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ABSTRACT

The conjecture is made that the largest maximum of the normalized

associated Legendre function P (£ ) lies in the interval (£ , £ ) withmil A. &

rm(m+4)-[
L 4 J

_ 4

^

where I indicates the greatest integer function. A procedure is developed

for verifying this conjecture. An on-line algebraic manipulator, IAM, is used

to implement the procedure and the verification is carried out for all n ^ 2m,

for m = 1 through 6. A rigorous proof of the conjecture is not yet available.
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I. INTRODUCTION

In this report, we describe the results of an analytic study on bounds for

the normalized associated Legendre functions P . The motivation for thenm
study is to provide a rational basis for the truncation of the geopotenttal series

in spherical harmonics in various orbital analyses. One would require, in addi-

tion, bounds on the geopotential coefficients, each of which is defined as an

integral involving the product of the Earth's density function and the correspond-

ing spherical harmonic . Thus, bounds on the associated Legendre functions

may be expected to enter the truncation problem in two ways: directly as the

functions occur explicitly in the geopotential series and indirectly as they

occur in the geopotential coefficients.

The goal of the study is to find a realistic upper bound for the normalized

n P (cos 6) over the rannm
ization factor used in this study is

function P (cos 6) over the range 0 to 77 of the polar angle 6. The normal-nm

A =J(2-6 )(2n+l) ; ;: . (1.1)nm Vv mo'v ' (n+m)! v '

where 6 is the Kronecker 6 which vanishes for m ^ 0 and is unity formo
m = 0. The unnormalized Legendre polynomials P rt(cos 8) (m = 0) are knownnO
to be bounded between ± 1 and take on their extreme values at 9 = 0 and 77.

The normalized Legendre polynomials are thus bounded by ± </ 2n+l . Realistic

bounds of P for m s 1 appear not to be known for the full range of variationnm
of 0 from 0 to 77.

Making use of the well known integral for the unnormalized functions,

a.2)v*«"/nm 2n+l (n-m)! nm

we obtain that for the normalized function



L U B P ( £ ) * 2 - = 2 (1.3)nm v mo -

for m > 0. (It will be assumed that m > 0 throughout the rest of the report).

This is a rather weak result. Another weak result may be obtained from consid-

eration of the integral representation of the unnormalized function:

1 W\ TT /O /-.- I yy% \ I f* M

P (cos9) = e ^— — " [cos 9+isin9cosco) cosm<pd<p (1.4)nm n! 77 J ^'

[2]
(Hobson , p. 98, Eq. (20)). Noting that the absolute value of the integrand has

LUB of 1, we obtain for the normalized function

|P (cos
nm nm n! • 77

_ /2(2n+l)(n-m)l(n+m)l
~ J o

(n!)2

for all 0. This bound must be conservative since the fact that the integrand is

negative over roughly half of the interval of integration is not taken into account.

Using an asymptotic formula from Jahake-Emde , (p. 117), again for

unnormalized functions, .

6 ) = < - n ) - S m , n + , 8 + + m (1.6,

valid for

n»m, e< 9 < 7 r - c , 0 < c < 7T/6 (1.7)

we may conclude that in the interval (e, 77- e) the normalized functions satisfy

L U B P ( c o s 9 ) ^ n1 nm\ " l '•

This LUB, of course, becomes unbounded at the endpoints of the interval (0, 77).

Now we know that P contains a factor sin 9 which vanishes at 9 = 0 andnm



9 = 7T, so that the bounds for 9 near either e or 77- e are likely to be conser-

vative. Hobson , (p. 302) derives and discusses a more elaborate asymptotic

expression in which sin 9 appears in the denominator. This fact suggests that

a realistic LUB corresponds to a value of 9 in the neighborhood of the endpoints

of the interval (0, 77) *• just where the bound (1.8) is weakest.

The associated Legendre function P (cos 9) is proportional to the
nm

hypergeometric function

2
F(m-n, n+2m+l, m+1; sin 9) (1.9)

[4]and it is known (see Lanczos , p. 453 and p. 369) that the hypergeometries

functions

F(-r, r+2y-l, y, ̂  ) (1

are oscillatory with the amplitude increasing as x values from 0 to 1. Hence

if we make the identification

r =n-m, y- m+1, x = cos 8 (1.11)

we can conclude that the largest maximum of |P (cos 9) | and hence the LUB
nm

is that peak of IP I closest to 9=0 (or ff, since P is either symmetric1 nm1 nm
or antisymmetric about 9= 77/2, according as n-m is even or odd).

In the early stages of this investigation, we examined with some care
[3]Jahnke-Emde's plots of their normalized associated Legendre functions

(pp. 112-113). Their normalization factor is just twice our A . From thesenm
plots it appears that for given n, IP ... I has a larger LUB than P fornl nm
m = 2, 3, ~ n, an observation which contrasts with bounds such as (1.5) and (1.8)

which increase as m increases.

A powerful on-line algebraic manipulator, IAM, was made available by

Applied Data Research, Inc.* for this investigation. A great many experiments

*Princeton, N.J.



were tried, using IAM, and the method finally adopted was to make a systematic

search for the smallest 9 for which the derivative of P vanishes for variousnm
values of n and m, with the hope of ultimately completing the analysis by a

proof by induction. Such a value of 6 corresponds, as noted earlier, to the

largest maximum of P I , and the final step would be to estimate this maxi-nm'
mum value, again using LAM. The details of the procedure developed, the list-

ings of the LAM programs used3and their output appear in the following sections.

The principal result of the study is the conjecture that the largest maxi-

mum of P (cos 9) occurs fornm

1 j-mfnvNt)-! ]%sln2|<

for all m ^ 2 and all n sufficiently large - indications are that sufficiently

large is not a stringent limitation. The conjecture has been verified for m = 1,

2, 3, 4, 5, 6; a rigorous proof is, so far, elusive.

The verification of this conjecture for m = 2,3,4,5,6 involves a rather

intricate line of reasoning. In Section II, we introduce some notations, discuss

some pertinent properties of the associated Legendre functions, and prove the

three theorems basic to the verification procedure. In Section III,we treat

P as a special case, partly because it can be more completely analyzed thannl
the general case, partly because some of the formalism developed for m ^ 2

is not well suited to the case m = 1, and partly because its relative simplicity

can serve as an introduction to the more complex cases. Thus both Sections

II and III may be regarded as background for Section IV. In Section IV, we des-

cribe the LAM program used in the verification of the conjecture (1.12), and

present the output for m = 2. The quantity of output increases rapidly with m

so the output for m = 3,4,5, and 6 are contained in Appendix B. (Appendix A

contains the LAM program and its output for the cumbersome proof of one of

the results of Section II). In Section Vt estimates for bounds on the largest

el indicates the "greatest integer "function.



maximum of P are calculated for m = 2,3,4,5, 6. Once more, output fromnm
an IAM program is utilized. The program is straightforward and the output

fairly lengthy; both appear in Appendix C. Finally, some comparisons are

made of these bounds with double precision Calculations of the largest maxi-

mum of P , for selected values of n and m.nm



II. SOME USEFUL PROPERTIES OF THE ASSOCIATED LEGENDRE FUNCTIONS

We have seen in the previous section that the bounds on the Legendre poly-

nomials P are known. In our analysis of bounds for the associated Legendre
no

functions, we therefore omit the case m = 0. For all m > 0 , P (cos 0) and
nm

P (cos ff) vanish and the largest of the maxima of P is that one closest tov ' 6 nm
9 = 0 ; this largest maximum is, of course, the LUB IP . It is convenient to' ° i » i nm i
introduce

4 = sin2 | (2.1)

as the independent variable, in terms of which the normalized associated Legendre

functions are
n-m

C (-4) (2.2)
k=0

where the coefficients C, are given by
xC

c = (n-m)!(n+m+k)!m!
k k! (m+k)!(n-m-k)!(n+m)! * ' ;

and satisfy the recursion relationship

C' " x-(m+k)(m+k+l)
\6'*)

with

C = 1, x = n(n+l) (2.5)

The coefficient B is
nm

B
nm m!(n-m)! nm m

We denote the polynomial factor of P by P *:nm nm

= 1 / 2(2n+l)p^ (2.6)m V ; n-m!

n-m

C (-4)k ' (2.7)

k=0



This factor defines n-m real zeroes for P and also determines the sign of
nm °

P for any specified value of £. In addition to these zeroes, the functionnm
P (£) possesses zeroes at 4 = 0 and £ = 1.nm

It is rather easily shown by direct differentiation of Eq. (2.2) that

with

where

P '(£) = B (SK)) P *(£) (2.8)nm nm nm x" x '

B =— Bnm 2 nm
n-m+1

P * =7 C, (-4)k (2.9)nm L k v '
k=0

C0= 1

-1)! (m-1)! [(m+2k)v-m(m+k)(m+k-l)]
( 'k k! (m+k)! (n-m-k+1) !(n+m)!

for

1 ^ k ^ n-m+1

The polynomial part P * of P ' defines n-m+1 zeroes for P ', and also
nm nm nm

determines its size for a given value of 4 • We note that for m=l, P ' becomesnm
infinite at 4 = 0 and 4 = 1; f°r m > 1 these points are zeroes as for P* nm

Now we are interested in finding the smallest zero of P * and thennm
estimating the value of P at this point. Since P * and P * are ofnm nm nm
degree n-m and n-m+1, respectively, a complete analysis can be carried out

analytically for n-m+1 ̂  4. In fact, a complete analysis can be carried out

analytically for n-m+1 ^ 8, since use of the expressions for P and P ' inJ J nm nm
terms of cos 9 would lead to the analysis of polynomials of the fourth degree (or

2
less) in cos B. In the present study, therefore, we could assume that we were

seeking information in the neighborhood of the smallest zero of a polynomial



containing a fairly large number of zeroes (> 8) in the interval (0,1). We would

thus presumably be concerned with relatively small values of the argument and

might reasonably hope to gain some information from examination of the first

few terms, rather than the entire polynomial.

