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I. Summary of Research Under NASA Grant NGR14-005-009

I.l. Brief Review

The research on the NASA Grant grew out of a rocket experiment on
the cross-modulation between two RF signals in the ionosphere, the
so-called "Luxemburg effect." In the original experiment over ten years
ago, a pulsed signal near the gyroresonance frEqﬁency-was produced to
heat the electrons in the E layer, and a sensing signal was sent through
the heated region for detection of the heating effect. The local dis-
turbance of the ionosphere was observed. However, it was found that an
accurate quantitative interpretation of the experimentai results required
a thorough understanding of the behavior of antennas in anisotropic media.
The problem of the antenna in magnetoplasma has been a subject of great
interest in the past decade because of its intimate relevance to space
communication. During the past few yearé our laboratory has contributed
significantly in this area as shown in the list of ﬁublications in I.2.
Some of the highlightsrof this research is now reviewed.

(1) A theory for a short dipole antenna in a magnetoplasma was

advanceda* and a formula for the antenna impedance was
derived using th; quasi-static approximation. This formula
has been widely used and experimentally tested with scme
success both in the ionosphere and in the laboratory.4’36
(2) The computation of Green's function in the magnetoplasma

has been a problem because of its complexity. A significant

simplification was achieved with a new expression which

separates the singular algebraic terms from some proper

: i
integrals. More recently this expression has been



rearranged so that it can be handled more easily by some
numerical means (see (6) below).

(3) For arbitrary electric current sources, the far field can be
expressed in terms of the geometrical properties of the
medium dispersion surface.s’6 These results were later
extended to compressible magnetoplasmal%nd to sources of
magnetic currents, mechanical forces, and actual injection
of charged particles. fhe possible significance of these
sources in the case of compressible plasma was demonstrated,l7’25
using a variational method.

(4) Rigorous and numerical solutions to the current distribution
on an infinitely long cylindrical antenna parallel to the
magnetizing field were obtained for various cases.23 These
solutipns differ from cthers‘in that the boundary condition
on the con&ucting cylindef was satiéfied.

(5) Dipole impedance in a plasma-filled circular guide has been
investigated both numerically andvexperimentally with good
agreement'.z4 It was shown that the interaction betweeﬁ the
dipole and the plasma couid lead to a useful diagnostic
technique for the plasma.

(6) in the past the investigations were made largely on the
assumptions that the medium was idealized:; the sheath was
neglected or represented by a diélectric layer, and the current
distribution was known (except (4) where the antenna was
acsumed to be infinitely long). In the pasf year we have

addressed ourselves to the problem of current distribution.
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The method relies heavily on the computer. It would have'
been unthinkable a few years ago, but with the present

availability of larger and faster computers we have found
this approach feasible with a reasonable computing effort.

An integral equation was solved numerically for the
antenna current distribution in gome casés. Because of the
extreme complexity of the Green's function, the numerical
procedure 1s very involved. The program has been successfully
tested for simple known cases. |
In the past year, an experimental program was also initiated
for the study of the nonlinear effect of the plasma on the
antenna. It was found that even for input power on the order
of milliwatts there was significant monlinear effect on the
antenna impedance. This should be kept in mind in evaluating
the results of many existing experimental works. The nonlinear
effect of the plasma depends. on its relaxation time in comparison
with the periods corresponding to the signal and modulation
frequencies. At microwave frequencies,lit is an extremely
complex problem, and rigorously speaking the antenna impedance
as well as the so-called ei-characteristics in such a system
become rather meaningless. Therefore a more complete description
is needed. Since at microwave frequencies it is usually the
measurable reflection coefficient that is of interest, Iits
dependence on tﬁe level of incident wave in the case of a
simple nonlinear plasma has been evalﬁated.

More recently other nonlinear effects, such as harmonic
generation and cross-modulation between two or more signals,

have been demonstrated in the laboratory plasma. (See Part II

of the report).



I. 2. List of Publications and Scientific Reports under NASA Grant
NSG 395 and NGR 14-005-009 )

1. K. Mittra and G. A. Deschamps, "Field Selutiecn for a Dipole in an
Anisotropic Medium," Proceedings of the Imtervaiional Syniposium on
Electromagnetic Theory, Pergamon Press, pp. 495-512, 1963.

2. G. A. Deschamps_ '"Dispersion Surfaces and Characteristic Plane Waves
in a Gyrotropic Mzdium," Proceedings of the Jpplicattion Forum on
Antenna Research, ed. P. E. Mayes, University of Illinois, pp. 290-3067,
January 1964.

3. R, Mittra, “"Antennas in Anisotropic Media," Applications Forw:a on
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May 1965.
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11. S. W. Leec and Y. T. Lo, "Radiation Resistance of an Elliptical Loop
Antenna with Constant Currcut in Compressible Plasma,™ Electronics
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12. . G. L. Duff and R, Mittra, "Input Impedance of a Small Loop of Uniform
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IT. SEMIANNUAL PROGRESS REPORT

II.1. Summafz

The research during the last period consisted of computations
toward the solution of the problem of the current distribution on a
cylindrical antenna in a magneto plasma, The case of an antenna parallel
to the applied magnetic field was treated (refefence 63 of Part I). A
systematic method of asymptotic expansion was found which simplifies
the seolution in the general case by giving the field of a dipole even
at relatively short range (II.2). Some useful properties of the dis-
persion surfaces in a lossy medium have also been found (11.2). The
laboratory experimant was direcfed toward evaluating nonlinear effects,
such as those due to power level, bias voltage and electron heating (I1I.3).
The problem of reflection and transmission of waves ;n an electron heated |
plasma was ireafed theoretically (IL1.4). |[This has beeun accepted for
publication]. The profile inversion problem has been pursued. Some
results are very emcouraging. The general question of stability of the

solution remains unsolved.
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II.2. Cylindrical Dipole in a Magnetoplasma (Numerical Analysis)

1. Introduction

The input impedance to a dipole in a magnetoplasma has been computed

[1]

using the method of moments. This paper discusses asymptotic approxi-
mations te integrals representatidn of fields. By applying these approxi-
mations the computation of fields from a dipole source in a plasma can be
simplified and still give good results at "reasonable" distance from the
source. In this manner, the asymptotic solution can be applied to the
problem of obtaining the input impedance of a dipole in a magnetoplasma.
Such an application could increase the accuracy of the computation.

This. paper discusses methods for obtaining the first few terms of
an asymptotic expansion. Both onerand two dimensional integrals are
considered of the type

S (weighting function) (plane wave) d{paramecter) (1)
c

The field solution in the free space case is examined as a’preliminary

step to the eventual application to a plasma. Also some geometrical

considerations about the characteristic fields in an anisotropic region

are presented.

2. Saddle Point Integration

[2]

The saddle-point method of integration, also known as the method
of steepest descent, 1s an asymptotic integration technique which may have

some usefulness in integrating the equation

1=/ £(x) VO g | )



12.

where v is a large number and £, ¢ are functioms of x that vary '"slowly"
with x — x being a point in a space of arbitrary dimension. The particular
application of (2) used here is the consideration of the field described
by aISpectrum of plane waveé. Then the variable x is the vector k, the
phase v¢(x) becomes k * r (where r is the obéervation peint), and F(x)
becomes a weighing function F(k). The integral considered thereby becomes
FEEM T Ta 3
c

The path of integration ¢ is shifted to a steepest descent path that is
one along which Im(k * r) varies at a maximum rate of change. This can
be done without changing the value of the integral only if there are no
singularities between the true path. Otherwise the effect of the poles
or branch points on the new integration path must be considered.

