THEORETICAL CHEMISTRY INSTITUTE
THE UNIVERSITY OF WISCONSIN

{NASA=CE=135992) HOLECULAR COLLISICRS 21: W7%=10668

SEMICLASSICAL APPROZIMATICE TC

ATOH=SYHUHBIRIC TCE ROYATICHAL EXCUTATION

{¥iscensin Dniv.) 23 p HC $3.25 Unclas
CSCL 20H G3/24 22029

MOLECULAR COLLISIONS XXI.
SEMICLASSICAL APPROXIMATION TO ATOM-SYMMETRIC

IOP ROTATLONAL EXCITATION

Dennis Russell and €. F. Curtiss

WIS~-TCI-499 24 August 1973

MADISON, WISCONSIN



MOLECULAR COLLISIONS XXI.
SEMICLASSICAL APPROXIMATION TO ATOM-SYMMETRIC

TOP ROTATIONAL EXCLTATLON N

Dennis Russell and C. F. Curtiss
Theoretical Chemistry Institute
University of Wisconsin

Madison, Wisconsin 53706

ABSTRACT

In Paper XIX of this series a distorted wave approximation to the
T matrix for atom-symmetrie top scattering was developed which is correct
to first order in the part of the interaction potential responsible for
transitions in the component of rotational angular momentum along the
symmetry axis of the top. A semiclassical expression for this T matrix
is derived by assuming large values of ovxbital and rotational angular

momentum quantum numbers.
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In Paper XIX of this seriesl a distorted wave (DW) approximation to
the T matrix for the scattering of an atom by a symmetvic top (ST) was
derived. The perturbing potential was taken to be that part of the
interaction potential responsible for transitions in the component of
angular momentum along the symmetry axis of the top. The T matrix was
expressed in terms of the generalized phase shift (GPS) solution to the
scattering of an atom by a Symmetfic top with a cylindrically symmetric
potential. In this paper a semiclassical approximation is developed by
assuming large orbital and rotational angular momentum quantum numbers
except for the angular momentum component along the symmetry axis. At
the total energy of interest this component remains small since it is

assumed that the moment of inertia about the symmetry axis is small.

I. DISTORTED WAVE T MATRIX

The interaction potential V(-t,S) can be expressed as

Vi{rn,s8) = } (8W251/2

1/2 g
I 22+ v, (Dt &h

where /v 1is the distance between the atom and the ST center of masg; S
represents the three Euler angles which specify the orientation of the
principle axes of the ST with respect to a coordinate system whose =z
axis is fixed along the direction between the atom and ST center of mass;
ng(/t) is an expansion coefficient dependent on /¢ ; D'Q'(S)mo is the

usual representation coefficient of the three-dimensional rotation group.



This interaction potential can be partitioned into an isotropic part
V(s) given by

viry = ) M2y (2)

00

2 . , :
or a cylindrically symmetric part VO(/L,S) which is adiabatie with
respect to the component of angular momentum along the symmetry axis and

is given by

Tplns) = T e %084 1) 72V, (IDH () - )

For later use we also define the potentials ﬁo(/t,S) and Vm(AL,S)

?o(ta,s) = VO(fLsS) - V() ; (4)
_1 1
vm(/t,s) = g (8m2) /2(29, + 1)/2v£m(zz_.)ng‘(s)mo . (3)

The ST eigenvalues S(Qv) are given by

AR S S !
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where £ 1is the rotational angular momentum quantum number and Vv the
quantum number of the component of angular momentum aleng the ST symmetry
axis; T3 1is the moment of inertia about the symmetry axis and I, the

remaining moment. From Eq. (6) it can be seen that when I3 << I1 energy



conservation requires that the index V remains small. The channel wave

number k(&v) is defined in the usual way:
K(W) = ZHE - €6 (7)

where E is the total energy and U 1is the reduced mass of the atom-ST
system.

