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ABSTRACT

In Paper XIX of this series a distorted wave approximation to the

T matrix for atom-symmetric top scattering was developed which is correct

to first order in the part of the interaction potential responsible for

transitions in the component of rotational angular momentum along the

symmetry axis of the top. A semiclassical expression for this T matrix

is derived by assuming large values of orbital and rotational angular

momentum quantum numbers.
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In Paper XIX of this series1 a distorted wave (DW) approximation to

the T matrix for the scattering of an atom by a symmetric top (ST) was

derived. The perturbing potential was taken to be that part of the

interaction potential responsible for transitions in the component of

angular momentum along the symmetry axis of the top. The T matrix was

expressed in terms of the generalized phase shift (GPS) solution to the

scattering of an atom by a symmetric top with a cylindrically symmetric

potential. In this paper a semiclassical approximation is developed by

assuming large orbital and rotational angular momentum quantum numbers

except for the angular momentum component along the symmetry axis. At

the total energy of interest this component remains small since it is

assumed that the moment of inertia about the symmetry axis is small.

I. DISTORTED WAVE T MATRIX

The interaction potential V(/-,S) can be expressed as

V(/L,S) = m (8r)'1/2 (2 + 1)1/2 Vkm(/)D (S)m0 (1)

where 7A is the distance between the atom and the ST center of mass; S

represents the three Euler angles which specify the orientation of the

principle axes of the ST with respect to a coordinate system whose z

axis is fixed along the direction between the atom and ST center of mass;

V9m(!) is an expansion coefficient dependent on /C ; D (S)m0 is the

usual representation coefficient of the three-dimensional rotation group.
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This interaction potential can be partitioned into an isotropic part

V(rt) given by

V(A) = (87 2 )-1/2 V00 (t) (2)

or a cylindrically symmetric part2 V0(/,S) which is adiabatic with

respect to the component of angular momentum along the symmetry axis and

is given by

V0 (/.,S) = ( 8 72)/ (2 + 1) 2V 0 (/)D (S)00 (3)

For later use we also define the potentials V0( t,S) and V m(t,S) :

V0 (tt ,S) = VO(t,S) - V(t) ; (4)

Vm(r,S) = (8r2)-Y2(2Z + 1) 2Vm(/C)D (S)m0 (5)

The ST eigenvalues 8(9V) are given by

((Zv) =i 2 ( + ) +1 (6)
211 2 I l

where k is the rotational angular momentum quantum number and v the

quantum number of the component of angular momentum along the ST symmetry

axis; 13 is the moment of inertia about the symmetry axis and I, the

remaining moment. From Eq. (6) it can be seen that when I3 << Ii energy



conservation requires that the index v remains small. The channel wave

number k(kv) is defined in the usual way:

k2 (kv) = 4[E - (av)] (7)

where E is the total energy and p is the reduced mass of the atom-ST

system.

Solutions of the wave equation corresponding to different parts of

the interaction potential can be defined. First we have the isotropic

solutions (±) (Xvjft) which are solutions of the radial equation

d2 X(X + ) (r) k 2 () = (8)

with asymptotic form

lim (±)(x2aLv ) = exp[±ik(v)/L] . (9)

The isotropic phase shift n(X9v) is defined by the solution of Eq. (8),

t(XZvl/) , which is finite for /X = 0 :

(XaRL1) -= 2k(L ) [i +l (-)(XZAV ) + (-i) +L (X()(avIr)

exp[2in(Xkv)]] . (10)

For later use it is convenient to define the quantities f()(1.vlj-) :



f()(l) = k(kv)-l/2 H(-)(X ) (11)

f(-)(XvL) = (-1) k(7) -1/2  (+)(vjqr)exp(2in(X9)) . (12)

We next define the GPS solutions P (Av)1-t,S) and Q ( V- S)

of the scattering problem with interaction potential VO(P,S) . Letting

the single index y represent the three indices X, k, v the GPS

quantities are solutions of the following equations:

d exp(iQ )( ,S)) = -i/ A 2 ffdS'dS"0(/t,S')F(±) (Yl /tS' S)

