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FOREWORD

This report documents the results of an effort to develop analytical methods for

determining flow fields due to stratified and closely spaced jets exhausting into a cross-

flow. In conjunction with this study, a wind tunnel test program was conducted to gen-

erate data against which analytical results could be compared.

Mr. M. F. Schwendemann directed the experimental phase of this investigation,

which is documented in Northrop report NOR 73-98.

The work was performed by the Northrop Corporation under NASA contract

NAS1-11524, under the technical cognizance of Mr. Richard J. Margason.

This report has been assigned the number NOR 73-77 for internal control

purposes.
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ANALYSIS OF STRATIFIED AND CLOSELY SPACED JETS

EXHAUSTING INTO A CROSSFLOW

By

H. Ziegler and P.T. Wooler

Northrop Corporation, Hawthorne, California

SUMMARY

Procedures have been developed for determining the flow field about jets with

velocity stratification exhausting into a crossflow. Jets with three different types of

exit velocity stratification have been considered, namely

• Jets with a relatively high velocity core

• Jets with a relatively low velocity core

• Jets originating from a vaned nozzle

The procedure developed for a jet originating from a high velocity core nozzle

is to construct an equivalent nozzle having the same mass flow and thrust but having

a uniform exit velocity profile. Calculations of the jet centerline and induced surface

static pressures have been shown to be in good agreement with test data for a high

velocity core nozzle.

The equivalent ideal nozzle has also been shown to be a good representation for

jets with a relatively low velocity core and for jets originating from a vaned nozzle

in evaluating j et-induced flow fields.

For the singular case of a low velocity core nozzle, namely a nozzle with a dead

air core, and for the vaned nozzle, an alternative procedure has been developed. The

internal mixing which takes place in the jet core has been properly accunted for in the

equations of motion governing the jet development. Calculations of jet centerlines and

induced surface static pressures show good agreement with test data for these nozzles.

A method for treating two-jet configurations, formulated in an earlier investi-

gation, has been extended to include mutual interference effects between the two jets

in addition to the jet blockage effects already considered. Comparisons are made

between calculations and test data for a number of jet configurations.
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INTRODUCTION

A fundamental problem in the development of methods for predicting aerodynamic

characteristics of lift-jet, vectored thrust and lift-fan V/STOL aircraft is that of for-

mulating a mathematical model to estimate the effects of the propulsion system efflux

interaction with a crossflow. During the transition flight phase, this efflux is directed

at large angles to the freestream and has a significant influence on the aircraft aero-

dynamics as well as on the stability and control requirements. Consequently, a con-

siderable amount of research activity, both experimental and analytical, has been de-

voted to the development of an understanding of this flow problem and also to the deve-

lopmen_ of methods to calculate the resulting interference flow fields.

A number of analytical formulations of the problem of a single jet exhausting into

a crossflow exist, and details of the different approaches may be found in reference 1.

An approach to the problem of a single, normally exhausting jet, which appeared to

offer possibilities of treating more complex flow configurations, may be found in

reference 2. An entrainment model was developed from dimensional analysis and

physical considerations. The force on the jet boundary, as a result of the pressure

differential around the jet, was accounted for by a crossflow drag. The geometry of

the jet cross section was represented by an ellipse and the continuity and momentum

equations were solved to provide the jet path. The jet-induced velocity field was then

determined by replacing the jet by a distribution of sinks and doublets. Using an image

system for the flat plate and lifting surface theory for the finite wing, it was then

possible to determine the jet-induced pressure distribution on these two types of sur-

faces.

Induced surface static pressure distributions around single jets exhausting nor-

mally into a crossflow have been determined in references 3, 4, 5 and 6. Jet de-

cay investigations for single jets exhausting at 90 ° into a crossflow were conducted in

references 7 and 8. Jet centerlines (usually defined as the position of maximum total

head in the jet) have been obtained for single jets exhausting at various angles into the

crossflow (references 9, 10, and 11).

The analytical model described above has been further extended in reference 12

to treat jets exhausting into arbitrarily directed crossflows as well as multiple-jet



configurations. In the caseof multiple-jet configurations it was assumedthat the

leading jet (jet farthest upstream) developsindependentlyof the downstream jets until

intersection occurs. It was also assumedthat downstream jets behaveas single jets

developing into a crossflow of reduceddynamicpressure. An arbitrary jet configuration

could then be treated as a combination of discrete jets, with the inducedvelocity com-
ponentsdueto eachjet being additive at each control point. Data from the wind tunnel

investigation of reference 13were usedto substantiate the assumptionsmade in the

developmentof the analytical model. Empirical relationships postulated in the develop-
ment of the model were established quantitatively.

In general, the exit velocity profile of a V/STOL fan or jet will not be uniform

(see reference 14, for example). Variations in dynamic pressure decay may also
exist. In the hover case, it has beenshown(reference 15) that jets with different de-

cay rates produce different induced aerodynamicforces, so that similar effects are
expectedwith the jet exhausting into a crossflow.

It has beenthe purpose of this studyto developmethods for determining flow
fields due to stratified andclosely spacedjets exhaustinginto a crossflow. In con-

junction with this study a wind tunnel test program has beenconductedto generate
data against which analytical results canbe compared.
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SYMBOLS

a

.A

Aj
b

C

Co

Cp

d

do
d*

de

d2

E

E1, E2,

F

K

L

m

mieff

M

P

P_

q

q_

qe

f

qe

E3

ratio of inner to outer diameter for an annular nozzle (see sketch 2)

exit area of an equivalent ideal nozzle

jet cross-sectional area

core mixing parameter, ado/_

circumference of jet cross section

crossflow drag coefficient of jet cross section

pressure coefficient, (p- p_o)/q_

length of major axis in elliptical representation of jet cross section

jet exit diameter

d/do

effective jet exit diameter, obtained from equivalent ideal nozzle
considerations (see equation (11))

diameter of downstream jet (see sketch 4)

entrainment crossflow per unit length of jet (see equation (1))

entrainment parameters (see equation (1))

nozzle thrust

jet blockage factor, (do-_)/d o

length of core region for an annular nozzle (see sketch 2)

jet exit velocity parameter, inverse velocity ratio Ujo/U_

inverse velocity ratio for i th segment of jet in mutual interference
computations

jet mass flow

jet mass flow at exit

Mach number

static pressure

crossflow static pressure

jet dynamic pressure at exit of an ideal nozzle

crossflow dynamic pressure, V2pU_

effective crossflow dynamic pressure for downstream jet when jets
are aligned in freestream direction

qe when leading jet does not exhaust normally into the crossflow
(see equation 22)
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SYMBOLS(Continued)

q_

qJ' qJo

qJe
R

S

To

U_

uj, Vjo

u_/Ujo

X, Y, Z

X*, Z*

A

_j

P

0

Subscripts

i

oi

effective crossflow dynamic pressure for downstream jet when jets
are not aligned in the erossflow direction

jet dynamic pressure, jet dynamic pressure at exit

effective jet dynamic pressure at exit

gas constant

spacing between two jets

stagnation temperature

crossflow speed

jet speed, jet speed at exit

nondimensionalized jet speed, Uj/Ujo

velocity ratio, [q_/qjo ]'/2

induced velocity vector for freestream modification (see sketch 5)

Cartesian coordinate system

distances in and normal to the crossflow direction normalized by do

sideslip angle

ratio of specific heats

overlap of downstream jet by upstream jet

jet deflection angle at exit (see sketch 8)

density

angle between local velocity vector and the normal to the crossflow
vector (see sketch 1)

value of 0 at jet exit

value in i th segment of jet in mutual interference computations

initial value for i th segment of jet in mutual interference computations
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VELOCITY STRATIFICATION E FFE CTS

In general, the exit velocity profile of a V/STOL fan or jet engine will not be uni-

form. Variations in dynamic pressure decay may also exist. The jet exit velocity

profile and variations in dynamic pressure decay have an effect on the jet-induced ve-

locity field in a crossflow and consequently influence the aircraft aerodynamics.

In this report three different types of nozzle flows are considered, namely

1. Annular nozzle with high velocity core

2. Annular nozzle with low velocity core

3. Vaned nozzle

The annular nozzle with high velocity core is representative of the exhaust flow

from a turbofan engine. The annular nozzle with low velocity core models the flow

from a lift-fan engine. The vaned nozzle is sometimes considered for vectored thrust

concepts.

In earlier investigations, references 2 and 12, a mathematical model was devel-

oped for the flow about a subsonic turbulent jet exhausting at an angle into a uniform

crossflow. In these studies the jet was assumed to be deflected in the crossflow di-

rection due to entrainment of crossflow fluid and also due to jet blockage.

Consider a circular jet exhausting at a right angle into a uniform mainstream,

as shown in figure i. The entrainment of crossflow fluid was represented, in refer-

ence 2, by the expression

E 2 (mU* - sin 8)C/d o

E = E,d*cosO + _ (I)
pU_do 1 + E 3 cos O/mU_

The entrainment parameter E 2 is obtained from static results for the jet and

may vary from nozzle to nozzle, whereas E 1 and E 3 have been determined empirically

and are independent of the nozzle configuration.
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The equationsof motion for the jet are, according to reference 2,

E
pUoodo

(2)

)cos 0 _-_ m2U_2 = Ep U_ d o sin 8
(3)

A. m2 U.*2 X *'! C D
j j E

2[ 21'/2 = pUood: COS0+-_ -d. 1+ (X*')
cos 28 d* (4)

where primes denote differentiation with respect to Z*.

From equations (1) through (4) it is observed that m is a parameter and that do

is the length dimension for normalizing purposes. In the case of a standard conver-

gent subsonic nozzle, m and d o are clearly defined as the square root of the ratio of

the jet exit to mainstream dynamic pressures and the nozzle exit diameter, respec-

tively. One of the approaches to treating jets with stratified exit flow characteristics

explored as part of this study is to employ the analytical model of reference 2, con-

tingent upon an appropriate determination of m and d o for the nozzle.

In order that the analytical methods developed in this study may be used with

confidence to calculate induced flow fields, pressure distributions and forces and

moments on adjacent aerodynamic surfaces, it is desirable to make comparisons

between calculations and test data for induced surface pressures on a simple geomet-

ric shape due to stratified jets exhausting into a erossflow.

To generate test data against which analytical results can be compared, a wind

tunnel test program has been conducted and documented in detail in reference 16.

A four-foot diameter circular plate containing the nozzles was aligned with the tunnel

flow. The plate contained pressure taps to determine the surface static pressure

distributions around the exhausting jets. Jet centerlines and decay characteristics

were obtained from a total head rake. To obtain the three types of stratified exit

flow characteristics considered in this study, the nozzles of figure 2 were utilized.

The air supply for the core and annular regions of the dual concentric nozzle could be

controlled independently to yield an annular jet with a high or a low velocity core.

6



Equivalent Ideal Nozzle

The procedure which has been developed for determining an effective m and do

for nozzles with stratified exit flow characteristics is to consider a nozzle of the same

mass flow and thrust, but having a uniform exit velocity profile.

The mass flow r_ for an ideal nozzle of area A is

A _ pM (1+ 'Fi--'_l M (5)

where p and M are the static pressure and Mach nmnber of the flow at the nozzle

exit, respectively.

The thrust F, assuming subsonic flow, is

F = 2Aq (6)

where q is the nozzle exit dynamic pressure. Equation (5) may be written in terms of

the dynamic pressure, so that

• 2 2A2qp (l+_/-1)q) (7)m = RT° T p

Eliminating A between equations (6) and (7) we deduce

p( )2

and then, substituting for q in equation (6), we obtain

(F 2RT,
A = " (9)
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Thus, q andA for the ideal nozzle may bedetermined by substituting the nozzle mass
flow and thrust in equations (8) and (9). Theparameter m is then determined from
the expression

(10)

q_ being the dynamic pressure of the crossflow. The diameter d o used for normalizing

purposes is determined from equation (9). It is

2F 2RTo-
(11)

Annular Nozzle with High Velocity Core

By considering an ideal nozzle, of the same mass flow and thrust, the effective

jet dynamic pressure and effective diameter for the high velocity core nozzle tested

in the related wind tunnel investigation (reference 16) have been determined. The core

of the nozzle had an area of 0. 8026 sq cm (0. 1244 sq in), the annular region had an

area of 4. 0948 sq cm (0. 6347 sq in). The dynamic pressures of the core and annular

regions were 7. 0931 N/cm 2 (1481.36 psi) and 2. 7409 N/cm 2 (572.42 psf), respectively.

Thus, assuming the jet total temperature to be ambient and the jet to exhaust into a

standard atmosphere at sea level, we obtain

qje = 3. 5824 N/cm 2 (748.18 psi)

d e =2.4518 cm (0.9653 in)

The effective diameter is not too different from the outer diameter of the nozzle,

which is 2.54 cm (1.0 in), whereas the effective jet exit dynamic pressure is signifi-

cantly different from both the core and annular values. The entrainment character-

istics for the high velocity core nozzle, shown in figure 3, are not significantly differ-

ent from those for the other stratified nozzles or for a convergent nozzle.

8



A sketch of the single-jet configuration tested in this investigation, showing the

spanwise pressure tap stations at which comparisons between test data and calculations

have been made, is shown below.

Y

°°° I

eoe

..... Pressure

Taps

• . . 3do

- X

j-
r

SKETCH 1

The theoretical prediction for the jet centerline is shown in figure 4. This may

be compared with the test data for the high velocity core nozzle centerline shown in

figure 5. Calculations of the surface pressure distribution compared with test data

for the high velocity core nozzle, as well as for a clean nozzle at the same velocity

ratio, are shown in figure 6.

It should be pointed out that, while comparisons between analytical results and

experimental data are shown for only a representative number of jet configurations

(and generally restricted to two spanwise stations for each configuration), this should

not be viewed as a limit on the range of data acquired in the experimental phase of

this investigation. Complete and extensive documentation of the wind tunnel test

program may be found in reference 16.

9



Annular Nozzle with Low Velocity Core

The singular case of an annular nozzle with a low velocity core, namely a dead

air core, has been investigated. The dual concentric nozzle of figure 2 was utilized

with no air being supplied to the core region. A schematic representation of the

velocity profiles at the exit and at the end of the core region is shown in sketch 2.

Details on the actual velocity profiles and the decay of the jet dynamic pressure may

be found in reference 16.

._--- d o ------_

r

SKETCH 2

After establishing the effective jet exit dynamic pressure for the nozzle, the

tunnel (or freestream) dynamic pressure was adjusted to give the appropriate jet exit

velocity ratio, and induced surface static pressure data were acquired. Figures 48

through 50 of reference 16 show that the experimental data for induced surface static

pressures around the annular jet with dead air core collapse on the data for a uniform

jet of the same velocity ratio very well when the effective jet exit diameter of the

annular nozzle is used in nondimensionalizing distances associated with those data,

except in the wake region behind the jet.
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Thus, the concept of utilizing an effective m and do, obtained from considering

an equivalent ideal nozzle as discussed previously, in the analytical model of reference

2 is seen to be a valid approach to treating velocity stratification effects for the annu-

lar nozzle with low velocity core in computing induced surface static pressures around

the jet in those regions where the model of reference 2 is expected to yield meaning-

ful results. The singularity representation of the jet used to compute the jet-induced

pressure distribution in reference 2 assumes potential flow in the areas external to

the jet and constitutes a good representation only in those regions where the flow

outside the boundary layer is potential.

As an improvement to the equivalent ideal nozzle approach, the analysis of

reference 2 may be modified for the annular jet with dead air core so that the internal

mixing which takes place in the jet core may be properly accounted for.

Consider the annular jet of sketch 2. Let the diameter of the core, which is a

region of no efflux (qjo =0), be ado, and the outer diameter of the annulus be do, and

let the length of the core region be 1. The diameter of the core at distance Z from

the nozzle is ad o-bZ, where b=ado/L. The equations of motion for a single jet ex-

hausting into a crossflow are given by equations (2) through (4).

In the original analysis of uniform turbulent jets originating from circular noz-

zles, a development region was assumed in which the jet deformed from a circular

cross sectiou into an elliptical one. It is assumed here that this development region

is not changed by the core region and that, in turn, the core region is independent of

cros sflow velocity.

