sin2 6/2 is

the independent variable. These two varlables are related by
z =1~2x (1.1)

and the corresponding associated Legendre functions are given by |

m/2
(1-z") . polynomial of degree (n~m)/2 in 2z

for n-m even
) nt
P ,(Z) /2 (1. 2)

(1=z2) . z + polynomial of degree (n-m-1)/2
in z% for n-m odd
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an(x) = [x(1 _x)]m/Z - polynomial of degree (n-m) in x (1.2)

From Egs. (1.2), it would at first appear that the calculation must accommodate
three cases; actually there are six cases, since the extrema of an are found
from the zeroes of the derivative of an with respect to its independent vari-
able, and the derivative must be handled in different ways for m =0 and m=>0,.
In addition, there are seven special cases that must be handled separately (e.g.,
one of tilese is P_= consta.ﬁt, for which there are no zeroes, extrema, or inter-

d0
val integrals,

The "interval integrals} mentioned above and in the title, are the integrals,

between successive zeroes of an, with respect to its independent variable.

From Eq. (1.1)

d_z = - 2dx -
x = 0 corresponds to z =1 (1. 3)
x = 1 corresponds to z = -1

*

The final print-out of the full set of calculations lists the zeroes of an and its
derivative in adjacent columns and in increasing order relative to the variable used.
The associated extrema and interval integrals appear in the third and fourth columns,
Because of the correspondence of the endpoints of the interval of definition of an
indicated in Eq. (1.3), the results read from top to bottom in the z-formulation
correspond to those read from bottom to top in the x-formulation. The magnitudes
of the zeroes are related by Eq. (1.1). The extrema should be identical. The in-
terval integrals are related by a factor '2 which comes from Eq. (1.3) (not -2,
since the minus sign is compensated by an interchange in limits of integration

as one transforms from one formulation to the other).

\
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In any particular run of the program, one formulation or the other is se-

lected by an input switch, The two formulations were implemented because it

seomed likely that they might well complement one another and, as we shall see,

this is indeed the case. In addition, check-out of the program was greatly

facilitated,

Several output options aré available through another input switch., The

general flow of the main program is as follows:

1.

Input and initializatioh, including selection of the formulation
to be used.

Calculate and print the coefficients of the polynomial parts
of P and P' .
nm nm
Option: Terminate the program at this point and
go to more input at 1
Calculate the zeroes of P and P'_ .
nm nm
Option: Print these zeroes and goto 1
Option: No print; bypass 4 and goto 5
Calculate extrema of P by evaluation at the zeroes of P'_ .,
nm nm

Option: Print zeroes and extrema and goto 1

Calculate the interval integrals using the zeroes of an .

 Option (only if 4 is bypassed):

Print zeroes and interval integral and
goto 1

Print zeroesof P and P, extremaof P, and
nm nm am
interval integrals in tabular form.

Go to 1 (with exit if no more data available).

Listings of the main program and all the subroutines are provided in the

appendices. The remalning sections of the report describe the steps listed above



in greater detail, with references to line and statement numbers appearing in the

listings.

Section II contains a list of the input parameters and a discussion of their
various functions. The branching involved in the six cases mentioned earlier is
also described in Section II. This is follo_wed, in Section III, by the recursion
formulgs used to obtain the coefficients of the polynomial parts of an and Pl;m .

and a discussion of the subroutines in which they are implemented.

_The zeroes of the polynomial parts of an and Pr'lm are calculated by
Graeffe's root squaring method, implemented in subroutine GRAEFF. Some in-
teresting problems were encountered,and these problems and their resolution are
described in Section IV. This subroutine presently limits the accuracy of the pro-
gram, and hence the size of degree and order to which it can be applied. The re~
sults of a few test runs are presented, and several possibilities for improvement

of the accuracy are discussed briefly.

The extrema of an are found by direct substitution of thg zeroes of Prtam
into an aqd this is accomplished by subroutings FUNCT and EVAL, which are
straightforward and easily followed from the listing. The interval integrals are
Vcalculated by Gaussian quadrature in subroutine GAUSS, which is also straight-

forward. A few comments on these three subroutines appear in Section V,



II. INPUT, INITIALIZATION, AND OUTPUT

The major portion of the Maln Program is taken up by input,initialization,
and output. The calculations are all done in éubroutines, called by the Main Pro-
gram. A listing of the Main Program is given in Appendix A. The references to
symbols, statement numbers, and line numbers in this section apply to the Main
Program. The output section is located between Statements 600 and 800. Tt fol-
lows the flow indicated in the Introduction with the indicated options implemented
in Lines 20800, 24600, 24800, 31300, and 31800,

A block of 20 integers, IN(20), is reserved for‘lnput parameters. A
block of 100 integers, NUM(100), is also used for input under certain conditions.
These blocks are in NAMELISTS IN1 and IN2, The output of the program is

carried in the arrays

C(101) . coefficients for the polynomial part of an
3

CP(102)  coefficients for the polynomial part of P:;m
Z(102) zeroes of P

nm
ZP(101) zeroes of P’

nm
EX{(101) extrema of P

- nm

FIN(101) Interval integrals -

The first part of the initlalization consists of identifying the {nput block,

IN, with mnemonic names as follows:

IN(1) =IND=0 independent variable is z = cos 0
1 independent variable {8 x = sinz 8/2



IN(2) = NOPT =0 a range of degrees equally spaced is desired;
see IN(7), IN(8), and IN(9)
>0 a list of NOPT degrees to be read into the
block NUM, using NAMELIST IN2 for the Input

IN(3) = MOPT = -1 process all orders consistent with each specified
degree

z0 process only order MOPT for the specified
degrees

IN(4) = INC: Print Options:
0 compute and print only C and CP
1 compute and print only C, CP, Z, and ZP

2 compute and prinf only C, CP, Z, ZP,
and FIN

3 compute and print only C, CP, Z, ZP,
and EX

4 compute and print C, CP, Z, ZP, EX,
and FIN

IN(5) = ITMAX maximum number of iterations allowed in
' GRAETF for the calculation of Z and ZP

IN(6) = NI ) use the zeroes and weight factors for P
in GAUSS (NI+1), 0

IN(T) = IMIN process a range of INX
IN(8) = ISTEP degrees starting at IMIN and
spaced at ISTEP intervals

IN(9) = INX

IN(10) = NTOL i - convergence criterion

IN11) } SCALE = IN(11)*+IN(12) SGZ;T;‘;;W on
IN(12) ‘

IN(13) TOL = 10%+IN(13) See Section V on GAUSS
IN(14) ~ IN(20) \ not used at present



A single error return is provided for several input conditions which might result

in poor functioning of the program.

The second part of the initialization involves setting up the array NUMN(I)
in such a way that NUM(D) is the Ith degree to be processed, with a total of INX
degrees. This information goes into the main DO loop starting at Statement 44;
DO 1000, I=1,INX followed by N1=NUM(I), where N1 is the degree currently
being pr;cessed. For NOPT>0, NUM is filled from the second READ statement
(Line 4400)., The DO loops to 6, 8, and 10 rearrange the degrees read and restore
them to NUM so that

NUM(I1)>NUM(12) if and only if I1>I2

This means that the degrees may be in any order in the data statement. For
NOPT =0, Statements 20 and 30 construct NUM so that

NUM(1) = IMIN
NUM@) = NUM({-1) +ISTEP
NUM(INX) = IMIN + ISTEP*(INX-1)

" Note that the dimensions of 101 and 102 for C and CP imply that the degree
N1 must not exceed 100. For direct input (NOPT> 0) no test is made, but for
NOPT=0, NUM(I) is not permitted to exceed 100 (see DO loop 30).

The third part of the initialization calls subroutine FNORMO (Line 8600);
this step, together with the call to FNORM in Statement 58, is better discussed in
the next section dealing with the calculation of the coefficients in the polynomial

parts of P and P' .
am nm

The fourth part of the initialization sets up IMX and the array MUM,
which do for orders what INX and NUM do for degrees. If MOPT>0, MUM(1)=
MOPT and IMX, the number of orders to be processed is set to 1. If MOPT<O0,



MUM and IMX are defined (inside the DO 1000 I=1,INX loop) to include all
orders consistent with the current value of N1 by the DO 45 loop.

