Nid- /073 ¢

NASA CR-134502
PWATM 4727

IMPACT RESISTANCE OF FIBER COMPOSITE
BLADES USED IN AIRCRAFT TURBINE ENGINES

by
L. A. Friedrich
J. L. Preston, Jr.

PRATT & WHITNEY AIRCRAFT
DIVISION OF UNITED AIRCRAFT CORPORATION

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA LEWIS RESEARCH CENTER

CONTRACT NAS 3-15568



1. Report No. . 2. Government Accession No. . 3. Recipient's Catalog No.
NASA CR - 134502 .
4. Title and Subtitle _ 5. Rm;, Dlaée73
IMPACT RESISTANCE OF FIBER COMPOSITE BLADES - —
- 6. Performing Organization Code
USED IN AIRCRAFT TURBINE ENGINES : i

7. Author(s} 8. Performing Organization Report No.

L. A. Friedrich ‘ PWA™ 4727
J. L. Preston, Jr.

10. Work Unit No.

9. Performing Organization Name and Address |

Pratt & Whitney Aircraft 11. Contract or Grant No.
Division of United Aircraft Corporation . NAS3-15568

East Hartford, Connecticut 13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Space Admlmstratlon
Washington, D. C. 20546

14. Sponsoring Agency Code

15. Supplementary Notes
Project Manager, Robert H. Johns, Materials and Structures Division
NASA Lewis Research Center, Cleveland, Ohio

16. Abstract

Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investi-
gated as a function of impacting projectile characteristics, and composite material properties. Ballistic im-
pact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting),

.| penetrative, or structural (gross failure). Steel projectiles were found to be > gelatin >>ice projectiles in
causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either
transverse or structural damage, depending upon projectile mass and velocity. Improved composite trans-
verse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-Glass fibers correlated
with improved resistance of composite materials to transverse damage. In non-normal impacts against simu-
lated blade shapes, the normal velocity component of the impact was used to correlate damage results with
normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic dam-
age, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter
steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter pro-
jectiles of ice and gelatin.

17. Key Words (Suggested by Author(s)) ) 18. Distribution Statement

Ballistic Impact Loadings, Composite Properties,
Fiber Composite Blades, Impact Angle and

Location, Ply Configuration, Projectile Unclassified — Unlimited
Characteristics

19. Security Classif. {of this report) 20. Security Classif. {of this page) 21. No. of Pages 22. Price”
Unclassified Unclassified 150 1 3.00

“For sale by the National Technical Information Service, Springfield, Virgi'nia 22151




FOREWORD

This report describes the work accomplished on contract NAS 3-15568 by the
Pratt & Whitney Aircraft Division of United Aircraft Corporation for the Lewis
Research Center of the National Aeronautics and Space Administration. The
work was initiated 7 July 1971 and completed on 6 April 1973.

Robert H. Johns of the National Aeronautics and Space Administration Mat-
erials and Structures Division was Project Manager and Leonard W. Schopen
NASA Lewis Research Center, was the Contractmg Ofﬁcer

Leonard A. Friedrich was the Pratt & Whltney Aircraft program manager and
Mr. J. L. Preston, Jr. was the principal investigator. Mr. Richard Novak of the
United Aircraft Research Laboratories prepared the flat panel impact speci-
mens conducted, the mechanical property evaluation, and contributed to the
analysis of the test results. Mr. E. H. Richards and Mr. L. A. Davis of P&WA
conducted the ballistic testing. Dr. T. S. Cook of P&WA conducted the ana-
lytical effort and assisted in the analysis of the test results. Mr. H. I. Rulnick
fabricated the simulated blade specimens and conducted the metallographic
analysis. Mr. A. Janus was responsible for specimen instrumentation and the
electronic data reduction described in the report. Mr. J. Graff of the v
Hamilton Standard Division of United Aircraft conducted the spin impact
testing reported.
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1. SUMMARY

Impact damage due to normal impacts on flat panel specimens is characterized by transverse
fractures (longitudinal in-plane cracking and interply delaminations) or by projectile penetration.
Transverse damage, caused primarily by ice and gelatin projectiles, was most easily detected by
ultrasonic C-scan inspection and by decreases in torsional natural frequency in multidirectionally
reinforced composite laminates and by visual inspection of undirectionally reinforced laminates.
The effect of transverse damage on the natural bending frequencies and residual tensile strength
was not consistent. Penetration damage, caused by steel projectiles and gelatin projectiles im-
pacting at velocities above 274 m/sec, caused measurable decreases in residual tensile strength
and bending frequencies.

For a given impact energy level, steel projectiles > gelatin > ice in imparting impact damage
- as measured by the ability of the projectile to penetrate the composite and lower its residual
tensile strength. High velocity 1.27 cm diameter ice and gelatin projectiles caused extensive
delamination in multidirectionally reinforced specimens causing significant reduction in the:
torsional rigidity of the target specimens.

Tests using different fiber reinforcements indicated that increased composite transverse
tensile strength was the most important factor in improving resistance to splitting and de-
lamination type damage. Ranking of reinforcement fibers on this basis is: S-Glass > Boron
> Modmor II graphite > T-75-S graphite > Modmor I graphite. Unidirectionally hybrid com-
posites using T-75-S graphite fiber with addition of either PRD-49-1 or S-Glass exhibited im-
pact resistance superior to T-75-S composite material.

The addition of angle plies to Modmor II graphite - epoxy laminates reduced the longitudinal
cracking found in unidirectional laminates, but led to a greater incidence of delamination
damage. Layups utilizing dispersed plies, including pseudo-isotropic and [(01+3010F30 IO) lq,
exhibited the greatest degree of impact resistance in tests using 1.27 cm ice at 274 m/sec.

Increased specimen th1ckness correlated with decreased impact damage, while volume fraction-
of fiber was not found to be a significant variable in the range tested.

Using cantilevered double tapered simulated fan blade specimens in impact testing with 1.27 cm
diameter ice and gelatin projectiles demonstrated a correlation between increased damage and
increased impact angle on graphite epoxy specimens. Altering the ply layup to stiffen the lead-
ing edge was found to reduce impact damage. Steel projectiles caused damage at all impact
angles and locations tested.

Impact testing of specimens mounted in a whirling arm rig indicated damage similar to that
caused by bench testing using a gas cannon. Metallic leading edge shields afforded protection to
the graphite epoxy specimen in leading edge impacts with 0.64 ¢m diameter steel and 1.27 cm
diameter ice and gelatin projectiles. The shields also provided substantial protection against
2.54 cm diameter ice projectiles impacting at a 30° angle to the leadmg edge while gelatin
projectiles caused more severe damage.



The results of the ballistic analysis showed that the mechanical behavior of the projectile and
the bending response of the target during impact are important variables effecting the degree
of impact damage to composite materials. A method of damage classification is presented
for normal impacts in Task I, and a means of relating this classification is presented for pre-
dicting types of damage resulting from non-normal ballistic impacts to Task II simulated
blade specimens and to fan blades at typical operating conditions.




II. INTRODUCTION

The overall objective of this program is to provide the technology base needed for the design
of polymeric matrix fiber reinforced composite turbine éngine fan and compressor blades
which will operate safely when subjected to impact by foreign objects. The micromechanical
and macromechanical response of polymeric matrix composite specimens to ballistic impact
loadings has been investigated initially under flat panel, normal impact conditions with various
projectile materials (Task I). Extensive nondestructive and destructive testing has been used
to characterize the nature and extent of damage and the resultant changes in mechanical prop-
erties. The response of simulated blade specimens to ballistic impact was then determined in
an investigation of more complex configurational effects (Task II). Some of these tests were
conducted using a rotating arm test rig. Evaluation after impact included both destructive
and nondestructive techniques. Finally, an analytical effort was conducted to correlate all
test results by developing a model for system response to impact and by analyzing the effect
of damage on the strength and elastic properties of the remaining material (Task III).

The Modmor II graphite/PR-286 epoxy system received principal emphasis in this program.
However, the Modmor I graphite/epoxy, T-75-S graphite/epoxy, boron/epoxy, S-glass/epoxy,
PRD-49-1/epoxy, and Modmor II graphite/polyimide composite systems were also investigated.

The Task I flat panel investigation determined the effects of the following parameters on
impact response:

®  projectile characteristics,
®  composite properties,

® ply configuration,
® fiber content,

®  thickness, and

®  constituent properties.

The Task II simulated blade specimen studies defined the following effects:
®  stacking sequence, and fiber orientation,

®  impact location and angle, projectile characteristics, and
®  applied stress and protection schemes.



III. TEST PROGRAM
A. TASK I- COMPOSITE MATERIAL SCREENING

The objectives of Task I were to measure the relative impact behavior of several resin com-
posite materials, and to relate the observed damage to the mechanical properties of the
materials and to the characteristics of the impacting object.

1.  Mechanical Property Characterization

The purpose of the mechanical property testing was to generate data which could be used in the
program in analyzing the response of materials to ballistic impact loading. The data on uni-
directional composites also served as a check on the quality of the material to ensure that
acceptable minimum property levels were met. Shear, tensile, and Charpy impact properties
were measured on unidirectional composites of each fiber/resin system. ‘Multidirectional
composites of the primary system, Modmor II/PR-286 graphite/epoxy were tested in tension
and Charpy impact.

a.  Unidirectional Laminate Testing

Test results for the 47, 55, and 65 volume percent Modmor II/PR-286, and the Modmor
I/PR-286, T-75-S/PR-286, boron/PR-286, S-glass/PR-286, PRD-49-1/PR-286, S-glass +
T-75-S/PR-286, and PRD-49-1 + T-75-S/PR-286 composites are summarized in Table I. Re-
sults for Modmor II/P13N polyimide composite system are listed in Table II. Figures 1 through
6 show representative stress-strain curves for longitudinal tension, transverse tension, and torsion
of composites containing each fiber and fiber combination. Test specimens used in measuring
the properties were as follows:

® Longitudinal tension: Straight-sided rectangular bar, 20.3 cm long x 0.635 cm wide
x 0.127 cm thick (8.0 in. long x 0.25 in. wide x 0.05 in. thick); aluminum doublers
bonded on each end.

®  Transverse tension: Straight-sided rectangular bar, 10.2 cm long x 1.27 cm wide x
0.127 cm thick (4.0 in. long x 0.50 in. wide x 0.05 in. thick); no doublers.

®  Beam shear: 1.27 cm long x 0.635 cm wide x 0.254 cm thick (0.50 in. long x 0.25
in. wide x 0.10 in. thick); span-to-depth ratio of 4:1.

®  Charpy impact: Square bar 1.0 cm x 1.0 cm x 5.5 cm (0.394 in. x 0.394 in. x
2.165 in.) with a 45° V-notch.

®  Torsion rod shear: 0.635 cm dia. x 3.82 ¢cm long (0.25 in. dia. x 1.50 in. long) rod.

The hybrid S-glass plus T-75-S/PR-286 and PRD-49-1 plus T-75-S/PR-286 laminates were
designed to have an equivalent longitudinal modulus and superior impact resistance to uni-’
directional Modmor II/PR-286 composite. The data in Table I indicates that these goals
were achieved, and that inclusion of the S-glass into the T-75-S laminates yields a significant




improvement in the notched Charpy impact strength over the inclusion of PRD-49-1. Average
notched Charpy impact strengths of the S-glass + T-75-S/PR-286 and PRD-49-1 + T-75-S/PR-
286 laminates are 17.0 joules (12.5 ft-Ibs), and 1 1.2 joules (8.2 ft-Ibs), respectively, compared
to 8.8 joules (6.5 ft-1bs) for the Modmor II/PR-286. The S-glass + T-75-S/PR-286 laminate
also exhibits higher longitudinal and transverse tensile properties than the PRD-49-] +
T-75-S/PR-286 laminates.

Typical longitudinal tensile stress-strain curves are plotted in Figures 1 and 2 for unidirec-
tional composites. The Modmor I/PR-286, S-glass + T-75-S/PR-286, T-75-S/PR-286, and -
boron/PR-286 systems display linear elastic behavior to fracture, while the S-glass/PR-286,
PRD-49-1/PR-286, and the T-75-S + PRD-49-1/PR-286 systems exhibit initial linear behavior
followed by nonlinear behavior prior to failure. The nonlinear behavior of the T-75-S + PRD-
49-1/PR-286 is probably a result of fracture of the strain-limited T-75-S fiber prior to speci-
men ultimate failure.

Typical transverse tensile stress-strain curves are shown in Figures 3 and 4 for unidirectional
composites. The 55 percent and 65 percent Modmor 11, Modmor 1, T-75-S, S-glass + T-75-S
and PRD-49-1 reinforced PR-286 epoxy composites and the Modmor II/P13N polyimide com-
posite system are all linear to failure. The 47 percent Modmor II, boron, S-glass and T-75-S

+ PRD-49-1 reinforced PR-286 epoxy composites are initially linear but show nonlinear be-
havior prior to failure. The addition of the T-75-S graphite to the S-glass reduces both the
modulus and the ultimate strain in transverse tension, as seen in Figure 4.

Typical torsion rod torque versus shear-strain curves are shown in Figures 5 and 6 for uni-
directionally reinforced composites. Except for the Modmor II/P13N composite system,

all curves show yielding prior to fracture. Ultimate shear strains vary from approximately
0.90 percent in Modmor II/P13N to S percent in S-glass/PR-286. The Modmor I composite
containing PR-286 epoxy resin exhibits twice the ultimate shear strain of the Modmor 11
composite containing P13N polyimide resin.

b. Multidirectional Laminates Testing

Test results from multidirectional Modmor II/PR-286 laminates are presented in Table III.
The results for the 45, 0, +45 and +30, 0, +30 laminates are within the expected range
based upon the all-unidirectional, 45, and +30 results obtained. Longitudinal notched
Charpy impact testing shows that the pure +45 and +30 angle-ply laminates have superior
impact strengths compared to the multidirectional laminates containing the same angle-plies
reinforced with unidirectional layers.

2. Impact Specimen Testing and Evaluation

The impact specimen utilized in Task I consisted of a 5.1 cm x 23 cm x 0.25 (2 inch x 9 inch
x 0.1 inch) flat plate gripped at one end and impacted normally at midchord, 11.4 cm (4.5
inch) from the gripped end. Projectiles consisted of 1 and. 8 gram spheres of ice, steel, and
gelatin, while composite variables consisted of fiber type, ply configuration, fiber content,
and specimen thickness. Evaluation of impact damage consisted of visual and ultrasonic in-
spection, frequency determinations, residual tensile strength determinations, and selected
holographic, metallographic and scanning electron microscope examinations.



Impact damage due to the normal impacts conducted in Task I can be characterized as trans-
verse failures (longitudinal in-plane cracking and interlaminar delaminations) or longitudinal
failures (penetration and fiber breakage). Transverse damage, caused predominantly by the
ice and gelatin projectiles, was most easily detectable by ultrasonic C-scan, holography, and
first torsional frequency determinations in multidirectionally reinforced composite laminates,
and by visual inspection in cases of splitting of unidirectionally reinforced composite lami-
nates. The effect of transverse damage upon longitudinal bending frequencies and residual
tensile strength was scattered. Penetration and fiber damage, caused chiefly by steel impacts
and by gelatin impacts above 274 m/sec (900 ft/sec) had the greatest effect upon the residual
"~ tensile strength and bending frequencies of the specimens.

‘For a given impact energy level, the steel > gelatin > ice in impact damage severity as meas-
ured by the ability of the projectile to penetrate the composite and lower its residual tensile
strength. High velocity 1.27 cm diameter ice and gelatin impacts caused extensive delamina-
tions in multidirectionally reinforced specimens causing significant reductions in torsional
rigidity. The 2.54 cm (8 gram) ice and gelatin impacts caused structural failure of specimens
at a velocity of 152 m/sec (500 ft/sec). ' :

Tests using a variety of fiber reinforcements indicated that increased composite transverse
tensile strength was the most important factor in improved resistance to splitting and delami-
nation damage caused by high speed 1.27 cm (0.5 inch) diameter ice impacts, where penetra-
tion is not a factor. Ranking of fibers on this basis is: S-Glass > Boron > Modmor I1 >

T-75-S and Modmor I. The PRD-49-1 reinforced laminates, with the lowest transverse strength,
exhibited a greater. tendency towards localization of damage about the impacted region through
 multiple cracking and indentation, and were superior to-Modmor II in unidirectionally rein-
forced specimens but inferior in multidirectional layups. Unidirectional composites made using
T-75-S plus either PRD-49-1 or S-Glass exhibited impact resistance between that of pure T-75-S
- and Modmor II.

The cofnpos_ite variables of ply configuration, fiber content, and specimen thickness were in- -
vestigated using Modmor II/PR-286, graphite epoxy impacted with 1.27 cm (0.5 inch) ice at
274 m/sec (900 ft/sec). The presence of angle-plies in the layup reduced the longitudinal
cracking found in unidirectional composites, but promoted delamination, especially in the
[(£45),10,,1(¥45),1, “core-and shell” type laminates. Layups utilizing dispersed plies,
such as pseudo-isotropic and [(0 ] +30]0[-30]0), 1 exhibited the best impact resistance,

. showing little or no damage. Increased thickness correlated with decreased impact damage,
and volume fraction fiber was not found to be a significant variable.

a.  Part A “Effect of Projectile Characteristics”

Ballistic impact testing of the 36 test specimens in Task I, Part A “Effects of Projectile
Characteristics”, was conducted with spherical steel, ice, and gelatin projectiles, using two
different masses of each (approximately 1 gram and 8 grams), at three velocity levels. The -
test conditions are summarized as follows:




Diameter Average Mass Velocities (m/sec)

Projectile Type (cm) (2) Xl Vs, V3
Steel 0.64 . 1.06 61 91 122
1.19 6.88 31 61 91

lee 1.27 0.98 213 274 305

: 2.54 7.95 61 107 152

~ Gelatin 127 1.08 152 213 274
2.54 8.62 6l 107 152

The velocities were selected to provide a wide range of specimen damage within each projec-
tile/mass combination in order to provide both damage threshold and structural failure energy
levels. All specimens were Modmor II/PR-286 graphite-epoxy comp031te constructed in a
[(x45),10,,1(#45), ], simulated blade layup.

Impact parameters plus visual and ultrasonic inspection results of the Task I Part A testing
are shown in Table IV. The ultrasonic through transmission results are tabulated as percent
of specimen area exhibiting less than 20 percent transmission of signal. This is an indication
of the extent of ply separation and delamination damage to the specimen. The results of the
specimen examinations are discussed in more detail below. ‘

Damage due to steel impacts was detected at the lowest energy levels of the three projectile
types. Visual damage on both front and back faces was visible at an impact velocity of 51.5
m/sec (1.4 joules of impact energy) with the 0.64 cm (0.25 inch) diameter steel and a velocity
of 24 m/sec (2.0 joules of impact energy) using the 1.19 cm (0.47 inch) diameter steel. Increas--
ing impact velocity with the 0.64 cm diameter steel resulted in increasing depth of penetration,
with no widening of the impact-damaged zone. The extent of the damaged area, as determined
using ultrasonic through transmission, revealed no trend with increasing impact velocity, averag-
ing 6 percent for all six tests. Near penetration of the Modmor II/PR-286 specimens was
achieved in three instances, at 95.4 m/sec (4.8 joules of impact energy), 122 m/sec (7.9 joules)
and 130 m/sec (9.0 joules). Front and back views of a nearly penetrated specimen are shown

in Figure 7. :

Increasing the velocity of the 1.19 cm (0.47 inch) diameter steel projectiles resulted in both
increased depth of penetration and more widespread damage. The extent of the damaged area
determined by ultrasonic through transmission increased sharply from 3 to 5 percent at im-
pact velocities of 24to 33 m/sec (2.0 to 3.7 joules of impact energy) to between 17 and 37

_percent at velocities ranging from 59 to 100 m/sec (12.0 to 34.2 joules), where either pene-
tration or near penetration had occurred. This increased damage is visible as extensive lifting
and delamination in the specimen back face. These delaminated plies closed back over the hole
left by the 1.19 cm steel projectiles after penetration at the two highest velocities of 82 m/sec
and 100 m/sec (23.0 and 34.2 joules).