[F(+) (y It,S ',S"I)*exp[iQ(+) ( ln ,S"I)] - F (-) ( 1/t,S ', S")*

exp[iQ (- ) (Y I-(, S")]] (13)

dt- exp(iP(±)(Y/t,S)) = iP/42 ldS'dS"V0(rU,S')F ( ,S,S')

[F(+) (YI/,S",S')exp(iP( - ) (yl tS")) F(-) (y It,S",')exp(iP(+) (y I4,S")) ]

(14)

The quantities F(+ )(yj-L,S,S") appearing in Eqs. (13) and (14) are

defined as

F(+)( N,S,") = X(yIAIS)f(+) (£ /l)X(IA IS") (15)
A
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where A represents the three indices of X, Z, L and

X(-IAIS) = (872) - 1 / 2 (-1)L (2X + 1)(2Z + 1)(2L + 1)]1/2  (-i)

L L L]L(16)

The boundary conditions satisfied by the GPS solutions are

lim Q (YLIAt,S) = 2n(y) (17)

lim Q(+) (~I ,S) = lim Q(-)(y ,S) (18)
S- 0 L /t+ 0

lim P(+ (Y I/,S) = -2n(y) (19)
Co

lim P (Y / ,S) = lim P(+) (Y ,S) (20)
tt 1 0 -t 0

The quantities P()(y t ,S) and Q() (ylj/,S) are related as follows:

P() (X£VI ,S) = -Q ( ) (XA-VJ, {TO}00)S{T00})* (21)

where the notation {O00}S{z00} refers to a product of rotations.

From Eq. (XIX-84) the DW T matrix for transitions from initial

states (Xiv) to final states (AXv) when V # v is given by 3
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TDWL (YIy) = (-1 (i) -' (p/47h2)fd/fdSdS'dS"V _(r,S)DW v-v

[G(+) (y ITr,S'S)exp(-iP(-)(yjI /,S')*) - G(-) Y IjI/ ,S',S)*

exp[- iP(+ ) (YI/L,S')*] [F( ) (Y- /I ,S,S") exp[iQ (+ ) (6(I hS")]

-F() (yI / ,S,S") exp[iQ(-) ( ,S )] (22)

where V -(/ ,S) is given by Eq. (5) and

G(+) (y ,S',S) = (-1) [(2X + 1)(2k + 1)(2L + 1)(2L + 1)(2L' + 1)]l
LA'

LL' E L L' M
L' L'XX ? x(YIA' IS')fx)(Zv, x(XIx L .t (23)

In terms of this T matrix the total degeneracy averaged cross-section

I(Zv[5vv) is

3 _ (2X + 1) ()L++ L 2T V) 2
I(v (2) + 1) DWL - o (24)

II. SEMICLASSICAL APPROXIMATION

The semiclassical approximation to T (IY) is obtained by

considering Eq. (22) for the case

X,. >> L,v,V (25)
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For large values of X and k Eq. (8) is solved by WKB techniques.

Under the conditions of Eq. (25) it can be shown that4

f(±) (-I/ )  = f (XVI/t)exp[is() (YI/)( - ) + ix(+)(7f.)a - )

(26)

The quantities 6(+)(I/) and X() (y() are defined as follows. With

-I o2pv(A ) (X + 1/2)2
C(- 2 k() 2 -k()2 (27)

and /t 0  defined such that

c( o/0) = 0

we have

S( (A + 12 ) f dtA (28)
( ( ) = k(D) / tL' 2C ,) (28)

()/) = 2e(+)( Io) - 6 (+)i ) . (29)

With

. (YI/) =  [C(Y /L ')-1/ 2 - ]d ' (30)

we have
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= Ik(A) '(31)

x ( (Yl) 2X ( / 0) - X (+ ) Y IA) (32)