The final step in the initialization is pérhai)s the most complex; it starts
at Line 10300 near the beginning of the DO 999 loop (which processes all orders
specified for the eurrent N1 value) and extends to Line 20400, just before CALL
COEF. This step sets up the branching procedure for the six cases mentioned in
the Introduction. A basic reason for the large number of cases was the desire to
make use of the symmetry involved in the z = cos & formulation to reduce com-
putation time. In this formulation, the polynox'ni.al parts of P and PI;.m are
polynomials in .cosz 6, so that only their positive zeroes need be calculated and,
from these, only the corresponding extrema and interval integrals need be cal~-
culated, The complete set is then obtained from multiplication of this set by + or
-1, TFurther, there is little point in making GRAEFF find a zero root which is
readily found by factoring.

The parameter KIND identifies the six cases, the special case for each,
and the differences in their treatment. The various parameters listed with KIND

are ag follows:

NR = number of zeroes of an to be found by GRAEFF
NRP = number of zeroes of Pr;m to be found by GRAEFF
NC = number of coefficients in the polynomial part of an
NCP = number of coefficients in the polynomial part of Pr:m

- NP = number of zeroes of an , including endpoints and
' zero, if present

NPP

number of zeroes of Pr‘nm’ including endpoints and
zero, if present

Parameters starting with K are used in the rearranging and augmentation pro-
cesses listed for each value of KIND below.



The case n =m =90 is very special; there are no roots, extrema, or
interval integrals, A special printout is provided as soon as this can be detected,

Line number 9200,

For m>1, Pz;m has zeroes at *1 in the cos 6 formulation and at 0
and 1 in the sin2 8/2 formulation; these points correspond to zeroes of an R
rather than to extrema, at 1eé;st for the purposes of this report. These zerces of

Pz'xm are ignored in the progrém and output.

For IND =0 (cos 8 formulation), most of the zeroes of an and P:;m
are obtained by taking & the square root of the output of GRAEFF. This formu-

lation consists of four cases, as follows:

KIND=1: m=0, n even, special caseis n =2
set of zeroes of Pl;m must be augmented by ZP =0
extrema corresponding to zeroes of P are sym-
: . nm
metric about Z =20 N
interval integrals are also syrometric about Z =0
set of interval integrals must be augmented by
1st zero n1
\f 1 and
- last zero
KIND=2: m =0, n odd, special cé.se is n=1
set of zeroes of an must be augmented by Z = 0

extrema and interval integrals are antisymmetric
about Z =90

set of interval integrals must be augmented by end-
point integrals

KIND=3: m>»0, n-m even, special caseis n=m
set of zeroes for an must be augmented by Z = %1
gset of zeroes for Pl'llm must be augmented by ZP =0

extrema and interval integrals are symmetric about Z =0



KIND =4: m>0, n-m odd, special case is n=m+l
set of zeroes for an must be augmented by Z =0, x1

extrema and interval integrals are antisymmetric about
Z=0

For IND=1 (sinz 8/2 formulation), subroutine GRAEFF gives all zerces
for an and P:lm except at the endpoints. The parity of n-m (s not significant
and we do not exploit the symmetry properties of an and P:;m ahout the point

Cx=%.

KIND =5: m=0, special caseis n=1

output of GRAEFF is used unchanged for zeroes and
extrema

set of interval integrals must be augmented by the
endpoint {ntegrals

KIND =6: m>0, special caseis n=m

_set of zeroes of an must be augmented by x=0,1

“Although not properly a part of initialization, we mention here that in State-
ments 140-220 the positive square roots of the output of GRAEFF are taken (for
KIND=1,2,3,4) and Z=0, ZP =0 are introduced where necessary. The re-
maining rearrangement of all roots, extrema, and interval integrals for output

purposes is carried out in Statements 535-600,

The special cases, identified by ISP =1, together with KIND, are given
special treatment in Statements 800-910.

A word should be said about values to be used for some of the input parameters.
The principal reason for including ITMAX in GRAEFT was to avold being trapped in a
\
loop, in case convergence fails, The test cases run {ndicate that a reasonable value

for ITMAX is
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ITMAX = 20

since iterations in excess of 20 appear to have no significance. NTOL and '

SCALE are deflned by IN(10), IN({11), and IN(12). The values used !n testing

the program were

NTOL = 14

IN(10) =
IN(11) = 10
N2 = 1 implying SCALE = 10

Utilization of a hexadecimal basis for SCALE with proper adjustment of NTOL
might have computational advantages on the IBM 360.

In all the tests carried out, we set
Nl =9

Some experimentation might show that a lower value could be used, particularly
for small values of N, without sacrificing accuracy. Since thefé are NI+1
evaluations of the integrand for each entry into GAUSS, some saving of machine
time could be achieved if lower values of NI yield acceptable results. In the
tests on the program, we set

IN(13) = -12 implying TOL = 10712

This parameter is probably not significant for the analysis of an; it was intro-
duced so that GAUSS would be a self-contained subroutine, available for any program

in which a Gaussian quadrature would be of use,
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III. CALCULATION OF THE COEFFICIENTS

The coefficients for the polynomial parts of an and Px;m are calculated
in three steps for the z = cos 8 formulation, using subroutines FNORMO, FNORM,
and COEF (listings given in Appéndix B). Forthe x = sin2 8/2 formulation, only
FNORM and COEF are required, We start by writing an in the two formulations

as
2 -m-2K
P (@) = (1-2) [‘2 c_ 0 )]; IND = 0
k=0 ' ’
(3.1)
n-m ‘ :
P (X = (x(1-x) m/ 22 () &£ 5 IND=1
k=0 -
with
c (0 = Anm , C (0 =A4_
_ _ (p-m-2k)(n-m-2k-1) _ n-m-2
C (ktD) = Sl) (2n-zi1) C oM » k=1,2, ..[————2 1
(3. 2)
— L (n+m+k+1)(n m- k) s _
C rn(k+1) = (o) (m+k+1) (k) ; k=1,2, .. .,(n~m)
and
(2-6_)(2n+1)
A - (2n) ! J mo
nm 2n .nl {(n-m} ! (n+m)!
- n+m
8 o = | ; ﬁ:g ‘ . [pl = largest integer s p

12



The Cnm(k) appearing here are, of course, not geopotential coefficlents. The

factors A and A include the factor
nm hm

- (n-m)! 3. 4
~/ Z=8,0 %) o . 3.4
. which converts conventional associated Legendre functions into the fully normalized
form used by geodesists. The derivatives for the two formulations of an take

the form, for m>0:

_ [n-m+1]
dp {((m/2)~1) 2
—nm _ 2 S (n-m+l-2k)
dz -2z [z Can(k) z ]
k=0
(3. 5)
dpP ((m/2)-1) brm+l
d';m = (x(1-x)) z CP__ (K -~
: k=0
with )
CP (0 = B = -nA_
— = _ m=
Can(O) B Bnm T3 Anm
. 2 2 (3.6)
Cp (& = Cnm(k) -~ (n“=-m )Cq-l,m(k_l)/( n(2n-1))
_ n-m+l
k=1,2, .. .,[ : ]
— ' Enm(k_l) 2
CP (K = " ks [(m+2k)(n"+n) - m{m+k)(m+k-1) ]

' k=1,2, ..., (n-m+l)

Verification of these forxhulas is tedious, but straightforward,. For m =0,

things are simpler:
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[ n-m-l] _
dp 2

ng _ {n-m-1-2k]
dz Zo CP ol 2
(3.7
dp n-m-=-1
nd _ ppe "k
x ZO CPnO(k) Z
‘with
Go®@ = By = may
C—:DO(O) = Eno = KnO = ./ 2n+
' (3.8)
n-2k
Che® = 7 Gl
E'f?no(k) = (k+1) C_ (k+1)

The first step in the calculation of the C's and CP's for the z = cos 8
formulation is to calculate Bno . This is done in subroutine FNORMO by setting

BOO = 0
(3.9
B10 = /3
and using the recursion relationship
2
4k -1
Bio = k1 Pk-1,0 (3.10)

FNORMO is called only once during a run, and computes and stores Bn() up to

and including the maximum value of n to be processed. Bno {s so simple that

|
it is calculated when needed in subroutine FNORM.




