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ABSTRACT

The conjecture is made that the largest maximum of the normalized

associated Legendre function an(g) lies in the interval (El, 3 2) with

[

£, = n(n+l)

il

€2 The

where [ ] indicates fhe greatest integer function, A procedure is developed
for verifying this conjecture., An on-line algebraic manipulator, IAM, is used
to implement the procedure and the verification is carried out for all n 2 2m,

for m =1 through 6. A rigorous proof of the cahjecture is not yet available.
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I. INTRODUCTION

In fhis report we describe the results of an analytic study on bounds for
the normalized associated Legendre functions ‘an. The motivation for the
study is to provide a rational basis for the truncation of the geopotential series
in spherical harmonics in various orbital analyses; One would require, in addi-

tion, bounds on the geopotential coefficients, each of which is defined as an
| integral involving the product of the Earth's density function and the corl_'espond-
ing spherical harmonic[ﬂ. Thus, bounds on the associated Légendre functions
may be expected to enter the truncation problem in two ways: directly as the
functions occur explicitly in the geopotential series and indirectly as they

occur in the geopotential coefficients.

The goal of the study is to find a realistic upper bound for the normalized
function. an(cos 0) over the range 0 to 7 of the polar angle 6. The normal-

ization factor used in this study is

(n—m}!

Apm ™ ‘/(2 - 6mo) (2n+1) (n-+m)!

where 6mo is the'Kronecker 6 which vanishes for m # 0 and is unity for

m =0, The unnormalized Legendre polynomials PnO (cos 8) (m = 0) are known
to be bounded between +1 and take on their extreme values at 6=0 and .
The normalized Legendre polynomials are thus bounded by * v 2n+l. Realistic
bounds of an for m = 1 appear not to be known for the fullnrange of variation

of 6 from 0 to w.

Making use of the well known integral for the unnormalized functions,

1 i
l' 2 2 n+m)! [ ]2
<
4 [P (x)] dx= _2n+1 (n-m)! 2| LUB |P |

we obtain that for the normalized function

a.1)

(1 2)



LuB|p_ (&) 2 /2-6  =v2 | _ (1.3)

for m >0, (It will be assumed that m >0 throughout the rest of the report).
This is a rather weak result, Another weak result may be obtained from consid-

eration of the integral representation of the unnormalized function:

imw/2 (ntm)!

= . n :
an(cos 6)=e g jo [cos 6+isin Bcosp) cos mep dp (1.4)

(Hobson [?J, p. 98, Eq. (20))-. Noting that the a_bsolute value of the integrand has

LUB of 1, we obtain for the normalized function

n+m)!
[P (cos 8)]| A o
nm nm nl.7

= J2(2n+1) m-m)T arm)]

(1.95)
@)’
for all 6. This bound must be conservative since the fact that the integrand is
negative over roughly half of the interval of integration is not taken into account.
Using an asymﬁtotic formula from Jahnke - Emde [3], (p. 117), again for
uhnormalized functions, '
m 1 T T
= (~ —— si +=)0+—+ —] .6
an(cos 6) = (-n) / Tsing S [(n 2) L tmy 1.6)
valid for
n>m, €e<0<m-¢, 0<e<nm/6 @.7)
we may conclude that in the interval (€, 7-¢€) the normalized functions satisfy
LUB |P  (cos §)] sn™,/2E0¥L) (n-m)! L.8)
nm - Y nTsin€ (n+m)! '

This LUB, of course, becomes unbounded at the endpoints of the interval (0, 7).

Now we know that an contains a factor sinme which vanishes at 6 =0 and



e=m, vsé that the bounds for 6 near either € or 7r—-€ are likely to be conser-
vative. Hobsoncz], (p. 302) derives and discusses a more elaborate gsymp_totic
expression in which sin 8 appears in the denominator. This fact suggests that

a realistic LUB corresponds to a value of 8 in the neighborhood of the endpoints

of the interval (0, 7) = just where the bound (1.8) is weakest.

The associated Legendre function an(cos 6) is proportional to the

hypergéometric function

F(m-n, n+2m+1, m+1; sin2 0)

and it is known (see Lanczos [4], p. 453 and p. 369) that the hypergeometries

functions

F("rs r+2y—1: ‘y; I%X )

are oscillatory with the amplitude increasing as x values from 0 to 1. Hence

if we make the identification
r =n-m, ¥ =m+l, x = cos 6

we can conclude that the largest maximum of Ian(cos O)I and hence the LUB
is that peak of Ianl closestto 8=0 (or 7, since an is either symmetric

or antisymmetric about 8= 7/2, according as n-m is even or odd).

In the early stages of this investigation, we examined with some care
Jahnke-Emde's (3] plots of their normalized associated Legendre functions
(pp. 112-113). Their normalization factor is just twice 6ur Anm' From these
plots it appears that for given n, |P nll has a larger LUB than an for
m = 2,3, ~n, an observation which contrasts with bounds such as (1.5) and (1.8)

which increase as m increases.

A powerful on-line algebraic manipulator, IAM, was made available by

Applied Data Research, IncX*for this investigation. A great many experiments '

*Princeton, N.dJ.

1.9)

1.10)
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were tried, using IAM, and the method finally adopted was to make a systematic
search for the smallest 8 for which the derivative of an vanishes for various
values of n and m, with the hope of ultimately completing the analysis by a
proof by induction. Such a value of 8 corresponds, as noted earlier, to the
largest maximum of IanI , and the final step would be to estimate this maxi-
mum value, again using IAM. The details of the procedure developed, the list-

ings of the IAM programs used, and their output appear in the following.sections.

The principal result of the study is the conjecture that the largest maxi-

mum of P (cos 0) occurs for
nm

1 [m@:4)-1‘]*<sin2g< 1 [mgnﬂl]

. n(n+l) 2 n(n+l) 1.12)

for all m 2 2 and all n sufficiently large - indications are that sufficiently
large is not a stringent limitation. The conjecture has been verified for m =1,

2, 3, 4, 5, 6; a rigorous proof is, so far, elusive.

The verification of this conjecture for m = 2,3,4,5,6 involves a rather
intricate line of reasoning. In Section II we introduce some notations, discuss
some pertinent properties of the associated Legendre functions, and prove the
three theorems basic to the verification procedure. In Section III,we treat
Pn , 282 special case, partly because it can be more completely analyzed than
the general case, partly because_some of the formalism developed for m 22
is not well suited to the case m = 1, and partly because its relative simplicity
can serve as an introduction to the more complex cases. Thus both Sections
II and III may be regarded as background for Section IV. In Section IV, we des-
cribe the JAM program used in the verification of the conjecture (1.12), and
present the output for m = 2, The quantity-of output increases rapidly with m'
so the output for m = 3,4,5,and 6 are contained in Appendix B. (Appendix A

contains the IAM progrém and its output for the cumbersome proof of one of

the results of Section II)., In Section V estimates for bounds on the largest

*[ ] indicates the ''greatest integer' function,



maximum of an are calculated for m = 2, 3,'4, 5,6. Once more, output from

an IAM program is utilized. The program is straightforward and the output

fairly lengthy; both appear in Appendix C Finally, some comparisons are
[5]

made of these bounds with double precision ¢alculations of the largest maxi-

mum of an, for selected values of n and m.



II. SOME USEFUL PROPERTIEVS‘OF. THE ASSOCIATED LEGENDRE FUNCTIONS

We have seen in the previous section that the bounds on the Legendre poly-
nomials Pnc; are known. In our analysis of bounds for the assdciated Legendre
functions, we therefore omit the case m =0, For.allm >0, an(cos 0) and
an(cos M) vanish and the largest of the maxima of an is that one closest to
8= 0; this largest maximum is, of course, the LUB Ianl . It is convenient to
introduce

£ =sin” = | 2.1)

as the independent variable, in terms of which the normalized associated Legendre

functions are
A / n-m .
_ _pym/2 _
P__(§)=B__(£Q-£) kz=o €, (-4 @.2)

where the coefficients Ck are given by

(n-m)! (n+m+k)! m!

Cr = K @m+! n-m-k)1 (atm)! @.3)
and satisfy the recursion relationship
C .A
k+1 - x-(m+k){m+k+1) @.4)
Ck (k+1) (m+k+1) *
with
CO =1, x=n(ntl) (2.5)
The coefficient B is
nm
: 1
nm m!(n-m)! n m (n m)! 7 o 7 o
. .
We denote the polynomial factor of an by an :
n-m _
P *=Z e (..g)k C2.7)
m k .
k=0



This factor defines n-m real zeroes for P@ and also determines the sign of
an for any specified value of £. In addition to these zeroes, the function

(§) possesses zeroesat £=0 and §=1.

It is rather easily shown by direct differentiation of Eq. (2.2) that

roe s m/2 1
P o ©€)=B_ (§(-£) am 6 2.8)
with
. _ _m
nm 2 nm
n-m+l1
— _ - _ k - )
L. —Z C, §) 2.9)
k=0
where
CO =1
é @ m)! (n+m+k-1)! (m-1)! [(m+2k)y-m (m+k) (m+k-1) ] 2.10
k k! (m+k)! (n-m-k+1) ! (n+m)! (2.10)
for

1<k <pn-m+l

The polynomial part P *of P ' defines n-m+l zeroesfor P !, and also
nm nm nm
determines its size for a given value of £§. We note that for m=1, an' becomes

infinite at £€=0and £=1; for m >1 these points are zeroes as for an.

Now we are interested in finding the smallest zero of isnm* and then
estimating the value of P at this point. Since P * and P__* are of

: nm nm nm

degree n-m and n-m+l, respectively, a complete analysis can be carried out

analytically for n-m+1<4, In fact, a complete analysis can be carried out

analytically for n-m+1 <8, since use of the expressions for an and an' in

terms of cos 6 would lead to the analysis of polynomials of the fourth degree (or

less) in cos29 . In the present study, therefore, we could assume that we were

seeking information in the neighborhood of the smallest zero of a polynomial



containing a fairly large number of zeroes & 8) in the interval (0,1). We would
- thus presumably be concerned with relatively small values of the argument and
might reasonably hope to gain some information from examination of the first

few terms, rather than the entire polynomial.