From Eq. (15A) of Appendix A we have the semiclassical expression for

the 3-j symbol:

(2k +11 1 L LQ
(2 + ) 1 / 2  = (-1) L+ + D({0 0) (33)

-a v- 2 k-,a-v

Substituting Eq. (33) into Eq. (16) yields

x(YJAIS) = (82)-1/2 (2L + 1)1/2 (-1)L+X+Z (i) DL (USW) (34)

where

U = { ~ o} (35)

w = 0 j } (36)

When Eqs. (26) and (34) are substituted into Eq. (15) the semiclassical

expression for F(I+)  ,S,S") is obtained:4

F(+) (/L,S,S") = fH (U1 1) (S" ST (37)
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with

() = {o X-(rL) o} (38)

T {0 8 (Y/L) O} . (39)

The semiclassical expression for the 6-j coefficient appearing in

Eq. (23) is5

(2>,+ 1)1/2 = { (40)
tX x X-X' -X X'-,

With the aid of Eqs. (26), (36) and (40) the semiclassical expression for

GM (yIAI/L,S',S) is derived in Appendix B:

G M (y A,S',S) = (-1) (21 + 1)1/2 f(-) vIA)

DL (USW)_,_ 6(S R(S'T ) (41)

( + ) (+ )
where R and T are given by Eqs. (38) and (39) with y replacing

Y

Equations (37) and (41) are substituted into Eq. (22) to obtain
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TW(yly) = (-1) (i) (2E + 1)1 / 2 (P/4rh2)fd, fdS V - (A,S)

L -1D (USW) -R, -X [ f ( ) ( Y I / ) *exp (-iP ( Y I/, :- ( )  ST ) I)

- f (YIA )*exp(-iP( )(/1,R ) )][f ( (1)

exp(iQ (JA R/l - ST(+)) f ( exp(i (42

Semiclassical expressions for the GPS solutions P(t) and Q(±)

appearing in Eq. (42) are obtained by substituting Eq. (37) into Eqs.

(13) and (14) to give

d_ exp(iQ (y /,S)) = (4) (il/2) 0(/ A L )-f( ( )d exp(iQ (

[f(±)(Y/L)*exp(iQ(±) ( /L,S)) - f(+

e+ p ()(~() (, ) ( )exp(iQ ( y A R -1S T ))] (43)

d- exp(iP (Yl,S)) = ( )(ip/*2)Vo(/L,R ()ST ())f$ (yI /t)

[f( (yl/2)exp(iP) ( Y L , S ) ) - f )(/1)

exp(iP(J ( y IA ,R ) - R ( ) ST T + ) - (

It is assumed that the product f ()( /)*f ) f(+(yl t) is highly

oscillatory and terms containing it can be neglected in Eqs. (43) and (44)

which then become
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d/ exp(iQ ()(Y L ,S)) = ($)(ijpi 2 ) 0(/ ,R() ST( ) f ( )(y L ) 2

exp(iQ (y /L,S)) (45)

d (-+) (ip /,- 2 , 2
dA exp(iP (yjI S)) ($) (iV/ ) 0(/ ,R ,S ( 1 ,) I

exp(iP ()(y/ ,S)) . (46)

It is now an easy matter to integrate Eqs. (45) and (46) with boundary

conditions specified by Eqs. (17)-(20) to obtain the semiclassical

expressions for P(+) and Q() :

Q (Y iAL ,S) = 2n(y) - (VI 2 )f f( /L ')I20' - ST )d'

(47)

Q() (Y- I,S) = 2n)() - (ii/h2 )f f(-) ') 2 0(A ' S (-))d/ '
0

f -1 -1
- (p/F 2 )f (+)J ') 2 V( ',R S )d/L' (48)

0

P(+)(yl/t,S) = -2n(y) + (p 1j 2 )f If(-)(yj/tL)2~ ,R ST )d'

(49)