It is easy to show[3} that forcing Im(k * r) to vary at a maximum
rate .of change implies that Re(k = r) is a constant.

A complex analytic function cannot have a maximum or minimum, so
the stationary phase point is actually a saddle point. There is both
a steepest descent path, along which Re(k * r) has its maximum at the
saddie point, and also a.steepest ascent path along which Re(k * 1)
has its minimum at the saddle point.

1f one can change the integration path of (3) to the steepest descent
path and if F(k) varies "slowly" one now has a means for approximating
the solution to (3). Specifically, if one integrates along the steepest
descent path then the main contribution to the integration comes from the
region of the saddle point. in this manner expanding the integral in
terms of a2 Taylor's series about the saddle point for "well-behaved”

functions should produce reasonable approximations to the solution of (3).
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At a saddle point d(kr) = 0 or for a given r, dk * r = 0. This
means that r is perpendicular to the disPQrsion surface. At point k,
in trying to find an approximation to the integral solutions to a field
at an observation point r one must find the saddle points. This intro-
duces a geometric problem necessary for the solution of the integral (3)
of finding all those k's for which dk * r = 0. This problem will be
discussed later.

Consider now a one-dimensional problem with an integral of the form

I=/ F)e 2@ 4, (4)
csdp

Here csdp is the steepest descent path. It is assumed that F(z) varies

+

"slowiy" and a is "reasonably" large. Also one assumes that F(z) is
well-behaved at the saddle-poirnt, having no singularities there. The
approximation to (4) about ome saddle poiﬁt is now examined. Two methods
are mentioned here.

In approximation (4) define 52 = f = f(zo) where z, is the saddle

point. Making a change of variables from z to s results in

2
I=¢2 f(.zo) S $(s) e 2% 4s
csdp
2
#(s) = 2 )

To evaluate (5), ¢(s} is expandéd about the point s = 0 (or z = zo).
Let the nth derivative of ¢(s) and f{s) evaluated at the saddle point
be denoted by ¢n and fn respectively. The Taylor's expansion for ¢(s)
becomes
52 |
¢(5) =¢0+sd)1+-_2' ¢2+ s (6)
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and ¢l = 0 at the saddle poiunt. In order to have the Im (—asz) a constant,

SZ must be real. So, appropriate approximations to the steepest descent
path valid about the saddle point for ¢(s) varying "slowly" are limits
of integration —» to +®, Putting the expansioa (6) into (5) yields an

approximate solution to {5) of

I = /-% e "o ¢, + %E-¢2 + i;i Gy o0l (7}

This computation has been performed to the first two significant terms

using powers of fn and Fn with the following results

3
1/2 f f f
_ ~af 27 fp .24 273 1 3 _
I=e "o () {F-g-G-33)+5 F ¢ -l
2 2 B £ 2
£ £ 2
af 6 1 4% 35
te o (-CH){F=—35- &) 3¢
i it 48 T, 1536
£ f f_f fzf
s 7, fafe 7 fsfa a5
2 192t 2 Toz ' T3 756
2 B 2
N W o S - S X B LA
1 5053 7 102 T 57 197
2 £ 2
2
&
cRfes e St 3% o)
2 ', 2 GHOD I, £, 9%
£
305 1
- Fy ['"'2' 28t F, 331 (8

An equivalent expansicn for the one-dimensional problem has been
found by a slightly different method which is more readily extended to

the nth dimensional case. In equation (4), F(z) and f(z)} are expanded
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in a Taylor's series about a saddle point z. Let § = 2 - 2. Then

. F.
- 2.2
1=/ (F0+‘Flg+2¢; + ..
Csdp (9)

f2 2
- T e d
exp a{fo + fl T+ 2 r + b dz
The exponential term in (9) is now expanded.

£
exp(-a £(2z)) = exp(~af) exp(- EEZ-Q )

f f £ -z
3.3 4 4 5 5
{l—a(3—!c +2+_"; + X ved)
2 f f f 2
3.3 5
a3 3
3_! (-c-o) |n-)} ('10)

substituting (10) into (9) reduces the integral equation to an infinite

sum of terms of the fprm
—af _ afg CZ
e "o f Cr e = d g {11)
n 2
c
sdp

where C is a constant. The limits of integration are taken from -« to «

as an approximation around the saddle point.

With this simplification, it is known that

N § (VY
im Q dg T 1)/2 ; n even (12)
0 3 n odd
1/2
When a sum of these factors is examined in terms of " and o 2

series equivalent to (5) has been obtained. While this method is more
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cumbersome because of the number of terms that must be combined, it is
a straight forward technique that may easily be applied to the two-

dimensional problem.

3. Two-Dimensional Problem

In a two-dimensional problem, one considers integrals of the type

Io=ff Fuv) e PRV 4o ay - (13)

2 c
sdp
Again it is assumed that F(x,y) varies "slowly'" and is well—behavedlat
the saddle point.

To simplify the manipulatién of (13) a convenient notation is first
introduced, Let -J be an grdered pair of indices so that J = j1j2'

Also, let y be a vector in C2 so that ¥y, = u and ¥y = V. The following

nbtation will ncw be used.

g1 1
yT Yy Y2
g 3
3 1 -2
3 £l =3 93 f
y =Y, 172 y= Yo
J' = jll j2|
9= 3, + 3,
J .
_ 3F . 3 A
£ Sy -y (14)

3l =L
With this abbreviation, (18) takes on the form

L= T P gy (15)

Csdp
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1o obtain an asymptotic expansion, Ffy) and f(y) are rewritten in

.ax of a Taylor's expansion about the saddle poiat Yo

R
F(y) = Z F
K=1
a (16)
f(y) = ¢ ¢
K=1
_ne exponential term is exp nded so that
;—af(y) - o PE, e—p/z £, {1- p[f3 + £, F o]+
(17)
o> 2 (-p)" B
5 [f3 + f4 + oiea) Faoaut y [f3 + fz, + .01+ L]

:f one lets u - n, = £ and v - OO = N, this manipulation yields a solution

o (15) in terms of a summation of integrals of the type

o o 2 2
S B P L I N T (i8)

am

w#1ere the limits - to + have been taken as an approximation to ¢

sdp
« solytion to integrals of the type in (18) has been found to be

Inm = Cn + m,m
p(n +m)/2+1

“here (P'_'*'_ﬂ__.;. 1) m-n n
(2 2 : O 1 Rr@W
. . k=20
n+ m,m
[ : for n + m even
] ; for n + m odd
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and
k
rooay (£ ) ~
G Y @+ 02 T ko r@ oK
: (FLERVAY uv?
; for m + k and n - k even
0 ; form+ k or n -~ k odd
To obtain an asymptotic series, the expansion of integral (13) is
combined in terms of increasing powers of 1/p.
n m
I1f there are polynomials of £ 7 and n 1 associated with the Taylor's
n m

expansion of F(y) and polynomials of § and N 2 associated with the

expansion of pf(y), from the form of (19) it can be seen that these

+ mz)/2 + l.

1 The

polynomials have a contribution of (%?(nl tn, +m

subscript J = ny + m; is now associated with the Jth term of the Taylor's

1

expansion, and a value L = n_ + m, is associated by Table 1 with products
of fL in the expansion of ef(y).