With such an approach in mind, we introduce some useful notatibn and
set

k-1 _

Pr, (§)=C, &

= = k1 = Lk
Pr (6)=C,_ & -

L

_ _ k

S, (€)=) C - (-£)
k=0

-
- _ = . k
SL€=) G )

k=0
The functions Pr and Pr are pairs of terms from the polynomial parts an*
and an*, respectively; S and S are partial sums for these two polynomials.
Using this notation, the following properties of an* and an* may be

established:

Property 1: The single non-vanishing zeroes Ck and zk' of Prk and

I-Drk, respectively, are increasing functions of k., Since
Sk~ Cr1’C
E =¢C _/C

(2.11)

(2.12)



-2 - -
Cr " Cka1 Ck+1

C

>0

C
k ktl
The proof is carried out by factoring, and discarding, the numerous common
(positive) factors from the numerators, discarding the (positive) denominators,

and evaluating what is left subject to the condition that

n-m 2k+1 for Pr
n-m+1 2 k+1 for Pr

which is necessary in order for these pairs to appear at all, The calculation for
Pr is quite easy; that for Pr is not, and was carried out using IAM, Both are

given in Appendix A,
Property 2:

SL(§)>0for E>Cl, n-m 2L
SL(S)'>O for §<Z’1, n-m+l 2 L

. This property follows immediately from Property 1, since all these partial
sums are unity for £ =0 and cannot change sign until after the first pair be-

comes negative.

. < <
Property 3: If S2L () <0 for some L and some £ C2L+2,then

*(Ey < imi if S (&)< E<?
an (§) <0. Similarly if SZL(g) 0 for some L and some £ C2L+2 ,

then ﬁnm* (¢) <0. We prove only the first statement; only minor modifications

are required for the proof of the second.

[ n-m 7} _ L
Proof: 2

- o [ A=
Pam"6) =85, 6) - kzl Prorao®) - (n'm'?‘[ 2 ]) Cp-m

n-m

where [ ] indicates the greatest integer function; and n-m 2 2L, The partial

sum S2L terminates with an even power of £, and is followed by pairs of

(2.13)

(2.14)

(2.15)

(2.16)



even index which appear preceded by minus signs in an*. If n-m is even,there
will be an integral number of such pairs; if it is odd,there will be one term left

over which is an odd power of £ and hence has a minus sign. Now since £E< C2L+2

c .
_ 9L+2k-1 (2L+2k-1)
LLsak® = C2L+2k( C - ‘5) € :
_ 21,42k

P

f2Le2k-1)

Lok Caraok ™ &) @.17)

Hence every term on the right hand side of Eq. (2.15) is negative and an* (§) <0

as claimed.

Property 4: If S )>0 and £<C then an*(g) >0 and

2L+ @ 2L+3’
correspondingly for an* & ). The proofs are minor variations on those for

Property 3.

In applying these properties, we must always keep in mind that for an*(g),
n-m, the highest power of £ appearing in the polynomial, must not be less than
the highest power of £ occurring in a partial sum, or pair, explicitly required in

the analysis. For I_Dmh* (§£), n-m+1 must not be less than the highest power used.

We are now in a position to prove the main theorems on which we base our

calculation of bounds for the associated Legendre functions:

Theorem I: If for a given' m, there exist L, L, gl, £2 Satisfying the

_following conditions:

£1<Z (2.18)

2i+3

2L+1 ' =
€2 “2L+2 S22 “ i - | - en

§2 = Core (2.20)

S ) >0 ‘ (2.21)

2L(£2

10



Szi+1 (El) >0

Syp (€g) <0

) has exactly one zero to the

=(
"2 left of £,

S =1y < <t<§
S,7'(€) <0for0<£<§,

then & 1 and £ g bracket the largest maximum of an (§) for all n such that
n > m+2L + 2

and this largest maximum is the only extremum of an contained in the interval
&g £y |
Proof: The conditions (2.22) and (2.23) guarantee at least one zero in the
interval (£ 1’ £ 2) and this zero must therefore be the one specified by condition

(2.24). Conditions (2.18), (2.19), (2.22) and (2,23), together with Properties 3
', imply that
and 4 of an imply

! > P 1 <0
P '(£,)>0 andP ')
and hence an has at least one maximum point in the interval (3 1’ £ 2)_.
Now ng. (&) differs from ﬁnm*(g) by a sequence of negative Pr

- -m+
functions and, if n-m is even, the single negative term (-C g“ m+l

[ n-mtl }ZL

):

n-m+1

nm*(€)=§2f,(€) - z 2L+2k (€)
k=1
_(n_m+1 -2 [n -m+1 ]) gn-m+1

n-m+1

11
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(2.23)

(2.24)

(2.25)

(2. 26)

(2. 27)

(2.28)



Consider for a moment

- =231 = 2d -
Per(g)—ch_lg -02J£ (2.29)

-This function possesses two zeroes; one at £ =0 and the other at £ = Zz'J and

possesses a maximum at
(2.30)

Since both E 9oF and the fraction (2J-1)/2J increase with J, U 9J also increases
with J. To match the parameters of the theorem,we identify J with L +1, and

we see that condition (2.19) guarantees that £ 2 lies to the left of the maximum
points of all Pr functions in Eq. (2.27). Thus, for all £ in the interval (0, 52),
an* (5_)» - Szi (£) is a decreasing function of €.. Further, condition (2,25) says
that S zi(ﬁ) is decreasing in this interval, and hence, finally, an* is also de-
creasing. Since an* (0) is unity and an* (£ 2) is negative, it follows that Pﬁm'(g)

has exactly one zero in the interval 0 <¢ <§ so that an(£ ) has exactly

2’
one maximum, its largest, and no minima to the left of § 9° Conditions (2.20)
and (2.21), together with the last statement, imply that an (§) has no zeroes

in the interval 0 <§<¢ 9° Thus, not only ds &_"and & 9 bracket the largest

1
maximum of an(g ), but do so in a way that makes the following theorem for

bounding this maximum useful:

Theorem II: If the conditions of Theorem I are satisfied then an ,

A max
the largest maximum of an(g) satisfies the inequalities
< " <
A<P - (6)<B 4 | @.31)
max
where - I . o - -
’ 2
A =N2(@2nH)x (51(1"51))m/ an*(ez) (2.32)

B =4/2@2n+l)x (62(1—5 2))m/2 an* (€1)

12



with

x =n(n+l), n> m+2L+2

Proof: We know that the polynomial part, pnm’*(g), of an(g) is an
oscillatory function with n-m real zeroes in the interval (0,1), and hence n-m-1
extrema interlaced with the zeroes in this interval. Since an*(O) =1, and
Theore_m I guarantees that no zeroes of an* lie to the left of gz, it follows

that an* €) is decreasing in the interval (0, £ 2), and hence also in the interval

€ €2), so that
| P * P *
€ >P *E)
2 S
Further, since the function (§ (1-£))m/ vanishes at £ = 0'and £ =1, and has its

only maximum at £ =1/2, it is an increasing function in the interval (§1, §2), S0

long as £ 9 < 1/2, a condition implied by the conditions of Theorem I. Thus,

m/2 m/2

- < -
(€, 0-€)) (€,0-£.)
The inequalities (2.34) and (2. 35) establish the conclusion of the theorem.

We need one more theorem to make conditions (2.24) and (2.25) of

Theorem I more explicit:
Theorem III: Given (1) a polynomial of even degree 2K
K
_ k
Rox® “Z "

k=0

with coefficients such that
ak >0 keven

a.k<0 k odd

and (2) r such that

13

2. 33)

(2.34)

(2.35)

(2.36)

(2.37)



2K-1

b1=z

j=0
9K-2
b, = Z
§=0
2 2K-4
b =
7 4,
Dok = 3ok

41 r G+1) <0

2, B L0 5

-J )y >0
i+t Lrjr <0

then, in the interval (0, f), RZK(r) is decreasing and has exactly one zero to

the left of r.

Proof: It is readily verified that the polynomial R ZK'(p) defined by

R, (0) =R, (¥ +p)

has coefficients bj; that is,

2K
- _ j
R, (0)=) b,
j=0

From Descartes' rule of signs, there is exactly one negative value of p for

which R 9K

vanishes and hence exactly one value of r < r for which R

ox ™)

vanishes. This establishes the second conclusion of the theorem.

The derivative of RZK (o

—
Rox @)
j

and from the hypotheses on the b's, the coefficients of EZK'(p) alternate in sign (b 0
does not appear). Hence again using Descartes' rule of signs, EZK' (p) has no nega-

tive zeroes and is therefore always negative: R = b1 < 0. This implies that in

) is given by:

2K

LY

=0

14

ox (¥

(2. 38)

@. 39)

(2. 40)

(2.41). -



i P - 0) = > T) = <
the interval (0, 1), RZK(r) decreases from RZK( ) a0 0 to RzK(r) b0 0.
This completes the proof of Theorem III.

In the application of Theorem III to Theorem I, we identify R 2K(r) with
525 (§) and r with £ 9° It now remains to discuss how we evaluate the para-

meters L, f.,- [ 1’ 13 on which Theorem I depends. As mentioned in the

2’
introduction, extensive experimentation with IAM led to the conjecture that

2]

1 n(n+1)

[amn]

2 n@m+l)

3

[ ] = greatest integer function V

will satisfy all the required conditions. To arrive at values of L and "I-,, one
simply starts with a small value of L, say 1, and checks to see if £1 and £ 9’
defined by (2.42) satisfy all the conditions of Theorem I; if not increment L. and
check again. In-all cases tested (m = 2,3,4,5,6), an L has been found and

appears to be of the order of 2Im. The same trial and error technique is then

used to find L. What is lacking is a rigorous proof for the existence of L and

L. for £, and £2 defined by Eq. (2.42)

1

15
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Il  CALCULATION OF BOUNDS FOR P_ _

Using the notation x = n(n+1) and Eqs. (2.1) to (2.9), expressions for
Pn 1(g) may be obtained as |

Py €)=/ [1- %25 b 2 2.... Jtimes VEGE)

21 « 31

P _'(¢) _1 m[l _ 3x 2 £+ gx—2)g5x—6) ]
nl 2 21+ 3! £0- é'

We note at once from Property 4 of the last section that

P €)>0for §<2 =t

'(€)>0 for g< 2— = F

<
3x-2 1 ¢

1
~ 5o that we may identify § 1 of Theorem I with & %

~_2
1 3x-2

3

For this case (m=1), it is quite easy to find a value for £2 with L =1, so
that the results will hold for n 22, A near-minimum value for £ 2 is obtained

by seeking the largest «a for which

- 1
< i = —
Sz(é'z) 0 with 62 -

'(€) and clear-

Substitution of 52 in the first three terms of Eq. (3.2) for Pnl

ing fractions yields

12(xfoz)2 ~6(3x-2)(x+a)+(x-2)(6x~6)
=X +x(6a-~4)+12(a¢ +0o+1) <0

as the inequality to be satisfied by « for all n 2 2, which implies x 26, Trial

and error shows that « <3/4 satisfies the condition, while o= 17/8 is too large.