With such an approach in mind, we introduce some useful notation and

set

°k
k=0

L

v<-«>
k=0

The functions Pr and Pr are pairs of terms from the polynomial parts P *

and P *, respectively; S and S are partial sums for these two polynomials,nm
Using this notation, the following properties of P * and P * maybe

established:

Property 1: The single non-vanishing zeroes £ and £ of Pr and
K K K.

Pr, , respectively, are increasing functions of k. Since

this statement is proved if we can show that

2
Ck Ck-l^ Ck "Ck-lCk+l

Ck+l °k CkCk+l



> o „.„,

The proof is carried out by factoring, and discarding, the numerous common

(positive) factors from the numerators, discarding the (positive) denominators,

and evaluating what is left subject to the condition that

n-m ^k+1 for Pr

n-m+1 ^ k+1 for Pr (2.14)

which is necessary in order for these pairs to appear at all. The calculation for

Pr is quite easy; that for Pr is not, and was carried out using IAM. Both are

given in Appendix A.

Property 2:

ST (4 ) > 0 for 4 > C ', n-m * LL 1

ST ( 4 ) > 0 f o r 4 < C , n-m+1 ^ L . (2.15)
J_i J.

This property follows immediately from Property 1, since all these partial

sums are unity for 4 = ° and cannot change sign until after the first pair be-

comes negative.

Property 3: If SOT (4) < 0 for some L and some 4 < COT ̂ 0, then

P *(4) < 0. Similarly if S O T ( ^ ) < 0 for some L and some | < COT n >nm 2 Li 2 Li+2
then P *(1) < 0. We prove only the first statement; only minor modifications

nm
are required for the proof of the second.

f11""1 1 L
Proof: L 2 J

Pnm*<*> = S 9 T < £ > - I Pr2T+?k^> - (n-m^r^-l) C 4n"m (2.16)nm ZL, t-> 6L,+ZK. L & J n-m
k=l

where indicates the greatest integer function; and n-m ^ 2L. The partial

sum S terminates with an even power of 4. and is followed by pairs of2 J-/



even index which appear preceded by minus signs in P *. If n-m is even, thererun
will be an integral number of such pairs; if it is odd, there will be one term left

over which is an odd power of £ and hence has a minus sign. Now since £ "^ £
2L+2

Pr (ft = C ( °2L+2k-1 * ^ >(2L+2k-l)
2L+2k(^ °2L+2kV C S J S

2L+2k

= C
° (2.17)

Hence every term on the right hand side of Eq. (2.15) is negative and P *(£) < 0
nm

as claimed.

Property 4: If S ( £ ) > 0 and £ < £ then P * ( £ ) > 0 and
2 JL+l i Li+o nm

correspondingly for P *(£). The proofs are minor variations on those for
nm

Property 3.

In applying these properties, we must always keep in mind that for P .*(£),

n-m, the highest power of £ appearing in the polynomial, must not be less than

the highest power of £ occurring in a partial sum, or pair, explicitly required in

the analysis. For P *(£), n-m+1 must not be less than the highest power used.
nm

We are now in a position to prove the main theorems on which we base our

calculation of bounds for the associated Legendre functions:

Theorem I: If for a given m, there exist L, L, £ £ satisfying the
JL £t

following conditions:

(2.19)

(2'20)

(2.21)

10



(2.22)

(2.23)

S -(4) has exactly one zero to the
left of 42 (2.24)

(2.25)

then £ and £ bracket the largest maximum of P (£) for all n such that
1 2 nm

n>m+2L + 2 (2.26)

and this largest maximum is the only extremum of P contained in the interval
nm

<*!• *2>'

Proof: The conditions (2022) and (2.23) guarantee at least one zero in the

interval (£ , 4 ) and this zero must therefore be the one specified by condition
JL u

(2,24). Conditions (2.18), (2.19), (2.22) and (2.23), together with Properties 3

and 4 of P ', imply that
nm

P '(4n )>0 and P ' (4J<0 (2.27)
nm -1 nm 2

and hence P has at least one maximum point in the interval (4, i 4 )•
n m 1 2

Now S -(£) differs from P *(£) by a sequence of negative Przj-i nm
functions and, if n-m is even, the single negative term (-C 4 ):

n-m+1
[afii}2£

k=l

=; ..n-m+1
(2.28)

11



Consider for a moment

= W2'"1 - 52/J <2'29>

This function possesses two zeroes; one at 4 = 0 and the other at 4 = £ and
2J

possesses a maximum at

2J— 1 ~
^J = IT C 2J <2 '30>

Since both £ and the fraction (2J-1)/2J increase with J, fj. also increases
£<j ZJ

with J. To match the parameters of the theorem, we identify J with L + 1, and

we see that condition (2.19) guarantees that 40 lies to the left of the maximum£
points of all Pr functions in Eq. (2.27). Thus, for all £ in the interval (0, £ ),

£.1

P * ( 4 ) ~ S -(4) is a decreasing function of £. Further, condition (2.25) saysnm 2 L
that S -(4) is decreasing in this interval, and hence, finally, P * is also de-2L _ nm
creasing. Since P *(0) is unity and P *(£ ) is negative, it follows that P '(4)nm nm 2 nm
has exactly one zero in the interval 0 < £ ^ £ 0 , so that P (4) has exactly^ nm
one maximum, its largest, and no minima to the left of 4 . Conditions (2.20)

Ci

and (2.21), together with the last statement, imply that P (4) has no zeroes

in the interval 0 < 4 ^ 40-
 Tnus> not only ^° £, and 40 bracket the largest

u - I d

maximum of P (4), but do so in a way that makes the following theorem fornm
bounding this maximum useful:

Theorem II: If the conditions of Theorem I are satisfied then P ,' nmmax
the largest maximum of P (4) satisfies the inequalitiesnm

A < P ( 4 ) < B (2.31)
max

where

* ( 4 ) (2.32)nm

m/2
B=V2(2n+l)x(4 (1-4J) ' P * (4Jz i nm 1

12



with

x = n(n+l), n > m + 2 L + 2 (2.33)

Proof: We know that the polynomial part, P *(£), of P (£) is an
nm nm

oscillatory function with n-m real zeroes in the interval (0, 1), and hence n-m-1

extrema interlaced with the zeroes in this interval. Since P *(0) = 1, andnm
Theorem I guarantees that no zeroes of P * lie to the left of £ , it follows

nm 2
that P *(£) is decreasing in the interval (0, £ ), and hence also in the interval

UXIl. ' &

(Sj. S2>, so that

' (2'34>

Further, since the function (£ (!-£)) vanishes at £ = 0 and £ = 1, and has its

only maximum at £ = 1/2, it is an increasing function in the interval (£ , £ ), so
JL &

long as 4 < 1/2, a- condition implied by the conditions of Theorem I. Thus,
Li

The inequalities (2.34) and (2.35) establish the conclusion of the theorem.

We need one more theorem to make conditions (2.24) and (2.25) of

Theorem I more explicit:

Theorem III: Given (1) a polynomial of even degree 2K
K

k=0

with coefficients such that

2K

b = > a . r j < 0
0 *-> j

(2.35)

R2K ( r ) = / ^ r <2-36>

a, > 0 k even

a k <0 kodd (2.37)

and (2) r such that

13



2K-1

j=0

2K-2

j=o

b = V a f j ti+^! > ° * even

* -=o J+/c/ ^J1 < ° * odd

then, in the interval (0, r), R (r) is decreasing and has exactly one zero to
ZK.

the left of r.

Proof: It is readily verified that the polynomial R (p) defined by
2K.

) = R2K(r + P) (2.39)

has coefficients bj; that is,

2K

bjP J (2.40)

j=0

From Descartes' rule of signs, there is exactly one negative value of p for

which RnT^ vanishes and hence exactly one value of r < r for which R (r)
2K 2K

vanishes. This establishes the second conclusion of the theorem.

The derivative of ROT- (p) is given by:
Zi\.

2K

j=0

and from the hypotheses on the b's.the coefficients of R '(p) alternate in sign (b
*^lx U

does not appear). Hence again using Descartes' rule of signs, R '(p) has no nega-

tive zeroes and is therefore always negative: R '(0) = b < 0. This implies that in
J.

14



the interval (0,r), ROT<r(r) decreases from ROT^(0) = a > 0 to R (r)=b <0.
^ri. Zl\. U 2K. v

This completes the proof of Theorem III.

In the application of Theorem III to Theorem I, we identify R (r) with
2K

Srtf (£) and r with £ . It now remains to discuss how we evaluate the para-
21-1 LI

meters L, L, £ , £ , on which Theorem I depends. As mentioned in the
1 LI

introduction, extensive experimentation with IAM led to the conjecture that

rm(m+4)

rm(m+4)l

* _L 4 J
2 n(n+l)

= greatest integer function

will satisfy all the required conditions. To arrive at values of L and L, one

simply starts with a small value of L, say 1, and checks to see if £ and £ ,i &
defined by (2.42) satisfy all the conditions of Theorem I; if not; increment L and

check again. In -all cases tested (m = 2, 3, 4, 5, 6), an L has been found and

appears to be of the order of 2m. The same trial and error technique is then

used to find L. What is lacking is a rigorous proof for the existence of L and

L for £-, and £ defined by Eq. (2.42)
1 £

(2'42)

15



III. CALCULATION OF BOUNDS FOR P .,- . - jj.-

Using the notation x = n(n+l) and Eqs. (2.1) to (2. 9), expressions for

P , (4 ) may be obtained asnl

= 72(2n+l) - x [l - ̂  £ + y*,"6' £2. . .] times ,/?O^I) (3.1)

c2] -i—
V €(!-€)

We note at once from Property 4 of the last section that

so that we may identify 4 of Theorem I with £ :

Substitution of £ in the first three terms of Eq. (3.2) for P '(£) and clear-
^ nJL

ing fractions yields

12(x + a) - 6(3x-2)(x + a) + (x-2)(5x-6)

(3.3)

For this case (m=l), it is quite easy to find a value for £ with L = 1, so
£i

that the results will hold for n ^ 2. A near-minimum value for £0 is obtained
£j

by seeking the largest a for which

§ 2 (4 2 )<0 with 42= (3.5)

=-x2+x(6a-4).+12(a2 + a+l) <0 (3.6)

as the inequality to be satisfied by a for all n ^ 2, which implies x ^ 6. Trial

and error shows that a ^ 3/4 satisfies the condition, while a= 7/8 is too large.