The second step in calculating the coefficients is carried out in subroutine

FNORM, which computes Amn , Bnm or Anm’ Bnm , depending upon the formu-

lation selected, For m =0, of course, the calculation is trivial. For m>0,

the following recursion formulas are implemented in FNORM.

A = n—_m-l-l A m>1
nm N n+m n, m-1
) / 2n ‘
A - 1 Yo ¢ Awo” BnO/ -

= - n'A
nm nm
. (3.11)
- v (n+m+1){n-m) ~—
= >
n,m+1 m+l Anm .= 1
- J 2 -—
A - o= 2(2n+l)(n +n) : A =+ 2n+1
nl n0
— - E
nm 2

A
nm
The factor (2-6 ) in A and A necessitates starting the recursion from
_ mo nm nm
A. and A
nl n

rather than from An and A

i’ 0 n0"*

Finally, subroutine COEF, using the output of FNORM, implements the
recursion formulas given in Eqs. (3. 2), (3.6), and (3. 8) to obtain the C's and -

CP's or C's and CP's, depending upon the formulation desired.

No study of the growth of error with the number of passes through these
recursion formulas has been made, It has been noted by S. Pines (Ref. 3) that
care must be exercised in the use of recursion formulas. It is possible that in~

accuracies in the coefficients are responsible for the lack of precision in the

15



determination of the zeroes of P~ and Px'n'n , although the way in which this
occurs suggests that other effects dominate any inaccuracy in the coefficients.

This matter Ls discussed further in the next section.

Note that slight variations appear between the formulas given in this sec-
tion and their implementation in subroutines FNORMO , FNORM, and COEF, be-

cause DO loops cannot start from zero.
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1V, THE GRAEFFE ROOT SQUARING METHOD |

| The subroutine for finding the zeroes .of P oo and Pr'un is GRAEFTF (AA,
N, Z, SCALE, NTOL, ITMAX, IND). The listing is in Appendix C. It calculates
the zeroes of a polynomial of degree N-1, with a coefficient array AA of M
elements, associated with increasing or decreasing powers of the variable according
~as IND .is 1 or 0. The Graeffe root squaring method is implemented in less than
full generality:- An implicit aésumptlon is that the roots are real, positive, and dis-
tinct, a condition fulfilled by the polynomial parts of an and P:;m’ if z is fac-
tored from those of odd degree inthe cos @ formulation. The zeroes are stored
in the array Z. The remaining entries in the calling séquence. SCALE, NTOL,
and ITMAX will be discussed later.

First we outline the basic idea of the method; an excellent diacussion {8

given by Lanczos (Ref.4), We suppose that .

“
x’1>12>. o o ?xn>0 . (4.1)
are the zeroes in descending order of magnitude of the polynomial
< i
z Ai X (4.2)
k=0 '
Then
: 2 2 2
= > = > > =
N X yz’ xg ce e TY EX (4. ?)
are the zeroes in descending order of magnitude of the polynomial -
< i
Z Bi y (4. 4)

17
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where

2
By = 4
: B = A2+2A A
1 1T 245 4
B = 2-2A A+2A A,
2 Ag |
_, (4.5)
_ 1,2
Ba ™ O A _-2A ,4A)
a 2
B = (-1 A

As this process s lterated one obtains, on the Kth iterate, a polynomial with

(x]

and zeroes

x1(2K)> xz(zK)> B xn(zx) ‘ (4.6

. coefficients B

such that the ratio of the ith to the (i-1) st zero becomes arbitrarily small

for all i and sufficiently large K. Using this fact, and the relationship between
K]

and sums of products of roots, it is easy to verify that

)
o "

the coefficients B

4.0

(or its reciprocal, depending on IND) converges to the zeroes of the given poly-
nomial, As the iterates of the coefficients B,l are constructed, it becomes ap-
parent that they become more and more widely separated in order of magnitude.
Numerically, the method terminates when the séparation of the coefficients be:—

comes such that

EK+1] [B[K]:l (1) _ (4.8)

\
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because the remaining croas-product terms [see Eq. (4.5)] are beyond the word
Jength of [B[K]] If the word length for the calculation is L decimal digits,

the criterion for termination is thus

9 Ej] [K] [B[K]] (4.9

for all relevant values of j. This is essentially the criterion used in GRAEFF,
and L is given the name NTOL, an inpul quantity.

In this subroutine, the terms contributing to each B,l are added on one
at a time from left to right, as shown in Eq. (4.5). An array K1(I) is defined
to give the numbex of terms making up B[K] from the previous set of coefficients
EK -1] . When the last term in this sum is beyond the word length of the K1(D)-1
terms already summed, XK1(I) is diminished by 1., When KI1{I) =0 forall I,

the iteration ferminates.

Since both round-off error and machine time can be expected to increase
- with the number of iterations, ITMAX, another input quantity, is also allowed
to terminate the iteration, in which case the calcylation of the zeroes proceeds
on the basis of the B's so far obtained. In this case, a message ia written to-
gether with the array KI1(I), which Indicates which of the B's have failed to
converge. An error message is written if any zero is negative, and the calcula=-
tlon proceeds with the absolute value of such a zero., A standard print states the

number of iterations used on the current entry to the subroutine.

A significant problem in the implementation of Graeffe's method arose be-
cause the iterates of the coefficients grow very rapidly, and soon produce overflows.
To avoid this problem, the parameter SCALE is used to convert all coefficients and
their iterates to values less than SCALE and greater than or equal to 1., Then

19



additional arrays are introduced to carry the powers associated with the coefficients;

1 < B(I) < SCALE ' NEXB(I) = power (4.10)
and the actual corresponding coefficient is given by

B(I) * SCALE ** NEXB(I) _ (4.11)

The program has been run (in double precision) using SCALE = 10,
NTOL = 14 for all orders and degrees of an from 0 ’ 0 to 20,20, onthe
DEC KA10, which has a mantissa of 54 bits. The indications are that the
zeroes hnear zero hold 15 decimal digit precision for polynomials at least up to
degree 20. The polynomial parts of an and P:;m have their largest zeroes
near unity and for such a polynomial part of degree 10, the largest zeroesg have
10-11 digit precision; for one of degree 20, the precision of the largest zerces
[ only three or four digits. .These data on precision were obtained by comparison

of the zeroes of Pn tabulated by the National Bureau of Standards (Ref.5), and

" by comparison of thoe output from the two formulations. In fact, the availability
of the two formulations probably enables one to go to 40,40 with 7-8 digits of
precision. This ia 80 because the small zeroes of the sin.2 8/2 formulation can
be transformed into the zeroes near unity of the cos 8 formulation, while the
small zeroes of the cos 8 formulation are transformed into those near x =%

in the sin’ 6/2 formulation. Thus, using the "good' zeroes from each of the
two formulations and the symmetry properties, a set of zeroes good to 12 or 13
digits may easily be constructed for 20, 20. Selected cases up to 40, 40 have
been run. The user of the program is cautioned that an ITMAX of 20 will be
exceeded and that overflows may occur for IND=1, if n~m is appreciably
greater than 20, Both conditions may be ignored since they affect only those
zeroes for which significance is already lost; they must be found by running

