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I. Summary of Research Under NASA Grant NGR14-005-009

I.1. Brief Review

The research on the NASA Grant grew out of a rocket experiment on

the cross-modulation between two RF signals in the ionosphere, the

so-called "Luxemburg effect." In the original experiment over ten years

ago, a pulsed signal near the gyroresonance frequency was produced to

heat the electrons in the E layer, and a sensing signal was sent through

the heated region for detection of the heating effect. The local dis-

turbance of the ionosphere was observed. However, it was found that an

accurate quantitative interpretation of the experimental results required

a thorough understanding of the behavior of antennas in anisotropic media.

The problem of the antenna in magnetoplasma has been a subject of great

interest in the past decade because of its intimate relevance to space

communication. During the past few years our laboratory has contributed

significantly in this area as shown in the list of publications in 1.2.

Some of the highlights of this research is now reviewed.

(1) A theory for a short dipole antenna in a magnetoplasma was

4*
advanced and a formula for the antenna impedance was

derived using the quasi-static approximation. This formula

has been widely used and experimentally tested with some

success both in the ionosphere and in the laboratory.4,3 6

(2) The computation of Green's function in the magnetoplasma

has been a problem because of its complexity. A significant

simplification was achieved with a new expression which

separates the singular algebraic terms from some proper

integrals.l More recently this expression has been
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rearranged so that it can be handled more easily by some

numerical means (see (6) below).

(3) For arbitrary electric current sources, the 
far field can be

expressed in terms of the geometrical properties 
of the

medium dispersion surface.
5 ,6 These results were later

15
extended to compressible magnetoplasma and to sources of

magnetic currents, mechanical forces, and actual injection

of charged particles. The possible significance of these

sources in the case of compressible 
plasma was demonstrated,17,25

using a variational method.

(4) Rigorous and numerical solutions to the current distribution

on an infinitely long cylindrical antenna parallel 
to the

magnetizing field were obtained for various cases.23 
These

solutions differ from others in that the boundary condition

on the conducting cylinder was satisfied.

(5) Dipole impedance in a plasma-filled circular guide 
has been

investigated both numerically and experimentally with good

agreement.2 4 It was shown that the interaction between the

dipole and the plasma could lead to a useful diagnostic

technique for the plasma.

(6) In the past the investigations were made largely on the

assumptions that the medium was idealized; the sheath was

neglected or represented by a dielectric layer, and 
the current

distribution was known (except (4) where the antenna was

assumed to be infinitely long). In the past year we have

addressed ourselves to the problem of current distribution.
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The method relies heavily on the computer. It would have

been unthinkable a few years ago, but with the present

availability of larger and faster computers we have found

this approach feasible with a reasonable computing effort.

An integral equation was solved numerically for the

antenna current distribution in some cases. Because of the

extreme complexity of the Green's function, the numerical

procedure is very involved. The program has been successfully

tested for simple known cases.

(7) In the past year, an experimental program was also initiated

for the study of the nonlinear effect of the plasma on the

antenna. It was found that even for input power on the order

of milliwatts there was significant nonlinear effect on the

antenna impedance. This should be kept in mind in evaluating

the results of many existing experimental works. The nonlinear

effect of the plasma depends.on its relaxation time in comparison

with the periods corresponding to the signal and modulation

frequencies. At microwave frequencies, it is an extremely

complex problem, and rigorously speaking the antenna impedance

as well as the so-called ei-characteristics in such a system

become rather meaningless. Therefore a more complete description

is needed. Since at microwave frequencies it is usually the

measurable reflection coefficient that is of interest, its

dependence on the level of incident wave in the case of a

simple nonlinear plasma has been evaluated.

More recently other nonlinear effects, such as harmonic

generation and cross-modulation between two or more signals,

have been demonstrated in the laboratory plasma. (See Part II

of the report).
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I. 2. List of Publications and Scientific Reports under NASA Grant

NSG 395 and NGR 14--005-009

1. R. Mittra and G. A. Deschartps, "Field Solutin for a Dipole in an
Anisotropic McdiLum," Procceding of the Il. lat oLal Si;mpOs~ ' on

Electromagnetic Theo;y, Perganon Press, pp. 495-532, 1963.

2. G. A. Deschamps "Dispersion Surfaces and Characteristic Plane Waves
in a Gyrotropic Medium," Proceedings of the Application Forum on

Antenna Research, ed. P. E. Mayes, University of Illinois, pp. 290-367,
January 1964.

3. R. Mittra, "Antennas in Anisotropic Mledia," Applications Forznm on
Antenna Research, ed. P. E. Mayes, pp. 424-452, January 1964.

4. K. G. Balmain, "The Impedance of a Short Dipole Antenna in a 1Magneto-

plasma," IEEE Trarsactions, Vol. AP-12, pp. 605-617, September 1964.

5. G. A. Deschamps and 0. B. Kesler, "Radiation Field of an Arbitrary
Antenna in a Magnetoplasma," IEEE ?rans.actions, Vol. AP-12, pp. 783-

785, November 1964.

6. G. A. Deschamps, "Angular Dependence of the Refractive Index in the
Ionosphere," Radio Science, 69D, pp. 395-400, March 1965.

7. K. G. Balmain, "Impedance of a Short Dipole in a Compressible Plasma,"
Radio Science, 69D, No. 4, pp. 559-566, April 1965.

8. R. Mittra and'G. L. Duff, "A Systematic Study of the Radiation Patterns

of a Dipole in a Nagnetopiasma Based on a Classification of the

Associated Dispersion Surfaces," Radio Science, 69D, No. 5, pp. 681-692,

May 1965.

9. C. P. Bates and R. Nittra, "Plane-Wave Spectrum Representation of a

Field in a Magnetoionic Medium Due to a Plane Distribution of Source

Currents," Electronics Letters, Vol. 1, No. 3, p. 74, May 1965.

10. S. W. Lee, C. Liang, and Y. T. Lo, "Inconsistency of Boundary Conditions

of Plasma Models in a Bounded Region," Electronics Letters of the IEEE,
Vol. 1, No. 5, p. 128, July 1965.

11. S. W. Lee and Y. T. Lo, "Radiation Resistance of an Elliptical Loop
Antenna with Constant Current in Compressible Plasma," Electronics
Letters of' the IEEE, Vol. 1, No. 5, pp. 132-133, July 1965.

12. G. L. Duff and R. Mittra, "Input Impedance of a Small Loop of Uniform
Electric Current in an Anisotropic Cold Plasma," Electronics Letters,
Vol. 1, No. 5, pp. 117-118, July 1965.

13. S. W1. Lee, C. Liang and Y. T. Lo, "Further Remarks on Boundary Conditions
of Plasma Models in a Bounded Region," Electronics Letters of the IEEE,
Vol. 1, No. 7, September 1965.
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14. S.W. Lee, '.T. Lo and R. Mittra, "Finite and Infinite H-plane Di-
furcation Waveguide with Anisotropic Plasma Modium," Proccedings of
the International Sym osia of Antenna and Propagation, Washington, D. C.,
August 1965; also Canadian Journal ojf Physics, Vol. 43, pp. 2123-2135,
December 1965.

15. G. A. Deschamps, "Rayonnement d'une Antenne dans un milieu anisostrope,"
L'Onde Electrique 45, pp. 1379-1385, December 1965.

16. S. W. Lee and Y. T. Lo, "Radiation in a Moving Anisotropic Medium,"
Radio Science, Vol. 1, (New Series), No. 3, pp. 313-324, March 1966.

17. J. W. Carlin and R. Mittra, "Terminal Admittance of a Thin Biconical
Antenna in an Isotropic Compressible Plasma," EZlectronics Letters,
Vol. 2, No. 6, pp. 199-201, June 1966.

18. S. IV. Lee, C. Liang and Y. T. Lo, "Wave Propagation in Plasma with Very
Strong Magnetic Field," Radio Science, Vol. 1 (New Series), No. 7,
pp. 815-824, July 1966.

19. C. P. Bates and R. Mittra, "Principles of Scaling in a Uniaxial Medium,"
IL Nuovo Cimento, Vol. 43, No. 10, pp. 101-118, 1966.

20. G. A. Dcschamps, "Impedance of Antennas in Ionized Media," Electro-
magnetics and Antennas, ed. P. E. Mayes, University of Illinois,
pp. 498-512, January 1967.

21. S. W. Lee, "Propagation in Ionosphere-earth Waveguide," Appl. Science
,Research, Vol. 17, No. 2, pp. 115-132, 1967.

22. S. W. Lee and Y. T. Lo, "Reflection and Transmission of Electromagnetic
Waves by a Moving Anisotropic Medium," Journal of Applied Physics,
Vol. 38, No. 2, pp. 870-875, February 1967.