16
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(3.2)

(3.3)

3.4)

(3.9)
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We next verify that for a< i—, 52 > El:

gy o1 2 _x-2(@+l) "
g2 g1 x+Q 3x-2- (x+oz)(3x-2)'>0 3.7)

5
provided x > 2 (x+1), which is so since x> 6 and 2(a+1) <2(1 +%) = l:l_ . Note that

o =6 corresponds to the value of §2 given by the conjecture of the last section;

for =6
1.1 [mme)
€2 X X 4 m=1 3-8)
We are now ready to estimate bounds: The polynomial part of P nl is de-
creasing in the interval (0, 52) since 62 < Cl. Thus, in the interval (51, 52)
P . * has its maximum value at & , and its minimum value at £ o+ The other ‘
factor of Pnl’ v € (1-£), increases in the interval (0, 1/2) and hence also in the
interval (51, 3 2),. Finally, therefore, the lower and upper bounds for the largest
maximum of Pnl are given by:
= “+ -— P b 3
A=v2@nH)x VE (1-€)) P *(E,)
= - *
B =v2@ni)x VE,0-8,) P *(E,) (3.9)

respectively. We now expand the various factors in Eq. (3.9) in powers of 1/x:

AT BRI R e tye(B) o s) e

(3x—2)2 3 </
T [T ) ) o ()
+o(1—2) (3.11)

X

17



eb i X2 2 +(x-2)(x-6)('2 >z=g+_;g (_1_)
PLrEI=1I-7 55 12 3%-2 27 Bix T O 2

7 1+ < 1 )
* - == =
Par€) =15 +3 *© 2

 Using these results, A and B become

a5 o () o

)- [ LI 16
3x ' 2 18

19 < 1+ 16 ) < 1) 38 1
=/20nt1) = (1-=—+=>)+0( = )~= [p+=
B=v2@nt) on (1= v 575 /7 © 2/ 2 yBTy

In order to see that A and B not only bound the first maximum of Pn

NNlH

17
but also provide reasonably realistic bounds, we tabulate A, B, and the largest

maximum of Pnl calculated in double precision[sj for selected values of n:

n A Pnl B
max

2 1,51 1.94 2.23

6 2.43 2.99 3.59

10 '3.09 3.78 4,56

14 3.63 4,44 5.36

18 4.10 5.01 6.05

(Only the first three digits of the double precision values are used for this
table). The bounds, for this range of values for n, deviate some 15-20% from
the exact value, which does not seem excessive for bounds intended to be valid

for all n. Note, however, that the deviations of the bounds from the exact

value appear to increase with n; there is, at present, nothing in the theory on ~

which to base an estimate of a rate of change in the deviations.
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Iv. LOCATING THE LARGEST MAXIMUM OF an_

In this section we first describe the procedure developed for verifying
the conjecture (2.42), then present the IAM program implementing the procedure,
and then the output for m = 2, Because of its bulk, the output for m = 3,4,5,6 is

placed in Appendix C.

The problem' is to verify, for a sequence of values of m, that the largest

maximum of an(g) lies at a point & such that

£ =.Z.l'<§<g =2 (4.1)
1 x 2 x
with
X = n(n+l)
z=[ﬂ%m—+ﬁ)] . 4.2)
z, =z-1

The steps of the procedure are as follows:

1, Specify m, and hence z and Zy-

2. Find L. the minimum value of L fqr which

1
S —<0: > L
S2L 0; note n2 m+ L 4.3)
3. Calculate the coefficients of u in the polynomial 'fzf, (u) defined by
1
T - @=8_= ( E+u> 4.4
2L1(u)“ 2L \x A (2.4)

using Egs. (2.9), for the coefficients C of §, and Theorem III. Check to see
if conditions (2.28) of Theorem III are satisfied. If not, increase f’l by 1 and

repeat,

i S — >
4, Verify that 82L1+1 (El) 0.
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5. Verify that £ 1 and £ 9 satisfy the various other conditions imposed

by Theorem I for n2 m + f'l'
6. Verify that an L exists for which condition (2. 23) is satisfied.

The IAM program below, called WORK]1, implements the first four steps
of this procedure; the last two are done by "hand". IAM utilizes an _ALGOL—like
language. It executes PARTS of a program and/or STEAPS within the parts. The
individual command strings are identified in a "decimal' notation: PART.STEP,
eg. 4.3, 5.il,etc. Note that STEP 5.11 would be executed between STEPS
labeled 5.1 and 5.2. The commands are almost self-explanatory; 1 denotes
exponentiation, « is a replacement operator, FOR generates a loop, WITH
indicates substitution. All arithmetic is carried out in integer form to full
precision, using as many "words'' as necessary to store the result. There are,
of course, limits to the storage capability, and when the address space of the
system is exhausted,a message to this effect is returned and calculation stops.
WORK1 successfully carried out the first four steps of the procedure outlinéd
'above for m =2, 3,4, 5,and 6.. Time did not permit further trials, and most
likely storage would be exhausted for m = 7 or 8; considerable care in conserving
storage had to be exercised to carry through m = 6, for which 14 terms of the

P ' series were required.
nm

With these preliminaries, here is WORK1:

TYPE WORKI1
161312011-1321Z-13TYPE M>11,12,2,21
1.2:MSQ@-M12

1¢3:TWOM~2%M.

1+ 4:MM(1)-MSQ+M

1+5:FOR"1+«2 TO I2>,MM(I)+MMCI-1)+TWOM+2*%C¢I~-1) : .
1. 6:MSQ-2%xMSQ y
1:7:FOR I+1 TO I2,MMMCIDeC(1+I)*M+CI+1)%CI+1)
4¢1:0(MI*M3FOR I+1 TO 11,QCI)=QCI-1)*I*x(M+[);&
CP(?)~Q(I1);DELETE Q

4.2:CPC1)«CP(BY/MM(])

4¢3:FOR 1«2 TO I1sCCPCI)=(CPCI=-1)/MMMCI-1))*(X~-MMCI~1))8&
sDELETE MMMCI-=1))
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Se 1 :MMM(1)e=MxMM (1) 3 MMM(2)eMSQ+TWOM

S.1S:DELETE MM

S5¢2:FOR 1«3 TO I1 ,MMMCI)=MMM(I~-1)+TWOM

Se3:Y (1) (M+2)*X-MMM(1)DELETE MMM(1)

Se4:FOR 1«2 TO I1,(YC(I) YC(CI=1)4+2%X-MMM(TI)&

3DELETE MMMCID)

Se6:FOR I+1 TO I1>(CPCIIY*CPCIN*YCI)*(-1)t13&
DELETE YCI)Y) ‘
641:D(BY)-15DC1)X

6.2:FOR [«2 TO I1,DCI)*DC1Y*DCI~-1)

6.3:FOR 1«@ TO I11,CP(CIY*DCI1-I)*CP(C1)

6 4:DELETE D

Be1:EDIST+15

Be3:X2+U+(I2+MYI*(I2+M=-1)

BedeX1-U+ (I 1+MIX(I2+M)

BeS5:tAI1-SUMC(I-Q TO I1:CPCIdY*Z11t1)

B8.6:0DD~AI1 WITH [X=X113TYPE ODD

8.65:DELETE AI1,0DD

Be T:AIZ2+SUMC(I«Q8 TO 12:CPCIY*Z1t1)

BeB:TEST(PY)+AI2 WITH [X=X213TYPE TEST(®)

8.9 :DELETE TEST(B)>AI2

9.1:FOR J+«1 TO 12,IPCJY~J

9.2:TeSUMCI«1 TO I2:CIPCIY*Zt(I=-1))Y%CPCI))
9«3:TESTC(1)Y)=T WITH (X=X2]

9.4:TYPE TEST(1);DELETE TEST(1)

9.5:FOR Ke2 TO (12-1),(FOR JeK TO 12,IP(I)-IP(J)*&
(J=-K+1)X/K3TeSUM(I«K TO I2:(IPCIY*Zt(I-KII*CP(I))s5&
TEST(KY*T WITH [(X=X213TYPE TEST(K);DELETE TEST(K)Y»>T)
9.6:DELETE ALL VALUES

10.1:C(A)Y-CPCAY/ X111

19.11:FOR I+«1 TO 12)C(I)~COEFF(CP(I),X,Il)
1012:TST1(@)=SUMCI«@ TO 12:CCIXY*ZtIVSTYPE TST1C(®)
12 13¢1F TST1(D)eGTeBs (11+«11+23DELETE TST13:TO STEP 21.1)
10.1S:FOR J=1 TO I2,IPCJ)+J

1B32:T«SUMCI+~1 TO 12:(IPCIY*Zt(I-12)xCCI))
12¢3:TST1(1)+T

18.4:TYPE TST1(1)

13«5:FOR Ke2 TO (I2=-1)5,(FOR Je«K TO I2,IP(J)*-IP(J)*&
(J=-K+1)/K3Te«SUMCI+«K TO I2:CIPCIY*Zt(I-K))*C(I));&
TSTI(KI)-T3TYPE TSTI(K)S3IF (TSTI(K)*(=1)tK)eLTeDs(l1*"11+2:&
DELETE TST13TO STEP 21+1))

