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THEORETICAL STUDIES OF TONE NOISE FROM A FAN ROTOR

By G.V.R. Rao, W.T. Chu, and R.V. Digumarthi

Rao and Associates, Inc.

SUMMARY

Noise sources in a fan rotor due to inflow distortion

and turbulence are examined. Analytical studies show that

high levels of tone noise at blade passing frequency and

its higher harmonics can result from relatively small dis-

tortions of the inflow to the rotor. It is shown that these

discrete tones can also originate from blade loading fluctu-

ations caused by inflow turbulence, provided the longitudinal

velocity correlation length scale is sufficiently large.

Computations carried out on a small scale subsonic rotor

indicate that acoustic radiation from blade thickness effect

and fluctuating Reynolds stresses is small compared to that

from blade loading. Theoretical predictions of on-axis noise

are in reasonable agreement with acoustic measurements taken

on a small scale rotor.
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L ' • - •.
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1-0 INTRODUCTION

The various mechanisms by-which -noise is generated, in a

lift fan have been the subject of an analytical study during

the past two years., at Rao and Associates, Inc., under a con-

tract with National*Aeronautics and Space Administration.

Lift fans operate essentially on the same principles.as a. :

single stage compressor or a turbo-fan, and the acoustic

studies on such machines, carried out by several investiga-

tors over the past decade, guided us in our investigations.

Noise measurements on a small scale fan .and on the various.

OGV configurations of the 36 inch diameter GE LF336 lift fan 2

indicated high level discrete tones, contrary to theoretical

predictions of blade-vane interaction effects. - Consequently,

the noise sources associated with the rotor itself .are inves-

tigated further and some preliminary results were presented

in our interim report on the contract.

The noise sources, whether they be from forces or flow -

interactions can be classified into two general catagories:

ordered and random. In the first catagory, the sources at any

one point in the flow region have a deterministic relation ,

with those at any other point. When the sources are random,

as in the second catagory, we can only mention the spectral

distribution of the source strength and correlation over lim-

ited separation distances. Ordered sources, except in a spec-

ific type of inflow distortion, radiate zero tone-noise to



points on rotor axis, contrary to the high levels observed in

test data, and therefore emphasis is given in this report to

random noise sources and radiation to on-axis points.

Since the noise generated in a fan is governed by the

velocities occurring through the fan, our report begins with

a description of flow field as given in section 2. The con-

sequences of the flow, such as forces on blades, effect of

their thickness and the occurrence of fluctuating Reynolds

stresses are also discussed in this section. The presence

of a rotating blade, i.e. its loading and thickness, are re-

placed by suitably phased elemental dipoles and monopoles

around the rotor circumference, and sound radiation from all

such sources in the fan annulus is examined in the following

two sections. The influence of inflow distortion is discussed

in section 3 and the effect of turbulence in the inflow to the

rotor is treated in section 4. Acoustic radiation from fluctu-

ating Reynolds stresses is evaluated in these sections using

the space-time correlation functions of the velocity fluctua-

tions. Our primary effort is on estimation of noise sources

occurring in a fan-rotor, and the effect of duct cut-off has

been ignored in the preliminary noise calculations carried

out on the small scale fan and presented here. It is ob-

served that the random loading on the rotor blades caused by

inflow turbulence, with sufficiently large length scale, can

give rise to discrete tone noise at blade passing frequency

and its higher harmonics. The configuration of the small



scale rotor used in our acoustic computations is described in

reference 1, and the pertinent design parameters are given

in Fig. 1.1.

Inflow turbulence and on-axis noise measurements obtained

by NASA Ames Research Center on the small scale rotor are pre-

sented in section 5. Acoustic computations, at the flow para-

meters corresponding to the test conditions, show reasonable

agreement with measured noise levels. Conclusions and recom-

mendations for future investigations are given in the final

section of this report.

The theoretical investigations and acoustic computations

were carried out at Rao and Associates, Inc., for NASA Ames

Research Center under contract NAS2-6401. The helpful sug-

gestions by Mr. B.K. Hodder and Mr. D.H. Rickey, the technical

managers on this contract, are greatly appreciated.
J ]• !
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2-0 NOISE SOURCES IN A ROTOR

A comprehensive theory of generation and propagation of

("*)aerodynamic sound is given by Lighthill in his 1961 Bakerian

Lecture. Following his approach, the rotor noise problem can

be investigated by considering the role of the following:

(a)Aerodynamic forces on the blades giving rise to acoustic

dipoles.

(b)Effect of blade thickness giving rise to acoustic monopoles.

(c)Fluctuating Reynolds stresses, and the resulting quadrupoles.

The monopole and dipole sources are located at the blades,
?'*

whereas the quadrupole sources are present in the entire flow

region exterior to the blades. All the above noise sources

are directly related to the velocities occurring in the region

of the rotor and hence a description of the flow field is

given in this section, followed by a general discussion of the
r

sources and their locations. The coordinate system employed

in describing the flow field and blade locations is shown in

Fig. 2.1.

2.1 Description of Flow Field

The velocity field in a fan, including the effect of

moving rotor blades and stationary vanes or struts has been

described in detail in reference 3. Since the present inves-

tigation is limited to noise from the rotor itself, we shall

limit our attention only to the effect of rotor blades. The



flow conditions within the wake of each blade have consider-

able random components, unrelated to the conditions occurring

in the wakes of the neighboring blades, as pointed out in

reference 5, and such velocity fluctuations by themselves do

not contribute to discrete tone noise. Consequently, we shall

exclude the region downstream of the rotor and describe the

velocity vector in the flow region as

\f = TJ+Ij+Tr (2.1)
- P

The inflow to the fan, denoted by U, may be both unsteady and

nonuniform. The velocity resulting from the potential flow

around the rotating blades is represented by U . The last

term \T denotes the turbulent fluctuations of velocity in the

inflow. We note that each term, except "u*, in the above equa-

tion is well correlated, i.e. the value at any one point is

definable in terms of its value at any other point. On the

other hand, the turbulent fluctuations ui may have correlation

only in a small region.

In the following discussion, we will be describing the

velocities in terms of their components in the axial, radial

and tangential directions indicated in Fig. 2.1, by using sub-

scripts 1, 2, and 3 respectively. Subscripts r and i will

be used to denote respectively the components along and normal

to the mean relative velocity met by the rotor blade.



2.1.1 Inflow to the fan

Due to disturbances upstream of a fan engine, the inflow

to the rotor can exhibit spatial nonuniformity as well as

fluctuations of such distorted flow. At any given location

in the fan annulus , the inflow velocity U can be described by

its components in the axial, radial and tangential directions.

However, the fluctuations of lift loading on the blades is

primarily dependent upon the component normal to the relative

velocity. Denoting this component of the inflow by U^ , we

can express its periodic fluctuations as

U.(r,0,t) = U. . (r,9)-e (2.2)
h '

We note that the left hand side is a real function in the above

representation. Here and in the rest of this report, when no

limits are shown, the summation is over all integer values

from -o° to + °° including zero. The steady state value of U^

is the term for h = 0 . The variation U, i in the 6 direction

can also be represented by a similar complex Fourier series

to allow the following description

Ul(r,e,t) -££ U ve -e
,
h

y ,

i (a6-u)7 t+<J> , )

g h

i (a6-u)7 t+<J>= EE e,M.. »

Above description of velocity allows different functions of t

to represent the temporal fluctuations at different positions



in the annulus. However, the frequency co, of the ghth com-

ponent is independent of the coordinates r,6. This require-

ment is consistent with ignoring the random disturbance in

the present treatment. The amplitudes U , and phase anglesg n s\.

4> , can be determined from Fourier analysis of flow field sur-

vey at the fan inlet. The lowest frequency u, employed in

the;_ above equation corresponds to the longest period one finds

from the fluctuations at various locations in the annulus. We

note that Eq. (2.3) represents uniform axial inflow conditions

when w, and g are both zero.