23. S. IW. Lee and Y. T. Lo, "Current Distribution and Input Admittance of
a Cylindrical Antenna in Anisotropic Plasma," presented at Spring URSI
Meeting, Washington, D. C., April 1966; also, IEEE Transactions, Vol.
AP-15, No.2, pp. 244-252, March 1967.

24. S. IW. Lee and Y. T. Lo, "On the Coupling of Modal Waves in a Plasma-
filled Parallel-plate Waveguide," Radio Science, Vol. 2, No. 4,
pp. 401-406, April 1967.

25. J. W. Carlin and R. Mittra, "Acoustic Waves and Their Effects on
Antenna Impedance," IEEE IntZ. Antennas and Propagation Symposium
Digest, pp. 102-105, December 1966, also, Canadian Journal of Physics,
Vol. 45, pp. 1251-1269, 1967.

26. S. iW. Lee and R. Mittra, "Group Velocity of a Uniaxial Plasma," IEEE
Transactions, Vol. AP-15, No. 4, pp. 588-589, July 1967.

27. G. A. Deschamps and 0. B. Kesler, "Radiation of an Antenna in a Com-
pressible Magnetoplasma." Radio Science, August 1967.
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28. R. Mittra and S. W. Lee, "Mode Matching Method for Anisotropic Guides,'.
Radio Science, Vol. 2, No. 8, pp. 937-942, 1967.

29. S. W. Lee and R. Miittra, "Transient Radiation of an Electric Dipole
in a Uniaxial]y Anisotropic Plasma," Radio Science, Vol. 2, No. 8,
pp. 813-820, 1967.

30. R. Mittra and S. W. Lee, "Discontinuity in an Anisotropic Waveguide,"
Journal of Applied Physics, Vol. 38, pp. 178-186, 1967.

31. S. W. Lee and R. Mittra, "Edge Condition and 'Intrinsic Loss' in
Uniaxial Plasma," Canadian Journal of Physics, Vol. 46, pp. 111-120,
1968.

32. J. Carlin and R. Mittra, "Effects of Induced Acoustic Sources on the
Impedance of a Cylindrical Dipole in a Warm Plasma," Radio Science,
Vol. 2, No. 11, pp. 1327-1338, 1967.

33. J. Carlin, "Variational Formula for Antenna Impedance in a Warm Plasma,"
Electronics Letters, Vol. 3, No. 7, 1967.

34. D. K. Waineo and R. Mittra, "Short Dipole in a Uniaxial Medium," Applied
Science Research, Vol. 18, 1968.

35. I. Akkaya, "A Comparative Study of Several Models of the Magnetoplasma,"
Radio Science, Vol. 4, No. 1, pp. 83-90, January 1969.

36. D. Snyder and R. Mittra, "Experimental Study of the Impedance of a
Short Dipole in a Plasma for Parallel and Perpendicular Orientation
with Respect to the D.C. Magnetic Field," Sci. Tech. Rept. No. 11,
Antenna Laboratory, University-of Illinois, Urbana, Illinois,
December 1968. This work was also presented at IEEE PGAP Symposium,
Boston, Massachusetts, December 1968.

37. S. W. Lee, "Cylindrical Antenna in Uniaxial Resonant Plasma," Radio
Science, Vol. 4, No. 2, pp. 179-189, February 1969.

38. R. Mittra and S. W. Lee, "Some Aspects of Numerical Solution of
Boundary Value Problems," Alta Frequenza Special, Vol. 38, pp. 291-
296, May 1969.

39. G. L. Duff and R. Mittra, "Loop Impedance in a Magnetoplasma: Theory
and Experiment," Radio Science, Vol. 5, pp. 81-94, January 1970.

40. T. Itoh and R. Mittra, "A New Method of Solution for Radiation from
a Flanged Waveguide," Proceedings of the IEEE, Vol. 59, No. 7, pp. 1131-
1133, July 1971.

41. T. Itoh and R. Mittra, "Radiation from a Flanged Waveguide Covered
with a Dielectric or Plasma Slab," to be published in Proceedings of
International Symposium on Antennas and Propagation, Sendai, Japan,
September 1971.
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42. R. Mittra 'and I). H. Schaubert, "Study of a Remote Probing Technique
for Inhomogeneous Media," Proceedings'of the IEEE, Vol. 59, No. 10,
pp. 1539-1540, October 1971.

43. R. Mittra, D. H. Schaubert and 1M. Mostafavi, "Some Methods for De-

termining the Profile Functions of Inhomogerncous Media," to be published
in the Proceedings of the Workshop on the Mathematics of Profile
Inversion, 1971.

44. G. A. Deschamps, K. G. Balmain and S. W. Lee, "Antennas in Ionized
Media," to be published in Advances in Electronics and Electron
Physics.
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Scientific Reports done on NASA NSG 395 and NGR 14-005-009

45. K. G. Balmain, "The Impedance of a Short Dipole Antenna in a Magneto-
plasma," Scientific Report No. 1, University of Illinois, Mlay 1963.

46. R.. Mittra and G. Duff, "A Classification of the Dispersion Surfaces
in a Magneto-Ionic Medium and a Study of the Associated Radiation
Patterns," Scientific Report No. 2, University of Illinois, October
1964.

47. R. Mittra, "Solution of a Ferrite Boundary Value Problem and Re-
solution of Lewin's Paradox," Scientific Report No. 3, Antenna Lab
Report No. 65-7, University of Illinois, March 1965.

48. S. IW. Lee, Y. T. Lo and R. Mittra, "Finite and Infinite H-Plane Bi-
furcation of i'aveguide with Anisotropic Plasma Medium," Scientific
Report No. 4, Antenna Lab Report No. 65-8, University of Illinois,
March 1965.

49. 0. B..Kesler, "Propagation of EM Waves in Linear, Passive, Generalized.
Media," Scientific Report No..,5, Antenna Lab. Report No. 65-9, Univ-
ersity of Illinois, October 1965.

50. C. P. Bates and R. Mittra,"Principle of Scaling in a Uniaxial Medium,"
Scientific Report No. 6, Antenna Lab. Report No. 65-12, University
of Illinois, June 1965.

51. D. K. Waineo and R. Mittra, "The Radiation Resistance of a Dipole in
a Uniaxial Medium," Scientific Report No'. 7, Antenna Lab. Report No.
66-14, University of Illinois, October 1966.

52. G. L. Duff and R. Mittra, "The Theoretical and Experimental Determination
of the Input Impedance of a Small Loop of Electric Current Immersed in
an Anisotropic Plasma," Scientific Report No. 8, Antenna Lab Report
No. 66-15, University of Illinois, October 1966.

53. J. W. Carlin and R. Mittra, "Antenna Impedance in a Warm Plasma,"
Scientific Report No. 9, Antenna Lab. Report. No. 66-18, University
of Illinois, December 1966.

54. I. Akkaya, "Waveguides Filled with Magnetoplasmas of Various Types,"
Scientific Report No. 10, Antenna Lab. Report No. 67-4, University of
Illinois, May 1967.

55. D. E. Snyder and R. Mittra, "Experimental Study of the Impedance of a
Short Dipole in a Plasma for Parallel and Perpendicular Orientation
with Respect to the D.C. Magnetic Field," Scientific Report No. 11,
Antenna Lab. Report No. 68-4, University of Illinois, December 1968.
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56. R. J. Kostelnicek and R. Mittra, "Radiation from an Open-Ended hWave-

guide into an Inhomognecously Filled Space," Scientific Report No. 12,
Antenna Lab. Report No. 69-10, University of Illinois, July 1969.

57. S. IV. Lee and M. J. Al-Hakkak, "Impedance of Cylindrical Antennas in
Plasma -- A Review," Scientific Report No. 13, Antenna Lab. Report
No. 70-3, University of Illinois, January 1970.

58. M. Mostafavi and R. Mittra, "Remote Probing of Inhomogencous Media
Using Parameter Optimization Techniques," Scientific Report No. 14,
Antenna Lab. Report No. 70-6, University of Illinois, April 1970.

59. D. Schaubert and R. Mittra, "Remote Probing Methods for the Determination
of the Profile of Inhomogeneous Media," Scientific Report No. 15,
Antenna Lab. Report No. 70-7, University of Illinois, May 1970.

60. H. Sievering and R. Mittra, "The Effect of Coherence and Multiple
Scattering on Laser Radar Air Pollution Measurements," Scientific
Report No. 16, Antenna Lab. Report No. 71-5, University of Illinois,
June 1971.

61. C. S. Liang and Y. T. Lo, "Antenna in a Waveguide Partially-Filled
with Plasma," Scientific Report No. 17, Antenna Lab Report No. 71-9,
University of Illinois, August 1971.

62. S. W. Lee and G. A. Deschamps, "Singular Perturbation Methods and the

Warm Plasma Model," Scientific Report No. 18, Antenna Lab Report No.
71-10, University of Illinois, August 1971.