IND = 0.
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One would like, of course, to account for the lack of precision of the "large"
zoroes énd. if possible, improve the accuracy. An immediate thought might be
that errors in the input coefficients (recall that these are compuied by recursion
formulas) are the primary cause. This does not seem likely, however, because
for IND =0 (cos § formulation) the most important coefficients for large zeroés
are those which start the recursion caiculation. Still, all coefficients do ultimately
enter the iterates of BEK] for the large zeroes, and the possibility cannot be
eliminated without further testing. Another thought is that the round-off error
produced by scaling is the culprit. This possibility has been tested and round-off,
while present, is several orders of magnitude less than the discrepancies observed,
The most plausible, but as yet untested, explanation is loss of significance in the
subtractions implied by Eq. (4.5). It is possible that combining these terms starting
with the smallest and ending with the largest (in magnitude) might help, at the ex-
pense of machine time spent in the sort. Probably the most practical method to im~
prove the situation is to use the output of GRAEFF as the initlél guess to a Newton

procedure, , A
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V. CALCULATION OF THE EXTREMA AND INTERVAL INTEGRALS

The subroutines for these calculations are stralghtforward and require little
comment, To obtain the extrema, an mus't be evaluated at the zeroes of Pz;m .
This calculation is carried out by subroutines FUNCT (X,F,L) and EVAL (A, N,
M,X,P ,.IND) (listed in Appendix D). Subroutine EVAL simply evaluates a poly~
nomial of degree N-1 with a coefficient array A (associated with ascending or
descending powers of the variable, according as IND =1 or 0) at an array X of
M points. These evaluations are returned in the array P; Subroutine FUNCT,
which accepts the array of L evaluation points X, supplies whichever of the
factors (1 -zz)m 2 y Z(1l- :',2)111/2 , or [x(1-x) ]111/2 is'applicable and returns the
values of an in the array F. It appears that the extrema are relatively insen-

sitive to errors in the zeroes of Pr'xm . This supports the opinion given in the pre-

vious section that errors in the coefficients C and CP are relatively qnimportant.

To obtain the interval integrals, subroutine GAUSS (A, B, NI, ABINT , TOL)
implements the Gaussian quadrature procedure, which is well described by Lanczos
(Ref. 4). Two input options are provided: The zeroes and weight factors for PkO .
k=2,3,...,10, are stored in data statements. The parameter NI selects
those for k =NI+l. A parameter TOL is introduced to avoid difficulties with

small differences: If the limits A, B of the integral to be evaluated satisfy
|A-B|<TOL (5.1)

the subroutine returns the value zerc in the output parameter ABINT, and prints
out a message to this effect, Subroutine GAUSS calls FUNCT and then EVAL to

evaluate the integrand where necessary.

\

\
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The interval integrals are quite sensitive to inaccuracies in the zeroes of

' an , as one might expect, since these inaccuracies will destroy the noln-negative
character of the integrand, However, It is felt that, using both formulations and
symmetry considerations, the interval integfals have 8-10 digits of accuracy up
to 20, 20 and will probably retain 3-4 digits perhaps up to 40, 40, which

should be adequate for the estimation purposes discussed in Reference 2.

It should be mentioned that the program does not implement the construction

of a single table for the zeroes, extrema, and interval integrals utilizing the output
_of the two formulations in such a way as to maximlize accuracy. The necessary
additions to the program would be Reasy to insert. Timé, however, did not permit
sufficiently detailed examination of the output to determine the points at which the
switch between formulations should be made. These switch points are very likely

functions of m and n, though perhaps sensitive only to the difference n-m.

Fl
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voLLY
BeZEN
p631Y
Bo4pn
PESHD
¥66¢d
¥7¢0
weBHN
BEYBR
#705Y
07108

p72p6°

A7 SED
Bpl4p0
BrsL9
yr6pw
w77pR
B78gw
BrYED
psope
(LD RE
psazup
ERTAL
pEALR
peSYY
vE6LO
w8700
p8ELy
ye9uLY
pInsH
VYL
pY2iR
pIILY
yvrapo
uYspY
096U
wITen
Y9500
w99
lpvep
1piwve
10290
123u@
16420
12520
126£D
10740
10840
10920
1l0¢9
1114
11209
11390
11499
11580
116¢0
117p8
118p9
11909
12000

15

2e

25

30

4

42

44

45
of

68

70

CGO YO MEXT CASE!)

GD To S

THXZINXw)

GO TO 4p

IMIN=IN{7)

ISTEPaIN(S8)

INYSIN(D)

IF ¢IMIN,LT,Q) GO TO 2028
1F ﬂISTEP LE B} GO TO 2p@e
IF CINX, La B) Gy TO 2000

RO 39 1= loINX

ISERE T

NUM{T)BSIMINe] 1 ]STEP

IF (MUM{l),LE,180) GO YO J@
WRITE (6,;25) 1.NUM{]), 11
FORMAT(F NUMGI 13,70 32,16,/ GREATER THAN L0
Ch INX SET TO ¢,13)
INX=14

GO TO 402

CONT INVE

MUM{4)EMOPT

IMX=y

N=NUM(INX)

IF (IND,EQ,1) GO TO 44
NizN+1

CALL FNORMU(N,IND}

WRITE. (6,42) N ,(80¢1), 151, N1)
FORMAT (! NORMALYZATION FACTORS FOR P@® TO PNa
C WITH M =2,134! ARETT/Z(L0X,{P3025,14)/)
PO 10pd 133, INX

NLaNUMCT) _

1F (MN1,EQ,9) GO TO 765

IF (MQPT,GE, U) Go TO 5@
IMX=shi+] .

D0 45 J=1,IMX

MUM{J)RJm])

COMTINVE

CALL FNORM (N1,MOPT,IND)

No 999 J=1,MX

MizMUMIJ)

WRITE (5,518) N1 ,Mi,IND, Atd) BlJd)
”i“ﬁl*“luﬂi
MODNMsMOD(NIMML,; 2}

1F ¢IND,EQ,4) MODNMs=L.
15P=Q :

1F(M4,67,0) GO TO 90

IF (chNM} 60,70,00

MR=2NY

NRPaNR»}

NP=NR

KIMND=5

IF (N1“ML,EQ,1) [SPe}

GO T2 132

NRz=N{MML/2

NRP=MNR=Y

NPe2a R

Kivp =1 _

IF (HLIMMY,EQ,2) [SPsY
K7=2anNR

Ki=K7+1 2



1210¢
12248
123um
126418
12549
126060
12748
12800
12908
13049
131en
152¢8
13380
154¢%
13540
13600
1578
13880
159¢0
14048
14160
14200
1430
14422
1458
1496208
147a1
14441
14920
19a49
15129
192298
15344
19420
15549
19657
19769
15820
1o928
19029
15142
162¢0
16349
13400
16548
16640
16720
15840

16940

17958
17189
172u%
17349
17456
17550
176432
1778
17870
17949
16044

82

92
123

K2=NR+1
K3eNR
KL?=Yp=1
K4=K2
Ko2K3
Ke=K3
KBsK?
KOap
K13K3
KilsK3
KF3=K8§
Si=1,00
G3 TQ 132

MRz (M1MMIe1)/2

MRP R

NPaZeNRel

Ki4Wo=2

IF {MNiMM1,EQ,1) }sPsi
K7=2aNR+d

Ki=K7+1

KBaNRed

K2=KS5+1

KI=KS

K4zKS

KB=KB

K&=NR

KI=KA

Kl 'sK5

Kii=¥Xé

K17z2¥6

KF3IzKg+]

Sl==4,08

Gl TO 132

IF (MJDNM) 129,100,110
NdshMivML/ e

NRP IR

NP=zZaNR4+2

K1%0=3

IF ¢NAvML,EQ, 0 JSP=1

K122ZeiyH+2d

K7=2K4

KI=iR

K1i2343

KZ2xNRel

KS=zK2

Kboan?