In considering the effect of blade thickness, by suitable

source-sink distribution, we require the knowledge of the vel-

ocity component along the blade chord, which can be approxi-

mated by the component U , taken along the mean relative vel-

ocity direction. Similar to Eq. (2.3) we can deduce the

expression

i (gB - Ujt + <(>,)
Ur(r,0,t, -££ 6 .. * 0" (2.4)

9 h *

2.1.2 Potential flow around blades

Let us consider an elemental annulus 2irrdr of the fan

containing B number of equally spaced identical blades. The

potential flow around these blades can be obtained in terms of

two-dimensional flow past a cascade of infinite number of air-

foils. Each airfoil in the cascade can be replaced by suitable

distribution of vortices, sources and sinks to evaluate the



flow field due to lift on the blades and the effect of their

thickness. Such analysis was presented in reference 3, and

it was found that a simplified description of the flow field.

upstream of the leading edges is possible. The perturbations

from the mean flow are relatively small in the region down-

stream of the rotor leading edge and hence will be ignored in

the noise calculation presented in this report.

Based on reference 3, we can write the following expres-

sion for the periodic fluctuations of the axial component of

the rotor-induced velocity in the region upstream of rotor

leading edge.

-|2n'irn
where up n ~

 U
D n *

e *exp{i<j> n

*
U j (j> = the amplitude and phase angle respectively, of
Pij Pijn tke compOnent- at blade leading edge

n = axial distance upstream from rotor leading edge

and d = blade spacing.

The amplitude U and the phase angle $ depend upon the
P i j n ..... P i .» n

blade loading, rotor geometry, and blade thickness distribu-

tion as discussed in reference 3.

The above simple representation for U is possible
• • : - • • Pijn.
upstream of rotor leading edge, since phase angle <j> does

not depend upon n in this region. Computations at pitch

radius, on the small scale fan, for the corresponding tangen-

tial component indicate

8



u = u
P3 jH . pi

Consequently, .we can write .

i-n/2
u ~ u 'e (2'6)

The radial components of U will be ignored, since the poten-

tial flow field past the rotor blades is evaluated under two-

dimensional flow assumptions.

2.1.3 Inflow turbulence

The velocity perturbations discussed in preceeding sub-

sections are well-ordered in the sense that the velocity at

one point of the flow region has a definite space-time relation

with the velocity at any other point of the flow region. On

the other hand, the random velocity fluctuations present in
i |

the flow entering the fan can be referred to only in terms of

statistical quantities such as mean square values, probability

density functions, correlation functions and power spectral

density functions. In the study of fan noise problems, another

important quantity is the correlation length £, which is

defined as the area under the non-dimensional correlation

function and thus represents some average size of the eddy

within which two points in the flow field will have velocity

fluctuations that can be considered as coherent or related.

The spectral distribution and the correlation length

are not independent of each other. This is obvious for the



reason that if low frequency fluctuations are dominant, the

extent to which two points in the flow field are related will

be larger. The way they are related depends on the particular

model chosen to describe the turbulent field, as discussed in

reference 3.

Let us assume that the turbulent fluctuations in the

inflow are homogeneous, isotropic and are characterized by a

longitudinal velocity correlation function of the type

exp(-|£|/£), where £ is the separation distance. Choosing

"frozen-convected turbulence" hypothesis, the spectra of the

components u and u can be related to length scale £ and the
1 2

convection velocity. From geometrical relation one can derive

the spectra for u and u^ , as functions of spectral inten-

sities of u and u and the blade stagger angle A. In our

present investigations, we can use the mean axial inflow

velocity U, as a close approximation to the convection velo-a

city. Furthermore, the blade stagger angle being close to

ir/2 in general, we shall assume that ux = u and u - u ,

in describing the spectral intensities of ux and u . Con-

sequently we used

and

* (u) = u2 -- {1+ Uu>/U_)2} (2.7)
U, 7TU a-

(u>) = u2 =4=- U+3(£u)/UJ2H1+ (WU )2} 2 (2.8)
U &T\U a a.r a

in investigating the blade loading and thickness effects

caused by inflow turbulence.

10



For the quadrupole calculations, as carried out in sub-

section 4.3, the space-time correlation function of u is re-

quired. Without assuming isotropy, the space-time correlation

function of u for ".frozen-pattern" convected with velocity U
i a

can be written as

i
= u2 -exp <-

-U Tai
i

(2.9)

where the subscripts on H and £ denote the length scales and

separation distances in the respective directions. If one is

interested in that part of the noise generated by the true

temporal fluctuation of the turbulent field, an additional

time function has to be incorporated as discussed in refer-

ence 3.

2.2 Rotor Blade Loading

Each blade element, as it travels around the circum-

ference with a tangential velocity V. , experiences periodic

and random fluctuations in loading caused by the inflow dis-

tortions and turbulence discussed in the preceeding subsection.

Typical of the airfoil profiles employed for the blades, the

drag can be ignored in comparison to the lift force. Let us

consider a blade element of span dr, at radius r, and experi-

encing a lift force Ldr, where

L = ip V ? C _ c (2.10)f. o r LI

The lift L per unit span of the blade depends upon the rela-

tive velocity V , chord c, and lift coefficient CT.r LI

11



Let us assume that all the B number of blade elements

are equally spaced around the circumference 2irr and have the

same cross-section and stagger angle. Let subscript j identify

the jth blade, as j takes on integer values increasing in the

direction of rotor rotation from 1 to B. The coordinate system

employed in our analysis and the location of the j'th blade are

typically sketched in Fig. 2.1. For the sake of convenience,

the reference meridional plane 6=0 is chosen so as to contain

the point, at which the far field sound pressure is evaluated

in later sections. Even though all the blade elements are

identical, they may not simultaneously experience the same lift

force as discussed in later sections 3 and 4: To relate the

point of application of load on each blade element toT.ts

position in the annulus, we assumed that the locus of mid-chord

locations along the blade span is a radial line. Since the

center of gravity of a blade section is not too far from its

mid-chord location, such an assumption is a reasonable approxi-

mation.

The force on the j'th blade can be evaluated according to

Eq. (2.10) with the appropriate values of V and C as experi-

enced by the j'th blade. Considering the force L. as concen-
J

trated at a point on the jth blade its coordinates can be

derived from Fig. 2.1 as '

x . = -£" cosX

j ^ n . / • i \ 2ir £" sinX ,- ,,xand 0. = 6. + (j-l) -= (2.11)j i B r

12



where X = blade stagger angle,

£ "*= center of pressure measured from midchord along
the chord, positive towards the trailing edge,

and 6j = location of midchord of "first" blade at time t.

Furthermore, if the blade with its midchord point cros-

sing the meridional plane 9 = 0 at time t = 0 is denoted as

the "first" blade, we can write

3 ° r

where ft = rotor circular frequency.

The dependence of blade loading on the inflow conditions

and the resulting sound radiation is discussed in sections 3

and 4 of this report.

2.3 Volume Sources Due to Blade Thickness

The motion of the rotor blade, due to its thickness,

causes air to be pushed out and drawn back respectively near

the leading and trailing edge regions . Velocity perturba-

tions normal to the rotor disc, caused by the finite thickness

of blades rotating in uniform steady flow, were considered

(6 )
by Deming to evaluate the resulting acoustic radiation.

In the following, we shall consider the general case of the

blades immersed in non-uniform unsteady flow and derive ex-

pressions for the fluctuating volume sources due to the effect

of blade thickness. Similar to the discussion presented in .

the previous subsection 2.2, let us consider an element of

span dr at radius r on the jth blade. The two-dimensional

13



flow past the blade profile can be approximated.by the follow-

ing distribution of source-sink strength along the chord.

^• = vt
where c = distance measured from midchord, along the chord,

positive towards trailing edge,

V = relative velocity, considered parallel to blade
chord,

and b = blade thickness.

The subscript £j on the left hand side of above equation de-

notes the function as dependent on £ measured on the jth

blade.

Taking into account the span dr, the jth blade element

can be considered as volume sources

<^=VaT^dr (2

located at every point -c/2 <^ t, <_ c/2 over the chord of this

jth blade. The coordinates of this point £ along the chord of

the jth blade element can be written, similar to Eq. (2.11),

as

x_ . = -£ cosX
Cj

r . = r
?J

and 0 . = fit + (j-l)2ir/B- (£ sinX)/r (2.15)
^> 3

Sound radiation from the volume sources described above is

investigated in sections 3 and 4 of this report.