There is also a contribution of (p)k directly from the expansiﬁn of
e—pf(y) in (17). A rule can now be.formulated for generating the nth

term of the asymptotic expansion. Specifically, one relates the nth term

of the asymptotic expansion through terms of fL's and FK's for which

J + I8

( Z +‘l -k)=n : (20)

Those terms associated with n = 1, 2, 3 are summarized in Table 2,

Furthermore, the contribution by these combinations can be written

~pf
Eﬁf_i i:lli. F f £ c ' (21)
; “ae
pn k! J L1 In “J + Z2, my + m, .
where ZL = L, + ... + Ln’ J+ I8 =m, +m, + n, + n, and by C

1 1 2 1 2 J+ 28, m, +m

1 2

is meant, the {ntegration constant in (19) associated with the polynominals



TABLE 1. ORGANIZATION OF T:RMS ¥R o Pt ¢

I = J «ee N Corresponds to f fJ eve £

I N

33 34 35 36
43 44 45

53 54

55 %

333

TABLE 2. VALUES OF J, %, k FOR
FIRST 3 TERMS OF ASYMPTOTIC EXPANSION

J L k n 3 |z k n
0 0 0 1 1 5 1 3
2 0 0 2 0 6 1 3
1 3 1 2 2 6 2 3
0 4 1 2 1 7 2 3
0 6 2 2 0 8 2 3
4 0 0 3 1 9 3 3
3 3 1 3 0 10 3 3
2 4 1 3 0 12 4 3




various combinations involved in F

The first

.
3
o

“Fifs

N|H

rqIH

1

3!

This

has been programmed on a computer.

obtaining

L 2. This value of C, though being different for the

J’

three terms of the asymptotic expansion then becomes:

[a]
{F2 C, = Flf3 4 F £4c4

5T Fofsf3C)

_pf

- F f.C, -F£f,C

Q
{F,C, = F3fCq = Fyf Co

. |
Co ~ FofeCe + 2T Fofafsby

i
2 FlféfBCB + 21 2 F°f3f5C8

F£,£,Cq - 2 perrg

47478 3! 173733710

1 -
3 F 845,000 + 77 FofafafafsCyy)

form of the asymptotic expansion for the first three terms

the many partial derivatives needed. In fact, since this is

Considerable effort must be spent

20

fL, will be abbreviated to CJ e

(22)

a significent difficulty in using higher order terms, some thought should

be given to developing a computer program to perform this algebra.

4. Applications to the Free Space Problem

The asymptotic techniques developed in the proceeding sections were

applied to a dipole current source in free space as a test to the approxi-

mation.
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From Maxwell's equations

curl E(r) = ~jwuH(r)
(23)
curl H(r) = jweE + J{(xr}
One obtains
curl curl E(V) = mzueE - jupd(r)
E is now considered to be a plane wave and J(r) a source in the
2z direction only. In the transform domain, then
2 2 2 2 .1 T2 2
K - & 40"+ gD E= 5o I -7
where
~ L + j(tx + ny + gz)
EkY=J J J Ee ‘ dxdydz
-0
and J is the Fourier transform of J(z). It follows then that
t oo 2 2.7 ~tk *
‘ E= 1o o0 ¢ I a3k (24)
CUA kK* - (85 4+ "+ )
A change of variables is now performed
=T COS.B X =r cos ©
n=7T_sinB sin o y=rsinesinq>
E=T sin ff cos a z =1 sin 0O cos ¢
With this change
© ~.2 L2 2 =jI'r cos ¥
E=§L-:'1‘;f R R e (P 4T da g (25)
IR e (e e(B) k-1

where cos Yy = cos £ cos B + sin 8lsin B (cos{o -~ ¢)) and C{a), C{B) are
paths'in.the complex o and B pléne.

The I' integration is done by a method of contour integration resulting
is 7 3 fjkr ﬁos Y

" E{z) = _k 5 S ! E sin3 B e : dadB {26)
: we ™ cla) C(R) '
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An asymptoti¢ expansion of the integral in equation (26) is now used,

We have, using previous notation,

J sin® B

F(a, B)

cos Y (27)

n

flo, B)

and p = —jkr

And the saddle point is at ¢ = ¢, B = 6.

Let us consider a sinusoidal current distribution

J = {x,v,2) = Im sin (k(H - Izl) C(x)c(y) for which the field iz already known.
This is the form for the current distributiom on a thin dipole of length
. [4] .
2H. The solution for Ez is
-3Bk -JBR X
1 2 -jBr
2 H
E(z) = -j301_ (% + 8 - Zeos(BH) 7, (28)
m Rl R2 2

The geometry of this dipole is shown in Figure 1.

For this current an asymptotic approximation to (26) can be fognd,
and the results compared with (28). Moreover the éxact solution shown
(28) can be expanded in terms of a series pf t%? and compared wi?h the
asymptotic expansion, which is also written in terms of a %- series.

It should be noted that the calculation of the first three terms

~of the asymptotic expansion is facilitated by the condition f(¢, 8) = O.

The approximate and general solutions were generated for g%—= %3
1 1 .
9 10 and the radius of the dipole was taken much smaller than a wave-

length. The first three terms of the asymptotic approximation agree
exactly with the first three terms of the expansion of the exact solution
(28) in terms of a series of (%0. At a distance of .4 wavelengths, the
asymptotic solution was within 1% of the exact solution, and at .2ZX the

asymptotic solution was within 10%.
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Within .2) the value for the approximate seolution quickly divérges
from the exact solution. Thus, it appears, and this was expected, that
for very small values of z, E(z) cannot be evaluted using an asymptotic
approximation. However, the asymptotic approximation using the first

three terms is quite good for intermediate and far distances.

5. Dispersion Surfaces

As mentioned earlier, to find the approximation to the field at an
observation point r one expands about the saddie points, which correspond
to those points for which dk * r = 0, In physical terms, one is finding
the k vector of plane waves which contribute mostly to the far-field in
a particular direction. These ﬁorrespond to those points k for which
the perpendicular to the dispersion relaticn is in the r direction.

The geometric problem associated with saddle point integratiog can
be stated,\theréfore, as given an observation direction r, generate the
k vectors for dk * r = 0 and the dispersion relation being satisfied.
ql3]

The dispersion relation can be describe using Maxwell's equations

for a plane wave

i E
E - o e-jkr (29)

31 H
o

So Maxwell's equation becomes

it

kxE-= wB

{30)
kxH = -wD
Letting K = wzuoeog = K one has
kxkxE = -KE (31)
or i
x k¥ - k? + K)E = 0 . (32)
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For non-trival solutions, therefore,

2

det (kk® = k“ +K) = 0 (33)

which describes the dispersion relation for the media. This dispersion
relation behaves differently for different types of media.