Ice impacts caused the least visible damage to the specimens and required the highest impact
energies to produce detectable damage either visibly or ultrasonically. Specimens impacted



with 1.27 c¢m (0.5 inch) diameter ice revealed no visible damage at velocities of 213 m/sec
and 226 m/sec (21.3 joules and 25.2 joules of impact energy), and no visible damage to the
front impacted faces up to the highest velocity of 317 m/sec (49.7 joules). Single delamina-
tion planes were visible in two specimens along the edges after being impacted at 274 m/sec
and 317 m/sec (37.1 joules and 49.7 joules). These delaminations were located in the back
face £45° plies at or near the interface between these plies and the unidirectional plies. The
locations of these delaminations at the edges coincide well with the areas of these specimens
transmitting less than 20 percent during the post-test ultrasonic inspections. Thus the ultra-
sonic technique is a good indication of internal delaminations located within the other speci-
mens impacted with the 1.27 cm diameter ice. The extent of damage determined by ultra-
sonic inspection for these specimens varies from O percent at 226 m/sec (25.6 joules) and

7 percent at 213 m/sec (21.3 joules) to 31 percent at 317 m/sec (49.7 joules). In general, the
extent of these delaminated areas (as determined ultrasonically) progressed more in the speci-
_ men longitudinal direction than in the widthwise direction. The delaminations are most likely
caused by shock waves reflected as tensile waves from the free back surface of the specimen.

Specimens impacted with the 2.54 ¢cm (1 inch) diameter ice exhibited no damage visibly or
ultrasonically at velocities from 64 m/sec to 111 m/sec (16.1 joules to 49.2 joules of impact
energy). A specimen impacted at 145 m/sec (83.3 joules) fractured behind the point of im-

- pact, with both pieces revealing multiple delaminations in the unidirectional and +45° cross-
plies. The specimen impacted at 154 m/sec (94.6 joules) did not fracture but did lose the tip
segment of its back face +45° plies and revealed similar multiple delamination planes in the
unidirectional and +45° crossplies. Ultrasonic inspection of these specimens revealed 74 and
100 percent, respectively, of the total specimen area to be damaged. Significantly, both dam-
aged specimens revealed signs of penetration by the ice in the form of cracking at the point
of impact on the front face and fractured unidirectional plies visible behind the point of im-
pact on the back faces. The overall delamination of these specimens appears to be a flexural
failure where the interlaminar shear strength of the material was exceeded due to the bending
imposed by the impact. Consequently, the thickness and strength of the impacted beam
could be an important factor in determining the extent of delamination damage in these cases.

Ballistic impacts with gelatin projectiles caused damage similar to that observed with ice, but
the damage levels at a given impact energy were more severe. Impacts with 1.27 cm (0.5 inch)
diameter gelatin. caused no damage detectable either visually or ultrasonically up to 166 m/sec
(14.9 joules of impact energy). Impacts on three specimens at velocities between 208 m/sec
and 274 m/sec (23.4 joules to 38.3 joules) caused delamination in the back face +45° plies
visible along the specimen edges at or near the interface with the unidirectional plies. The
specimen impacted at 283 m/sec (43.2 joules) revealed signs of penetration: broken fibers,
cracks, and delaminations in both front and back faces, with split and fractured unidirectional
plies visible and slightly protruding at the back face.

Specimens impacted with 2.54 cm (1 inch) diameter gelatin revealed no detectable damage
at velocities of 64 to 68 m/sec (17.5 to 19.9 joules of impact energy). At 107 m/sec (49
Jjoules) the specimen revealed damage over 89 percent of its area as a delamination in the
unidirectional plies. At velocities of 147 m/sec and 154 m/sec (93.4 and 104 joules) the
specimens exhibited complete flexural failure, with both specimens exhibiting multiple de-
laminations, and one fracturing completely. The large deflections imposed upon a test speci-




men can be seen in the third frame of Figure 8, which shows a high speed strobe photograph
of specimen 1025-1 being impacted by a 2.54 ¢cm diameter gelatin ball at 154 m/sec.

Steel, with the highest stiffness and strength of the three projectile types, does not deform
appreciably during the impact with the relatively soft composite material. This results in
very high impact pressures being generated over a small contact area even at relatively low
impact velocities, with the result that the damage threshold for steel impacts (<1.4 joules for
0.64 cm diameter, and <2 joules for 1.19 cm diameter) is lower by more than an order of
magnitude than that for the ice (21-25 joules for 1.27 cm diameter, >49 joules for 2.54 cm
diameter) and gelatin (15 joules for 1.27 cm diameter, >20 joules for 2.54 cm diameter).

A second effect is that the steel projectiles require relatively low energies to penetrate the
composite. The 1.19 cm (0.47 inch) diameter steel penetrates the Modmor 1I/PR-286 com-
posite at an impact energy of only 23 joules which corresponds approximately to the damage
threshold levels for the 1.27 cm (0.50 inch) diameter ice and gelatin projectiles.

The lower modulus, low strength ice and gelatin projectiles distribute their impact energies
over a larger area, thereby causing less local deformation or specimen penetration. Ice, which
fractures into a spray of crystals upon contact, showed no tendency towards penetration at
velocities up to 317 m/sec with the 1.27 cm diameter projectiles, and limited penetration
only at 145 and 154 m/sec with the more massive 2.54 cm diameter projectiles. A high speed
strobe photograph sequence of three separate 2.54 cm diameter ice ball shots (Figure 9) re-
veals the break up of the ice ball upon contact with the trial specimen. The initial photograph
reveals the intact ice ball followed immediately by the hollow plastic sabot, but some spray
and the presence of a flat spot on the ice ball indicates probable weight loss prior to the im-
pact. The second photograph reveals partial shattering of the ice ball at the point of contact
with the trial specimen, with part of the ball still intact and visible just ahead of the sabot.
Blurring of the trial specimen tip indicates that sufficient time has elapsed for specimen
structural response to occur. In the last photograph a fully fragmented ice ball is shown.

The somewhat lower damage extents noted for the ice ball impacts in comparison to gelatin
impacts at approximately the same energy level may be a result of weight loss of the ice balls
prior to impact. Present precautions to minimize this problem include packing the loading
end of the barrel in dry ice prior to shooting. Another potential problem was revealed during
several strobe photographs of trial 1.27 cm diameter ice shots, when one photograph revealed
that the ice ball had broken into two segments prior to impact. As a result of this, subsequent
test specimens to be impacted with the 1.27 cm diameter ice were sprayed with a blue
lacquer which erodes from the specimen upon impact by the ice. Examination of the spray
pattern thus produced indicates the condition of the ice ball at the time of impact.

Gelatin, with the lowest elastic modulus of the three projectiles, deforms elastically upon im-
pact and shows no tendency toward penetration at velocities up to 274 m/sec. (Perfectly
spherical 1.27 cm diameter gelatin projectiles have been found intact after rebounding off

. test specimens at velocities up to 213 m/sec.) The 1.27 cm diameter projectile at 283 m/sec
did show partial penetration. At the higher velocities the impact strain rates will begin to ex-
ceed the viscoelastic relaxation times of the gelatin material with the result that the effective
modulus of the material upon impact is much greater than the modulus determined via ordi-
nary mechanical testing at low strain rates.



The specimen failures caused by the 2.54 cm (1 inch) diameter ice (at 83-95 joules) and gela-
tin (93-104 joules) appear to have resulted more from a structural overloading of the test
specimen in bending (Figure 8), rather than localized impact damage. Stronger test specimens
able to absorb the projectile momentum could possibly have survived structurally with only
some localized damage at the point of impact.

b.  Part B “Effect of Composite Properties”

The visual and ultrasonic inspection results of the Task I, Part B “Effect of Composite Prop-
erties” is presented in Table V. All specimens were impacted with 1.27 cm (Y2 inch) diameter
ice at approximately 274 m/sec (900 ft/sec), with impact energies from 32.6 to 43.4 joules.
The primary variable investigated in this part of Task I was the effect of different fiber rein-
forcements upon the ballistic impact resistance of both unidirectional and multidirectional
laminates. The results of this testing revealed significant differences due to fiber reinforce-
ments. High notched Charpy impact strengths and high transverse tensile strengths were
both found to correlate with improved impact resistance for both unidirectionally and multi-
directionally reinforced composites. The unidirectionally reinforced boron and S-glass lami-
nates were superior to all graphite specimens tested. The multidirectionally reinforced com-
posites revealed less damage than the unidirectionally reinforced composites utilizing the
same fiber, with the multidirectional S-glass laminate revealing no visible damage. The mono-
lithic titanium-6Al-4V specimens revealed no visual or ultrasonic damage.

The unidirectionally reinforced laminates revealed three types of damage: longitudinal in-
plane cracking and splitting; interlaminar delaminations; and local yielding and depression at
the point of impact. The high-modulus Modmor I and Thornel-75-S composites (Charpy im-
pact energies of 3.5 joules and 4.1 joules, respectively) split longitudinally in two or more
segments revealed interlaminar delaminations, and exhibited additional cracks plus depression
of the impacted area. The extent of damage was 42 percent for the Modmor I/PR-286 and

32 percent for the Thornel-75-S/PR-286. The Modmor II/PR-286 (8.8 joules Charpy) was
also split, but revealed no interlaminar delaminations and had only 16 percent extent of dam-
age. The Modmor II/P13N (8.7 joules Charpy) did not split, but revealed a 49 percent extent
of damage. The PRD-49-1/PR-286 specimen (17.6 joules Charpy) revealed longitudinal crack- -
ing and depression of the impact point. The damaged area covered 10 percent of the specimen
area and was more localized about the point of impact than any of the other unidirectional
specimens. Impact damage to the boron and S-glass specimens (11.5 joules and 47.5 joules
Charpy impact strength) was minimal and consisted only of a single longitudinal in-plane crack
in each. Ultrasonic inspection, which is generally insensitive to in-plane cracking, revealed
only 1.2 percent damaged area on the boron/PR-286 and 0.6 percent in the S-glass/PR-286.

These tests demonstrate the weakness of the all-unidirectional graphite/resin matrix composites
in the transverse direction. The fractures observed in the graphite reinforced specimens are
predominantly longitudinal (interlaminar or in-plane) with few filament fractures, and are
therefore occurring either in the matrix or at the fiber-matrix interface. Examination of the
transverse tensile strengths of the unidirectionally reinforced laminates reveals the highest
strengths in the S-glass and boron laminates, which suffered the least impact damage. These
strengths are 94.6 MN/m? (13.0 ksi) for S-glass and 56.8 MN/m? (8.25 ksi) for boron.
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The PRD-49-1/PR-286 laminate, which revealed more damage than expected based upon
Charpy impact considerations alone, had the lowest transverse tensile strength, 21.0 MN/m?
(3.05 ksi) of any of the specimens tested. Since all but one of the tested specimens utilized
the same PR-286 epoxy matrix, it is evident that the strength of the fiber-matrix interface is
‘an important factor in determining ballistic impact damage.

In multidirectionally reinforced ““core-and-shell’”’ type impact specimens, the PRD-49-1 lami-
nates revealed indentation at the impacted face plus internal delamination which was similar
to that observed in several Modmor II/PR-286 laminates in Task I, Part A, These delamina-
tions were visible when the specimens were viewed from the back face, and where they inter-
sected the free edges they corresponded with edge cracks which were visible at the interface
between the back face +45° plies and unidirectional core plies. The previously discussed low
transverse strength of the PRD-49-1 laminates renders them easily fractured by reflected ten-
sile waves off the free back face, and further shows the importance of the 90° strength dur-
ing impact. The boron reinforced specimens revealed some fiber fracture and lifting of the
back face +45° plies, and the S-glass reinforced laminates revealed no damage. Both of these
materials exhibited superior impact in the unidirectional layup as well.

c.  Part C “Effect of Ply Configuration, Fiber Content, and Thickness”

The testing in Part C was aimed at defining the effects of fiber content, composite thickness,
~and ply orientation on impact behavior. All testing was conducted using specimens fabricated
of Modmor II/PR-286 composite, and all specimens were impacted with 1.27 cm (%2 inch)
diameter ice balls at approximately 274 m/sec (900 ft/sec).

(1) Fiber Content - The visual and ultrasonic inspection results from the 47 and 65 volume.
percent unidirectional Modmor II/PR-286 specimens are described in Table V. Based upon
these results, variation in fiber content does not alter the ballistic impact response greatly.
Both of the 47 volume percent and the 65 volume percent specimens remained intact after
impact, and all exhibited one major longitudinal in-plane crack. Extent of damage varied
from 1.1 percent with the two'47 volume percent specimens and one of the 65 volume per-
cent specimens to 16 percent for the second 65 volume percent specimen. These specimens,
in general, reveal less damage than the single 57 volume percent specimen tested in Task I,
Part B, which was split into two segments in addition to showing a 16 volume percent extent
of damage. ' '

(2) Ply Configuration - The visual and ultrasonic inspection results of tests to determine
effects of ply configuration and specimen thickness are also présented in Table VI. Impact
of the multidirectionally reinforced specimens is characterized by lack of damage to the im-
pacted face, and prevention of longitudinal cracking and splitting evident in the unidirec-
tionally reinforced specimens. Damage instead appears as cracks and delaminations visible

at either the back face or edges, and appears to be caused by shock wave propagation within
the specimen. The specific ply configurations investigated consist of all angle-ply (£30° and
+45°), “core-and-shell” designs utilizing a unidirectional core with both £30° shells and *45°
shells, and two dispersed ply designs, [(0]+30]/0]-30]0), ] and “pseudo-isotropic”
((#721%3610),1,.
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 Comparison of the +30° angle-ply to the +45° angle-ply revealed significantly less damage in
the +45° specimens. The +30° specimens revealed visual cracking damage at the back face,
and damage extents of 12.5 percent and 16 percent, while the +45° specimens revealed no
visual damage and damage extents of 0.5 percent and O percent. (The condition of the ice
ball was questionable on the first +45° shot, however.) :

Comparison of the two core-and-shell layups is uncertain due to the questionable condition
of the ice balls in three out of four tests, including both specimens utilizing the +30° shell
plies. Both layups exhibited low damage extents (from 1.4 percent to 4.8 percent) and little or
no visual damage in impacts with fragmented ice balls, while the +45° core-and-shell layup
impacted with an intact ice ball revealed a 30 percent extent of damage. Two other £45°
core-and-shell layups impacted in Task I, Part A, revealed damage extents of 9 percent and
20 percent when impacted at 274 m/sec (900 ft/sec) with 1.27 cm diameter ice. A compari-
son of damage levels between the +45° angle-ply and +45° core-and-shell layups does indicate
that the abrupt change in the ply angle between the unidirectional core and the +45° shell
may serve as a site for shock-induced damage. Shear stresses already exist at the interface be-
tween the 0° plies and the +45° plies due to differential thermal contraction of these plies
upon cooling from fabrication temperatures. Visual inspection of Task I, Part A, core-and-
shell specimens revealed delaminations predominantly at or near the interface between the
back face +45° plies and the unidirectional plies.

Examination of the dispersed ply test specimens indicated that these layups were successful
in resisting impact damage. None of the [ (0} +30| -3O|0)2 ]S laminates or pseudo-isotropic
laminates revealed any visual damage, and damage extents varied from O percent to 1 percent.
The dispersed 0°, 30° specimens revealed less damage than either the +30° angle-ply or core-
and-shell layups. This indicates that ply dispersion is a possible means of reducing shock wave
- damage in laminates where 0° plies are necessary for axial properties.

Two +45° core-and-shell layups of double thickness impacted to determine effects of thick-
ness upon impact damage revealed somewhat lower damage levels than the normal thickness
specimens of identical layup. The test utilizing an intact ice ball caused a 4.2 percent extent
of damage with no visual damage. This specimen has been examined metallographically and
the ultrasonic indications attributed to internal cracking caused by the ice ball impact. A
second specimen impacted with a fragmented ice ball revealed no damage.

d. Part D “Materials Impact Improvement Evaluation”

" The results of the visual and ultrasonic inspections of the specimens impacted in the “Mater-
ials Impact Improvement Evaluation” section are described in Table VII. All specimens in

this evaluation were impacted using 1.27 cm (% inch) diameter ice at approximately 274 m/sec
(900 ft/sec), in the same manner as the specimens tested in Task I, Parts B and C. The ob-
jective in Part D was to evaluate the ballistic impact resistance of hybrid graphite composites
made with improved Charpy impact strengths by including high strength, low modulus fibers.
The objective in fabrication was to achieve a composite with stiffness comparable to the lower
modulus graphite laminates, but with superior impact resistance. The graphite fiber selected
was the T-75-8, which exhibited the highest longitudinal tensile modulus plus poor impact re-
sistance in unidirectionally reinforced Charpy and ice ball impact tests. The S-glass and PRD-
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49-1 fibers were utilized to increase the impact resistance of the T-75-S graphite. Inclusion of
these fibers resulted in increases in the notched Charpy impact strength as previously discus-
sed. Comparison of damage levels in the five unidirectional hybrid impact specimens reveal-
ed measurable improvement in the impact resistance compared with damage levels in the

{wo unidirectional T-75-S specimens in Task 1, Part B. Inclusion of the PRD-49-1 reduced the
incidence of longitudinal splitting, and reduced damage extents to a range of 2.9 percent to

29 percent compared to 32 percent and 49 percent in the T-75-S specimens. Use of the S-glass
resulted in further reduction of damage extents to 10 percent and 22 percent (questionable

ice ball), and eliminated the longitudinal splitting. The damage extents in the impacted hybrid
specimens were generally higher than those of the unidirectional Modmor II/PR-286 specimens
in Task I, Parts B and C, and testing of multidirectionally reinforced hybrid specimens would
be necessary to determine the true value of these composites in resisting ballistic impact damage.

e. Instrumented Specimen Testing

The response during the impact event of a number of specimens described in the preceding
sections was monitored utilizing an array of 8 to 10 dynamic strain gages. The positioning
.of the gages is shown in Figure 10. - '

The strain recording system utilizes Micro-Measurements EA-06-125AC-350 strain gages in-
serted into potentiometric bridge circuits, strain gage translator operational amplifiers, and

a 12-channel Precision Instrument PI 2100 recorder which operates at 60 ips in the direct
mode. Frequency response of this overall system is 300 Hz to 50 kHz (3 db), being limited
at the low end by the recorder and at the high end by the operational amplifiers in the strain
gage translator. Square wave tests with the 50 kHz direct mode system indicate a rise time
capability of approximately 5 usec and appears to be adequate for testing requirements.