Thus in the core region, 0 __ Z* __a/b, we obtain

4 2m d *-_ ( a2- 2ab Z* + Z*2

for the development region, Z*-_ 0.3m, and

A [ 4 2)]rrd*2 1 - (a 2- 2ab Z* Z* (13)d-- ro - 16

for the developed region, Z* > 0.3m. Outside of the core region, Z* >a/b, the ex-

pressions for Aj/do 2 are as above with a = b = 0.
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The expressions for the jet circumference, C, are not changed by the inclusion

of the core term, so that

d'-_C=_r d* 2 { Z* __0.3m} (14)

C
d"_" = 2.24 d* {Z*>0.3m} (15)

Equations (2) through (4) then become

dU.* [sin0 - mU_]
--'J'dZ* - PUoodoE " / _, \ (16)

_ .-J-_ m 2 U*
COS \d/o 2 j

=Ix+(x+>21 [ +° lm2U+2 co+e+--2co+2ed+
]

(17)

dZ* = do _)m cos 0 do 2

+ 51r U.* d*----2-
j 8m

dZ* / m cos 8

(18)

dd__* = do
dZ*

*C+)_ +++.+m0os+(-++b+Z+>}m cos 8 dZ* _" ,1

7r
-- U.* m cosO d*
8 j

(19)

where the parameter m for this nozzle is now defined to be

m = ._/mainstream dynamic pressure

"I_ j-_ cl_ pressure

12



Equations (16) and (17) are valid for both the development region and the devel-

oped region of the jet. Equation (18) is to be used for the development region of the

jet and equation (19) is valid for the fully developed region. Outside the core region,

Z* >a/b, equations (18) and (19) are modified by setting a=b=0.

Equations (1), (12) - (19), together with the jet exit boundary conditions, are the

equations governing the jet development. They may be integrated, following reference

12, to obtain U_, d* and X* as functions of Z*.

The annular jet which was tested in this investigation had an outer diameter of

2.54 cm (1.0 in) and a core diameter of 1.02 cm (0.40 in). The jet exit dynamic

pressure was 7.09 N/cm 2 (1481 psf) for the annular region and the core region ex-

tended over a length of 10.16 cm (4.0 in). The parameters a, b are then 0.40 and

0.10, respectively.

The computed jet centerline for the annular nozzle at a velocity ratio of 0. 125

is shown in figure 4. The corresponding test data are shown in figure 5. From these

results it is observed that the annular jet does not penetrate into the crossflow as far

as a high velocity core nozzle (or clean nozzle) at the same velocity ratio.

Surface static pressure calculations are shown in figure 7, with the test data

also shown for comparison. Good correlation between theory and test data is observed.

Comparison with figure 6 indicates that the annular nozzle induces surface pressures

of slightly smaller magnitude than the high velocity core nozzle (or clean nozzle).

Vaned Nozzle

The vaned nozzle which has been considered in the experimental phase of this

investigation is shown in figure 2. The induced surface static pressure data plotted

in figures 48 and 49 of reference 16 (again utilizing for nondimensionalizing purposes

the effective jet exit diameter for the vaned nozzle, obtained from equivalent ideal

nozzle considerations) indicate that the induced pressure distributions around a vaned

jet may be predicted quite accurately by using the equivalent ideal nozzle approach.

The presence of the vanes in the nozzle reduces the exit area and one might

expect a change in the mixing characteristics for this nozzle. However, if the mass

flow rh is plotted against distance, normalized by the effective diameter as defined in

equation (11), the entrainment characteristics of all the nozzles are similar (figure 3).

It may be deduced, therefore, that the vanes only affect the internal mixing of the jet,

13



so that the modified approachdeveloped for the annular nozzle with dead air core, to

account for the internal mixing taking place in the jet core, may serve as an improve-

ment over the equivalent ideal nozzle approach for the vaned jet as well. The area of

the vanes at the nozzle exit is replaced by a circular core of equal area and the extent

of the core region is again determined from static test results (reference 16).

The nozzle which was tested in this study had a vaned area of 1. 719 sq cm

(0. 266 sq in), yielding a core diameter of 1.48 cm (0.58 in). The extent of the core

region was determined to be 14.73 cm (5.8 in). The parameters a and b of equation

(12) are, therefore, 0.58 and 0.10, respectively. The parameter m for this nozzle

was defined as

in
mainstream dynamic pressure

jet exit maximum dynamic pressure

Computed jet centerlines for the vaned nozzle, at velocity ratios of 0. 125 and

0. 250, are shown in figure 4. The corresponding test data are shown in figure 5.

Figure 5 includes test data for the vanes perpendicular to the crossflow and for the

vanes aligned with the crossflow. The calculations of figure 4 do not, of course,

account for this difference in the alignment of the vanes. The vaned nozzle jet is ob-

served to penetrate the mainstream less than either the annular nozzle jet or the high

velocity core jet at the same velocity ratio.

Figure 8 shows computed surface pressure distributions for the vaned nozzle,

with the vanes perpendicular to the crossflow, at a velocity ratio of 0. 125. Test data

are included for comparison. The correlation is observed to be quite good. The pres-

sure data for this nozzle, both calculated and test, are observed to be of slightly

lower magnitude than those for the annular nozzle (figure 7), at the same velocity ratio.

Computed and experimental surface pressure distributions for the vaned nozzle,

with the vanes aligned with the crossflow, are shown in figure 9. The velocity ratio

is again 0. 125 and the computed pressure distributions are, of course, the same

as those shown in figure 8. No significant effect due to the changing of the orientation

of the vanes is observed from the test data.

Figure 10 shows pressure distributions around the vaned nozzle jet, with the

vanes perpendicular to the crossflow, at a velocity ratio of 0. 250. The test data from

two runs using different values of jet exit dynamic pressure and freestream dynamic

pressure to achieve the velocity ratio are included. No significant differences between

these two sets of data are observed.

14



MUTUAL INTERFERENCEEFFECTS

The single-jet model of reference 2 was extendedin reference 12 to treat jets

exhausting into arbitrarily directed freestreams, as well as multiple-jet configurations.

Multiple-jet configurations were treated as combinations of discrete jets, with

leading jets assumed to develop independently and downstream jets assumed to exhaust

into a crossflow of reduced dynamic pressure. The test data of reference 13 were

used to derive an expression for the effective dynamic pressure which the downstream

jet "sees" as a result of the blockage of the crossflow by the upstream jet. This ex-

pression was based on data for two-jet configurations at zero sideslip (jet exits aligned

in the freestream direction), with both jets exhausting normally into the freestream.

The test data were utilized to verify that the upstream jet develops independently

of the downstream jet for the zero sideslip condition, even for the closely spaced two-

jet configuration tested in reference 13. For the closely spaced configuration at zero

sideslip, the downstream jet "sees" a low crossflow dynamic pressure and, conse-

quently, does not exert a strong influence on the induced flow field. The assumption

that the upstream jet develops independently of the downstream jet is therefore justi-

fied, despite the close jet spacing. Since the expression for the effective crossflow

dynamic pressure for the downstream jet was based on data for the zero sideslip con-

figurations, it accounts for all the interference effects between the two jets. The good

agreement between calculated induced pressure distributions and the test data for the

zero sideslip configurations, exhibited in the comparisons of reference 12, supports

this conclusion.

For the closely spaced configuration at sideslip, noticeable differences between

theory and test data were evident. With the jets no longer aligned in the freestream

direction, the downstream jet now has a stronger influence on the induced flow field

since there is less blockage of the crossflow by the upstream jet. This stronger in-

fluence, together with the close jet spacing, makes the assumption that the upstream

jet develops independently of the downstream jet no longer representative of the

physical situation. It was felt that further mutual interference effects between the two

jets had to be included to improve correlation between theory and test data.
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The extension of the basic two-jet computation to include mutual interference

effects between the two jets, in addition to the blockage effect discussed previously,

is presented here. Comparisons between theory and test data of reference 13 for the

closely spaced two-jet configuration are shown.

The modification of the expression for the crossflow dynamic pressure which the

downstream jet "sees" in a two-jet configuration, with both jets exhausting at an angle

other than 90 ° into the crossflow, is discussed. Calculations of jet centerlines and in-

duced surface static pressures are compared with test data of reference 16 for three

different spacings between two inclined jets.

Two-Jet Analytical Model

The details of the computational procedure applying the basic single-jet model

to the calculation of the interaction flow field due to two exhausting jets are given in

reference 12.

A two-jet configuration was treated as a combination of discrete jets. The equa-

tions of motion for each of the exhausting jets were integrated, utilizing the appropriate

initial conditions for each jet, Z* = 0., X* = 0., U* = 1., d* = 1., and, using the coor-

J i ,dinate system of figure 1, dX*/dZ* = [(1.-cos2eo)/cos2eo] V2 as well as the correspon-

ding jet exit velocity ratio, to yield the mean jet speed U_, the major diameter of the

ellipse representing the jet cross section d*, and the displacement of the jet center-

line in the freestream direction X*, all in nondimensionalized form, as functions of

Z*, the nondimensionalized penetratio n of the jet centerline into the crossflow.

The upstream jet was assumed to develop independently of the downstream jet

and the downstream jet was assumed to exhaust into a crossflow of reduced dynamic

pressure, which it "sees" as the result of blockage by the upstream jet. Thus the in-

fluence of the upstream jet on the downstream jet was introduced into the computations

as a reduced freestream velocity, Ue/U _ = [qe/q_] _/2, in the equations governing the

development of the downstream jet (equations (2) - (4)).

The extent of overlap between the two jets was the principal parameter in deter-

mining the degree of blockage experienced by the downstream jet. The computational

details of establishing this degree of influence of the upstream jet on the downstream

jet for each jet element, as the integration of the equations of motion is being carried

out, are given in reference 12.
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Test dataof reference 13 were used to obtain an empirical relationship for the

dynamic pressure qe which the downstream jet "sees" as the result of the crossflow

blockage by the upstream jet, in terms of the crossflow dynamic pressure, qQo, and

the spacing between the two jets, s (see sketch below).

V oo

Jet # 1 Jet # 2

@io @
] _1

SKETCH 3

This expression is given in reference 12 as

qlq_- _ s/do - 1 {s/do > 1} (20)
s/do + . 75

and is used as a limiting value, when computation of the overlap between the two jets

shows that the downstream jet element is completely in the zone of influence of the up-

stream jet element (as, for example, in the case of two jets aligned in the erossflow

direction). When the two jets are not aligned, an effective crossflow dynamic pressure,

q_, which is a weighted mean of qe given above and q_, is utilized. The weighting of

the dynamic pressure is determined from the degree of overlap between the upstream

and the downstream jet elements discussed previously and shown in schematic form

below.

V_

SKETCH 4
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Thus,

= aq [q + (d2-a) (21)T'P
d2

As the equations of motion for the two exhausting jets are being integrated, the

distance between the two jet centerlines is continually checked. When intersection of

the two jets is indicated, initial conditions for the merged jet which results are deter-

mined from continuity and momeatum considerations, as detailed in reference 12.

These initial conditions are then employed in integrating the set of differential equa-

tions for U;, d*, and X*.

The velocity field induced by a two-jet configuration can now be determined by

replacing each jet (including the jet resulting from the coalescence of the two e_chaust-

ing jets) by its representative singularity distribution of sinks and doublets.

The expression for the dynamic pressure to be utilized in the downstream jet

computations (equation (20)) was based on data for two-jet configurations at zero side-

slip, with both jets exhausting normally into the crossflow, and contains only the jet

exit spacing as a parameter.

Since equation (20) was based on data for zero sideslip configurations, it account-

ed for all the interference effects between the two jets, even for the closely spaced

configuration, s = 2.5do, of reference 13. Comparisons of test data with theoretical

predictions in reference 12 showed good correlation for the zero sideslip configurations

(see, for example, figures 37 and 40 of reference 12).

Noticeable differences between theory and test data were discernible for the

non-zero sideslip configurations, particularly for the close jet spacing (see, for ex-

ample, figure 41 in reference 12). For these computations qe as given by equation (20)

is weighted with q_ according to equation (21). The downstream jet now has a stronger

influence on the induced flow field, and it was felt that, although the relationship of

equation (21) accounts for the effect of blockage of the upstream jet on the downstream

jet, further mutual interference effects between the two jets had to be included in the

computations to improve the correlation between theory and test data.

For the purpose of including mutual jet interference effects, an iterative pro-

cedure involving modification of the crossflow into which the two jets exhaust, has

been chosen. The scheme treats each of the exhausting jets in a number of segments

as shown in sketch 5.
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The freestream velocity vector for each segment of one exhausting jet is per-

turbed by the induced velocity vector (ill, fi2, etc) due to the other exhausting jet.

The perturbed freestream velocity vector is assumed constant over the extent of the

segment and is evaluated at the point of origin of each segment. Each segment is

treated as a discrete jet, with proper initial conditions and the appropriate freestream

velocity vector.

The first computation sets ul, 92, etc, equal to zero to establish the first approx-

imation for the centerlines of the two exhausting jets and the coalesced jet, if inter-

section between the two jets occurs. The two exhausting jets and the coalesced jet

are then replaced by their representative singularity distributions and the induced

velocities _1, u2, etc, are then computed for each segment of the two exhausting

jets.

For the first iteration, the initial conditions for segment I now become

* * /uj uj /ud 1 =1., Uj =Uj =1. m =i 1 01 ' 1 O1 oo

where m_ is the inverse velocity ratio of the exhausting jet.

The direction cosines of the modified freestream velocity vector, _w +91, are

determined and a local coordinate system is established which is aligned with the free-

stream velocity vector and the jet exhaust vector (see reference 12, page 25). The

initial value for dX*/dZ* is determined in this local coordinate system.
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The effective inverse velocity ratio for segment I is

Ujo,( U__ m,
ml eff = U_ \_ +U I = U=_U I

The equations for U;, d*, X* may now be integrated over the extent of segment I.

The last point of segment I then becomes the origin of the next segment (or next

discrete jet) with a diameter do2 = d* do1, where d* is the last computed value of the

nondimensionalized jet diameter in segment I

Other initial conditions for segment II are

d 2 =1., Uj2 =Uj2/Ujo 2 =1., m 2 =Ujo2/Uoo =Ujlm I

where U_I is the last computed value of the nondimensionalized mean jet speed in

segment I.

At this point the direction cosines of Uoo + _2 are determined and a new local,

jet-oriented coordinate system is established. The initial value for dX*/dZ* is deter-

mined in this coordinate system from the known direction of the jet centerline at the

end of segment I. The effective inverse velocity ratio for segment II is

U J02( U_¢ / = U;iml ( U= )m2eff = -_-_ _U_c-_u2! Uoo+u s

* X*The equations for Uj, d*, may now be integrated over the extent of segment II.

The computations described above continue for each of the two exhausting jets

until integration over the extent of each jet, up to the point of intersection with the

other jet, has been accomplished. The procedure of establishing intial conditions

for the jet resulting from coalescence of the two exhausting jets remains unchanged

from that detailed in reference 12 and outlined previously. New values for _i, _2, etc,

may now be obtained and the entire computational scheme may be repeated.

In determining the induced velocity vectors _i for the segments of each exhaust-

ing jet, only the effect of the other jet is to be considered. In the representation of

sketch 6, the singularity distributions of two exhausting jets,(_)and (_, and of the

coalesced jet (_) are indicated. The singularity distribution(_) is a continuation of (D

and would result if no intersection occurred between Jet #1 and Jet #2.
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It is desired to evaluate the flow field induced at point P by Jet #2 alone. This

is accomplished by summing the contributions to the induced velocity components at P

from the segments constituting (_) and adding the contributions due to the coalesced

jet(_[ But the coalesced jet is established from continuity and momentum consider-

ations involving both Jet #1 and Jet #2 and thus, some influence of Jet #1 at point P is

now included. The contributions to the induced flow field at P due to (_) are now sub-

tracted to account for this, and the induced velocity components V×, Vy, Vz are ob-

tained.

As discussed previously, the application of equation (20) in the two-jet computa-

tions appeared to adequately account for all mutual interference effects for the zero

sideslip configurations, since equation (20) was derived from zero-sidelip data. With

increasing sideslip, equation (21) shows that qB approaches qoo as A (or the degree of

overlap) approaches zero. For a spanwise configuration, the only interference effects

between the two jets would be those accounted for by the modification of the crossflow

by the iterative procedure.

Equation (21) then suggests that, after the induced velocity components V× , Vy,

Vz have been evaluated, the degree of overlap, as represented by the term (d2- A)/d2,

be considered before the freestream velocity vector is modified.
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As an approximation to the term (d 2 -A)/d2 in equation (21), a factor K is eval-

uated, using properties in the plane of the jet exits, as shown in sketch 7, such that

K= (do-A)/d o.

SKETCH 7

The induced velocity vector _[i is then obtained from the induced velocity

components

=K (V t + vy + v,t)

Thus, no further mutual interference effects are included for the zero sideslip

configurations, and full effect of the modification of the crossflow is included for a

configuration where equation (21) does not provide for any blockage effect.