For an isotropic space (33) implies that

k2 = wzu £ (34)

From‘whicﬁ it follows that
T .
2k dk = 0 (35)

One conclusion of (35) is that in isotropic regions k and the cbservation
angle are in the same direction at the saddle point. )
Consider now the uniaxial plasma. This type of region corresponds

to a plasma with a large external magnetic field with an € matrix of

the type

€y ‘0 0 ' i
E={0 ¢ (36)
0o 0 €y
One solution to the dispersion relation is that
2 2
K™ = wu ey (37)
And for this value of k
okTgk = 0 (38)

-

so that k again is in the same direction as the observation angle at
the saddle point. However, other solutions to the dispersion relation

are available.
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2 -1

Letting P = (k° - k) kkT {33) becomes

0 (39)

det (I -~ P) E

Because the image of the operator P is always d, P has rank one. Thus,

det (I ~P) =1 - trace P = 0 ' (40)
Or_
trace P = 1 (41)

et -0 k=1

So, recalling that dk * r = 0 at the saddle point, (41) can be
utilized to obtain the r direction by taking the differential with

respect to k. Sepcifically,

0 = dkT(kz - K)_l k + kT(kz - K)"l dk
(42)
21w -tk a? -t
0 = dk?[(kz o ter e - Tk 2w -t @ - ke @)

Thus, the observation point is in the direction of a vector k where

T,-1 1

2 -1 Y e cala -t w - ke as)

R= 2 -0 Tk+ (k% -K

Equation (44) holds for the general lossy anisotropic plasma also,
It is necessary that an inverse relationship be found. That is,
‘given a radial direction r, a direction of k must be found, k may then

be scaled to fit the dispersion relation (33).

6. Uniaxial Case

The problem of determining the direction of k at the saddle point
has been solved exactly for the case K = KT. Equation (44) reduces to

2 -1

R = (k% - K) it ., 2 1

k - kT (k2 - T -K Tkk (45)

o



Some physical interpretation can be given to (45). Recall that

L}

{k kT - k2 + K) E = 0 so that for (k2 -~ K) nonsingular

E= -0k ke

or 1

E=(k +E) (k - Lk

1 2 1
Thus 2R =CE -2¢ (E * E) k for ¢ = X - &

= Czwu (ExH)

1
, and ER = CE x (k x CE)
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(46)

(47)

(48)

Equation (48) has an interesting physical significance. It implies that

the normal to the dispersion surface is not in the direction of the

Poynting vector, the direction of energy flow.

Now some dual relations can be constructed to solve the geometric

problem, Let

‘ . )
§ = —————
®- K X
Then
1
S XB = B'SX (k X E}
S |
S XB= a-[(S *+ E) k - (58 « k) E]
SXB=-E
Similarly
SXD=H
A dispersion relation for § may now be derived.
SX (SXD) =-—— E71p
ue
o]
, 1 ¥ -1 T ..
Letting V = ﬁE“-E s V=V for the uniaxial case. So,
0
T

(8" ~8°+V) D=0 .

(49)

(50)

(51)

(52)

(53)
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This implies that for nen-trivial solution

det (88T - 82 +v) =0 (54)
so that

det (1 - 5% - v lsshy =0 | (55)
and

sT 2 -wlsg=1 - (56)

Taking the differential of (56) with respect to S results in

-1

asT( s -wts-sTs? v

-1 (s2 - v)_l $8)] =0 (57)

The results of (57) must now be examined. From (53) we have that

D= (S * D) (52 - V)"l S . {58)

From which it can be shown that k' = (82 - )

-1 —l(SZ -1

s - sT(s% - - lss
is in the D X H or k direction.
Thus for a medium in which ET = £ one is able to obtain the direction

of k at the saddle point given the direction of the observation point.

This value of k is then scaled to fit the dispersion relation (41).

7. General Magnetoplasma Region

For the general anisotropic region, £ has the form

] & -je, O _ |
€= | He €, 0 (59)

0 0 Eq

i
One has not been able to find an analytical solution to the geometric

problem of obtaining the k vector for which dk * r = 0.
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Optimization techniques have been tried in the anisotropic regionm.
However, the general lossy anisotropie region will have many multiple

solutions for which a searching scheme must be dévised.

8. Conelusions

Using asymptotic techniques an approximation to the solution of the

integral [ F(k) elk )
c ,

reasonable magnitude of (k * r). This approximation, expands this integral

¥ dk can be made for F(k) varying "slowly" at a

about a saddle point. This has been done for the one- and two-dimensional
problem. Preliminary results indicate that in free space, the estimate
is with 10Z of the exact solution at r = .2 wavelengths and within 1%
beyond r = .4 wavelengths. |

The problem of finding the saddle points corresﬁonds to finding the
k vectérs which contribute to the field in a given direction. An analytic
solution to this problem has been presented for the special case inlwhich

T

the dielectric matrix has the symmetry €= e, Otherwise, optimization

techniques are suggested.
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Figure 1.

Geometry of Dipole Antenna.
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1I. 3. Laboratory Measurements

a. Impedance Measurements — Effect of Power Level and Voltage Bias

In measuring the vafiations of antenna impedance with the input power
level some difficulties with the vacuum system were observed. The following
modifications'improved the consistency of the results-considerably. First
the vacuum system was'thoroughly cleaned and new gaskets were installed.
The diffusion pump jet assembly waé found damaged due to oxidation of the
diffusion pump oil. A new jet was then installed and silicon oil was used
to prevent further accidental oxidation. The helium flask was replaced
also, A second mechanical pump was added to the originél system and
connected to the backfill port of the pumping station. This pumé provides
the capability to continuously exhaust the plasma tube without the fear of
damaging the diffusion pump by accidental breakage of vacuum or other
contaminations. It also keeps the plasmé tube at low pressure even when
the tube is not in use. This reduces the pump down.time considerably.

An electronic dischargé current regulator was built to stablize the current
aﬁd it worked beautifully, The RF system was revised alsco. When operating
at 500 MHz a RF amplifier was added to boost the available power to about

2 watts. With the addition of power attenuators and a directional coupler
to % power meter it is possible to vary the power level from 2 watts to
less than 5 milliwatts and to continuously monitor the input power 1evé1.

At 800 Miz and above, the oscillator/amplifier combination is replaced
by a powerful oscillator at our disposal, while the remainder of the RF
system remains the same. Due to the high power level involved in the
measurements it was found necessary to place most RF equipments inside

an anechoic¢ chamber in order to avoid erratic readings on VSWE meters.
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Many efforts have been expended to determine the impedance variation
of the antenna when the input power level was varied. Two frequencies
were used, 800 Miz and 1 GHz. Several typical results are given in
Figures 1 to 3. It is interesting to note that all the impedance varia-
tions as the power level increases follow the same general patternm. This
behavior is not completely understood at the present moment, but the
results are very consistent. The dipole started to glow when the input
power level reached few hundred milliwatts. The glowing is an indication
of induced ionization by strong RF electric field near the dipole. We
expect that the electron density increases under this circumstance. This
is probably the reason why the impedance curve bends backwards near this
region as it does when the electron density is raised by increasing the
discharge current. At low power we noticed that even for a level of a
few milliwatts the impedance may change drastically; Iﬁ Figure 1, points
1 and 2 corfespoﬁd to power 1eve1‘of_1.6 o and 7.5 ﬁw respectively,'but
there is a substantial difference in &he impedance. Similarly in Figure 2
points 4 and 5 correspond to the power level of 5.0 mW and 10 mW réspectively.
However, the variation of impedance from point 1 to peint 3 may be con-
sidergd as small. Their power levels are 79 puW and 1.3 W respectively.
Therefore from these measurements it seems that 1 mW could be considered
as the threshold for small signal approximation. Since in practice
measurements are commonly performed at a power level of several milliwatts
or higher, this casts a great doubt in the validity of many existing
results. Therefore it is concluded that any antenna impedance measurement
without reference to the imput power level may be meaningless. Another
interesting feature is that when the external magnetic field is zero, the

impedance of the antenna shows little changes as seen in Figure 3.
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B. Observation of WNonlinear Effects

Harmonics Generation

The generation of second harmenic in plasma has been observed with
a spectrum analyzer to monitor the reflected power from the antenna and
also by tuning a receiver to the second harmonic frequency. The second
harmonic power level was measured against the magnetizing field for
various bias voltages. The results are shown {n Figure 4. In all cases,
a local maximum is shown at the cyclotron resonance. When the bias
voltages were varied, the more positive the bias is, th;.higher is the
second harmonic level as might be expected. However, the second harmonic
level eventually became saturated when the bias reached several tens of
volts, Unéer certain circumstances, the third harmonic has alsc been
observed but no attempt was made to measure the third harmonic level,
When modulated signals were fed into thé antenna, the modulations were

)

detected by a receiver at the second harmonic.