63. C. A. Klein, P. W. Klock and G. A. Deschamps, "Current Distribution on
a Cylindrical Antenna with Parallel Orientation in a Lossy Magnetoplasma,"
Scientific Report No. 19, Antenna Lab. Report No. 72-3, July 1972.

64. M. J. Johnson and R. Mittra, "A Matrix Equation Solution by an
Optimization Technique," Scientific Report No. 20, Antenna Lab. Report
No. 72-11, University of Illinois, December 1972.
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II. SEMIANNUAL PROGRESS REPORT

II.1. Summary

The research during the last period consisted of computations

toward the solution of the problem of the current distribution on a

cylindrical antenna in a magneto plasma. The case of an antenna parallel

to the applied magnetic field was treated (reference 63 of Part I). A

systematic method of asymptotic expansion was found which simplifies

the solution in the general case by giving the field of a dipole even

at relatively short range (11.2). Some useful properties of the dis-

persion surfaces in a lossy medium have also been found (11.2). The

laboratory experiment was directed toward evaluating nonlinear effects,

such as those due to power level, bias voltage and electron heating (11.3).

The problem of reflection and transmission-of waves in an electron heated

plasma was treated theoretically (11.4). [This has been accepted for

publication]. The profile inversion problem has been pursued. Some

results are very encouraging. The general question of stability of the

solution remains unsolved.



11.2. Cylindrical Dipole in a Magnetoplasma (Numerical Analysis)

1. Introduction

The input impedance to a dipole in a magnetoplasma has been computed

[1]
using the method of moments. This paper discusses asymptotic approxi-

mations to integrals representation of fields. By applying these approxi-

mations the computation of fields from a dipole source in a plasma can be

simplified and still give good results at "reasonable" distance from the

source. In this manner, the asymptotic solution can b.e applied to the

problem of obtaining the input impedance of a dipole in a magnetoplasma.

Such an application could increase the accuracy of the computation.

This,paper discusses methods for obtaining the first few terms of

an asymptotic expansion. Both one and two dimensional integrals are

considered of the type

f (weighting function) (plane wave) d(parameter) (1)
c

The field solution in the free space case is examined as a preliminary

step to the eventual application to a plasma. Also some geometrical

considerations about the characteristic fields in an anisotropic region

are presented.

2. Saddle Point Integration

[2]
The saddle-point method of integration, also known as the method

of steepest descent, is an asymptotic integration technique which may have

some usefulness in integrating the equation

I = / f(x) eiV(x) dx (2)
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where v is a large number and f, 4 are functions of x that vary "slowly"

with x- x being a point in a space of arbitrary dimension. The particular

application of (2) used here is the consideration of the field described

by a spectrum of plane waves. Then the variable x is the vector k, the

phase vP(x) becomes k - r (where r is the observation point), and F(x)

becomes a weighing function F(k). The integral considered thereby becomes

ik - r (3)

f F(k)e dk .(3)
c

The path of integration c is shifted to a steepest descent path that is

one along which Im(k * r) varies at a maximum rate of change. This can

be done without changing the value of the integral only if there are no

singularities between the true path. Otherwise the effect of the poles

or branch points on the new integration path must be considered.

It is easy to show [3 ] that forcing Im(k * r) to vary at a maximum

rate of change implies that Re(k . r) is a constant.

A complex analytic function cannot have a maximum or minimum, so

the stationary phase point is actually a saddle point. There is both

a steepest descent path, along which Re(k * r) has its maximum at the

saddle point, and also a steepest ascent path along which Re(k * r)

has its minimum at the saddle point.

If one can change the integration path of (3) to the steepest descent

path and if F(k) varies "slowly" one now has a means for approximating

the solution to (3). Specifically, if one integrates along the steepest

descent path then the main contribution to the integration comes from the

region of the saddle point. In this manner expanding the integral in

terms of a Taylor's series about the saddle point for "well-behaved"

functions should produce reasonable approximations to the solution of (3).
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At a saddle point d(kr) = 0 or for a given r, dk * r = 0. This

means that r is perpendicular to the dispersion surface. At point k,

in trying to find an approximation to the integral solutions to a field

at an observation point r one must find the saddle points. This intro-

duces a geometric problem necessary for the solution of the integral (3)

of finding all those k's for which dk • r = 0. This problem will be

discussed later.

Consider now a one-dimensional problem with an integral of the form

I = / F(z)e -af(z) dz (4)

Csdp

Here Csdp is the steepest descent path. It is assumed that F(z) varies

"slowly" and a is "reasonably" large. Also one assumes that F(z) is

well-behaved at the saddle-point, having no singularities there. The

approximation to (4) about one saddle point is now examined. Two methods

are mentioned here.

2
In approximation (4) define s = f - f(z ) where z is the saddle

. O

point. Making a change of variables from z to s results in

2

I = ea f(zo I (s) e-as ds

Csdp

2F(z) (5)
f'(z)

To evaluate (5), (s) is expanded about the point s = 0 (or z = zo).

th
Let the n derivative of 4(s) and f(s) evaluated at the saddle point

be denoted by n and fn respectively. The Taylor's expansion for 4(s)

becomes
2

¢(s) = o + s41 + 2 + ... (6)
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and = 0 at the saddle point. In order to have the Im (-as2) a constant,

s must be real. So, appropriate approximations to the steepest descent

path valid about the saddle point for 4(s) varying "slowly" are limits

of integration - to +. Putting the expansion (6) into (5) yields an

approximate solution to (5) of

I=/ -af 1 3
a o o + 4a 2 2+  4 .. ] (7)

8a

This computation has been performed to the first two significant terms

using powers of f and F with the following results
n n

-af 2r 1/2 f f3  f
f 2 F 2 4 5 3 1 3

I = e o ( ) 'F - ) + - (Faf af2 f 3 3 4 1 f - 2
2

f f 2
-af 2 f6 1 4 35

+ e o ((I) {Fafe 2 4f 3 48 f2) 1536

fff 2 f
3 5 7 f3f4 7 3~4 35+ +
2 192 2 192 3 256
2 2 2

f ff f5 1 34 35 33 35
+ F1 3 + ( -) i- +1 f2 32 2 192 f 192

2

F f f 4 f 2
2 4 5 385 4 3 35

+ [ ( -(-)2 f2 32 (64)(72) 2 f2 96

35 1
- F [ + F ]} (8)3 f 48 4 32

2

An equivalent expansion for the one-dimensional problem has been

found by a slightly different method which is more readily extended to

the nth dimensional case. In equation (4), F(z) and f(z) are expanded
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in a Taylor's series about a saddle point z. Let ? = z - zo. Then

0 1 2

F2 52

I = ! (F0 + FI 1  + -

Csd p  (9)

f2 d2
exp(-a{fo + f + -2 + ... }) d

The exponential term in (9) is now expanded.

a 2 2
exp(-a f(z)) = exp(-af) exp(- 2

f3 3  f 4 4 f5 - 5
{l - a( !  4! + 5!

2 f f f 2
a 3 3 4 4 5 5

+ ( +i- +Y ) -

3 3
a (10)

substituting (10) into (9) reduces the integral equation to an infinite

sum of terms of the form

af 2
e-afo f C n e- 2 d (

n 2
Csdp

where C is a constant. The limits of integration are taken from -o to a
n

as an approximation around the saddle point.

With this simplification, it is known that

0o 2 2
f n -p d = [(n + 1)/2]

f 1e d )/2 ; n even (12)
{ (n+ 1)/2

0 ; n odd

1/21 1
When a sum of these factors is examined in terms of - and -, a

a a

series equivalent to (5) has been obtained. While this method is more
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cumbersome because of the number of terms that must be combined, it is

a straight forward technique that may easily be applied to the two-

dimensional problem.

3. Two-Dimensional Problem

In a two-dimensional problem, one considers integrals of the type

12 = ff F(u,V) e -pf(u,V) du dv (13)

Csdp

Again it is assumed that F(x,y) varies "slowly" and is well-behaved at

the saddle point.

To simplify the manipulation of (13) a convenient notation is first

introduced. Let -J be an ordered pair of indices so that J = j1 j2'

Also, let y be a vector in C2 so that yl = u and y2 
= 9 " The following

nbtation will ncw be used.

J Jl j2
Y = Yl Y2

3-J fj = a f|

Y = Y yl Y2 y = Yo

! = jil j 2 !