Solutions of the wave equation corresponding to different parts of
the interaction potential can be defined. First we have the isotropic

+
solutions w(—)(kiv|f£) which are solutions of the radial equation

2
[ - 2D Ay - e ol = o (8)
with asymptotic form
lim w(i)(uvln) = expl[+ik(2v) ] . (9)
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The isotropic phase shift n(ALv) is defined by the solution of Eq. (8),

w(lﬁvlft) s which is finite for T =0 :
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For later use it is convenient to define the quantities f( (Aav ]2)
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We next define the GPS solutions P(_)(Aﬂvizzgs) and Q(i)(AQv]/th)
of the scattering problem with interaction potential Vo(fZ,S) . Letting
the single index <Yy represent the three indices X, £, v the GPS
quantities are solutions of the following equations:
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The quantities F(')(Y]fx_,s,s") appearing In Egqs. (13) and (14) are

defined as

) GlrLs,sm) = §x(ﬂA|S)f‘*‘)<A£G]/z)><ﬁ|ﬁ|s“)" (15)



where A represents the three indices of A, &, L and

x(y|Als) = (8r2)Y/2
of
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The boundary conditions satisfied by the GPS solutiocns are

tin Q0 FlrL.s) = 20
AU >
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The quantities P(_)(Y|ft,5) and Q(_)(Y|/t,s) are related as follows:

P(t)(kkvlfx,s) = mQ(+)(Az—u]/T,{woo}s{woo})*

where the notation {m00}S{m00} refers to a product of rotations.
From Eq. (XIX-84) the DW T matrix for transitions from initial

states (ALv) to final states (ALV) when v # V is given by3

(21)
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where Vv_s(/t,s) is given by Egq. (5) and
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In terms of this T matrix the total degeneracy averaged cross—section

I(W|EV)  is
= 4md 2)\ L+i+7, L sy 12
T = T L %2%{—% S il SRCT MY Y EERe TS

X

II. SEMICLASSICAL APPROXIMATION

The semiclassical approximation to TEW(qu) is obtained by

considering Eq. (22) for the case

LE o> L,u,v (25)



For large values of A and % Eq. (8) is solved by WKB techniques.

Under the conditions of Eq. (25) it can be shown that4

P00 = f P A Ieme® GG - 0+ P Flae - D
(28)

The quantities B(i) (v|A) and ) (v|n) are defined as follows. With
X
v SopLAv) O+ A
cy|n) 1 Z%Efzgjz- T (27)
and ,fLO defined such that

crlay = o

we have
Dl - Gt [ amee @
6V Gy - ze(+)(¥|/10) -6 PG (29)
With
4 lay = H—Z[C(?M')'u2~1]da' (30)

we have
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From Eq. (15A) of Appendix & we have the semiclassical expression for

the 3-j symbol:

2T L
(2 + 1)1/2{ o ] = e oy, 2 G
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Substituting Eq. (33) into Eq. (16) yields
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- L '
U = { 5 3 0} (35)
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When Eqs. (26) and (34) are substituted into Eq. (15) the semiclassical

+ -
expression for F(")(YIIL,S,S") ig obtained24

FO G aLssm = 6D A st RS, (37)



with

® . o x(i)(§lfL) 0} (38)
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The semiclassical expression for the 6~j coefficient appearing in

5
LL L L' L L
22+ 1)1/25 i z , [ i _] . (40)
A XA A=X' XA AT-X

With the aid of Eqs. (26), (36) and (40) the semiclassical expression for

Eq. (23) is

+ -
G(—)(Y|A|A,,S',S) is derived in Appendix B:

O - L R S L e AR DL ACOR PV NI PO
DL(USW)I_E T G(S[R(i)S'T(i)) (41)
where R(i) and T(i) are gi o
given by Eqs. (38) and (39) with Yy replacing

Y .

Equations (37) and (41) are substituted into Eq. (22) to obtain
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ooln = 0™ @Y Gl e DY G fan fas v, (1,8)
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Semiclassical expressions for the GPS solutions P(') and Q(“)

appearing in Eq. (42) are obtained by substituting Eq. (37) into Egs.