P (-)( A,S) = -2n(y) + (v/i 2 )1f f(-) (yI)12V 0( /L',R qST(-))dA
0

+ ( /f 2 )f If (I/* ') V0 (/',R ()ST(+))d/i' . (50)
0

With these expression for P(±) and Q) the GPS quantities appearing

in Eq. (42) can be given explicitly as
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-1 -1 0M

P (Y /I ,R ST ) = -2T(y) + (/ 2) f(-) y2)I O ',S)d/'

(51)

-1 -1 0

P (-Y/ R ST ) = -2n(y) + (I/#A2)f Xf()(y l,) 2 (A'XSY)d/A

+ (/2 () 2V 0( S)d 52)
0

S (Y RSA ) = S2i(y) - (o/p62)j If ( YI ) 2, XS )dA
) 2

(- /a2)f If (yA ) o(' S)d/t (53)
0

S( , ) ) = 2r(y) - (/f 2)f If(-)(I1/,I 2V (iL' S)dt/'A00

(54)

where

x = {0 2(X (+)(YIt O) - x(+) (y )) 0 (55)

Y = {O 2(e (+) (y 0 ) - ") (y A)) 01 (56)

Substituting Eqs. (51)-(54) into Eq. (42) the semiclassical T matrix can

be written as

TDW(Yly) = fd/ !dSY(yIn,S)V (yIYIA ,S)T(yI/ ,S) (57)
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with

(yI7t,S) = k(v) - 1 /2 [(+)(y I/)exp(2in(y)

- (ip/i 2 )f 1f( YIA)') 2 V 0 (/L',XSY)d/ '

- (i/2)f If(+) (YI ')I2V 0(i ,S)dA')
0

+ (-1)+ -( )exp(-(ii ) ( ') 2 0(12 ', S)d/')] (58)

and

L (YI-IjA,S) = (-1) + (i) (2L + 1)1 / 2 (p/4h 2

D L(USW) -, x V_,(/-L,S) . (59)

If the terms in the product f (y/I ,S)Y(I r ,S) containing the highly

oscillatory quantity (r(yIA>,A+)(I-L ) are neglected we then have

after using Eq. (26)

Y (Y / ,S)Y(I/, ,S) = (-1) [ ( AVv//J,S)exp(iO (- ) ( X )( - X)

+ iX(-) (X9 /)(£ - E)) - (AvvJ~,S)exp(i ( + ) (X2J.)( - X)

+ ix(+) ( Tvj/)( - £)) (60)

where
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S( ( ,S) = f(-) ( i )f(+) ( iv )exp((i/ /2)

0o

+ If (-)(; t l)12Vo(/ ' ,XSY)d!')) (61)
0

Equations (57)-(61) give an approximate T matrix for atom-ST

scattering which is first order in that part of the interaction potential

responsible for transitions in the component of angular momentum along the

symmetry axis and which is semiclassical in the orbital and rotational

angular momentum.
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APPENDIX A

With the definitions

n = - (A)

m = 9 + v (2A)

an explicit expression for the 3-j symbol is4

(L + i + + 1)!F £ _ _ L I = (-)L+R+I [(L + n)!(L - n)!(S + Z - L)

(L + m)!(L - m)! /2 1 )X (L + T+ - )!(. - i + )!
. - )( + )I - ) I( + )! (L - n - X)!(L + m - X)!(X + n - m)

(3A)

The factors in Eq. (3A) are rearranged to give

L L+T Z[ (-1)X L[(L + n) !(L - n)(L m) I (L - m)]

] ( 1 )LP-v X (L -n - X) (L + m - X)!(X + n - m)!X!