Comparisons of Two-Jet Calculations With Test Data

Computations have been carried out primarily for the closely spaced two-jet

configuration for which induced pressure distributions in the plane of the jet exits were

obtained in reference 13. A schematic of this configuration is shown in sketch 8.

Figure 11 shows a comparison between theory and test data for induced pressure

variation with X/d o at Y/d o = 1.5 and 3. Since mutual interference effects due to the

modification of the crossflow are not included for a zero sideslip configuration, as

discussed previously, the computed pressure distributions should agree with those

presented in figure 40 of reference 12. Comparison with the theoretical pressure dis-

tributions of figure 40, reference 12, does confirm that numerical differences incurred

by breaking the two exhausting jets into segments and treating the segments as discrete

jets are negligible. This, of course, applies only to the computation of the initial

approximation when ii 1, ii 2, etc, are equal to zero.

Figure 12 shows the same comparison for a sideslip angle fl = 20 °. Pressure
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distributions corresponding to the first approximation and the final iteration of the

computational scheme described previously are shown. Some improvement in corre-

lation between theory and test data is discernible due to the incorporation of these

further mutual interference effects.

For this configuration, the projections of the centerlines in the X-Y and the

X-Z plane are shown in figure 13. In contrast to the results for fl = 0 (reference 12),

the calculated centerline for the merged jet indicates greater penetration than observed

in the wind tunnel test. Also, there is a significant difference between calculation and

test data in the projection of the centerlines in the X-Y plane. The experimentally de-

termined centerlines (positions of maximum total head) exhibit an unexpected lateral

deflection, which may be due to the partial blockage of the downstream jet resulting in

the jet momentum decaying at a decreased rate on the side of the jet which is blocked

from the crossflow by the leading jet.

A two-jet configuration with a spanwise spacing of 2.5 diameters is shown in

sketch 9. Theoretical and experimental pressure variations are shown for three

stations of constant X/d o in figure 14. Again, the first approximation and the final

iteration for each computed pressure distribution are shown. The full effect of the

mutually induced velocities on the crossflow is included in the iterative procedure for

this configuration, resulting in noticeable improvement in the correlation between

theory and test data.
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The projections of the jet centerlines for this configuration, as well as for one

with a spacing of 7.5 diameters between the jet exits, are shown in figure 15. For the

wider spacing, the jets are attracted to each other and each is deflected by the cross-

flow to a greater extent than a single jet of the same velocity ratio. These features

are predicted quite well by theory. For the close spacing, the analytical model pre-

dicts that each jet will be deflected to a greater extent (up to the point of intersection)

than the jets with the wide spacing. Following intersection, this trend is reversed

and the computed centerline of the merged jet exhibits greater penetration than the

individual jet centerlines of the widely spaced configuration. As was the case for the

closely spaced configuration at sideslip /3 = 20 °, the positions of maximum total head

show an unexpected lateral deflection, in contrast to the calculation indicating inter-

section after a penetration of about 6 diameters.

In computing the pressure distributions of figures 12 and 14, two iterations on

mutual interference effects were employed after the initial approximation to each

pressure distribution had been established. Indications are that two iterations are

sufficient. Experience with the test cases has shown that the first iteration (estab-

lishing the induced velocities by which the crossflow is modified as other than zero)

is primarily responsible for effecting the changes in the computed pressure distribu-
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tions, and subsequentiterations produce little change. This is illustrated in figure 16

where the first and second iterations for the pressure distributions shown in figures

12 and 14 are presented.

Multiple Inclined Jets

The blockage effect of the upstream jet on the downstream jet, as given by

equation (20), is seen to be a function of the spacing between the two exhausting jets

only. The expression was based on experimental data of reference 13, where all

multiple-jet configurations tested consisted of jets exhausting normally into the cross-

flow.

It was felt that for an inclined jet exhausting into the crossflow, equation (20)

represents a reduction in the crossflow velocity normal to the jet. There is also a

component of the crossflow velocity tangential to the jet, as shown below.

qo0

qoo sin 0o q_ sin Oo

SKETCH 10

I

Thus, the magnitude of the effective dynamic pressure qe is

(22)

where _ is given by equation (20).

Figures 17 through 23 show comparisons of theoretical predictions and test data

from reference 16, for three different spacings of two inclined jets. Equation (22) was

utilized to account for the effect of blockage on the downstream jet and the iterative

procedure described previously was employed for including further mutual interference

effects between the two jets in the closely spaced configuration with sideslip.
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The jet centerlines are predicted quite well. After intersection, the merged

jet shows greater penetration into the crossflow than is indicated by theory, as was

the case for jets exhausting normally into the crossflow (reference 12}. The induced

pressure distributions (figures 20 through 23) exhibit features similar to those dis-

cernible in surface static pressure distributions due to two-jet configurations exhaust-

ing normally into the crossflow. For the close spacing, the pressure distribution

resembles that induced by a single jet. As the spacing between the two jets increases,

the downstream jet is seen to have its own discrete effect on the pressure distribution.
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C ONC LUSIONS

The concept of utilizing an effective jet exit velocity and diameter, obtained by

considering a nozzle of the same mass flow and thrust but having a uniform exit veloc-

ity profile (equivalent ideal nozzle), in conjunction with an analytical model for a uni-

form jet exhausting into a crossflow has been shown to be a valid approach for deter-

mining flow fields due to jets with exit velocity stratification. For the singular case

of a low velocity core nozzle, namely a dual concentric nozzle with a dead air core,

the analysis for a jet with uniform exit velocity profile has been modified to take into

account the internal mixing in the jet core, as an improvement over the equivalent

ideal nozzle approach. This modified analysis serves as an improvement over the

equivalent ideal nozzle approach for the vaned jet as well.

The investigation has shown that induced surface static pressure distributions

due to stratified jets exhausting into a crossflow are not appreciably affected by the

details of the exit velocity stratification. This indicates that small scale testing may

be accomplished with uniform exit velocity profile nozzles, without having to take re-

course to reproducing, in detail, the stratified exit flow characteristics of lift/propul-

sive systems of V/STOL configurations.

Calculations of jet centerlines for the three types of nozzles investigated show

that, for a given velocity ratio, the jet originating from a high velocity core nozzle

penetrates the crossflow to the greatest extent, and the jet originating from the vaned

nozzle exhibits the least penetration. These trends may be observed in the test data

generated as part of this study.

Inclusion of mutual interference effects between jets in a two-jet configuration

has improved the correlation between theory and test data for two closely spaced jets

exhausting normally into the crossflow. For two jets exhausting at an angle of 60 into

the crossflow, calculations of centerlines and induced surface static pressures are in

good agreement with test data.
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APPENDIX A

APPLICATION OF COMPUTER PROGRAM

Sample Problem

The use of the computer program in determining jet deflections and the jet-

induced flow field is demonstrated for a general two-jet configuration exhausting into

a crossflow.

The two-jet configuration used in this sample problem is not one of the configu-

rations considered in the experimental phase of this study. Rather, it is a composite

configuration designed to exercise the computer program in its most general mode.

This configuration is shown in figure A1. Nozzle #1 is the annular nozzle with dead

air core descibed on pages 10-13. Nozzle #2 has the exit flow characteristics of the

vaned nozzle described on pages 13 and 14, but has an exit diameter twice as large.

Differing jet exit velocity ratios have been used for the two jets in the configuration.

Input Data for Sample Problem

The input data cards required for the sample problem are tabulated in figure A2

and are described below.

Card 1 lists five control indices. The first one, MULT=2, indicates that a two-

jet configuration is being treated. The second one, IGE_M=4, specifies that pressure

coefficients, as well as induced velocity components, are to be evaluated at all the

control points provided as part of the input. By setting IPUNCH=0, no punched output

is generated. The next two control indices deal with the calculation of mutual inter-

ference effects, as discussed on pages 16-20. NPS=I0 specifies that there will be

i0 integration intervals in each segment of each exhausting jet for which a modified

freestream velocity vector will be computed. After establishing an initial approxima-

tion using the unperturbed crossflow velocity vector, two iterations, utilizing cross-

flow velocity vectors modified by mutually induced velocities for each segment, are

specified by ITER=2.

Card 2 specifies the angle of attack, _ = 0, and angle of sideslip, fl = 20 °, in the

coordinate system of figure AI.
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Card 3 controls the number of intervals and the interval size in the numerical

integration of the equationsof motion for the jet path. The integration is carried out

in a local, jet-oriented coordinate system definedby the freestream velocity vector
and the initial jet exhaustvector (for details, see reference 12). The numerical inte-

gration routine in the program will optimize the actual integration step size utilized.
Data for the jet centerline will be printed out at the specified intervals. For the

sample problem, 80 intervals andan interval size of 0.5 jet exit diameters are chosen.

Cards 4, 5 and6 describe the upstream jet. The jet location, in the coordinate

system of figure A1, is X =-3.75, Y=0.0, Z =0.0. The jet exhaust angles _b and ¢

are 180 ° and 0, respectively. The jet exit diameter, do =1.0, and the jet exit velocity

ratio, Uoo/Ujo =0. 125, are given. The parameters on card 6 serve to describe the

exit flow characteristics of the nozzle. The ratio of effective core diameter to jet exit

diameter for the annular nozzle with dead air core is 0.40 and the jet mixing parameter

is 0.10 (see discussion, page 13).

Cards 7, 8 and 9 describe the downstream jet, which is located at X =-1. 25,

Y=0.0, Z =0.0, and again exhausts normally into the crossflow. The jet exit diameter

is 2.0 and the jet exit velocity ratio is 0. 250. The stratified exit flow characteristics

of the vaned nozzle are specified by the parameters 0.58 and 0.10 (see page 14).

Card 10 lists the parameter controlling the initial cross section of the jet re-

sulting from the coalescence of the two exhausting jets. An ellipse with a minor to

major axis ratio of 0.5 is specified. (See Appendix B for guidelines on this para-

meter).

Card 11 lists the number of spanwise stations, NS=3, and the number of control

points at each station, NC=4, where the induced flow properties are to be evaluated.

Cards 12-17 list the coordinates of the control points. All lie in the plane of the

jet exits. The coordinates for each control point appear in the order X, Y, Z. The

total number of control points is NCxNS. The listing is continuous, i.e., no new rec-

ord is required for the start of each spanwise station.

Output for Sample Problem

For the option specified on card 1, only printed output is obtained. Figure A3 (a)

shows the first page of printed output. The jet configuration being treated is identified

both by appropriate heading as well as other pertinent input data. Input controlling

the numerical integration procedure is also displayed.
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Figure A3(b) showsthe jet centerline computations for the initial approximation

(i. e., the crossflow velocity vector is unperturbed). The coordinates of the jet cen-

terline, the nondimensionalized meanjet speed, Uj/Ujo, andthe nondimensionalized
major diameter of the ellipse representing the cross section of the jet, d/do, are

printed out for each exhaustingjet up to the point of coalescence. The point of coales-

cence of the two jets is identified and initial conditions for the resulting jet are printed

out. Jet centerline information for this jet, resulting from the intersection of the two

exhausting jets, is then displayed. Jet centerline data are printed out at each inte-

gration interval specified on card 3 of the input data, since for a normally exhausting

jet at zero angle of attack the local jet-oriented coordinate system in which integra-

tion is carried out and the fixed input/output coordinate system coincide. The output

in figure A3(b) displays only a portion of the jet eenterline data generatedfor the

sample problem. Computationswould, of course, extendto Z = -40.0, which repre-

sents integration of the equations of motion over the range [Z] = 80 x0.5x 1.0 = 40.0,

as specified on card 3 of the input data.

Figure A3(d) shows the printout for the jet-induced velocity components and

pressure coefficients at the control points specified. The coordinates of the control

points are identified. The pressure coefficients and the induced velocity components

U, V, W, nondimensionalized by Uoo, are given.

The printout of figures A3(b) and A3(d) would then be repeated for the number of

iterations specified on card 1. Figures A3(c) and A3 (e) show the computations for

the second, or final, iteration for the sample problem. Note that now, with the cross-

flow velocity vector modified by mutually induced velocities for each segment, each

jet-oriented coordinate system is no longer aligned with the fixed input/output coordi-

nate system. Thus, printout no longer occurs at the regular intervals of 0.5, 1.0,

1.5, etc. The program does adjust the local-coordinate integration interval to main-

tain consistently spaced print on jet centerline data.

Applicability and Limitations

The program may be utilized to evaluate the induced flow field due to one or two

jets exhausting into a crossflow. Jet exit velocity stratification effects may be treated

by employing the velocity ratio and jet exit diameter for the equivalent ideal nozzle,

or, alternatively, by accounting for the internal mixing through the introduction of

the parameters describing jet exit flow characteristics.

For a single-jet configuration, the initial jet exhaust direction, specified by _b
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and _ , and the freestream direction, specified by _ and _, may be arbitrary. For

a two-jet configuration, the jet exits must both lie in the same XY plane and the jet

exhaust planes, defined by the freestream vector and the initial jet exhaust vectors,

must be parallel.

Comparisons between computations and experimental data have been made for

velocity ratios 0.10 __U_/Ujo__0.30, and the program may be considered most appli-

cable in this range.

The choice of variables governing the numerical integration for the jet path is

related to the velocity ratio of the problem being considered. For Uoo/Ujo -_ 0.125,

integration in the direction normal to the freestream over an extent of at least 30

jet exit diameters has been found desirable. As Uoo/Ujo increases, this may be de-

creased, as the jet penetrates less at the higher velocity ratios. For the above range

of velocity ratios an integration interval size of __0.5 jet exit diameters has been found

satisfactory.

Control points at which jet-induced properties are to be evaluated may not lie

within the jet itself, as the theory is not valid in this region. Generally, control points

positioned less than 2 jet exit diameters from the center of a jet exit should be avoided,

to minimize distortion in the computed velocity distributions.

The jet-induced velocity field may be employed to explore the interaction between

exhausting jets and adjacent supporting structures. Loading on adjacent lifting sur-

faces may be evaluated by lifting surface theory, and other techniques, such as the

transformation method, may be utilized for this purpose on fuselages. Details on the

application of these methods may be found in reference 12, where the treatment of

more complex multiple-jet configurations is also discussed.
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**_' Ir'JYTIm ',Pr_ROXIN4ATION ***

** CF'ITEPLINFS O; JET_ ] AND 2 *o

ANn COaLFSCED JET

XCOORO YCOOQD 7COflPD qal OIA XCQORO YCQOPfl 2COORD _JJ DIA

-3.7S O.O0 0.00 1.On0 l.OO -l.?q O.nO O.O0 1.000 1.00

-3.75 -.00 -.50 .946 1.12 -1.24 -.nO -.SO .q51 1.09

-3.76 -.O0 -I.00 .RQ3 1.39 -1.23 -.nl -I.O0 .oOS l.Pl

-3.7? -.01 -1._O .R6n 1.56 -1.20 -.n_ -1.50 .q61 1.36

-3.flq -.02 -?.nO .7R3 1.06 -1.16 -.o3 -2.00 .AIg 1.56

-3.66 -.06 -P.SO .716 2.5_ -I.II -.n5 -2.50 ._AO 1.7_

-3.%7 -.06 -].O0 .645 P.8S -I.0_ -.rib -3.00 ._ 6 2.09

-3.48 -.I0 -2.50 .5p6 3.14 -.9_ -.II -3.50 .7;6 2°54

-3.36 -.16 -a. O0 .535 1.44 -.86 -.16 -4.00 .663 2.7g

-3.22 -.19 -6.50 .6QI _.71 -.7_ -.lq -4.SO ., % 2.g5

-2.06 -.26 -%.00 .49? 4.11 -.59 -._6 -5.00 . ) 3.11

-?,R3 -.33 -_.%0 .41g 4.67 -.4p -.3n -5.50 . _ 3.28

-?.gR -.43 -_.nO .l_g _._6 -.21 -._7 -6.00 :W 3.65

-2.29 -.$3 -6.%0 .362 q,?] -.Of -.6S -6.50 .%06 3.63

-l.g% -.65 -7.o0 .33g _.66 .P] -._6 -7.00 .6RO 3.81

-I.57 -.79 -z.qo .319 &.O? ._g -.h4 -7.50 .65g 3.gg

-I.12 -.g6 -_.0n .3n_ _.50 .79 -.76 -8.00 .440 4.18

-.6_ -l.la -_.SO .?a4 &.q6 1.11 -.a6 -8._0 .62? 6.3a

-.n6 -1.35 -q.o0 .270 7.6_ I._5 -.38 -9.00 .605 6.%?