K9zK?2

K1:8K2

Kliswp

KazxK2+]1

KB=K4 :

#(411=1,00

S$1=1,0¢

N3 Tn 133
NRETINIMMle1)/2

NRAPz Iq+4

NP=Z2aNR+d

Klvl=z4

IF (NiMML L EQ L) lSPEL
Klz2anNH+3 . o7



18199
18292
18309
16499
18%5p9
18600
187u9
1838909
18940
1vaun
191¢

19200
19380
19v4pp
195p0
196100
19709
19809
19900
200u0
2p 00
2B2p2
203L0
2p4p0
2pspy
20600
28760
2080
2p90Q
21800
21160
21209
213gn
21400
2150
21640
217p0
2180
21989
222w
22109
222ea
22318
224pR
22509
Z22eng
227089
228up
22910
23260
28100
2329
2331
234p0
25590
25610
23708
23BpM
239y

24090

122

13p

i4p

15¢

16¢

172

160

194

200

K72K1

K3zNR+l

K6=K3

K92K3

KL13K3

K12sX3

KErK3+l

K4zK?2

KS5aK2

K8zK?2

K10=K2

Z(Kkl)=1,00

Sl=w1,00 _

GO 70 139 \
NRSHLIMMY v

MRPzMNR+S

NPeNR+2

KIND=6

IF (HAMMY EQ @) 15Pa)
NC=NR+1

NCPatiRP+4

NPPENP ey

1F (ML,EQ,8) NFPaNP+l
1F (M1,GT,8) NFPaINPal
CALL COEF

CHWRITE (6,523)(C(K),K=1,NC)

WRITE (6;530)(CPLK)K31,NCP)
IF (InC,EQ,3) GO TO Y99
IF (1$P,EUQ,1) GO TO boD
CALL GRAEFF(C,NC;2,SCALE,NTOL, ITMAX, IND)
CALL GRAEFF(CP,NCP,ZP, bCALE NTOL, ITMAX IND)
GO TO (148,164,180, 2@9,22%,22e) wao
DO 152 K=1,)NRHP -
Z(X)=USQRT(Z{K))
KKeNRE+L =K
ZP(KK+1)=DSART(ZP(KK))
CONTINUE
Z(NRY=DSORT(Z(NR))
ZP(1y=9¢,00
NRPsHRP#Y
GO Y10 222
‘DO 179 KsLi,NR
KK=NR+1wK
ZI(KK+1)sDSQRT(Z(KK) )}
ZP(K)=DSORT(ZPIK)})
CONTINUE
2{1)=¢,00
NHaNR+1
GO 10 220
DO 190 K=l,NR
KKzNR+1»K
Z{K)=DSQRT(Z(K))
EP(KK+1)30SQRTCEZP (KK))
CONTINUE
ZP(1)=04,00
MRPzMNRP+1
GO0 TQ 228 )
Ny 240 K=1:NR
KKENRelaK -
Z{KK+1)3DSORT(E(KK))



241¢8
z4zpe
24380
Z244p0
24501
24600
2ATRY
248p0
24900
25080
29100
252p¢9
25390
2544
255¢P
25690
2570
29849
25989
26009
26100
26200
26310
264020
26500
26600
26719
268p0
26900
278p0
271¢e
27241
2730e
274p0
27500
27690
27700
27840
27920
280p0
261009
28209
283046
28400
285¢0
28609
28791
28809
28908
29000
29180
29202
29329
294p0
29500
29608
29702
29849
29910
$B2pa

212

229
a3

242

330

912
52¢
53
235

537

538
542

552

555
560

ZP{K)aDSART(£P(K))
CONTINUE
£(1)=2,02
ZP(NRPI=DSART(EP{NRP})
NR =R+
[F(INCw2) 539,244,230
CALl, FUNCT(4P,EX NHP)
IF (INC,EQ,3) GO TO 945
Xi=0p,00
IF (MUNNM) 258,250,280 '
KKi=1
KK2=¢
GO TO 272
KXK1=2
KKanl
DO 3p08 K3KKL,NR
X2=E¢(K)
CALL GAUSSIX1,)X2,N1,ABINT,TOL)
FIN(K+KK2)=ABINT
Xi=X2
CO”TI?UE
X2=1,0¢
CALL GAUSSIXL:X2;NI,ABINT, TOW)
FINV(HR+1+KK2)3ABINTY
GO Y0 535
FORMAT (/ N = 1,13,6X,'M = ¢,13,6X,
CrIvp e 4,12/t NQRM FACTQRS? A(N.H) s ¥
D,1PD21,14, 5”}'8‘h M) = ¢,021%14)
FORMAT (t COLFFICIENTS FOR PNM ARE}f/(6X,1P3D25,14}/)
FORMAT (! COEFFJCIENTS OF PNM PRIME ARE}!
C/(5%,1P3025,14))
. IF CKIND £0 %) GO 70 &40F
IF (KINDVEG, 6) GU T0 5BQ
IF tﬂl.GT ﬂ) GO TO 537
KF1sK7+2
KF2=Kg+}
KFasKid+d,
KFS=sK11+4
60 70 538
KF1=K7?
KF2Z2s¥5
KF4=x1U
KFSaK11
1F (S1,G7,0,02) FIN(1)=2 DBaFIN(})
0O 540 K31,KS ;
Z(X1mwK)2Z2(K2eK)
CONTINUE
DO 5@ K=21,%<6
Z(K4mK)2nE(KSHK}
CONTINUE
DI 96D Kz1,K9
K1=K7§K v
K2zKABmK :
ZP{K1)3EP(K2)
EX(KL)=EX (K2}
FIN(KF1wK)RF IN(KFZ2eK)
CONTINUE
IF (M1,E0,8) FIN(KFI)aFIN(1)
00 573 Kal, Ki?

KisK1g-K 2



38109
$p282
30389
30408
30509
30600
S0709
30800
30929
s1pe0
31140

31209

3,369
31469
31509
31607
31769
31869
31922
3282

32108
52240
S23¢8
3248
25682
32640
32720
52800
32960
33000
33100
33249
333480
33400
33500
335640
3370
338¢0
339¢p
S40UL0
34160
34250
54320
3R4LK
$45ED
346E0
38708
3382
54928
35040
35120
35280
35340
35420
35549
39609
$57¢0
59610
359¢@
seupe

571

-1: P

59

Yok
619
624

630
640

652
660

9@
712

712

715
726

738

740
750

768

765
776

8029
812

KazsK{1+K
ZP{K1)=mZ2P(K2)
EX(KL)=5T#EX{XK2)
FIN(KFan)=S1aF [N{KF5+K)
CONTINUE
IF (M1,EQ,2) FIN(L)=SIaFIN(K7+1)
GO 10 &2
DO 598 Kal,NR
F(NHek+2)=Z(NHeK+1)
CONTINUE
£(1)=2,02
Z{NR+2) =L
1IF ¢(INC,EQ,4) GO TO 7v¢nm
WRITE (6,618) (E(K),K31,NP)
FORMAT gf ZEROES OF PNM AREI?/(10X,1P302%,14}/)
WRITE (6,620) (£P(K} K=1,;NPP)
FORMAT (/ ZEROES OF PNM PRIME AREIt/849X,1P3D25,344)/)
IF (INC = 2) 999,650,630
WRITE (6,642) (EX{K))K=1,NPP)
FORMAT (! EXTREMA QF PNM ARE}//7(10X, 1P3025 24)71%
IF (INCL,EQ,3) GO YO 999
WRITE (6 66u} (FINCK} K51 ,NFP)
FORMATY (a INTERYAL JNTEGRALS FOR PNM ARE}!/
Ce1oX, 1P3IN25,14)/)
GO Y0 999
WRITE (6,712)
FOAMAT (! ZERQES OF PNM AND PNM PRIME,
CEXTREMA OF PNM AND INTERVAL INTEGRALS FOR PNM FOLLOWYt -
DX, I FEROES OF PNM/ ,9X,+ZERDES OF PNM PRIME!,8X,tEX
ETREMA OF PNMI,9X, 'INTERVAL INTEGRALS!/)
IF (M1,GT7,98) GO TO 715
IP=lrD=]
KRITE (6,712) 1P, FINLL)
FOHHAT{4JX.'INTEGRAL FROM f,]12,f TO F]RST ZERQ
GUSIf,4%X,1PD25,14)
LRITE (6, fzea (1}
FDRMAT(SX.lPDdb 14)
KizNPwl
00 752 K31,K{
KAzK
IFIML,EQ,G) KKSKK+1
WRITE tb.?SB) £P{K}),; EX{KJ;FIN(KK]
FORMAT (28X,1F302%,14)
K2eK+q
WRITF {6,742) #(K2)
FORMAT (3X,1PU25,14)
CONTINUVE
IF ¢(M1,67,7) GO TO 999
WRITE (a,?éBl FIN(NPH1)
FORMAT {43X;!INTEGRAL FROM LAST ZERQ TD ) I
Ctf,4X,1PD2%,14)
G3 TD 999
WRITE (6,77
FORMAT (¢ Pp0B=1,9; PPY PRIME =@} NO ROOTS,
AMD EXTREMAZNO INTERVAL INTEGRALS/)
GO To 19028
GO TO (81,820,839, 84@ 852,860) KIND
Zi2)s DSGHI(-QCZ)/thl)
Z{1l)==2{2)