Data reduction was conducted through oscilloscope photography of tape playbacks. This
method, though time consuming, was selected because of the superior accuracy, signal-to-

noise ratio and flexibility compared to oscillograph playback. The oscilloscope, with 1 MHz
frequency response, has a rise time of less than 1 usec, and use of varying time expansion on
the same channel yields information on both long term bending response and short time shock
pulses. The standard procedure consisted of: (1) photographing each channel at 2000 usec/cm
sweep rate to determine reliability of the gages after the impact and to assure that the proper
vertical sensitivity was being used; and (2) photographing each channel at a sweep rate of 20 to
50 usec/cm to measure rise time, amplitude, and pulse width of the initial pulse after proper
vertical sensitivity has been determined from the first photograph.

Comparisons of the electronic data system accuracy as a function of limiting frequency re-
sponse are shown in Figure 11. This data was collected by measuring the response of one
~selected channel:from each specimen using an on-line oscilloscope, in addition to the con-
ventional playback techniques. Oscilloscope measurements at 1000 kHz limiting frequency
were determined by photographing the impact strain signal time history directly from the
strain gage bridge, prior to its passage through any operational amplifier. The second channel
~of the dual-beam scope measured the same gage response directly after passing through the
strain gage translator operational amplifier, which is limited to 50 kHz. As an additional
check, the oscilloscope photographs of tape playbacks were compared to the on-line re-
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sults to evaluate the alignment and calibrations of the tape recorder. Figure 11 shows two
on-line comparisons, with the 1000 kHz traces on the top, and the 50 kHz traces on the
bottom. The photograph at the left shows the strain history of channel 3 on specimen 984-4,
which revealed the fastest initial rise time recorded on an on-line scope after being impacted
with 1.27 cm diameter gelatin at 161 m/sec. Visual inspection of the two traces reveals ex-
cellent comparison, and measurement of the initial compressive peak (rise time of approxi-
mately 5 usec) reveals an attenuation of 9 percent in the 50 kHz peak compared to the 1000
kHz peak. The photograph at the right shows the strain history of channel 1 on specimen
982-2, which was impacted with 2.54 cm diameter gelatin at 68 m/sec. Visual comparison of
the 1000 kHz and 50 kHz traces again reveals excellent agreement. Comparison of the ampli-
tude of the first small peak ( 200 usec from point of impact) reveals a 7 -percent amplification
of the 50 kHz peak compared to the 1000 kHz peak. The initial peak strain results are pre-
sented in Tables VIII and IX.

Data reduction was taken from oscilloscope playbacks of the tape records at time expansions
of 2000 usec/cm (to determine bending response) and 10 to 50 usec/cm (to determine initial
peak amplitudes). All impacts were with 1.27 cm (0.5 inch) diameter ice at approximately
274 m/sec (900 ft/sec).

These strain histories revealed:

®  Aninitial strain pulse, usually compressive with a fast rise time. The highest abso-
lute strain was usually achieved during this or the pulse immediately following.

L An intermediate period (2000 to 4000 usec) dur_ing'which superpositions of several
high frequency oscillations were visible. The highest peak strain was occasionally
achieved during this time.

® A decay period during which the second bending response alone persisted and de-
cayed. The first bending response was also visible in specimens where the first.
bending frequency is 2 100 Hz. (This is due to the fact that the 300 Hz to 50 KHz
tape system does have some response down to this frequency.)

Examination of the tabulated peak strain results in Table IX reveals higher maximum strain

in the unidirectionally reinforced specimens. Maximum strains ranged up to 1.48 percent in -
the case of unidirectional S-glass/PR-286, and strains in excess of 1.0 percent were measured

in unidirectional laminates reinforced with PRD-49-1, Modmor II, Modmor I, T-75-S, and
PRD-49-1 + T-75-S. None of the multidirectionally reinforced laminates from Task I, Part C,
exhibited strain levels in excess of 1.0 percent with the highest recorded strain of 0.784 percent
occurring at gage No. 7 in the (0| +30] 0] -30(02 ]s Modmor II/PR-286 specimen. These
multidirectionally reinforced specimens in general exhibited lower damage extents than the
unidirectionally reinforced specimens in Parts B and D. Among the unidirectional specimens

in Part B-thete is no-clear correlation between maximum strain level and extent of damage

as the maximum strain of 1.48 percent occurs in the S-glass laminate which revealed only.

0.1 percent extent of damage. A standard titanium reference specimen was also impacted

with the 1.27 cm diameter ice and exhibited peak strains of from 0.303 percent to 0.553 percent.
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f.  Holographic Ihspection

Holographic inspection was found to be a useful technique for the determination of the extent
of impact damage in the [(145)2 IOl ) |(¥45)2 ]T Modmor II/PR-286 specimens investigated.
Comparison of damage extents determined ultrasonically and holographically are in good
agreement except in two specimens where the severity of the damage interfered with the
holographic measurements. The standing wave technique was found to be the most conven-
ient for determining holographic damage extent, because the entire damaged area is visible

in a single reconstruction. : ‘

Specimens with minimal visual damage and known ultrasonic indications, such as low velocity
steel impacts and 1.27 cm diameter ice and gelatin impacts, were selected for holographic in-
spection. In this way, the holographic damage extents could be checked against ultrasonic
C-scans of the same identical specimens in cases where visual inspections alone would be in-
adequate. Ultrasonic damage extents varied from 0 percent to 52 percent on the specimens
inspected via holography. Good agreement was found between the two methods, with the
holographic damage extents consistently revealing from 0.5 percent to 3 percent smaller da-
mage extents than the ultrasonic C-scan except for two specimens which were severely damaged
by 1.27 cm diameter gelatin impacts at velocities = 274 m/sec (900 ft/sec). It appears that
the damage in these specimens interfered with the establishment of a standing wave pattern
on the specimen surface, such that only damage on the side of the impact nearest the excita-
tion transducer was visible. This problem could be rectified by making a second hologram
with the transducer placed at the opposite side of the impacted specimen.

Two holographic techniques were utilized during the inspection. Both techniques utilized a
50 KHz transducer to excite a-point on the specimen impacted face. In the propagating wave
technique, the hologram is taken of the specimen back face within 30 to 80 microseconds

of the time when the 50 KHz transducer is triggered. The holographic reconstruction then
reveals the concentric light-and-dark rings of the first several wave fronts propagating from

the point of excitation. Since the wave propagation velocity is proportional to the square
root of the section thickness, delaminations occurring near the back face cause retardation of
the propagating wave fronts. This retardation disrupts the concentric ring pattern and indicates
the boundary of the defective area. In the case where the probable location of the delamina-
tion plane is known relative to the specimen thickness, as in the 1.27 cm (%2 inch) diameter
ice and gelatin impacts (near the back face +45° ply to unidirectional ply interface), it is
possible to estimate the defect boundary more precisely. The wave velocity through defect-
free material is determined by measuring the distance between two concentric wave fronts
and dividing this by 20 microseconds, the time for one cycle. The velocity across the delamin-
ated region is then determined by multiplying the defect-free velocity by the square root of
the delaminated zone thickness (measured to the back face) divided by the whole specimen
thickness. Knowing the relative velocities, the distance between normal and retarded rings
can be translated into time, and this time multipled by the delaminated zone velocity to extra-
polate the retarded ring backwards to the actual defect boundary. For the case where the
delaminated thickness is approximately one-fourth the whole specimen thickness, as noted
visually in several 1.27 cm diameter ice and gelatin impacts, the distance extrapolated back
toward the origin is equal to the difference in distance between the normal wave and the re-
tarded wave at any instant. This allows quick determination of accurate defect boundaries

by visual means. '
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The standing wave technique also utilized the 50 kHz transducer to excite the specimen, but
the hologram was usually taken of the back face 300 microseconds or longer after the transducer
was triggered. At this time, the entire specimen is oscillating, and a standing wave pattern has
* developed. Material defects show up as regions of irregular standing wave patterns. This tech-
nique is somewhat less accurate, but is advantageous in that an overall view of the defective
area is visible in a single holographic reconstruction, while two or more reconstructions are
necessary from different point sources to outline a defect using the propagating wave techni-
que.

i

g. Frequency Determinations

Determinations of pre-impact and post-impact first bending, second bending, and first torsion
frequencies for all Task I specimens are presented in Tables X, XI, XII, and XIII. The first

and second bending frequencies do not show a consistent correlation with either the extent

of damage or impact energy, although projectiles causing indentation and fiber breakage did
lower the bending frequencies more than projectiles causing only delamination damage. The
torsional frequencies show a correlation between the extent of damage and decreasing torsion-
al frequency, especially with the [( £45), |0,, [(¥45), 1, “core-and-shell” Modmor II/PR-286
specimens impacted in Task I, Part A. :

All frequency. determinations were made using the same clamping technique utilized during
the actual impact tests. Specimens were gripped at the same end which was clamped during
impact testing so that 20 cm (8.0 inches) of specimen length extended out of the clamps.
Constant torque was used on the clamping fixture bolts for all tests. Frequencies were taken
at controlled double-tip amplitudes of 1.5 cm (0.6 inch) in first bending, 0.15 cm (0.06 inch)
in second bending, and 0.03 cm (0.01 inch) in first torsion. All frequencies were first iden-
tified prior to measurement by using either strobe lights or locating the position of the anti-
nodal areas on the specimen. Difficulty was experienced in inducing the relatively long and
narrow Task I specimens to go into first torsion. A small clamp extending a short distance
beyond the width was thus attached at the free end of each specimen during the torsion tests
to increase the moment about the longitudinal centerline of the specimen. This technique
allowed first torsion measurements on a limited number of specimens.

Actual post-test frequencies of nearly all Task I specimens, and in particular Part A specimens, -
were found to be higher than the pre-test frequencies. The post-test frequencies of eleven

Task I Part A specimens which exhibited no visual or ultrasonic damage increased by 11 percent
in first and second bending and by 3 percent in first torsion. The reason for this is presently
unexplained in specimens where no damage has occurred to cause changes in dimensions or
mass, as no mechanism is known by which the composite material modulus could change to
cause such an increase in frequency. Analytical modeling of the effect of impact damage upon
beam frequencies has predicted decreases in the natural bending frequencies, as would be
expected.

The apparent frequency increases are therefore assumed to be the result of a systematic error -
in the frequency determinations. Consequently, the post-test frequency results in Task I,

Part A, (Table X) were compensated by -11 percent in first and second bending and -3 percent
in first torsion to reduce the average frequency changes in the undamaged specimens to zero,
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and to make relative frequency changes in the remaining damaged specimens easier to assess.
The post-test frequencies of the Task I, Parts B, C, and D, tests also exhibited increases ranging
from approximately +2 percent to +5 percent. These have been left uncompensated, as there
were not sufficient undamaged specimens from which to select a baseline.

The compensated percent.frequency change results from Task I, Part A, are summarized in
Table X. Impacts causing indentgtion and fiber breakage decreased bending frequencies -
more than impacts causing only delamination damage. The compensated first and second
bending frequencies exhibit changes resulting from steel projectile impacts ranging from +1
percent to -16 percent in first bending, and from no change to -12 percent in second bend-
ing. No correlation is evident however between the impact energy or the extent of damage
and the magnitude of the frequency change. Impacts with 1.27 cm diameter gelatin and ice
resulted in lesser bending frequency changes from zero to -4 percent for most specimens. Two
specimens impacted with the 1.27 cm diameter gelatin at approximately 274 m/sec (900 ft/sec)
did exhibit frequency losses of -14 percent and -9 percent in first bending, and -11 percent
and -6 percent in second bending. Examination of these two specimens after impact revealed
broken fibers at the impact face in addition to the delamination damage noted in most other
1.27 ¢cm diameter ice and gelatin impacts. Frequency change results in most specimens im-
pacted with 2.54 cm diameter ice and gelatin were either approximately zero for the case of
the undamaged specimens (which were used in the frequency compensation baseline), or else
not available due to widespread delamination or specimen fracture. o

Comparison of the eighteen Task I, Part A, first torsional frequency results in Table X revealed
an excellent correlation between the ultrasonically determined extent of damage and the drop
in frequency, independent of the projectile type. The correlation between decreasing first
torsion frequency and increasing extent of damage reflects the importance of the +45° shell
plies in maintaining torsional stiffness in the ‘“‘core-and-shell” layup test specimens. The tor-
sional frequency was affected both by direct damage to these plies in the case of the steel
projectiles, and by the separation which occurs between the +45° plies and unidirectional

plies as a result of the ice and gelatin impacts.

The percent frequency change results after impact for Task I, Part B “Effect of Composite
Properties”, are shown in Table XI. The majority of the most severly damaged unidirec-
tional specimens were split due to impact with the 1.27 cm diameter ice at 274 m/sec (900
ft/sec), and were therefore unsuitable for post-test frequency testing. Six specimens, with
‘damage extents from 16 percent to 49 percent were in this category. The remaining specimens
suitable for testing exhibited damage ranging from O percent to 26 percent, and revealed no
correlation between the first and second bending or torsional frequencies and the composite
specimen variables of fiber type, layup or damage extent. Percent changes in first bending
varied from -2 percent to +5 percent and for second bending from no change to +4 percent.
Two torsional frequencies exhibited no change. The range of actual post-test frequencies in
this group of specimens varied from 39 Hz to 108 Hz in first bending and from 240 Hz to
688 Hz in second bending for the [(245),10,1 0] S-glass/PR-286 and unidirectional boron/ '
PR-286 specimens, respectively.
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The percent frequency change results after impact for Task I, Part C ““Effect of Ply Configura-
tion,.Fiber Content and Thickness”, are presented in Table XII. No correlation is evident
between ply layup, fiber content or thickness and the effect of the 1.27 cm diameter ice im-
pacts upon the first and second bending response of the specimens. All but two of the post-
impact first bending frequencies increased from O percent to +4 percent, while all but three

of the second bending frequencies increased from +1 percent to +4 percent. The torsional
frequencies exhibited a uniform increase of 2 to 4 percent, except for a +30° angle ply speci-
men with 16 percent extent of damage which showed only a 1 percent increase, and a [(¥45), |
041 core-and-shell specimen with 30 percent extent of damage, which exhibited a 3 percent
decrease in first torsion.

The percent frequency change results for the Task I, Part D ““Materials Impact Improvement
Evaluation”, are presented in Table XIII. The first and second bending frequencies were not
degraded by the impact damage to the specimens. The single first torsion result does show a

3 percent decrease after impact in a PRD-49-1 +T-75-S/PR-286 specimen with a 24 percent
‘extent of damage. ThlS is the largest torsional frequency decrease noted for any unldlrectlonal
test specimen.

‘h.  Residual Tensile Strength

The completed residual tensile strength determinations for Task 1 are presented in Tables
XIV, XV, XVI, and XVII. The following observations can be made from these results:

® For a given impact energy leve] steel > gelatin > ice in reducing the residual
tensile strength. ' :

® At speeds = 274 m/sec, the 1. 27 cm diameter gelatin projectiles caused penetration
and fiber breakage with reductions in tensile strength approaching those for steel.

®  Decreased residual tensile strengths correlated with increasing ballistic impact energy‘
for most steel, ice, and gelatin impacts above their damage thresholds.

° Zero extent of damage (determined by ultrasonic C-scan) correlated with high
residual tensile strengths. Otherwise, ex_tent of damage was not a reliable indicator
for predicting the extent of reduction in residual tensile strengths.

® Damage due to ice and gelatin impacts was insufficient to cause tensile failure at
the point of impact in many cases. Apparent residual strength losses in specimens
“where tensile failure initiated away from the point of impact could not be reliably
attributed to impact damage.

These findings are discussed in more detail below.
The residual tensile strength results from Task I, Part A “Effect of Projectile Characteristics”,
are presented in Table XIV. All specimens impacted were [(+45) | 0, I (+45) ] Modmor I1/

PR-286 graphite-epoxy. Steel projectiles at all velocities caused these spemmens to fail in the
impacted zone when subjected to tensile loads. An impact using 0.64 cm (0.25 inch) diameter
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steel with 1.4 joules of impact energy reduced the ratio of the residual tensile strength divided
by the undamaged strength to 0.89. Increasing the impact energy of the 0.64 cm diameter
steel projectile to 2.3 joules caused a further reduction of the residual tensile strength ratio

to 0.65. Impacts using 0.64 cm diameter steel with energies from 4.8 to 9.0 joules resulted

in residual tensile strength ratios between 0.61 and 0.74, with little decrease in the residual
strength apparent with increasing impact energy after near penetration of the specimens has
been achieved at 4.8 joules. This is a result of the localized nature of the steel impacts. Use
of the larger 1.19 cm (0.47 inch) diameter steel caused significantly more damage to the speci-
mens. The residual strength ratios varied from 0.79 with a 2.0 joule impact to 0.38 from a
34.2 joule impact which penetrated the test specimen.

The 1.27 cm (0.5 inch) diameter ice and gelatin impacts in Part A caused less of a reduction
in tensile strength for a given impact energy than the steel impacts, with the ice being less
severe than the gelatin. The ice impacts reduced the residual tensile strength ratio from 0.91
with a 21.3 joule impact, to 0.61 from a 49.7 joule impact. All specimens failed in the im-
pacted zone. Two specimens impacted with 1.27 cm diameter gelatin at energies of 14.0
joules and 14.9 joules revealed no visible or ultrasonic damage, and failed in tension outside
of the impact affected zone and under the bonded fiberglass tabs. The indicated residual
tensile strengths for these specimens, 0.97 and 0.76 respectively, are therefore not valid in-
dicators of any impact damage that might have occurred to these specimens. Specimens im-
pacted with gelatin at 23.4 and 25.6 joules did exhibit tensile failures in the impacted zone.
The residual strength ratios of these specimens were 0.60 and 0.81 respectively. Damage to
the Modmor I1/PR-286 specimens resulting from 1.27 ¢cm diameter gelatin impacts at 38.3
Jjoules and 43.2 joules (approximately 274 m/sec velocity) was much more severe,reducing
the residual strength ratios to 0.56 and 0.39 respectively. This decrease in residual strength
correlates with the onset of projectile penetration noted earlier in the visual examination of
these specimens, as opposed to the delamination type damage observed on all 1.27 cm diameter
ice impacts and on the lower velocity gelatin impacts. The presence of penetration damage

in the specimen implies that the material transverse (through-thickness) compressive strength‘
is being exceeded at the impact specimen/projectile interface due to contact pressures genera-
ted at this interface, while the internal delamination damage implies that the transverse (through-
thickness) tensile strength is being exceeded internally due to reflected stress waves,

Residual tensile strengths of specimens impacted with 2.54 c¢m (1.0 inch) diameter ice and
gelatin projectiles fell into two groups, specimens exhibiting little or no damage, and those
exhibiting severe damage. Impacted specimens exhibiting no ultrasonic or visual damage ex-
hibited residual strength ratios of 0.77 to 0.83 after impact with 2.54 cm diameter ice at
energies up to 49.2 joules, and ratios of 0.84 to 0.94 after impact with 2.54 cm diameter
gelatin at impact energies up to 19.9 joules. All but one of these specimens failed outside of
the impacted zone, and the one failure in the gage area was at a ratio of 0.92. Specimens re-
vealing ultrasonic damage revealed much lower residual strength ratios: from failure in impact
at 83.3 joules to 0.48 at 94.6 joules using ice projectiles; and from 0.62 at 49.0 joules to
failure in impact at 93.4 joules using gelatin.