16



We next verify that for a s - £ >£ :

t * = _ = x
S2 Sl x + a 3x-2 (x + a)(3x-2)

7 15
provided x > 2 (a+1), which is so since x > 6 and 2(a+l) < 2(1 +-) - — „ Note that

a. = 6 corresponds to the value of £ given by the conjecture of the last section;
£i

for a. = 6

2 X x 4 m=l

We are now ready to estimate bounds: The polynomial part of P is de

creasing in the interval (0, £0) since £0 < C. . Thus, in the interval
^ ^ J.

P * has its maximum value at 4 and its minimum value at 4 • The other

factor of P , -\/4 (1~£ ) increases in the interval (0, 1/2) and hence also in the
nl

interval (4 , 4 )«• Finally, therefore, the lower and upper bounds for the largest
J. ^

maximum of P are given by:
nl

^ ;

A=V2(2n+l)x

B = 2(2n+l)x N 4 2 d - 4 2 ) P^*^!) (3-9)

respectively. We now expand the various factors in Eq. (3.9) in powers of 1/x:

(3x-2)

, 1+a

x

(3.11)

17



nl
c-2 2 (x-2)(x-6)/ 2 \2 19 . 16 /I
•' — — • "* H- * • I ' I — - ' H~ r T + C) I ——
2 O v O 1 0 V Q v Q y 0 7 ^ " * • * - ' i « .«5X*~« J.^ * OA~^ r ^i

nl 12 3x

Using these results, A and B become

x

.
2 18

(3.13)

In order to see that A and B not only bound the first maximum of P ,nl
but also provide reasonably realistic bounds?we tabulate A, B, and the largest

maximum of P calculated in double precision
nl

[5] for selected values of n:

n

2

6

10

14

18

A

1.51

2.43

"'3.09

3.63

4.10

Pnlmax
1.94

2.99

3.78

4.44

5.01

B

2.23

3.59

4.56

5.36

6.05

(Only the first three digits of the double precision values are used for this

table). The bounds, for this range of values for n, deviate some 15-20% from

the exact value, which does not seem excessive for bounds intended to be valid

for all n. Note, however, that the deviations of the bounds from the exact

value appear to increase with n; there is, at present, nothing in the theory on

which to base an estimate of a rate of change in the deviations.

(3.14)

18



IV. LOCATING THE LARGEST MAXIMUM OF Prun-

in this section,we first describe the procedure developed for verifying

the conjecture (2.42), then present the IAM program implementing the procedure,

and then the output for m = 2. Because of its bulk, the output for m = 3,4,5,6 is

placed in Appendix C.

The problem is to verify, for a sequence of values of m, that the largest

maximum of P (£) lies at a point £ such thatnm

with

x = n(n+l)

using Eqs. (2.9), for the coefficients C of S, and Theorem III. Check to see

if condi

repeat.

if conditions (2.28) of Theorem III are satisfied. If not, increase L by 1 and

4. Verify that S^ +1 (^ > ° •

(4.2,

Z = Z i - 1

The steps of the procedure are as follows :

1. Specify m, and hence z and z .

2. Find L the minimum value of L for which

S - < 0; note n ^ m + L (4.3)&LI

3. Calculate the coefficients of u in the polynomial T — (u) defined by2Li

19



5. Verify that £ and 4 satisfy the various other conditions imposed
1 2t

by Theorem I for n ^ m + L .

6. Verify that an L exists for which condition (2.23) is satisfied.

The IAM program below, called WORK1, implements the first four steps

of this procedure; the last two are done by "hand". IAM utilizes an ALGOL-like

language. It executes PARTS of a program and/or STEPS within the parts. The

individual command strings are identified in a "decimal" notation: PART. STEP,

eg. 4.3, 5.11,etc. Note that STEP 5.11 would be executed between STEPS

labeled 5.1 and 5.2. The commands are almost self-explanatory; T denotes

exponentiation, ^- is a replacement operator, FOR generates a loop, WITH

indicates substitution. All arithmetic is carried out in integer form to full

precision, using as many "words" as necessary to store the result. There are,

of course, limits to the storage capability, and when the address space of the

system is exhausted.a message to this effect is returned and calculation stops.

WORK1 successfully carried out the first four steps of the procedure outlined

above for m = 2, 3,4, 5;and 6. Time did not permit further trials, and most

likely storage would be exhausted for m = 7 or 8; considerable care in conserving

storage had to be exercised to carry through m = 6, for which 14 terms of the

P ' series were required,
nm

With these preliminaries, here is WORK1:

TYPE WORK1

• l:I2-Il-UZ. 1 - Z - 1 J T Y P E M » I 1 * I 2 » Z * Z 1
.2:MSQ-Mt2
• 3 : T W O M - 2 * M .
. 4 :MM(1>-MSQ+M
.5:FOR 1-2 TO I 2., MM( I >-MM C I - 1 > +TWOM+2* C I - 1 )
.6:MSQ-2*MSQ
.7:FOR 1-1 TO I2 ,MMM(I ) - (1+ I ) *M+CI+1)* ( I+n

A. \ :Q(0)«-M;FOR 1-1 TO I 1 * GK I ) -Q( I - 1 >* I * <M+ I > j &
C P ( 0 ) - Q ( I 1 ) J D E L E T E 0
4 . 2 : C P < 1 ) - C P C 0 5 / M M < 1 )
4.3:FOR 1-2 TO I 1 * ( C P C I > - < C P < I - 15 /MMMCI - 1 > > * < X - M M ( I - 1>
;DELETE M M M C I - 1 ) >

20



5.1:MMMC1)-M*MMC1)JMMMC2)-MSQ+TWOM
5. 15:DELETE MM
5.2:FOR 1-3 TO I 1 ,MMM ( I)-MMM ( I - 1) + TWOM
5.3:Y(1)-CM+2)*X-MMMC1 ) jDELETE MMM(1)
5.4:FOR 1-2 TO I 1 » C Y ( I )- Y ( I - 1) +2*X-MMMC I > &
;DELETE MMMCI»
5.6:FOR I-l TO I 1,(CP(I)-CPCI>*Y(I>*(-1)tI;&
DELETE Yd))
6. 1 :DC0)- 1 ;DC 1 )-X
6.2:FOR 1-2 TO I 1 *D(I)-D(1)*DCI - 1 )
6.3:FOR 1-0 TO I 1 , CPC I )-D ( I 1 - I ) *CPC I )
6.4:DELETE D
8. 1:$DIST-15
8«3:X2-U+CI2+M)*CI2+M-1)
8.4tXl-U+CI 1+M)*CI2+M)
8.5:AIl-SUM(I-0 TO I 1:CPCI)*Z111)
8 » 6 : O D D - A I 1 W I T H C X = X 1 3 i T Y P E O D D
8 .65 :DELETE A I 1 > O D D
8 . 7 : A I 2 - S U M ( I - 0 TO I 2 : C P ( I ) * Z T I )
8 . 8 : T E S T ( 0 ) - A I 2 W I T H C X = X 2 J J T Y P E T E S T ( 0 )
8.9:DELETE T E S T ( 0 ) > A I 2
9.1:FOR J-1 TO I2»IP(J)-J
9.2:T-SUM(I-l TO 12:(I PC I)*Z»(I - 1>)*CP<I»
9.3:TEST(1)-T WITH CX=X23
9.4:TYPE TESTC1);DELETE TESTC1)
9 .5 :FOR K-2 TO C I 2 - 1 ) > C F O R J-K TO I 2 , I P C J ) - I P C J ) * &
C J - K + 1 ) / K ; T - S U M ( I - K T O 1 2 : C I P C I ) * Z » C I - K ) ) * C P C I ) > i A
T E S T C K ) - T W I T H [ X = X 2 3 i T Y P E T E S T C K ) j D E L E T E T E S T C K ) , T )
9.6:DELETE ALL VALUES
1 0 . 1 : C C 0 ) - C P C 0 ) / X T I 1
10.11:FOR I-l TO 12,C(I)-COEFFCCPCI)>X,I 1 )
10.12:TST1C0)-SUMCI-0 TO I 2:CCI)*ZtI);TYPE TST1C0)
10.13:IF TST1C0).GT.0>(I 1-1l+2iDELETE TSTi;TO STEP 21.1)
10.15:FOR J-1 TO I2,IPCJ)-J
10.2:T-SUMCI-1 TO I 2:CI PC I)*ZtCI - 1))*CCI ) )
10.3:TST1C1)-T
10.4:TYPE TST1C1 )
10 .5 :FOR K-2 TO C I 2 - 1 ) > C F O R J-K TO I 2 , I P C J ) - I P C J ) * «
C J - K + I ) / K ; T - S U M C I - K
TSTlCK)-T;TYPE
DELETE TSTliTO

TO 12: CIPU )*Zt ( I-K) )*CCI ) ) } &
TSTlCK);IF CTST1CK)*C-l)tK).LT.0*CIl-Il+2;&
STEP 21.1))

10.8:DELETE C>T>TST1
10.9:DO PART 8;DO PART
21 . 1 :12-11-1
21.3:DO PART 1iDO PART
21.4:DO PART 5iDO PART

4
6>TO STEP 10.1
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Execution of the program is accomplished by entering the command

DO PART 21 from the terminal; this must be preceded by entry of m, z,and

an initial value for an odd integer II. The even integer 12 = 11-1 plays the role

of 2L in step 2 of the procedure outlined above. Note that PART 21 executes

PARTS 1, 4, 5; and 6 and then skips to STEP 10. 1. PARTS 1, 4, 5, and 6 evaluate

an array CP of (1 1+1) coefficients which are proportional to the first (II +1) .

terms of the polynomial part of P '(4). The proportionality factor is the

least common denominator of these coefficients, including the power of x

which will occur on substitution of £ or £ for the argument. IAM works
1 £

more efficiently if it is not asked to carry fractions, since its first step is to

get the common denominator, which requires storage and is carried throughout

the calculation.