J] = Ji + J2

J F J

f L (14)
J! (Y o (14)

L IJ = L-

With this abbreviation, (18) takes on the form

12 = ff F(y) e_- f (y) dy (15)

Csdp
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To obtain an asymptotic expansion, F(y) and f(y) are rewritten in

., of a Taylor's expansion about the saddle point yo.

n

F(y) = Z F
K=1

(16)

f(y) = E f
K=1

:,e exponential term is exp nded so that

-Of(y) = e-fo e-P/z f2 {l - p[f3 + f4 +''] +

(17)

2 2 n n
2-- [f + f + "] +'. + - If) + f + f+ n ]

2 3 4 n! 3 4

If one lets u - no = 5 and v - V = , this manipulation yields a solution

to (15) in terms of a summation of integrals of the type

03 m 2 2

f f 0 m n e-p/2 [f J2 + 2fu u + f dV d (i8)
nm

-03 -0o

w.lere the limits -m to +c have been taken as an approximation to Csd p .

a solttion to integrals of the type in (18) has been found to be

C
I = n + m m

nm (n + m)/2 + 1

2'nere

( m + 1) m - n n
2 2f 2 Z R(n,k)

uu
Ik = 0

n + m,m ; for n + m even

0 : for n + m odd



and

(k) u v _ ( n + k)/2 Fm+k +1) (m - k

(f f - f2) 2 2)

R(n,k) = (19)

; for m + k and n - k even

0 ; for m + k or n - k odd

To obtain an asymptotic series, the expansion of integral (13) is

combined in terms of increasing powers of 1/p.
n m

If there are polynomials of 1 and r1 associated with the Taylor's
n2  m

2 "2
expansion of F(y) and polynomials of 2 and 2 associated with the

expansion of p f(), from the form of (19) it can be seen that these

polynomials have a contribution of ( 1)(n + n2 + m1 + m2)/2 + 1. The

subscript J = n1 + mi is now associated with the Jth term of the Taylor's

expansion, and a value EZ = n + m is associated by Table 1 with productsZ z

of fL in the expansion of ef ( y ) .

There is also a contribution of (p)k directly from the expansion of

e in (17). A rule can now be formulated for generating the nth

term of the asymptotic expansion. Specifically, one relates the nth term

of the asymptotic expansion through terms of f L's and F K's for which

J + ZR
(_ + 1 - k) = n (20)Z

Those terms associated with n = 1, 2, 3 are summarized in Table 2.

Furthermore, the contribution by these combinations can be written

-pfo 
(_

Sn k! J Ll Ln J + ER, m + m2

where = L 1 + ... + L n, J +  k = m I + m2 + n1 + n 2 and by Cj + Ek, + m2

is meant, the integration constant in (19) associated with the polynominals
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TABLE 1. ORGANIZATION OF TERMS FROM e

I * J ... N Corresponds to fl fJ ... fN

0 1 2 3 4 5 6 7 8 9 ... k

0 0

3 4 5 6 7 8 9 1

33 34 35 36 2

43 44 45

53 54

55

333 3

TABLE 2. VALUES OF J, Z, k FOR

FIRST 3 TERMS OF ASYMPTOTIC EXPANSION

J ER k n J EZ k n

0 0 0 1 1 5 1 3

2 0 0 2 0 6 1 3

1 3 1 2 2 6 2 3

0 4 1 2 1 7 2 3

0 6 2 2 0 8 2 3

4 0 0 3 1 9 3 3

3 3 1 3 0 10 3 3

2 4 1 3 0 12 4 3
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n + n 2  m I + m2
Sni . This value of C, though being different for the

various combinations involved in F, fL,' will be abbreviated to Cj + .

The first three terms of the asymptotic expansion then becomes:

1 -pfo
-e FC
p 0 oo0

1 -pf

e {F2 C2 F3C4 - o
p

1
-F f f 3C

2 Fo f3f3C6

-pf
1e {F4C -F3f3C6 - F2f C6

-Fl fC - Fof C + 2 F2 3 f C

1 1
+ 2! 2 Fl43C8 + 2! 2 Fof3f5C 8

1 1
+ 2! Fof448 3! 1 3 3 3C10

1 13 f f f C Ff f f fC (22)
3! o 3 3 4 10 4! o 3 3 3 3 12

This form of the asymptotic expansion for the first three terms

has been programmed on a computer. Considerable effort must be spent

obtaining the many partial derivatives needed. In fact, since this is

a significant difficulty in using higher order terms, some thought should

be given to developing a computer program to perform this algebra.

4. Applications to the Free Space Problem

The asymptotic techniques developed in the proceeding sections were

applied to-a dipole current source in free space as a test to the approxi-

mation.
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From Maxwell's equations

curl E(r) = -jwpH(r)
(23)

curl H(r) = jweE + J(r)

One obtains

curl curl E(%) = W2P E - jwpJ(r)

E is now considered to be a plane wave and J(r) a source in the

z direction only. In the transform domain, then

2 2 2 2 1 2 _ 2)
[k2 _ ( + r2 + 2 )] E = J(k

where
~ + j((x + ry + Cz)

E(k)'= f f E e dxdydz
-Co

and J is the Fourier transform of J(z). It follows then that

Co 2 2~ -jk r

1 1 (k - )Je 3
E - f/ 2 2 e d3k (24)

3 jw - k2  2 + 2 + 2

A change of variables is now performed

S= cos B x = r cos 0

0 = r sin B sin a y = r sin 6 sin

= r sin B cos a z = r sin 0 cos

With this change

1 1 k 2  2 cos2  2 -jFr cosy
E= -cos r2 sin Be d F da dB (25)

87T ja - C(a)C() k 2 - 2

where cos y = cos e cos B + sin e sin (cos(a - #)) and C(a), C(B) are

paths in the complex a and 8 plane.

The F integration is done by a method of contour integration resulting

is k 3  3 -jkr cos y
E(z) = 2 / J sin 3 e dadB (26)

WE 7 C(a) c(O)
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An asymptotic expansion of the integral in equation (26) is now used.

We have, using previous notation,

. 3
F(a, B) = J sin

f(a, 8) = cos y (27)

and p = -jkr

And the saddle point is at a = #, 5 = 0.

Let us consider a sinusoidal current distribution

J = (x,y,z) = Im sin (k(H - Izl) (x) (y) for which the field is already known.

This is the form for the current distribution on a thin dipole of length

2H. The solution [4 ] for E is
z

-j k1  -jR 2
e e 2cos(5H)

E(z) = -j301 ( + 2cos e (28)
m R R 2 e ) (28)

1 2

The geometry of this dipole is shown in Figure 1.

For this current an asymptotic approximation to (26) can be found,

and the results compared with (28). Moreover the exact solution shown

(28) can be expanded in terms of a series of (-) and compared with the
rI

asymptotic expansion, which is also written in terms of a r series.

It should be noted that the calculation of the first three terms

-of the asymptotic expansion is facilitated by the condition f(4, 0) = 0.

2H 1
The approximate and general solutions were generated for = 8'

1 1

9 10 and the radius of the dipole was taken much smaller than a wave-

length. The first three terms of the asymptotic approximation agree

exactly with the first three terms of the expansion of the exact solution

(28) in terms of a series of ( ). At a distance of .4 wavelengths, the

asymptotic solution was within 1% of the exact solution, and at .2X the

asymptotic solution was within 10%.
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Within .2X the value for the approximate solution quickly diverges

from the exact solution. Thus, it appears, and this was expected, that

for very small values of z, E(z) cannot be evaluted using an asymptotic

approximation. However, the asymptotic approximation using the first

three terms is quite good for intermediate and far distances.

5. Dispersion Surfaces

As mentioned earlier, to find the approximation to the field at an

observation point r one expands about the saddle points, which correspond

to those points for which dk * r = 0. In physical terms, one is finding

the k vector of plane waves which contribute mostly to the far-field in

a particular direction. These correspond to those points k for which

the perpendicular to the dispersion relation is in the r direction.

The geometric problem associated with saddle point integration can

be stated, therefore, as given an observation direction r, generate the

k vectors for dk * r = 0 and the dispersion relation being satisfied.

The dispersion relation can be described
[3 ] using Maxwell's equations

for a plane wave

iE = { -jkr (29)

So Maxwell's equation becomes

kxE = wB (30)

kxH = -wD

2
Letting K = W oGo = K one has

kxkxE = -KE (31)

or (k kT k2 + KYE = 0 (32)
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For non-trival solutions, therefore,

det (kkT - k2 + K) = 0 
(33)

which describes the dispersion relation for the media. 
This dispersion

relation behaves differently for different types of 
media.

For an isotropic space (33) implies that

2 2 (34)
= o 

(34)

From which it follows that

2kTdk = 0 (35)

One conclusion of (35) is that in isotropic regions k and the observation

angle are in the same direction at the saddle 
point.