1. 8:DELETE C»T»TST1

12.9:D0 PART 83DO0 PART 9

21.1212«11-1

21.3:D0 PART 13D0O PART 4

21+4:D0 PART 53D0 PART 63TO STEP 10.1
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Execution of the program is accomplished by entering the command
DO PART 21 from the terminal; this must be preceded by entry of m, z and
an initial value for an odd integer I1. The even integer 12 =11 -1 plays the role
of 2L in step 2 of the procedure outlined aBove. Note that PART 21 executes
PARTS 1,4,5,and 6 and then skips to STEP 10.1. PARTS 1,4,5, and 6 evaluate
an array CP of (I1+1) coefficients which are prqportional to the first (11 +1).
terms of the polynomial part of an'(g). The proportionality factor is the
least common denominator of these coefficients, including the power of x
which will occur on substitution of £ , °r '3 9 for the argument. IAM works
more efficiently if it is not asked to carry fractions, since its first step is to
get the common denominator, which requires storage and is carried throughout

the calculation,

Referring to Egs. (2.8), (2.9) and (4.1), we note first that

2
= _ (m+2)x-m (m+l)
;7 m(m+1) (4.5)

G = [x-m(m+1)] - [(m+4) x-m (m+1)(m+2)]
2 21 m(m+1)(m+2)

& = {[x-m(m+1) ] {x~(m+1) (m+2)Jees [x~(m+I1-2) m+11-1) ]+ [(m+211)x~m (m+1-1)(m+11)]}
Il I1! m(m+1)- - » (m+I1)

and the corresponding terms in lsnm* are these coefficients multiplied by the

corresponding powers of z/xor z 1/x for evaluation at £ 1 and £ 5 respectively.
In either case, the lowest common denominator of the partial sum SIl’ which
serves also as a common denominator for §12, will be I11 m(m+1‘)- o (m+Il)xu |
and CP(I) at the end of PART 6 of WORK1 is this factor times the corresponding

C, of Eq. 4.5:
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CP(0)=I1! m(m+1)-« - (m+I1) XI:l 4.6)

CP(1)=-I1! (m+2)(m+3). + - (m+Il)xH[(m+2)x-m2(m+1)]

n
.

cp() = (-1)Il (x-m(m+1))(x-(m+1) (m+2))- -
(x-(m+I1-2) (m+I1-1)) ((m+211)x~m (m+I1-1) (m+I1))

PART 1 and STEPS 4.1 and 4.2 set up the factors independent of X in these
expressions, STEP 4.3 calculates all but the power of x and the factor in-
volving (m+2I)4, The array Y is set up in STEPS 5.3 and 5.4 to generate
this last factor and STEP 5.6 inserts it along with the ﬁroper sign into the
CP's. Finally, in PART 6 the array D generates the powers of x which are
inserted into the CP's by STEP 6. 3.

Having generated expressions for the terms of the partial sums, we
next want to find il of Eq. (4.3). The search is done by successively calcu-
lating
12
5, Z CPK) 2~ ' @.7)
k=0 -
for 12 = 2,4,6, ... until a negative value results. In practice, this is a very
lengthy calculation which strains the storage capacity of IAM, so a similar pre-
liminary search is carried out using only the leading terms in x. Note from
Eq. (4.6) that each CP has leading term xIl and that x = n(n+l) can be arbitrarily
large, Thus, in effect, we first seek an I:]_ for very large x., This is accomplished
in STEP 10.11 by constructing an auxiliary array. C(I) from the coefficients of xIl
in CP(I). The rest of PART 10 calculates and prints out
12
TST1(0) =Z Ck) zk. _ (4.8)
k=0
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incrementing I2 by 2 and repeating the calculation until a negative value
results, At this point the test is undertaken for zeroes of this sum to the left
of z, using Theorem III. If more than one zero is detected, I1, and hence also

I2, is incremented by 2. The sequence of tests for Theorem III requires

TST1(0) <0
TST1(1)=Z kC(k)zk<0 : 4.9)
k—1 ‘

TST1 (2) = —(—k—-—)- C(k)z >0
k=2

L ] I _
TST1(I2-1) = - C(I2-1) z 21 C(12) 22 <

TST1(2) = Ca2)z2 >0

The last of these tests does not appear in the output. Once these tests are passed
for the leading terms in x, the value of I2 so obtained is used as the initial
value for the corresponding sequence of tests using the complete coefficients of

Eq. (4.6), with the following modification:

First, note that use of 12 for lsnm* requires

n-m+1 212 : 4.10)
and hence »
X 2 (m+I2-1)(m+I2) : (4.11)
WORK 1 defines

X2 = (m+12)(m+12-1) +u - 4.12)
= (m+Il)(m+12) +u

with u 2 0 to incorporate the fact that u = 0 corresponds to the minimum value

of n(n+1) consi~stent with the existence of 512 and §Il’ with I2 corresponding

to 2Land I1 to 2L+1 of Theorem I. In STEPS 8.5 and 8.6, IAM first



evaluates éIl (z 1), labeled ODD in the output, with x = X If the coefficients
of all powers of u are positive, then én (zl) will be positive for all n 2 m+i1-1,
as required by Theorem I. In STEP 8.8, 512 (z), labeled TEST(0) in the output,

is evaluated with x = Xy If the coefficients of all powers of u are négative, S12
will be negative for all n 2 m+I2-1, again as required for the application of
Theorem I. In PART 9 the calculations corresponding to Eq. (4.9) are carried

out using the full coefficients CP, x=x_, and arranging the output in powers of

u. The results of the calculation are ieturned in the array TEST(J), J = 0, 1,' el d2,
The inequalities corresponding to those of (4.9) will be valid for all n 2 m+I12-1 if,
and only if,the coefficient of each power of u satisfies‘the inequality individually,
This test is made by "human" inspection of the output; In all cases run, the

value of 12 found by the preliminary tests led to an array TEST (J) satisfying

the above conditions,

At this point we display the output of WORK1 for m=2., For m=2
o-[229)-s

and we initialized I1 to 3:
1AM
WELCOME TO 1AM(72321)

*.OAD FROM ''WORK1'
*Me-2311+-33Z<33D0 PART 21

M: 2
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TST1C@Y: - 77490
TST1C(1Y: - 93240
TST1(2): 34020

TST1¢(3): - 2520

ODD:
52256*%UtS + 11387840%Ut 4

+ 992819328%Ut3 + 43288291584+Ut2 + 943994926080*U + 8237259878400

TEST(D):
- 77490%UtS - 11872980*%Ut4

- 721700280%Ut3 - 21810222000+Ut2 - 328224960000*U ~ 1969349760000

TESTC(1):
- 93240%UtS - 14802480%Ut4

-~ 930696480%Ut3 - 29091182400%Ut2 - 453309696000%xU - 2821754880090

TEST(2):
34020%UrS +-4906440xUr4 -~ - - - T - -

+ 287083440%Ut3 + 8473701600*Ut2 + 125574624000*%U + 744629760000

TEST(3)>:
- 2520%UtS - 408240%Ut4
- 24625440%Ut3 ~ T06708800*Ut2 - 9761472000*U - 52254720000
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We see that Eq. (4.13) led to a value of 90 for TST1(0), so WORKI1 incremented
I1 (and hence also I2) by 2 and started over. This time the array TST1 pro-
duced the acceptable pattern -, -, +, ~; as noted above, TST1(I12) must be positive,
unless the last coefficient CP(12) is incorrectly computed. Next ODD is calculated
and we see that it is positive for all non-negative u. Finally, TEST(0), TEST(1),
TEST (2) and TEST (3) are calculated, the output is inspected, and it is verified that

for u 2 0, the sign pattern -, -, +, - is correct.

At this point we may conclude the following: For m=2
s (2 ) < 3
S 4 <x 0 n=5

S (§)>o nz6
5 \x

Referring to Theorem I, we identify

£, =

i
M, leo
al
i
[\)

b §2=

We must next verify that conditions (2.18) and (2.19) are satisfied. Before doing

this we discuss three épecial cases, corresponding ton = m+2f,1-1, n= m+2f,1,
n= m+2f,1+1, for which these conditions may not be relevant. The existence of

the partial sum §2i implies that the first of the special cases represents the
1 -

smallest value of n consistent with given m and Ll.

= T =1~ Q —_— = P * i S -— .
1. n m+2L1 1: S2L an and therefore neither SZL +1 nor the

Pr's associated with conditioris (2.18) and (2.19) appear. These conditions must

be replaced, in this case, by the condition

S — >
SZLl (zl) 0

= m+ I . S -
2, n=m 2Ll : S2L 1 i) :
i i . * —_ — — - ] — -
ditions (2.18) a_.nd (2.19): Pn (z) = SZLI(Z) C Z <0 if S2L (2)< 0.

1

n-m+1

3. n= m+2i1+1: In this case
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(4.15)

4.16)

=P _*  Inthis case, conditions (4.14) replace con-



(2il+2)

( ) 1 2L1+2 2L1+1 2Ll

Hence condition (2.19) is required, but (2 18) is not, since if S2L +1 >0, then
1

|

also P *>0.
nm

Verification that the modified conditions hold for these special cases is
easy. We proceed to the verification of conditions (2.18) and (2.19) for the

general case for m=2; n= m+2f1+2:

F- =P = _7_ _810(16x-2-8-9) -~ _ 640 1-9/x 52

2L1+3_ 7 & (@-8)t9)(8x-2-9-10)  9x (1-72/x)(1-10/x) = x
8

P - -6_ 79  14x-2.7.8 441 _ 1-8/x .3

2L.+2 C (n+8)(n-7) 16x-2-8-9  8x (1 50/x)(1 9/x) = x

for all n 2 8, which implies x 2 72,

We have how satisfied all conditions of Theorem I, except that on S (é'
ThlS last test is carried out by another IAM program EVAL, which is used not
only for this test, but also in the next section, for the calculation of bounds using
Theorem II. Here we shall merely state that EVAL does indeed verify that L

exists for which conditions (2.20) and (2.21) of Theorem I are satisfied.