.67 -I.59 -Q._O .?_R 7.QO 1.83 -1.12 -g.50 .lqO 4.77

1.37 -I._6 -In.nO .266 _.60 2._3 -I.)7 -lO.O0 .]76 6.98

_.21 -?.17 -In.SO .21a _.gl 2.67 -l.a3 -lO.SO .363 5.19

PPOPFRIIFS OF CO_LFSCF_ ;FT x: 2.66 Y= -I._O 7 = -lO.Sh U/UJO:

xCOOPD YCOORD ZChOPD III DIA

2.44 -1.80 -ln.50 l.OnO 1.00

3.12 -?.06 -I1.00 .9_2 l.n_

3._S -2.31 -ll.5n ._&6 1.17

6.65 -2.60 -1_.00 .96_ I._

5.53 -2.92 -I2.SO .9?_ _.62

6.50 -3.28 -12.0O .gll 1.58

7.K8 -3.67 -13.50 .8q4 1,70

8.78 -4.11 -16.00 .877 1,7_

IO.1I -4.59 -14.50 ._3 I.R2

11.60 -_.13 -1%.00 ._.q l.aa

13.24 -S.73 -I_.SO .8_6 I.g4

I_.O_ -6.39 -16.00 .825 2.00

17.OR -7.13 -16.60 .816 ?,07

Ig._? -7.g6 -17.00 ._n4 2.1]

Pl.7g -8,_6 -17. c_) .794 2.19

26.%3 -9.86 -I_.00 .7R% ?.26

27.S6 -IO,W_ -13.50 .777 2.33

_o.gI -|?.1_ -Ig. O0 .768 2.]9

94.62 -13.51 -]q._n .761 2.46

3_.71 -15.00 -?n.O0 .7%4 2.$3

.61

(b)Jet C enterlines (InitialApproximation)

FIGURE A3. (Continued)
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0"_ ITF_ATION NtJ,WRER _, FINAL ITFPATION *'_*

¢_ CFNTFPLINFS Or .JETS I A_IO P a.e

ANn rOALFC_CED JET

XCOORD YCooPD ZCooPD I_j nlA XCnORn YCOOQD ICOORD _=.I DIA

-3.75 0.00 0.00 l.ono l.On -1.25 O.OO 0.o0 l.oOO 1.0o
-3.75 -.00 -.50 .945 1.1_ -1.25 -.qO -.Sn .053 l.Oq
-3.74 -.01 -I.00 .897 1,29 -1.23 -.01 -I.00 .qO_ 1.20

-3.72 -.01 -1.50 ,8_9 1.54 -1.21 -._2 -1.50 .R67 1.3"

-3.69 -.03 -_.00 .7R1 1.q_ -1.17 -.n3 -2.01 .P_q l.SO
-3.64 -.04 -_.49 .711 ?.59 -I.12 -.n5 -2.51 .79_ 1.69

-3.57 -.07 -P.q9 .642 P.R6 -1.06 -.OR -3.0P .76n 1.95

-3.48 -.11 -3.49 .SR3 3.15 -.99 -.10 -3.52 .724 2.32
-3.37 -.15 -3.98 .537 3.46 -.90 -.l_ -4.03 ._5 ?.74

-3.P2 -.21 -4.41 .4RR 3.79 -.80 -.lR _,54 ._46 2.88

-3.05 -.28 -4.96 .4_9 4.13 -,6R -._3 -S.O_ ._l_ 3.01

-_.R4 -.37 -5.46 .,16 4.4R -.5_ -._n -5.55 ._87 3.15

-2.60 -.48 -5._6 ,3R7 4.8_ -.40 -._7 -6.06 ._61 3.?9
-_,32 -.61 -6.46 .3_ 5,2P -.25 -.45 -6.57 ,_37 3.44
-2.02 -.77 -6.97 .3_9 %.6_ -.OR -.55 -7.08 .51_ 3.59

-1.67 -.95 -7.47 .319 A.03 .II -._5 -7.60 ._9_ 3.74

-1.27 -1.17 -7.97 .3n1 _.45 .31 -.77 -8.1_ .475 3.90

-.83 -1.41 -R.47 ._B4 6.R9 .5P -.:_0 -8.65 .45H 4.06
-.34 -1.70 -q.97 .270 7,34 .75 -l.nS -9,1_ .4_1 _.22

.22 -2.02 -9.47 .2_7 7.81

PROPERTIFS OF COALF_CFD JFT x= .49 y: -I._4 7= -9.39 tI/UJO=

xCOORD YCOOOD ZCOOPD uI DI_

• &q -I._4 -q.33 1.000 l.OO
.R8 -I.77 -9.R2 .975 1.IO

1.32 -2.02 -In.31 .9%1 1.?3

1.80 -2.29 -10.80 .9?6 1.40
2.3_ -2.57 -11.30 .901 1.6P

2.96 -2.R9 -11.79 .R77 1.70
3.66 -3.23 -1_.28 .8_S 1.76

4.44 -3.61 -I?.17 .835 1.83
5.31 -_.02 -13.27 .817 1.90
6._8 -4.46 -13.76 .801 1.97
7.37 -4.95 -14.25 .7_6 2.0_
8.59 -5.48 -14.75 .772 ?.11

9.9_ -6.06 -15.24 .759 ?.IR
II.4_ -6.70 -15.73 .749 _.25

13.10 -7.40 -16.22 .7_7 2.3_

14.95 -8.16 -16,72 .727 2.39
17.00 -9.00 -17.P1 .717 ?.4I

19.2R -9.91 -17.70 .70_ P.5_
21.79 -10.92 -I_.19 .700 ?.6_

24._7 -12.02 -IA.69 .692 2._9
27.65 -13.23 -19.18 .6R5 ?.7F

31.06 -14.56 -19_67 .67R 2.RS

(c) Jet Centerlines (Final Iteration)

FIGURE A3. (Continued)
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2.500
3.500
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o.OmO

.500

.500
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3.0n0

3.0_,0

3.000

3.0no

0"* INOUCFO VELOCTTIEC AT CONTROL POINTS ***

OPESSURE COEFFICIENTS AT CONTmOL POINTS

7_ CP II v

0.000 -.32428F-01 .71782F-02 -._7889E-02 .831g7F-02

0.000 -.86493E-01 .17141F-01 -.14641E-01 .29449E-01

0.000 .17890E.00 -.12953F÷00 -.12809E*00 -.38906F.00
0.000 .47451E-01 -.51691F-01 -.80552£-01 -.23165F.00

0.000 -.13475E.00 .24331F-01 -.27676E-01 .lO_41g_QO
0.000 .28141E*00 -.12533F,00 -.75878E-01 .99414g-01

0.000 -.84140E-01 -.45008F-01 -.|2990E+00 -.24101E*00

0.0o0 -.57098E-01 -.40000F-01 -.11096E*00 -.21464E+00

O.OnO -.6gS11F-OI .17133_-01 -.2855_E-02 .32503E-01

O.O00 -.31266F-00 .75869F-01 -.32889E-02 .49315E-01

0.000 -.31753g.00 .21874F-01 -.12495E*00 -.96571_-01

0.000 -.22782F.00 .70633F-02 -.}1097E*00 -.92347E-01

(d)Induced Flow Properties (Initial Approximation)

*** INOuCFO VELOCITIE_ AT CONTPOL POINTS ***

PPEssuRF COEFFICIENTS AT CONTPOL POINTs

X y 7_ rP lj V W

0.000

O.O00

O.O00

0.000

.500

.500

.500

.SnO

%000

_.000
3.000

3.000

-17.500

-9.500

.500
2.000

-5.5OO

-2.500
1.500

2.000

-8.500

-4.500

2.500
3.500

0.000 -.39273F-01 .89075F-02 -.39554E-02 .86616F-02

O.O00 -.11323F,00 .22725F-01 -.17886E-01 .26050F-01

0.000 .16731[*00 -.1304gF*00 -.14206E*00 -.35394g*00
0.0.0 .I0027E-01 -._7171F-01 -.g1362E-Ol -.20764E+00

0.000 -.16747E.00 .275RlV-ol -.3978_E-01 .96_78g-01

0.000 .2402_E.00 -.13156g*00 -.)0375E_00 .78991F-OI
0.000 -.I08_IE.O0 -.41924_-01 -.13572E*00 -.21321g+00

0.000 -.87509E-01 -.35152F-01 -.I1695E*00 -.IaOROF*O0

0.000 -.8440nF-01 .19387_-01 -.71775E-02 .304R7E-OI

0.000 -.30638E,00 .71950r-01 -.I0794E-01 .47478E-01

O.O00 -.31548E*00 .24862F-01 -.ll90SE.OO -.83084E-0I

0.000 -.23650E_00 .11939_-01 -.10649g_00 -.81606E-01

(e)Induced Flow Properties (Final Iteration)

FIGURE A3. (Concluded)
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APPENDIX B

MANUAL FOR COMPUTER PROGRAM

Description

The program, which is a modified version of the Jet Flow Field computer pro-

gram developed by Northrop Corporation under AFFDL contract F33615-69-C-1602

(reference 12), evaluates the induced velocity field due to one or two jets exhausting

into an arbitrarily directed crossflow.

The equations of motion governing the development of each jet are integrated nu-

merically for the position of the jet centerline, the nondimensionalized mean jet speed

and the nondimensionalized major diameter of the ellipse which represents the jet cross

section in the mathematical model. The set of first order differential equations is in-

tegrated by means of a fourth order Adams predictor/corrector routine with a Runge-

Kutta starting solution.

The induced velocity components due to each jet at a given point are then calcu-

lated by replacing each jet with a representative singularity distribution of sinks and

doublets along the jet centerline. The contributions to the induced velocity components

from the singularity distribution are summed over the length of each jet centerline.

The velocity components due to each of the singularity distributions are additive at

every control point where induced velocities are to be evaluated.

For the two-jet configuration, the distance between the jet centerlines is tested

and when intersection of the two jets is indicated, a coalesced jet is established from

continuity and momentum considerations. The coalesced jet is treated as another

independent jet in the computations for the induced velocity field.

Jet exit velocity stratification effects may be treated by utilizing the velocity

ratio and the jet exit diameter for the equivalent ideal nozzle or, alternatively, by

accounting for the internal mixing which takes place through the introduction of input

parameters A and B which are described in the discussion of the input data. These

approaches to treating different types of jet nozzles producing stratified exit flows

are discussed in detail in the section of the report dealing with velocity stratification

effects.
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For two-jet configurations, an iterative procedure involving modification of the
crossflow into which the jets exhaust hasbeenincorporated to accountfor further

mutual interference effects betweenthe two jets. The centerlines of the jets and their

representative singularity distributions are calculated, using the unperturbed uniform

crossflow in the computations. The jets are then broken into segmentsand the induced

velocity, dueto the other jet, is computedfor each segment. The crossflow velocity
vector for each segment is then modified by this inducedvelocity and the computations

are repeated. In this iteration, and subsequently, eachsegment is treated as a sepa-
rate jet exhaustinginto a uniform crossflow.

Restrictions

Jets must exhaust at some angle into the crossflow, i.e. the jet exhaust direction

may not coincide with the freestream direction.

For a two-jet configuration, the jet exits must both lie in the same XY plane,

and the jet exhaust planes, defined by the freestream vector and the initial jet exhaust

vectors, must be parallel (see figure B1 for definition of coordinate system).

Control points at which the jet-induced velocity components are to be evaluated

may not lie within the jet exhaust itself, as the formulation of the mathematical model

is not valid in this region.

Options

• Induced Velocity Computation: Coordinates of the points at which velocity compo-

nents are to be evaluated are provided as part of the input to the program. Only

the induced velocities are computed at each point specified.

• Induced Pressure Computation: Coordinates of the points at which the induced

pressures are to be evaluated are provided as part of the input to the program.

In adddition to the induced velocity components, the induced pressure in form

of the flat plate pressure coefficient is evaluated at each point specified.

• Note: If it is desired to use this modified version of the Jet Flow Field program
in conjunction with the Transformation Method program described in Vol III of

reference 12, some minor changes will be required. These consist primarily
of including subroutines TRWING, TRBODY and ADAPT as part of the program
and providing the input cards of Group B or Group C as described in Section II,
Vol. III, reference 12.The program in its present form may be used to generate
input to the Lifting Surface program described in Vol. III, reference 12 by
exercising the punch control option.
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Operating Information

Core and Time Requirements:

Computer: CDC 6600

Core: 100 K 8 to load

61.2 K 8 to execute

Time: Approximately one minute for a typical run using 250 control
points and two iterations

Additional Requirements: N one

Input Data

The input data cards required by the program are shown in figure B2. The cards

of Group I describe the jet configuration and provide parameters needed for computa-

tional purposes. The cards of Group II describe the control points at which the jet-

induced flow field is to be evaluated.

Group I: Description of jet configuration, computational parameters

Card

No. Variable Format Description

_D°

MULT I6

IGE_M I6

IPUNC H I6

NSEG I6

ITER I6

If IGE_M t

Punch control

Specifies number of jets in configuration
MULT = 1, 2

Specifies option of program being exercised

= 3 only induced velocities are
evaluated

= 4 flat plate pressure coeffi-
cients are also evaluated

If IPUNCH _ = 0 no punched output
= 1 punched output generated

Number of integration intervals per jet segment
Limit: 3__NSEG__10

Number of iterations to be performed on
mutual interference velocities. May be left
blank for single-jet configurations or two-jet
configurations with the jet exits aligned in the
freestream direction. For other two-jet con-
figurations, ITER = 2 will normally suffice
(see discussion, page 25)
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Card
No.

®

Variable Format

ALFA FI2.0BETA FI2.0

Description

Angle of attack _ (see figure B1)

Angle of sideslip #S (see figure B1) t in degrees

®

m

N I6

G F12.0

Total number of intervals to be used in the nu-

merical integration of the jet centerline
Limit: N-_100

Interval size to be used in the numerical inte-

gration of the jet centerline, given as a fraction
of the leading jet exit diameter. The integration
routine will optimize the actual step size being
utilized.

®

m

XJET F12.0

YJET F12.0

Z JET F12.0

PHI F12.0

PSI F12.0

DJET F12.0

X-coordinate of center of jet exit

Y-coordinate of center of jet exit

Z-coordinate of center of jet exit

Jet exhaust angle _ (see figure B1) I in degrees
Jet exhaust angle _, (see figure B1) I

Jet exit diameter

(_) EVELJ FI2.0 Freestream to jet exhaust velocity ratio

®

m

A FI2.0

FI2.0

Ratio of effective core diameter to jet exit
diameter for annular or vaned nozzles

(see discussion, page 11, for details)

Jet mixing parameter for aimular or vaned
nozzles (see page 11)

A and B must be set to zero for a nozzle with uniform exit flow or when treating

stratification effects by using an equivalent ideal nozzle. A corresponds to the
parameter a, and B corresponds to the parameter b in the discussion of annular
and vaned nozzles (pp 10-14).

Cards 4, 5, 6 are repeated to describe the second jet, if MULT = 2. For two-
jet configurations, the upstream jet is listed ahead of the downstream jet.
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C ard
No.

®

1

Group H:

Variable Format Description

DIA F12.0 Empirical factor for coalesced jet. Function of
jet orientation angle _2, which is the included
angle between line connecting jet exit centers and

the freestream velocity vector. If _2 < 20°, set
DIA=I. 0. If _-_20 °, set DIA=0.5.
May be left blank for single jet configuration.

Description of points where induced velocities/and pressures are computed

NS I6

NC I6

Number of spanwise control stations

Number of control points at each station

®
I X0(I) F12.0 X-ccordinate of control point ) I = 1, NCxNSY0(I) F12.0 Y-coordinate of control point I Limit: I__600

Z0(I) F12.0 Z-coordinate of control point

Output

Both printed and punched output may be obtained.

Printed Output

The jet configuration being treated is identified both by appropriate heading

and by printout of pertinent input information. Jet centerline data printed out for

all the jets in the configuration, including the jet resulting from the coalescence of

two exhausting jets, consists of the centerline coordinates, the nondimensionalized

mean jet speed, and the nondimensionalized major diameter of the ellipse representing

the jet cross section. The point of intersection of the two exhausting jets in a two-jet

configuration is identified, and the initial conditions for the resulting merged jet

are given.

The induced velocity components U, V, W, all nondimensionalized by U_, are

printed out for each control point specified as part of the input. Additionally, if

IGEOM = 4 was specified, the fiat plate pressure coefficient, computed by using an

image system, is printed out at each control point.

For a two-jet configuration with the jets not aligned in the freestream direction,

where a number of iterations are specified to account for mutual interference _ffects
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betweenthe two jets, the information described above is printed out for each iteration.

An example of the printout for a typical problem involving the iterative process to

account for mutual interference effects may be found in Appendix A.