Consider now the uniaxial plasma. This type of region corresponds

to a plasma with a large external magnetic field 
with an 2 matrix of

the type 0 0

0 0(36)

One solution to the dispersion relation is that

2 2 (37)

And for this value of k

2kTdk = 0 (38)

so that k again is in the same d1rection as the observation 
angle at

the saddle point. However, other solutions to the dispersion.relation

are available.
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Letting P = (k2 - k)-1 kkT (33) becomes

det (I - P) E = 0 (39)

Because the image of the operator P is always d, P has rank one. Thus,

det (I - P) = 1 - trace P = 0 (40)

Or

trace P = 1 (41)

kT(k2 - K)-1 k = 1

So, recalling that dk * r = 0 at the saddle point, (41) can be

utilized to obtain the r direction by taking the differential with

respect to k. Sepcifically,

O = dkT(k 2 - K)-1 k + kT(k 2 - K)-1 dk
(42)

T 2 -1 ' 2 -1
-2 k (k 2 - K) 2k k (k - K)

0 = d k T [(k 2 - K)- 1 k + (k2 - KT ) - k -2 k T(k 2 - K)-1 (k2 - K)-1 k kj (43)

Thus, the observation point is in the direction of a vector k where

R = (k 2 - K) - 1 k + (k - KT) - 1 k -2kT(k 2 - K) -(k 2 - K) - 1 k k (44)

Equation (44) holds for the general lossy anisotropic plasma also.

It is necessary that an inverse relationship be found. That is,

given a radial direction r, a direction of k must be found, k may then

be scaled to fit the dispersion relation (33).

6. Uniaxial Case

The problem of determining the direction of k at the saddle point

has been solved exactly for the case K = KT . Equation (44) reduces to

1 2 -1 T 2 -1T 2 -1
R (k - K) k - k (k - K) (k - K) k k (45)
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Some physical interpretation can be given to (45). Recall that

(k k - k2 + K) E = 0 so that for (k2 - K) nonsingular

E = (k 2 - K) -  k kTE (46)

orE = (k E) (k 2 - K) - 1 k 
(47)

1 2 1
Thus 2R = CE - 2C (E * E) k for C - k * E and = CE x (k x CE)

2
= C lwv (ExH) (48)

Equation (48) has an interesting physical significance. It implies that

the normal to the dispersion surface is not in the direction of the

Poynting vector, the direction of energy flow.

Now some dual relations can be constructed to solve the geometric

problem. Let

S (R k) R (49)
(R k)

Then

S X B = - SX (k X E)

SX B = [(S * E) k- (S k) E (50)

S X B = -E

Similarly

SX D =H (51)

A dispersion relation for S may now be derived.

1 z-i
SX (S X D) = - E D (52)

1 z -1 T
Letting = , V = V for the uniaxial case. So,

(SST S2 + V) D = 0 (53)
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This implies that for non-trivial solution

det (SST - S2 + V) = 0 (54)

so that

det (l - (S2 - V)- 1 SS ) = 0 (55)

and

T 2 -1
ST (S2 - V) S = 1 (56)

Taking the differential of (56) with respect to S results in

[dST( (S 2 - V)-1 S - S (S - V) (S 2 - V)-1 S S)] = 0 (57)

The results of (57) must now be examined. From (53) we have that

D = (S * D) (S2 - V)-1 S (58)

2 -1 T 2 -1 '2 -1
From which it can be shown that k' (S - V) S-S (S -V) (S -V) SS

is in the D X H or k direction.

ZT
Thus for a medium in which c = c one is able to obtain the direction

of k at the saddle point given the direction of the observation point.

This value of k is then scaled to fit the dispersion relation (41).

7. General Magnetoplasma Region

For the general anisotropic region, E has the form

I -j Ex 0

£ = +j x 0 0 (59)
x

0 0 El

One has not been able to find an analytical solution to the geometric

problem of obtaining the k vector for which dk * r = 0.
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Optimization techniques have been tried in the anisotropic region.

However, the general lossy anisotropic region will have many multiple

solutions for which a searching scheme must be devised.

8. Conclusions

Using asymptotic techniques an approximation to the solution of the
ik . r

integral / F(k) e dk can be made for F(k) varying "slowly" at a
C

reasonable magnitude of (k * r). This approximation, expands this integral

about a saddle point. This has been done for the one- and two-dimensional

problem. Preliminary results indicate that in free space, the estimate

is with 10% of the exact solution at r = .2 wavelengths and within 1%

beyond r = .4 wavelengths.

The problem of finding the saddle points corresponds to finding the

k vectors which contribute to the field in a given direction. An analytic

solution to this problem has been presented for the special case in which

the dielectric matrix has the symmetry E . Otherwise, optimization

techniques are suggested.
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Figure 1. Geometry of Dipole Antenna.
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II. 3. Laboratory Measurements

a. Impedance Measurements - Effect of Power Level and Voltage Bias

In measuring the variations of antenna impedance with the input power

level some difficulties with the vacuum system were observed. The following

modifications improved the consistency of the results considerably. First

the vacuum system was thoroughly cleaned and new gaskets were installed.

The diffusion pump jet assembly was found damaged due to oxidation of the

diffusion pump oil. A new jet was then installed and silicon oil was used

to prevent further accidental oxidation. The helium flask was replaced

also. A second mechanical pump was added to the original system and

connected to the backfill port of the pumping station. This pump provides

the capability to continuously exhaust the plasma tube without the fear of

damaging the diffusion pump by accidental breakage of vacuum or other

contaminations. It also keeps the plasma tube at low pressure even when

the tube is not in use. This reduces the pump down time considerably.

An electronic discharge current regulator was built to stablize the current

and it worked beautifully. The RF system was revised also. When operating

at 500 MHz a RF amplifier was added to boost the available power to about

2 watts. With the addition of power attenuators and a directional coupler

to a power meter it is possible to vary the power level from 2 watts to

less than 5 milliwatts and to continuously monitor the input power level.

At 800 MHz and above, the oscillator/amplifier combination is replaced

by a powerful oscillator at our disposal, while the remainder of the RF

system remains the same. Due to the high power level involved in the

measurements it was found necessary to place most RF equipments inside

an anechoic chamber in order to avoid erratic readings on VSWR meters.
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Many efforts have been expended to determine the impedance variation

of the antenna when the input power level was varied. Two frequencies

were used, 800 MHz and 1 GHz. Several typical results are given in

Figures 1 to 3. It is interesting to note that all the impedance varia-

tions as the power level increases follow the same general pattern. This

behavior is not completely understood at the present moment, but the

results are very consistent. The dipole started to glow when the input

power level reached few hundred milliwatts. The glowing is an indication

of induced ionization by strong RF electric field near the dipole. We

expect that the electron density increases under this circumstance'. This

is probably the reason why the impedance curve bends backwards near this

region as it does when the electron density is raised by increasing the

discharge current. At low power we noticed that even for a level of a

few milliwatts the impedance may change drastically. In Figure 1, points

1 and 2 correspond to power level of 1.6 mW and 7.5 mW respectively, but

there is a substantial difference in the impedance. Similarly in Figure 2

points 4 and 5 correspond to the power level of 5.0 mW and 10 mW respectively.

However, the variation of impedance from point 1 to point 3 may be con-

sidered as small. Their power levels are 79 pW and 1.3 pW respectively.

Therefore from these measurements it seems that 1 mW could be considered

as the threshold for small signal approximation. Since in practice

measurements are commonly performed at a power level of several milliwatts

or higher, this casts a great doubt in the validity of many existing

results. Therefore it is concluded that any antenna impedance measurement

without reference to the input power level may be meaningless. Another

interesting feature is that when the external magnetic field is zero, the

impedance of the antenna shows little changes as seen in Figure 3.

F
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b. Observation of Nonlinear Effects

Harmonics Generation

The generation of second harmonic in plasma has been observed with

a spectrum analyzer to monitor the reflected power from the antenna and

also by tuning a receiver to the second harmonic frequency. The second

harmonic power level was measured against the magnetizing field for

various bias voltages. The results are shown in Figure 4. In all cases,

a local maximum is shown at the cyclotron resonance. When the bias

voltages were varied, the more positive the bias is, the higher is the

second harmonic level as might be expected. However, the second harmonic

level eventually became saturated, when the bias reached several tens of

volts. Under certain circumstances, the third harmonic has also been

observed but no attempt was made to measure the third harmonic level.

When modulated signals were fed into the antenna, the modulations were

detected by a receiver at the second harmonic.

Luxemburg Effect

In this experiment two transmitting antennas in the plasma were used.

One was fed with a modulated signal with carrier frequency fl at a fairly

high power level and the other with a continuous wave at frequency f2' A

receiving antenna was located several feet away from the plasma tube and

the receiver was tuned to f2. It was found that the modulation or audio

signal was detected through a speaker, indicating that part of the modulation

was transferred to the wave at f2. When one of the two transmitting antennas

was placed outside of the plasma chamber. A similar phenomenon was observed

but with weaker modulation. This is the so called Luxemburg effect or

crossmodulation effect. In ionosphere it is believed that the electron

heating is the main cause of crossmodulation. In a laboratory plasma many
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other nonlinear effects could produce crossmodulation between signals.