The output of IAM for m 3,4,5 and 6 appear in Appendix B. Because
of prior experimentation, L1 was already known for these values of m, and .
to reduce the bulk of output, I1 was initialized to 2L1+1. The output exhibits all
the desired "sign'" patterns for the array TST1, ODD,and the array TEST for the
values input for m, I1, z, z, Verification of conditions (2.18) and (2.19) for
the general case, or their substitutes for the special cases, is routine, though-

tedious; the details are omitted from the report,

The table below summarizes the mformatlon glven by the output of
WORK 1 (plus the additional verlflcatlons), showmg = 2L 6 ﬁ 9 and the

lower bounds on n and x = n(n+l) for which f-;l and & 9 bound the largest

maximum of P
nm
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lower bound for -

no|2=2L | & £, n X
2 4 2/x 3/x 6 42
3 4 4/x 5/x 7 56
4 6 7/x% 8/x 10 110
5 . 8 10/x 11/x 13 182
6 12 14/x 15/x 18 342
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V. BOUNDS FOR THE LARGEST MAXIMUM OF an_

The case m =1 is discussed in Section III. For m = 2, 3,4,5, 6, £1 and
3 9 given in the table at the end of the last section can be used, together with
Theorem II (Section II) to obtain the desired bounds. For this purpose, we re-
quire approximate values of an* (ﬁl) and Pnn"l‘(ﬁ 2) for m = 2,3,4,5,6.
These values of the polynomial parts of an were calculated using the IAM
program EVAL, reproduced in Appendix C. The code is fairly obvious. The
output arrays SUMX(I) and SUMIN(I) refer to (2m)! ym times the first I
terms of an* evaluated at £ 1 and & 92 respectively. The parameter y re-
fers to n(n+l), denoted by x in the rest of the report. It will be noticed that
for m =2, the numerator of 52, z, was inadvertently set equal to 2, instead
~of 3 in the first command. We shall therefore outline here the calculation for
.-m =2, and this will serve as an illustration of how EVAL calculates SUMX and

SUMIN for m =3,4,5,6.

From Eq. (2.3)

-1 - (n-2) (n+3) (n-2)(n~3)(n+3)(n+4)
Pnz*(E) 1 3 £+ 21 - 34 (6.1)

from which we readily obtain

6 4, KB)(x-12) 42 (x6)(x-12)(x-20) 3

X
P *(fy=1 -
o ) =1-73 24 5.72 (.2)
Substitutihg £ 1= 2/x and £ 5 = 3/x and arranging in inverse powers of x, we
obtain
| 43 83 12 . 160
= — +
SUMX(3) 90 5% + 2 + 3
5x 3x
3 .21 27 108 - o :
SUMING) = 75 +55= - % + _ (5.3)
5x X

We now observe that, while powers up to §3 were retained in calculating

SUMZX and SUMIN, Theorem I requires n 2 6 and hence x 242, so that only
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the first two terms need be retained for approximate values of P 2*;

3 21
N 3 21
Pn2 (‘52) 10 10x

43 83
* —— e
P2 €1 ~ 50 " 15x

To implement Theorem II, we next calculate an in powers of 1/x, From Eq.

(2.6), it is readily verified that

nm

= ;—' 2 @RI )X(x-2) (x-6). - - - (x-m (1))

n

= 2xm/2»\/(n+1/2)(1—2/x) (1~6/%), . . (L-m(m=~1)/x)

m|

and for m = 2

]3'r12 = x v/ (n+1/2) (1-2/x) = //n+1/2 x [1 -

~Mn+1/2 x 1-1/%)

We also need to evaluate (§ (1-£ ))2/2

§0-6)=2(1-2)

X

£,0¢5 -3 (-3)

We now insert these various expressions into Egs. (2.32) for A and B, the

bounds on the largest maximum of P we obtain

at £1 and 52:

1

X

n2’
A:./n+1/2 X<1_l>.g<1_g><i__gl
X X X 10 10x

~3 n+l/2 ( --1-2>
5 b.4

B = J/oiTa 'x(1_1>. 8(,.8)(42,88

X X X

~% Jn/z (43-6/x)
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(5.5)

(5.6)
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as approximate values. The table below tabulates the values as well as P
the largest maximum of Pn2 obtained by a double precision calculation for

selected values of n:

n A Pn2 B
max
4 .64 2.16 3.02
5 .94 2.35 3.35
6 1.16 2.53 3.64
10 1.77 3.18 4,64
15 2.26 3.84 5.64.
20 2.65 4,41 6.49

Note that we have included thé values n =4,5, even though they are below the
bound imposed by Theorem I. We do the same for m = 3,4,5, and 6 below, since
it appears that Theorem I is conservative in this respect; in fact, some preliminary

analysis to generalize Theorem I indicates that the bracketing of an by & 1
i ‘ max
and £2 holds for all n = 2m,

The output of the arrays SUMX and SUMIN from EVAL is included in
Appendix C, along with the listing for EVAL, for m = 3,4,5, and 6. Tables
similar to that for m = 2, above, were obtained by the following sequence of

steps:
1. Replace y in SUMX and SUMIN by x.
2. Approximate an*(g 1) and an*(gz) by truncating
P o*E) ~ASUMH\_I m)
nm -
Z2m)! x

SUMX(m
*(E ) - D)

P
nm @m)! x
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to a reasonable number of terms in 1/x, recalling the lower bound for x given

at the end of Section IV,

/2

m/2 and (52(1-52))m , including all powers of

3. Expand(£1(1—§1»
1/x retained in 2.

4, Expand Bnm’ as given by Eq. (5.5) similarly,

5. Calculate A and B from Eq. (2.32), again in truncated form.

6. Evaluate A and B for the desired values of n and X =n(n+l).

The tables so constructed are:

m=3: n A Pn3 B
max

6 2.10 2.30 3.34

9 2.05 2.72 3.79

12 2.15 3.10 4,22

15 2.29 3,44 4.65

18 | 2.51 3.75 5.18

20 2.53 3.95 5.30

m=4: | n A P, B

max

8 2.25 2.42 3.30

10 2,18 2.65 3.48

12 2,28 2.87 3.76

15 2.51 3.18 4,18

17 2.69 3.37 4,46

20 2.90 3.64 4,84
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m=5: | n A P B
max
10 |2.13 2,51 2,78
11 ]2.28 2.61 3.03
13 | 2:37 2.81 | 3.41
15 | 2.60 2,99 3.69
18 |2.74 3.25 4.05
20 |2.83 3.42 4,26
m=6: n A Pn6 1 B
max
12 | 1.98 2,59 3.26
14 | 2.28 2.76 4,43
16 | 2.44 2.93 4.23
17 | 2.51 3.01 4.21
18 | 2.57 3.09 4,22
19 | 2.63 3.17 4.24
20 | 2.69 3.24 4.28

The principal conclusion to be drawn from these tables is that the values provided
for ¢ 1 and £ 97 from the conjecture of Section II, appear to provide realistic

bounds on the largest maximum of an.
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APPENDIX A

PROOF OF THE INEQUALITIES (2. 13)

Proof of the Inequalities (2.13)

The first of these inequalities is

where the C's are coefficients in the polynomial part of an. For all three
of these coefficients to appear in an, k must exceed zero. Since the C's

are all positive

C C
_ k Ck+1 >0
k-1 k

is an inequality equivalent to (A.1), but somewhat simpler to manipulate. From

Eq. (2.4) we have

Ck+1 _  X-(m+k)(m+k+1)
Ck : (k+1)(m+k+1)
and hence
C ,
k _ x~(m+k-1) (m+k)
Ck—l k(m+k-1)
with

x =n(n+l) 2 (m+k+l)(m+k+2)

from the first of inequalities (2.14). Substitution of Eqs. (A.3) and (A.4) into
Eq. (A.2), and clearing fractions, yields the following inequality to be verified;

(m+1)x~2m (m+1)(m+2) + (m+1)2(m+2) = (m+1) [x—(m+2)(m—1)] >0
From inequality (A.5)

X -(m+2) (m-1) 2 m? + 2k+3)me+ (k1) (K+2)~ (m>+m-2) = 2 (k+1)m+(k+1) (k+2)+2 > 0

(A.1)

A.2)

(A.3)

(A.4)

(A.5)

(A.6)

(A.7)



which establishes (A.6) and hence (A.1).
The second inequality to be verified is

-2 = -
c, -C .C -
k k+1'k-1 >0

Cx Ck-1

where the C's are coefficients in the polynomial part of an', and, as above,

k 21 is required if all three are present, Also, as abbve, all the C's are
positive and hence the denominator in inequality (A.8) may be discarded. The

case k=1 is a special case for which (A.8) reduces to

since, according to Eq. (2.10), 60 =1, C1 and 02 are given by

- (m+2)x—m2 (m+1)

C1 m(m+1)
G = (x-m(m+1))((m+4)x—m(m+1)(m+2))

2 21 m (m+1) (m+2)

The verification of inequality (A.9) is laborious, but has been carried out by
hand since it was inadvertently omitted from the IAM program for the general
case. The details of the proof are omitted; the key step is to make use of the

second inequality of (2.14)
n 2 m+k =m+1, which implies n = m+L+l with L. =20
so that we may set
X = n(n+l) = (m+L+1)(m+L+2)
where L is any integer = 0. Then the sequence of steps

1. Substitute (A.10) into (A.9)
2. Clear fractions

3. Collect terms in ascending powers of x

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)



4, Substitute for x from (A.12)
5. Arrange in ascending powers of L

6. Observe that the resulting expression is non~negative for non-
negative values of L.

For the general case, k > 1, the three coefficients involved in (A.6) are,

from Eq. (2.10)

_ (n-m)! (n+m+k-2)! (m-1)! [ (m+2k-2)x-m (m+k-1)(m+k-2)]

C

k-1 (k-1)! (m+k-1)! (n-m-k+2)! (n+m)!

G = (nom)! (imik-1)1 (m-1)) [ (m+2k)x-m (m+k) (m+k-1) ]
k -~ k!l (m+k)! (n-m-k+1)! (n+m);

: _ (n=m)! (n+m+k)! (m-1)! [ (m+2k+2)x-m (m+k) (m+k+1) ]
k+l (k+1)! (m+k+1)! (n-m-k)! (n+m)!

We discard the denominator and the positive factor

(n-m)! (m-1)!