Punched Output

Punched cards may be generated which can be utilized as part of the input to the

Lifting Surface program described in reference 12, Vol III. The nondimensionalized

velocity component W is punched out for every control point. This can serve as an

approximation to the tangent of the jet-induced downwash angle for small angles of

attack. Thus, the punched output from this option can serve as the downwash matrix

[W] in the input to the Lifting Surface program.

Programming Information

Logical Structure

The logical flow chart for the program is shown in figure B3.

Purpose of Subroutines

BIT EST -

SEGMNT -

INTEG

MODIFY -

C_MP -

MUINT -

BALANC -

FIX

_UTPT }__UTPTI

VELg_C -

DERIV

PRT_UT -

TRANS1 } _TRANS2

VEL1 -

Tests for blockage and intersection of jets for two-jet configurations

Breaks jet into segments for inclusion of mutual interference effects

Integrates equations of motion for the jet path

Computes mutually induced velocities

Computes extent of overlap between jets in a two-jet configuration

Computes modified freestream vector

Establishes initial conditions for the coalesced jet from a momentum
balance

Limits maximum value of mutually induced velocities

Transforms local coordinates to program coordinates

Evaluates induced velocities at one control point due to one
singularity distribution

Computes derivatives for ADAMS

Prints out computed answers

Transforms input coordinates to program coordinates

Computes effective velocity ratio for the downstream jet in a two-
jet configuration
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TRANS3

PLANE

ADAMS -

C FCAL
C FCAL1

R_TATE -

XPR_D -

SCL

Transforms program coordinates to output coordinates

Computes point of intersection between a given plane and a
given line

Adams predictor/corrector routine

Computes direction cosines for jet-centered coordinate system

Transforms program coordinates to jet-centered coordinates

Computes cross product of two vectors

Solves a system of three simultaneous equations

Interdependence of Subroutines

The Calling-Called matrix for the program is shown in figure B4.
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FIGURE B3. LOGICAL FLOW CHART
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BITEST

SEGMNT

INTEG

C_MP

M_DIFY

VZLCC
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FIGURE B4. CALLING-CALLED MATRIX
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APPENDIX C

LISTING OF COMPUTERPROGRAM

C
C
C
C
C

C

PROGRAM STRJET IINPUTtOUTPUTtPUNCHtTAPES=INPUTtTAPE6zOUTPUTt
I TAPET=PUNCH)

EVALUATION OF JET-INDUCED VELOCITY FIELD (MAXIMUM OF 2 JETS)
BOTH JETS CAN HAVE STRATIFIED EXIT FLOW
INITIAL JET EXHAUST DIRECTION MUST BE THE SAME FOR BOTH JETS

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

DIMENSION

DIMENSION

D IMENSI ON

DIMENSION
O IMENSION

DIMENSION

Xl (II,I0) tZl(ll tlO) tUJl( II, IO}t DI {II, I0) tDXDZI( llt I0}

X2( II ,I0) ,Z2(II,IO! ,UJ2( II, IO}, D2{ II, I0) tDXDZ2( II, 10)

XIT(100) •Z1T( IOOItUJ1T( IOO).DIT ( IOO)•DXDZ1T( 1001
X2T(IOO)tZ2T(IOO)tUJ2T(]OO)tD2T
X3(IOOItZ3(IOO)tUJ3(IOO)tD3([O0
XBASE(IOO)•YBASI(IOOItZBASIIIO0
XBAS2(IOO),YBAS2(IOO
XBS]T(IOO),YBS[T([OO
XBS2T(IOO)tYBS2T(IOO
XBAS3(IOO)_YBAS3(IOO
CFI(3,3,10),CF2(3,3,
UUEI(lI,IO),UUE2(IIt

IIO0),DXDZZT(|OO)
),OXDZ3llO0)
)

)•ZBAS2IIO0)
),ZBSIT(IO0)
)•ZBS2T(IO0)
),ZBAS3(IOO)
IO}•CFITI3,3}tCFZTI3t3)tCF3(3,3)
IO}•UUEIT(IOO)tUUE2T{IOO),UUE3(100)

DIMENSION SDXDZI(
I SDXDZ3(IO0)

DIMENSION PAR(I§)

DIMENSION XJl(lO)
DIMENSION XJ2(IO|
DIMENSION ALFQI(I

I GETQ2{IO)
DIMENSION DIRI(

I UFACT2{IO}

DIMENSION UI(IO

IltlO)•SDXOZ2(II,IO),SXZIT(IOO)tSXZ2T(IO0),

,YJI|IO)tZJIIIO)tDJETIIIO),VELJI(IO)
,YJ2(IO),ZJ2(IO),DJET2(IO),VELJ2[lO)
O),BETQI(IO),GETQI(IO)tALFQ2(IO),BETQ2{IO),

IO),DIR2(IO),ZSOI(IO),ZSO2(IO),UFACTI(IO),

)•VI(IO),WI(IO)tU2{IO)_VZIIO),W2(IOI

COMMON/BLKI/CFI,CF2•CFIT_CF2T,CF3,UUEI,UUE2,UUE1T,UUE2T,UUE3,PAR
COMMON/BLK21XltZItUJItDI,DXDZI_X2,Z2tUJ2, D2,DXDZ2
COMMON/BLK3/XIT,ZlT,UJ1T,DIT,DXDZlT,X2TtZ2T,UJ2T,D2TtDXDZ2T
COMMON/BLK6/X3tZ3,UJ3,O3,DXDZ3
COMMON/BLKS/XBASItVBASItZBASItXBAS2,YBAS2tZBAS2,XBAS3tYBAS3, ZBAS3

COMMON/BLK6/XBSITtYBSITtZBSZTtXBS2TvYBS2TtZBS2T

COMMON/BLK7/ALFQtBETQtGETQ,FItF2tF3tVKDNST

COMMON/BLK8/ALFQItBETQltGETQI,ALFQ2tBETQ2•GETQ2
COMMONIBLKqlMULT•IHOLDI,KOUNTI,IONEtITWOtITHR,NI,N2,N3, IFIXI

CDMMON/BLKIO/XJI•YJltZJItDJETI•VELJI,XJZtYJ2, ZJ2,DJETZ,VELJ2
CDMMON/BLKII/XJITtYJ1TtZJIT•DJETITtVELJIT•XJ2TtYJ2TtZJ2T,DJET2T.

1 VELJ2T
COMMON/BLK12/XJ39YJ3tZJ3tDJET3tVELJ3
COMMON/BLK13/G,G2,G3,STEPI,STEPI2,STEPI3

73



C

C
C
C

C
C
C

501
502
503

6

690

X4
603

].5
604

17

606

18

CONNON/BLK].4/V2XItV2Y].,V2Z].,V2X2,V2Y2,V2Z2
CONMDN/BLKIS/DIR].,DIR2tOIRITtOIR2TtDR3,ZSOI,ZSO2,UFACTltUFACT2
COMNON/BLK16/SDXDZ1,SDXDZ2tSDXDZ3, SXZIT,SXZ2T
COMMON/BLK17/GStA,BtC,ISItIS2,NPS
COMMON/BLK].8/UItV].,WI,U2tV2,W2
COMMDN/BLKlq/D|ARAT,DREF

COMMON/BLK20/AliB1,A2,B2,ZSTORItZSTOR2

DIMENSION
DIMENSION
DIMENSION

XOi6OO),YO(6OO)tZOf6OO)eU(6OO)wV(6OO),N(600)
CP(600)
PHID(31,PSID(3)

SET PARAMETERS

El = .45
E2 = .08
E3 = 30.
Pl = 3.16].6
C1 = 2.26

READ IN JET DATA

READ (5,501) MULT,IGEOMtIPUNCHtNPS,NOIT
READ I5t502) ALFA,BETA
READ (5t503) NtGS
FORMAT (1216)
FORMAT i6FI2oO)
FORMAT (I6,F].2.0)
READ (5,502) XJI(I),YJI(1),ZJI(I),PHID(1)tPSID(I),DJETI(1)t

1VELJ].(1)
READ (5,502)
IF (MULT-2)
READ (5,502)

1VELJ2(I)
READ (5,502)
CONTINUE
READ (5,502)

AliBI

4tZt2
XJ2(].),YJZ(II,ZJZ(1),PHID(ZItPSID(Z),DJET2(I),

A2,B2

DIARAT
WRITE 16,690)
FORMAT (IHI)
IF (MULT-2| 16,].5,].5
HRITE (6,603)
FORMAT (IHO_44X,32H_#_
NI = N+I

GO TO 17
WRITE (6,606)
FORMAT (1HO,45X,29H_
CONTINUE
WRITE (6,606) X

]. DJET].(L)
FORMAT (IHO, ZSX

I12X,SHU/UJO,11X
21X,FI4.4tlX,FI4

IF (MULT-2) 20,
WRITE (6,607) X

]. DJET2(1)

SINGLE JET CONFIGURATION ***/)

THO-JET CONFIGURATION ***/)

Jl (1) ,YJ]. ( ].),ZJI (1) ,PHID(I ), PSID(].), VELJ l(].),

t4HXJET,11Xt4HYJET,].IX,4HZJET, 12X,3HPHI,12X,3HPSI,
,2HDO/8XtF15.4,1X,FI4.4,1X,F14.4tlX, F].4.4,1X, F14.4,
.41
18,18
J2(].)tYJ2(1),ZJ2(I),PHID(Z),PSIDK2),VELJ2(1),
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6O7

20

kl
43

610
k4
45

611

46

612

42
47

613

48
49

6].4

55
615

56

608

6O9

57
6116

58

31

FORMAT (8XeFlS.4tlXtF14o4,lXtFX4.4tIXtFX6.4, XXtF14.4tlX_FI4.4,1Xt
I F14.4)

CONTINUE
IF (A1) 41,61,42
IF (MULT-2) 63t64,66
WRITE I61610)
GO TO 56
FnRMAT ([HOt/ISXt44HNOZZLE HAS UNIFORM EXIT FLOW CHARACTERISTICS)
IF (A2) 65,45,66
WRITE (6,611)
GO TO 56
FORMAT (LHOt/15XeS[HBOTH NOZZLES HAVE UNIFORM EXIT FLOW CHARACTER[

1STICS)
WRITE (6,612) AZtB2
GO TO 56
FORMAT ([HOt/ISXe53HNOZZLE OF JET I HAS UNIFORM EXIT FLOW CHARACTE

[RISTICS/ESXtS2HNONUNIFORM EXIT FLOW PARAMETERS FOR NOZZLE OF JET 2
2:,3Xt4HA2 =,FS.3,3X,THB2 =tF6o3)

IF (MULT-2) 47,48,68
WRITE (6,61]) AliBI
GO TO 56
FORMAT (IHO,/[SX,47HNONUNIFORM EXIT FLOW PARAMETERS FOR THE NOZZLE

I=t3X,4HA[ =,FS.3t3Xt4HB[ =,F6.3)
IF (A2) 69,69,55
WRITE (6,614) A1,81
GO TO 56
FORMAT (IHOe/ZSX,52HNONUNIFORN EXIT FLOW PARAMETERS FOR NOZZLE OF

1JET I:,3X,4HA[ =,F5.3,3Xt4HB1 =tF6.3/X5XtS3HNOZZLE OF JET 2 HAS UN
21FORM EXIT FLOg CHARACTERISTICS)

WRITE 16,615) AloB1,AZ,B2
FORMAT (IHO,/15Xe52HNONUNIFORM EXIT FLOW PARAMETERS FOR NOZZLE OF

1JET l:,3X,4HA1 =,FS.3,3X,4HB1 =,F6.3/15X,52HNONUNIFORM EXIT FLOW P
2ARAMETERS FOR NOZZLE OF JET 2=,3X,4HA2 =,FS.3,3X,4HB2 =,F6.3)

CONTINUE
WRITE (6e608) ALFA,BETA
FORMAT(IHOt/[SX,19HANGLE OF ATTACK =t[X,FT.ZI[SXeIgHANGLE OF SIO

IESLIP =,lX,FTo2)
WRITE (6,609) NeGS
FORMAT(1HO,/15Xt32HNUMBER OF STEPS IN INTEGRATION =tIXtI3t/ISX, 22H

[INTEGRATION INTERVAL =,IXeFS°2tlXe[8HJET EXIT DIAMETERS)
IF (MULT-2) 58,57,57
WRITE (6,616) OIARAT
FORMAT (IHO,/[SXt88HINITIAL RATIO OF MINOR TO MAJOR DIAMETER OF EL

[LIPTICAL CROSS SECTION OF COALESCED JET IS,F4.[)
CONTINUE
CALL TRANS[ (MULT,ALFA,BETAtPSED)
DO 31 [=[tlO
UI(1) = O.
Vl(I) = O.
WI(I) = O.
U2(I) = O.
V2(I) = O.
W2(I) = O.
ITER = 0
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C
C
C

*** START OF ITERATION LOOP **_,

30

33

34

901

902
903

6

CONTINUE
DO 8 I=IoMULT
PHI = PHID(1)*.O174533
PSI = PSID(I)*,.0176533
IF (I-2) 5,6t6
CONTINUE
V2XI = SIN(PHI)*COS(PSI)
V2Y1 = COSIPHI)
V2ZI : SIN(PHI)*SIN(PSI)
CALL NUINT (ALFQ,BETQ,pGET(:,UI(I)oVIll)tHI(I)tALFQIII)tBETQI(1),

1 GETQI(I)eUFACTIlI))
CALL CFCALI (ALFOI(I)tBETQI(I)tGETQI(I)eVZXI,V2YI,V2ZItCFI,I)
CALL ROTATE (V2XloV2YI,V2Z1,CFI(Itltl),VXT,VYT,VZTtO)
UJI(1,1) = 1-
01(1,1) = 1-
X1(1,1) = O°
ZI(1,1) = O.
DXDZI(1,1) = VXT/VZT
XBASI(1) = XJI(1)
YBASI(I) = YJI(I)
ZBASI(I) = ZJl(1)
IF lITER) 34,33,36
A = CFl(Stlel|
B = CF1(3,2,1)
C = CFll3t3,1)
C ONT I NUE
COSTHP = [./SQRT(I.+(VXT/VZT)**2)
COSTH = A*VZXI +8*V2YI ÷C*V2ZI
G = GS
G = G*COSTHP/COSTH
STEPI = .2*G
OIRI(I) = 1.
ZSOIII) "" O.
B1 = B1/CQSTHP
D = ATAN(VXT/VZT)
IF (VXT) 901,902t902
F1 = .3"COS(0)
GO TO 903
FI = .3/COS(0)
CONTINUE
GO TO 8
C ONT I NUE
V2X2 = SIN(PHI)*COS(PSI)
V2Y2 = COS(PHI)
V2Z2 = SINIPHI)*SINIPSI)
CALL NUINT (ALFQtBETQ,GETQtUZ(I)tV2(I),W2(1),ALFQ2(1)tBETQ2(I),

1 GETQ2(I) tUFACT2(1) )
CALL CFCALI (ALFQ2(1),BETQ2(I)oGETQ2(IItVZX2,V2Y2,V2Z2,CF2tl)
CALL ROTATE (V2X2,V2Y2tV2Z2tCF2(1,1,1),VXT,VYT,VZT, O)
UJ2(1,1) = 1-
D2(1,1) = 1o
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C
C

C

X2(1,1) = O.
Z2(l,l) = O.
DXDZ2(I,I; = VXTIVZT
XBAS211) = XJ2{l)
YBAS211) = YJ2(1)
ZBAS2{1) = ZJ2(1)
COSTHP = I./SQRT(I.+(VXT/VZT)_'_2|
COSTH = AtV2X2 ÷BtV2Y2 +C_V2Z2
G2 = GS_'DJETI(1)/OJET2fI)
G2 = G2*COSTHP/COSTH
STEPI2 = .2_G2
DIR2(I) = I.
ZS02ll) = O.
B2 = BZ/COSTHP
D = ATAN|VXTIVZT)
IF (VXT) 904,905,905

906 F2 = .3_COS(D)
GO TO 906

905 F2 = .3/COS(0)
906 CONTINUE

8 CONTINUE
IF {ITER) 9,7,9

7 CALL VEL[ (MULTtALFAtVKI)
IF (MULT-2) 12,11,11

11 CONTINUE

COMPUTE INITIAL OVERLAP

3
13

23
10

12
9

CALL XPROO (V2XI,V2YI,V2ZI,ALFQ, BETQtGETQ, CFNX,CFNY,CFNZ)
CALL XPROO (V2X2,V2Y2tVZZ2tALFQ,BETQ,GETQtXT2,YT2,ZT2)
CALL PLANE (CFNXtCFNY,CFNZ,XJI(I),YJI(I)tZJI(I),XT2,YT2,ZT2,