Referring to Eqs. (2.8), (2.9) and (4.1), we note first that

2
(m+2)x-m

1 m(m+l)

[(m+4)x-m(m+l)(m+2)3_
2 2! m(m+l)(m+2)

II II! m(m+l)-..(m+Il)

and the corresponding terms in P * are these coefficients multiplied by thenm
corresponding powers of z/x or z/x for evaluation at £ and £ respectively.

1 J- &
In either case, the lowest common denominator of the partial sum S , which

- II
serves also as a common denominator for S , will be EL! m(m+l)- • • (m+Il)x

L^i

and CP(I) at the end of PART 6 of WORK1 is this factor times the corresponding

C of Eq» 4.5:
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CP(0)=I1! m(m+l)- • • (m+Il) x (4. 6)

CP(1) = -I1! (m+2)(m+3). •

-l) (m+Il))

PART 1 and STEPS 4.1 and 4.2 set up the factors independent of x in these

expressions. STEP 4.3 calculates all but the power of x and the factor in-

volving (m+2I)4. The array Y is set up in STEPS 5.3 and 5.4 to generate

this last factor and STEP 5.6 inserts it along with the proper sign into the

CP's. Finally, in PART 6 the array D generates the powers of x which are

inserted into the CP's by STEP 6.3.

Having generated expressions for the terms of the partial sums, we

i

lating

next want to find L of Eq. (4.3). The search is done by successively calcu-

12

**I2 I cp(k)zk (4.7)
k=0

for 12 = 2,4,6, . . . until a negative value results. In practice, this is a very

lengthy calculation which strains the storage capacity of IAM, so a similar pre-

liminary search is carried out using only the leading terms in x. Note from

Eq. (4.6) that each CP has leading term x and that x = n(n+l) can be arbitrarily

large. Thus, in effect, we first seek an L for very large x. This is accomplished

in STEP 10.11 by constructing an auxiliary array C(I) from the coefficients of x

in CP(I). The rest of PART 10 calculates and prints out

12

C(k)zk (4.8)

k=0
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incrementing 12 by 2 and repeating the calculation until a negative value

results. At this point the test is undertaken for zeroes of this sum to the left

of z, using Theorem III. If more than one zero is detected, II, and hence also
£•

12, is incremented by 2. The sequence of tests for Theorem III requires

TST1(0) <0

12
kC(k)zk<0 (4.9)

k=l
12

krtc-1^ k; c(k)Z >oZ krtc
;i.

k=2

TST 1(12-1) = - C(I2-1) z' +12 C(I2) z < 0

TST1(I2) = C(I2)zI2>0

The last of these tests does not appear in the output. Once these tests are passed

for the leading terms in x, the value of 12 so obtained is used as the initial

value for the corresponding sequence of tests using the complete coefficients of

Eq. (4.6), with the following modification:

First, note that use of 12 for P * requires
nm

n-m +1^12 (4.10)

and hence

x ^ (m+I2-l)(m+I2) (4.11)

WORK 1 defines

x2 = (m+I2)(m+I2-l) +u (4.12)

xl = (m+Il)(m+I2) +u

with u ^ 0 to incorporate the fact that u = 0 corresponds to the minimum value

of n(n+l) consistent with the existence of SI2 and S , with 12 corresponding

to 2L and II to 2L+1 of Theorem I. In STEPS 8.5 and 8.6, IAM first
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evaluates S (z ), labeled ODD in the output, with x = x.. If the coefficients

of all powers of u are positive, then S (z ) will be positive for all n ^ m+Il-1,

as required by Theorem I. In STEP 8.8, S (z), labeled TEST(O) in the output,
i^

is evaluated with x = x . If the coefficients of all powers of u are negative, S
Lt \J>t

will be negative for all n ^ m+I2-l, again as required for the application of

Theorem I. In PART 9, the calculations corresponding to Eq. (4.9) are carried

out using the full coefficients CP, x=x , and arranging the output in powers of
£t

u. The results of the calculation are returned in the array TEST(J), J = 0,1,. ..12.

The inequalities corresponding to those of (4. 9) will be valid for all n ^ m+I2-l if,

and only if,the coefficient of each power of u satisfies the inequality individually.

This test is made by "human" inspection of the output. In all cases run, the

value of 12 found by the preliminary tests led to an array TEST(J) satisfying

the above conditions.

At this point we display the output of WORK1 for m=2. For m=2

S (4.13)

and we initialized U to 3:

. I A M
WELCOME TO I A M C 7 2 3 2 1 )
*LOAD FROM "WORK1"
*M-2; I l -3 iZ«-35DO PART 21

M: 2

II : 3

12: 2

Z: 3

Zl : 2

TSTK0) : 90

M: 2 -

25 :

1 1 : 5



12: 4

Z: 3

Zl : 2

TST1(0): - 77490

TST1C1): - 93240

TSTK2): 34020

TST1<3>: - 2520

ODD:

52256*11*5 + H387840*Ut4

+ 992819328*Ut3 + 43288291584*Ut2 + 943994926080*U + 8237259878400

TESK0):

- 77490*Ut5 - 11872980*Ut4

- 721700280*Ut3 - 21810222000*Ut2 - 328224960000*U - 1969349760000

TESTC1):

- 93240*Ut5 - 14802480*Ut4

- 930696480*UT3 - 29091 1 82400*Ut 2 - 453309696000*11 - 2821754880000

TEST<2>:

34020*Ut5 + 4906440*Ut4 J ~ - -- •

+ 287083440*Ut3 + 8473701600*Ut2 + 125574624000*U + 744629760000

TESTC3) :

- 2520*Ut5 - 408240*l)t4

- 24625440*UT3 - 706708800*Ut2 - 9761472000*U - 52254720000
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We see that Eq. (4.13) led to a value of 90 for TSTl(O), so WORK1 incremented

II (and hence also 12) by 2 and started over. This time the array TST1 pro-

duced the acceptable pattern -, -,+, -; as noted above. TST1(I2) must be positive,

unless the last coefficient CP(I2) is incorrectly computed. Next ODD is calculated

and we see that it is positive for all non-negative u. Finally, TEST(O), TEST(1),

TEST(2) and TEST(3) are calculated, the output is inspected,and it is verified that

for u ^ 0, the sign pattern -,-,+,- is correct.

At this point we may conclude the following: For m=2

4 NX

n^6 (4.14)

Referring to Theorem I, we identify

We must next verify that conditions (2.18) and (2.19) are satisfied. Before doing

this we discuss three special cases, corresponding to n = m+2L -1, n = m+2L ,

n = m+2L +1, for which these conditions may not be relevant. The existence of

the partial sum S — implies that the first of the special cases represents the2L-.
smallest value of n consistent with given m and L .

1. n = m+2L -1: S - =P * and therefore neither S - , nor the_ 1 2L nm 2L +1
Pr's associated with conditions (2.18) and (2.19) appear. These conditions must

be replaced, in this case, by the condition

( z n ) > 0 (4.16)

2. n = m+2L : S- =P *. In this caseconditions (4.14) replace con-J. & J-/7" 1 nm *
ditions (2.18) and (2.19): P *(z) - S - (z) - C . z<

n-m+1)< Q if S - (z)< 0.
nm i n—m+1 2L

3. n = m+2L +1: In this case
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2 V2 = 2L1+1
 + Si:i+2 * | C*. IT)

Hence condition (2.19) is required, but (2.18) is not, since if S - +- > 0, then

also P * >0. 1

nm

Verification that the modified conditions hold for these special cases is

easy. We proceed to the verification of conditions (2.18) and (2.19) for the

general case for m = 2 ; n ^ m+2L +2:

p - - p C^L= 8-10(16x-2-8-9) = 640 1-9/x > 2
C2L +3 C7 £ (n-8)(n+9)(18x-2-9-10) 9X (l-72/x)(l-10/x) x ( • >

8

C
p _ _JL = 7-9 14x-2-7-8 _ 441 1-8/x > 3
2L +2 C ~ (n+8)(n-7) 16x-2-8-9 8x (1-50/x)(1-9/x) x

7

for all n ^8, which implies x ^ 72.

We have how satisfied all conditions of Theorem I, except that on S (£0).
2JL 2

This last test is carried out by another IAM program EVAL, which is used, not

only for this test, but also in the next section, for the calculation of bounds using

Theorem II. Here we shall merely state that EVAL does indeed verify that L

exists for which conditions (2.20) and (2.21) of Theorem I are satisfied.

The output of LAM for m = 3,4,5, and 6 appear in Appendix B. Because

of prior experimentation , L was already known for these values of m, and

to reduce the bulk of output, II was initialized to 2L +1. The output exhibits all

the desired "sign" patterns for the array TST1, ODD,and the array TEST for the

values input for m, II, z, z . Verification of conditions (2.18) and (2.19) for

the general case, or their substitutes for the special cases, is routine, though

tedious; the details are omitted from the report.