The residual tensile strength results from Task I, Part B “Effect of Composite Propgrties”,
are summarized in Table XV. Post-impact tensile tests of the unidirectionally reinforced
specimens proved to be inconclusive due to the nature of the impact damage sustained by
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these specimens. The Modmor I/PR-286 and T-75-S/PR-286 specimens plus one each of the
Modmor II/PR-286 and Modmor II/P13N specimens were split into two or more segments
and were therefore unsuitable for tensile testing. Damage to the remaining unidirectional
specimens was limited chiefly to longitudinal in-plane cracking, with little or no fiber break-
age. All but one of these specimens failed away from the impacted area at residual strength
ratios of 0.67 to 0.82, or failed to break as was the case with the fiberglass specimens which
exceeded the load rating of the tensile fixtures. The tensile failures away from the impacted
area occurred under one of the 8.9 cm (3.5 inch) long fiberglass tabs bonded to the ends of
the specimens for gripping. The single Modmor II/P13N specimen which did fail through

the impacted region exhibited a residual strength ratio of 0.83.

Comparison of residual tensile strengths in the +45° “core-and-shell” layups using PRD-49-1/
PR-286, boron/PR-286, and S-glass/PR-286 was not possible because of lack of baseline un-
damaged tensile strength data for these layups. Estimated residual strength ratios of 0.92

and 0.97 for the boron laminates were determined based upon an estimated undamaged ten-
sile strength for the g[(i‘45)2 |06 ] S laminate, and indicate little damage resulting from theA 1.27
cm diameter ice impact. '

The residual tensile strength results from Task I, Part C “Effect of Ply Configuration, Fiber
Content, and Thickness™, are presented in Table XV. The comparison of residual strengths
of unidirectional Modmor IT/PR-286 composites reveals higher residual strengths for the 65
percent by volume specimens (> 1.00 and 0.95) compared to the 47 percent by volume fiber
specimens (0.77 and 0.88). Comparison of the angle ply laminates revealed much higher re-
sidual strength ratios in the +45° specimens (1.55, 1.47), when compared to the +30° speci-
mens (0.37 and 0.53). The high post-impact tensile strengths in the +45° specimens are un-

. explained, although one possibility is that the increase gage width of the impact specimens,
5.1 cm (2.0 inch) compared to the 1.9 cm (0.75 inch) gage section in the tensile specimens,
may have some effect.

. The “core-and-shell” laminates using 0° plies with outer “shells” of +45° plies and +30° plies
revealed nearly equal residual strength ratios of 0.67 and 0.93 (gage failures), after being im-
pacted with questionable ice balls. The [(£45),10,,1¥45), 1, specimens exhibited residual
strength ratios of 0.83 (failure under tab) and 0.94 (gage failure). These results, when com-
pared with ratios of 0.69 and 0.72 for similar ice impacts with the +45° shell specimens in
Part A, indicate that residual strengths for these laminates are nearly equal within the scatter

in the tensile tests.

The dispersed ply [(0] +30/0]| - 3010), ] specimens exhibited residual strength ratios of 0.72
and 0.86, with both failures occurring away from the impacted zone, therefore making the
effect of the ice impact upon these strengths questionable. The dispersed ply pseudo-isotropic
laminates exhibited residual strength ratios of 1.09 and 1.15, indicating no damage from the

ice impacts.

" The double thickness [(+45) 210, I specimens were not weakened sufficiently by impact to
allow tensile testing. Attempts to fail one specimen resulted in interlaminar failure under the
fiberglass tabs, both in the adhesive and in the test specimen. '
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The residual tensile strength results from Task I, Part D ‘“Materials Impact Improvement
Evaluation™, are presented in Table XVII. The longitudinal cracking apparent in the PRD-49-

1 + T-75-S/PR-286 and the S-glass + T-75-S/PR-286 do not appear to have affected the tensile
strength of these unidirectional laminates. The single PRD-49-1 + T-75-S/PR-286 specimen
revealed a residual strength ratio of 0.93. The two S-glass +T-75-S/PR-286 specimens exhibited
ratios of 1.34 and > 1.04.

i.  Metallographic Inspection

Metallographic inspection of Task I impact specimens was performed to determine the effect

of impact type, material, and ply configuration variables upon the location and type of sepa-
rations observed in the specimens. The location and extent of damage determined metallo-
graphically revealed good correlation with post-impact ultrasonic inspection results, and in-
spection of one specimen through a region showing no ultrasonic damage was found to be

~ defect-free. Inspection of a series of [(+45),10,,1(%45),1, type Modmor I1/PR-286 speci-
mens subjected to different impacts (2.54 cm diameter gelatin at 107 m/sec, 1.27 cm diameter
gelatin at 274 m/sec, 1.27 cm diameter ice at 274 m/sec and 282 m/sec, and 0.64 cm diameter
steel at 65.8 m/sec) revealed interlaminar delaminations and inplane cracking separations
limited chiefly to the unidirectional core plies in all specimens. Major interlaminar delamina-
tion planes occurred preferentially near the interface between the back face +45° plies and

the unidirectional plies, but were also noted at the interface with the impact face +45° plies -
and the unidirectional plies. Additional smaller and more numerous interlaminar and inplane

" separations were noted within the unidirectional plies of specimens impacted with the 1.27

cm and 0.64 cm diameter projectiles. Cracks angled towards the impact point were evident
within the 0° plies in specimens impacted with the 1.27 cm diameter ice and 0.64 cm diameter
steel. Comparison of unidirectionally reinforced Modmor 1I/PR-286 and T-75-S/PR-286 com-
posites subjected to 274 m/sec ice impacts revealed multiple separations in the T-75-S, including
back face delamination and numerous cracks inclined towards the point of impact. The
Modmor II specimen revealed two inplane cracks and limited delamination. Comparison of
Modmor II/PR-286 unidirectional, [(¥45), | O12 '|(¥45)2 ]T , and pseudo-isotropic layups sub-
jected to 1.27 cm diameter ice impacts at approximately 274 m/sec shows that addition of
(+45°) plies limits inplane separations to within the 0° unidirectional “core” plies and pro-
motes interlaminar separations in comparison to a 0° unidirectional layup. The pseudo-isotropic
layup eliminates all interlaminar separations, while reducing inplane separations to microcrack
indications limited to within one ply. The specific examples are discussed in more detail below.

Transverse sections were made in nine post-impact specimens and were mounted and polished.
The locations of these transverse sections and of the photomicrographs taken of them are
shown relative to half-scale ultrasonic C-scan maps in Figures 12 through 19. These C-scan
maps also show the point of impact and the extent of damage found after impact. Since six
of these specimens were tensile tested prior to metallographic inspection, a transverse section
was taken through a specimen exhibiting negligible extent of damage to determine if tensile

" testing had cuased damage to the specimen after impact. A typical photomicrograph of this
specimen in Figure 12 shows no damage. Comparisons of damage with C-scans in subsequent
photomicrographs has revealed good correlation with the post-impact C-scans taken prior to
tensile testing, indicating that tensile test after impact had little effect upon the observed
microstructure. :
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Damage to [(45),0,, [(¥45)2]1, Modmor II/PR-286 specimen 980-1 due to 0.64 cm dia-
meter steel impact at 65.8 m/sec is shown in Figure 17. Damage is centered near the point
of impact, where a zone of cracked and delaminated material is bounded on either side by
vertical cracks angled towards the impacted face. A major delamination is also visible near
the back-face +45° plies. The high density of separations in 980-1 impacted at 65.8 m/sec is
similar in appearance to the microstructure of specimen 976-2 impacted with 1.27 diameter
gelatin at 274 m/sec. In both instances, penetration damage had just commenced at the
impact face.

Variations in damage as a function of material type are demonstrated by comparison of two
unidirectional composites impacted with 1.27 cm diameter ice at approximately 274 m/sec.
The transverse cross section of Modmor II/PR-286 specimen, shown in Figure 18, reveals a
longitudinal inplane separation with a single delamination branching from one side, in good
agreement with the C-scan also shown in the figure. A transverse cross section view of T-75-S/
PR-286 specimen 1005-1 in Figure 19 reveals a large number of cracks angled diagonally point-
ing towards the impacted face. The impacted face is depressed, and two segments of the back
face are separated from the specimen near the back face. Several smaller cracks appear to have
propagated preferentially through void defects in this specimen.

The effect of ply layup on Modmor 11/PR-286 laminates impacted with 1.27 cm diameter ice
at approximately 274 m/sec can be seen by comparison of the unidirectional laminate in Fig-
ure 18, the [(£45),]0,, [(¥45), ] ; laminate in Figure 15, and the pseudo-isotropic laminate
Figure 12. The unidirectional laminate splits completely accompanied with limited delamina-
tion. The “core-shell” layup prevents splitting, as the cracking of the 0° plies is arrested at
the +45° ply “shells”, but delamination is promoted at the interfaces between the 0° and
+45° plies. The dispersed pseudo-isotropic layup shows no delaminations or cracks, and only
microcrack indications within individual plies.

j. Scanning Electron Microscope Inspection

Scanning electron microscope studies were conducted with several impacted specimens to
characterize their fracture surfaces. All inplane and interlaminar separations were found

to occur at the fiber-matrix interface, and in the resin matrix, as shown in Figure 20. Com-
parison of the impact fractured specimens with transverse tensile specimen and short beam
interlaminar shear test specimen fracture surfaces, shown in Figures 21 and 22, indicates that
the impact separations are more similar to the transverse tensile failures.

The test specimen fractures both revealed regions of matrix-matrix and fiber-matrix interfacial
failures when examined with the scanning electron microscope. The transverse tensile speci-
men fracture, however, exhibited clusters of totally unbonded fibers which had been dislodged
from the fracture surfaces, as shown in Figure 21. A larger number of broken fiber ends and
regions of matrix tensile fracture were also visible in the transverse tensile specimen. The
short beam interlaminar shear specimen.revealed.regions where the epoxy matrix surface was
relatively smooth, indicative of a clean fiber-matrix interfacial debonding, as shown in Figure
22. Examination of delamination separations from two Modmor I1I/PR-286 impact specimens,
shown in Figure 20, reveals a ragged matrix failure more indicative of tensile fracture.
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To examine effects of differing impact types, a-series of [(i45)2 10,, |($45)2 ] + Modmor 1Y
PR-286 specimens were examined. Conditions included 2.54 ¢cm diameter gelatin at 107 m/
sec, 1.27 cm diameter gelatin at 274 m/sec, 1.27 cm diameter ice at 274 m/sec and 282 m/"
sec, and 0.64 cm diameter steel at 65.8 m/sec.

Specimen 984-2 impacted with 2.54 cm diameter gelatin at 107 m/sec, was sectioned just
below the impact point through a damaged region as shown by the ultrasonic C-scan in Fig-
gure 13. Examination of the entire transverse section revealed a major delamination plane
extending the full specimen width at or near the interface with the back face +45° plies and
the 0° plies. A smaller delamination was visible extending part way across the specimen width
at or near the interface with the impact face +45° plies and the 0° plies. Several longitudinal
inplane separations can also be seen connecting the two delaminations, as shown in the cross

- section view in Figure 13.

A transverse cross section view and C-scan of specimen 976-2, impacted with 1.27 cm dia-
meter gelatin at 274 m/sec, is shown in Figure 14. This specimen exhibited partial penetra-
tion damage after impact with major delamination damage visible along both edges at or near
the interface between the back face +45° plies. Examination of the specimen cross section re-
vealed a large delamination visible externally at the edge.- Closer to the specimen center and
the point of impact this delamination branched into three or more delaminations, with nu-
merous small cracks and separations visible, as shown'in the photomicrograph in Figure 14.

Figure 15 shows the full crosssection of specimen 982-4 after impact with a 1.27 cm diameter
ice ball at 274 m/sec. The delamination which was visible along the right edge of the speci-
men near the back face +45° plies after impact is clearly visible at the right in Figure 15. This
main delamination continues near the back face for 3.3 cm, then angles upward at 63° with
respect to the horizontal and continues as a delamination for 0.8 ¢cm near the impact face
+45° plies. Additional delaminations and cracks are also visible along the right half of the
.specimen, in the indicated damage area shown in the C-scan insert in Figure 15. The front
face delamination also continues farther towards the left edge than would be indicated by

the C-scan, and may be a result of tensile testing or preparation of the specimen.

A [(£45),10,,1(*45),1; Modmor II/PR—_286 specimen (No. 1011-2) was sectioned trans-
versely into six segments and prepared metallographically instead of being tensile tested.
Ultrasonic inspection of this specimen after impact with 1.27 ¢m (0.5 inch) diameter ice at
282 m/sec (926 ft/sec) revealed a damage extent of 4.2 percent in the form of two separate
ellipitcal damage indications oriented longitudinally along both sides of the impact point as
shown in Figure 16. No visible damage was noted on the specimen. Inspection of the polished
section on faces shown in Figure 16 revealed a pair of longitudinal inplane cracks extending
through the entire unidirectional ply thickness, and down the full length of the specimen.
Three additional shorter cracks were noted in the immediate vicinity of the ice impact. The
cracks are perpendicular to the specimen surface at both ends, but the angle decreases to as
low as 41° with respect to the surface as the cracks approach the impact point from either
end. Starting from the back face 0° plies, the cracks incline towards the impact point along
- both sides. The ultrasonic indications correlate with the projection of these cracks onto the
specimen surface. The orientation of the cracks near the point of impact suggests an inter-
action between the tensile waves reflected from the specimen back face, and the existent
transverse residual thermal strains which exist in ‘“‘core-and-shell” type laminates.
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B. TASK 1l SIMULATED BLADE IMPACT TESTS

The objectives of Task II are to determine the damage imposed on simulated blades by con-
trolled impact tests. Specific variables to be investigated include the effect of laminate de--
sign, projectile characteristics, impact angle and location to be determined in bench tests, and
the effects of applied stress and protection schemes on structural integrity after impact in a
spinning arm rig. The test speci;nen for this task is a cantilevered double-tapered simulated
blade of constant cross section with a 7.6 cm (3 inch) chord, 20 ¢cm (8 inch) span, and edge
diameter of approximately 0.025 cm (0.010 inch).

Bench tests using 1 gram ice and gelatin projectiles have shown a correlation between in-
creased damage and increasing impact angle in leading edge impacts on graphite-epoxy speti-
mens, and that altering the ply layup to stiffen the leading edge reduces this damage. Im-
pacts using 1 gram steel projectiles caused damage at all impact locations and angles in both
graphite-epoxy and titanium-6Al-4V, with the titanium exhibiting less damage than the grap-
hite-epoxy.

1. Specimen Fabrication and Inspection

All graphite-epoxy specimens were molded at 411-422°K (280-300°F) for two hours, followed
by a 16 hour oven post cure at 422°K (300°F). The mold was pressed to stops to achieve an
average cured ply thickness of 0.013 cm (0.0053 inch) per ply, and thus insure dimensional
accuracy at the leading and trailing edges, and also insure the desired 57 volume percent fiber
content. The Modmor II/PR-286 specimens exhibited good uniformity, with densities varying
from 1.49 g/cc to 1.53 g/cc. The average edge thicknesses of all the graphite-epoxy specimens
were within the desired range of thickness, and forty-seven of the fifty specimens fabricated
were found to be either “good” or ““acceptable’ by ultrasonic inspection.

The ultrasonic inspections of the diamond shaped Task II specimens were conducted in simi-

lar fashion to those in Task I, but the rating of quality was more complex due to the shape of the
parts. All specimens were supported horizontally in an ultrasonic inspection tank such that

the longitudinal centerline of each specimen was normal to the incident ultrasonic beam, and

the normal vector to both sides made an angle of 2.5° to the beam. Ultrasonic energy was
passed down through the specimen, reflected off a reflector plate at the bottom of the tank

and passed back through the specimen where it was received and the signal attenuation measured.
As the scan is passed to either side of the longitudinal centerline, the degree of attenuation is

a function of three variables: (1) material quality, (2) material thickness, and (3) the angle

" of incidence between the ultrasonic beam and the surface normal of the part. All areas to
either side of the specimen longitudinal centerline exhibit a constant and artifically higher
degree of attentuation due to higher reflection from the non-normal angle of incidence between
the ultrasonic beam and the specimen surface. As the scan progresses towards the thinner
edge portions of each specimen, this higher attenuation is offset by the decrease in material
thickness. A specimen of uniform quality thus exhibits a narrow region of intermediate atten-
uation along the longitudinal centerline where the specimen is thickest, and where maximum
energy is transmitted due to the normal angle of incidence. Immediately to either side of
this region the attenuation increases due to the higher reflectance losses, and gradually de-
creases as the scan approaches'the leading and trailing edges. A sperry Graph-Gate scanner
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which records changes in attenuation in continuous tones from white to grey was therefore
employed with the Task 11 specimens to detect these expected variations in attenuation. Non-
uniformities in-the white-to-grey pattern therefore represented non-uniformities in the material.
" Determination of specimen quality was based upon uniformity of the grey-to-white gradations
as the scan progressed from centerline to edge, and upon the minimum distance from the lead-
" ing edge at which attenuation was discernible. Specimens revealing no attenuation within 1.0
cm (0.4 inch) of the leading edge. were rated “‘good” if visual condition of the leading edge
was also superior. Specimens rated “acceptable” required no attenuation within 0.6 cm (0.2
inch). Specimens revealing poorly bonded leading edges or delaminations were rated ‘‘not
acceptable™.

2. Impact Testing and Post Test Inspection

Impact testing and ultrasonic inspection results of all simulated blade specimens in Task II,
Part A “Effect of Ply Configuration’ and Task II, Part B “Effect of Projectile Characteristics,
and Impact Location and Angle”, are summarized in Tables XVIII and XIX and Figures 23
through 27. The purpose of these tests was to relate variables of projectile type, impact loca-
tion and angle, and ply configuration to damage in a simulated blade leading edge structure.
Dimensions of the simulated blade specimens utilized in these tests were 7.62 £6.05 cm (3.00
+0.02 inch) chord; and 20.32 £ 0.13 cm (8.00 * 0.05 inch) span; 0.381 £ 0.013 cm (0.150 +
0.005 inch) maximum thickness; and a leading edge radius of 0.023 to 0.030 cm (0.008 to
0.012 inch). All specimens were cantilevered with one end gripped over a 6.3 cm (2.5 inch)
long by 7.6 cm (3 inch) wide area using specially tapered fiberglass doublers and a vise fixture.
Impacts were located 11.4 cm (4.5 inch) from the gripped end, at both leading edge and
quarter-chord. Impact angles were 0°, 15°, and 30° with respect to the chordwise centerplane
of the specimens. Impact projectiles were 1.27 cm (0.5 inch) diameter for ice and gelatin, and
0.64 cm (0.25 inch) diameter for steel, with all projectiles weighing approximately 1 gram.
Velocity was constant at approximately 274 m/sec (900 ft/sec).