ZP(1)=2,09 20



56100
S62pE
63
5640
36590
$6609
36700
56897
36960
STROD
3710€
RYFLY,
S7340
57400
357520
37600
37760
$78p9
37920
38850
5817
38210
383LY

384D

58589
56689
8740
S88£Y
358960
REITE:
39199
392¢ 0
39359
3I94LY
395p0

39600
39760
398pY
59960
A%BuY
49LED
39209
42300
4YADD
445u@
4BELY
U708
4pBED

49959
41000

£X(1)sC(2)
CALL GAUSS(Z(Z),4,08,N1,FIN(I),TOL}
cALL GAUSStE(l).£(2};N! wat2> YoL)
FINCL)SFINGE)
G2 7O 693
829 Z(1)=9,00
CALL cnussca PR, 1,00, N1, FIN(2),TOL)
Fl“t1)=-F1Nt2) ‘
GO TO 992
B30 2(1)a=1,00
#¢2)=1,03
#P(1y=9,D0
Eth)‘Ctl)
CALL GAUSS(=1, chl UﬁvNIoFINtllaTOLJ
GO TO 693
gap Z(1)a=»1,00
£(2)=0,02
7(3)s1,02
ZP(2)=050RT({eCP(2)/7CP(1))
FP(1)Y==ZP(2)
CALL FUNCTU(EP,EX,2)
CALL GAUSS(H,00,1,00,NI,FIN(2),TOL)
FIM(1>=-F1Nt2>
GO To 629
852 Z{1y==Ci1)/7C¢2)
NALL GAUSS(Q,00,ZC4) N1, FIN(L),TOL)
FIN(2)=«FIN(L1)
G0 70 202
6562 Z(1)39,00
#(2)=1,02
#P{ly=172,Dp
EXt1)sC(1)/2,0nuaaMy
CALL GAUSS({B,08,1,00,N1,FIN({),TOL)
GO Tn 603
9ny IF (KIND,EU,2)NX13w]
1F {XIND\ED b;Nxxza
WRITE (6, 91612(1):NX1,F1Nt1),F[N{z)
910 FORM AT (¢t P10 MAS ONE ZERO AT',1PD13,2,!,AND NO
A EXTREMA', THE INTERVAL INTEGRALS AREt'fsx fFRQHf
BeE3,0 TO E(131Y,4PD22,14,%}1, 5X, tFROM Z2{1) 10
c1=',1P025 14)
60 10 999
999 CONTINVE
1209 CONTINUE
GO To S
2060 WRITE {6,2010)
2010 FORMAT (f INPUT INQ DEFECTIVEI GO TO NEXT CASE*)
G0 TO 8
3704 CONTINVE
END

31
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0p200
ve 300
BRALD
PELL
pL6La
*FYLY.
280
¥e9e0
P1060
p1160
PL200
¥i3no
vidpe
21500
21608

APPENDIX B - Listing of the Coefficient Subroutines

19

22

108
202

SUBROUTINE FNORMD (N, IND)
IMPLICIT REAL®B (A=H,0=3)
COMMON /NORMp/B8(191}

IF (IND =1)10,199,200
8(11=0,200

B{2)=DSQRT(3,000)

Q0 29 152N

El=]

EISQ=EleE] ‘
ENUM=DSQRT(4,0DRsE]SU=1,000)
B(l+1)=ENUMeB(1)/(E[=L,DB)
CONTINUE.

RETURN

RETURN \
RETURN

END
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poLRY SUBROYTINE FNORMIN,M, IND}

pp288 IMPLICIT REAL #8 (A=H,0rZ)
PB3ILE COMMON/NORM@/ BB(1pl)
BRALY COMMON/NORMZALLDY),BLA01)
PYSEo EN &N

peeen IF (INDei) 10,100,200
eR7eR 18 A(1)=BU(N+1)/&N

pOBER B{1)sBY{N+1)

peyyn 1F (M,EQ,0) RETYRN
B1o0o IFIM,LT,08) NM=N

21108 IFIM, 6T, D) NM3M

g1200 C = 2,D@sEN/(EN+1,D0)
vi3p@ IF ¢(M,EQ%1) GO YO 9¢
01400 B(2)1sB(1)1*B(1)%C

p1500 DO 328 I & 2,NM

v1600 El = 1

PL70D D = (ENeE]+1,0B)/(EN®E])
plepe ‘B(I+1)=sB8{])D

g19u0 32 CONTINVE

BR800 1F(M,GT,2) GO TQ 60
R2100 A(1)=8(3)/EN

v22p9 NNEN«1

R23P0 D0 52 1:23,NN

Y2420 B(1)==0SQRT{B(I))
v2s5pp A(I)=3=B{1)/EN

V2600 58 COMTINUE

22700 GO TO 98

Y2809 60 B(M+1)c=DSORT(H{M+1))
peypa A(M+1)=pB(H+11fEN
y3apa RETURN

p31po 98 C = DSORT(C)

p32p0 B(?2)z=8(1)aC

03300 At2)3«8({2)/EN

g3app RE TURN

$3590 100 EN2PN 3 EN#(EN+1) DBJ
BS6p1 C = (2,00%EN+L, Dﬂ)
@3740 112 A(1)=DSQRT(C)

03820 B{1)=«EN2PNeA(l)

B3940 IF (M,EQ,0) RETURN
Yanyo 120 A(2)=CaEN2PNa2, 0¥
paL08 IF (M,LT,0) MM= N
p42¢0 IF(M,GT,@) MMM

Pa3uD DO 130 ] 5 2,MM

Va4pe E] = |

was5pQ E12MY = Elep]wE]

pa60n ACT+4)=A{] )0 (ENZPNSETZ2M]I/{E]#E])
p47e20 139 CONTINVE

v48RPL 150 EM 3 M

pavsue IF {MM,EQ,M) GO YO 189
uonRw DO 162 [=1,MM

poLee El=]

65260 A<I+1)‘DSGRT(A(I*113
L5320 R(TI+1)=(A{lsL))eE]/2,00
P490 169 COMTINUE

vS5p0 RETURN

o640 182 A(M+1)3DSQRT(A(M*L))
85709 B{M+1)=A[M+L)*EN/2,00

ELTT 200 RETURN
05900 END
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100

159

20

21
400

SURROUTINE COLF
IMPLICIT REAL#B(A=H,0=2)
COMPUTE COEFFICIENTS OF POLYNOM{AL PARTS OF PNM, PNM PH{ME
INPUTt ORDER N,DEGKEE M AND IND 70 GIVE FORMULATJON DESIRED
QUTPUT NUMGER NC OF COEFFICLENTS C OF PNM
NUMBER NGP OF COEFFICIENTS CP OF PNM PHRIME
CREFICIENTS C(l1), CP(I)