The table below summarizes the information given by the output of

WORK1 (plus the additional verifications), showing 12 = 2L , £ , £ and the
JL JL £t

lower bounds on n and x = n(n+l) for which £ and £ bound the largest
JL £i

maximum of P :nm
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n

2

3

4

5

6

12=2 L

4

4

6

8

12

«i
2/x

4/x

7/x

10/x

14/x

«2

3/x

5/x

8/x

11/x

15/x

lower

n

6

7

10

13

18

bound for

X

42

56

110

182

342
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V. BOUNDS FOR THE LARGEST MAXIMUM OF P
- -

The case m = 1 is discussed in Section III. For m = 2, 3,4,5,6, £ and

£ given in the table at the end of the last section can be used, together with
<£

Theorem II (Section II) to obtain the desired bounds. For this purpose, we re-

quire approximate values of P *(£ , ) and P *(£_) for m = 2,3,4, 5,6.
nm 1 nm 2

These values of the polynomial parts of P were calculated using the IAM

program EVAL, reproduced in Appendix C. The code is fairly obvious. The

output arrays SUMX(I) and SUMIN(I) refer to (2m)! ym times the first I

terms of P * evaluated at £ and £ , respectively. The parameter y re-
nm 1 2

fers to n(n+l), denoted by x in the rest of the report. It will be noticed that

for m = 2, the numerator of £ , z, was inadvertently set equal to 2, instead
£

of 3 in the first command. We shall therefore outline here the calculation for

m = 2, and this will serve as an illustration of how EVAL calculates SUMX and

SUMIN for m = 3,4,5,6.

From Eq. (2.3)

from which we readily obtain

P * / * x - l x-6 t (x-6)(x-12) f 2 (x-6)(x-12)(x-20) .3
n2 (*' L 3 * 24 * " 5-72 * "•

Substituting £ = 2/x and £, = 3/x and arranging in inverse powers of x, we
1 ^

obtain

OTT^,OV 43 . 83 12 160SUMX(3) = - + — + — + —
5x 3x

5x x
o

We now observe that, while powers up to £, were retained in calculating

SUMX and SUMEN, Theorem I requires n ^ 6 and hence x ^ 42, so that only

(5.3)
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the first two terms need be retained for approximate values of P *:
n2

P */t > JL _ _21
n2 ^2; 10 lOx

To implement Theorem II, we next calculate B in powers of 1/x. From Eq.n^
(2.6), it is readily verified that

B = — V2(2n+l)x(x-2)(x-6) (x-m(m-l))
nm m!

m/2= 2x V (n+1/2) (1-2/x) (1-6/x)... (l-m(m-l)/x) (5. 5)

and for m = 2

/ / 1~- f 1 1 "IB = x V (n+1/2) (1-2/x) = Vn+1/2 x 11 - - - —- ... I
X 2x

~ Vn+1/2 x (1- 1/x) (5.6)

2/2
We also need to evaluate (4(1-4)) at 4, and 40

:

1 2

(5.7)

We now insert these various expressions into Eqs>. (2.32) for A and B, the

bounds on the largest maximum of P , we obtainn2

X/ X > X/ \ 10
A =7^75 x(i-i)- ^

N X/ X

o . - / 10 \
-jVn+l/2 ( l -— ) (5.8)

x

•7 n+1/2 (43-6/x)
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max
as approximate values. The table below tabulates the values as well as P

n[sithe largest maximum of P obtained by a double precision calculation for
n^

selected values of n:

n

4

5

6

10

15

20

A

.64

.94

1.16

1.77

2.26

2.65

Pn2max

2.16

2.35

2.53

3.18

3.84

4.41

B

3.02

3.35

3.64

4.64

5.64

6.49

Note that we have included the values n = 4,5, even though they are below the

bound imposed by Theorem I. We do the same for m = 3,4,5, and 6 below, since

it appears that Theorem I is conservative in this respect; in fact, some preliminary

analysis to generalize Theorem I indicates that the bracketing of P

and £ holds for all n ^ 2m.
£t

nm by €.
max

The output of the arrays SUMX and SUMIN from EVAL is included in

Appendix C, along with the listing for EVAL, for m = 3,4, 5, and 6. Tables

similar to that for m = 2, above, were obtained by the following sequence of

steps :

1. Replace y in SUMX and SUMIN by x.

2. Approximate P *(£-) and P *(£„) by truncatingnm 1 nm /

SUMIN(m)
nm

nm

m-(2m)! x

SUMX(m)
/0 .,(2m)! x

m (5.9)
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to a reasonable number of terms in 1/x, recalling the lower bound for x given

at the end of Section IV.

3. Expand (£ (l-£ ))m/2 and (£0(1-£J) , including all powers of
J- 1 £* £

1/x retained in 2.

4. Expand B , as given by Eq. (5.5) similarly.

5. Calculate A and B from Eq. (2.32), again in truncated form.

6. Evaluate A and B for the desired values of n and x = n(n+l).

The tables so constructed are:

m=3: n

6

9

12

15

18

20

A

2.10

2.05

2.15

2.29

2.51

2.53

P
n3

max

2.30

2.72

3.10

3.44

3.75

3.95

B

3.34

3.79

4.22

4.65

5.18

5.30

m=4: n

8

10

12

15

17

20

A

2.25

2.18

2.28

2.51

2.69

2.90

Pn4max

2.42

2.65

2.87

3.18

3.37

3.64

B

3.30

3.48

3.76

4.18

4.46

4.84
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m=5: n

10

11

13

15

18

20

A

2.13

2.28

2.37

2.60

2.74

2.83

Pn5max

2.51

2.61

2.81

2.99

3.25

3.42

B

2.78

3.03

3.41

3.69

4.05

4.26

m=6: n

12

14

16

17

18

19

20

A

1.98

2.28

2.44

2.51

2.57

2.63

2.69

Pn6max

2.59

2.76

2.93

3.01

3.09

3.17

3.24

B

3.26

4.43

4.23

4.21

4.22

4.24

4.28

The principal conclusion to be drawn from these tables is that the values provided

for £
1

£ > from the conjecture of Section II, appear to provide realistic
u

bounds on the largest maximum of Pnm
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APPENDIX A

PROOF OF THE INEQUALITIES (2. 13)

Proof of the Inequalities (2.13)

The first of these inequalities is

C C '"

- >0

where the C's are coefficients in the polynomial part of P . For all three
nm

of these coefficients to appear in P , k must exceed zero. Since the C'snm
are all positive

Ck _Ss±L>0 ,A „,
C - C. >0 (A.2)

k-1 k

is an inequality equivalent to (A.I), but somewhat simpler to manipulate. From

Eq. (2.4) we have

= x-(m+k)(m+k+l)
( ' 'C

K.

and hence

Ck = x-(m+k-l)(m+k) ,
C k(m+k-l) ( '

K™*1

with

x = n(n+l) z (m+k+l)(m+k+2) (A. 5)

from the. first of inequalities (2.14). Substitution of Eqs. (A. 3) and (A. 4) into

Eq. (A.2), and clearing fractions, yields the following inequality to be verified;

(m+l)x-2m(m+l)(m+2) + (m+1) (m+2) = (m+1) [x-(m+2)(m-l)] > 0 - (A. 6)

From inequality (A. 5)

(2k+3)m+(k+l)(k+2)-(m2+m-2) = 2(k+l)m+(k+l)(k+2)+2 >0 (A. 7)

A-l



which establishes (A. 6) and hence (A.I).

The second inequality to be verified is

- 2 -
Ck ~ Ck+l Ck-l
— - k lk 1 >0 (A.8)

C, C, ,k k-1

where the C's are coefficients in the polynomial part of P ', and, as above,

k ^ 1 is required if all three are present. Also, as above, all the C's are

positive and hence the denominator in inequality (A.8) may be discarded. The

case k=i is a special case for which (A.8) reduces to

since, according to Eq. (2.10), C = 1. C and C are given by
\J -L £i

2
- = (m+2)x-m
1 m(m+l)

(A.9)

=

2 2!m(m+l)(m+2) ( ' '

The verification of inequality (A.9) is laborious, but has been carried out by

hand since it was inadvertently omitted from the IAM program for the general

case. The details of the proof are omitted; the key step is to make use of the

second inequality of (2.14)

n ^ m+k =m+l, which implies n = m+L+1 with L ^ 0 (A. 11)

so that we may set

x = n(n+l) = (m+L+1 )(m+L+2) (A. 12)

where L is any integer ^ 0. Then the sequence of steps , . .-

1. Substitute (A. 10) into (A.9)

2. Clear fractions

3. Collect terms in ascending powers of x
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4. Substitute for x from (A. 12)

5. Arrange in ascending powers of L

6. Observe that the resulting expression is non-negative for non-
negative values of L.

For the general case, k > 1, the three coefficients involved in (A. 6) are,

from Eq. (2.10)

- _ (n-m)! (n+m+k-2)! (m-1)! [(m+2k-2)x-m (m+k-1) (m+k-2)]
k-1 (k-1)! (m+k-1) !(n-m-k+2)!(n+m)! ( ' '

- _ (n-m)! (n+m+k-1)! (m-1)! [(m+2k)x-m(m+k) (m+k-1)]
k~ k!