(13) and (14) to give

-1
T @@ FlaLe = @ amHij 29 s

+

1
) 5B 310

(

=P Gl e @ ® Gla,s - PGt

- T R [
exp (10 G4, RPRE T ® 5y, (43)

T @O o) = ®amHTy oD ®)® o4
£ (v 2)e e ® iyl 80 - £ iy|a)
- A
exp (1P 7 () 1D TR g (M () Ty (44)

¥ %
It is assumed that the product f(+)(Y]A,) f(t)(y|fL) is highly

oscillatory and terms containing it can be neglected in Eqs. (43) and (44)

which then become
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oo _ _ PR TPIR
e Fla,e) = @ @i LR TE® 1D g0 ?
exp (10 (7| 1,90 (£3)
Fem@P ol = @ @i P e D a0 )
exp (i) (v| 1,8)) (45)

It is now an easy matter to integrate Eqs. (45) and (46) with boundary

conditions specified by Egs. (17)-(20) to obtain the semiclassical

expressions for P(i) and Q(i) :
_ ® - PR S
eV Flas = @ - wmh [ 1eD G AR O Haa
(47)
+) - . 27 1) s 2= ()" (7T
Q (Y|,s) = 2n(Y) - (A )Iolf Gl R st Yd AT
al _ _ - -1 _ -1
- @[ [EP Gl F o P T Haa (48)
0

ey n,s) = onep + W [ £ | | 2 Dsr T ans

{49

P(_)(Y|A,S)

—aneny + wiEn] £ alan T o kO srhaa
0

N -
+ @[ [EP oA F o mPse®ane (50)
0

* *
With these expression for P( ) and Q( ) the GPS quantities appearing

in Eq. (42) can be given explicitly as
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-1 -1 ™ _
PP v,k s ) = anen + (/)| e AT A
(51)
) w7t ™t 27 0=) o g2e
P (| LR ST ) = o=y + WA T v ] T (A X8T)d A
_ . ‘
1 {+) 2~ .
WA [T oA [T usya 85)
0

e FIARP ST = @ - wmdh] £ G AT EsDaa
0

- (uﬁﬁ2)f21f(+’(?l/x')lzﬁo</x',s>afL' (53)
(DGl EOED) = @ - wan] 159G T s
(54)
where
x = 1026l ng - xPevlan o) (55)
Y = {0 2(e(+)w|/~(0) A (| /)y o} (56)

Substituting Eqs. (51)-(54) into Eq. (42) the semiclassical T matrix can

be written as

T = Jan fasetylm, U IV ALYE A LS) (57)
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with
vrlaas = kY2 v A exp (2in(n)
- (/A If(F)(Y!/X‘)Izﬁo(/x’,XSY)d/Y’
0
1 —
G SRV NONICIF VD
0 .
+ UMV e canmn [ 159 (a1 Fn9aan] 68
and

A+l

(-1) ci>“'5 L+ DY quam?)

TEE AL

DL(USW)Q_E,X_A vV S(rL.S) . (59)

If the terms in the product W(Y|/1,S)T(§|rL,S) containing the highly
+ () .~
oscillatory quantity w(_)(yl/t)w{-)(Ylft) are neglected we then have

after using Eq. (26)

YYln . 9)¥ G A .8 = (—1)**5 [@(Xivclzx,s)expcie")(iiu]/x><X - )

+ ix(')(iiu]fl)(z -y - ¢(XE5v]fL,S)exp(ie(+)(XEu]/m)(X - )

+ 5P E] 0@ - D) (60)

where
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AW A LS = £V AYEY (ABv] A Yexp (- (iu/A2)
g — - (=) -
1P T |15 (i an + A|f( ' Fiv| A (A8
0
+ f D@ AT D) (61)
o .
Equations (57)-(61) give an apprﬁximate T matrix for atom-ST
scattering which is first order in that part of the interaction potential
responsible for transitions in the component of angular momentum along the

symmetry axis and which is semiclassical in the orbital and rotational

angular momentum.
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APPENDIX A

With the definitions
n = % -2 (14}
m o= u+v (24)

4
an explicit expression for the 3-j symbol is

_ 1
{22 L} R 72 _(L+n)!(L—n)!(5L+E—L)!]/2

LV uev L+2+ %+ 1)1

1

- (L + m)!(L - m)! ] T (-1X L+ 2+ - 010 - u+ !
B - WIE+ W@ - VIE + vl (

(34)

The factors in Eq. (3A) are rearranged to give

I3 - 1
Lot = (_l)L+E+U Z (_l)X [(L+ o)t (L - o)L+ mI(L - m)E]/ﬁ
UV —u=v X C-n-0@C+m- I +n-miyl
(L + T - L) (T+L+p - IE+L+p - O ! v;

(L+T+L+ DI (T = T (L + u)!