14



2.4 "Fluctuating Reynolds Stresses" in the Plow Region

The manner in which fluctuating flows can generate noise

as quadrupoles sources was originally formulated by Lighthill

For subsonic flow, the dominant source term is the "fluctuating

Reynolds stresses"

T. . = p V.V. (2.16)
... . „ . ...ij... _P_ i_J .- _. . . ..

where the subscripts i,j indicate the components in the three

dimensional cartesian coordinate directions 1, 2, and 3. To

obtain the fluctuating Reynolds stresses T.. in the flow region

through the rotor, we substitute the instantaneous velocity

vector V as defined by Eq. (2.1). The resulting acoustic

radiation is discussed in the appendix, and application to

rotor noise under various flow conditions is presented in the

following sections 3 and 4.

15



3-0 ROTOR NOISE GENERATED BY INFLOW DISTORTIONS

A general description of inflow distortion is given in

subsection 2.1.1 in terms of its ghth components. Without the

knowledge of amplitude, frequency and phase angle of each ghth

component, it is difficult to evaluate the noise generated by

inflow distortion. However, we can proceed to examine the

sound radiation resulting from blade loading, thickness effect

and fluctuating Reynolds stresses in terms of a ghth component

of the inflow distortion.

3.1 Acoustic Radiation from Periodic Blade Loading

, Let us consider an element of span dr located at radius

r on the j'th blade and subjected to ghth component of inflow

distortion described in subsection 2.1.1. Since the velocity

fluctuations normal to the blade chord have the dominant influ-

ence on the lift fluctuations, it is sufficient to examine the

influence of U , described by Eq. (2.3). The lift per unitg fti^
span of the blade given by Eq. (2.10) will be then periodic

due to the periodic fluctuations of the incidence angle met by

the blade, and can be related to its amplitude and the Sears'

lift response function " Denoting the blade that crosses the

reference meridional plane at time t = 0, as the "first" blade,

we can express the fluctuating lift on the jth blade element as

-fi<(,} (3.1)

16



where L, = o irV c • U , . • IS (Y ) Ign o r. gn,*-

5(y) = Sears' lift response function

and Y = reduced frequency = (u>, - g&) -̂ j—

In the above representation the phase angle <f> , includes

the phase angle of the ghth component of U , L as in Eq. (2.3)

and also the phase angle in the Sears' function £(y). We

note that L and d> , are not subscripted by j since all thegh *gh

blade elements at radius r and the flow conditions met by

them are assumed identical. However, the lift fluctuations

on the jth blade element occur at time T . earlier than those

on the first blade, where

Denoting the point of application of the force L , . by
3 ni 3

C\j measured along the blade chord from its midchord loca-

tion, we can use Eqs . (2.11) and (2.12) to obtain its coordin-

ates, as ' .

r . = r
3 ' C'fc sinX

and 9 . = Rt + (J-D2TT/B - • fr" (3.3)
3 *-

We note that the location t,' , on the blade chord is not. sub-^gh

scripted by j, since all the blades are considered identical.

Considering the lift force as concentrated at the point

defined by its coordinates given in Eq. (3.3), we can employ

complex Fourier series representation to obtain the force over

an elemental area rd6 dr at (-£", cosX,r,6) as _-

17



6L , . = -j- £ exp{-i (u)̂  - gft ,

+ imU'jj sinA)/r - i(m - g) (j - l)27r/B}dr d0 (3.4)
y

We note that 5L , . denotes the contribution due to lift ongn,j
the j'th blade element and its motion in a circle with rota-

tional frequency fl. Sound pressure at the far field point

due to the fluctuating force described above can be obtained as

T̂

t -n cos cos sn^. sin* ) • 6L . } (3.5)

where the square bracket indicates that the derivative is

evaluated at retarded time t - S/a . and S is the distance of

the field point from source located at coordinates (-%', cosX^rJ

Substitution of Eq. (3.4) into the above is carried out in sec-

tion A2 of the appendix, resulting in Eq. (A2.1) for <5p , ..
3"'3 3

Considering the loading on all the blade elements contained in

the fan annulus, we obtain the far field acoustic pressure as

r 2ir

= I
B
£ fip.t. , (3- 6)

The superscript d and the subscript gh on the left hand side

of Eq. (3.5) and (3.6) denote that the expression is for the

contribution from dipole radiation from the effect of the ghth

component of the inflow distortion. After completing the in-

tegration over 6 and summation over j in the above equation,

it is shown in section A2 of the appendix that sound radiation

18



at blade passing frequency occurs only when u, = 0, i.e.

for steady state inflow distortion. Integration over r can

be simplified in terms of the value of the integrand at a

representative radius rQ and it is shown in section A.2 of

the appendix that the rms value of the nth harmonic of the

far field sound pressure given by Eq. (3.6) reduces to

TT

~d _ nB ~ _ ...

where K

m = nB + g

cosXe

f\
and La = amPlitude of periodic blade loading defined in

y Eq. (3.1) for UK = 0 , evaluated at r = r .
n e

We note that the harmonic index n in the above equation
I

takes on both positive and negative integer values , and the

absolute value of the right hand side is 'implied. The index

g also takes on both positive and negative integer values

according to Eq. (2.3) describing the inflow distortion. When

a rotor is subjected to a known inflow distortion, the re-

sulting sound pressure can be obtained by summing over g, the

result of Eq. (A2 . 6 ), taking into account the amplitude and

phase angle of each gth component, before taking the rms

value. To indicate the possibility of high levels of blade

passing frequency noise from the small scale fan, we substi-

tuted into Eq. (3.7) the blade loading L corresponding to
y

®g,i =0-olua
 sinX

e
 with U

a
 =83-5 ft/sec , for all values of
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the index g, and r = y(r,+r. ) . For each value of gvthe results
G £+ 11 t

obtained for n = +1 and -1 from Eq. (3.7) are added to give

the sound pressure at the blade passing frequency. The

results of our computations for \g\ from 6 to 15 are shown

in Pig. 3.1. For values of \g\ less than 6, the sound pres-

sure levels computed are too low to be shown in the figure.

Computations for \g\ between 15 and 24 were not carried out,

but an examination of Eq. (3.7) indicates that the results

could be comparable to those presented in Fig. 3.1 when the

correspondence of the values of m is recognized. However, as

\g\ increases the blade loading L is reduced and also the
y

directivity would be affected due to the second term in f, .
e i

It is interesting to note that even a small amplitude

of the g'th component of inflow distortion can yield consid-

erable radiated sound pressure, as the value of g is increased.

However, the inflow distortion over the rotor annulus has to

be quite large to yield the amplitude of one percent of axial

flow for the g-th component used in our acoustic computations,

as the value of g is increased.

The special case of acoustic radiation from the rotor

blades operating in uniform axial flow can be obtained by

replacing L in Eq. (3.7) by the steady state blade lift L
y

Hence, for the rotor in uniform axial inflow we have

K
pa = nB -BL -f. -J _(K n r sinVMr. -r. ) (3.8)

n 4/2TTR ° Xe nB nB e fc h
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where LQ = CL c , evaluated at r = rg (3. 9)

and n takes on both positive and negative values .

• (9 )
Gutin , nearly four decades ago, investigated noise

from a rotor in uniform flow and the above equation for tone

noise is in agreement with his results. In carrying out

acoustic computations on the small scale fan according to

above •-Eqv-(-3v8̂ -we~UBtexrU"~=-83Y5 ft/secT and Ẑ = 671," ina. L '

view of the lightly loaded condition of the rotor blades. The

results of such computations are shown in Fig. 3.2 and these

theoretical estimates abe several orders of magnitude lower :

than test data as can be expected from multibladed rotors. !