- _ (n-m)! (n+m+k)! (m-1)! [(m+2k+2)x-m(m+k) (m+k+1)]
k+1 (k+1)! (m+k+1)! (n-m-k)! (n+m)>

We discard the denominator and the positive factor

common to all three C's. We next clear fractions, discard the positive common

denominator, and a number of other common positive factors in the numerator

to obtain, as the inequality to be verified

(k+1) (m+k+1) (n-m-k+2) (n+m+k-1) C(m+2k)x-m(m+k) (m+k-1) ]2

-k(m+k) (n-m -k+1 ) (n+m+k) [(m+2k-2)x-m (m+k-1) (m+k-2) ]

times C(m+2k+2)x-m (m+k+1) (m+k)] >0 (A. 15)

The proof of this inequality is very laborious and IAM was used to carry out

most of the remaining calculations. The program written for this purpose

follows :
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TYPE PROOF
30.1 : N - M + K + J ; $ D I S T - 1 5

30.3:F2«- (M+2*K-2)*CN+l>*N-M*(M+K-l>*CM+K-2>
30.4tF3~(M+2*K+2)*N*(N+l >-M*(M+K+l >*(M + K>
30.5:F4~ (K+1)*(M+K+1)*(N-M-K+2)*CN+M+K-1>
30.6:F5-C(M+2*K)*(N+l)*N-M*CM+K)*(M+K-l))t2
30.7 :TST-F4*F5-F1*F2*F3
30.8:TSTJ(0)*-TST WITH CJ = 0];TYPE TSTJC0)
30.9:FOR 1-1 TO 6> (TST*- ( TST-TST J ( I - 1 ) )/ J; &
TSTJ(I)-TST WITH [J=0J;TYPE TSTJ(I)i«
DELETE TSTJCI-1 ))
30. 95: DELETE TST, TSTJ..N, F 1 , F2 > F3* F4, F5

The first instruction makes use of condition (2.14):

n ^m+k •

so that J in the program must satisfy

J ^ O

The command $DIST f- 15 requires the system to expand all powers of multi-

nomials up to and including the 15th. In terms of the parameters Fl, F2, F3,

F4, F5 generated in STEPS 30.2 to 30.6, the left hand side of (A. 15) is given by

F4*F5-F1*F2*F3

as indicated in STEP 30.7. This expression, written symbolically as a poly-

nomial in J, K;and M turned out to be too complex to be contained in its entirety

in the system. STEPS 30. 9 and 30. 95 calculate in turn the coefficients of the

powers of J from. the Oth through the 6th,and these coefficients are listed in

the array TSTJ(I), 1=0 to 6 as output:

(A. 16)

(A. 17)

(A. 18)
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1AM
WELCOME TO I AM(72321)
*LOAD FROM "PROOF"
*

DO PART 30

TSTJC0) :

48*M + 40) + K'7*<120*MT2 + 232*M + 64)

K»6*(160*MT3 + 560*Mt2 + 368*M + 32)

Kf 5*( 120*MT4 + 720*MT3 + 872*Mt2 + 200*M - 8)

+ 520*Mt4 + J088*M»3 + 488*Mt2 - 1 6*M - 8>

+ 200*Mt5 + 752*Mt4 + 600*Mt3

+ 272*Mt5 + 392*Mt

K*(40*Mr6 + 128*Mt5 + 32*M»4 -

TSTJ(l):

Kt7*(264*M + 200) + Kt6*C600*Mt2 + 1036*M

Kt5*(720*Mt3 + 2208*Mt2 + 1296*M + 104)

4 + 2472*MT3 + 2560*Mt2 + 516*M - 24)

5 + 1 528*Mt 4 . + 2584*Mr3 + 952*Mt2

+ 492*Mt5 + 1392*Mt4 + 816*Mr3 -

K*C64*Mr6 + 376*Mt5 + 320*MT4 - 8*M» 3 - 32*Mt2)

40*Mt6 + 44*Mr5 - 4*M»4 -

264)

- 16)

- 40*M)
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TSTJ<2):

120*K*7 + Kt6*(588*M + 408) + K t 5* ( 1 1 76*Mt 2 + 1816*M + 432)

+ Kt4*( 1224*Mt3 + 3248*Mt2 + 1 724*M + 128)

+ Kt3*(696*Mt4 -«• 2960*Mt3 + 2638*Mt2 •«• 472*M - 24)

+ Kt2*(204*Mt5 •»• 1432*M»4 + 1908*MT3 + 588*MTg - 40*M - 8)

+ K*(24*Mt6 + 344*Mt5 + 638*Mt4

+ 32*Mt6 + 76*Mt5 +

T S T J C 3 ) :

160*Kt6 + K t 5 * ( 6 7 2 * M + 432) + K » 4* ( 1 1 28*Mt 2 + 1568*M + 352)

+ Kt3*(960*Mt3 + 2188*Mt2 + 1 064*M + 72)

+ K t 2 * C 4 3 2 * M t 4 + 1452*Mt3 + H28*MT2 + 172*M - 8)

+ K * ( 9 6 * M f 5 + 452*Mt4 + 474*Mt3 + 108*Mt2 - 8*M)

TSTJC4):

120*Kt5 + Kt4*(408*M + 248) + Kt

+ Kt2*(336*Mf3 + 660*M*2 + 292*M

-t- K*(102*Mt/i + 260*Mt3 + 170*Mt2

+ 12*Mt5 + 32*Mt4 + 21*M»3 + Mt2

16)

16*M)

680*M + 144)

TSTJ(5):

4 +' Kt3*(l20*M + 72) + K 1 2* ( 1 08*MT 2 + 132*M •»- 24)

K*(42*M»3 + 72*M»2 + 24*M) +

3 2 2 3 2
T S T J C 6 ) : 8*K + K * C 1 2 * M + 8) + K * ( 6 * M + 8*M) + M + M
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We can conclude that the left hand side of (A. 15) (or (A. 18)) is positive if

TSTJ(I) > 0 for I = 0 to 6. Recalling that the case m=0 is excluded from this theory,

it is easily seen by inspection that the coefficients of the various powers of k in

each TSTJ(I) are positive. Since k > \ it follows that TSTJ(I) > 0 for I = 0 to 6.

It might be remarked that carrying out this calculation by hand, without

errors, would indeed be a formidable task - as will be obvious to the reader who

elected to carry out the omitted proof of the special case (A. 9).
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APPENDIX B

OUTPUT OF WORK1 TO VERIFY CONJECTURE

FOR m = 3, 4, 5, 6

m = 3

. I A M
WELCOME TO I A M ( 7 2 3 2 1 )
*LOAD FROM " W O R K 1 "
* M - 3 i I 1 - 5 J Z - 5 J D O PART 21

M: 3

1 1 : 5

12: 4

Z: 5

Zl : A

T S T 1 < 0 ) : - 77800

T S T l ( l ) : - 132800

T S T 1 C 2 ) : 55920

T S T 1 ( 3 ) : - 1280

O D D :

99328*Ut5 + 3077l200*l) t4 + 3795431 424*L)t 3

+ 233687613440*Ut2 + 7192405147648*U + 88604682485760

TEST(0):

- 77800*LU5 - 19906000*Ut/ i - 1 789236000*11* 3

- 75135096000*Ut2 - 1 508764320000*11 - 11617066137600
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TESTCU:

- 132800*UT5 - 34068800*Ut4 - 3238934400*l)T 3

- 148704019200*LJt2 - 3362743641600*11 - 30231561830400

T E S T C 2 ) :

55920*Ut5 + 10342560*Ut4

+ 807036480*11*3 + 32631431040*lJt 2 + 670654494720*11 + 5522714265600

T E S T C 3 ) :

- 1280*U't5 - 491840*Ut4

- 48885120*Ut3 - 2062344960*Ut2 - 39654074880*U - 286123622400

m = 4

. I A M
WELCOME TO I AM(72321 )
*LOAD FROM " W O R K 1 "
*M-4;I 1 - 7 J Z - 8 J D O PART 21

\

M: 4

1 1 : 7

12: 6

Z: 8

Zl : 7

TST1C0): - 1051359232

TSTl(l): - 922758144

TST1(2): 223534080

TST1C3): - 15473920
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TST1C4>: 1090320

TST1C5): - 5544

ODD:

96680234*UT7

+ 1 10962352200*U.t6 + 495733 1 84 1 0672*Ut 5 + 1 1 6557298607 1 11 04*1) t 4

+ 15S8276197961984160*L)t3 + 1 26774443025S 1 f?44S000*U t2

+ 5524042423811804928000*U + 101804347438976286720000

TESTC0):

- 105l359232*Ut7 - 669522022400*U»6

- !80675309101056*Ut5 - 26R69411366060032*U»4

- 8381557828659609600*U» 3 - 1 2582555368760 11 52P!00*Llt2

- 3666290213009571 840000*11 - 45377077416694087680000

TEST(l):

- 922758144*llt7 - 620726937600*IM 6

- 177442608279552*Ut5 - 28065436646252544*U»4

- 2658741078789734400*11' 3 - 1 5 1 03582 1 06322 1 248000*Ut2

- 4766493826307727360000*1) - 64479590990030684160000

TEST(2>:

223534080*Ut7

+ 139815244800*Ut6 + 37912103792640*Ut5 + 5744277409812480*UT4

+ 523366306670592000*Ut3 + 28613846697891840000*Ut2

+ 868115487981772800000+U + 11265426294738739200000
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TESTC3):

- 15473920*Ut7 - 1 0220672000*1116

- 2785324917760*11* 5 - 4 1 2389054443520*l)t 4

- 36115102324224000*11*3 - 1 R782 1 06R295 1 680000*U» 2

- 53800686603417600000*11 - 655112749932748800000

TEST(4>:

1090320*Ut7 + 560128800*U»6 + 127579119360*Ur5

+ 16490351243520*UtA + 1290102660000000*UT3 + 60479909582400000 + U '2

+ 1562069124000000000*U + 17068047504076800000

TEST(S):

- 5544*U*7 - 6930000*LM6

- 2116743552*Ut5 - 298627426944*U t4 - 22862606659200*U'3

- 980891692704000*Ut2 - 22165403863680000*11 - 204999081154560000

m = 5

I AM
WELCOME TO IAM(72321)
*LOAD FROM "WORKl "
*M-5; I1-9;Z-11jDO PART 21

M: 5

1 1 : 9

12: 8

Z: 11

Z1 : 10
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TST1C0>: - 17172780156378

TST1C1): - 21271465952352

TST1C2): 3954506831352

TST1C3): - 284857239744

TST1(4): 12362967540

TST1 (5) : - 290128608 ••

TST1C6): 8506008

TST1C7): - 16128

ODD:

832771 1 488000*Ut9 -»• 15546080348544000*Ut8

+ 12790995456325632000*Ut7 + 609697046 1 1 09 1 1 3856000*Ut 6

+ 185753654251 7692121088000*Ut 5 + 37545 1 584679455299 1 068 1 6000* LM 4

+ 50381858806734421935505408000*Ut3

+ 4330703236252216782857601024000*Ut2

+ 216481739496505058686151688192000*U

+ 4796706165203789542456364630016000

TESK0):

- 17172780156378*UT9 - 23484678338339064*Ut8

- 14196045908490093648*Ut7 - 4975579169060728536000*Ut6

- 1113270555467463550930080*Ut5 - 164679126124474266208219008*Ut4

- 16074108546949298820042883584*Ut3

- 995646861630436023278967932928*Ut2

- 35374636306257631070763277762560*U

- 546064091011089811207696416768000
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TESTC1):