(n+m)!

common to all three C's., We next clear fractions, discard the positive common
denominator, and a number of other common positive factors in the numerator

to obtain, as the inequality to be verified
(k+1) (m+k+1) (n-m—k+2) (m+m+k-1) [ (m+2k)x-m (m+k) (m+k—1) ]2
Qk (m+k) (n-m;k+1) (n+m+k) [(m+2k.—v2 )x-m (m+k-1)(m+k-2)]
times [(m{r2k+2)x;m(m+k+1)(m+k)] >0 |

The proof of this inequality is very laborious and IAM was used to carry out

most of the remaining calculations, The program written for this purpose

follows:

(A.13)

(A.14)

(A.15)



TYPE PROOF

301 :N-M+K+J3$DIST+15
30¢2:tF1eK*¥ (M+KI* (N=M=-K+1I*(N+M+K)

30e3:F2¢ (M+2*K=-2)3 % (N+ 1) *kN-M* (M+K=-1)*x(M+K=-2)
30 4:F3¢ (M+2%K+2)kN* (N+1IY=M*x (M+K+ 1) *x(M+K)
30e5:F 4 (K+1)*(M+K+ 1) (N-M=K+2I % (N+M+K~1)
3066 :FS5« ( (M+2FK) * (N+ 1) *kN-M* (M+KI*k (M+K~-1))12
30T :TSTF4*%FS~F1*xF2%F3

30«B:TSTJPI«TST WITH (J=Q13TYPE TSTJ(Q)
30+9:FOR I+1 TO 65 (TST*(TST-TSTJCI~-1))/J328&
TSTJCI)«TST WITH [J=0Q13TYPE TSTJ(I);3&
DELETE TSTJC(I-1))

30+95:DELETE TST>TSTJUsN-F1sF2,F3,F4,FS

The first instruction makes use of condition (2.14):
- n Zm+k
so that J in the program must satisfy
J=20

The command $DIST ¢ 15 requires the system to expand all powers of multi-
nomials up to and including the 15th. In terms of the parameters F1, F2, F3,

F4, F5 generated in STEPS 30.2 to 30,6, the left hand side of (A.15) is given by
F4xF5-F1xF2+xF3

as indicated in STEP 30.7, This expression, written symbolically as a poly-
nomial in J, K ,and M turned out to be too complex to be contained in its entirety
in the system. STEPS 30,9 and 30,95 calculate in turn the coefficients of the
powers of J from the Oth through the 6th,and these coefficients are listedr—~i;1

the array TSTJ(I), I=0 to 6 as output:

(A.16)

(A.17)

(A.18)



%

1AM
WELCOME TO 1AM(72321)
*L.OAD FROM “PROOF*

DO PART 30

TSTJC(@) ¢

B*K19 + Kt8%x(48%M + 40) + KtT7+(120%M12 + 232%M + 64)

4

Kté6x(160*¥M13 + S60%¥Mt2 + 368%M

+ 32)

KtS*x(120*M14 + 720*Mt3 + K72xM12 + 200*%M - 8)

Kta*(48+MtS + S20%M14 + 1P88*Mt3 + 488%Mt2 - 16*M - 8)

Kt3x(B*Mt6 + 200%M1S + T752%Mt4 + 600xMt3 + BxMt2 - 32%M)

Kt2%(32*Mt6 + 272%M15 + 3924%Mt4 + 40%M13

K*(40%M16 + 128*%MtS5 + 32*%Mt4 -

TSTJ(1):

32%M13) +

- 48x*M12)

16¥M16 + BikMtS - 8xM14

48%Kt8 + KrT*(264%xM + 200) + K16*x(600*%M12 + 1036*xM + 264)

4

+

Kt5*(720*M13 + 2208*Mt2 + 1296%*

M+ 104D

Kt4x (480*%Mt4 + 24724M13 + 2560*M12 + 516%M - 24)

K134 (168*M15 + [|528%«MtA + 2584*M13 + 9S24M12 - 4A8*M = 16)

Kt2%(24*%M1 6 + 492%xM1tS + 1392xMt4 + 816*xMt3 - 28*M12 - 40*%M)

K*(64%xM16 + 376%xMt5 + 320*Mr 4 -

40*M16 + A4%M1S - 4*kMt4 - BxMt3

B*xMt 3

32%xM12)



TSTJC2) ¢

120%Kt7 + K16x(S88*M + 408) + K1S*(1176*%M12 + 1816%M + 432)
¢ Kt4¥(12244M13 + 32484M12 + 1724%M + 128)

+ Kt3x(696*Mt 4 + 2960*%Mt3 + 263é*Mt2 + 4ﬁ2*M - 24)

+ K12 (204%MtS + 14324%M14 + 1908*M13 + S88*M12 - 40*M - 8)
+ KX(24%M16 + 344%M1S + 63B%Mt4 + 280%M13 - 28*M12 - B+M)

+ 32%kMt6 + T6%4MtS + 36xMt4 - 1A%kMt3 - 2xMt2

TSTJ(3):
160*K16 + KT1S*x(6T24M + 432) + Ktax(1128xM12 + 1S68*M + 352)
+ K13*x(96D*M13 + 2188*xM12 + 1064%M + 72)

K12%(432+%M14 + 1452%M13 + 1128%M12 + 172%M - 8)

+

+ K¥(96%xM15 + 452*«M14 + 474%xMt3 + 108*xM12 - 8%M)

+ BxkM?16 + S2*MtS + SRAxMt4 + 11%xMt3 - 3xMt2

TSTJC4) ¢

120%KtS + Kt4*x(408*M +.248) + Kt3*(534xM12 + 680*%M + 144)
+ K12%x(336*%Mt13 + 660¥M12 + 292%M + 16)

+ K¥(1@2xMt4 + 260*xMt3 + 170*M12 + 16*M)

+ 12*xMt5 + 32*%M14 + 21%Mt3 + M12

TSTJCS)
AB*KTA + KI3%CT20%M + T2) + K12x(108%M12 + 1324M + 24)

+ K*(42%M13 + T24«M12 + 24%M) + 6xM1 4 + 9%xMt3 + 3xMt2

3 2 2 3 2
TSTJ(6): B8xK + K *(12*%M + 8B) + K*(6*¥M + 8*M) + M + M



We can conclude that the left hand side of (A.15) (or (A.18)) is positive if
TSTJ(T) >0 for I = 0 to 6. Recalling that the case m=0 is excluded from this theory,
it is easily seen by inspection that the coefficients of the various powers of k in

each TSTJ (I) are positive. Since k > 1 it follows that TSTJ(I) > 0 for I =0 to 6.

It might be remarked that carrying out this calculation by hand, without
errors, would indeed be a formidable task - as will be obvious to the reader who

elected to carry out the omitted proof of the special case (A.9).



il

APPENDIX B

OUTPUT OF WORK1 TO VERIFY CONJECTURE
FORm=3, 4, 5, 6

«IAM .

wELCOME TO 1AM(72321)
*L.0AD FROM ""WORK1"
*Me3311-537+5;3D0 PART 21

M: 3

It: 5

TST1(@): - 7730@
TST1C1Y: - 132800
TST1(2): 55920
TST1(3>: - 1280

ODD:
99328*%UtS + 30771200+%Ut4g + 3795431424%Ut 3

+ 233687613440*%Ut2 + T7192405147648*%U + 88604682485760

TEST(0):
- 77808%UtS - 19906000%Ut4 - 1789236000%Ut3

- 75135096000*Ut2 - 1508764320000%U - 11617066137600



TESTC1):
- 132800*UtS - 34068800%Ut4 - 3238934400*Ut3

- 148704019200%Ut2 - 3362743641600*U - 30231561830400

TEST(2):
55920*UtS + 10342560*%Utr 4

+ 807036480%Ut3 + 32631431040%Ut2 + 670654494720*U + 5522714265600

TEST(3):
- 1280*UtS - 491840*Ut 4

- 48885120*Ut3 - 2062344960*Ut2 - 39654074880*U - 286123622400

m =4

< 1AM ‘
WELCOME TO IAM(72321)

*LOAD FROM ""WORK1]" _
*Me-4311+732-83D0 PART 21

A .

Me: 4

I1: 7

TST1(®): - 1#M/51359232
TST1C1): = 922758144
TST1(2): 223534080

TST1(3>: - 15473920



TSTi1(4Y: 10890320
TST1¢(S)Y: - SS544

ODD:

96630234%U1r7

+ 110962352200*Ut6 + 49573318A1@672*Ur5 + 11655729862711104%Ut 4
+ 158827619796198416ﬂfU73 + 1267744430258184483000%xU1t2

+ 5524042423811804928000%U + 101804347438976286720000

TEST(@):

1M51359232*xUt7T - 669522022400*Ur 6

18067537910 1056*UtS - 26869411366060032*xUtr 4

238155782865960960A*Ut3 - 1258255536%7601152000*xUr2

3666290213009571840000%U - 45377T077416694P87630000

TEST(1):

922758144%Ut7 - 620726937600*%Ut6

177442608279552*UtS - 28065436646252544*Ut 4

2658741078789734400*%Ut3 - 151835821063221248000*xUt2

4766493826307727360000*%U - 644795909900306R4160000

TEST(2):

223534080*Ut7

+ 139815244800*Ut6 + 37912103792640%UtS + ST44277409812480%Ut4
+ 523366306670592000%Ut3 + 28613846697891840200%U2

+ B68115487981772800000%U + 11265426294738739200000



TEST(3):

- 15473920*Utr7 - 10220672000*Ut6

- 2785324917760*UtS - 4123R89054443520*Ut 4

- 36115102324224000*Ut3 - 187R210682951630000*U+*2

- 53800686603417600000*%U - 655112749932748800000

TESTC(4a)Y:
1098320*xUr7 + S601283800+Uté6 + 127579119368*%US
+ 16490351243520xUt4 + 1290102660000000*%xUt3 + 604799A95R2403000*U 12

+ 1562@69124@@@@@9@@@*U + 17068047504076800000

TEST(5):
- 5544%Ut7T - 6930000*%U1t6
- 2116743552%UtS - 29R627426944%Urta - 22862606659200%xUt3

- 980891692704000*xUt2 - 22165403863680000%xU - 204999081154560000

il
%))