( + - L)! 12 + L + p - X)I( + L + p - X)!
l(k + + L + 1)!] ( - v)! ( + v)

(. - X + )(a - I + X) (2
(9 - P)!(£ + P)! (4A)

Under the conditions
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R >> L,P (5A)

S>> L,v (6A)

an approximation to the 3-j symbol may be derived by using the fact that

(N + k)! Nk- (7
(N + )! N (7A)

for N much larger than k and

Using Eq. (7A) we obtain

_ (a + Y - L) (8A)
(k + L + L + 1)1] L+ (8A)

(k + L + P - X)I(k + L + P - X)! L+p-
( - v)!( + v)! x= () L  X (9A)

( - + \)(£- P + )! X-

S( - i)!(( + ) = () (10A)

Substituting Eqs. (8A)-(10A) into Eq. (4A) yields

3,, I = L I nL nP(2k + 1)2 = ()L++ 2 + 1 KRT - n
29 - nj 21 + n

z (-)X [(L + n)!(L - n)!(L + m)I L - m)!] iR + n(X
X L - n - X)!(L + m - X)I(X + n - m)!XI (A)

Since

9,Z >> n (12A)
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Saa L L
(2k + 1) (1)

(-1)X [(L + n)!(L - n)!(L + m)!(L - m) (13A)
X (L - n - X) (L + m - X) (X + n - m) X!

From Eqs. (12.B-13) and (12.B-19) of Ref. 6

D L({O 0) (-1),+m I (_1)X [(L + n)!(L - n)i(L + m)!(L - m)I]
nm X (L - n - X)!(L + m - X) I(X + n - m)!X!

2a L )n-m+2X(cos ) (tan 2 ) (14A)

Setting B = - in Eq. (14A) and then comparing with Eq. (13A) we obtain

Li L+9+v L i(2k + 1) = (-1) D ({0 - 0}) (15A)
2 Z-1+v
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APPENDIX B

From Eq.(34),

X(XVI'A'L' S')X(VX 'A'LIS)* = (-1) L ' + L (8n) -  (2L' + ) ' (2L + 1)

L' L *
D (US'W),_Z,_ D (USW) ,_ , (1B)

with U and W given by Eqs. (35) and (36). From Eq. (40),

(2X + 1) - (2k + 1) 2 { L' -L' L' A' 2

(2B)

From Eq. (26),

f() (A''VIA )  f() (Xv kA)exp(i8 ( - A') + ix(+) (9' - k))

(3B)

Substituting Eqs. (IB)-(3B) into Eq. (23) yields

G(+) (y jIA,S',S) = (-)L) (2L + 1) 2 (87r2) -  f(+)(yI/)

z (_1) ~ +X (2L + 1)(2L' + 1) iL' L L' L
LL' DL' (S 00)- DL( ' -W), X-. ('- B

DL'(x(+)00}uS'W{e(+)O0})I,_kXX, D L(USW), (4B)L'RAX 'RXX
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In obtaining Eq. (4B) we have used the property

eimD (S) ein  = D ({f00}S{o00})mn (5B)mn mn

Since

(-1) PTx Z(2L + 1) L Ir
L ZI-k k-k Z-kvj A-A,' -A XI

L * * L *D (USW),_- '  
- D (USW)-, iXv D (USW) -, (6B)

we can write Eq. (4B) as

GM (yITIL,S',S) = (- 1 ) L+X+ (2L + 1) f(!)(l/)D (USW)_

(8r2)-1 Z (2L' + 1)DL'( (±)00}US'W{ e()00}) ,_, ,

L''L' *

D (USW)z,_ , (7B)

Since the representation coefficients are complete Eq. (7B) reduces to

G! (YIA /,S',S) = (-) + (2L + 1) f (y L)D((USW)_

(× ( ')oo}usw) . (8B)
6(The function in )USB) can be rewritten as) (8B)

The 6 function in Eq. (8B) can be rewritten as
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({XW{ O0USW) = 6(U-1Ix()00oous'W{e()o00W-l s) . (10B)

The rotations U and W are such that

U-1 0 o}U = {0o a 01)

W{a o o}W- = {o a C} 123)

In view of Eqs. (10B)-(12B) we rewrite Eq. (8B) as

G -(YIj/LA,s,s) = (-1) +  (2L + 1) f (y LA)D (USW)

6({o X(-) o}S {0 o(l 0}s) . (13B)
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