- P
’(l—u+x)!(£—p+x)] (4a)

(- W+ !

Under the conditions

L-n=-0IC+m-)i{x+n-m!
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L >> L,u (54)

£ >> L, (64)

an approximation to the 3-j symbol may be derived by using the fact that

= N (7A)

for N much larger than k and & .

Using Eg. (7A) we obtain

[ (R,-E—E—L)l}%:_____l-_r_ (88)
A+ T +L+ DI (o + DA
_ T ) ¥ -
ST S
(- W+ - u+ X)'W}E A=
! = (1) (104)

@-wr@ +wr |

Substituting Egs. (8A)-(104) into Eq. (4A) yields

_ ] L
TIPS T L (ul)L-s-uu[zy, - 1]/2 [ 7" (z - nJ“
WV —pv 28 - n J

[(L+ o)L -~ +midl - m)!}}‘i (T +n X
l [ ¥ ] (11A)

—1y%
R e Y e o

Since

.8 > n {124)
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v (22 L - L
2% + 172 [ ] = (pbtH [%]
UV —u=y

o

Z (~1)X [¢(L + a)!(L -~ o)L + m)i(L - m)!]/i
5 (L-n=-I@L+m-3)!(x+n-m)lyl

(134)

From Eqs. (12.B-13) and (12.B-19) of Ref. 6

i
L - nymor ooy [P - n)iL +my (L - myt]7?
Do B Ob, = (D) é N A S (A W T ey by

2

(cos g )L (tan 2y .

) (144)

NI

tal A

Setting R = in Eq. (l4A) and then comparing with Eq. (13A) we obtain

1 L2 L
28 + 1)°% } = (I gl 50D, 7 (154)
TRVIESTEeYS ! =Xy 1TV
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APPENDIX B
From Egq.{34),
- t - 1 ;/
XOW AL [sxGIv ALyt = <0 eyt @t - 7% (o + 18
LY L %
D (US'W)‘Q’P_Q”;\_}\t D (USW)QU_ESX“AI (lB)
with U and W given by Eqs. (35) and (36). From Egq. (40),
1 L L L) (Lot ‘L' L v)fu L L
(A + )72 (20 + 1)7%) _ = _ _ _ _
L% (A X n -2 B-& 2'=T) [A-A" X-A A'-X
(2B)
From Eq. {(26),
P oaravny = £ P 0w Aew@ @0 - an ¢ @@ - 0y
(3B)

Substituting Eqs. (1B)-(3B) into Eq. (23) vyields

—_— T. T v - 1 —
P ylTn,s,s = DM G4 1% @y £ @,

P =L L' L L L' L L
DA T ol e + 1)[ ][ J

LL'A'LT £'=8 2-2 T-2' D=2 XA A'-n

DL'({x(i)OO}US'W{e(1)00})2,_2’A_A, DL(USW)E,_E T (4B)



19

In obtaining Egq. (4B) we have used the property

ima 2 ing & X
e D8 e = D ({aoo}s{eoo})mn : (53)
Since
' E‘*")\T X L‘ E L Y L' T, T
(-7 7T TR T L+ 1) . _ _
L 274 -2 f2-4° kA—A' AeA A=A
L % LY % T %

we can write Eq. (4B} as

oo _
¢ (y|Rn,s7,8) = DM of 4 1yt f(i)(yl/L)DL(USW):_E,X_R

@™ T+ oot (x®oorstute Poon,,
L')k,gv' ’

L' *
D7 (USW) gy g 3 ar (7B)

Since the representation coefficients are completz Eg. (7B) reduces to

- T4X+L T - 2
¢c® R n.sts) = (1M D 4 17 f(i)(vlfl)DL(Usw):-E R

(£)

§({x*? 0otus wie 00} luswy .. (8B)

The ¢ function in Eq. (8B) can be rewritten as
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s¢txPootus'wie oot usiy = s ix P oorvs wie ooty . (10m)
The rotations U and W are such that

o o olu

{0 o 0} ey

wio 0 oWt {0ac}. 1128}

i

In view of Eqs. (l0B)-(12B) we rewrite Eq. (8B) as

D elflgs = M el v % @ g onkosnt ;5

sto x*) o3s'{0 6 01]s) . (138)
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