The parameters of projectile type, impact location and angle, and ply configuration were all
significant in determining the extent of damage to the Task II simulated blade specimens.
The 0.64 cm diameter steel projectiles caused measurable damage to both Modmor II/PR-286
and Ti-6Al1-4V specimens at all impact angles and locations, and generally caused the most
severe damage among the three projectile types in leading edge impacts at 0° and quarter .
chord impacts at 15°. The 1.37 cm diameter ice and gelatin projectiles caused no damage to
Ti-6Al-4V specimens, and caused approximately equal damage extents in impacts with Mod-
mor 11/PR-286 specimens, where ice and gelatin impacts were more severe than steel at.30°
on the leading edge. Damage to the 0°, +45° configuration graphite-epoxy specimens ap-
pears to have been caused by bending failure at the leading edge due to the momentum com-
ponent of the impact acting normal to the specimen chord. Damage extents for ice and gela-
tin varied from no damage in the leading edge impacts at 0°, to 0.6-2.6 percent at 15°, and
4.3-6.0 percent at 30°. The 0°, 90° Modmor II/specimens which employed 90° plies to in-
crease chordwise bending stiffness exhibited no damage after impact by 1.27 cm diameter

- gelatin at 15° on the leading edge. Impacts at 15° at the quarter-chord location caused no
damage to either 0°, +45° or 0°, 90° Modmor 1I/PR-286 specimens. These results are dis-
cussed in more detail below. '
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Ultrasonic C-scans of the post-impacted specimens were conducted to determine the extent
of specimen area which was effected by the impact. These results are presented as damage ex-
tent percentages by dividing the measured damaged area by the total area of the specimens.
Areas where the entire thickness of a specimen was removed by impact were also measured
and are expressed as percentage of material removal.

The results from Task II, Part A “Effect of Ply Configuration”, are summarized iy Table XVIII
and Figure 23. All impacts were conducted usirig 1.27 cm diameter gelatin at approximately
274 m/sec (900 ft/sec). The two ply configurations used were the standard [(+ 45), 10101¢
and a chordwise-stiffened [(90, 0)4(041] s layup. The purpose of this testing was to determine
the effect of 90° (chordwise) stiffening plies on the performance of the Modmor 1I/PR-286
composite material in a simulated blade configuration. Comparison of the results for 15°
leading edge impacts in Table XVI1II and Figure 23 reveals a significant improvement in the

- impact resistance of the 0°, 90° layup. The 0°, +45 layup revealed loss of material at the
leading edge and damage extents of 1.1 percent and 1.2 percent, compared with no damage
in the 0°, _90° layup. Impacts at 15° quarter-chord failed to cause damage in either layup,
and two Ti-6Al-4V reference alloy specimens were also undamaged in leading edge impacts
at 15°.

Comparison of the two ply layups from the chordwise direction reveals the relative stiffness
advantage of the [(90, 0),1 0, 1 layup over the [(x45),1 0, 1 layup for resisting impact loads
applied at the leading edge and normal to the specimen thickness. The first 0.61 cm (0.24
inch) of the leading edge in the chordwise direction consists of only the four outer “shell”
plies, which are oriented at 0°, 90°, 90°, 0° relative to the chordwise direction in the {90, 0),
106 ] ¢ layup and at —45°, +45°, +45°, —45° relative to the chordwise direction in the [(+45),
1040 I ¢ layup. Using tensile modulus values from Task I for 0°, 90°, and +45° Modmor II/PR-
286 of 135 GN/m? (19.6 x 10° psi); 9.24 GN/m, (1.34 x 108 psi) and 17.2 GN/m? (2.48 x
10° psi) respectively, plus a simple rule-of-mixtures modulus approximation yields a chord-
“wise modulus at the leading edge of 72.4 GN/m? (10.5 x 10° psi) for the [90, 0),10¢ ] s layup
versus 17.2 GN/m?(2.48 x 10 psi) for the [(£ 45),10,0] layup. The relative stiffness ad-
vantage in bending is therefore greater than 4:1 for the [(90, 0), i0¢ 15 layup since the chord-
wise plies lie on the outer skin. This stiffness advantage enables the [(90, 0)4 104 ] s layup
specimens to withstand a greater force without exceeding the fracture strain of the material.

The results from Task II, Part B “Effect of Projectile Characteristics, and Impact Location and
Angle”, are summarized in Table XIX and Figures 24 through 27. All specimens were (0°,$45°)
Modmor II/PR-286 graphite-epoxy or Ti-6A1-4V reference alloy of the same dimensions. The
0.64 cm diameter steel projectiles caused measurable damage in both the Modmor II/PR-286
and Ti-6Al-4V specimens in all cases. Figure 24 shows typical damage to Modmor II/PR-286
specimens resulting from 0.64 cm steel impact as a function of impact angle and location.
The 0.64 cm diameter steel projectiles penetrated the composite specimens, causing higher
damage and material loss extents for quarter-chord impacts at 15° and leading edge impacts
at 0° than in either the 15° or 30° impacts_on the leading edge. Delamination of the back
face plies was usually evident, and is prominent in the leading edge and quarter-chord impact
back face views in Figure 24. Damage extents averaged 6.3 percent for 15° impacts at quarter
chord, 3.0 percent for 0° impacts on leading edge, 0.9 percent for 30° impacts on the leading
edge, and 0.6 percent for 15° impacts on the leading edge.
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Impact damage due to 0.64 cm diameter steel impacts on Ti-6Al4V simulated blade specimens
was less severe than that for the composite specimens. The steel projectile impacts did not
penetrate the titanium alloy, but were sufficient to cause considerable bending deformation

of the leading edge, as seen in Figure 25. The deformation due to the 15° impact on the lead-
ing edge is more severe than at 0° due to the momentum component normal to the specimen
edge in the 15° impact. Impacts at 15° quarter-chord caused only minor indentation. Aver-
age ultrasonic damage extents as a function of location and angle were 0.6 percent at 0° on

the leading edge, 1.1 percent at 15° on the leading edge, and 0.2 percent at 15° quarter-chord.

The effect of impact location and angle upon damage to 0°, *45°Modmor 11/PR-286
simulated blade specimens impacted with 1.27 cm diameter gelatin is shown in Figure 26.
The gelatin projectiles show no evidence of penetration of the graphite composite on 0° im-
pacts at the leading edge. Impacts at 15° and 30° on the leading edge cause bending failures
with delamination at the back face. Damage is more widespread at the 30° angle, as would
be expected due to the momentum component to the impact normal to the chordwise cen-
terplane of the specimen which increases as the sine of the impact angle. The momentum
component normal to the chordwise centerplane increases from zero at 0°, to 7.66 x 1072
Kgm/sec (0.553 ft-lb/sec) at 15°, and 14.8 x 1072 Kgm/sec (1.07 ft-1b/sec) at 30°. Ultrasonic
damage extents for gelatin from Tables XVIII and XIX averaged 1.2 percent at 15° on the
leading edge, and 5.8 percent at 30° on the leading edge. No damage was observed due to
15° quarter-chord impacts, probably due to the greater thickness of the composite at the
quarter-chord location.

The effect of impact location and angle on damage to 0°, +45° Modmor II/PR-286 simu-

lated blade specimens impacted with 1.27 cm diameter ice is shown in Figure 27. The varia-
tions of damage extent due to ice impacts are similar to those observed with gelatin projectiles.
No damage is observed in either 0° impacts at the leading edge of 15° quarter chord impacts.
Average damage extents from Table XIX for 15° and 30° impacts at the leading edge are 1.6
percent and 4.6 percent, respectively.

Ice and gelatin projectiles caused no measurable damage extents in impacts with Ti-6Al-4V
specimens at 0° and 15° on the leading edge, and at 15° quarter-chord.

3. Instrumented Specimen Impact Results

The initial peak strain results are summarized in Table XX for the seventeen instrumented
specimens tested in Task II, Parts A and B. The magnitudes of these strains correlated with
variations of specimen material, projectile type, impact angle, and impact location. Each
specimen was instrumented with four Micro-Measurements type EA-06-125AC-350 strain
gages. Strain gages at locations No. 1, No. 2, and No. 3 were oriented chordwise at quater-
chord, half-chord, and three-quarter-chord respectively behind the point of impact to meas-
ure impact strains, while gage No. 4 was mounted axially just above the specimen grips, to
measure bending strains. The peak strain data was reduced from on-line oscilloscope photo-
graphs taken at a sweep rate of 50 u sec/cm. The 300 Hz to 50 kHz tape system used pre-
viously in Task I was used as a back-up on all channels, and as a record of long term bending
response of the specimens. :
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The range of peak strains in Table XX varied from negligibly small to as high as 1.12 percent.
Highest strains were recorded at gage No. 1, located directly behind the point of impact, at
quarter-chord location on the specimen back face. Peak strains at mid-chord (gage No. 2)
were considerably lower than at gage No. 1, and were also somewhat less than the peak strains
recorded at gage No. 3. The higher strains at the more distant gage No. 3 are probably a func-
tion of the decreased thickness at that location compared to gage No. 2. The peak strains re-
corded at gage location No. 4 were the lowest except for a few cases where they exceeded the
mid-chord (gage No. 2) strains, and indicates that overall axial bending stresses were low.

Comparison of peak strain response as a function of material and configuration variables in-
dicates that Ti-6A14V < 0°,90° Modmor II/PR-286 < 0°, +45° Modmor II/PR-286 in peak
strain amplitudes. In 1.27 cm (0.5 inch) diameter gelatin impacts at 15° on the leading edge,
gage No. 1 peak strains are 0.320 percent for Ti-6Al1-4V, 0.512 percent for 0°, 90° Modmor
I1/PR-286 graphite-epoxy, and 0.672 percent for 0°, +45° Modmor II/PR-286. In quarter-
chord impacts with the 1.27 cm diameter gelatin, the gage No. 1 peak strains are -0.048 per-
cent for Ti-6Al-4V, ;0.088 percent for 0°, 90° Modmor II/PR-286, and -0.102 percent for
0°, +45° Modmor II/PR-286. The peak strains at the other gage locations exhibit the same
relative ranking. ,

Comparison of projectile types in Table XX reveals that steel > gelatin and ice in causing high
peak strains, except at the 30° leading edge impact location, where the steel projectile pene-
trated the thin leading edge without causing appreciable strains at the four gage locations.
Comparing gage No. 1 peak strain responses in 0°,#45° Modmor 1I/PR-286 for the three pro-
jectile types as a function of impact angle and location reveals: 0.960 percent for steel ver-
sus 0.032 percent for ice and 0.018 percent for gelatin at 0° leading edge; + OFF SCALE for
steel versus 0.600 percent for ice and 0.672 percent for gelatin at 15° leading edge; + OFF
SCALE for steel versus 0.112 percent for ice and -0.102 percent for gelatin at 15° quarter-
chord; and -0.160 percent for steel versus 0.440 percent for ice and 1.12 percent for gelatin
at 30° leading edge. The “OFF SCALE” strains generally denote peak strains greater than
1.2 percent depending upon the sensitivity used on the oscilloscope.
Increasing peak strain levels correlate with increasing severity of damage as measured ultra- . '
sonically. The 0.64 cm (0.25 inches) diameter steel projectiles which caused the highest
peak strains in 0° and 15° leading edge impacts, and 15° quarter-chord impacts, also caused
the highest extents of damage as shown in Table XX. For the 30° leading edge impacts the
highest damage extent resulted from the gelatin impact, with a peak strain of 1.12 percent
recorded at gage No. 1. '

The overall strain levels resulting from the deformable ice and gelatin impacts reveal increas-
ing deflection as a function of increased impact angle at the leading edge, and decreasing de-
flection as a function of increased specimen thickness at the point of impact. The overall
ranking of impact strains in order of decreasing strains is: 30° -LE > 15° -LE > 15° -QC
>0°-LE. :

In the 0°, +45° Modmor I1/PR-286 graphite-epoxy simulated blades, no damage was found

" in specimens exhibiting peak strains of up to 0.112 percent, while damage was exhibited in
specimens with peak strains of -0.160 percent (steel impact) and 0.440 percent or higher for
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ice.and gelatin impacts. A 0°,90° Modmor 1I/PR-286 specimen withstood peak strains to
0.512 percent without exhibiting any damage. Thus the 0°,90° configuration exhibits super-
ior impact resistance due to lower strains for a given impact severity, and due to a higher
strain capability prior to failure. :

4. Frequency Determinations

The post-impact frequency determinations have been completed in first bending, second
bending, and first torsion for all Task II simulated blade shaped specimens in Part A “Effect
of Ply Configuration™ and Part B “Effect of Projectile Characteristics and Impact Location
and Angle”. These results are summarized in Tables XXI and XXII as percent frequency
changes based upon the frequencies determined from each specimen prior to impact testing.

All specimens were clamped with uniform torque at the same end which was gripped during
impact testing. Clamping length was 2.5 cm (1.0 inch). Bending frequencies were taken at

“controlled double tip amplitudes of 1.5 cm (0.600 inches) in first bending and 0.15 cm
(0.060 inches) in second bending for all Modmor II/PR-286 specimens, and at 1.5 ¢cm (0.600
inches) in first bending and 0.25 cm (0.100 inches) in second bending for all Ti-6A1-4V speci-
mens. All specimens were tested in torsion by magnetically driving small weights which ex-
tended beyond the width at the specimen free end. The amplitude for the torsional tests was
0.10 cm (0.040 inches) for the Modmor II/PR-286, and 0.025 c¢cm (0.010 inches) for the. Ti-
6A1-4V specimens.” Standard Ti-6A1-4V and Modmor II/PR-286 reference specimens were
tested periodically during all frequency determinations to prevent systematic shifts from oc-
curing in the results.

The bending and torsional frequencies were not significantly degraded due to damage result-
ing from the impact tests, and no correlation was found between ultrasonically measured ex-
tent of damage and percent change in frequency. Comparison of the average percent frequen-
cy change of all 11 undamaged Modmor II/PR-286 specimens with those of all 17 damaged
Modmor II/PR-286 specimens in Parts A and B revealed the following: + 0.3 percent undam-
aged versus +0.6 percent damaged in first bending; —0.4 percent undamaged versus —0.1 per-
cent damaged in second bending; and +1.5 percent undamaged versus —0.6 percent damaged
in first torsion. A similar comparison between the 12 undamaged and 6 damaged Ti-6A1-4V
specimens in Task II, Parts A and B, revealed average changes in the frequencies to be: —0.5
percent undamaged versus —1.1 percent damaged in first bending; —1.0 percent undamaged
versus —1.5 percent damaged in second bending; and 0.0 percent undamaged versus +1.0 per-
cent damaged in first torsion. The insensitivity of the bending frequencies to impact damage
can be attributed to the location of the impact damage which is away from the gripped end,
as was found in Task I, and to the fact that fewer of the unidirectional load bearing plies in

- the specimen core were damaged than in the Task I normal inpacts. The lack of correlation
between ultrasonic extent of damage and torsional frequencies is probably a result of the re-
latively small portion of the total area affected by the edge-on impacts, compared with dam-
age extents in Task I. The maximum extent of damage exhibited by a Task II impacted speci-
men was only 8.1 percent.
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5. Metallographic Inspection

Transverse sections were prepared from simulated blade specimens impacted with 1.27 cm
diameter gelatin, 1.27 cm diameter ice, and 0.64 cm diameter steel projectiles, for compari-
son of damage extents. Damage due to ice and gelatin projectiles was limited to removal of
the leading edge and some of the back face crossplies. Ice and gelatin impacts at quarter-
chord caused no damage. Steel impact at quarter-chord caused extensive breakup of the
composite similar to normal steel impacts in Task I.

Figure 28 shows typical damage caused by a 1.27 ¢cm diameter gelatin impact at 30° on the
leading edge. The leading edge has been removed at the point of impact, with limited crack-
ing visible in the remaining specimen material. The fracture appears to be a bending failure
of the leading edge which initiates at the impact surface (top) and tears outer crossplies away
from the back face (bottom), Figure 28.

Figure 29 shows cross section views at the quarter-chord location of a 0,90° Modmor 11/
PR-286 and a 0,£45° Modmor 1I/PR-286 simulated blade impact specimen after each spe-
cimen had been impacted at 15° quarter-chord with 1.27 cm diameter gelatin. Neither speci-
‘men reveals any bending failure or stress wave delamination and cracking damage. The lack
of stress wave damage indicates that the normal velocity component of 69 m/sec (225 ft/sec)
is below the damage threshold of the material as indicated from Task I results. Thus leading
edge damage at 15° cannot be attributed to stress wave effects. The lack of bending failure
at quarter-chord compared with the same impact at the leading edge is thus due to the great-
er strength of the thicker section at the quarter-chord location.

Damage due to a 0.64 cm diameter steel impact at 15° quarter-chord is shown in Figure 30.
The impact damage is characterized by penetration and the multiple cracks and delaminations
which were evident in specimens exhibiting stress wave damage due to normal inpacts in Task
I. This indicates that the normal velocity component of 69 m/sec (225 ft/sec) in this impact
is in excess of the stress wave damage threshold, as would be expected from the Task 1 results
which indicated that a normal velocity of only 62 m/sec (200 ft/sec) was sufficient to cause
stress wave and penetration damage with the 0.64 cm diameter steel projectiles.

6. . Residual Tensile Strength

Residual tensile strength was determined as a function of impact damage for a selected group
of nine Task II simulated blade specimens. The results, shown in Figure 31, indicate that
leading edge damage does not cause a significant reduction in the residual tensile strength of
the specimens, but that 0.64 cm diameter steel 1mpacts at quarter-chord reduce tensile strength
by approximately one-half.

Eight impact damaged specimens were divided into four groups “no damage” specimens re-
sultmg from 15° quarter-chord impacts with 1.27 cm diameter ice and gelatin; “minor dam-
age” specimens impacted with ice and gelatin at 15° on the leading edge; “‘moderate damage”
specimens impacted with ice at 30° on the leading edge; and “major damage” specimens im-
pacted at 15 quarter-chord with 0.64 cm diameter steel. The reference tensile strength of
568 MN/m (82.5 ksi) was determined from a non-impacted specimen. The residual tensile
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strengths of the undamaged specimens, and those specimens receiving minor to moderate
damage to the leading ed fe exhibited no 51gmf1cant variation from the reference strength,
ranging from 506 MN/m< (73.6 ksi) to 632 MN/m (91.7 ksi). The insensitivity of the resi-
dual tensile strength to impact damage at the leading edge reflects the fact that few 0° plies
were damaged. This is due to the specimen core-anid-shell layup, which places a larger pro-
portion of #45° plies along the edges, and higher proportion of the load bearing 0° plies to-
wards midchord. The first 0.6 cm (0.24 inches) of the 0,#45° simulated blade specimen lay-
up leading edge in the chordwise direction consists of +45° layers only. The 0.64 cm diamet-
er steel impacts at the quarter-chord location caused flber breakage in the 0° umd1rect10na1
plies resulting in residual tensile strengths of 307 MN/m (44.5 ksi) and 267 MN/m (38.7
ksi).

7. Spin Impact Tests

The goal of the spin-impact simulated blade test program was to determine the effect of ap-
plied stress, increased projectile mass and velocity, and use of a leading edge protection
scheme on impact damage. The results of these tests are summarized in Table XXIII. The
effect of stress was determined using the F-39 whirl/FOD test cell at the Hamilton Standard
Division of United Aircraft. Rotating simulated blade specimens were impacted 8.9 cm (3.5
inches) from the tip at 15° and 30°on the leading edge with ice, steel, and gelatin projectiles
at relative speeds of 274 m/sec (900 ft/sec) and 396 m/sec (1300 ft/sec) at the impact point.