Luxemburg Effect

In this experiment two transmitting anténnas in the plasma were used.
One was fed with a modulated signal with carrier frequency fl at a fairly
high power level and the other with a continuous wave at frequency fZ' A
receiving antenna was located seﬁeral feet away from the plasma tube and
the receiver was tuned to fz. It was found that the modulation or audio
signal was detected through a speaker, indiéating that part of the modulation
was transferred to the wave at f2. When one pf ﬁhe two transmitting antennas
was placed outside of_the plasma chawber. A similar phenocmenon was observed
but with weaker modulation. This is the so called Luxemburg effect or
crossmodulation effect. In ionosPhere it is believed that the electron

heating is the main cause of crossmodulation. In a laboratory plasma many



other nonlinear effects could produce crossmodulation between signals,

It is not clear vhich nonlinear effect is the dominant contributor.
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II. 4. Reflection and Transmission of Waves in an Electron-Heated 39
Nonlinear Plasma

I. Imtroduciion

Theve are various kinds of nonlinear phencmena in a plasma, Tsytovich
{1) has made an extensive and detailed discussion on the nonlinearity due
to the (3 s V) ;l and 3 MY % terms in fluid equations whereas Whitmer and
Barrett (2-5) considered the same set of equaticns and calculated the re-
flected and transmitted waves, including harmonics, through a rlasma
layer, Keller and Millman (6) assumed a very general coastitutive re-
lation with ne pzrticular reierence to physic;l processes and solved the
Maxwell's equations for several propagation prdﬁlems by using periurbation
nmethed. -Ginzburg (7,3) discussed the nonlinearity due to elactron hea
in particular its applihation'tb the cross mgdulation of waves in dgneosphere,
the so-called Luxemburg effect. In his elcmentary theory the state of

by two variables, the average electron velccitcy

L“q

the plasma was characterize

> bl ' A + . ) - = -

v and the effe L ive elrctron temperature Te. Ginzburg sheowed that if the

applied fielé intensity is smaller than the "plasma fizld"™ E_ the state
of the plasma chanzes siightly under the influence of the fizld., F

when the appliad field internsity becomnes larger then Ep, the parameters

of the plasma change significaatly. Since in cem ﬂoniy encouvnzercd plasma

n

ignificant mnonlincar effects may result even

-

the value of EP ie small,

for wcds aLﬂly larg epplisd fields. In this paper, the nonlinear ef

the reflection coefficient for a plane wave incident on air-plasma interface is
investigated. The reflection from a semi-infinite nonlinear plasnz is
considered first and from a coaducting plate backed plasma layer next.

The reflection cozfiicient as a function of incident field strength is

solved for both cases,



11. General Formulation 40

In & nonlincar plasma, the medium proparty depends on the Q“p1znﬂ

field str th, Ginzburg (7) has shown that if the ncnlincazity of the-

lasma is mainlv due to clectron heating processcs, the local effective
b 5> b ]

tenperature of the plasma Te is a function of the magnitude of the field

strength EL. At low freguencies the properties of the plasma are mcdulate
]

by the applied field and the problem becomes rather complicated. Therefore

. - . . . P - =
we will confine our discussion to high [requency limit such that &' >> Vv

In the high frecuency Yimit, the field wvaries nuch faster than gnergy ra-—
g 2 }’ (¥4

laxat1on tire, therefore we can replace E by its rms valve E or asice from

an unimpcrtaant coastant, by its maximun value Eo. Trom Ginzburg's elemen-—

tary theory the rclation between Te and EO can be expressed as follows

e 1:. w2 + \J02 o . : :
T = T l( ST ~ 1+ ( } if Ww>> v (
“p W+ Vv (Te) D

eratur

[

whera T.is the equilibviwm electron tex of the plasma in the ab

v

sion frequencizs in the

[N

ve coll

[N

ect

t

of external field, vo and v are ef

3
L9}
1]

absence and in the presence of external ‘Fiald respectively. Vv car

-

considerzad 23 a function of Ta or EO. Ep is the so called "characteristic

o

plasma field

)

23C

/BkI 3‘—— 5(w + ) (2

-

where ¢ iz the averzye relative fraction of enerzy transiered during a
‘collisicn between electrons and heavy prrricles. It is seen that when
E << E_ the heating effect will be small and T = T, but vhen E_> E
o P e o- p
electron heating processes becowmes significant. It is ceavenient to .
introduce the concept of dielectric permittivity and conductivity for a

plasma. It is well xnown that

the

£
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w vgpz
e=l- s, 0= gy
W+ v 4" + v5)

where wp is the plasma frequency. Since v is a function of

fore € and 6 are also functions of EO .

E

. r

41

there-

Consider a one dirmensional case, the electric field inside the plasma

satisfies the simple wave equation

2.
9B 4wt £ 2o
2 2
dz c
and here €' Z g - i ﬁgg = (n - iX)2

N dng, 2 :
In plasma,usually 62 >>C4ag0 is satisfied:

.. n= /e | 'X _ 270

" w/e

(&

(5)

()

Ve will also assume that collisions are mainly between molecules and

T

electrons,

dependent of veloicty such that v = Tvo. In high frequency limit X = X

where 2ne2Nv
. y = 5

0 7.
mm2 ] - 47 Ne”

pi )

he collision cross-secticn is approximately a constant In-

C

and as a first approximaticn n is a constant. In this case we can usc the

geometrical cptics approximation. A solution for the wave equation (4)

can be written as

W : - w .z
= 11 ;o [ P . -
E= A exp[iet + 1 - [ /ET az] Eoenpkl(wt N

(7

FYor simplicity we denote Eo as the magnitudé_of the field, Scmetimes it

is easier to usc a differential equation for Eo instead of (7). Differentiaticn

of Eo with respect to z results in
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(ED)E ’ RN

Now eguzticns (1) and (8) are to be solved simultaneously subject to

suitable bSoundary conditions,

11T, Reflection from a Semi-Infinite Plasma

First consider a simple problem, a plane wave incident normally cn

" a semi-infinite plasma which is assumcd to be uniform and isutroplc. Let

the interface between free space and plasma be tha z = o plane, and the
electric field is irn the x directicn as shown in Figure 1.