- 21271465952352*11*9 - 3 1 045455262350 144*11' 8

- 20130982577094445056+IM7 - 7613871508307544657408*L)t6

- 185l288387443393074767360*l)t5 - 300 1 1 855705662 1 062644605952*11* 4

- 32439505717657970137046421504*l)t 3

- 22543833457346291 16878417412096*11*2

- 91401791628647576075406584905728*U

- 1647219167649918753516544484966400

TEST(2>:

3954506831352*LJt9 + 5636770 1 1 8334432*Ut 8 + 3572809 1 893 1 4805440*U» 7

+ 1321041222583083783936*Ut 6. •«- 3 1 392006 1 40 1 05533 1 376000*L)t 5

+ 49708567953334297395666432*UT4 + 52444 1 027452742350 1 752707072*IM 3

+ 355447938422681072 1 23787878400*11* 2

+ 14042035794681283349632891355136*U

+ 246329946269902355895574777036800

TEST(3>:

- 284857239744*Ut9 - 398664188733888*Ut8 - 246955192953460992*1) t7

- 88965822613739613696*Ut6 - 20551856335936104453120+Ut5

- 3l57832077547419582700544*Ut4 - 322737552640985564622532608* IM 3

- 21154547401374726928722051072*Ut2

- 806849173438954709568979009536*U

- 13640756861286678178141883596800

TEST<4 i :

12362967540*Ut9 + 16341408079920*U»8

+ 9637024742785440*U»7 + 3316981360543804800*Ut6

+ 732742703695618862400*Ut5 + 107586607508423198749440*U»4

+ 10489669087745431395947520*Ut3 + 654462594523265976 7302 75840*11*2

+ 23698088026617327436482969600*U + 379288231763912321349058560000
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TEST(5) :

- 290128608*Ut9 - 392029412544*LJt 8

- 22820961 5682048*11*7 - 7589 5 1 62363722240*Ut 6

- 15979784172107374080*UT5 - 22 1 55308333495 1 8834688*U' 4

- 202563176790072654065664*Ut3 - 11783442334732507395145728*Ut2.

- 395775539228071052815564800*U — 5846699438719102726963200000

TESTC6):

8506008*Ut9

+ 9142642656*llt8 + 446852841 92 64*U» 7 -•• 1 29 1 838248 1 733 1 2*111 6
-*

+ 241319265675949440*Ut5 + 29986 1 37704387870208*(Jt 4

+ 2464712123717211088896*Ut3 •»• 1 287025771 73599879962624*11* 2

+ 3863275813280916627259392*U + 50686994823099331195699200

TEST(7) :

- 16128*Ut9 - 46928448*Ut8 - 32039804160*llt 7

- 10503523183104*U»6 - 1997014366771200*Ut5 - 236327888658613248+U»4

- 176879098.87524753408*U»3 - 8 1 395564858862428 1 600*U »2

- 20981827261430073851904*U - 231191682528193177190400

m = 6

M~6J I !«• 137Z- 15>DO PART 21

M: 6

II : 13

12: 12

Z: 15

Zl : 14
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TST1C0): - 56210426294907000138750

TST1C1): - 51641842621500873495000

TST1C2): 8683145674084494112500

TSTK3): - 578870111235854295000

TSTl(4): 22089602975956980750

TSTH5): - 558494058584919600

TSTK6): 10167863351045400

TSTK7): - 139563590166000

TST1C8): 1549199029950

TSTK9): - 12385933560

TST1<10>: 122949684

TSTK11): - 160056

ODD:

4716065119064668823552*Ut13 + 29064030974986852042784768*Uf12

+ 76914586859559054334878449664*Ut11

•«• I 1897 5 32 009 88085 59 56 649 6 87 79 69 408* Ut 10

+ 121747244125115495175414710907305984*Ut9

+ 87763205251204823479166037744970629120*Ut8

+ 46095746251908311168530197514865503371264*Ut7

+ 17925036736585942281819186806888338887278592*Ut6 . . ... „

+ 5173855177833040446246865359397708258395291648*U»5

+ 10968279926059143 13180514072387945676009986064384*UT4

+ 166230656256670055749968028275496061448042483548160*Ut3

+ 17074260918000089340766801422995501082982356929740800*Ut2

+ 1066244625604993951709649877832114256625735160561664000*U

+ 30594590881074875512572070686099795417454363772190720000
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TESTC0):

- 56210426294907000138750*Ut13 - 220746525969335467402372500*Ut12

- 399602795314544695887653835000*Ut11

- 441453435712931353101066074970000*Ut 10

- 332014522159078502918842412187300000*Ut9

- 179492948298305379000218562641906040000*Ut8

- 71749592490147209417478299131263067920000*Ut7

- 2 1 467819729152815797537427966014298129120000*Ut6

- 4806847577218157250866613654598253985546240000*Ut5

- 795306046968069227671919031800032952407564800000*Ut4

- 94482315816834569417725037946351092663443845120000*Ut3

- 7629521341287663782655844929133720858744844943360000*Ut2

- 375189154283111111570869532697714420796712882012160000*U

- 8481755985513114910006183194681202778692427207147520000

TEST(l):

- 51641842621500873495000*Ut13 - 210251855147405586499530000*U»12

- 395092944083706239336226300000*U»11

- 453724639678621565578881053640000*Ut10

- 355277334932971273330168445413200000*Ut9

- 200303511848556393026592559797855840000+Utg

- 83654480522660340415111811001857252160000*Ut 7

- 26203804603012706811103808181316134460800000*Ut6

- 6156216072931246350912329696671411969505280000*Ut5

- 107137744075697137596541232101617320677893!200000*Ut4

- 134250626870099829994861077147985234815552798720000*Ut3

- 11470204007227641899185448593243324499553997946880000*Ut2

- 598905418879477976116794197604847459623099039744000000*U

- 14433277820600385587234154940034794127874994093424640000
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TESTC2):

8683145674084494112500*Ut 13 + 34960360719974546019735000*Ut12

+ 64959563281965599467355850000*Ut 1 1

+ 73754542153473881122283915340000*Ut 10

+ 57089875497586987693064573460600000*Ut9

+ 31813809007247575974487218328074000000*Ut8

+ 13130758158385031400656234939394647520000*UT7

+ 4064189807 I 09491645087640542628026088000000*Ut6

+ 943334095733240173855032747432925951188480000*Ut5

+ 162168537359528540623500873717978617259801600000*Ut4

+ 20069681420166389634771747150831056975276851200000*Ut3

+ 1693246221722556244706404296812730403747606364160000*Ut2

+ 87287851150500630120312053813618467003224843878400000*U

+ 2076470493414656502362766638956276795005175741808640000

TESTC3):

- 578870111235854295000*Ut13 - 2302602402542752188450000*Ut12

- 4225947780992191868079180000*Utl1

- 4738096959442496902095129000000*Ut 10

- 3620774028564077878020556314000000*Ut9

- 1991474515356069746669761942230240000*Ut8

- 811057487518939996202970872012443200000*Ut 7

- 247639987217527162365996073239629477760000*Ut6

- 56685962729387833231104196527440393856000000*Ut5

- 9607578402586528510348293718127805148416000000*Ut4

- 1171912082028750085914998542882670330949304320000*Ut3

- 97419824042160517449087758085503529734946816000000*Ut2

- 4946688830614721681945104236353592014353024942080000*U

- 1 15871411764609165297427780196799580236960235520000000
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TEST<4> :

22089602975956980750*Ut 13

+ 86491002543982696588500*Ut12 + 156195689415213130744347000*UT1 1

+ 172259143093717771535408250000*Ut10

+ 129433596450385062619125316260000*Ut9

+ 69970518596628628170780919761144000*Ut8

+ 27996770504240767719968332553302032000*Ut7

+ 8394753607311485555936963301017405664000*Ut6

+ 1886262462178359470453628348106255603200000*Ut5

+ 313676486921320634295943928563523576578560000*Ut4

+ 37523199314813738015423264308248900527788032000*U»3

+ 3057578038452175234913906048078748584921235456000*Ut2

+ 152 107 92 82 08 57 1885 762889 4 438 5 5329 6 509 332 731 98 592000*1)

+ 3488954088079574088445883089691182162429083648000000

TESTC5):

- 558494058584919600*Ut13 - 2142662019449632480800*UM2

- 3789225074163506961297600*Ut 1 1 - 4089859378859733960658320000*tlt 10

- 3005799008077653995763043488000*UT9

- 15883661 79425304301573043591 155200*L)t8

- 620860711883269178016664389017625600*Ut7

- 181745794690693486784804862937239091200*Ut6

- 39841805042504877515374549581687521280000*Ut5

- 6459517168573458186339920338039023587328000*Ut4

- 752818207186657559705506897698968496183705600*Ut3

- 59720164266934734335749087866430652508851404800*Ut2

- 2890144210404008986942354078884334953293257113600*U

- 64438906132691514550825884716384821390501478400000 •
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TESTC6):

10167863351045400*Ut 13 + 3798604 1 396482779600*11* 1 2

+ 65376576000357477055200*Ut11 + 68623918054871623541697600*UM0

+ 49009670433545317134028790400*Ut9

+ 25145499320697226640444737862400*Ut8

+ 9534620661328195038640811314137600*Ur7

+ 27049966362316756421312025691 13472000*(Jt6

+ 574131509156234848399952829359879577600*Ut5

+ 90033413450909494587661434986732891750400*Ur 4

+ 10138443021477329246579563453409089093632000*Ut3

+ 776267072302493023717104601261862514720768000*U»2

+ 36218949047079636618827533040605194990963916800*U

+ 777666996997867121179205957383950265692979200000

TESTC7):