I XJ2(I),YJ2il},ZJ2(I),XI,YI,ZI)
DIST = SQRT((XI-XJ2{1))_2 +(YI-YJ2(I))_$2 +(ZI-ZJ2(I})**2)
R = DJETIiI)_.5-OIST
FACT = (I.O÷R/(OJET2{1)_.5})_.5
IF (FACT-I.) 3,10,10
IF (FACTI 10,10,13
TEST1 = OJETI(1)$.5÷DIST
TEST2 = OJET2(I)t.5
IF (TESTI-TEST2) 23,10,10
FACT = DJETI(1)/DJET2(I)
OVLP = I.-FACT
GO TO 9
OVLP = Oo
CONTINUE
PAR(l) = El
PAR(2) = E2
PAR(3) = E3
PAR(7) = PI
PAR(8) = CI
PAR(9) = 1.
PAR|11) = AI
PAR{12) = Bl
PAR(13} = A2
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24

22
C
C
C

Z5

26

2I
27

C
C
C

6O
C
C
C

PAR(14) = B2
ZSTOR]L = O.
ZSTOR2 = O.
N2 = 0
N3 = 0
IHOLDI = 0
KOUNT1 "- O
TNEG = BETQ*VZY1
DREF = DJETI(I)
[FIX1 = 0
KSEG = 1
DO 50 I=I,N
lONE = I

ITt_O = I

VKONST = VKI
IF (MULT-2) 24122,22
ISl = I-(KSEG-I)_NPS
GO TO 27

IF {IHOLDI-I) 25t25,21

TESTS FOR BLOCKAGE AND INTERSECTION,PART OF INTEGRATION LOOP

CALL BITEST (ItTNEGtKSEG)
IF {IFIXI) 27,27e26
CALL SEGMNT {I,KSEG,I)
NL = IFIXI-(KSEG-I)_NPS
CALL SEGMNT ([,KSEG,2)
CONTINUE

INTEGRATION OF THE EQUATIONS OF MOTION FOR THE JET PATH

CALL INTEG {I,TNEG,KSEG)
IF (IHOLOI-2) 28t50,50

28 IF (I-N) 29,50,50
29 IF ([-KSEG_NPS) 50,40,40
40 CALL SEGMNT (I,KSEGt3}
50 CONTINUE

IF [IFIXI) 51,51t52
51 NL = ISI+I
52 IF {MULT-2) 60,53,53
53 IF (OVLP-°OI) 60,60e56
56 CONTINUE

CALL MODIFY {KSEGtTNEGtNL)
CALL FIX (UItVItWI,U2tVZ,W2tKSEG)
IF (ITER) 60,60,70
CONTINUE

70

READING IN CONTROL POINTS HHERE INDUCED VELOCITIES WILL BE COMPUTE

READ {5,501) NSNAX,NC
NK = NSMAX*NC

READ {5,502) (XO(I)tYO(I),ZO{I), I=IeNK)
CONTINUE
CALL TRANS2 (YOtZOeNK|

78



C

C

C

81

82
I12

Ill

113

114

83

I15

87

EVALUATE INDUCED VELOCITIES AT EACH CONTROL POINT

IF IMULT-2) 90,91,91
91 KTRI = 0

KTR2 = 0
IF (TNEG) 96,96,97

96 KTR2 = KOUNTI
GO TO 90

97 KTR1 = KOUNTI
90' CONTINUE

IF {NL-2} 71t71t72
71 KSEG1 = KSEG-1

GO TO 75
72 KSEG1 = KSEG
75 CONTINUE

DO 80 J=I,NK
U|J) = O.
VlJ) = O.

N(J) = O.
DO 80 I=ItKSEG[
PARr6) = VELJI{I)
PAR(5) = F1
PAR{9} = DIRI|I)
IF (MULT-2| 81t82182
IF (I-KSEG) 113,114t116
IF (I-1) 111,112t111
NF = NPS÷I-KTR1
GO TO 83
IF (I-KSEG) 113,116,116
NF = NPS÷I
GO TO 83
NF = NL
CONTINUE
CALL VELOC [I,NFtZI(ItI),XI(I,I),DXDZI(I,I)tUJI(I,I)tDI(I,I),

I UUEI(I,I)tXJIII}tYJI(I),ZJI{I),DJETI(I)tCFI(I,I,I},PAR,XO(J),
2 YO(J)tZO(J),UINDtVIND,WINOtSOXDZI(Itl))

U(J) = U(J)+UINO
V(J) = V(J)+VIND
W(J) = W(J)+WINO
IF (MULT-2) 80,86,86

86 CONTINUE
PAR(6) = VELJ2(I)
PAR|5) = F2
PAR(9) = OIR2(I)
IF (l-l) 87t115,87
NF = NPS+I-KTR2
CONTINUE
CALL VELOC IltNFtZZ(ltI)tXZ{ltl),DXOZZ(ltl),UJZ(Itl),D2(ltl),

I UUE2(ltI)tXJ2(IItYJZ(II,ZJ2(I),DJETZ(I),CF2(I,I,I)tPAR,XO(J|,
2 YO(J)tZO(J),UIND,VINO,WIND,SDXOZ2(ItI))

U(J) = U(J)÷UIND
V(J) = V(J)+VlND
W(J) = W(J)÷WIND

80 CONTINUE
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89

120
88

C
C
C

92

85
93

C
C
C

C
C

C

IF (IHOLDI-I) 88,88,89
CONTINUE
PAR(b) = VELJ3
PAR(5) = F3
PAR(9) = DR]
N3 = ITHR+I
DO 120 J=ItNK
CALL VELOC (1,N3tZ3tX3tOXDZ3tUJ3,D3,UUE3tXJ3,YJ3, ZJ3tOJET3t

1CF3,PARtXO(J),YO(J)tZO(JItUINO,VINOtWINDtSOXOZ3)
U(J) = U{J}+UIND
V(J) = V(J)+VIND
WiJ) = W(J)+WIND
CONTINUE
IF iIGEOM-3) 93,93,92

COMPUTE FLAT PLATE PRESSURE COEFFICIENTS

DO 85 J=I,NK
CPT = 4.*(UIJI*(ALFQ_UiJ)I÷W(JI*IGETQ÷W(J)))
CP(J) = I.-(ALFQ*ALFQ ÷GETQ*GETQ +CPT)
CONTINUE
CALL TRANS3 (YO,ZO,VtW,NKtKSEG,NPStTNEGtNL)

PRINT OUT CONPUTED RESULTS

CALL PRTOUT (IGEOMtXO,YO,ZOtUtVtW,CPtNK,ITERtNOIT,OVLP)
IF (OVLP-.OI) 94t94t98

98 IF fOVLP-.99) 77,77,79
77 DO 78 I=ItKSEG

UI(I) = UIIII*OVLP
VI(I) = VIII)*OVLP
WIII)= WIII)_OVLP
U2(I) = U2(1)_OVLP
V2(I) = VZ(II*OVLP

78 W2II) = WZII)*OVLP
79 CONTINUE

IF IITER-NOIT) 35,94,94
35 ITER = ITER÷I

GO TO 30

*** END OF ITERATION LOOP is,

94 CONTINUE
IF (IPUNCH) 95,99,95

C
C
C

95

I01

PUNCH OUT DATA FOR LIFTING SURFACE PROGRAM

DO 101 I=I,NK

WII) = -W(1)
Jl = 1
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102
TlO

99

DO 102 I=I,NSRAX
J2 = JI+NC-1
WRITE (7,710) (WlJ)tJ=J1,J2)
J l = J2÷l
FORMAT (5E16.7)
CONTINUE
STOP
END

C
C

C
C

C

C

C

SUBROUTINE SEGMNT (I,KSEG,IND)

IND=I, ESTABLISHES INITIAL CONDITIONS FOR
IND=2, INTEGRATES CONTINUATION JETS
IND=3, ESTABLISHES INITIAL CONDITIONS FOR

CONTINUATION JETS

A NEW SEGMENT

EXTERNAL DERIV

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
OI NENSION
DIMENSION
DIMENSION

XI(ll,lO),ZI(II,10),UJl(ll,IO),DI(II,10),DXDZl|II,10}
X2(ll,IO),Z2(II,lO),UJ2(lI,IO),O2(II,IOI,DXOZ2(11,IO)
XIT(IOO),ZIT(IOOI,UJIT(IOO),DIT(IOO),DXDZIT[IOO)
X2T(IOO),ZZT(IOO),UJZT(IOO),D2T
X3(IOO),Z3(IOO),UJ3(IOO),D3(IO0
XBASI(IOO)tYBASI|IOO|,ZBASI(IO0
XBAS2(IOO}tYBASZ(IOOI,ZBAS2(IO0
XBS1T(IOO),YBSIT(IOO),ZBSIT(IO0

(IOO],DXDZ2T(IOO)
),DXDZ3(100)
)
)
)

XBS2T(100) ,YBS2T(IOO} ,ZBS2T(100)
XBAS](IOO) tYBAS3{1OO),ZBAS3(100)
CF1(3,3,10) ,CF2 (3,3,10), CFIT( 3, 3), CFZT( 3, 3 ) t CF3( 3, 3)
UUEI( 11,10) ,UUE2 (II,10),UUEIT (100),UUE2T( 100} ,UUE3([O0)
SDXDZl(11,10) ,SDXDZ2(ll, 10),SXZIT (100), SXZ2T(100),

I SDXDZ3(IOO)
DIMENSION PAR(15)
DIMENSION XJI(IO),YJIilO),ZJI(IO)tDJETI(IO),VELJI(IO)
DIMENSION XJ2(IO)tYJ2ilO|tZJ2(IO),DJET2(IO)tVELJ2(IO)
DIMENSION ALFQI(IO),BETQI(IO)tGETQI(IO),ALFQ2(IO),BETQ2(IO),

I GETQZ(IO)
DIMENSION DIRI(IO)tDIRZ(IO),ZSOI(IO|,ZSO2(IO)tUFACTI(IO)t

1UFACT2(IO)
DIMENSION UI(IOI,VI(IO),WI(IO),U2(IO),V2(IO),W2(IO)

COMMON/BLK1/CFItCF2,CF1T,CF2T,CF3,UUEI,UUEZ,UUEIT,UUE2T,UUE3tPAR
COMMON/BLKZIXI,ZI_UJltDI,DXDZI,X2,Z2,UJ2,D2,DXDZ2
COMMON/BLK3/XlTtZ1T,UJIT,DIT,DXOZIT,X2TtZZT,UJZT,D2T,DXDZ2T
COMMON/BLK6/X3tZ3,UJ3tD3,DXDZ3
COMMON/BLKS/XBASI,YBASItZBASItXBAS2tYBASZtZBASZ,XBAS3tYBAS3,ZBAS3

COMMON/BLK6/XBSIT,YBSIT,ZBS1T,XBSZT,YBS2T,ZBS2T
COMMON/BLKT/ALFQ,BETQtGETQtF1pF2,F3,VKONST
COMMON/BLK8/ALFQltBETQItGETQ19ALFQ2_BETQ2tGETQ2
CONMON/BLK9/MULT,IHOLDItKOUNTItIONE, ITWO, ITHR_NI,N2,N3tIFIXl
COMMON/BLKIO/XJItYJItZJltOJETI,VELJI,XJ2, YJ2tZJ2tDJET2,VELJ2
COMMON/BLKII/XJITtYJITtZJIT,DJETIT,VELJ1T,XJ2T,YJ2T, ZJ2T, DJET2T_

I VELJ2T
COMMDN/BLK12/XJ3,YJ3,ZJ3,DJET3,VELJ3
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C

C

26

321

314

320
325

COMMONIBLK131G,G2tG3tSTEPItSTEPI2tSTEPI3
COMMON/BLKlk/V2X£tV2YltV2Z[,V2X2,V2Y2tV2Z2
COMMON/BLKI5/DIRItDIR2,DIRITtDIR2TtDR3tZSOI,ZSO2,UFACTltUFACT2
COMMON/BLKI6/SDXDZ1,SDXDZ2,SDXDZ3, SXZIT,SXZ2T
COMMON/BLKITIGStA,B,CtISI,ISZtNPS
COMMON/BLKI81UltVItWItU2,V2,W2
COMMON/BLK20/AI,BItA2tB2,ZSTORI,ZSTOR2

DIMENSION FIN(6|,FOUT(4)

IF (IND-2) 26,21,40
NL = IFIXI-(KSEG-1)_NPS
XJ1T = XBASItlONE)
YJ1T = YBASI(IONE)
ZJ1T = ZBASI(IONE)
UJITll) = 1.
DLTLLI = L.
XIT(II = O.
ZIT(1) = O.
CALL CFCAL [ALFQ,BETQtGETQtV2XI,V2YItV2ZItCFIT}
CALL ROTATE {V2XItV2YEtV2ZLtCFIT,VXT,VYTtVZT,O}
DXDZITII) = VXT/VZT
XBSIT|II = XJIT
YBSITI1) = YJIT
ZBSIT(1) = ZJIT
DJETIT = DI(NLtKSEG)_DJETI(KSEG)
VELJIT = UJI|NLtKSEG)_VELJI|KSEG)
GIT = GS_OJETIII)/OJETIT
STEP1T = GIT_.2
IF (DIRI(KSEG)-.2501) 320,320,321
ZOVM = {ZSOIIKSEG)÷ZI(NL,KSEG}}I(VELJI(KSEG}_UUEI(NL-I,KSEGI)
IF (ZOVM-FI) 314,314,320
DIRIT = I.-.75_ZOVM/FI
GO TO 325
OIRIT = .25
CONTINUE
XJ2T = XBAS2|ITWO}
YJ2T = YBAS2|ITWO)
ZJ2T = ZBAS2(ITWO}
UJ2T|I) = 1.
D2T(I) = 1.
X2T|I) = O.
ZZT(I! = O.
CALL CFCAL (ALFQ,BETQ,GETQ,V2X2,V2Y2,V2Z2,CF2T)
CALL ROTATE(V2X2,V2Y2tV2Z2tCF2T.VXT,VYTtVZT,O)
DXDZ2T|I) = VXT/VZT
XBS2T|I) = XJ2T
YBS2T(I) = YJ2T
ZBS2T(1) = ZJ2T
DJET2T = 02|NLtKSEG)_DJET2|KSEG)
VELJ2T = UJ2(NLtKSEG)_VELJ2(KSEG)
G2T = GS_DJETI(I|/DJET2T
STEP2T = G2T_.2
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33l

324

330
335

21

4O

IF (DIR2(KSEG)-.2501) 330,330,331
ZOVM = (ZSO2(KSEG]+Z2INLtKSEG))/(VELJ2(KSEG)*UUE2(NL-1,KSEG))
IF (ZOVM-F2) 326,324,330
OIR2T = I.-.75*ZOVM/F2
GO TO 335
OIR2T = °25
CONTINUE
GO TO 50
CONTINUE
IA = I-IFIXI÷I

PARi6] = VELJ1T

PAR(5) = F1
PAR(9] = DIRIT
PARIIS) = 3.
UUEIT(IAI = 1.
Z1T(IA÷I| = ZIT(IA]÷GIT
FIN(I) = UJIT(IA;
FIN(2) = DIT(IA)
FIN(3) = XIT(IA)
FIN(6] = DXDZIT(IA)
CALL ADAMS (6,ZIT(IA),ZIT(IA+I),STEP1TtGITt999, I°OE-O6, I.OE-05,0,

1 FIN,FOUT,PAR,DERIV)
UJIT(IA÷I) = FOUT(I]
DIT(IA+IJ = FOUT(2)
XlT(IA+I) = FOUT(3]
DXDZ1T(IA+I| = FOUT(6)
SXZITIIA_I) = PARilO)
CALL DUTPT |XIT(IA+I)tZIT(IA+I)tOXDZIT(IA÷I)tCFITtDJETIT, XJIT,

I YJIT,ZJIT,XBSIT(IA÷II,YBSITiIA+II,ZBSIT(IA÷I},DUMtDUMtDUM)
PAR(6) = VELJ2T
PAR(5_ = F2
PAR(9) = D|R2T
PAR(15] = 3.
UUE2T(IA) = 1.
Z2TiIA+I| = Z2T(IA)+G2T
FIN(I) = UJ2T(IA]
FINI2) = D2T(IA)
FIN(3) = X2T(IA)
FIN(4) = DXOZ2T(IA)
CALL ADAMS (4,Z2T(IA),Z2T(IA÷I|tSTEP2T,G2T,999, l°OE-O6,1.OE-05,0,

1 FIN,FOUT,PAR,DERIV)
UJ2T(IA+I) = FOUT(I)
D2T(IA+I) = FOUT(2_
X2T(IA÷I) = FOUT(3)
DXDZ2T(IA÷I| = FOUT(6)
SXZ2T(IA+I| =PAR(IO)
CALL OUTPT (X2T(IA+I],Z2T(IA÷II,DXDZ2T(IA+I_,CF2T,DJET2T, XJ2T,

1 YJ2T,ZJ2T,XBS2T(IA+II,YBS2TIIA+I),ZBS2T(IA+I)tDUM,DUM, DUM)
GO TO 50
CONTINUE
KSEG = KSEG÷I
XJIIKSEG) = XBASIIIONE+I)
YJI(KSEG) = YBASIIIONE+I}
ZJI(KSEG) = ZBASIIIONE÷I|
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422

423

421

414

42O
425

45O

UJI(I_KSEG)
OI(I,KSEG)
Xl(I,KSEG)
ZI|I,KSEG}
CALL NUINT

I BETQI(KSEG)
CALL CFCALI

I CFI,KSEG)
CALL ROTATE

= 1.
= lo

= Oe

= O.