Substituting ¥ into eguaticn (8) and make use of equation (1)

2
dE E
—o._b . 5
P ~ TX,E, 5 c x, (" -1« &)
¢E_ L‘P_z__ |
o = - —0(0) - X, T -, 1= t(z=0) {10}
z=0

From Maxwell's cquations the magnetic field can te computed

gE w .z

iw - _ dE _ __ng i{we - = f7 ndz)
‘c'By (z =0) = e =T I e c ‘o

z=0 =0 - z=0
. . w Lz
L (e0) [-1 2% fPnaz)  FOE G S nd2) (11)
O ¢ dz c
z=0
z=0



7= T 2 M i it
By(O) = yg EO(O) [1 + (—gﬂg TO}?] et Y (12)
= CE (0) él¢ o2t %
o
where § = - tan "t 35% To) ' : ' (13)

The reflection coefficient R and transmission coefificient T then can Le

calculated easily by watching the boundary conditions at z = Q.

It can be shown that

Hh

{®]

!l - CelqJ
1+ cel?

and as usual 1 + R = T,
Figure 2 shows the reflection coefficient and transmission
coefficient as functicns of incident field intensity. The horizontal

axis are incident field intensity normalized with respect to EP. Tha

barameters chosen were typical for a laboratory plasuz aund the characteristic
plasma fields Ep are of the ordar of 100 volrs/cm.
IV. Wave Refiactica from & Yonlinear Plgema Laver Zacked by Cenductinz Plzns

Now consider a plane wave incident normally conto a noalinear plazna

slab with thickness d and backed by a perfect conducting plate as shenm

in Figure 3.

. . % .
It has been shown that when & >> V, n can be considered as a2 constant,

In the presest case the incident field El and the reflected field £, in
“
the plasma can thes be expressed in the following form
- & .z
-ikz -~ ~— Kdz
E, = ae e ¢ IO/AL
1
(14)
.z
ikz —[. z
E2=bel o.=3<>'rr.1)é

s

Y . - . iwt
where k = = and for simplicity the time facror e has been suppressad.

One of the Qifficultics of solving a noulinear problem ig the ip applicability
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of the superpositicn principle. Tor the present preblem the absorpiion
coefficient ¥ depends on the total electric field strengﬂ1ﬁo which is the

sum of E theraiore the unkrpewn functicns El, EZ apd ¥ have to

1 and Lz;

be solved simultaneously. The equaticns are

[ alE i
171 A i
— e oy ; ¥ =0 <15)
dz ¢ A (Lo) | l!
g d]EZI 8] !
et -— .._ ,‘ 4 = \l
N = X &) 1132] 0 (16)
q
['Eo ¥ 2
&--Tn—] =1 =1 17
1 E
-~ l p .
where E = Iﬁ |
"o o
From (14) ond the beundary conditicn for ibﬂt z = d, the maguitude of E
. 0
can be written as
' , EED
- . - 42 f%ydz 2 &% xda,
Eo = !El + 'ZE =E (2) {1 +=z ¢ “a X392 2 ces 2ki{z - d),e" ¢ "< X i (iR
vhere E (2) = {El(:)], ¥ is a furction of E . )
: , Wz
Introduce a new function U(z) = 2 =X, ‘e Tdz then substituticn 2f
equation (185) inte (37) yialds
' 2 2
2 _u Ep (7 - 1)
= 0
Eq ® U U (2

- 2e7 cos 2v(z-dj)]

: . tw .
where E. = E (z=d). Making use cf 5~ =2 T X equation (19) can te

converted irrc a aooniinecar differeatial equation

. 22 2 ey 2
on 12 BE Ty Y
- = —“wi—-;-}—g"’ ICDSH U(:) = COs 21:(2"&)] 1 "—'”-22—_ (20)
£ ! £ " c*

P
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’

It appeavs that this nenjinear diiferential equation cannot be soived
in closéd form, and therefore numerical techniques are used to determine U and
QQ_ One set of calculated results sre given-in'Figure 4 for E. _/E = 0,18,
dz inc’ p
0.47, 1.16, 3.29, 13.0 in which the total field strength E0 is plotted
against z. The plasma paramcters chosen in these calculations are the same
as before and the slab is five vavelengths thick., When the fields is weak
as in 4(A) the solution is essentially the same as that for a linear plasma
slab; i.e., the heating effect is insignificant. However as the field in-
tensity increases the absorption also increases and _fhe field distribution
inside the plasma alsb changes considerablf, becoming strongest near the
interface. In contrast, for a linear plasma the shape of the field dis-
tributinnfremain unaltered, regaidless of incident field strength. The’
reflection coefficient IRI is plotted against the normalized field intensity
Einc in Figure 5. It is interesting to note the existence of a mininum

reflection for a particular value of Einc'

. . - ! : - P
The reflectiovu coefificisnts IR; from & sezi-infinite plasma and a

plasma layer backed by 2 cenducting plane are Zetermined as a functica of

incident field strength. In the first case it is found that iR] fg in-

H

creasing menotenically and approaches 1 as the incicdent field increases
tovard infinity (Within the ronge of validity of our theory). For the

second cese, the reflection ccefficient has been found to havs a minizgum

s

for a certain velue of incident field. For largze value of incident field

the reflection ccefficient increases steadily and approaches 1 as in case

1 3

cne. The total field strength inside the plasza layer is evaluatad also.

o
It is expected that this particular nonlinvesr effect can be observed in the

laboratovy by measuring the reflection coefficient from a discharge. ' For

.

ionosphare the effect way be tos ssall to be significant.
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Figure 1. Wave reflection from a semi-infinite plasma.

Figure 2. Reflection and transmission coefficients as functions of

incident field intensity.

f=6x 10lO Hz ' v, = 1x 109/sec
N=1x 1012/cm3 § =1x107°
T=1zx lO4 °K

Figure 3. .Reflection from a plasma layer backed by conducting plane.

Figure 4(A)~4(£). The variation of field intensities ‘inside the plasma
"layer as the incident field increases. At the air-plasma
interface E, /E equals:
inc’p T

() E. /E_ = 0.18

inc Tp
(B) Einc/EP = 0.47
| (c) Einc/EP = 1.16
' (D) EinC/Ep = 3,29

&) Einc/Ep = 13.0

Figure 5. Reflection coefficients as functions of Einc/Ep'
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II. 5. Profile Inversion of Inhomogeneous Media

1. Background and General Description of the Probhlem

We have investigated the problem of determining the electrical permittivity

of a medium which is uniform in the % and v directions and varies ac=-
cording to the profile functicn,_x(z}, iﬁ the z dirackicn, The mathe-
matical problen associated with this profile inversion problew is_typical
ofvmany other remote sensing experiments,

Using the techniques of Geifand and Levitanl and of Harcheﬁko,z many
authors, e.g., Becker and Sharpe?' have reported the séiution of this
type of problem. All of their work, however, requires that the response
ﬁf the medium be known as a ifunction of the temporal frequency. It is
also required that the medium itself be independent of frequency, i.e.,
nondispersive., Often, however, it is degirzble to mékehmeasurements at
a single frequency. ‘'Therefore, in this paper we cousider the remote

L]
probing problem in the angular spectrur domain. Here the independent
variable, 8, is the spatial frequency which can be associated with k sin 6
where k is the free space wave number and 8 is the angle'cf inciaence of
é probing plane wave.

The technique by which the response of the mediﬁm is measured is to
illuminate the medium'usigg a spatially conf;néd source. The total field
at the interface is then measured. The information is then converted to
the angular spectrum doméin by taking the fourier transform with respect
to the x direction.

v .