It is not clear which nonlinear effect is the dominant contributor.
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II. 4. Reflection and Transmission of Waves in an Electron-Heated 39
Nonlinear Plasma

I. Introducticn

There are various kinds of nonlinear phenomena in a plasma. Tsytovich

(1) has made an extensive and detailed discussion on the nonlinearity due

to the (v * V) v and v x B ters in fluid equations whereas Whitmer and

Barrett (2-5) considered the same set of equations and calculated the re-

flected and transmitted waves, including harmonics, through a plasma

layer. Keller and Millman (6) assumed a very general constitutive re-

lation with no particular reference to physical processes and solved the

Maxwell's equations for several propagation problems by using perturb'ation

method. -Ginzburg (7,S) discussed the nonlinearity due to electron heating,

in particular its application to the cross modulation of waves in icnosphere,

the so-called Luxemburg effect. In his elementary theory the state of

the plasma was characterized by two variables, the average electron velocity

v and the effective electron teperature T . Ginzburg showed that if thae
e

applied field intensity is smaller than the "plasma field" E the state
p

of the plasma cha:nges slightly under the influence of the field. 1Fowever

when the applied field intensity becomes larger then E , the parameters

of the plasma change significantly. Since in ccmmoniy encoun:ered plasmas

the value of E is small, significant nonlinear effects may result even
P

for moderately large applied fields. In this paper, the nonlinear effect on

the reflection coefficient for a plane wave incident on air-plasma interface is

investigated. The reflection from a semi-infinite nonlinear plasma is

considered first and from a conducting plate backed plasma layer next.

The reflection coefficient as a function of incident field strength is

solved for both cases.
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II. General For-:ulation

In a ronlinear plasma, the medium property depends on the applied

field strength. Ginzburg (7) has shown that if the nonlinearity of the

plasma is mainly due to clectron heating processes, the local effective

temperature of the plasma Te is a function of the magnitude of the field

strength Eo . At low frequencies the properties of the plasma are modulated

by the applied field and the problem becomes rather complicated. Therefore

we will confine cur discussion to high frequency limit such that w'>> v.

In the high frequency limit, the field varies nuch faster than energy re-

laxation time, therefore we can replace E by its rms value E or aside from

an iunimportant constant, by its maximum value E . From Ginzburg's elemen-

tary theory the relation between Te and 0 can be expressed as follows

2 2
T E 0 +V E2

2 = ( o2 0 + () if a >> v (1)"t - . 2 2 ,

p+ v (Tp

where T is the equilibriua electron tem-erature of the plasma in the absnce

of external field, vo and v are effective collision frequencies in the

absence and in the presence of external-field respectively. V can be

considered as a function of T or E . E is the so called "characteri-sic
e o p

plasma fiel"'.

E = 3kT -- W + ') (2)
P 2 o

where 6 is the average relative fraction of encrgy transfered during a

collision between electrons and heavy particles. It is seen that when

E << E the heating effect will be small and T T, but when E > E the
o p e o -- p

electron heating processes becomes significant. It is convenient to

introduce the concept of dielectric permittivity and conductivity for a

plasma. It is well known that
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w vw 2

C -- P--- P (3)
2 2' 2 2

W + V 4(w2 + 2)

where w is the plasma frequency. Since v is a function of E , there-

fore e and a are also functions of E .
0

Consider a one dimensional case,.the electric field inside the plasma

satisfies the simple wave equation

d2E 2 , Ed- W E: = 0 (4)
2 2dz c

and here c' E e - i a = (n - X) 2  (5)

S2 4ua 2
In plasma,usually c >>() is satisfied

2iX a (6)

We will also assumie that collisions are mainly between molecules and

electrons. The collision cross-section is approximately a constant in-

dpendent of veloicty such that v = T o . In high frequency limit X = TX

where 27e2 N
X =

2o 47rNe 2

2

and as a first approximaticn n is a constant. In this case we can use the

geometrical optics approximation. A solution for the wave equation (4)

can be written as

E = A exp[iwt + i W f Y77 dz]= E expti(wt - _w fZ ndz)] (7)

For simplicity we denote Eo as the magnitude of the field. Sometimes it

is easier to use a differential equation for E instead of (7). Differentiaticn
0

of E with respect to z results in
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o 0 (8)
.z c X(Eo) o

Now equations (1) and (8) are to be solved simultaneously subject to

suitable boundary conditions.

III. Reflection fron a Semi-Infinite Plasma

First consider a simple problem, a plane wave incident normally on

a semi-infinite plasna which is assumed to be uniform and isutropic. Let

the interface between free space and plasma be the z = o plane, and the

electric field is in the x direction as shown in Figure 1.

Substituting X into equation (8) and make use of equation (1)

dE E
S TX E = -- c ( 2 - 1) (9)

dz c 0 0 E c 0
o

dE E 2 T (To2

-l X T(T - ) , = -(z=) (10)
dz E (0) c o o

= 0  0

From IMaxwell's equations the magnetic field can be computed

dE z
SdE o i(Wt - -- ndz)

- (z = 0) = We c o
c y dz dz

z=0 z=0 z=O

w d i(wt - f z ndz)
+E (z=C) [-i - d .z ndz] e c  o (11)

o c dz z=
=z=0

z=0



B(0) = 's ~E(0) [1 + (-0 e.i t (12)

SC E(0) ei  e t

where O = - tan - I  -TWE 0 (13)2

The reflection coefficient R and transmission coefficient T then can be

calculated easily by matching the boundary conditions at z = 0.

It can be shown that

IRI I1 - cei
1 + Ce

and as usual 1 + R = T.

Figure 2 shows the reflection coefficient and transmission

coefficient as functions of incident field intensity. The horizontal

axis are incident field intensity normalized ith respect to E . The

parameters chosen were typical for a laboratory plasia and the characteristic
plasma fields E are of the order of 100 volts/cm.

IV. Wave ReflecUc fcr. a .,onlnear Plasma La-er Backed bvJ cti n Pi an

Now consider a Dlane wave incident normally onto a nonlinear plasma
slab with thickness d and backed by a perfect conducting plate as shciw

in Figure 3.

It has been shown that when L >> v', n can be considered as a constant.

In the present case the incident. field E1 and the reflected field EL in

the plasma can then be expressed in the following form

E = ae - i k z e z

E z (14)
E2 be e d

where k = n and for simplicitv the time factor eiwt has been suppressed.

Onue of the difficulties of solving a noilinear problem is the in apolicabiliy
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of the superpositLin priuciile. For tiLe prasent problcm the ebsorp: on

coefficient deends on t total). elect ric field strength which is the

sum of E1 and E2; therfore the u.o functions E1 , E2 and X have to

be solved simultaneously. The equaticns are

d!E lj (15-I -El -
× (Eo) JElJ 0 (15)

S dz c X (Eo) 1 1 = 0 (16J

dz c 0

I _o 2 (17)

SP- .

where E =  EI
. 0

From (14) and the boundary condition for E st z = d, the ba:itude of E
o o

can be written as

4 XI Z  2 '

E = E 2 = () + a - 2 cos 2k(z - d)2,e z, (

where E (z) =  El(:) , x is a function of E

Introduce a new function U(z) E 2 X dz then substitution
c o dz ten subsiti c

equation (Ib) into (17) yields
E 2 2

E (T - 1)
2 -U p (19)

d U + eU 2eU cos 2k(z-d)]

where E = E (z=d). Making use of 2 - X' , equation (19) can be
d dZT c o

converted it.co a nialnear differential equation

2 2 2 2 2
d 2 Ed '(o X

dz- 2 2 cosh U(s) - cos 2k(z-d)] A- 2 (20)
dz E 2 2

c C
P
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It appears that this nonlinear- differential equation cannot be solved

in closed form, and therefore numerical techniques are used to determine U and

dUd-' One set of calculated results are given in Figure 4 for E. /E 0.18,dz* inc p

0.47, 1.16, 3.29, 13.0 in which the total field strength E is plotted0

against z. The plasma parameters chosen in these calculations are the same

as before and the slab is five wavelengths thick. W'hen the fields is weak

as in 4(A) the solution is essentially the same as that for a linear plasma

slab; i.e., the heating effect is insignificant. However as the field in-

tensity increases the absorption also increases and the field distribution

inside the plasma alsb changes considerably, becoming strongest near the

interface. In contrast, for a linear plasma the shape of the field dis-

tribution remain unaltered, regatdless of incident field strength. The

reflection coefficient IRI is plotted against the normalized field intensity

E. in Figure 5. It is interesting to note the existence of a minimuminc

reflection for a particular value of E.in c

V. Conclusion

The reflectiou coefficients RIr from a semi-infinite plasma and a

plasma layer backed by a conducting plane are determined as a function of

incident field strength. In the first case it is found that IRI is in-

creasing monotonically and approaches 1 as the incident field increases

toward infinity (vithin the range of validity of our theory). For the

second case, the reflection coefficient has been found to have a minimum

for a certain value of incident field. For larSe value of incident field

the reflection ccefficient increases steadily and approaches i as in case

one. The total field strength inside the plasma layer is evaluated also.