(ALFQtBETQtGETQ,U1 (KSEG) tVl (KSEG) ,WI (KSEG) • ALFQI (KSEG),
_GETQIiKSEG)_UFACTI(KSEG))
(ALFQI[KSEG),BETQI(KSEG),GETQI(KSEG),V2XI,V2YI,V2Z1,

(V2XItV2YI,V2ZI,CFI(I,I,KSEG)tVXT,VYT,VZTtO)
DXDZI(I,KSEG) = VXT/VZT
DJETI(KSEG) = DI/ISI+ItKSEG-I)*OJETI(KSEG-I)
VELJIIKSEG) = UJI(ISI+I,KSEG-I)*VELJI(KSEG-I)
COSTHP = 1./SQRT(1.÷(VXT/VZT)*e2)
COSTH = A_V2XI ÷B*VZYI ÷C*VZZl
G = GS*DJETIiI)/OJETI(KSEG)
G = G_COSTHP/COSTH
STEP[ = G*°2

IF (PAR(II)) 623t623t422
ZSTOR1 = ZSTORI÷ZI([SI÷ltKSEG-I)_DJETI(KSEG-I)/DJETI(1)
PAR(ll) = (AI-BI_ZSTOR1)_DJETI(1)/DJETI(KSEG)
CONTINUE

IF (DIRl(KSEG-1]-.2501) 620_420t421
ZOVM = (ZSOI(KSEG-1)+ZI(ISI÷I_KSEG-1))/(VELJI(KSEG-1)_

1 UUEIIISltKSEG-II)
416,616,620
1°-.75_ZOVN/F1
(1--DIRI(KSEG))*VELJI(KSEG)_UFACTI(KSEG).
UUEI(ISI,KSEG-1)/UFACTI(KSEG-I)*F1/°75

.25

50t450,450

IF (ZOVH-FI)
DIRI(KSEG) =
ZS01 (KSEG) =

I
GO TO 425
DIRI(KSEG) =
CONTINUE
IF ( MULT-2}
CONTINUE
XJ2(KSEG) = XBAS2(IT_O÷I}
YJ2(KSEG) = YBAS2iITWO÷I)
ZJ2(KSEG) = ZBAS2(IT_O+I)
UJ211,KSEG) = I-
021I,KSEG) = 1.
X2(ItKSEG) = O.
Z2(I,KSEG) = O.

CALL NUINT IALFQ,BETQ,GETQ,U2(KSEG)tV2(KSEG),W2(KSEG),ALFQ2(KSEG),
1BETQ2{KSEG),GETQ2(KSEG)tUFACT2IKSEG))

CALL CFCALI (ALFQ2(KSEG),SETQ2(KSEG)_GETQ2|KSEG),V2X2tV2Y2_V2Z2,
1 CF2,KSEG)

CALL ROTATE (V2X2,V2Y2,V2Z2tCF2(I,I,KSEG}tVXT,VYT,VZT,O)
DXDZ2(1,KSEG} = VXT/VZT
OJET2(KSEG) = D2(IS2÷I,KSEG-I)tDJET2(KSEG-I)
VELJ2(KSEG) = UJ2([S2+ItKSEG-I)_VELJ2(KSEG-I)
COSTHP = I./SQRT(I.÷(VXT/VZT}_2)
COSTH = A_V2X2 ÷8*V2Y2 ÷C_V2Z2
G2 = GS_DJETI(1)/DJET2(KSEG)
G2 = G2_COSTHP/COSTH
STEP[2 = G2_.2
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432

433

631

424

430
435

50

IF (PARII3|) 433t433t432
ZSTOR2 = ZSTOR2+Z2IIS2+ItKSEG-I)*DJET2(KSEG-I)/DJET2(I)
PAR(13) = (A2-B2:_ZSTOR2):_DJET2(1)/DJET2(KSEG)
CONTINUE
IF (DIR2(KSEG-1)-o2501) 430_430t431
ZOVN = (ZSO2(KSEG-I)÷Z2{IS2+ltKSEG-I))/{VELJ2(KSEG-I)*

1 UUE2(
IF (ZOVM-F2)
DIR2(KSEG) =
ZSO2(KSEG) =

1
GO TO 435
DIR2(KSEG) =
CONTINUE
CONTINUE
RETURN
END

IS2tKSEG-1))
424_424_430
I.-.75*ZOVM/F2
(1.-DIR2(KSEG))eVELJ2(KSEG)*UFACT2IKSEG)*
UUE2{IS2,KSEG-I)/UFACT2(KSEG-I)*F21.75

.25

C

C

C

C

SUBROUTINE MODIFY {KSEGtTNEG, NL)

COMPUTES MUTUALLLY INDUCED VELOCITIES

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

1
D
D
D

XIIII,IO),ZIflI,IO),UJIIll,IO),DI(II,IO)tDXDZI(IltlO)

X2(IItlO},Z2(IItlO),UJ2(IItlO),O2(II,IO)tDXDZ2(II,IO)
X1T(IOO)tZITIIOO)tUJIT(IOO)tD1T(IOO)tDXDZIT|IO0)
X2TIIOO)_Z2T(IOO)tUJ2T(IOO)tDZT(IOO)_DXDZ2TIIO0)
X3{IOO)tZ3(IOOItUJ3(IOO)tD3(IOO),DXDZ3(IO0)
XBASI(IOO)tYBASI(IOOItZBASI(IO0)
XBAS2ilOO)tYBAS2(IOO)tZBAS2(IO0)
XBS1T(IOO)tYBSITiIOO)tZBS1T(IO0)
XBS2T(IOO)tYBS2T(IOO)eZBS2T([OOI
XBAS3(IOO)_YBAS3(IOO),ZBAS3(IO0)
CFl(3t3tIO)tCF213t3tIOltCF1Tl3t3l,CF2Tl3t3)tCF3{3t3)
UUEIilI,IO)_UUE2(IItlO),UUEIT(IOO),UUE2T(IOO),UUE3(IO0)
SDXDZI(lltlO),SDXDZ2(II, IO),SXZIT(IOO),SXZZT(IO0)_

SDXDZ3(IO0)
IMENSION PAR(I§)
IMENSION XJI(IO|,YJI|IO)tZJI(IO)tDJETI(IO),VELJI(IO)
IMENSION XJ2(IOI,YJ2(10),ZJ2(IO)_DJET2(IO),VELJ2(IO)

DIMENSION ALFQI(IO),BETQI(IO),GETQI(IOI,ALFQ2(IO),BETQ2(10),
I GETQ2(IO)

DIMENSION DIRI(IO)tDIR2|IO),ZSOI(IO),ZSO2{lO)_UFACTl(IO)t
1 UFACT2(IO)

DIMENSION UI(IO},VI(IO|,NI(IO],U2{IO),V2(IO),W2(IO)

CONNON/BLKI/CFI,CF2,CF1TtCF2T,CF3tUUE1,UUE2tUUEIT,UUE2TtUUE3,PAR
COMMON/BLK2/XItZItUJItDI,DXDZltX2_Z2tUJ2tO2tDXDZ2
CONMON/BLK3/XITtZITtUJITtDIT,DXOZIT_X2TtZ2TtUJ2TtD2TtDXDZ2T
CDMNON/BLK4/X3tZ3tUJ3tD3tDXDZ3
COMNON/BLKS/XBASltYBASItZBASItXBAS2tYBAS2_ZBAS2tXBAS3tYBAS3tZBAS3
CONMON/BLK6/XBSITtYBS1TtZBSITtXBS2TtYBS2TtZBS2T
CONMON/BLKT/ALFQtBETQtGETQtFltF2tF3tVKONST
COMMON/BLK8/ALFQItBETQ1,GETQltALFQ2tBETQ2,GETQ2
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C

C
C
C

CONMON/BLK?/MULTeIHOLDIeKOUNTItIONE, ITMOeITHRtNltN2tN3eIFIXI
CONMONIBLK|O/XJItYJItZJItDJETltVELJItXJ2,YJ2tZJ2eDJETZ,VELJ2
CONNON/BLKI1/XJ1TtYJIT,ZJ1TtDJETITeVELJ1TtXJ2TtYJ2T,ZJ2T,DJET2Tt

I VELJ2T
CONMON/BLKI2/XJ3tYJ3,ZJ3tDJET3,VELJ3
COMMON/BLKI3/G,G2,G3,STEP[,STEPI2tSTEPi3
COMHON/BLKI6/V2XI_V2YItV2ZI,V2X2tV2YZtV2Z2
COMNON/BLKLSIOIRI,0IR2,DIRLTtOIR2TtOR3, ZSOLtZSO2, UFACTL,UFACT2
COMMON/BLKlb/SDXDZI,SDXDZ2tSDXOZ3tSXZIT,SXZ2T
CONMON/BLK17/GS,A,B_C,ISl,IS2,NPS
COHMON/BLK18/UItVltWI,U2tV2,W2

DIMENSION XPl(10)tYPI(XO]tZPl{IO),XP2(IO),YP2(lO},ZP2{lO]

CHOOSING POINTS ON CENTERLINE

KTR1 = 0
KTR2 = 0
IF (TNEGI 206,206,207

206 KTR2 = KOUNT1
GO TO 208

207 KTRI = KOUNTI
208 CONTINUE

DO 70 I=ItKSEG
IF (I-l) 71,71,72

71 IK = 1
GO TO 73

72 IK = (I-I}_NPS+I-KTRI
73 CONTINUE

XPllI) = XBASI(IK)
YPIII) = YB&SIIIK)
ZPI{I} = ZBASI(IK)
UI(I! = O.
Vl|I) = O.
_llI) = Oo

70 CONTINUE
DO 80 I=ltKSEG
IF (i-I) 81,81,82

81 IK = 1
GO TO 83

82 IK = ([-I)_NPS÷I-KTR2
83 CONTINUE

XP2(I) = XBAS2IIK)
YP2(I| = YBAS2IIK)
ZP2(II : ZBAS2IIK}
U2(I) = O.
V2lll = O.
W2|I) = O°

80 CONTINUE
PAR(5) = FI
DO 110 J=ItKSEG
DO 110 I=I,KSEG
PAR(6) = VELJIII)
PARiq} = OIRI(I}
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112

III

113

114

I15

IIO

120

121

122

150

212

211
213

214

215

IF II-1) lll,l12tlll
NF = NPS+I-KTRI
GO TO 115
IF (I-KSEG) 113,114t114
NF = NPS+I
GO TO I15

NF = NL

IF (NL-2) 110,110,115
CONTINUE
CALL VELOC (1,NFtZI(1,I),XI(I,I;tDXDZI(ltl),UJI{ItI),OI(I,I),

1 UUEI(ltI),XJI(I},YJI(1),ZJI(I),DJETI(I),CFI(I,I,I},PAR,XP2(J),
2 YP2(J},ZP2(J),UINO,VINO,WIND,SOXOZI(I,I))

U2(J) = U2(J)÷UIND
V2lJ) = V2{J}+VIND
W2(J) = W2(J)+WINO
CONTINUE
IF (IHOLDI-1] 150,150t120
PAR(6) = VELJ3
PAR(5) = F3
PAR(g) = OR3
N3 = ITHR÷I
DO 121 J=I,KSEG
CALL VELOC (1,N3,Z3tX3,0XOZ],UJ3tD3,UUE3, XJ3,YJ3,ZJ3tDJET3t

I CF3,PARtXP2(J),YP2(J),ZP2iJ|,UINO,VlNDtWINO,SDXOZ3)
U2(J) = UZ(J)+UINO
VZiJ) = VZIJ)+VINO
W2{J) = W2(J)+WIND
CONTINUE
PAR(6} = VELJ2T
PAR{5) = F2
PAR(9) = DIR2T
O0 122 J=I,KSEG
CALL VELOC (I,N3,Z2TtX2T,OXOZ2T,UJ2T,D2T, UUE2T,XJ2TtYJ2T, ZJ2T,

1 DJET2T,CF2TtPAR,XP2fJ;,YP2(J},ZP2(J),UINO, VINO, WINOtSXZ2T)
U2(J} = U2(J;-UINO
V2(J) = VZKJ)-VINO
W2|J) = M2(J)-WIND
CONTINUE
CONTINUE
PAR{5} = F2
DO 210 J=I,KSEG
DO 210 I=I,KSEG
PAR(6) = VELJ2(I)
PARI9) = OIR2(I)
IF (I-1) 211,212,211
NF = NPS+I-KTR2
GO TO 215
IF II-KSEG) 213,214,214
NF = NPS+I
GO TO 215
NF = NL
IF (NL-2) 210,210_215
CONTINUE
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210

22O

221

222
25O

CALL VELOC (I_NFtZ2(ltI)tX2{I,I)tDXDZZ(ltI),UJZ(1,I)tD2(1,I;,
1 UUEZ(1,I)tXJZ(I),YJZ(1)tZJZ(I)_DJETEII)tCF2II,ItI)_PAR,XPI(J)t
2 YPI(J)tZPI(J),UIND,VINOtWIND,SDXDZ2(1,I})

UI(J) = UI(J)÷UIND
VI(J) = VI(J)÷VINO
WI(J) = WI(J)÷WINO
CONTINUE
IF (IHOLDI-1) 250,250,220
PAR(b) = VELJ3
PAR(S) = F3
PARt?) = DR3
DO 221 J=I,KSEG
CALL VELOC (1,N3,Z3,X3,DXDZ31UJ3tO3,UUE3tXJ3,YJ3,ZJ3,DJET3,

I CF3tPAR,XPI(J),YPL(J)tZPI(J),UIND,VIND,WINO, SDXDZ3)
UI(J) = UI(J)+UIND
VIIJ) = V[(J)+VINO
W[(J) = Wl(J)÷WlNO
CONTINUE
PAR(6) = VELJIT
PARIS) = FI
PAR(9) = DIRIT
DO 222 J-I,KSEG

CALL VELOC (I,N3,ZIT,XIT,OXDZIT,UJIT,DIT,UUEIT,XJIT,YJITtZJIT,
1 DJETITtCFIT_PARtXPI(J),YPI(J),ZPI(J),UINDtVIND,WIND, SXZ1T)

UliJ) = UI(J)-UINO
VI(J) = VI(J)-VINO
WI(J) = WI(J)-WIND
CONTINUE
CONTINUE
RETURN
END

C
C
C
C

SUBROUTINE BITEST ([,TNEGtKS)

TESTS FOR BLOCKAGE AND INTERSECTIONtCALLED AS PART OF INTEGRATION
LOOP

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

XI(lltIO),ZI(lI,IO),UJI(lI,lO)tDI(ll, lO),DXDZ1(11,IO)
XZ(IItlOI,Z2(II,IO)tUJ2(ll,lO),D2(lI,IO),DXDZ2(11,IO)
X3(lOO)eZ3(lOO),UJ3(lOO),D3(lOO),DXDZ3(IO0)
XBASIiIOO),YBASl(IOO),ZBASI(lOO)
XBAS2(IOO),YBAS2(lOO),ZBAS2(IOO)
XBAS3(IOO)tYBAS3(IOO),ZBAS3(IOO)
CFl(3,3tIO|tCFZI3,3tlO),CFITI3,3),CF2T(3,3),CF3(3,3)
UUEl(IItlO),UUE2(II,IO),UUEIT(IOO),UUE2TIIOO),UUE3(IOO)
PAR(15)
XJl(IO),YJl(10),ZJIIIO),DJETI(lO),VELJ[(10)
XJ2(IO),YJ2(IOI,ZJZ(IOI,DJET2(IO),VELJ2(IO)