3.2 Effect of Blade Thickness

The distribution of volume sources along the chord of
I

the jth blade to account for the blade thickness is described

by Eq. (2.14) derived in subsection 2.3. in the presence of

inflow distortion, the relative velocity V met by the blade

element, traveling along the circumference 2-rrr, will be a

function of time with its ghth component defined by Eq. (2.4).

Consequently, we can replace Eq. (2.14) by

db

where <J>^ represents the phase angle of \j and T . represents

the time lag with respect to the "first" blade as given by

Eq. (3.2). we note that the various functions on the right

hand side are not identified with subscript j since all the
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blades are considered identical, except for time delay

accounted by T . . The location of the periodic volume source
3

described above is given by Eq. (2.15) of the preceeding sec

tion. By using complex Fourier series representation of the

above volume source at its coordinates, the "monopole" per

unit volume d£ dr rd6 can be obtained as

U .

+ im(? sinA)/r- i(m -g) (j - 1) 2ir/B} (3.11)
/

We note the above expression is for the contribution from

the volume source q , . at £ on the chord of the j'th blade,
9 "• > ?<7

due to the effect of the ghtti component of the inflow dis-

tortion.

The far field acoustic pressure due to the elemental ,

volume source, described above and located at (-? cos A, r, 9) |,

can be written as

where the square bracket denotes that the derivative is

evaluated at retarded time (t - S/a ) . Substitution of Eq.

(3.11) into the above, and application of the far field

approximations are given in section A4 of the appendix. By

including the volume sources distributed over the chord of

each blade element and all the blade elements in the fan

annulus , we obtain the far field sound pressure due to the

ghth component of inflow distortion as
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/-

" J J -c/2

After integrating over 6^ and summing over 3, it is shown in

section A4 of the appendix that tone noise at blade passing

frequency exists only when w, = 0, i.e. for steady state

inflow distortion. In terms of the representative radius r .

the rms value of the nth harmonic of sound pressure given by

Eg. (3.13) is derived in the appendix as

s
<rt ' rh>

where K
o

m = nB + g

c/2

and G =

-c/2

J gbr-exp{im(? sinA)/r

cosX)cosf}'d? ; at r = r (3.15)

We observe that evaluation of sound pressure according

to the above Eq. (3.14) for the effect of blade thickness is

complicated since the function G has to be obtained atmge

each azimuth angle and harmonic index n, for a given blade

profile. As a typical example we considered a double-

circular arc profile with 10% thickness ratio and the evalu-

ation of G is described in section A4 of the appendix.
mg&

In carrying out acoustic computations on the small scale

fan as per above Eq. (3.14), we employed U = 0.01U cosA
9 1 £ a e

with Ua =83.5 ft/sec for all values of \g\ from 6 to 15, and
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the resulting sound pressure levels are shown in Fig. 3.3.

The influence of |^| is to some extent similar to that dis-

cussed in the preceeding subsection. We observe that the

blade thickness effect can be comparable to that of blade

loading, in the prediction of rotor noise due to inflow dis-

tortion.

For the case of the rotor in uniform axial inflow,

Eg. (3.14) reduces to

p

where G B = integral of Eq. (3.15) with m = nB.

Results of computations according to above equation for the

design operating conditions of the small scale fan are shown

in Fig. 3.4, and we observe that these predicted values also

are several orders of magnitude lower than test data, indi-

cating that consideration of uniform axial inflow leads to

insignificant noise levels.

3.3 Quadrupole Radiation from Fluctuating Reynolds Stresses

Our primary interest in the present investigation is on

the noise source in a rotor that can give rise to the high

tone levels measured at on-axis point. Consequently, we

limited our attention only to the longitudinal axial quad-

rupoles, by setting i = j = 1 in Eq. (2.16) for the stress

tensor. The far field acoustic pressure from such elemental

quadrupole can be written as
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. (p v v j.dwoi (3.17)
L8t2 o i i J

0

where the square bracket denotes that the derivative is

evaluated at retarded time t - S/a .

Since we are interested only in the consequences of a

^fcth component of inflow distortion, the axial component Vx

in the region upstream of the rotor can be written as

1 ghs i p, i

where U can be described in terms of its amplitude and
gh, i

phase angle in a manner similar to Eq. (2.3) or (2.4) and

U is described by Eq. (2.5). Considering the time deriv-
Pj i
ative in Eq. (3.17), we observe that tone noise at harmonics

of blade passing frequency would occur only when co, = 0 and

we can substitute

Po^V 20<?gtl -V^-expU^e + y-Un^/dl

+ inB(e - ftt) + i<(> } (3.19)
P.1'"

into Eq. (3.17) to obtain the nth harmonic of the blade

passing frequency of 6p • By including the radiation from

all the quadrupoles present in the region upstream of the

rotor, we obtain

(3-20)

6

Substitution of Eq. (3.19) into Eq. (3.17) to obtain the nth

harmonic 6p^ and the details of integration are given in

section A. 6 of the appendix. From Eq. (A6.2) for p^ we cang > n
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obtain its rms value as

~q = o nB. CQS2y -- e_ m ^ - • J (K D r sin*)
9 'n 4/2TTR |n| 9>i P i* n rn nB e

where m = nB +g

and K

X r e ( r t - r h ) (3.21)

_ .no o

We note that the above equation is a result of considering

only the longitudinal axial quadrupoles, and for azimuth angles

y 7* 0 , one should include the effects of U and U also.
PSjH g, 3

Consequently any comparison of the above result with the corres-

ponding value for dipole radiation from blade loading can be

made only for on-axis point.

In evaluating the sound pressure at on-axis points from

Eqs. (3.7) and (3.21), we note that

Using the approximate expression
-h

Vr

/\

for Sears' lift response function to obtain L for substitu-

tion into Eq. (3.7), we obtain

•2/2-^-Mrl>'"P'4'SinXe)" (3.22,
at Y=0 ( g,i r }

The above ratio denotes the relative importance of the quad-

rupole radiation in estimating on-axis noise from rotors in

distorted inflow. Even though g = -nB for the gth component

of inflow distortion in evaluating the on-axis noise, we
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retained both the subscripts g and n in the above equation.

We note that all other factors except M •(U /V ) and the
r pi,n r

harmonic index n can be of the order one in most fan designs

including the small scale fan. Substituting the value for

Upi,n estimated on the small scale rotor in reference 3,

we find that the ratio given by Eq. (3.22) is low. Hence,

further consideration of quadrupole radiation from the small

scale rotor in distorted inflow is ignored. However, for

evaluating tone noise at higher harmonics from fans with

blades operating at CL - 1.0 and Mr = 1.0, the quadrupole

radiation cannot be ignored.
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4.0 DISCRETE TONE NOISE FROM ROTOR INTERACTIONS

WITH INFLOW TURBULENCE

The effect of turbulence in the inflow to the rotor is to

cause random fluctuations in the relative velocity and the

incidence angle met by each blade element as it travels around

the rotor circumference. Even though the events occurring on

each blade element are random in nature, the analyses presented

in the following two subsections show that discrete tones can

appear in the spectrum of radiated noise from the rotor. These

discrete tones occurring at the blade passing frequency and its

harmonics are caused by the low frequency fluctuations of the

turbulent inflow, which in turn are related to the longitudinal

length scale in the frozen convected model used in our analysis.

Because of the periodicity of the rotor-induced velocity fluctu-

ations , quadrupole radiation from the fluctuating Reynolds

stresses also gives rise to discrete tone noise as discussed

in the last subsection.

4-1 Effect of Random Blade Loading

The fluctuating lift on a blade element is related to the

fluctuations of ux , the turbulent velocity component normal

to the blade chord. The latter, being a stationary random

function of time with zero mean, can be represented by means

of a Fourier-Stieltjes integral*1 .
00

u, (t) = I-iu>tdZ,, (a)) (4.1)
ui
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where Z (to) is a non-differentiable random function, and its

power spectral density is given by

dZ (ID) -dZ* (cO =* (u>)-6 (u> - u')'du> dw' (4.2)uI UL u1

Although ux is a random function of time and space, it has

coherency over a certain volume in space, called the eddy

volume. Let us assume that u1 is perfectly correlated over

a^_ ĉ rcumf erential_leng^h_J, 3Ĵ  _Since_ this velocity^pattern

repeats itself in the 9 direction with period 2ir, we can

write for the velocity fluctuation at any 9 location due to

the influence of one particular eddy located at 90 and radius

r, as

I i . . co ,

u'(r,eft) = £ !A e 9 ° f e dZ (u>) (4.3)1 a i 9 J ui

—y y

g
» I 0)=-°°

where A = — sin (g!L3/2r) .