- 139563590166000*Ut 13 - 5056078 1 485 1 9 1 1 200*l)t 1 2

- 842165940795966072000*Ut11

- 854085193896421 169654400*11* 10 - 58842678843057 1 9 1 2028064000*Ut 9

- 290820781641508750890761817600*IM 8

- 106073025275055925463091829171200*Ut 7

- 28905790970250481770947691284428800*U» 6

- 5884591266676637266881562326802022400*U»5

- 883793210920424262309414701266292736000*Ut 4

- 95169485783506928321046440862841149849600*Ut3

- 6957214922863672669709835661615899082752000*UT2

- 309425635647526623842881281451065862835404800*U

- 6322495954953233870393362639809739436851200000

B-12



TESTC8):

1549199029950*Ut13 + 5340850137S22900*Ut12

+ 8480508050939067000*UtH + 8202719839548302125200*Ut10

+ 5387717233171136613578400*Ut9 + 2536051659789230583822993600*Ut8

+ 879724267570274370784097500800*U*7

+ 227615768214613705198210539744000+UT6

+ 43912655642784039470723912658739200*Ut5

+ 6237277826882944601704805757986918400*Ut 4

+ 633835863610034335154176840383305318400*UT3

+ 43628392811718179373374938138204038758400*Ut2

+ 1822743719774642362614906824472019599360000*U

+ 34900931454200323183347698382998077440000000

TESK9) :

- 12385933560*UM3 - 42094444700880*UM 2 - 64886449373871840*(Jt 1 I

- 60267171904427442240*Ut10 - 37709169470943679463040*Ut9

- 16805606902929375013866240*Ut8 - 5492129463360493402666314240*Ut7

- 1333062376362801719222725463040*UT6

- 240340626571584167853323108106240*Ut5

- 31786941713626239114479086450851840*Ut4

- 29971321675930059997115814915951820S0*Ut3

- 190732988639646079303914212051527925760*Ut2

- 7340530929376193890802461232939925504000*U

- 128987675480883909365489172549206016000000
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T E S T C 1 0 ) :

122949684*11* 13

+ 356079304152*(JT 12 + 479443248 1 856 1 6*11* 1 1 + 39585 1 6561 58820576*Ut 1 0

+ 222779168227694460096*11*9 + 899489463800236478357 76*l)t 8

+ 26730893065195852735378176* IJT7 + 5906280793909456838894455296*U»6

+ 968437057171347270282791448576*Ut5

+ 116200329038160825547012950614016*Ut4

+ 9904001372340066547854080074186752*Ut3

+ 567l67099339101496140937881396445184*Ut2

+ 19538681689022034634923586049644953600*U

+ 305494681042359890085465748301414400000

t

T E S T C 1 1 ) :

- 160056*UM3 - 787582224*Ut 12 - 1 3564483508 1 6*Ut 1 1

- 12612520191 17376*Ut 10 - 74 1 9 5069 1 782990976*11'9

- 298016918468024461056*Ut8 - 85039302554076938236416*Ut7

- 17564318265935066256423936*Ut6 - 2635242297457649636343914496*Ut5

- 284193567614790517765936398336*Ut4

- 21429294530725134119954975293440*Ut3

- 10697767l5869965366362488488067072*t)t2

- 3 16636233067 59 71 78 74343575604428800*1)

- 419022432774206248141796356915200000
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APPENDIX C

IAM PROGRAM EVAL AND OUTPUT FOR PARTIAL SUMS

OF THE POLYNOMIAL PARTS OF Pnrn.
EVALUATED AT £ AND £ FOR m = 3, 4, 5, 6

1 £

EVAL Listing

TYPE EVAL
1 5 . 1 : I N Z ( 2 > - 2 J I N Z < 3 > - 5 5 I N Z < 4 > - 8 ; I N Z ( 5 > - 1 1 M N Z C 6 > * - 1 5
15.2:$DIST-15
15.3:FOR L-2 TO 6 , CM-LJ 7/ INZ ( L) ; K-M J Z 1 -Z- 1 ', A
DELETE I N Z C D i T Y P E M, K, Z, Z 1 5 A C 0 )- 1 i B C0) -1 ; &
FOR 1-1 TO K, ( C - M + n B C I ) - - < Y - C * ( C - 1 »*B(I=1) J *
C-K-I + l ; A C I > - C * ( M + C > * A U - l » J DELETE C;«
FOR 1-0 TO K , C A l ( I ) ~ A < n * Z T ( K - I > J S
A 2 ( I > - A ( I ) * Z 1 t ( K - I ) ) ; D E L E T E A J «
FOR 1-0 TO K , B ( I ) - B ( I ) * Y t ( K - I ) } «
SUMXC n - A l < K ) * B ( 0 1 + A K K - n * 8 < n j T Y P E SUMX(.l > ;&
DELETE Al ( K ) , A 1 (K- l ) }&
SUMINC1 ) - A 2 ( K ) * B C 0 ) + A 2 ( K - 1 ) * B ( 1 > J T Y P E SUMIN( 1 ) J«
DELETE A 2 ( K ) , A 2 ( K - l ) , B ( 0 ) * B < n ; «
FOR 1-2 TO K , ( S U M X C I > - S U M X ( I - l > + A l < K - I ) * B C I > J «
DELETE S U M X C I - 1 ) , A 1 ( K - I ) J T Y P E S U M X ( I ) 5 «
SUMINCI ) -SUMIN( I -1 )+A2(K- I ) *BCI ) }&
DELETE S U M I N C I - 1 ) , A 2 C K - I ),B( I ) ;TYPE SUMIN(I»;«
DELETE S U M X ( K ) * S U M I N ( K ) * M , Z » K » Z 1 )

EVAL Output

IAM
WELCOME TO IAM(72321)
*LOAD FROM "EVAL"
*DO PART 15

M: 2

K: 2

Z: 2

Zl : 1

C-l



S U M X < O *

•>:

MS 3

K: 3

Z: -5

/ *8W

, 69120*^

C-2



M: A

K: 4

Z: 8

21 : 7

4 3
SUMXU) : - 24192*Y + 1290240*Y

4 3
SUMINCM: - 1 6 ] 2 8 * Y + M28960*Y

4 3 2
S U M X C 2 ) : 18816*Y - 860160*Y + 25804800*Y

4 3 2
SUMIN(2): 16800*Y - 517440*Y + 19756800*Y

4 3 2
S U M X ( 3 ) : 2432*Y + 647168*Y - 18432000*Y + 412876800+Y

4 3 2
SUMIN<3>: 5824+Y + 492352+Y - 9878400*Y + 276595200*Y

4 3 2
SUMXC4): 6528*Y + 40960*Y + 13729792*Y - 309657600*Y + 5780275200

4 3 2
SUMINC4): 8225*Y + 137004*Y + 8974252*Y - 146<?41200*Y + 3388291200

M: 5

K: 5

Z: 1 1

Zl : 10

C-3



5 4
S U M X C l ) : - 3024000*Y + 199584000+Y

5 4
: - 2419200*Y + 181440000*Y

5 4 3
SUMXC2): 2203200*Y - 176774400*Y + 65B6272000*Y

5 4 3
SUMINC2): 1900800*Y - 129600000*Y + 5443200000*Y

5 4 3 2
SUMX(3): - 192600*Y +' 129888000*Y - 6092301600+Y + 169047648000*Y

5 4 3 2
SUMINC35: 100800+Y + 100800000*Y - 4082400000+Y + 127008000000*Y

SUMXC4):

539450*Y»5

- 16522000*Yt4 + 4528279800*Yt3 - ] 6 1 5344 1 9200* Y T2 + 37 1 9048256000* Y

600R00*Y»5

+ 800000*Y»4 + 3 17l600000*Yt3 - 98784000000* YT 2 + 2540 1 60000000* Y

SUMX(5):

378399*Yt5 + 30182790*Yt4 - 707 1 66 1 08*Yt 3

+ 121481 147304*Y*2 - 3644667290880*Y + 73637155468800

SUMINC5):

500800*Yt5 + 29800000+YT4

- 79200000*Y*3 + 76946400000*Y»2 - 2032 128000000*Y + 457228R0000000

C-4



M: 6

K: 6

Z: 15

Zl : 14

6 5
SUMXC1): - 547430400*Y + 43 1 10144000*Y

6 5
SUMIN(l): - 479001600*Y + 40236134400+Y

6 5 4
SUMXC2): 414849600*Y - 51193296000*Y + 2263282560000*Y

6 5 4
SUMIN(2>: 359251200*Y - 41912640000*Y + 19715705R5600*Y

SUMXC3):

6 5 4 3
- 119750400*Y + 39688704000*Y - 2766234240000*Y + 90531302400000*Y

SUMINC3):

6 5 4 3
- 75398400*Y + 31977792000*Y - 2117612851200*Y + 73605301862400*Y

SUMXC4):

80724600*Yt6 - 12434796000*Yt5

+ 21 87102060000*Yt4 - 11 3 1 64 1 28000000*Yt 3 ••• 305543 1 456000000* Y t 2

SUMIN<4):

76728960*Yt6 - 7575321600*Yt5

+ 1641149959680*Yt4 - 80965832048640*YT3 + 2318567008665600*Yt2

C-5



SUMXC5):

26049600*Y*6 + 7794954000*Yt5 - 727512840000*Y»4

+ 90989260200000*Yt3 - 3888730944000000*Yt2 + 91662943680000000*Y

SUMIN<5>: .

38005632*Yt6 + 6752309760*Yt5 - 423113209344*Yt4

+ 63624906196992*Y»3 - 2599605433958400*Y»2 + 64919876242636800*Y

SUMX(6):

37440225*YT6 + 2076860250*Yt5 + 436016722500+Yt4 - 31694605425000*Yt3

+ 3172187731500000*Yt2 - 118397968920000000*Y + 2520730951200000000

SUMINC6) :

4 5 5 3 5 1 6 8 * Y t 6 + 2972482688*Y t 5 + 3460 1 3833984*Y t 4 - 1 74727 1 4244608* Y-t 3

+ 2067868155967488*Y t2 - 73936525720780800*Y + 1666276823561011200

C-6