‘Results of these tests showed that:

®  Damage to centrifugally stressed spin impact specimens without 1eading edge shields
. was comparable to damage to specimens impacted using the air cannon.

®  The leading edge FOD shields afforded almost complete protection to the compos-
: ite in leading edge impacts with 0.64 cm diameter steel and 1.27 cm diameter ice
and gelatin projectiles.

®  The leading edge FOD shields provided substantial protection against 2.54 cm dia-
meter ice impacts at 30° to the leading edge. Gelatin projectiles caused more severe
damage.

®  The 2.54 cm diameter ice impacts at 400 m/sec caused denting to titanium, and
did not fail the composite specimens.

a. Test Technique

The test specimens consisted of seventeen 0°,245° Modmor 1I/PR-286 graphite-epoxy
simulated blades, and three identically shaped reference specimens of Ti-6A1-4V alloy. Thir-
teen of the Modmor 11/PR-286 graphite-epoxy specimens were fitted with a metallic leading

edge protection scheme.

All specimens were tested in a chamber evaluated to 254 torr, using a variable speed rotating
" arm rig capable of producing specimen mid-span rotational velocities of 396 * 6 m/sec (1300
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+ 20 ft/sec). The impacting media were dropped into the specimen plane of rotation using a
remotely actuated gravity drop chute for the 0.64 cm diameter steel projectiles, and by means
of a pivoted arm apparatus for all other projectiles. All impacts were located at the leading
edge, 11.4 cm (4.5 inches) from the gripped end, at an angle of 15° with respect to the chord-
wise centerplane of the specimen for steel projectiles, and 30° for ice and gelatin projectiles.
The specimens were gripped using adhesively bonded fiberglass doublers which were bolted

to the whirling arm rig as shown in Figure 32. The fixture was inclined at 15° and 30° angles
with respect to the plane of rotation for the impact tests. The temperature of the leading
edge was estimated during each test by applying temperature sensitive pamt to the backside
of each specimen prior to each run.

b. Leading Edge FOD Shield

The objective of the leading edge protection is to provide improved resistance to both local
damage and to structural damage resulting from high velocity impact during a controlled spin
impact test. The lf;admg edge protection must also ‘perform this functlon while conforming
to the aerodynamlc dimensions of the existing airfoil.

The leading edge protection scheme used for the Task II spin impact tests consists of a 0.15
cm (.006 inches) annealed stainless steel foil wrapped over a 304 stainless steel insert as shown
in Figure 33. The foil extends 2.5 cm (1.0 inch) back from the leading edge on both sides of
the specimen. The leading edge of thirteen 0°,+45° Modmor II/PR-286 specimens was re-
moved to a chordwise depth of 0.86 cm (0.340 inches) and spanwise from 5.1 cm (2 inches)
from the tip to a point 7.6 cm (3 inches) from the gripped end. The 304 stainless steel in-
sert was 7.6 cm (3.0 inches) long, 0.84 cm (0.330 inches) wide, by 0.12 ¢cm (0.047 inches)
thick at the thickest point. The foils were preformed to the approximate dimensions of the
specimens, and the inserts were brazed to the foils. The entire leading edge shield was then
adhesively bonded to the simulated blade specimen, using Miller-Stephenson 907 epoxy ad-
hesive..

c. Results

The results of the spin impact tests are summarized in Table XXIII and Figure 34. _

(1) Effect of Applied Stress

Initial tests were conducted using three unprotected composite specimens and two titanium-
6Al-4V reference specimens to assess the effects of rotating stress in the spin tests against
identical air cannon tests conducted previously in Task II. The test conditions were: 274 m/ .
sec relative velocity at 15° on the leading edge with the 0.64 cm steel projectiles for one com-
posite plus the two titanium specimens; and 274 m/sec relative velocity at 30° on the leading
edge using 1.27 cm diameter ice and gelatin against each of the other unprotected composite
specimens. The 30° angle was utilized with the ice and gelatin projectiles to provide more
severe damage and therefore provide better comparison with the leading edge shield protect-
ed specimens.

Damage to the unprotected spin'impacted Modmor II/PR-286 specimens was comparable to
that for the air cannon tests. The steel spin-impacted specimen, NAS-31 shown in Figure 34
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rev§als an 0.5 cm wide by 1.8 cm long hole due to an impact just behind the leading edge
which is similar to damage shown for specimen NAS-9 in Figure 24 for a quarter-chord im-
pact. .

Spin-impacted specimen NAS-49, impacted with ice (Figure 35 left) reveals a 1.3 cm wide by
0.4 cm deep triangular piece removed from the leading edge. This is less severe than damage
to specimen NAS-34 (Figure 27) where a 3.3 cm by 0.7 cm piece was removed and compar-
able to specimen NAS-37, which lost a 1.0 cm square portion of the leading edge. The varia-
tion in damage indicates that some impacted specimens may take only a partial slice of the
ice projectile during impact. The gelatin spin-impacted specimen, NAS-21 shown in Figure
36, lost a 2.0 cm wide by 0.9 cm deep portion of the leading edge, compared with 1.5 cm
wide by 0.9 cm deep for the air cannon impacted specimen NAS-40, and 2.0 cm wide by 1.0
cm deep for specimen NAS-45 (Figure 26).

Damage to the Ti-6Al-4V reference specimens due to spin impact tests with 0.64 cm diameter
steel may be compared directly to the bench test results. A head on impact caused a semi-
circular dent in spin-impacted specimen NAS-103 (Figure 37, top) and in bench tested NAS-
. 104 (Figure 25, top). A glancing impact caused indentation and backside cracking on spin-

impacted specimen NAS-101 (Figure 37, bottom) and bench impacted specimen NAS-113
(Figure 25, middle). The similarity of impact damage with and without applied stress is a
result of the relatively low tensile stress level in the specimens at the impact location. The
formula for centrifugal stress, F , is as follows:

2
F, = — | ()
R .

where m is the rotating mass, v is the velocity, and R is the radius from the axis.

The centrifugal force was estimated by assuming all the mass beyond the impact location to
be at a single radius midway to the tip. Taking the values of F_ and dividing by the cross
sectional area of the simulated biade specimens yields mean stress levels in the graphite-epoxy
of 8.3 MN/m? (1.2 ksi) at 274 m/sec, and 18 MN/m? (2.6 ksi) at 396 m/sec. Performing the
same calculation for the denser Ti-6Al-4V yields stresses of 23 MN/m? (3.4 ksi) at 274 m/sec,
and 4.9 MN/m? (7.1 ksi) at 396 m/sec. ’

(2) Effect of Leading Edge Protection

The effect of leading edge protection was assessed in three steps. The 274 cm/sec velocity
impacts were first compared against unprotected composite using 0.64 cm diameter steel at 15°
on the leading edge and 1.27 cm diameter ice and gelatin at 30° on the leading edge. The pro-
jectile mass was then increased, keeping impact angle, location, and velocity constant, and
increasing the projectile size from 0.64 cm to 1.27 cm diameter for steel, and from 1.27 cm

to 2.54 cm diameter for ice and gelatin. Finally the velocity was increased to 396 m/sec

(1300 ft/sec) at 15° on the leading edge with 2.54 cm diameter ice. The third stage was con-
ducted using three specimens: an unprotected Modmor II/PR-286 composite specimen; a
composite specimen with leading edge shield; and a Ti-6A1-4V reference specimen.




The effect of leading edge protection against steel projectiles is summarized in Tabel XXIII
and shown in Figures 34 and 38. The leading edge shield on specimen NAS-22 in Figure 34
was nearly penetrated by a direct impact. However, the composite was protected against

the 0.64 cm diameter projectile, as shown in a metallographical cross section view of the com-
posite just behind the point of impact in Figure 38. By contrast, specimen NAS-29 which
received two glancing impacts at 15° mid-chord, exhibited severe internal stress wave damage,
including delaminations and broken fibers through the entire specimen thickness at mid-chord,
as shown in Figure 39. The extent and severity of this damage indicates that cumulative
shock wave damage due to hard body impacts could pose a serious threat to unprotected com-
posite structures due to the relatively minor extent of externally visible damage at the point
of impact compared with the large extent of internal damage. Comparison of the damage in
NAS-29 to that in NAS 22 (Figure 38) further reveals that proper shielding can be effective
against the stress wave and penetration damage caused by these impacts. In an impact using

a more massive steel projectile, the leading edge shielded specimen MAS 5 absorbed a light
impact with a 1.27 cm diameter steel projectile with only minor denting to the shield (Figure 34).

The effect of leading edge protection against ice projectiles is shown in Figures 35 and 40.

The leading edge shield on specimen NAS-47 appears to have provided complete protection

against the 1.27 ¢cm diameter projectile at 30° on the leading edge, while these same impact
conditions caused loss of composite from the unprotected specimen. The second shielded speci-
men, NAS-6.revealed only minor bending of the leading edge foil due to an apparent void in the
braze bond between the foil and the leading edge insert at the point of impact. Specimens NAS-48
and NAS-36 (Figure 35), impacted with a 2.54 cm diameter projectile at 30°, each exhibited a
dent in the shield at the point of impact. Damage to the underlying composite was minimal, as
shown in a cross sectional view of NAS-48 in Figure 40.

The effect of leading edge shield protection against gelatin impacts is shown in Table XXIII
and Figures 36 and 41. The leading edge shield provided nearly complete protection against
the 1.27 cm diameter gelatin projectiles at 30° on the leading edge, revealing only slight de-
bonding of the shield in specimen NAS-50. The 2.54 cm diameter gelatin at 30° caused some
bending of the shield in specimen NAS-33, and caused severe specimen delamination and
shield debonding in specimen NAS-38 (Figure 36). The severity of the damage transmitted
to the composite can be seen in Figure 41 which shows a cross section view of the region be-
hind the point of impact, showing major delaminations and cracking.

The effect of leading edge shield against 396 m/sec (1300 ft/sec) impacts with 2.54 cm
diameter ice projectiles at 15° is shown in Figure 42. The Ti-6Al-4V reference specimen
revealed a 2 cm wide semicircular dent in the leading edge. The unprotected graphite was
severely damaged, but remained intact with a 4.8 cm wide (at leading edge) by 2.2 cm deep
~ segment removed. The leading edge protection was removed from specimen NAS-12 due to
the impact, with little damage to the remainder of the specimen. The two results with the
Modmor II/PR-286 composite may not be truly representative because of the elevated temp-
eratures generated during these tésts due to the high tip speeds and the low vacuum. The
estimated temperatures at the impact location were 408°K (275°F) for the unprotected
specimen NAS-32, and 394°K (250°F) for the shielded specimen NAS-12. Separate work
with HMS/PR-286 composite with the same cure cycle used for the Modmor II/PR-286
simulated blade specimens revealed a 20 percent decrease in transverse tensile strength and
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a 24 percent decrease in transverse tensile modulus at 422°K (300°F). Moreover, the ad-
hesive system utilized to bond the leading edge shields was designed for only 367°K (200°F)
capability.

C. TASK Il BALLISTIC ANALYSIS
1. Impact Modeling
a. Introduction

The objectives of the impact modeling analysis are: (1) to establish the important projectile/
target variables during impact; and (2) to utilize the variables of projectile type, mass, and
-velocity together with target variables of fiber type and layup to explain the types and extent
of damage observed during the flat-normal impact tests conducted in the contract. The ap-
proach of the present analysis has been to establish bounds to the problem of an impact

load applied to a transversely struck beam, and then to proceed to the calculation of beam
deflections, and projectile/target contact stresses as a function of impact parameters. The ef-
fects of load, contact stress, and deflections are then related to the types of impact damage
observed in Task I, Part A “Effect of Projectile Characteristics”, conducted with [(+45),

10,; 1 (¥45), ]T Modmor II/PR-286 graphite-epoxy composite.

The results of this analysis have shown that the mechanical behavior of the projectile and the
bending response of the target during impact are important variables affecting the degree of
impact damage to composite materials. A method of damage classification is presented for
normal impacts in Task I, and a means of relating this classification is presented for predict-
ing types of damage resulting from non-normat ballistic impacts to Task II specimens and to
fan blades at typical operating conditions.

* b. Procedure

The Task I, Part A impact tests were selected for the impact modeling as these are the largest
body of tests (36 impacts) available using a single target ([(t45)2 10,,1(¥45),1 Modmor
II/PR-286), utilizing a total of 18 different projectile type/mass/velocity variables.

Three models have been utilized: the Hertz model; a modification of the Hertz model de-
veloped by Pratt' & Whitney Aircraft; and an impulse model.

c. Hertz Model
The classical Hertzian impact assumes that the force acting upon the target due to an im-
pacting spherical body is a function of the distance, «, between the centers of gravity of the .

particle and the target by the relationship (Reference 1):

F=noz3/2
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where n is a function of the particle radius, Poisson’s ratio, and modulus of elasticity of the
particle and the target and

1 targét and projeétile are assumed isotropic and elastic
2)  target body is assumed semi-infinite.

The Hertzian model assumptions are not met during the actual impact conditions encountered
during the experimental phase of this work. Most importantly, the assumption of infinite
target mass implies no bulk translation of the target during the impact. This has been shown
to be a poor assumption based upon high speed photography and strain gage instrumentation
results which have shown that a large first and second cantilever bending response is caused
in the specimens due to the transverse impacts in Task I. Secondly, the assumption of isotro-
pic and elastic target response is invalid. The graphite-epoxy target material is transversely .
isotropic within each ply, however, the response of a multidirectionally reinforced laminate

is much more complex. The response of the graphite-epoxy composite material is essentially
elastic to failure, therefore, the assumption of elastic behavior is good below the penetration
threshold with ice and gelatin projectiles, and reasonable at the lowest velocities nsed with
steel projectiles, where nonlinear target deformation was limited to small indentations at the
impact face. The assumption of elastic target behavior becomes 1ncreasmgly invalid as the
penetration threshold is exceeded in any 1mpact

Projectile mechanical behavior may be characterized as elastic and isotropic for steel only
within the range of conditions utilized in Task I Part A. Ice and gelatin are isotropic, but
have low elastic limits. Ice shatters at low stresses (Figure 9), while gelatin splatters (Figure
8), resulting in near zero rebound velocity.

The Hertz impact model, based upon completely elastic behavior and no bulk compliance of
the target beam, thus, predicts complete elastic rebound of the particle at the incoming im-
pact velocity, and pred1cts an upper bound for the impact loads and contact stresses due to
impact.

d. Modified Hertz Analysis

The Hertz analysis was modified to conform more realistically to the actual experimental
conditions. The most significant modification made to the Hertz model has been an altera-
tion of the contact force such that the bending compliance of a cantilevered beam target

is accounted for, instead of requiring a semi-infinite target body as previously required. The
Hertz assumption of isotropic material behavior has been partially accounted for by utilizing
an equivalent bending modulus for the bending compliance calculation, and by substituting
the composite material transverse tensile modulus for the indentation modulus. The Hertz
assumption of elastic material behavior with target and projectile appears to be reasonable
for the low speed steel impacts where visual deformation of the targets were minimal, and for
low velocity gelatin impacts where both target and projectile appear to be undeformed after
impact. Ice impacts are elastic until the yield strength of the ice is exceeded. However, com-
pressive tests at low strain rates with ice revealed yield strengths in the range of only
0.98-3.62Mn/m? (142-525 psi) (Reference 2).
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The problem of a cantilever beam struck by a sphere was used to refine the contact force

in the impact model. By superimposing the Hertz solution and the forced vibration of the
beam, the time dependent force acting on the beam can be obtained from the solution of an
integral equation (Reference 3). The integral equation does not lend itself to standard so-

lution techniques, and an approximate numerical solution was therefore necessary. The solution
was first obtained for a simply supported steel beam impacted with a spherical steel projectile.
Results of this calculation showed that the maximum load for the Hertz solution was ap-
proximately 1.5 times the maximum load predicted by the beam solution, which was the ex-
pected result, since the Hertz impact problem provides an upper bound on the load. The im-
pact times were nearly equal for the two solutions.

To account for the target compliance, transverse impact of a spherical projectile on a canti-
levered beam was analyzed. The geometry is shown in Figure 43.

The beam, originally at rest, is struck by a mass, M, with initial velocity v,,ata point X = ¢.
The approach distance, «, is the difference of the displacement. of the mass, W, and the de-
flection.of the beam at the contact point, W, <C>, so that '

1
t . t
=W, -W, <c>=V}! —— [ dty [ F(t;)dt, —W, <c>
M o !

o

- By replacing the displacement W <c> by a function representing the forced beam deflection
and a by a force indentation relation, an integral equation for F (t) is obtained. For a beam
of length L, we have

e X< t
W <c>=— % ] [, F<r>sinw, (t)dr
pA =1 wi fo X::dX °

The eigen functions X, and frequencies w;, are determined from the equations of free vibra-
tions of the beam and depend on the boundary conditions of the beam. For simplicity, we
assume the Hertz law of contact applies, and is given by

01.=KF2/3
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Substituting, we obtain the integral equation for F(t),

Lt |
vt — — I dt, % Ft,)dt, =KF2/3 +

o] M ‘

t

Z= 1 —_L_ fo F <> sin w, (t-r) dr

1
+—.
PA .

—

'Ihe force obtained from this analysis is in general agreement with expected results, that
when a sphere strikes a beam, the motion of the beam decreases the force, but the contact
time remains about the same.

The modified Hertz program thus presents a realistic approximation to transverse beam im-
pacts where both target and projectile behave elastically, such as low velocity impacts with
1.27 cm (0.5 inch) diameter gelatin, and low velocity impacts with both 0.64 cm (0.25 inch)
and 1.19 cm (0.46 inch) diameter steel. At higher velocity, the assumptions break down so
that the modified Hertz analysis provides only a guide.

e. Momentum-Inpulse Transfer

~The momentum-impulse transfer analysis was developed exclusively for the ice and gelatin
impacts, where assumption of elastic behavior leads to a prediction of projectile rebound,
while strobe photography reveals that there is minimal rebound due to deformation and break-
up of the projectile (Figures 8 and 9). The projectile is assumed to be a fluid with density
equal to that of the projectile being modelled, with no elastic response. The target is ini-
tially considered to be semi-infinite, but this assumption is later relaxed to include the ef-
fects of target beam displacement.

The model is developed by considering only the momentum transfer of fluid mass, M

. pinging upon a semi-infinite flat plate with a normal velocity of V_. The fluid mass w111 ini-
tially be considered as a cylinder with equivalent mass to a sphere of the same diameter (Fig-
ure 44) so that the impinging cross section is constant, and the average force, F_; is:

_ dmyy | (A%
Fo = 4t P\ AT (M
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Since the target does not deform and the projectile has no elastic properties (no rebound),
the average contact time At is taken equal to the projectile diameter, D, divided by the nor-
mal velocity, Vn :

A =2 @
A - |

The average change in normal velocity, AVH , is taken equal to —V_, since the final normal
_ velocity is assumed to be zero. Expressing the mass in terms of density (Figure 44), and
substituting the above yields:

n

F =—_7T— P D2 \]1,2l
6 : 3)

Defining the average contact pressure,—P_n , as the average force divided by the cross sectional
area of the impinging fluid cylinder yields:

— -2 .,
P = —pV
n 3p n

The above equations assume no rebound as do the solutions to the two previous models, and
therefore can be considered.as a minimum values for the case of a semi-infinite target. The
effect of target compliance may be approximated by assuming that the actual impact time
At is increaséd by the additional time required for the projectile to traverse the distance
which the beam has deflected during the impact, 6:

D+56
\'% ' A (3)

n

At=

Estimates of the beam displacement are available from the modified Hertz analysis.
The actual calculations of force and pressure used to simulate the Task I, Part A impacts are
based upon spherical projectile geometry, resulting in a parabolic function of instantaneous

force as a function of time.