It is expected that this particular noclineir effect can be observed in the

laboratory by- ieasuring the reflection coeffc~ent from a discharge. For

ionosphere the effect may be too s!mall to be significant.
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Figure 1. Wave reflection from a semi-infinite plasma.

Figure 2. Reflection and transmission coefficients as functions of

incident field intensity.

10 9
f = 6 x 10 Hz V = 1 x 10 /sec

N = 1 x 1012/cm3 = 1 x 10 - 3

T = I x 104 K

Figure 3. Reflection from a plasma layer backed by conducting plane.

Figure 4(A)-4(E). The variation of field intensities inside the plasma

layer as the incident field increases. At the air-plasma

interface E inc/Ep equals:

(A) E. /E = 0.18
inc p

(B) E. /E = 0.47
Inc p

(C) E inc/E = 1.16
inc p

(D) E. /E = 3.29
inc p

(E) E. /E = 13.0
inc p

Figure 5. Reflection coefficients as functions of E. inc/E



48

FREE SPACE PLASMA

E E

• . •

Reflection from a Semi-infinite Plosmo.

FREE SPACE PLASMA Perfect
/ Conductor

E, B E /E -
N- .

E', B" E,

ItO

rzd

Reflection from Plonsmo Layer
Bocked by Conducting Plane

.55
1.47

- - 1.46
.53 1.45

S.52 -1.4

.51 1.431.430

.50 - "- 1.42
c .49 - C
o 1 - 1.41 .o

.48- .40 *S1.40
- .47 REFLECTION - 1.39

C:
.46 --- TRANSMISSION 1.37 U

i--

.45 - 1.36

.44 I
0 3 6 9 12 * 15 18 21 24

Einc/E E p/-



49
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II. 5. Profile Inversion of Inhomogeneous Media

i. Background and General Description of the Problem

We have investigated the problem of determining the electrical permittivity

of a medium which is iiniform in the x and v directions and varies ac-

cording to the profile functicn, K(z), in the z direction. The mathe-

matical probleml associated with this profile inversion problem is typical

of many other remote sensing experiments.

Using the techniques of Gelfand and Levitanm and of Harchenko, 2 many

3.authors, e.g., Becker and Sharpe, have reported the solution of this

type of problem. All of their work, however, requires that the response

of the medium be known as a function of the temporal frequency. It is

also required that the medium itself be independent of frequency, i.e.,

nondispersive. Often, however, it is desirable to make measurements at

a single frequency. 'Therefore, in this paper we conrsider the remote

probing problem in the angular spectrum domain. Here the independent

variable, , is the spatial frequency which can be associated with k sin 0

where k is the free space wave number and 0 is the angle of incidence of

a probing plane wave.

The technique by which the response of the medium is measured is to

illuminate the medium using a spatially confined source. The total field

at the interface is then measured. The information is then converted to

the angular spectrum domain by taking the Fourier transform with respect

to the x direction.

In the next section, the formulation of the problem is presented. The

remaining sections are devoted to techniques for solving the problem.



53

2. Formulating the Problem

The geometry of the problem to be considered is shown in Figure 1.

Note that there are no variations with respect to the y direction. The

dielectric is also uniform in the x direction and varies in the z directi(on

as K(z)Eo where co is the permittivity of free space. The permeability

is assumed to be constant and equal to that of free space. It is assumed

that a known electromagnetic wave of a single frequency is incident from

the left on the air-dielectric interface at z = 0 and that the tangential

fields at the surface of the dielectric can be measured for all values of

x. Of course, the actual measurement could be performed at some plane

z = a, a < 0, and then the fields at the interface could be computed since

the propagation in free space is completely known.

If the incident field is polarized such that the components E , Ez'

and H are all zero, then propagation in the medium is completely described

by the scalar equation

V2v(x,z) + W2 o K(z)Ev(x,z) = 0 (1)

(w is the angular frequency of the incident wave). The function v(x,z)

may be identified with E or H , which ever is more convenient for they z
problem at hand.

To obtain the differential equation in the angular spectrum domain,

we introduce the Fourier transform relations:

u(8,z) = fm v(x,z) exp(-ix) dx (2a)

v(x,z) = 2 u( ,z) exp(iBx) dB (2b)

Then Equation (1) becomes

d2u [ IK(Z)o+ - 82] u(B,z) = 0 (3)
dz

2



This is one form of the differential equation in the angular spectrum

domain. Recall that w, o , and co are constants, is the independent

.(spectral) variable, and K(z) is the unknown profile function.

For the work which follows, it is convenient to introduce a different,

but equivalent, form of (3). That is,

2
Sd u(yz) + y2 u(y,) = Q(z)u(y,z) (4)

dz

where

Y2 = k2 
2

Q(z) = -k2[K(z) - 1]

2 2
k = oo

Note that-if we determine Q(z), K(z) can easily be found. Furthermore,

note that we intend to apply (4) in the source-free region 0 < z < o.

-3, The Solutions (y,z) and f(y,z)

:Equation (4) turns out to be of the same form as the one-dimensional

Schroedinger wave equation. This equation received considerable attention

in the 1950's from physicists who were interested in scattering by

potentials. Host of the work on the inverse scattering proble.m has been

1 2
based on the techniques of Gelfand-Levitan1 and Marchenko . An extensive

review of work on the inverse scattering problem has been presented by

Faddeyev.

We will assume that the profile function Q(z) is real and bounded

and that

f zIQ(z)l dz < (5)
0

Vr
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We then consider two independent solutions of (4), P(y,z) and f(y,z),

satisfying the boundary conditions.

(y,) = 0 (6a)

d(y,O) = 1 (6b)
dz

and

lim [f(y,z) e- iYz] = 1 (7)

The solution f(y,z) corresponds to the situation show.n in Figure 1. The.

solution 4(y,z) corresponds to situation where a perfectly conducting wall

is placed at z = 0 and the incident wave comes from z = + m. It is de-

monstrated in Faddeyev's paper that

lim (y,z) = A()sin[yz - i(y) (8)

Where

f(y,0) = A() (y) () (9)

4. The Inversion Technique

.5
Mittra, et al., have introduced the following representation

of f(y,z).

I f exp[i( + P()dz0

f(y,z) = exp(iyz) + 2-- m f(n,z) ( P(dn (10)

In this case, the profile function Q(z) is given by

1 df(n,z)
Q(z) = I [i df(n,z) - f(n,z)]exp(inz)P(T) dn (11)

ri -00 dz

The function P(nr) can be determined from f(y,o) by considering (10) at

z = 0,

f (y,o) = + I f(n ,o) d (12)
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These three equations provide a technique for solving the.inverse scattering

problem in the spectral domain. That is, a technique for obtaining Q(z)

from a knowledge of f(y,o).

It is common for inverse problems in mathematical physics to be ill-

conditioned. This means that small errors in the data result in large

errors in the computed profile function. Mathematically, ill-conditioning

is usually associated with the solution of a first kind Fredholm equation.

We note that (12) is indeed a first kind equation for the unknown function

P(n). Thus we would expect to have trouble solving (12). On the other

hand, once P(n) is specified, (10) becomes a second kind equation for

f(y,z)----z is fixed and y is the independent variable. We, therefore,

would not expect (10) to be ill-conditioned. Thus, we are led to the

conclusion that if we can obtain P(n) accurately from f(y,o), we will have

a procedure for obtaining Q(z) which is numerically stable.

We have been able to show an analogy between (10) and the representation

which Marchenko uses for f(y,z). This has allowcd us to determine that

P(f) is given by

P(n) = 1 - e (13)

Using (13), we then solve (10) for f(y,zj) for several values z.. The

profile function Q(z) is then obtained from (11).

It should be noted that (13) is valid only if f(y,0) has no poles

or zeros in the upper half plane. This condition implies the absence of

surface wave solutions to (4). If surface waves are present in the

problem, the inversion must be carried out in two steps. The procedure

is exactly analogous to the method described in Faddeyev's paper.



57

One further point to note about this inversion technique is that P(n)

as given by (13) utilizes only the phase function P(n). The condition under

which (13) is valid imply that f(o,r) is an analytic function of r, in the

upper half plane. Thus a knowledge of i(() is sufficient to determine A(n),

and vice-versa. Hence, it is sufficient to specify either the magnitude or

the phase for this case.

-5. Numerical Solution_ of Equation (10) and Examples

Using the technique described in the previous section, several

examples of profile inversion have been solved. To do this, (10) must

be converted to a matrix equation which can be handled numerically.