Since a blade element travels through angle 9 = fit

during a time t, it experiences velocity fluctuations at cir-

cular frequency (w - gtt). The fluctuating lift force per unit

span on blade element of the "first" blade located at radius

r is then given by

_ -^eo f "1{U - -
AL^ = TTP0Vrc £ Ae I e S(Y)dZu(w) (4.4)

Q *^ ' J-

where AL = the load due to random velocity fluctuations
occurring in a coherent eddy, and the subscript
1 denotes the "first" blade,

S(Y')= Sears' lift response function

Y' = reduced frequency = (oj-g-Q) •=£— .
2. V
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Similar to the above Eq. (4.4), the load on the j'th blade

can be written as

AL. = irp V c ^ A *exp{-i<7(9 - fiT 0 }

oo

/

-i (w-g'ft) t
e S(Y. ') 'dZ (w) ( 4 . 5 )

11 ,
**i

(l)~"^ ̂ ^

where T. = ( j - l ) 2 T T / B f i

is the phase difference from the loading on the "first" blade.

At any time t, the location of the point of application of

the force L. on the j'th blade element is defined by Eq. (2.11)
3

given in the earlier subsection 2.2. Using complex Fourier

series representation, as employed in deriving Eq. (3.4), the

random lift load on an elemental area rd9 dr at (-£' cosX,r,9)

due to the loading on the j'th blade, can be written as

p V. c
6L . = —= y T? A exp{im9 + im?' sinX/r - iqQ }

,7 £• "~̂  t~J O Om g y

00

X / exp{-i(u> -g^ +mn)t}5(y') dZ(u>) dr d6 (4.6)

The acoustic pressure at the far field point due to the

above impressed force can be obtained from

6p d = -;— i — |JL { (-sinX cos¥ + cosX sine. sinY)-5L. }{ (4.7)
3 o L ^ ^ J

where the square bracket indicates that the derivative is

evaluated at retarded time t - S/aQ. Substitution of
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Eq. (4.7) into the above, and far field approximation is

given in section A3 of the appendix. After considering the

loading on all the blade elements contained in the fan annulus ,

and the contribution from all independent coherent regions

present in the fan annulus, the following expression is de-

rived in the appendix for the spectrum of the far field sound

pressure.

X Z) Z) A2-f2-J2( — rsiny)'$ (cu) • |s (Y' ) I 2 -dr (4.8)
m g 9 m ao ui

where $ (w) = u2 (£/TTU ){!+ (£u/U )2}u. a a

ta = v - nBft ; m = nB + g ; n = ....-1,0,1

S(Y') = Sears' lift response function

Y' = (u -grfl) (c/2Vr)

and f, = sinA cos1!' - (ma^/vr) cosX
A O

It is to be noted that, in the representation employed

in Eq. (4.3) the coefficient A can be zero for certain values
y

of &3. This particular behavior of A is due to our assump-
y

tion of a perfectly correlated eddy which of course is an

oversimplification. Since the eddy size A is not unique,

instead of defining A as in Eq. (4.3), it is more approp-
y

riate to use the envelope function of A2. A reasonable approx-
y

imation to this envelope function is
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for

and A2 = { U /2jir)(l + gH /2r)}2{l+(gH /2r)2} 2 otherwise (4.9)

In carrying out acoustic computation on the small scale

fan, the integration over r in Eq. (4.8) is approximated by

considering the value of the integrand at an effective radius

r , as in the previous section 3. Assuming 3% turbulence

intensity and parametric values of £/d ratio, the sound spec-

tra at an axis point 5 ft. from rotor are computed, and the

results are given in Fig. 4.1. As the turbulence length

scale is increased, the spectra show prominent peaks at blade

passing frequency and its higher harmonics. We note that

there are no spurious peaks in the spectrum obtained with the

present approach as compared with that reported in reference 11,

wherein perfect .correlation of loading on a finite number of

blades was assumed. The function of g , the number of blades

"chopping" an eddy, as postulated in reference 11, was respon-
i '

sible for the series of less prominent peaks seen in the noise

spectra. In the present approach, we considered all the rotor

blades, but only that part of the loading caused by velocity

fluctuations in a coherent eddy.

Directivity patterns of radiated acoustic pressure at

blade passing frequency and its first harmonic, calculated

for the case of H/d = 5.0 are presented in Fig. 4.2, and

indicate that the noise on the side line can be 10 dB lower

than that along the axis.
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Computations carried out by Mani for acoustic power

radiated from a rotor interacting with inflow turbulence

indicate discrete tones at blade passing frequency, and higher

harmonics, similar to the results presented here. However,

the peaks in the spectra presented in fig. 4.1 are much

sharper than the results given in reference 12, possibly due

to the differences in the assumption of loading^occurring on

the blades. Recently, Homicz and George presented an

analysis of acoustic radiation from rotors in turbulent flow.

Their results also do not show, probably for the same reasons

as indicated above, the sharpness of the discrete tones evi-

dent in the narrow band analysis of experimental measurements.

4.2 Effect of Blade Thickness

The strength of the volume sources distributed along the

blade chord to represent the thickness effect depend upon the

relative velocity met by the blade as discussed in the earlier

subsection 3.2. Let us consider the consequences of the random
! ' ' !

nature of these volume sources resulting from the turbulent
• i .

fluctuation in the inflow to the rotor. •

Similar to Eq. (4.1) we can represent u , the fluctu-

ating velocity component along the mean relative velocity

direction as

/
00

-lU)t

dZu (co) (4.10)
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and replace V in Eq. (2.14) by the above expression to

obtain the random fluctuation of the elemental volume source

q . located at £ on the chord of the j'th blade. Using the

same approach as employed in the preceeding subsection, we

obtain the randomly fluctuating volume source distribution,

due to the velocity fluctuations in a coherent eddy, as

6q . = -x— y y A «exp{im6 + imc sinX/r - io8 }^ £J ZTT t^ e-* a c s o
m g w

X «

'g- d? dr d6-dZu (03) (4.11)

CD

X /

Acoustic radiation from above random volume source

distributuion can be calculated from

(4-u)

where the square bracket is used in the same sense as in

Eq. (4.7). The substitution of Eq. (4.11) into Eq. (4.12) is

shown in section A5 of the appendix and the acoustic spectrum

due to radiation from all the blades in the fan annulus is given

bY ^ fv T
s 1 f J v p o l 2 ,

$ (v) = i- I lT-5-f •£ •(2irr/£ J -B 2

2 J L4irRJ 2 3
r.

X E E Aj-|Ge|
a.$(U).J»( r sinV)dr (4.13)
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where <$> (to) = spectrum of u as defined by Eq. (2.8)

oj = v -

m = nB + g

A2 = function defined in Eq. (4.9)

and G / (-5— )exp{im£ sinX/r + i — £ cosX
mge / at a

-c/2
evaluated at r = r (4.14)

e
In carrying out_ acoustic computations cm the .small scale

fan as per above Eq. (4.13), we employed the same turbulence

parameters as used in subsection 4.1. The integral in

Eq. (4.14) is evaluated for the same blade profile used in

the computations presented in subsection 3.2. The computed

spectra presented in Fig. 4.3 also show prominent peaks at

blade passing frequency and its higher harmonics but the

levels are much lower than those given in Fig. 4.1, for the

blade loading effects. The directivity patterns of tone

noise at the blade passing frequency and its first harmonic,

as computed from Eq. (4.13) are shown in Fig. 4.4.

Computational results presented in this subsection

indicate that blade thickness effect can be important at

higher harmonics of the blade passing frequency.