-IND=BI PNM GIVEN IN POWERS OF (COS{THETA))#»2 HWITH

NC={ IN=M+2)/21, NCP3 NC#{
IND=1t PNY GIVEN IN POWERS OF (SIN{THETA/2))#e¢2 W[TH
NCaNwM, NCPENaM+1
1F M=, NCP=NC~1 FOR BDTH FORMULAT]ONS
IND, GT.i MAY BE USED FOH OTHER FORMULATIONS
CO”MOW/NORH/A(l@i} B{l@ii
COHMGN/COEFF/thﬂll,gP(lGZ).NC.NCP.Ngﬂ.[ND
NH”=N-M
ENMMaNMM
EN=N
FM=M
Clr)=a(Mel)
CP{1)=s9(M+1)
ENPPHsENENCEN
PFCIND=1)1090,900, 708
ENMO23ENMM/2,00
NMMO23ENMNG2
KisNC=}
THWONPL1=22,DA«EN+L, 00
TWINML=TWONPL=2,00
TWOMN=2,D249EM
ENYPLzENMM+1, 08
T=mENMOZ2aCP (1) /{ENaTWONMY)
SEEN2PN-ENaEMeTHOM
DO 158 Ksl,K3
EA=K
TWOK=2,D30EK
C(K+1)=wC(K)a(ENMM+Z, 00w TWOK) 2 ¢ENMPLnTHOK)
17(THOK® (TWONPLe TWOK) )
CP{K#1)sTeS
TawTe{ENMM= THDK)“(ENMPlpTHDK}/t(YHOK
1+2,08)¢(TWONMLI~TWOK) }
S2S+TWOM
CONTINUE
IF(M,EQ,D) GO TO 200
JFANC,GE' NCPIRETURN
ENC=NC
CP{NCP)sC{NC}
RETURN
2 RO 210 [324NC
£l=]
CPU])=(ENMM=2,Dde(E]l=L,DB))eC(])
g CONTINUE
RETURN
UO 420 KezyNMM
EKs=K
TWOK=2,03sEK
EMPK=EMAEK
EMPKHM1=EMPK=Y ,00
EAMPKsEKaEMPK
TS (EN2PNnEMPKM1eEMPK) /EKMPK

Cix TaC(K
(K+l)En *7( } a4



061,00
PE2p0
B340
BEARD
BE50Y
Ye6pY
BE7L2Y
PoBpY
Ge9pp
R7MR0
p7ive
V7200

423

439
700

S (EM+THOK) oENZPN=EMaEHPKML o EMPK
CPIK+1)sn50CIgI/ (2, DUSEKMPK)
COITINUE
CPINCP)s=ENaC{NC)
TF (M, GT,0)RETUNRN
DO 450 Ka2,NCP
EX=K
CPIK)ZEK#CL{K®L)
CONTINVE
RETURN
RETURN
END
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APPENDIX C - Listing of Subroutine GRAEFF

Ag1L 082 SUARNUTINE GRAEFF ,AA NoZ2,8CALE, NTOL,IYMAX IND,
Beopa IMPLICIT REALSG(A=H,0= z>

29302 AIMENSION A(102),AA(402),2(1p2}),B(152),K1{1a2),
2R4p0 CNE!A(1023.NEXB¢192)

apsen € ROATS 2(1) OF A POLYNOMIAL OF DEGREE N=i BY GRAEFFE'S METHOD
gpéun  C ACID) IS COEFFICIENT OF Xeo(N<I}» 1z142449,N FOR IND 3 ¢
4g7g@ € M ® OF Xes(l=l), " FOR IND.GT.O
d0800 £ fTMAX i5 THE MAXIMUM NUMAER OF ITERATIONS

2g9947 C ATOL TERMIMATES ITERATION ON A CONVERGENCE CRITERION -
24000 iF (N,EQ.1) GO TO 272

atipga IF (N,EQy2) GO TO 284

01209 ITER = 1

AL3IP0. EN=N ,

1409 ENO2 = EN,2,008 |

21598 ND2=ENO2 \

21609 no 18 1 3 1,N ‘

21700 A(I)=AA(D)

olB8gp $161:1.pP0p .

1903 1F tr LEn02) KilIdalsy

a20ue IF (1.67, NOZ! KL{l)zN=1

paign NEXs =3

az2pm - TEST=AC])

2300 IF (TEST,(LT.2.02) SlGi==1,000

Go499 TEST=DABS(TEST)

p25pa 2 IF (TEST.LT.SCALE) Go TO 4

22600 TEST=TEST/SCALE

pzran mEx NEX+1

Co807 co To 2 ‘ .

22909 4 1F (TEST,GE.1.,008) GO 10 6

83aga TEST = TEST#SCALE - _

23100 NEXNEX = 1 . A
3204 G0 Tn 4 ' - : -
23303 6 NEXA{T)SNEX

p34p0 A(1)5SIGLTESY

23502 1¢? CONTINVE

B3607 22 NG 192 I1E4,N

23700 S16=~1,808

B3890 Cza(l)eA(])

g3ogad NEXC= NEXA(I)®2

P4NGn KguMsK1i(l)

41002 1IF (K1{1),EQ,V@) KSUM = 1

p42pa 39 DO 95 K=1,KSUM

44300 IF (K1(1),Egy@) Gp Tq 75

B44p0 TERH:A(I*K).A(I Kys2,0D2

@45gn NEXTaNEXA(14K)oNEXA(TaK)

G4600 NEXDanEXC-NEXT .

24700 . 1F¢TABS{NEXD) ,LT,NTOL) GO TO 45

4800 IF (K EQ KSUM) K1 (1)sKSUMngq

4% GO T 94

B5A8a 49 iF (NEXD,LT.B) Go To 59

35109 TERM=TERMeSCALE#® (mNEXD)

G529 C=C. TERM®SIG

A53p0 co 10 75

54073 52 C=CeSCALEwa (NEXD)

as5s40 Cs=C,TERM®SIG

05684 NEXCINEXTY

N5703 7% Sjci=4

05800 TFEC,LY, @ DB:SIG1=~1

25%30 £=0ABStC)

26000 8e IF (CYLT,SCALE) Gg Tg 85
. | 36



06108
26209
Pp300
d6400
LLETY
2660303
Be7UR
26800
A6one
7000
B710%3
7289
g73pa
37402
37524
27600
87704
37600
37900
LEEL
agqp
28200
28389
284048
28500
28607
P87LM
agepa
28%pa
39339
09100
Bo20¢
293007

a94pa

29540
g96084a
pezen
g9aan
299003
19099
1644129
1y2pa
18304
10402
1es593
12680
10702
LYl
ip9ga
11889
111249
112pn
11329
11409
11504
11609
11700
113092
11902

83

92

94

98
26

129

11
120

120
182

15
200

229

219
24y

. 280
2ég

27¢
275

280

285

C:C/QCALE
MEXCz=NEXCel
co To 89

IF ¢C,GE,41,00) GO 0 9@
C=CoSCALE
NEXC-NEXC -1
60 To 8%
_ C=sceSliGl
IF (K1t1),E0,8) GO TO 96

S16=-516

CONTINUE

B(fiy=C

NEXB(I):NEXC
conTINVE
no 11ﬂ [=3.N
iF (Kltl) GT\9) GO TO 120
CONTINUE
6o Tn 209
1F {ITERVGE,1TMAX) GO TO 180
!TER:]TER+1
00_139 KSq N
A(K)=B(K)»SIG
NEXA {K)=NEXp(K)
s16==516
CONTINUE
Go Tn 2@
WRITE €64190) (K1(1).l=4,N)
FORMAT (' ITMAX EXCEEDEDH K IS'.19151{3X-1515I>)
EXpz2,D0%e(-1TER}
N3=N 1
NO 256 121.N3 -
!F {IND) 210, 216.225
N4-Nal
71 =R(l1+13/B¢(1} )
NEXZ=NEXB 1+1)=NEXB( 1)
G0 To »39@
21 = B{ly/gtl+1?
NEXZzNEXB(I) NEXD(I+1)
N4zl
IF (Z1 LT.P) WRITE (6.240) N4,21 N
FORMAT (' Z(',15,') NEGATIVE AND EQUAL 70! ,E{8,8)
21 =DABS(Z21 )engdp '
FXASNEXE
FXZsEXE#EXP
2(N4)3Z1 #SCALE#®EXZ
COMTINUE
WRITF (6,26p) ITER