These equations represent minimum values for force and load irrespective of any projectile
mechanical properties, and reveal that for deformable projectiles:

L Force increases with the density to the first power, and with the diameter and
~ velocity squared,
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®  Duration of the impact force is directly related to projectile size, and in-
versely related to projectile velocity, and :

®  Pressure is independent of projectile size, increasing with density
to the first power, and velocity to the second power.

These observations predict that:
(1) gelatin should be more damaging than ice due to its 9 percent higher density

(2) since contact pressure is a function of velocity squared, even ice projectiles should ex-
hibit a penetration threshold at a sufficiently high velocity.

f. Impact Parameters

The response of graphite-epoxy composite specimens to normal impacts can be divided into
four regions delineated by three thresholds (Figure 45). Below a certain critical velocity the
target response is all elastic, and no discernible damage results. As the projectile velocity is
increased, a damage threshold is achieved where the impact tensile stress waves exceed the
composite through thickness tensile strength S33T , and stress wave delaminations and crack-
ing are visible. Further increases in projectile velocity result in contact stress exceeding the
through thickness compressive strength S, of the material, resulting in localized penetra-
tion. At high impact energies using large projectiles, specimen fluxural failure occurs due to
large deflections caused by the impact, before penetration can occur. The criteria for im-
pact damage and-the above observed failure types are summarized below:

CRITERIA FOR IMPACT DAMAGE

DAMAGE REGION: Damage Threshold — Penetration Threshold — Flexural
Stress Wave Damage Increasing Penetration " Failure
CRITERION: Tensile Stress Waves Projectile/Target Contact Deflection
Exceed S, Pressures Exceed S, Exceeds Beam
Flexural
Strength
OBSERVED ] Delamination, Indentation, Broken Fibers 'Fracture, Gross

FAILURES: ~ Splitting, Cracking ' Delamination

The Hertz model, modified Hertz model, and momentum-ifnpulse model assumptions were '
utilized to predict the force as a function of time histories (loading functions) and contact
times for the Task I, Part A, impact conditions. These results are summarized in Table XXIV
and Figures 46 through 50. The Hertz calculations were performed for all impacts to serve

40




as a standard reference. The modified Hertzzand momentum-impulse calculations were not
made for the higher velocity steel impacts, as the assumption of elastic target response was
clearly invalid for these penetrative conditions.

The maximum load calculations summarized in Table XXIV reveal that the Hertz assumptions
lead to the highest peak loads under all conditions simulated from Task I, Part A. Relaxation
of the semi-infinite target assumption in the modified Hertz program resulted in lower loads
than the Hertz values, and higher than the minimum momentun-impulse calculated loads, as
was expected. The highest maximum loads among the ice and gelatin impacts result from
impacts with 2.54 cm diameter projectiles at 152 m/sec (500 ft/sec), and from the 1.27

cm diameter projectiles at velocities of 274 m/sec (900 ft/sec) and above. The duration of
these stresses is much longer for the 2.54 cm diameter projectiles than for the 1.27 c¢cm dia-
meter projectiles, as can be seen from the contact time results in Table XXIV.

The shape of the loading curve is shown for several representative impaéts in Figures 46
through 50. Figure 46 shows force as a function of time for the case of 1.27 cm diameter
gelatin impacting a [(+45,)] 0,, [(¥45), ], Modmor II/PR-286 cantilevered beam at 152 m/sec
(500 ft/sec). The curve for the modified Hertz analysis is similar in shape to the Hertz curve,

- but predicts a 27 percent lower maximum stress. The momentum-impulse analysis predicts

an impact duration 23 u sec longer than the 30u sec predicted by the Hertz program, with
resultant maximum load of only 33 percent of the Hertz calculations. The actual bounds of
_the loading curve function for this impact are therefore between 33 percent and 73 percent

of the Hertz load, depending upon whether the gelatin impacts as a fluid (no rebound), or
impacts elastically (56 m/sec rebound velocity).

Load curves for 1.27 cm diameter gelatin and ice projectiles at 274 m/sec are shown in
Figures 47 and 48 respectively. At the higher velocity the impact times for all models agree
closely, varying from 64 to 71 usec for the gelatin, and 62 to 66 u sec for the ice impact. The
bounds of the loading curve for the gelatin impact vary from 45 percent of the Hertz load

for the fluid projectile properties, to 72 percent of the Hertz load if the gelatin behaves elas-
tically. For the ice, the upper elastic load bound is 72 percent of the Hertz load, while the
lower bound is 43 percent of the Hertz load. The upper bound peak loads are nearly identical
for these two impacts, 10.9 x 10®> Newtons (2460 1bf) for gelatin and 10.9 x 10*® Newtons
(2450 1bf) for ice, but observation of high speed photography with ice impacts reveals early
shattering leading to near-fluid behavior during impact, indicating that the lower bounds of
6.45 x 10® Newtons (1450 1bf) is more reasonable for the ice. Results from Task I Part A
also show lower damage extents for a given impact energy with ice when compared to gelatin.

Loading curves for 2.54 cm diameter gelatin projectiles at 61 m/sec (200 ft/sec) and 152

m/sec (500 ft/sec) are shown in Figures 49 and 50 respectively. The upper and lower load
bounds are 39 percent and 13 percent of the Hertz load at 61 m/sec, and 37 percent and

24 percent of the Hertz load at 152 m/sec. These results show that the error in the load
calculation due to the assumption of a semi-infinite target becomes more severe as the ratio

of projectile to target mass is increased. An interesting aspect of the load curves for

the 2.54 cm diameter projectiles (including steel and ice, not shown) is that multiple impacts
result if completely elastic behavior is assumed. This implies that the combination of vibratory
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modes (the solution of the integral equation assumes that the first 25 modes are involved in
the motion) excited by_ the original impact would cause the beam to rebound away from the
projectile at a velocity greater than its residual forward velocity, causing momentary separation.

2.  Deflections

The vertical deflections of a transversely impacted beam are a function of both the magnitude
and duration of the impact loads. The modified Hertz loading function was therefore used

to determine beam deflections as a function of time and position for a 5.1 cm (2 inches) wide
by 0.25 cm (0.100 inches) thick by 20.3 cm (8.0 inches) long cantilevered beam impacted at

a point 8.9 cm (3.5 inches) from the fixed end. A bending modulus of 42.0 GN/m? (6.1 x

10¢ psi) was utilized to simulate the bending modulus of the [(245),10,,1(¥45),) . Modmor
I1/PR-286 composite specimens utilized in Task I, Part A. The beam vertical deflections were
calculated at locations 5.1 cm (2.0 inches), 10.2 ¢m (4.0 inches), 15.2 cm (6.0 inches) and
20.3 cm (8.0 inches) from the fixed end. These deflections plus the boundary condition that
the slope of the beam at the fixed end must approach zero at the point of attachment were
used to construct the beam shape as a function of location and time. The constructions re-
sulting from the loading curves given in Figures 46 through 50 are shown in Figures 51 through
55. The vertical and horizontal scales are plotted on a 1:1 scale, to give a realistic view of

the beam deflections. The beam shape is shown at five times: prior to impact; at the termina-
tion of impact (or of the initial impact in the case of multiple impacts); at 424 u sec; at

1270 u sec; and at 1800 u sec. The deflections shown assume elastic projectile behavior, and
are more severe than the actual impacts to the extent that the real prOJectlle behaved as a

fluid with no rebound. :

The beam deflections as a function of time are shown for 1.27 cm diameter gelatin at 152

m/sec, 1.27 cm diameter gelatin at 274 m/sec, and 1.27 cm diameter ice at 274 m/sec in

Figures 51, 52, and 53, respectively. In all three cases, the mid-span beam location nearest

the impact point is initially deflected downward (impact assumed coming down onto beam)

at the end of the impact, while the quarter-span and three-quarter-span locations are unmoved,
and the tip is deflected slightly upwards. The mid-span deflections at this time are 0.294 cm
(0.116 inch) for the 152 m/sec gelatin impact, 0.490 cm (0.193 inch) for the 274 m/sec

gelatin impact, and 0.440 cm (0.173 inch) for the 274 m/sec ice impact. Deflection at 424

u sec progresses downward (positive) at quarter, half and three quarter span, while the tip con-
tinues upward, giving the beam a concave upward bow. At 1270 u sec, the first three span
location deflections have changed only slightly, but the tip deflection is now more positive

than the three-quarter span location. At 1800 u sec, the quarter-span deflection is negative
(upward), with the remaining three locations progressively more positive, in what appears like

a second bending mode deflection. This is in agreement with the Task I Part A results which
observed second bending response in all specimens after the initial impact transients had damped
out. The tip deflections at 1800 u sec are 2.60 cm (1.04 inches) for the 152 m/sec gelatin im- L
pact, and 4.78 cm (1.88 inches) and 4.35 ¢m (1.71 inches) for the 274 m/sec gelatm and ice
impacts, respectively.
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Deflections as a function of time are shown for the case of 2.54 cm diameter gelatin at 61 m/sec
(200 ft/sec) in Figure 54, and at 152 m/sec (500 ft/sec) in Figure 55. Initial deflections for
the 2.54 cm diameter impacts are similar to those for the smaller projectiles. The mid-span
position exhibits a positive deflection of 0.73 ¢cm (0.29 inch) at 61 m/sec, and 1.55 cm (0.61
inch) at 152 m/sec, while the remainder of the beam is relatively undisturbed, exhibiting
small positive deflections at quarter-span and tip, and a small negative deflection at three-
quarter span. The deflection constructed in Figure 55 for gelatin at 152 m/sec bears strong
resemblance to the actual shape of a composite Task I, Part A, specimen being deformed by
such an impact in Figure 8, right. The beams then take on a concave upward shape at 424 u
sec, but do not assume the final appearance of second bending at 1800 u sec. Instead the
entire beam exhibits positive deflections. The final tip deflection resulting from the 61 m/sec
impact is 2.97 cm (1.17 inches), and is comparable to that for the 1.27 cm diameter impacts
in Figures 51 through 53. The back face of this specimen at the point of impact remains in
a convex shape until approximately 1800 u sec. Strain gages on this face should, therefore,
have indicated tension until this time. This is in good agreement with the strain record for
specimen 982-2 impacted with 2.54 cm diameter gelatin at 68 m/sec as shown in Figure 11.
The deflections shown resulting from the 152 m/sec impact in Figure 55 are clearly more
severe than those shown in the previous figures, and indicates why tests with 2.54 cm diameter
gelatin and ice projectiles at this velocity resulted in flexural failure of the specimens. At
‘1800 u sec midspan deflection is 6.53 c¢cm (2.57 inches) and tip deflection is 8.25 ¢m (3.25
inches). Fitting a radius of curvature to the mid-span bending shape yields a radius of 4.7 cm
(1.85 inches) over a 5 cm length of the beam. Using the formula for skin strain on a beam
due to bending around a radius:

t

6:.—

2

where t = beam thickness )
£ = radius of curvature

yields e = 2.7 percent, which is far in excess of the yield strain of the Modmor II/PR-286
composite material. '

3. Contact Stresses

The calculations of maximum impact projectile/target compressive stresses are summarized
in Table XXV. These pressures were arrived at using (Reference 1):

=3P
d 2 waz

where P is the load and a is the radius of the area of contact.
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for the Hertz program, and

3 3/16 P
q = —— . B ——
7 or? RP(K? + K2)

for the modified Hertz program. The momentum-impulse pressure calculation is derived by
dividing the maximum load by the projectile cross-sectional area.

The ease with which steel projectiles penetrate the Modmor II/PR-286 composite is seen in
the very high contact stress generated at the interface. Using the modified Hertz calculation
which is reasonably valid for the low velocity steel impacts yields contact pressures of 2040
MN/m? (296 ksi) for the 0.64 cm diameter steel at 61 m/sec (200 ft/sec) and 1680 MN/m?
(244 ksi) for 1.27 cm diameter steel at 30 m/sec (100 ft/sec). These pressures are easily in
excess of the S_, compressive strength of the composite, which is approximately 138-241
"MN/m? (20-35 ksi in low strain rate tests).

The maximum pressures using the modified Hertz program exceed 138 MN/m? (20 ksi)

in four instances: 1.27 ¢m diameter gelatin at 274 m/sec (147 MN/m?); and 1.27 cm diameter
ice at 214 m/sec (150 MN/m?2), 274 m/sec (166 MN/m?), and 305 m/sec (173 MN/m?). The
fact that only the gelatin projectiles caused penetration damage at the impact face in Task I,
Part A, is further evidence that the gelatin behaves more elastically (and hence closer to the
upper bound of the loading curve) than does the ice. This quasi-fluid behavior of the ice would
thus indicate that ice presents less of a ballistic impact threat than do birds, assuming that

the viscoelastic response of real birds is fairly approximated by the response of the gelatin
spheres used in Task 1. '

4. Application to Turbine Engine Blading

Application of the Task I results to the simulated blade testing of Task II and to turbine engine
blading is accomplished by resolving actual impacts into their normal and tangential compo-
nents, as shown in Figure 56. It has been demonstrated in Task 11 that the tangential com-
ponent of ice and gelatin impacts does not cause any measurable damage in 0°-LE impacts

at 274 m/sec. Relating the normal component of the Task II impacts to the normal impact
damage_ and penetration thresholds established for [(1‘45)2 | 0,, |(¥45)2 ] T Modmor _II/PR-286
composite in Task I, Part A, furthermore indicates that the normal components in Task 11

for ice and gelatin projectiles are below the damage thresholds, as shown in Table XXVI.
Metallography of Task 1I specimens impacted at 15°-QC showing no damage confirmed this
prediction for one case, and impacts at 30°-LE revealed only bending damage and no stress
wave damage. All Task Il impacts with steel against unprotected composite resulted in severe
stress wave damage. Thus the resolution of the vector velocity components appears to be
valid. ) . '

Knowing the damage threshold of a particular projectile type at the limiting case of normal
impact, and using the relationship that v _ =V sin « from Figure 56, it is possible to define
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the range of blade operating parameters above which stress wave damage will occur, and
below which no stress wave damage will occur. Thisis accomplished by plotting the locus

of points where v sin o equals the normal impact damage threshold velocity. This is shown
for 1.27 cm diameter gelatin in Figure 57, 1.27 cm diameter ice in Figure 58, and for 1.19
cm diameter steel in Figure 59. The range of leading edge impact angles and velocities for a
typical fan blade at take off conditions is included for reference on the three figures. Figures
57 and 58 show that the entire range of fan operating conditions falls outside of the stress
wave damage threshold region, indicating that no stress wave damage should result to Modmor
1I/PR-286 composite blade material due to impacts with these projectiles. This further in-
dicates that damage due to leading edge impacts with the ice and gelatin projectiles is the
result of structural failure of the relatively thin leading edge due to the high loads imposed
by the impact. Work conducted in Task I indicates that gelatin impacts may cause higher
loads than ice impacts due to more elastic behavior and due to higher density, indicating

that for a given mass, bird impacts may be more severe than ice impacts.

‘The typical fan blade take off parameters fall entirely within the damage and pénetration
threshold for steel in Figure 59, indicating that all steel impacts will cause penetration and
stress wave damage. Experimental work in the Task II spin impact tests have demonstrated
that severe wave damage does occur even in glancing impacts, and has also demonstrated that
proper shielding can protect the composite. The leading edge FOD shield utilized in the Task
11 spin impact tests was successful in arresting steel impact without transmitting stress wave

damage to the composite.
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IV. CONCLUSIONS

The following conclusions have been drawn:

Impacting projectiles cause decreasing damage in the following order: steel, gelatin,
ice. '

Increased composite transverse tensile strength correlated with improved resistance
to delamination damage.

Addition of S-Glass and PRD-49-1 fibers to graphite composite resulted in increased
impact resistance to cracking and delamination. '

Lay-ups using dispersed angled plies exhibited the best impact resistance to de-
lamination damage.

Residual tensile strength was an effective parameter in measuring damage caused
by penetrative impacts but was not an effective measure of delamination type
damage.

Ultrasonic inspection and torsional modulus were the most effective measure of
delamination type damage.

In tapered simulated blade specimens damage severity increased with increasing
impact angle for ice and gelatin impacts at the leading edge.

Ply-layups resulting in increased leading edge stiffness, such as obtained by the
addition of 90° surface plies, were effective in reducing impact damage.

Metallic leading edge shields afforded protection to leading edge impacts with 0.64
cm diameter steel projectiles and 1.27 cm diameter ice and gelatin projectiles.