4.3 Radiation from Random Quadrupole Sources

In the region upstream of the rotor leading edge there

exist periodic velocity fluctuations, as discussed in sub-

section 2.1.2, in addition to the random turbulent velocity

fluctuations of the inflow described in subsection 2.1.3.
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Since our primary interest is to evaluate such sources that

would yield acoustic radiation to on-axis points , we shall

consider only the longitudinal axial quadrupoles as in sub-

section 3.3. For random quadrupole calculations, instead of

using Eq. (3.17), it is more appropriate to obtain the spec-

trum of the far field acoustic pressure by integrating the

.space-time correlation of the fluctuating Reynolds stresses

over the flow region, as indicated in reference 14. Thus,

the far field -sound spectrum due to the longitudinal axial

quadrupoles can be written as

A

= P
COs(T.-T*)dT

(4Tra2R)2 2ir .. . _.
0 oo oo oo (4.15)

where R(TI,£,T) = v2 (n,t)V2 (n + C, t + i) (4.16)

Vj = axial component of V described in Eq. (2.1)
t

and T* - £-R/a R is the retarded time difference.

The position vector n, the separation vector £, and the region

of integration are schematically'shown in Fig. 4.5. '' In con-

sidering the tone noise of the quadrupole radiation due to

inflow turbulence and rotor induced potential velocity fluc-

tuations, we need to retain only the product term 2U u of V2
pi i i

in Eq. (4.16). The derivation of the space-time correlation

function and the limits of integration are discussed in

detail in section A 7 of the appendix. After certain amount of

algebraic simplification, the spectrum of far field acoustic

pressure due to radiation from quadrupole sources can be

written as

36



A = fan annulus area

A(<$> -$ K * - ( u 2 ) - ( u ) 2

(4.17)
UkpJl/2)2 + lH(k 4)a -1}

TT£ ( U _ / i ) 2 + (co - v ) 2 (U / i)2 + (co + v ) 2
a. p a, p

k = n2ir/d ,
P

For the same turbulence parameters, employed in calcu-

lating the results given in Fig. 4.1, we evaluated the quad-

rupole radiation to the on-axis point from the above equation,

using the fundamental of the rotor-related potential velocity

fluctuations. The resulting spectra presented in Fig. 4.6

peak at blade passing frequency, and once again the sound

pressure levels are far below the corresponding values shown

in Fig. 4.1ifor radiation from blade loading. The spectra

shown in Fig. 4.6 peak only at the blade passing frequency,

since the fundamental component of U was considered. Based
Pi

on his computations for tone power estimates at blade passing

frequency, Chandrashekhara also reached similar conclu-

sions.

We observe that on the right hand side of Eq. (4.17),

the dominant influence is from the first term of < l̂ , which

can be recognized as the inflow turbulence spectrum shifted to
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the frequency u> . This feature of quadrupole radiation due to

(16)
inflow turbulence was also noted by Williams and Hawkings

The various other terms containing k , not discussed in ref-

erence 16, appear in the above equation due to the exponential

^decay of U with distance upstream of rotor and integration

over the whole flow region. A comparison of the Eqs. (4.17)

and (4.8) evaluated at on-axis points can be reduced to

4M2 sinA
(4.18)

n |a

at y = 0

/\

Since U can never be larger than V , the on-axis tonepi,n 3 r

noise from subsonic rotors in turbulent inflow is dominated

by the dipole radiation at all harmonics.
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5.0 EXPERIMENTAL MEASUREMENTS AND COMPARISON

WITH THEORETICAL PREDICTIONS

In the experiments conducted by NASA, Ames Research

Center, the small scale rotor, whose design parameters were

employed in the acoustic computations presented in the pre-

ceeding sections, is located at the center of the anechoic

chamber and the^exit flow from, the fan is .vented out of the

chamber to avoid recirculation into the rotor inlet. Flow

measurements, taken with the hot-wire located in the fan

entrance bell-mouth at the pitch radius, and 6 in. upstream

of the rotor, indicate a mean axial flow of 83.5 ft/sec and

turbulence intensity of 0.75%. The spectrum of the axial

component of turbulence, obtained with a 50 Hz band-width,

is shown in Fig. 5.1. From the autocorrelation function

presented in Fig. 5.2, a longitudinal velocity correlation

length scale of 20 inches is deduced.

In carrying out acoustic computations consistent with

the test conditions we assumed "frozen-convected" turbulence

hypothesis, with 83.5 ft/sec as the convection velocity to

obtain the power spectrum of ux from Eq. (2.7). Based on

the measurements reported by Chandrashekhara on a small

scale rotor of comparable size, we find that the length scale

Z in the circumferential direction can be much smaller than
3

20 inches. Consequently, we employed parametric values of

&3 = 1, 2 and 3 inches along with the above mentioned spec-

trum for UL to compute the noise spectra, according to
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Eq. (4.8), at 7 ft. distance along the axis. The results thus

obtained for dipole radiation from blade loading, are shown in

Fig. 5.3. The peak levels at blade passing frequency and its

harmonic did not vary appreciably with £3 in the range examined.

Similar results obtained from Eq. (4.13) for monopole radiation

from blade thickness effect are shown in Fig. 5.4, indicating

the minor role of blade thickness in rotor noise prediction at

on-axis points. Based on the conclusions reached in preceeding

section regarding the relative unimportance of noise from the

quadrupole sources, computations using Eq. (4.17) were not

carried out for the test configuration.

The noise measured at 7 ft. distance from the rotor, along

its axis, is analyzed using a 50 Hz bandwidth. The resulting

spectrum, shown in Fig. 5.5, contains sharp peaks at the blade

passing frequency and its first harmonic. For correlation with

theoretical estimates, we note that the latter are computed

from the sound pressure spectrum given by Eq. (4.8), which is

derived for both positive and negative values of radian fre-

quency. Hence, the acoustic pressure spectral density per Hertz

for positive frequencies is obtained by using a multiplying

factor of 4ir to the results of Eq. (4.8). The spectral density

thus obtained is integrated over 50 Hz bandwidth before finding

the dB level for comparison with the measured values. Using

length scale SL3 = 3 inches, we carried out such calculations in

the neighborhood of the blade passing frequency and its first

harmonic and the theoretical estimates are shown by dotted lines
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in Fig. 5.5. The change in the scale of the abscissa and inte-

gration over the 50 Hz bandwidth are responsible for the dif-

ference in estimated sound pressure levels presented in Fig. 5.5

and those shown in Fig.. 5.3. It appears that the sharpness of

the discrete tones observed in the test data is predictable

from the theory presented here. Variability of the measured

tone levels obtained with a 50 Hz bandwidth filter centered at

-the-blade passing—frequency and-its—fir-st-harmonie- are shown

in Fig. 5.6. Our theoretical predictions of the tone levels

indicated by the dotted lines in Fig. 5.6 appear to be in

reasonable agreement with the measured values.

The variability of the tone level, with time as seen in

Fig. 5.6, can have its origin in the very nature of the noise

sources. An examination of Eq. (4.8) with ¥ = 0, indicates

that the tone noise level is proportional to the mean square

value of turbulent velocity fluctuations at the low end of the

spectrum. On the other hand, the data presented in Fig. 5.6 is

obtained using a short averaging time-constant in view of the

high frequencies of the tones. Consequently, the low frequency

nature of the generation mechanism appears in the output as

variability of the tone level.

The inlet to the rotor is not yet surveyed to assess the

steady state distortion of the inflow. Hence, no estimates

can be made at the present time for the on-axis noise from

the ordered sources discussed in section 3.
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6-0 CONCLUSIONS AND RECOMMENDATIONS

The theoretical investigations of noise sources in a

rotor and typical computational results presented in this

report lead us to the following observations:

(a) Steady state distortion of inflow, even of small mag-

nitude, can generate high levels of noise at blade passing

frequency harmonics.

(b) Periodic inflow distortions lead to tones at frequen-

cies other than the blade passing frequency harmonics.

(c) The interaction of the rotor blades with inflow tur-

bulence gives rise to noise whose spectrum contains prom-

inent peaks at blade passing frequency and its higher

harmonics. The sharpness and level of these discrete

tones depend upon the intensity of turbulence and its

velocity correlation length scale.