1AM

WELCOME TO IAM(72321)
*LOAD FROM *"WORK1"
#Me5311-937Z~113D0 PART 21

M: S



TST1I(RY: - 171727801563 78

TST1C1)Y: - 21271465952352

TST1(2): 3954506831352

TST1(3): - 284857239744

TST1C4): 12362967540

TST1(5): - 290128608 -

TST1(6): 8506008

TSTICTY: - 16128

ODD:

8327711488800*U19 + 15546080348544000%Ut 8

+

+

1279M995456325632000*xUr7T + 6@9697@4611@9113856@0@*U;6
1857536542517692121083800A*U1S + 375451584679455299106R16000+U1r 4
SA381858806734421935505408000*Ut3
43307@3236252216782857601024®@@*Uf2
216481739496505058686151688192000*U

4796706165203789542456364630016000

TEST(@):

17172780156378*Ut9 ~ 23484678338339064*U18
14196045988490093648*%xUt7T - 4975579169060728536000%xUt6
1113270555467463550930080*U1S5 - 164679126124474266208219008%U14
l6@74!@854694929882@042883584*Uf3»
995646861630436023278967932928*%Ut2
35374636306257631070763277762560*U

546064091011089811207696416768000



TEST(1):

- 21271465952352*Ut9 - 31045455262350144%Ut8

- 23130982577094445056*%Ut7T - 761387150830 7544657408*xU1t6

- 1851288387443393074767360*UtS - 300118557056621062644605952%xUt 4
- 3243950S57176579703137046421504%U* 3

- 22543R3345734629116878417412096*U12

- 91401791628647576A75406584905728%U

- 1647219167649918753516544484966400

TEST (23

3954506831352*Ut9 + 5636770118334432+Ut8 + 3572809189314805440+Ur7
+ 1321041222583083783936*%Uté + 313920061401055331376000%U1*S

+ 49T0WRS6T953334297395666432*Ut4 + S2444102745274235A1752707072*%Ut3
+ 355447938422681072123787878400*Ut2

+ 14042035794681283349632891355136%U

4+ 246329946269902355895574777036800

TEST(3):

- 284857239744%Ut9 - 398664188733888*Uf8 - 246955192953460992*xUt7
- 88965822613739613696*Ut6 -~ 20551856335936104453120*%U1t5

- 3157832077547419582700544*%Ut4 - 322737552640985564622532608*%U13
- 21154547491374726928722051072*xUt2

- BP68B491734389547095689790R9536%U

- 13640756861286678178141883596809

TEST(Q;:

12362967540*%Ut9 + 16341408079920%xUrS8

+'9637@24742785440*Uf7 + 33169813605438048300*xUté

+ 732742703695618862400%UtS + 107586607508423198749440%Utr4

+ 104896690B87745431395947520*Ut3 + 65446259452326597673@27584@*U?2l

+ 23698088026617327436482969600*U + 379288231763912321349058560000

B-6



TEST(S):

- 2903128608*U19 - 392029412544%Ut8

- 228209615682048%Ut7 - 75895162363722240+U16
-‘1597978417210737408@*Uf5 - 22155308333495188346R8*Ut4

- 202563176790072654065664%U13 - 11783442334732507395145728*U12.

- 3957755392280 71052815564800*U -- 58466994387191027269632A00A0

TEST(6):

B8506068*Ut9

+

9142642656*Ut8 + 4468528419264%UtT7 + 1291838248173312*%Utré

+

241319265675949440*UtS5 + 29986137704387870208*Ut 4

+

2464712123717211088896*Ut3 + 128702577173599879962624%Ut2

+

3863275813280916627259392*%U + 50686394823099331195699200

TEST(?):

16128%Ut9 - 46928448*U'8 - 32039804160%xUt17

10503523183104%Ut6 - 1997014366771200*UtS - 236327888658613248%U14

17687909887524753408*Ut3 - 813955648588624281600*U 12

20981827261430A073851904*xU ~ 231191682528193177190409

*Me-6311-133Z-153D0 PART 21

M: 6
I1: 13
I2: 12

Z: 15



TSTIC(@)Y: - S6210426294907200138750

TST1C1): - 5S1641842621500873495000

TST1(2>: 8683145674084494112500

TS5T1¢(3>: 578870111235854295000

TST1¢4): 22089602975956980750

TST1(5): 558494058584919600

TST1(6): 10167863351045400

TST1<¢(7): 1395635906166000

TST1(8): 1549199029950
TST1(¢(9): - 12385§33560
TSTi1¢10): l229é9684_
TST1C(11)Y: - 1608056

0DD:

4716@651l9®6466882355é*U?13 + 29064030974986852042784768xUt 12
+ 76914586859559054334878449664*%Ur 11

+ 118975320098808559566496877969408*Ur 10

+ 121747244125115495175414710907385984%xUt9

+ B7763205251204823479166037744970629120%Ut8

+ 46095746251908311168530197514865503371264%Ut7

+ 17925036736585942281819186806888338887278592*U16

+ 51738551778330404462468653593977088258395291648*Ut5

+ 1096827992605914313180514072387945676009986064384%xUt 4

+ 166230656256670055749968028275496061448042483548160*Ut3

+ 17074260918000089340766801422995501082982356929740800*Ut2
+ 16662446256049939517@964987783211425662573516@5616649@@*U

+ 305945908810748755125720706860899795417454363772190720000
B-8



TEST(@):

- 56210426294907000138750%Ut 13 - 220746525969335467402372508%Ut12
- 399602795314544695887653835000%Ut 11

- 441453435712931353101066074970000%U* 10

- 332014522159078502918842412187300000%Ut9

- 179492948298305379000218562641906040000+Ut 8

- 71749592490147209417478299131263067920000%Ut 7

- 21467819729{52815797537427966@14298129)20@@@*Ur6

- 4806847577218157250866613654598253985546240000%U1 S

- 795306046968069227671919031800032952407564800000*U14

- 94482315816834569417725037946351092663443845120000%U13

- 7629521341287663782655844929 1337208587 448449 43360000+ 12
- 375189154283111111570869532697714428796712882012160000%U

- 8481755985513114910006183194681202778692427207147520000

TEST(1):

- 51641842621500873495000*%Ut13 - 210251855147405586499530030*xUt12
- 395092944@837@62393362263@@@00*U1ll

- 453724639678621565578881053640000*Ut 10

- 355277334932971273330168445413200000%U*9

-~ 2003083511848556393026592559797855840000%Ur8

~ 83654480522660340415111811001857252160000*Ut7

- 262038046030127068111038081813161344608008000*Uté

- 6156216072931246350912329696671411969505280000*Ut5S

- 1071377449756971375965412321016173206778931200000%Ut 4

- 134250626870099829994861077147985234815552798720000*Ut3

- 11470204007227641899185448593243324499553997946880000*%Ut2
- 5989085418879477976116794197604847459623099039744000000%U

- 144332778206003855872341549400347941278749940934246406009



TEST(2) ¢ o o -

8683145674084494112500*Ut13 + 34960360719974546019735000%Ur12

+

64959563281965599467355850000*Ut 11
73754542153473881122283915340000*%Ur10
5708987549758698769306457346@60@0@0*U'9
31813809007247575974487218328074000000%Ut8
1313@7581583850314@@65623493939464752@®@G*U?7
4064189807109491645087640542628026088000000%Ut 6
943334095733240173855032747432925951188480000%U1S
162168537359528543623500873717978617259801600000*U* 4
2@@69681420166389634771747l5@83!0569752768512®®®®®*U13
l69324622172255624470640429681273@4@37476@636416@0@@*Uf2
87287851150500630120312053813618467003224843878400000*U

207647@4934146565@2362766638956276795@851757418@864@0@0

TEST(3):

5788781112358542§5@@0*U713 - 2302602402542752188450000*Ut 12
42259477809921918680791803000%Ut11
4738096959442496902095129000000%U1 10
36207740285640778780320556314000000*Ut9
199147451535608697466697619422302403000*U1 8
811057487518939996202970872012443200000% Ut 7
2476399872175271623659960873239629477760000%U* 6
56685962729387833231104196527440393856000000%U15S
9607578402586528510348293718127805148416000000*UtA
11719120820287500859149985428826703309 49304320000%U13
97419824042160517449087758085503529734946816000000*U12
4946688830614721681945104236353592014353024942080000*U

115871411764609165297427780196799580236960235520000000

B-10



TESTC(4):

22089602975956980750%Ut13

+

B6491002543982696588500*%Ut 12 + 156195689415213130744347000*Ut11
172259143093717771535408250000*Ut 19
1294335964503850626191253162600@@*0?9
6997051859662862817@78@919761144@00*Uf8
27996770504240767719968332553302032000*Ur 7
8394753607311485555936963301017405664000*Utr6
1886262462178359470453628348106255603200000%UtS
313676486921320634295943928563523576578560000*U1r 4
37523199314813738015423264308248900527788032000%U*r3
3857578B38452175234913906048078748584921235456000*U12
152107928208571885762889443855329650933273198592000%U

3488954088079574088445883089691182162429083648000000

TEST(S):

558494@5858491§6®®*Uf13 - 2142662019449632480800%Ut12
3789225074163506961297609*Ut 11 - 4089859378859733968658320000%Ut10
30057990880 77653995763043488000*%xUt9
1588366179425304301573043591155200%U8
620860711883269178016664389017625600*xUt7
18174579469069348678480486293723909 1200%U16
398418@5@425@487751537454958168752128@®@@*U?5
6459517168573458186339920338039023587328000*Ur 4
752818207186657559705506897698968496183705600*Ut3
59720164266934734335749@878664306525@88S14@48@0*U72
289@1442f@4®4®@8986942354@788843349532932571lSé@@*U

64438906132691514550825884716384821390501478400000 - -

B-11



TEST(6):

10167863351045400%Ut 13 + 37986041396482779600*%Utr12

+

65376576000357477055200*Ut 11 + 68623918054871623541697600%Ut10
4990967T0433545317134028790400*%Ur9
2514549932@69722664044473786540@*Uf8
9534620661328195038640811314137600*Ut7
27@49966362516756421312025691L3472@@@fU76
5741315@91562348483999528293S9879S776@0*UfS
90033413450909494587661434986732891750400%Ut 4
10138443021477329246579563453409089093632000*U1*3
776267@72302493@237171@46@12618625147é@768@@@*uf2
362189490470796366188275330406051949970963916800%*U