Metallic leading edge shields provided protection against 2.54 cm diameter ice pro-
jectiles at 30° impingement angle to the leading edge but were not effective against
gelatin projectiles.
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Figure 7 Front and Back Face Views of [(i45)2 | 012| (;45)2 ]T Modmor II/PR-286
Specimen After Impact With 0.64 cm Diameter Steel Ball at 122 m/sec
Mag: %4 X
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Location of Strain Gages on Task I Instrumented Impact Specimens

57



(zHY 0§) Toyrduwry Ioje[suei],
USNnoay ], passeq 9ABRH SOOBIT, JoMOT o[IYM (ZHM 000 1) 2d0aso[[10sQ YsSnoy],
A[10311( 21y saoel] Jadd() -asuodsay Aousnbarg ronrduwy jo uonjound e

se asuodsay] urerl§ orweuA( jo suosuedwo)) ydeidojoyd adooso[[rosQ aury uQ [ ] 2In3rg

WO/93S 100s \V_ T ND/03s 1 002 <

€°¢86 NINIDO3AdS 86 N3INID3LS

58



09s/tl 78T 1B 99 Ia)aWiel(] WO L7 [ YHA 1oedw] 191y uawioadg
dnAeT o1dox}0S[-0pnosd 987-Y d/IT IOWPOJY JO MITA UON)OAS SSOID) SSIGASUBI], 7 [ oInSig

XcZ OVIN 30V4 >ovd

X% ‘OVIN

59

zzloL

IOVIANvYA ON

, 30V4 LOVdII e
g\'\ T

NOILVYO0T1 OLOHd

NVJSO




oas/w /0] Hm :«EEQU I9JQWRI(] WO $S°7 YA Joeduw] 1))y uswioadg
987-Ad/I1 Jowpo [ “(Sp+) | ¥'0 | “(SF)] JO MATA UOTIIAG SSOI) OSIGASUBL], €[ aInBrg

X% ‘OVIN

XLl OVIN

30V4 Mova L KRR
RS

LR

el
oo

2020202

Dt X3
S &

ietets ole

30V 4 LOVdWNI

e R~ ——————————— SRS
SERRRNN
Seledetelele
NOILVOOT OLOHd SRR
IRRRA
GRS
SRR

< 3IDVNYA

60



(UOTJBUTWE[A(] PUB SYorI) o[dU[n
OHOZV .ovm\E VLT lje C_uﬁﬁoo hOaOEN_Q wo N‘Nﬁ Su:s HONQEH HOH.«< CDE_OOQW
987-¥d/I1 Jowpo “[“(st+) | “'0 | “(SpF)] JO MIIA UONOIG SS0I) 9SIOASUBLL, {1 InSLg

XLl :OVIN

30Vv4 >0vd

X% OVIN
C-9L6

SNOILVNIWVT3a

30V4 LOVdNI

NOILVYD01 OLOHd

XP
EERERRS
SRS

NVJS-O

61




0938 /W ¢/ 7 1B 0] 19JWRI( WO /7" YA Joedw] 101Jy UaWroads
987-¥d/I1 F0WpoW

1Ast4) 110 1 %(SHT)] JO MATA UOTO0S SSOI) OSIOASUBIL G InsSiyg

X% ‘OVIN
286
XE~ 13TVOS 30Vv4d X0ve
30Vvd LOVdWI
NOILVIO01 OLOHd
V3dVv d3dvinva
NVOSO

62



IMPACT DIRECTION

TOP

TOP

;
A — _— e —— —
0
B1

1011-2
GRIPPED END BOTTOM

SCALE: 15X

SCALE: 3/4X
BOTTOM

Figure 16 ~ Comparison of Ultrasonic C-Scan Inspection With Transverse Metallographic
Sections Taken From [(¢45),10,,1(¥45), ], Modmor II/PR-286 Specimen
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NAS-13
BACK FRONT

0°, +45° MODMOR II/PR-286

NAS-41

BACK FRONT

0°, 90° MODMOR II/PR-286

Figure 23  Effect of Ply Configuration Upon Impact Damage to Modmor II/PR-286 Simu-
lated Blade Specimens After Impact at 15° on the Leading Edge With 1.27 cm
Diameter Gelatin at 274 m/sec. (Mag: 0.7X)
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BACK FRONT

NAS-113

BACK FRONT
15° - LE

NAS-115

FRONT

15° - QC

Figure 25  Effect of Impact Location and Angle Upon Damage to Titanium - 6A1-4V
Simulated Blade Specimens Impacted With 0.64 cm Diameter Steel at 274
m/sec. (Mag: 0.7X)
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Figure 32 Task II Spin Impact Specimen Attachment Configuration
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Figure 33 Cross Section View Showing Simulated Blade Specimen With Leading
' Edge Protection
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NAS-103
BACK FRONT

NAS-101

BACK

Figure 37 Impact Damage to Titanium -6Al-4V Due to 0.64 cm Diameter Steel
Impacts at 15° on the Leading Edge During Spin Test
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NAS-22 MAG: 15X

Figure 38 Transverse Cross Section View of Modmor II/PR-286 Specimen Just
Behind Point of Impact on FOD Shield Which was Spin Impacted With
0.64 cm Diameter Steel at 274 m/sec. Note Lack of Damage to Composite
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Figure 43

Geometry of Spherical Projectile Impact on a Beam




SPHERE EQUIVALENT CYCLINDER

PHYSICAL MODEL , ' t

4 D3 m .
V = — 7[—:—-03
3 8 6
T T T
MAss = — D3 p MASS =— p3p =— 03 p
6 ' a4 6

WHERE 0’ = 2/3p

- Figure 44  Dimensions of Equivalent Cylinder Used to Calculate the Average Momentum-
Impulse Force ‘
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TABLE I1

MODMOR 11/P13N COMPOSITES — UNIDIRECTIONAL COMPOSITE DATA

Composite Density -g/cc 1.56
Void Content _ 20
Ave. Fiber. Vol. - % ‘ 64

* Longitudinal Tensile 1.23(179)
Strength 1.29(187)
GN/m?(10%psi)
Longitudinal Tensile . : . 148(21.4)
Modulus 143(20.8)
GN/m?(108psi)
Transverse Tensile : 29.6(4.3)
Strength . ' 17.2(2.5)
MN/m?2(103psi)
Transverse Tensile 9.7%(1.42)
Modutus . 9.52(1.38)
GN/m?2(10%psi) '
Beam Shear Strength (L/D = 4:1) 71.0(10.3)
MN/m2(10> psi) 81.4(11.8)
Charpy Impact Strength 8.5(6.3)
joules (ft-1bs) 8.9(6.6)
Torsion Rod Shear Strength 31.0(4.5)
MN/m?2(10 psi) 31.0(4.5)
Shear Modulus 3.86(0.56) .
GN/m?2(10%psi) 4.00(0.58)
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PERCENT FREQUENCY CHANGE RESULTS AFTER IMPACT

TABLE X

FROM TASK I, PART A, “EFFECT OF PROJECTILE CHARACTERISTICS”
(All Specimens Are [(45),|0; 5] ¥45),] 1 Modmor 11/PR-286)

Percent Frequency Change****

Impact
Projectile/ Energy Extent of
Specimen (Joules) Damage First Bending
0.64 cm Steel
976-3 1.4 5% - -16 .
980-1 2.3 8% -5
- 980-2 4.8 7%NP** -2
976-4 5.0 4% -14
980-3 7.9 6%NP 0
976-5 9.0 6%NP -15
1.19 cm Steel
985-2 2.0 3% + 1
981-5- 3.7 5% -4
983-1 12.0 37%NP 5
985-5 13.8 17%NP 0
983-2 23.0 28%P*** -5
982-3 34.2 24%P -5
1.27 cm Ice
976-1 21.3 7% -17
981-2 25.2 0% -3
982-4 ’ 37.1 20% -2
981-3 38.5 9% -3
982-5 . 46.4 12% -1
981-4 49.7 31% -3
2.54cm Ice
983.3 _ 16.1 0% -1
985-1 16.6 0% Ct1
983-4 C 447 0% -1
982-1 49.2 0% 0
985-3 83.3 74% N.A!
983-5 94.6 100% N.A.

Second Bending

- -120

-9
-2
-11

First Torsion

s

W h b oxon

+2

2

-1

7

1

Zz Z
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TABLE X (Cont’d)

Impact : : Percent Frequency Change****
Projectile/ Energy Extent of
Specimen (Joules) Damage First Bending Second Bending First Torsion

1.27 cm Gelatin

984-4 14.0 0% +2 0 0
980-4 14.9 0% S 0 0 .0
984-5 23.4 33% : 0 -1 12
980-5 25.6 23% - +1 -10
976-2 383 52% 14 -11 *
981-1 43.2 37% -9 -6 *
2.54 cm Gelatin
985-4 17.5 0% , +1 +1 *
984-1 18.4 0% +4 +3 +2
982-2 19.9 0% 0 +1 : *
984-2 49.0 89% N.A. N.A. N.A
984-3 93.4 76% N.A. N.A. N.A.
1025-1 104 89% NA. NA. N.A.

* Specimen Did Not Excite In First Torsion

** ° Near Penetration '

**%%  Penecration

*x##*Natural Cantilever Bending Frequencies With 2.5 cm (1.0 in) Gripped. Torsion Determined With
95.7 Gram Weight Attached To Free End. Post Impact Frequencies Compensated By -11% In First
And Second Bending And -3% In First Torsion. -

1 Specimen Unsuitable For Frequency Testing After Impact
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TABLE XI

PERCENT FREQUENCY CHANGE RESULTS AFTER IMPACT
FROM TASK I, PART B, “EFFECT OF COMPOSITE PROPERTIES”

Fiber Type* Layup
Modmor | (020l 1
T-75-S [Orgly
Modmor Il [050]

Mod II/P13N  [0yg]y
PRD49-1 [0yl

Boron [023]
S-Glass (071
PRD-49-1 [(#45)4108]
Boron [(245), 06]
S-Glass [£i45)3 06 5.] S

(All Impacts With 1.27 cm Diameter Ice)

Percent Frequency Change2

Impact
-Energy Damage  First  Second First

Specimen (Joules)  Extent Bending Bending  Torsion
1015-1  33.1 42% NAD NA N.A.
1015-2 39.9** 42% N.A.  NA. - N.A.
1005-1 331 32% N.A.  NA. N.A.
1017-1 42.5 49% N.A. 'NA. N.A.
1002-1 33.6 16% NA.  NA. N.A.
1002-2 35.8** 0.6% -2 0 Ak
1028-1 38.4 49% N.A.  NA. N.A.
1028-2 39.1 26% +4 +1 *EE

992-1 33.6 10% +1 +3 AR

992-2 38.8%* 10% +2 FaE
1001-1 32.6 1.2% +2 0 wkE
1001-2 38.8 0.5% +3 0 rEE

999-1  33.6 0.6% +5 . +4 i

999-2 36.1 0.1% +4 +4. ok
1064-1 36.4%* 18% +4 +2 *EE
1064-2 36.6 34% +4 +4 *EE
1003-1 39.4 5.1% +3 +2 0
1003-2 . 399 6.8% +2 +2 0
1034-1 38.3 0% - +2 +4 *EE
1034-2 43.4%* 0% +3 rEE

*  Resin Is 3M Company PR-286 Unless Otherwise Indicated.
**  Ice Ball Break-Up May Have Commenced Prior To Impact
*#*  Specimen Did Not Excite in Torsion
1 Post-Impacted Specimen Unsuitable For Impact Testing
2 Natural Cantilever Bending Frequencies With 2.5 cm (1.0 in) Gripped. Torsion Determined With 95.7

Gram Weight Attached To Free End.

+5
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TABLE-XII

PERCENT FREQUENCY CHANGE RESULTS AFTER IMPACT

FROM TASK I, PART C, “EFFECT OF PLY CONFIGURATION,

FIBER CONTENT, AND THICKNESS” WITH MODMOR 11/PR-286
(All Impacts With 1.27 cm Diameter 1ce)

Fiber Impact _Percent Frequency Change***

Volume ‘ Energy Extent of  First  Second  First
Specimen Fraction Layup "~ (Joules) Damage Bending Bending  Torsion
10441 047 [10s]y | 38.4 1.1% ¥ 44 x
1044-2 0.47 [0g] o339 1.1% +2 +3 *
1041-1 0.65 [010] ¢ 37.1° 1.1% 36 +4 =
10412 0.65 [010] ¢ 37.1 16% +2 +2 *
1007-1 0.57 [(£30)s] g 40.6 12.5% 4 3 +3
1007-2 0.57 | 42.8 16% H 44 +1
10331 057 [@45)5]T 44.7%x 0.5% +2 +3 #
1033-2 0.57 | 39.4 0% +2 44 *
1009-1 0.57 [(230), 1061 43.8%* 4.8% +3 +7 +4
1009-2 0.57 35.6%* | 1.4% +2 +4 +3
10101 6.57 [Ok30bI300),]g  36.8%* 1.0% 0 +4 | +3
1010-2 0.57 39.4 0.1% S+l -8 +3
1008-1 057 [(£45), 06] § 36.5%* 2.7% +4 +3 +2
1008-2 10.57 : , 38.8 30% +4 +4 3
10121 . 0.57 Pseudo-isotropic 34.9%% 0% . +4 +4 +3
1012-2 0.57 39.4 0.1% 3 02 +2
1011-1 051 [(245) D2 ] g 50 0% M o4 x
1011-2 0.57 ’ 39.4 42% -4 43 *

\

* Specimen Did Not Excite In First Torsion

**  Ice Ball Break-Up May Have Commenced Prior To Impact

*** Natural Cantilever Bending Frequencies With 2.5cm (1.0 in) Grlpped Torston Determined With 95.7
Gram Weight Attached To Free End.
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TABLE XIII

PERCENT FREQUENCY CHANGE RESULSTS AFTER IMPACT
FROM TASK 1, PART D, “MATERIALS IMPACT IMPROVEMENT
EVALUATION”

(All Impacts With 1.27 cm Diameter Ice)

Impact - Percent Frequency Change?

Energy Extent of First  Second First
Specimen Fibers* Layup (Joules)  Damage Bending Bending Torsion
1038-1 PRD, T-75-S (020l 377 . 29% N.AY NA N.A.
1038-2 37.1 . 29% N.A. NA N.A.
1048-1 41.4%* 24% +1 +2 -3
1063-1 SGlass, T-75-S.  [Oj4]y 414 C10% +4 +4 #kk
1063-2 43.4%% 22% +4 +4 ®ow

*  Resin Is 3M Company PR-286 Epoxy

**  Ice Ball Break-Up May Have Commenced Prior To Impact

*** Specimen Did Not Excite In Torsion

Post-Impacted Specimen Unsuitable For Frequency Testing

2 Natural Cantilever Bending Frequencies With 2.5 cm (1.0 in) Gripped. Torsion Determined With 95.7
Gram Weight Attached To Free End. '
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RESIDUAL TENSILE STRENGTH RESULTS

TABLE XIV

FROM TASK 1, PART A, “EFFECT OF PROJECTILE CHARACTERISTICS”

Impact Residual
Energy Extent of Tensile Strength
Projectile/Specimen (Joules)  Damage (MN/mz)
No Impact
1025-2 0 0% 724
0.64 cm Steel
976-3 14 5% 608
980-1 2.3 8% 441
980-2 4.8 T%NP* * 448
9764 5.0 4% 435
980-3 7.9 6%NP 505
976-5 9.0 6%NP 415
1.19 cm Steel
9852 2.0 3% 542
981-5 3.7 5% 406
983-1 12.0 37%NP 362
985-5 13.8 17%NP 352
983-2 23.0 28%P*** 334
982.3 34.2 24%P 258
1.27 cmIce
976-1 21.3 % 620
981-2 25.2 0% 595
9824 371 20% 474
981-3 38.5 . 9% 520
982-5 T 464 12% 580
9814 49.7 31% 417
2.54 cmIce
983-3 16.1 0% . 566
985-1 16.6 0% 527
9834 44.7 0% 561
982-1 49.2 0% 536
985-3 83.3 74% 0
983-5 94.6 100% 330

120

Fraction of

Pre-Test* ]

>1.06

0.89
0.65
0.66
0.64
0.74
0.61

0.79
0.59
0.53
- 051
049
0.38

091
0.87
0.69
0.76
0.85
0.61

083
0.77
082
0.78
0.0

0.48

“Failure Location

Tab Slipped

Gage
Gage
Gage
Gage
Gage
Gage

Gage
Gage
Gage
Gage
Gage
Gage

Gage
Gage
Gage
Gage
Gage
Gage

Under Tab
Under Tab
Under Tab
Under Tab -
Failed in Impact
Gage




Impact

TABLE X1V (Cont’d)

Residual
Energy Extent of Tensile Strength Fraction of
Projectile/Specimen (Joules)  Damage (MN/mz) Pre-Test* Failure Location
1.27 ¢m Gelatin
9844 14.0 0% 665 097 Under Tab
980-4 14.9 0% 517 0.76 Under Tab
984-5 234 33% 407 0.60 Gage
980-5 25.6 23% 556 081 Gage
976-2 38.3 52% 380 0.56 Gage
981-1 43.2 37% 267 0.39 Gage
2.54 cm Gelatin
9854 17.5 0% 627 0.92 Gage
984-1 184 0% 645 094 At Tab
982-2 199 0% 579 0.84 Under Tab
984-2 49.0 89% 427 0.62 Under Tab
984-3 934 76% 0 0.0 Failed in Impact
1025-1 104 89% 118 - 0.17 Gage

* Based Upon Average Longitudinal Tensile Strength of 682 MN/m2
(99.2 Ksi) Reported for [145) | 0, | (i-'45)]T Modmor 11/PR-286 In

Table I11.

- **Near Penetration

***+Penetration
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Fiber Type*

Modmor I

T-75-S

Mc;dmor I
Modmor !I/P 13N
?RD-49-1

Boron

S-Glass

PRD49-1
Boron

S-Glass

RESIDUAL TENSILE STRENGTH RESULTS

TABLE XV

FROM TASK 1, PART B, “EFFECT OF COMPOSITE PROPERTIES”
(All Impacts With 1.27 cm Diameter Ice)

Layup
(030l
[018,]f
(030l 1
(03817
[0l
102317
(0717

[(£45),10g]

[(245),[04] ¢

[(£45);310401

*Resin Is 3M Company PR-286 Epoxy Unless Otherwise Indicated

** ]ce Ball Break-up May Have Commenced Prior To 1mpact

*#*Based Upon Average Longitudinal Tensile Strengths Reported In Tables I and III.

(1) Based Upon An Estimated [(245)710¢] ¢ Tensile Strength 937 MN/M2 (136 KSI)
(2) No Base Line Tensile Strength Available
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Impact Residual Fraction
v Energy Extent of Tensile Sztrength of Failure
Specimen  (Joules) Damage (MN/m“) Pre-Test**#* Location
1015-1  33.1 42% - No Test - Split
10152 39.9%* 42% No Test - Split
1005-1  33.1 32% No Test - Split
1017-1 425 49% No Test . - Split
1002-1 336 16% No Test - Split Under
10022 35.8%* 0.6% 675 0.67 Tab
. 1028-1 384 49% No Test - Split
10282 39.1 26% 1070 0.83 Gage .
992-1 33.6 10% 765 0.69 Under Tabs
9922 38.8%* 10% 846 0.76 Under Tabs
10011 32.6 1.2% 1000 0.68 Under Tabs
10012 38.8 0.5% 1210 0.82 At Tab
999-1 33.6 0.6% >1130 >0.75 Did Not Fail
9992 36.1 0.1% >1280 >0.85 Did Not Fail
1064-1  36.4** 18% 690 ) Gage
1064-2  36.6 34% 616 ) Gage
1003-1 39.4 5.1% 861 092D At Tab
10032 399 6.8% 909 097 . At Tab
1034-1 383 0% 771 2 Gage.
10342 43.4%+ 0% 875 @) Gage
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TABLE XXV

MAXIMUM IMPACT COMPRESSIVE STRESSES

Impact Maximum Compressive Stress Penetration
» Diameter  Velocity Inertial Cook Hertz Threshold

Projectile (cm) (m/sec) (MN/m?) (MN/m?) (MN/m?)  Achieved
Steel - 0.64 61 N.A. 2040 2540 Yes
: 0.64 92 N.A. N.A. 3000 Yes
0.64 122 N.A. N.A. 3360 Yes
Steel 1.19 30 NA. 1680 1930 Yes
61 N.A. N.A. 2550 Yes
92 N.A. N.A. 3000 Yes
Gelatin 1.27 152 19.5 117 138 No
214 34.0 134 152 " No
274 54.4 148 174 Yes
Gelatin 2.54 61 2.50 65.6 91.7 No
' 2.54 107 7.17 81.4 119 No
2.54 152 14.2 93.1 138 No
Ice 1.27 214 33.0 150 168 No
- 274 50.9 166 185 No
305 61.8 173 193 No
Ice 2.54 . 61 2.28 74.5 101 No
2.54 107 6.63 92.4 127 No
2.54 152 13.7 105 146 No

TABLE XXVI

NORMAL VELOCITY COMPONENTS IN TASK II IMPACTS

‘Damage Penetration
Normal Velocity (m/sec) Threshold Threshold
Projectile  15°@274m/sec 15°@400m/sec 30°@274m/sec  _(m/sec) (m/sec)
Steel 71 - — 137 <52 <52
Gelatin 71 - — 137 >166 274
Ice 71 108 137 213-226 - —
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