(d) Computations presented in this report indicate that

the discrete tone level increases as the ratio £/d is

increased. Since blade speed V. and the axial velocity

U through the rotor are held constant in our computations,
a.

increased value of H/d. can be interpreted as more blades

"chopping" a coherent eddy as it is convected across the

rotor.

(e) Theoretical investigations show that the origin of

the discrete tone noise lies in the turbulent velocity

fluctuations at the low-end of frequency spectrum.
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(f) Limited computations for the effect of inflow tur-

bulence on the small scale rotor indicate that blade

loading fluctuations are the dominant sources of noise in

isolated rotors.

It is necessary to include the acoustic radiation from

all the quadrupole sources and also the influence of the duct to

make a rational comparison of the various noise sources in

a rotor.

The analyses of noise sources and radiation therefrom,

presented in this report, are applicable to rotor blades

operating at relative Mach numbers in the low subsonic range.

To evaluate noise from lift fans of present day configurations,

the analyses must be extended to the consideration of high

relative flow Mach numbers.

Space-time correlation measurements of inflow turbulence

for various inlet configurations are recommended to determine

the characteristics of turbulent velocity fluctuations. Such

flow measurements along with corresponding acoustic data

would confirm the assumptions employed in the present analysis

and provide a basis for further improvements in the theoretical

prediction of rotor noise.

From the preliminary investigation of noise sources

presented here it appears that reduction of discrete tone noise

from rotors can be achieved by eliminating inflow distortion

and decreasing the length scale of the turbulent velocity

fluctuations.
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APPENDIX

The steps involved in deriving the expressions -for the

far field acoustic radiation from a rotor subjected to vari-

ous inflow conditions are given in detail in the following

sections of this appendix.

Al Coordinate System and Distance to Far Field

Let R and S denote the vector distance of the far field

point from the origin and source respectively as shown in

Fig.2.1. For the sake of convenience and considering the cyl-

indrical symmetry of the radiated field, we have chosen the

meridional plane 6 = 0 to pass through the field point. By

appropriate translation and rotation of the coordinate system,

we can obtain the components of S in the axial, radial and cir-

cumferential directions as

S = R cosy -x
i

S = R siny cos9 - r
2

S = -R sin¥ sine (Al.l)
3

The distance of the field point from the source location can

be approximated as

S = R - r sin1? cos6 - x cosY (Al.2)

In the far field computations of fan noise the second order

terms r/R and x/R can be ignored in the amplitude decay term

but not in the retarded time function.
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A2 Dipole Radiation from Periodic Blade Loading

Substituting Eq. (3.4) into Eq. (3.5) and using Eq.

(A1.2) for the far field approximation with the corres-

ponding values of x. and 9 . from Eq. (3.3), we obtain the
0 3

following equation for acoustic radiation from an elemental

area rd6 dr of the rotor disc

, L , -drd9 iK
**gh,j = -^ - - < s i n * co^-cosA sine

X exp{im9 - iK ,r sin^ cosG)

X exp{im(c"7j sinX)/r + iK^ , (t,' cosXJcosY}

X exp{-i(m - g) (j - l)2ir/B} (A2.1)

where K , = (u, - gfl + mfij/amgn • n

and X = blade stagger, employed in obtaining axial and
circumferential components of force L , .

i

On the left hand side of the above equation the subscript ght
I

indicates that it is the contribution from the loading on

the j'th blade element due to its interaction with the ghth

component of the inflow distortion. Considering the loading

on all the blade elements contained in the fan annulus, we

rt 2lT

obtain the far field acoustic pressure as

<**,i
rh o
f £
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The superscript d and the subscript gh on the left hand side

denotes that the expression is for the contribution from dipole

radiation from the effect of only the ghth component of the in-

flow distortion. Substituting Eq.(A2.1) into Eq.(A2.2) and

using the following identities

2ir

/ exp{i(m9 - zcose)}d6 = 2ir ( - i )m J m ( z ) (A2.3)

/
sin9'exp{i(m9 - zcos9)}d6 = (—)27r(- i )m J (z) and (A 2 . 4 )z m.

0

B
£ exp{-i (m"- g) (j -l)2i:/B} = B^ if -̂ *- = an integer

= 0 otherwise (A2.5)

we obtain the nth component of far field sound pressure as

f
= / mgft (_i)m exp{-iK ,a (t - R/a

z^n y 4irR ^ mg'̂  o o
rh

X exp{im(<;' sinX)/r + iK^ , (?' cos\)cosV]

/N

X BL ,-J (K ,r sin*) -dr (A2.6)gh m mgn

where

fv = sinA cos* - - ̂ — cosA
A

and m = nB + g

We note that the frequency of the nth component of acoustic

pressure defined above is

to, (m - g
= JL + nBN , (A2.7)

2TT 27T

where N = rotor rps .
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Consequently, sound radiation would occur at blade passing

frequency only when u, = 0, i.e. for steady state inflow dis-

tortion. By using a representative radius r and replacing

the integrand of the above Eq. (A2.6) by its value at r ,
c

we can then write the rms value of the nth harmonic as

V

pd = —£?—.B£ - f. • J (K _ r sinf) • (r. - r, ) (A2.8)
Xe nB e fc h

where K _. = ̂ -̂, ̂nis o
/v

and L = amplitude of periodic blade loading defined
9 by Eq. (3.1) for 0)^ = 0.

A3 Dipole Radiation from Random Blade Loading

Substituting Eq. (4.6) into Eq. (4.7) and using

Eq. (A1.2) for the far field approximation we obtain the

following expression

, p V c f iK
6p . = —2-= Y\ Y" A / . "!f (sinA cos1}'- cosA sin0 sin'i'),7 2 *-* ^-* a / >iTrT3

^ m a * Jy a)=-°°

X

X exp{im6 - iK r sinY cos6}mg

X exp{im?' sinA/r + iK r,' cosA

X exp{-i(j - 1) (m -g)2ir/B} S(Y')dZ (u) dr d6 (A3.1)

where K = (co - g-fi +mfi) /a
mg *

= Sears' lift response function at reduced fre-
quency y i

and y' = (u - 2Vr
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Now carrying out summation over j from 1 to B to account for

the effect of all blades and integrating over 0 <_ 9 <_ 2i\

gives the far field acoustic pressure from blade elements

within an annulus 2irrdr due to interactions with a coherent

eddy as

A d 0 r VAp = 2 2^,
m

X

co/
X expUm?' sinA + iK r' cosX cosy}r mg

X Jm(\ r sin1^) •fx-5(Y')dZu (to)dr (A3. 2)

where m ~ nB + g ,

and f , = sinX cos¥ - —£ — cosX
mg

Noting that the dimension of the coherent eddy in the radial

direction is &2 we can approximate the integration with

respect to r by some mean value of Ap multiplied by £2 to

obtain the far field acoustic pressure from blade elements

within an annulus 2irr£2 . It is to be noted that the value &2

in the above equation must be limited to (r. - r. ), since the

loading on the blade elements is defined only within the fan

annulus. The auto-correlation function of the acoustic

pressure, thus obtained for interactions with a coherent

eddy, leads to the spectral density by taking its Fourier

transform. However, it is only the contribution from the

interaction of the rotor blades with a coherent eddy. To
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obtain the spectrum due to all coherent regions present in

an annulus 2irrdr, we can multiply the spectrum obtained as

above by 2irr/£3 and dr/&2 . The spectral density at circular

frequency v , of the radiated acoustic pressure from all the

blade elements within the rotor annulus is then given by

x E Z "̂̂ 'f
m g y o

x <$ (U>)-|S(Y') |
2-dr (A3. 3)

where u> = v - mSl + gtt ; m = nB + g ; n = ...-1,0,1 .....
£•»

and Y" = (<J^-g'^) 2v J anc^ other parameters are as defined
r in Eqs. (A3.1) and (A3. 2).