Before proceeding, with the numerical formulation it is convenient to

multiply (10) by P(y) and then, defining .(y,z) E P(y). f(y,z),.we have

(y,z) P() exp[i( + d = P(y)eiY z (14)20i 7 l+

Investigations of the asymptotic behavior of f(y,z) and P(y) indicate

that as -+ co

P(y) 0(-) (15)

f(y,z) 0(eiYz) (16)

Also, as z + 0,

f(y,z) " 0(eiYz) (17)

Furthermore, if the medium consists of several homogeneous layers, then

f(y,0) will not have any branch singularities. It can also be shown that

f(-y,z) = f(y,z) (18)

where the bar denotes complex conjugate. These criteria have led to an

approximation of (y,z) of the form
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3 2n iA.(z)y + B.(z)y + iC.(z)y + D ( z )

qd(Y,z) = ei  Z 3 ~ J (19)
j=1 y + P

(This form is not the most general rational expression that could be used,

but the results obtained using this form have been quite acceptable.)

We are now ready to convert (14) to a matrix equation. First, we

take the inner product of (14) with the functions {6(y - yk)=l This

generates m equations of the form

(20)
P(Yk )  Co exp[i(T + yk)z] iYkz (20)

(yk,z) 27i - (n,z) k + Y dn = P(yk)e k = 1,2,...,m

(Recall that z is a fixed parameter in (20)). Next, we substitute (19)

into (20) to obtain

iA (z)[H . - I ] + B.(z)[H - ]kj

1 1 0 0
+ iC()[H - I] + D (z)[H kj ]  (21)3 3 kj 3 kgkj

= P(Yk)e k z

k = 1, 2, ... , m

where

iYkz _

Hkj e 4 4 0£= 1, 2, 3
Y + P

k P (Y k) o exp[i(2n + yk)z]

kj 2fi m n + Y 4 4 d 0,1,2,3
k Tn + P.

Equation (21) can be cast into the form of a matrix equation which is

easily solved by numerical methods.

I--



Several comments should be made concerning this formulation of the

problem. First, (13) is used to obtain P(y) so that the required'data

are the values of the phase function i(y) at the points yk, k = 1, 2,..., m.

Second, the integrals defining the coefficients I can be evaluated by
kj

closing the contour in the upper half plane and using Cauchy's Residue

Theorem. (The pole at y = - yk is outside the contour and does not con-

tribute to this evaluation). The ability to represent i(y,z) by functions

for which the integrals can be analytically evaluated is important to the

success of the numerical solution of this problem. Most of the examples

we have solved required a matrix of order 16. The computer time needed to

generate the matrix elements and to solve the matrix equation is about one

second on a machine such as the IBM 360.

Another point to note about this formulation is that the substitution

of (19) into (11) yields a summation of terms similar to the I These
kj

can again be evaluated using the Residue Theorem. Finally, note that the

choice of the parameters pj used in the representation of i(y,z) is fairly

easy. We simply note that i(y,O) is known from the data about f(y,0).

*(y,0) = P(y)f(y,0) -

= A(y)e i*(Y)-A(y)e -i ( Y) (22)

= i2Im{f(y,0)}.

Thus, we solve the equation (21) corresponding to z = 0 for a few choices

of the pj's and choose the set which gives the best fit to qi(y,0).

Figure 2 indicates the type of results which have been obtained.

All of these examples correspond to cases where no surface wave exists.

Note that several of the inverted profiles show large deviations near

z = 0. This difficulty seems to be linked to the numerical behavior

F
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of the equation (21). The location and the number of poles used in the

representation (19) seems to effect the behavior of the profile more near

0 than for larger z. The best results are obtained when one uses the

[inimum number of poles which still gives a good approximation to the

1,ecific surface fields. Figures 2c, 2e, and 2f show results obtained

when the data was polluted by noise. The noise did not greatly deteriorate

the results of Figures 2c and 2f, but the inversion of Figure 2c shows

large deviations in the region z < 0.5. This result is not surprising

because the profiles in Figures 2d and 2c were somewhat difficult to

obtain even when no noise was present. This difficulty appears to be

related to the fact that the true profile "oscillates." Mittra and

Mostafavi5 also found that surface field data could not be used to dis-

tinguish the true profile from an erroreous profile when the true profile

has oscillations.

6. Another Inversion Technique

The concept of transformation operators which was introduced by

Friedrichs' has been used as a basis for developing inversion schemes

(See, for example, Faddeyev). The idea behind this process is that under

appropriate conditions an operator U exists which transforms a given

operator L1 into another operator L2 . In our case, L1 and L2 are differ-

ential operators and the transformation operator U can be determined from

f(y,O) in such a way that

L2  U LU (23)

> the operator corresponding to the profile function Q(z). In other

ords, if ~1 and 2 are eigenfunctions of L1 and L2, respectively, then

U2 = U 1 (24)



Considering the technique introduced in section II, we might say

that (10) relates the eigenfunctions, f(y,z) to the free space eigenfunctions,

exp(iyz). Using techniques similar to those used to derive (10), we have

developed the following relationship between 1 (y,z) and $2 (y,z) which

are solutions of (4) corresponding to profilc functions Q1 (z) and Q2 (z)

and satisfying conditions (6).

42 (yz) = f 1 (Y,z) + fo 2 (qz) [Wl() - W2 (n)]1j(z,y,rn)d (25)

where

i(z,y,n) f f (n',t) 1 (y,t)dt (26)

W.(n) A. ()-2 = 1 i = 1, 2. (27)
SIfi(r,,o) 2

Recall that we assume the operator L1 to be known. This means that Ql(z),

1(y,z ) and W1 (q) are all known. Also, W2 (n) is known from the given value

of f2 (n,o). Thus, for fixed z, (25) is a second kind Fredholm equation for

2(y,z ) . The equation (27) defining Wi(n) was derived by establishing an

analogy between (25) and the Gelfand-Levitan formulation of the inverse

problem. As was the case with the method presented earlier, we could choose

some fixed z, say zo , where 2 (y,zo ) is known and not identically zero.

Then (25) becomes a first kind Fredholm equation for W2(). As stated in

section 4, regarding (12) this procedure would be less desirable than

making use of (27). Again however, (27) is valid only when no surface wave

solutions satisfying (6) exist. If such surface waves are present, a

two-step process is required. One further point to note is that an equation

analogous to (11) can be derived to relate Q2 (z) to Ql(z).

2
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.,.ke the above comments more precise, we will present the eqdatio:21

Alt if L1 is the free space operator, i.e., Ql(z) 0. .In this

(yz) 2 sin y z (28)

W (y) = 1 (29)

e have

2 sin y z +
IT y

- Jo n(n,z){l - W(n)} {sin(n - y)z sin(n + Y)z _ dn (30)
o I- y + y

4 d z sin nx + n (n,z) cos rz} {1 - W(n)}ndn (31)
IT 0 dz

-2
S(r) = A(D) . It is important to note that the integrands in (30)

;1) can be shown to be even functions of n on the real line. There-

the integrals may be taken from -o to oo and the result halfed. Once

; done, the contour can be closed and the Residue Theorem can again

2 to evaluate the integral.

before, the conditions under which (27) is valid imply f(o,n) is

7tic function of n in the upper half plane. Hence, it is sufficient

"fy either the magnitude or the phase.

problem of remotely probing a stratified medium has been con-

One formulation of the problem has been investigated and some

I results obtained. A second formulation is also presented.

'le both of these techniques are valid at arbitrary frequency

r*' only as a parameter in the formulation), probing at frequencies

irface waves are present requires added computation in order to

problem.
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However, .oscillatory errors do occur in the region near z 
= 0 for

many cases. It should be noted, though, that the surface fields generated

by these erroreous profiles do not differ significantly from those generated

by the true profile. Thus, some of the difficulty is the result of the

poor conditioning of this type of inverse problem.

An important feature of this method is that the numerical formulation

requires a modest amount of computer storage so that these techniques

might be suitable for use with measuring set-ups which have a small

computer. This could be very helpful for diagnostic work in physics,

biomedical applications, pollution studies and agricultural surveys.
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Figure 1. Remote probing in the angular spectrum domain.
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Figure 2a. Inversion obtained for a linear profile.
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Figure 2b. Inversion obtained for another linear profile.
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Figure 2c. Inversion obtained for an exponential profile, including
case with 5% noise.
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Figure 2d. Inversion obtained for another Gaussian profile.



-4(Z -1) 2

K(Z) = I * 2e

k = 0.7

3 - -- TRUE PROFILE

I \CALCULATED PROFILE

S---- CALCULATED FROM DATA
/ \ WITH 5% NOISE

I I

0.4 0.8 1.2 1.6 2.0 2.4

Figure 2e. Inversion obtained for a Gaussian profile.
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Figure 2e. Inversion obtained for a Gaussian profile.
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Figure 2f. Inversion obtained for a discontinuous profile.