FORMAT(t GRAEFF USED'.ls , VITERATIQNS ')
RETURN :
WRITE t6;275>

FORMAT (! POLYNOMIAL IS OF DEGREE pi NO ROOTS!Y)
RETURN

IF (INDLEQ,8) Z({)a=AA{2)/AA(1)
IF ¢(IND,EQ+1) 2(1)=-AA(1)/AA¢2}
WRiTE (6.,285) Z(1) ' . _

FORMAT (' POLYNOMIAL IS LINEAR; Z(1) =v,1Pn25,14)
RETUAN
FNO
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APPENDIX D - Listing of GAUSS and the Function Evaluation Subroutines

SYBROYTINE FUNCT (X PoL}
TYPLICIT REAL#H(A=H, U=Z)

TO EVALUATE ASSOCIATED LEGENURE FUNCT!OHS PNM AT
L POLIMTS X, QUTPUT [S L VALUES OF PNM, IND
INDICATES THE FORMULATION USED),

ie
22

30
49
52

12¢

119
222

PO“HON/CﬂEFF/L(1E1>;GP(lﬂaipNC NCP NyMy IND
DIMENSION X(a0R)PL22),Yi1E2)

EMsM

EMOZ23EM/2,000

IFCLND=1) 19, l@ﬂ,ZﬁH

D0 2% I=1,1

Y{I)=x(l)aX(])

COMTINUE ‘

CALL EVALC(C,NC,; L ,4Y,P.IND)

IF (MOD(I(N=M),2},EQ,B) GO TO 40

Ko 30 1 =1,L

P(l)= P(i!ﬁxtlJ*(LcDW'X(l)*X(Ib)**EHOZ
CONTINUE
RETURN

DO 59 1s4,L
P{l)= P(I) {
CINTINUE
RETURN

CALL EVALCC,NG,L¢X,F s IND}

00 112 l=1,\.

F{l)=P(])e= (X(IJ*(l DO~X({}))}noEMD2
CONTINUE

RETURN

RETURN

END

1,00eX(1)0XC]))0EMDR
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HpAB?
HESHT
DEsED
JP7E0
dosaa

Broun

giean
Bl1ia
n1282
wy3ie
plann
ised
piend
U17ﬂ‘3
z18gn
piept
DeaLT
Hg10@
Be2un
E23ne
02403
nzopd
pebpa
wa7en
Beapl
ggopn

g30ouas

g3ipa
J3o40
L5388
23403

o

¢
¢

un

12

30
3%
49

T

72
7%
14

SURROUTINE EVAL{ASN,M,XsP,IND)

IMPLICIT REAL*B {A-H.O ).
DIMENSION A(102),X{102)+p(102)
IF (N,GT,1) GO TO 12
np 5 KeliM
pi{K}=A(L)
coMTINUE
RETURN
IF (IND,EGQ.q) GO TO 58
nNo 4g I=1,M
T=X(1)
Y=A(1)aT*A(2)
IF (NJ,EQy3) GO TO 35
DU 361 K'—"3'N
YaTeY+ALK)
CONTINUE
P¢1) Y
COMTINUE
RETURN
no 80 1=1,M
T2X(1])
¥Y=A(N)#T+A{N=1)}

1F (n,EQ,2) GO TO 75

RO 73 Ks3,N
YzYaT+A(Nel~K])
conTNUE

PL1) =Y
CONTINUE
RETURN
END

EVALUATE & POLYNOMIAL OF DEGREE Noi AT ™ POINTS X(I)
RETURN M VALUES P(]}

A({l)y IS THE COEFFICIENT GF Xea(N=]
“ " W X#e(lm1) FOR {ND,NE, O

Yy FOR (ND 2 2

1A



@ﬂ%ﬁﬂ SUBROUTINE GAUSS(A,R,N,ABINT,TOL)

c SJBPOUTINE FoR THE !NTEGHAL FROM A TO B BY GAUSSIAN QUADRATURE
Pp3Ea e Zty,L) ARE THE ZERGES OF THE (L+1)ST LEGENDRE PcLYNOHIAL
BLags € W¢Jd.L) ARE THE CORRESPOMDING WEIGHTS
gps5ue C CALLS SUBROUTINE FUNCT WHIGCH DEFINES THE INTEGRAND
Beepe € ABINT IS THE OUTPUT
Ap7Ea ITMPLUIGIT REAL #8 (AmH,0%2}
ApB0a DIMENSION 2(5,9), W(5,9),%X(18),F(19)
209087 DATA 2/;57735w25918952606, 483.08,
01003 1 2707, 77459666924146300, 320,07,
91409 2 ,330981M4358485600, ,B861136311594853p0, 30,04,
A1200 3 .00, 5384693101A568300, .98617984593866400. 240,02,
21302 4 .23R619185983197D1, ,6612%938646626500, .93246951429315209. 3¢
014083 5 8,00, 144584515137739700, ,74153118559939400,
#1509 6 .94917791234275900, 2.0,
B1607 7 L183434642495650D0, .52553249991632900..79656547741362709.
21709 B8 .96012R8985649753€00M, 2,00, )
21800 9 2.0#, ,32425342340380900, ,613371432700590808;
A1900 A LB3AD3110732663607, ,96816023950874626p8,
B2p00 B .14887433P89816310F, .433390539412924702, ,679409568299824080,
g2100 C L R650633666889850, ,973906528317172p0/
@2207 DATA W/1,09, 4e2,00, ,
Bp3A0 1 RBABABABARBHARBSDY,,55555555555555600,3°0,08,
B2400 2 ,652145154862546D0, ,34785484513745409, 387702,
Ag5a2 3 S4RENSRABKABARBIDN, ,47862867049936600,
p2602 4 ,D3A926885035618900, 2#0.07,
az7oe 5 ,46791393457269100, ,36M76157304813909,
Aogyn 6 ,17932449237917207, 20,03,
#0023 7 ,41795918367346907, ,381830M53505119p¢2,
¥3aAao 8 ,27977539148927707, ,1294R4966168870p9, 27,00,
23100 9 . 26726R378337836200, ,313706445877887D9, A
23200 A \22730173445337400, .1081228536298376D¢, 2,04,
23380 B ,33223935508126V00, ,312347077840363p7, .26ﬁ61569&4?293503.
3400 £ .18np64816769485700, 38127415836157409..2?552422471475309.
3500 D ,P69266719309996D0, .?19@8636251598206,
83600 £ .14945134915058100, ,066671344308688p0,
a37e3 FACHMz (B=Ay/2,00 | :
23804 iF (DARS(FACM},GT.TOL) GO TO 5
a3%an ABINT = p,Dg
340N WRITE (6,2) . _
34103 2 FORMAT (' (B=A),LT,TOL3 ABINT SET TO zZERO!,
B42p0 RETURN
A4300 8 FaCP=(8+A)/2,00
B4400 ABINT=%,08 .
34500 EN=N
4607 ENO2=EN,2,08
4708 NO2=END2 _ ‘
B4gas {Fe(N=-20N02) EQ.B) K12 -
24500 1F{(N.28ND2),6T,0) Kizl
25030 K2=Nn2+1
25199 K3z2aK2+1
g2520a nn 19 K=Ki,K2
25340 TEpM= FACMG?(K N)
25400 Y(K)SFACP«TERM
255g0 X(K3 ~K)z FACP,TERM
256p4 i¢ conTINVE
ps57Ba 1F (K1.,E0,1y GO YO 15
258¢7 X({)=FACP
85%pn 12 LsMei
36093 GALL FUNCT(X,F,L)
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26103
62089
p6383
a64ua
26500
266017

Be700

22

Ao 27 K=Ki,K2

ABINTSABINT+(F(K)+F (K3=K ))®u(K, N)
CONTINUE

Tre(K1,Fgvd) GO TO 25
ABINT=ABINTSF(1)#W(1,N)
ABINT=ABINT#FACM

RETURN

41