777666996997867121179205957383950265692979200000

TEST(7)

13956359080166000*Ut 13 - 505607814851911200%xUt 12
84216594@795966@72@QG*Ufll
854085193896421169654400*%Ut10 - 588426788430571912028064000%Ut9
290820781641508750890761817600%U18
106073025275055925463091829171200%xU*7
28905790970250481770947691284428800*Ut6
5884591266676637266881562326802022400*%Ut5S
883793210920424262309414701266292736000*Ut 4
95169485783506928321046440862841149849600%U*3
6957214922863672669709835661615899082752000*xUr2
309425635647526623842881281451065862835404800%U

6322495954953233878393362639809739436851208000

B-12



TEST(8):

1549199029950*Ut13 + 534@850137522900*Ut12

+ B480508050939067000*%xUt11 + 8202719839548302125200xUt10
+ 5387717233171136613578400*Ut9 + 2536051659789230583822993600%U*8
+ BT79724267570274370734097500800%Ur7

+ 227615768214613705198210539744000%Ut 6

+ 43912655642784039470723912658739200%UtS

+ 6237277826882944601704805757986918400%*Ut 4

+ 633835863610034335154176840383305318403*xUt3

+ 43628392811718179373374938138204038758400+Ut2

+ 1822743719774642362614906824472019599360000*U

+ 349@@9314542@0323183347698382998@77440@@@@@@

TEST(9):

1238593356@*Uf§3 -.420944447@@88@*U112 - 64886449373871840*%Ut11
- 6D267171904427442240%Ut10 - 3770916947094367946304p%U19

- 168@56@6982929375@13é6624@*U?8 = 54921294633604934026663142409%U7
- 1333062376362801719222725463040%Ut6 |
- 240340626571584167853323108106240*U15S

- 31786941713626239114479086450851840%U1t 4

- 2997132167593@@5999711581491595182@8@*Uf3

- 190732988639646079303914212051527925760%Ut2
- 73405308929376193890802461232939925504000*U

- 128987675480883909365489172549206016000000

B-13



TESTC10):

122949684%xUt 13

+

+

356P79304152%xUr12 + 479443248185616%Ut 11 + 395851656158820576%Ut10
222779168227694460096*%Ut9 + 89948946380023647835776xU1*8
26730893065195852735378176%Ut7 + 590628079390945683889445529 6%+t 6
968437057171347270282791448576%UtS .
116200329038160825547012950614016%Ut 4
9904001372340066547854080074186752*%Ut3
567167@993391@149614@937881396445184*U;é
19538681689022034634923586049644953600*U

305494681042359890085465748301414400000

TESTC11):

16B3p56*%Ut 13 ~ 787582224xUr12 - l35644835®816*U?11
1261252019117376*%Ut 10 ~ T741950691782990976%U1r9
298@16918468024461@56¥U?8 - 850393725540 76938236416%Ut7
17564318265935066256423936%Ut6 - 2635242297457649636343914496%U1t5
284193567614790517765936398336%Ut 4
21429294530725134119954975293440*Ut3
i®697767l5869965366362488488@67@72*Uf2

31663623306759717874343575604428800%xU

419022432774206248141796356915200000

B-14



APPENDIX C

IAM PROGRAM EVAL AND OUTPUT FOR PARTIAL SUMS
OF THE POLYNOMIAL PARTS OF an
EVALUATED AT El AND g2 FORmMm =3, 4, 5, 6

EVAL Listing

TYPE EVAL

15 1 1 INZ(2)«23INZ(3)+53INZC4I-B3INZ(S)I=113INZ(6I*15

15.2:$DIST+15

15¢3:FOR L2 TO 6> (MeL3Z/INZ(L):;K*M3Z1+-7~132&
DELETE INZC(L)STYPE M>KsZ5Z13A(A)*13B(A)~138&

FOR I+1 TO Ks» (Ce*M+I3B(I)==(Y-C*(C-1))*B(I=1)38&
CK-I1+13ACI)~C*(M+CI*¥ACI-1))3DELETE Cs&

FOR 1«0 TO K> (A1CId~ACII*Zt(K-1)35&

A2 (I)=ACII*Z1t (K-1));DELETE A3 &

FOR 1«0 TO KsBC(I)*BC(I)*Yt(K-1)3&
SUMXC(1)I=A1(KI*B(BI+AT(K=-1)*BC1)3TYPE SUMX(1)3&
DELETE A1(K)»,A1(K~-1);3&
SUMINC1)+~A2(KI*B(P)+A2(K=-1)*B(1)3TYPE SUMINC1)38&
DELETE A2(K),A2(K~-1),B(@)>B(1)3 &

FOR 1«2 TO K, (SUMXCI)*SUMXCI-1)Y+A1C(K-I)Y*B(I1)3&
DELETE SUMX(I=-1),A1C(K-I)3TYPE SUMX(I)>3¢&
SUMINCII«SUMINCI-1)+A2(K-1)Y*B(I)38&

DELETE SUMINCI-1)5A2(K-1),B(I1)3TYPE SUMIN(I)),&
DELETE SUMX(K)sSUMINC(K)»M»Z,K,71)

EVAL Output

1AM

WELCOME TO IAM(72321)
*.0AD FROM "EVAL®

*D0 PART 15



gUMX (1) ¢ gxY
qUMINCLY® 16xY * 48%Y
2
SUMX (2 ¢ 1oxY  * ouaxY * 238
SUMINC2)? VTxY  * qaxy + T2
M: 3
K: 3
735
71: 4
3 2
UMR (1Y% ygn*Y ¥ 1 pROB*Y
2
SUMINC1Y g640%Y
3
SUMX (2% o 70*Y 1600%Y yoRaAR*Y
3 2
GUMIN(2Y 3 Y1 1.2 S 576%Y * 69120*Y
3 .
SUMX(3)* 145*%Y % 4150%Y ~ 42000%Y ¥ opn0ned
SQUMIN(3)? ooaxY * 3392*%Y  ~ 7680*Y * 260800



o4 3
SUMX(1)Y: - 24192%Y + 1290240%*Y

4 3
SUMINC1Y: - 16128%xY + 1128960%*Y

4 3 )
SUMX(2): 18816%Y - S860160*%Y + 25804800%Y
: 4 4 3 2
SUMINC2): 1680@*Y - S17440%Y + 19756800%Y
v 4 3 o
SUMX(3): 2432%Y + 647168%Y - 1R432000%Y + 412876800%Y
. 4 3 P
SUMINC3): SB24%Y + 492352%Y - 9BTIRAAQ*Y + 276595200%Y
a 3. 2
SUMX(4): 652B%Y + 4096A*Y + 13729792%Y - 3M9657600*Y + 5782275200
4 3 2
SUMINC4) : 822S5%Y + 137004%Y + BOT4250%Y =~ 146941200%Y + 3383291207



5 4
SUMX(1): - 3024000*Y + 199534000%Y

S 4
SUMINC1IY: = 2419200*Y + 181440000%*Y

5 4 3

SumMx(2): 22@32@@*Y - 176774400%Y + 65SK86272000%Y
-5 4 3

SUMIN(2): 1920800%Y - 129600000*Y + 5443200000*Y

S 4 3 2
SUMX(3): - 1926080*xY + 129888000*Y - 6092301600%xY + 1690476483200 %Y

5 4 g 3 2
SUMINC(3): 1003800*Y + 100800000*Y - 4NR240000A%Y + 127008000000 Y
SUMX (4)
S539450*Y1tS

- 16522000*Y14 + 4528279800*Y13 - 1615344]920@*Y'2 + 3719048256000*Y

SUMINC4) ¢
600R8BD*Y 1S

+ BROVOA*Yr4 + 3171600000*xY13 - 98784000000%Y12 + 2540160000000*Y

SUMX(5)
378399*Y1S + 30N182790*xYt4 - T707166108*Yt3

+ 121481147304%Yt2 - 3644667290880*xY + T73637155468800

SUMINCS) @
SPABADXY1S + 29833000 *%Yt 4

- 79200000*Yt3 + T76946400000%Yt2 - 2032128000000%Y + 4572280000000



: 6 5
SUMX (1) - S47430400*%Y + 43110144000%Y

6 - 5
SUMINCI): - 479001600%xY + 40236134400%Y

6 5 - : 4

SUMX(2): 414849600*Y =~ 51193296000%Y + 2263282560000%Y
6 5 o4

SUMIN(2): 359251200*%Y - 41912640000*Y + 1971STA585680%Y
SUMX(3):
. 6 . S 4 3
- 119750400*Y + 39638704000*Y - 2766234240000*Y + 93S31302400000%Y
SUMINC3) ¢

6 5 4 3

- 75398400%xY + 31977792000*xY - 2117612851200%xY + 7360A5301862400*Y

SUMX(4):
BAT24600*Yt6 - 12434796000*Y15

+ 2187102060000*%Y14 - 113164123000000*%Y13 + 30554314S56000000*%xY 12

SUMINC4) ¢
16728960*Yt6 - T7575321600*Y15

+ 1641149959680*%Y14 - 8ﬂ965832@4364@*Yf3 + 2318567008665600*Y 12



SUMX (5) ¢
26049600*Yt6 + T794954000%YtS - T27S512840000*Y 14

+ 90989260200000*Y13 - 3838730944000000*%Y12 + 91662943630000000*Y

SUMIN(5) ¢
38005632%Y16 + 67523A9760*Y15 ~ 423113209344%Y1 4

+ 636249061969924%Y1t3 - 259960A5433958400*xY12 + 6£4919876242636800%Y

SUMX(6):
37440225%Y16 + 207T6860250*Y1S + 436016722500*Y 14 - 31694605425000*Y13

+ 3172187731500000*Y12 - 118397968920000000%Y + 2520730951200000000

SUMINC6) ¢
455351 68*Y16 + 29724826838%Y1S + 346013833984%Y14 - 17472714244608%Y.13

+ 2067868155967488*%Y12 - 73936525720730800*xY + 1666276823561011200