A4 Monopole Radiation Due to Inflow Distortion

The effect of the g-Tzth component of the inflow on the

thickness of the j'th blade rotating with a circular frequency

fi, is represented by fluctuating volume sources 6q , .,
9^1 £<7

as given in Eq. (3.11). We note that the elemental volume

rd9 dr d? referred to in the equation is located, in the annulus

2?rrdr,at coordinates given by Eq. (2.15). Substituting

Eq. (3.11) into Eq. (3.12) and using the far field approxima-

tions as before, we obtain the acoustic pressure due to the

elemental monopole considered as
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m

X

X exp{im6 - iK , r sin^ cos6}mgn

X exp{im(£ sinX)/r + iKm ^(C cosXJcosI'}

X exp{-i(m - g-) (j - l)2ir/B} (A4.1)

where K^ . = (o^ - g-n +

Including the source-sink distribution over the chord of

each blade element and all the blade elements in the fan

annulus, the far field sound pressure due to the ghth com-

ponent of inflow distortion can be obtained from the follow-

ing equation.

r 27T c/2

=/ / ?i f
-c/2

11

Substituting Eq. (A4.1) into Eq. (A4.2) and using identities

(A2.3) and (A2.5), we obtain the nth component of sound ;'

pressure as :

r^

rh

X B-G ,'J (K , r sinV) -drV (A4.3)
mg'rt m mgn

where K = (to -

m = nB + g
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and c/2

/
db
g--exp{im(c sinA)/r + iK^ ^ (t, cosA)cos¥} -d? (A4 .4)

-c/2 - m?

We note that tone noise at blade passing frequency exists

only when oj, = 0, i.e. for steady state inflow distortion.

Using the value at representative radius r , for the integrand

in Eq. (A4.3), we can write the following expression for the

rms value of the nth harmonic of acoustic pressure due to

component of steady state inflow distortion.

p
n = - - *U ^*B ' G o'J (Kr,u ro sin^) ' ( r . - r . ) (A4 .5)gn 4/21TR 9r mge m nB e t h

where K _. = ^nB o

m = nB + g}

and c/2
G „ = / ^$-exp{iw(c sinA)/r + iK _(£ cosX)cos>f} «dr (A4 .6 )?7?^e j at nts

-c/2 evaluated at r = re

We note that the far field sound pressure given by

Eq. (A4.5) depends upon evaluating the integral of Eq. (A4.6)

for the specific blade section profile, at each value of

azimuth angle and the particular values of the indicies n and

g . To illustrate the evaluation of the function G , let us

consider the double circular arc profile described by

of

where c is the blade chord and (b/c) is the thicknesse maXj e
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ratio of the blade section, both considered at the repre-

. sentative radius r . Using Eq. (A4.7) and the, following

notations

572 = n'

and v = ™(% sinX)/r + K _ (§- cosA)cos¥ (A4.8)£ e ni3 £

we can rewrite Eq. (A4.6) as

1 .

dn . (A4.9)

From the value of the above definite integral we can show

that

|G | = 2b |._ | (A4.1Q)1 mge ' max,e y y2

where y is defined by Eq. (A4.8).

In evaluating sound pressure at blade passing frequency at
r

on-axis points on the small scale fan, we note that

• y = .28

leading to

l%el.= •1656bmaxfe .,

A5 Monopole Radiation from Random Sources

Substituting Eq. (4.11) into Eq. (4.12) and using

Eq. (A1.2) for the far field approximations, we obtain
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P^ f -i'K a' mq opo ^ _ _ (
= 2? £ £ Ag /

m a * Jm g - 4lTR
a

X

X exp{im6-iK r sin* cos6}mg

X exp{in?£ sinX/r + iK £ cosX cos*}

X

where ^ ^ _ _ ..__ _ _ _ _ . _ . _ _ . _ _

Following the procedure employed in the previous subsection

A3 step by step, we can easily derive the following expres-

sion for spectral density of far field acoustic pressure due

to blade thickness effect

t

/ (2nr/i .) B2

•' • •- i/im 0

where m = nB + g

a) = v - mJ2 + gfi

and c/2
Gm^e = y -j-£ exp(im (? sinX)/r + i -^-(t, cosAJcosY}-de (A5.3)

-c/2 °
evaluated at r = r

e
We note that Eq. (A5.3) is similar to Eq. (A4..6).

Thus the amplitude of G^ in Eq. (A5.2) can be evaluated

from Eq. (A4.10) and Eq. (A4.8) with K _ replaced by v/a .
Tin n
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A6 RADIATION FROM ORDERED QUADRUPOLES

Confining our discussion to longitudinal axial quad-

rupoles only, the "fluctuating Reynolds stresses" due to

the interaction of steady state inflow distortion and the

potential velocity perturbation is given by Eq. (3.19).

The far field acoustic pressure radiated by these "fluctu

ating Reynolds stresses" can be obtained by substituting

Eq. (3.19) into Eq. (3.17) to give

exp { -2TrnJn | /d}

X exp{-iK a ( t -R/a )}nc o o

X exp{im0 - iK r siny cose}

X exp{i<J> - iK n cosf}rdr dG dr] (A6.1)pi ,n nB i !

where m = nB + g

and K = .nB o

To include the radiation from all the quadrupoles

present in the region upstream of the rotor, we can integ-

rate Eq. (A6.1) over the region

0 < n < °°
i

o <_ e <_ 2ir
rh i r i rt

to arrive at the following expression for the nth harmonic

of the far field sound pressure due to the gth component of

the inflow distortion,
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ZY / (-i)m U U

-h

X

(d/n)

r.

X J (K Drsin¥)r-dr (A6.2)m nB

We have ignored the retarded time in the axial direction

when performing the integration with respect to ri because

the potential velocity perturbation decay very fast in the

axial direction.

Using a representative radius r and replacing the inte-

grand of the above Eq. (A6.2) by its value at r , we can

write the rms value of the nth harmonic as

= ,°;onp cos2V'—, • 2U U -J (K _ r sin¥)-r (r. - r, )4/2?rR |n| g, i p\,n m nB e t h

(A6.3)

where m = nB + g ^

and K „ = nBfi/a .nB o

A7 RADIATION FROM RANDOM QUADRUPOLE SOURCES

Retaining only the product term 2U u in V2 , we note
Pi i i

that Eq. (4.16) reduces to

pi
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Since the periodic fluctuations U are not related to the
Pi

inflow turbulence fluctuations u , the above space-time

correlation function can be written as

\?i = *u ;R
Ui

 (A7-2)

From the description of the nth component of U given in

Eq. ( 2 .5 ) we obtain

\t n = H>i jn
}2 cos(k p ?- V ) .exp{-2k p n -k p O (A7.3)

where k = 2im/d

and u) = nB£2
P

Substituting the above Eq. (A7.3), Eq. (2.9) and Eq. (A7.2)

into Eq. (A7.1), the required space-time correlation function

can be written as

£ -UpT)

{-2kpn -exp

(A7-4)

The above equation is then substituted into Eq. (4.15) and

integration over the flow region is performed to obtain

Eq. (4.17). In carrying out the integration the retarded

time difference T* is ignored since the fluctuations U ljn

decay rapidly with r\ . The integration being only over

the upstream region of the rotor, the ranges of n and E, are

restricted by the following limits

-D <_ £ <_ oo and 0 <_ n f_
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Fig. 4.1 Noise Spectrum at On-axis Point 5 ft.

from Small Scale Rotor

(computed from random blade loading;
3% turbulence intensity)
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Fig. 4.3 Noise Spectrum at On-axis Point 5 ft.

from Small Scale Rotor

(computed from blade thickness effect;
3% turbulence intensity)
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Fig. 4.6 Noise Spectrum at On-axis Point 5 ft.

from Small Scale Rotor

(computed from longitudinal axial quadrupoles;
3% turbulence intensity)
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Fig. 5.3 Noise Spectrum at On-axis Point 7 ft.

from Small Scale Rotor Computed from

Blade Loading Corresponding to Measured

Turbulence Parameters
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Fig. 5.4 Noise Spectrum at On-axis Point 7 ft.

from Small Scale Fan Computed from

Blade Thickness Effect Corresponding

to Measured Turbulence Parameters
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