In the next section, the formulation of the problem is presented. The

remaining sections are devoted to techniques for solving the problem.
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2. Tormulating the Problem

The geometry of the problem to be considered is shown in Figure 1.
Note that there are nc variations ﬁith respect to the y directicn. The
dielectric is also uniform in the x direction and varies in the z directiowu
as K(z)eo where €, is the permittivity of free space. The permeability
is assumed to be constant and equal to that of free space. It is assumed
that a known electgomagnetic wave of a single frequency is incident from
the left on the air-dielectric interface at z = 0 and that the tangential
fields at the surface of the dielectric can be measured for all valueg of
x. Of course, the actual measurement could be performed at some plane
2 =u, & <0, and then the fields at the interface could be computed since
the propagation in free space ié completely known,

If the incident field is polarized such that the components Ex’ Ez,

and Hy are all zero, then propagation in the medium is completely described

by the scalar equation
2 2
Vivix,z) + w UOK(Z)EOV(X,Z) =0 (1)

(w is the angular frequency of the incident wave). The function vix,z)
may be identified with Ey or Hz, which ever is more convenient for the
problem at hand.

Yo obtain the differential equation in the angular spectrum domain,

we introduce the Fourier transform relations:

ulB,z) = [ v(x,z) exp(-iBx) dx (22)
V) = a= [0 u(B,2) exp(ifx) 48 (2b)

Then Equaticn (1) becomes

2
28 4wy ke - B2 uB,2) - 0 (3)
dz .



o4

This is one-form of the differential equation in the angular spectruﬁ
domain. Recéll that w, Hy» and £, are constants, 5 is the independent
(spectral) yariable, and k(z) is the unknown profile function.

. For the work which follows, it is convenient to introduce a different,

but cqguivalent, form of (3). That is,

2.
Q.Eiféﬁl.+ Yzﬁ(Y,E) = Q(z)u(y,z) (4)
dz '

where

Q(z) = -k*[%(z) ~ 1]

2 2
k - w pOED

‘Note that if we determine Q{z), x(z) can easily be found. Furthermore,

‘note that we intend to apply (4) in the source-free regijon 0 < z < =,

.3.. The Solutions ¢(y,z) and £(y,z)

~Equation (4) turns cut to be of the same form as the one~dimensional
--Schroedinger wave cquation. This equation received considerable attention
in the 1950's irom physieists who were interested in scattering by
potentials., Most of the work on the inverse scattering prekizir has been
. R | . 2 ,

based on the techniques of Gelfand-Levitan™ and Marchenke™, An extensive
review of work on the inverse scattering problem has been presented by
: 4
Faddeyev.

We will assume that the profile function Q(z) is real and bounded

and that

£°° z|'Q(z'j[ drz < (5)
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We then consider two independent solutions of (4), ¢{y,z) and £(y,z),

satisfying the boundary conditions.

${y,0) =0 ' (6a)
d¢(%;0> -1 | (6b)

and
1im [£(y,2) e 1Y% =1 )

The solution f(y,z) corresponds to the situation shown in Figure 1. The
solution ¢(Y,z) corresponds to situation where a perfectly conducting wall
is placed at z = 0 and the incident wave comes from z = + =, It is de~‘

monstrated in Faddeyev's paper that

iiﬁ $(y,2) = ééx;'sin[Yz - vl (&
Where
£Qy,0) = A(Y) ei$(Y{_ = @

The Inversion Technique

, -5 .
Mittra, et al., have introduced the following representation

of £(y,z2).

= oo 1 expli(n + y)z]
£Qy,2) = exp(iyz) + 57 f £(n,z) KR P(n)dn (10}
In this case, the profile function Q{z) is given by

™

@ o, di(n,z)
L[ =g

21
| ]

Q(z) = - N f(n,Z)]eXP(iHZ)F(n) an’ (11)

The function P(n) can be determined from f£(y,o) by cousidering (10¢) at

z =0,

12 £(n,0) 2L g 12)

f(Y,o) =1 4+ — Tr1 -
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These three equations provide a technique for solving the:inverselscéttering
problem in the spectral domain. That is, a technique for obtaining Q(z)
from a knowledge of f(y,o0). |

It is common for inverse prcblems in mathematical physics to be ill-
conditioned.' This means that small errors in the data result ;n large
errors in the computed-profile function. Mathematically, ill-conditioning
1s usually associated with the solution of a first kind Fredholm equation;
We note that (12) is indeed a first kind equation for the unknown funciion
P(n). Thus we would expect to have trouble solving (12)., On the other
hand, once P(n) is specified, (10) becomes a secoﬁd kind equation for
f(y,2)——= is fixed and Y is the independent variable. We, therefore{
would not expect (10) to be ill-conditicned. Thus, we are led to the
conclusion that if we can obtain P(n) éccurately from £(y,0), we will have
a procedure for oBtaining Q{z) which is numerically stable.

he have bzen able to sﬁow an analogy Eetween (10) and the representation
which Marchenko uses for f£(y,z). This has allowed us to determine_that

P(n) is given by
P(n) = 1 - & 1M (13)

Using (13), we then solve (10) for f(Y,zj) for several values zj. The
profile function Q(z) is then obtained from (11).

It should be noted that (13) is valid only if £(y,0) has no poles
or zeros in the upper half plane. This conditién implies the absence df
surface wave solutions to (4). If surface waves are present in ghe |
problem, therinversion must be carried out in two steps. The procedure

is exactly analogous to the method described in Faddeyev's paper,
L .
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One further point to note about this inversion technique is that P(ﬁ)
as given by (i3) utilizes only the phase function P(n). The condition under
which (13) is wvalid imply that f(o,n) is an analytic function of 1 in the
upper half plane. Thus a knowledge of P(n) is sufficient to determine Aln),
and vice-versa. Hence, it is sufficient to specify either the magnitude or

the phase for this case.

2. Numerical Solution of Equation (10) and Examples

Using the technique described in the previous.section, several
examples of profile inversiom have been sclved. To do this, (10) mdst
be converted to a matrix eduation which can be handled numerically.
Before proceeding, with the numerical foramulation it is convenient to

‘multiply flO) by P(y) and then, defining ¢(y,z) = P(y)-* f(y,z), we have

P(y)
2ni

y exp[i(n + 'Y)z] dn = P(Y)Ein . (14)

IIJ(Y,Z) -

’

Investigaﬁions of the asymptotic behavior of £(y,z) and P(y) indicate

that as IYI + o

P(Y) v o(-%;) | (15)
£y,2) v 0T (16)

Also, as z + o,
£(y,2) v 0(e Y% | | Qan

Furthermore, if the medium consists of several homogeneous layers, then

£(yY,0) will net have any branch singularities. It can also be shown that

f(-y,z) = £(y,z) (18)

where the bar denotes complex conjugate. These criteria have led to an

approximation of Y(y,z) of the form
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(19)

. n
Vi) = e 17 3 —
=1 Y+ P
Y J
(This form is not the most general.rational expression that could be used,

but the results obtained using this form have been quite acceptable.)

We are now ready to convert {14) to a matrix equation. First, we
take the inmer product of (14) with the functions {8(y - Yk)}§=l° This

generates m equations of the form

PY) expli(n + v,)z] 1y, 2 (20)
Py, »2) - 5 I wﬁﬂ,z) Y, dn = P(Yk>e k = 1,2,ﬁ..,m

'(Recall that z is a fixed parametef in {20)). ©Next, we substitute (19)
into (20) to obtain

3 3 2 2
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‘ 1 1 0 0
+ ic, H', ~ I”.}] + b, -1
ROTEWIERSS R NOIEER S (21)
iy =
_ k
= P(yde
t-
k=1,2, ..., n
vhere
g iy =z 2
By S e C Yo 40,1, 2,3
y' 4+ P, -
1
& - P(y,) ~ ni exp[i(2n + Yk)ZJ} JE 1-2 ,
kj = 2mi ° n+ oy né,+ P A , 2Tasse

3
Equation (21) can be cast into the form of a matrix equation which is

easily solved by numerical methods.
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- Several comments should be made concerning this formulation of the
problem. First, (13) is used to obtain P(Yy) so that the required data
are the_valﬁes of the phase function ¥{y) at the points Yy k=1, 2,..., m.

Second, the integrals defining the coefficients 12 can be evaluated by

kj
closing the contour in the upper half plane and using Cauchy's Residue
Theorem. (The pole at n = - Yy is outside the contour and does not con-
tribute to this evaluation). The ability to represent §(y,z) by functions
for which tﬂe integrals can be analytically evaluated is important to the
success of the nume?ical solution of this problem. MNost of the examples
we have solved required a matgix of order 16. The computer time needed to
generate the matrix elements and to solve the matrix equation is about one
second on a machine such as the IBM 360.

Another point to note abqut this formulation is that the substitution
of'(19) into (11) yields a summation of terms similar to the Iij. These
can again be evaluated using the Residue Theérem. Finally, note that the

choice of the parameters pj used in the representation of P(y,z) is fairly

easy. We simply note that y¥(Y,0) is known from the data about f£(y,0).

Y(y,0) = P(YIE(Y,0) o
= A(Y)eilb(Y)_A(Y)e'ili’(Y) . o (22)
= 12Im{f(y,0)}.

Thus, we éolve the equation (21) corresponding to z = 0 for a few choices
of the pj's and cheose the set which gives the best fit to W(Y,O).

Figure 2 ind;cates the type of results which have been obéained. )
All of these examples correspond to cases where no surface wave exists.

Note that several of the inverted profiles show 1érge deviations near

z = 0. This difficulty seems to be linked to the numerical behavior
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of the cquation (21}. The location and the number of poles used in the
representation (19) seems to effect the behavior of the profile more near
.+ « O chan for larger z. The best results are obtained when one uses the
Ginimum number.of poles which still gives a good approximétion to the
upecific surface flelds. Figures 2c¢c, 2e, and 2f show results obtained
vhen the data was polluted by noise. The noise did not greatly deteriorate
the results of Figures 2c and 2f, but the inversion of Figure 2c¢ shows
large deviations in the region z < 0.5, This result is not sufprising
bucause the profiles in Figures 2d and 2c were somewhat difficult to
vbtain even when ho noise was present. This difficulty appears to be
related to the fact that the true profile "oscillates." Mittra and
MostafaviS élso found that surface field data could not be used to dis-
tinguish the true profile from an erroreous profile when the true profile

s oscillations.

6. Another Inversion Tecnnigue

The concept of transformaticn operators which was introduced by
Friedrich56 has been used as a basis for developing inversion schemes
(See, for example, Faddeyev). The idea behind this process is that under
appropriate conditions an operator U exists which transforms a givén
. and L, are differ-
2 1598 ¢

“ntial operators and the transformation operator U can be determined from

uperator Ll into another operator L In our case, L

£(y,0) in such a way that

L.zyuL. u® (23)

** the operator corvesponding to the profile function Q(z). In other

urds, if ¢l and ¢2 are eigenfunctions of Ll and LE’ respectively, then

b, = U, @
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Considering the technique introduced in section IT, we might'say
that (10) rélates the eigenfunctions, f{y,z) to the free space eigenfunctions,
exp(iyz). VUsing techniqueé similar to those used to derive (10), we have
developed the following relationship between ¢1(Y,Z) and ¢2(Y,ZS which
are solutions of (4) cecrresponding to profile functions Ql(z) and Qz{z)

and satisfying conditions (6).

¢2(Y,é) = ¢, (v,2) + fo; 0, (M,2) [0y () = W, () J¥(z,y,n)dn | (25)
where
TR N N RO LR : T
-9 ' '
W, = Ai(n) = _____1__5 i=1, 2. , (27)

Recall that we assume thé operator L1 to be known. Tﬁis means that Ql(z),
¢l(y,z) and wl(n) are all known. Also, Wz(n) is known from the given value
of fz(n,o)} Thus, for fixed z, (25) is é second kigd Fredholm equation for
¢2(Y,z). The equation.(27) defining Wi(n)‘was derived by establishing an
analogy between (25) and the Gelfand-Levitan formulation of the inQerse

- problem. As was the case with the method presented earlier, ﬁe éoula choose
some fixed z, say z_, where ¢2(Y,zo) is known and not identically zero.

Then (25} becomes a first kind Fredholm equation for Wz(n). As stated in
section 4, regarding (12) this procedure would be less desirable than
making use of (27). Again however, (27) is valid only when no surface wave
solutions satisfying (6) exist. If such surface waves are present, a
twé-step process is required. One further point to note is that an equation

analogous to (11) can be de?ived to relate Qz(z) to Ql(z).
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wke the above comments more precise, we will present the equatiovu

ale if L; is the free space operator, i.e., Ql(z) = (0, In this

= ..g. Sin 2 =2
¢, 0ra2) =V - . (23)

LACES! | (29)

L have

Y22 3 an (30)

- = sin{n - y)z
- fo ndn,zX{1 - wim?} { =Y

» 4 V’%- I {é$§gizl-sin nx + 1 ¢(n,z) cos nz} {1 - WN)Indn (31)

- w(n)

H

A(n)_z. It is important to note that the integrands in (30}
i1) ecan bé shown to be eveﬁ functions of i on the real line. There-
the integrals ﬁay be taken from -+ to = and the result halfed. Once
-» done, the contour can be closed and the Residue Theorem.can again

-4 to evaluate the integral.

- . before, the conditions under which (27) is valid imply £(o,n) is
.ftic function of n in the upper half plane. Hence, it is éufficient
“ify either the magnitude or the phase,

Ary

“ problem of remotely probing a stratified @édium has been con-
« One formulation of the problem has been investigated and some
"~} regults obtained. A second formulation is also presented.

"te both of these techniques are valid at arbitrary frequency

1 only as a parameter in the férmulation), probing at frequencies
ffface waves are present requires added computation in order to

<t problem.
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However, .oscillatory errors do occur in the regibn near z = O.for '
many cases. It should be noted, though, that the surface fields generated
by these erroreous profiles do not differ significantly from those generated
by the true profile. Thus, some of the difficulty is the result of the
poor conditioning of this type of inverse problem.

An important feature of this method is that the numerical formﬁlation
requires a modest amount of computex storage so that these techniques
might be suitable for use with measuring set-ups which have a small
computer. This could be ver§ helpful for diagnostic work in physics,

biomedical applications, pollution studies and agricultural surveys.
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K(z)= 2-2 022Z%|
k=10
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CALCULATED PROFILE
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Z

Figure 2a. Inversion obtained for a linear profile.
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\ Figure 2b. Inversion obtained for another linear profile,
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Figure Z2c.
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Inversion obtained for an expcnential profile, including

case with 5% noise.
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- Figure 2d. 1Inversion obtained for another Gaussian profile,
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Figure 2e. Inversion obtained for a Gaussian profile.
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Figure 2f. Inversion obtained for a discontinuous profile.
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