DIMENSION ALFQI(lO)tBETQlilO),GETQI(lOI,ALFQ2(IO),BETQ2(10),
I GETQ2(IO)

DIMENSION DIRI(IO),OIR2(IO),ZSOI(IO),ZSO2(IO),UFACTI(IO),
I UFACT2(IO)
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C

2OO
20X
203

204

2O5
202
206

207
2O8

210

211

212

209

CONMON/BLKI/CFItCF2 tCFIT,CF2T,CF3tUUEI, UUEZ•UUEITtUUE2TtUUE3tPAR
COMMONIBLK2/XltZI fUJI tOI•DXDZIIX2•Z2tUJ2t D2• DXDZ2
CONMON/BLK6/X3,Z3•UJ3tO3•DXOZ3
CONNON/BLKS/XBASI •YBASI •ZBASI •XBAS2,YBAS2• ZBAS2,XBAS3, YBAS3• ZBAS3
COMMON/BLKT/ALFQ• BETQtGETQtFI •F2tF3tVKONST
CONNON/BLKB/ALFQI•BETQI •GETQI •ALFQ2tBETQ2• GETQ2
CONNON/BLKg/NULTt IHOLD1 •KOUNT 1• lONE• ITWO• |THR•NItN2tN3t IFIX1
CONMON/BLKIO/XJltYJltZJI• OJETI•VELJlt XJ2• YJ2, ZJ2• DJET2•VELJ2
CONNON/BLK12/XJ3•YJ3,ZJ3, DJET3,VELJ3
COMMON/BLKI3/GtG2 •G3•STEPI •STEPI2•STEPI3
COMNON/BLKI4/V2XE •V2Y].t V2ZItV2XZtV2Y2tV2Z2
CONNON/BLKIS/DIR[ tD IR2t 0I RIT• DIRZT ,DR3• ZSOI • ZS02tUFACTI•UFACT2
CONNON/BLKIT/GS•A,BtC, I $1 • IS2 ,NPS

DE = .O001tOJETIII)
IF (MULT-2) 21,200•200
IF IIHOLDI-I) 201,202121
IF (TNEG) 203•203•204
CALL XPRO0 (V2XltVZYI•V2Z1,ALFQI(KS),BETQI(KS),GETQllKS)•XT1,

1 YTI•ZT1)
CALL XPRO0 (XTltYTI•ZTI•ALFQI(KS),BETQI(KS),GETQI(KS)•CFNX,

I CFNY•CFNZ)
CALL PLANE (CFNXtCFNY•CFNZtXBASIII)•YBASIll)•ZBASIll)•V2X2tV2Y2•

I V2Z2tXJ2(KS)•YJ2iKS)•ZJ2(KS)•XINT•YINT•ZINT)
IF {YINT-YJ2IKS)-DE) 2051205t22
UUE2II•KS) = I.*UFACT2(KS)
CALL XPRO0 (V2X2tV2Y2•V2Z2_ALFQ2(KS),BETQ2IKS),GETQ2(KS)•XT2,

1 YT2,ZT2)
CALL XPROD (XT2•YT2•ZT2•ALFQ2IKS}•BETQ2IKS)•GETQ2IKS)tCFNX•

I CFNY•CFNZ)
CALL PLANE (CFNX•CFNY•CFNZ•XBAS2(I)tYBAS211)•ZBAS2(I)tV2XI•V2Ylt

[ V2ZI•XJIIKS)•YJI(KS)iZJIIKS)•XINT•YINT•ZINT)
IF IYINT-YJI(KS)-DE) 205,205•22
IHOLD1 = 1
IF fTNEG) 206•206•207
ITWO = I-KOUNTI
GO TO 208
lONE = [-KOUNTI
IT1 = lONE
IT2 = ITWO
N1 = ITI+I

N2 = IT2÷I
IF IKS-I) 210•210,211
I S1 = IONE
I $2 = I TWO
GO TO 212
IS1 = I-(KS-I)*NPS
IS2 = IS1
CONTINUE
CALL CONP IV2XI•V2YI,V2ZI_V2X2,V2Y2,V2Z2•XBASI|ITI)•YBASI(ITI),

I ZBASI(ITII•XBAS2(IT2I,YBAS2IIT2),ZBAS2IIT2),ZI(ISltKS),

2 Z21IS2,KS),DIIISItKS),DJETIIKS),O2(IS2,KS},DJET2(KS),VELJllKS),
3 VELJ2IKS)•DXDZIIISItKS),KS,UUE2IIS2,KS)•AI,AZ,DR3, INT)
IF lINT) 21,21,209
IHOLD1 = 2
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901

902
903

22

21

NI = ITI
N2 = I T2
XFIXX = I

CALL BALANC (XBASI(ITI)tYBASI(ITI)tZBASI(ITX),XBASZ(IT2),
I YBAS2iIT2)tZBAS2(IT2)tUJI(ISItKS),UJ2(IS2,,KS)tVELJI(KS)t
2 VELJZ(KS) tA11, AZeV2XI t VZYIt V2ZI tVZXZt VZYZ,,V2Z2,, DR3t XJ31, YJ3, ZJ3t
3 DJET3t V2X3, V2Y3 t V2Z3,VEL,J3)

CALL CFCAL (ALFQtBETQ,,GETQtVEX3,VZY3tVZZ3,CF3)
(VZX3eV2Y3,V2Z3tCF3tVXTt VYTtVZTtO)CALL ROTATE

UJ3( 1 ) = 1.
O3(I) = I.

X3(1) = O.
Z3(l) = O.
DXDZ3(1) = VXT/VZT
XBAS3(I) = XJ3
YBAS3(].) = YJ3
ZBAS3[I) " ZJ3
D = ATAN(VXT/VZT)
IF (VXT) 901 t902,,902
F3 = .3*CQSID)
GO TO 903
F3 = .3/COS(D)
CONTINUE
G3 = GS*DJETI(I)/DJET3
STEPI3 = .2_G3
GO TO 21
KOUNT]. = KOUNTI÷I
ISl = I
IS2 = I
CONTINUE
RETURN
END

C

C

C

C

SUBROUTINE INTEG IItTNEG,KS]

INTEGRATION OF THE EQUATIONS OF MOTION FOR THE JET PATH

EXTERNAL DERIV

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

XI(II,IOI,ZI(IItlO),UJI(II,IO),DI(II,IO),DXDZI(II,IO)

X2(ll,lO)_Z2(ll,lO)vUJ2(ll,lO)tD2(ll,lO)tDXDZ2(ll,lO)

X3(IOO)tZ3(IOO)eUJ3(IOO),D311OO)eDXDZ3(IO0)

XBASIilOO)tYBASI(IOO)tZBASIlIOO)
XBAS2(IOO),YBASZIIOO),ZBAS2(IO0)
XBAS3(IOO),YBAS3(IOO]tZBAS3(IO0)
CFl(313,tO)tCFZ(3,3tIO)tCFIT(3t3)tCFZT(313)_CF3(3t3)
UUEI(IItIO)tUUE2(IItlO)tUUEIT(IOO),UUEZTI[OO)tUUE3(IO0)
SDXDZI(II,IOItSDXOZ2III, IO),SXZIT(IOO],SXZZT(lOO),

1 SDXDZ3(IOO)
DIMENSION PAR(15)
DIMENSION XJI(IO),YJI(IO)tZJI(IO),DJETI[IO),VELJI(IO)
DIMENSION XJ2(IO}tYJ2IIO}tZJZ(IO)tDJET2(IO),VELJ2(IO)
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C

C

C

DIMENSION ALFQI(IOt,BETQI(IOI,GETQI(IO),ALFQZ(IO),BETQ2(IO),
1GETQZIIO)

DIMENSION DIRI(IO)tDIRZ(IO)tZSOI(IO)_ZSO2(IO)tUFACTI(IO)e
I UFACTZ(IO)

CONMONIBLKIICFItCFZtCFLTtCF2TtCF3tUUEI_UUEZtUUELTtUUE2T_UUE3_PAR
CONHON/BLK2/XI,ZltUJZ_D1,DXDZI_X2tZ2tUJZtO2tDXDZ2

CONMON/BLKA/X3tZ3,UJ3_D3tDXDZ3
CONHON/BLK51XBASItYBASItZBASItXBAS2tYBASZtZBASZeXBAS3tYBAS3tZBAS3
CONNON/BLK7/ALF_,BETQtGETQtFI_F2_F3eVKONST
CONMON/BLK8/ALFQleBETQItGETQIeALFQZtBETQ2tGETQ2
CONNON/BLK9/MULTtIHOLDItKOUNTItIONEtITWOtITHR_NI_NZ,N3tIFIXI
CONNON/BLKIO/XJIIYJItZJItDJETItVELJIIXJZtYJ2tZJZ_DJETZtVELJ2
CONNON/BLKIZ/XJ3tYJ3tZJ3tDJET3tVELJ3
CONNON/BLKI3/G,GZ_G3_STEPItSTEPIZtSTEPI3
CONMON/BLKIA/VZXItVZYItVZZItVZXZ_VZYZtVZZZ
CONHON/BLKIS/DIRItDIR2tDIR1TtDIR2TtDR3tZSOItZSO2_UFACTItUFACT2
CONHON/BLKI6/SDXDZItSDXDZZtSDXDZ3_SXZIT_SXZ2T
CONMONIBLKIT/GS_A_BtCtISItISZ_NPS

DIMENSION FIN(6),FOUT(6)

IF (NULT-2) 26_51_51
51 IF (IHOLD1-2) 25_30,30
25 IF (TNEG) 26t2_27
27 IF (IHOLDI) 28,28t24
26 UUEI(ISI_KS) = 1._UFACTIIKS)

PAR(6) = VELJI(KS)eUUEI(ISItKS)
PARIS) = FI
PAR(9) = DIRI(KS)
PARIIS) = 1o
ZI(ISI÷I,KS) = ZI(ISI_KS)÷G
FIN(I) = UJI(ISI_KS)
FIN{Z) = DI(ISI_KS)
FIN(3) = XI(ISI_KS)
FIN(6) = DXDZI(ISI_KS)
CALL ADAMS (6_ZL(ISI_KS)tZI(ISl÷I_KS)tSTEPI_Ge999,1°OE-O_tl°OE-05,

I O_FIN_FOUT_PAR_DERIV)
UJI(ISI÷IeKS) = FOUT{I)
DIIISI+I_KS) = FOUT(2)
XI(ISI÷I_KS) = FOUT(3)
DXDZI(ISI÷ItKS) = F_UT(4)
SDXDZI(ISI÷I,KS) = PAR(IO)
CALL DUTPTI(XI(ISI+I,KS)eZI(ISI+I,KS),DXDZI(ISI÷I,KS),CFI,KS,

I DJETI(KS)tXJI(KS)_YJI(KS)_ZJI(KS)tXBASI(IONE+I)_YBASI(IONE+I)t
2 ZBASI(IDNE÷I)_VZXI_VZYI,V2ZI)

IF (NULT-2) 50,61,61
61 IF (IHOLDI) 50t50_28
28 PAR(6) = VELJZIKSJ_UUE2(ISZ_KS)

PAR(5) = F2
PAR(9) = DIRZ(KS)
PARI15) = 2°
ZZ(IS2+ItKS) = Z2(ISZ_KS)÷G2
FIN(I) = UJ2(IS2_KS)
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FIN(2) = D2(IS2,KS)
FIN(3) = X2(IS2,K$)
FIN(4) = DXDZ2(IS2,KS)
CALL AOANS IA,Z2(IS2,KS)tZ2(ISZ+I,KS),STEPI2,G2,QQQ, I.OE-04,

I I-OE-O5tOtFIN,FOUTtPARtDERIV)
UJ2(IS2+ItKS) = FOUT(1)
D2(IS2+I_KS) = FOUT(2)
X2([S2+ltKS) = FOUT(3)
DXDZ2([S2+ItKS) = FCUT(_)
SDXDZ2([S2+ItKS) = PAR(IO)
CALL OUTPTI(X2(IS2÷I,KS)tZ2([S2+I,KS)_DXDZZ(IS2÷ltKS),CF2,KS,

1 OJET2(KS),XJ2(KS),YJ2(KS),ZJ2(KS),XBAS2([TNO+I),YBAS2([TNO+I)t
2 ZBAS2([THO÷I)tV2X2tV2Y2tV2Z2)
GO TO 50

30 ITHR = I-IF]XI+I
UUE3(ITHR} = 1.
PAR(6) = VELJ3
PAR(5) = F3
PAR(Q) = OR3
PAR(15) = 3.
Z3(ITHR+I) = Z3(ITHR)+G3
FIN(I) = UJ3(ITHR)
FIN(2) = D3(ITHR)
FIN(3) = X3(ITHR)
FIN(4) = DXDZ3(ITHR)

CALL ADAHS(AtZ3(]THR),Z3(ITHR+IItSTEPI3,G3,QQQtl.0E-06,
I 1-OE-OStOtFINtFOUT_PARtDERIV)

UJ3(ITHR+I) = FOUT(I)
D3(ITHR+I) = FOUT(2)
X3IITHR+I) = FOUTI3)
OXDZ3(ITHR+I) = FOUT(4|
SDXDZ3(ITHR+I) = PAR(IO)

CALL OUTPT (X3(ITHR+I)tZ3(ITHR+I)_DXDZ3(ITHR÷I)_CF3tDJET3tXJ3tYJ3_
1 ZJ3_XBAS3(ITHR÷I)tYBAS3(ITHR÷II_ZBAS3IITHR+I),V2X3,V2Y3, V2Z3)

50 CONTINUE
RETURN
END

C

C

C

SUBROUTINE DERIV (ZtFNtFPRtPAR)

COHPUTES DERIVATIVES FOR ADARS PREDICTOR/CORRECTOR HETHOO

DIHENSION FNI1),FPR(1)_PAR(I)

E1 = PAR(I}
E2 = PAR(2)
E3 = PAR(3)
F = PAR(5)
VELJ=PAR(6)
P[ = PAR(T)
C1 = PAR(8)
DR = PAR(Q)
UJ = FN(1)
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O = FN(2)
DXDZ=FN(4)
JET = PAR(15)
IF (JET-2) 1.2.5

I A = PAR(II)
B = PAR( 121
GO TO 3

2 A = PARII3)
B = PAR(14)

3 CONTINUE
IF (A) 5tSt6

4 IF (Z-A/B) 6.6t7
6 ANI = (ACA-2._ACB¢Z+B_BCZ_Z)/(O_D)

AN2 = PI¢UJ_(AtB-B_BCZ)/2.
AN3 = I.-4._ANI
GO TO 10

7 IF (JET-I) 8t8_9
8 PAR(II) = O.

GO TO 5

9 PAR(13) = 0.
5 AN1 = O.

AN2 = O.
AN3 = 1.

10 CONTINUE
COST : 1./SQRT(I._OXDZ_OXDZ)
SINT = SIGNII.tOXDZ)*SORTII.-COSTeCOST)
E = E2/(1.÷E3*COST/(VELJ'I'UJ))
IF (VELJ*UJ-SINT) 11,12t12

II E = O.
12 ZSO = (1.-DR)#VELJtF/.75

ZP = Z÷ZSO
IF (ZP-VELJ_F) 47thOr60

47 IF (ZP-IO.| 40,60t60
40 IF (ZP-.b_VELJ_F) 42,43t43
42 E = E_.1/.32

GO TO 60
63 IF (ZP-.8IVELJtF) 66t65t65
44 E = E_.12/,32

GO TO 60
65 E = E=_.21/.32
60 ZOVM = ZP/VELJ

IF (ZOVM-F) 22,23t23
22 VAR = SQRT((1.+(l.-.75*ZOVM/F)_,_,2)/2.)

XT = l.-.75_,ZC)VM/F
XT = 1.1XT
CO = |-XT_XT÷6.6*XT+.4)/6.
VARI = EI*COST÷E_'(VELJ*UJ-SINT)*PI*VAR
VAR2 = VELJ'I'VELJ_,COST
VAR3 = .25_PI_'(I.-.TS_ZOVM/F-ANI)_UJ_O
VARA = .25_PI¢(1.-.75_ZOVH/F)_'UJ4'O
DUJ = (VARI*SINT/VARZ-VARI*UJ/(VELJ*COST))/VAR3
00 = (VARI*D/(VELJ*COST)+3.*PI_O_D*UJ/(I6.*F*VELJ)-VAR3*D_DUJ/

I UJ-AN2)/(Z.*VARA)
VAR6 = (EI+.5_CD)_COST+Et(VELJ_UJ-SINT)_PI_VAR
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I5

DDXDZ= VAR6/(VAR2*COST*VAR3*UJI
GO TO 15
VARZ = EI_COST+E*(VELJ*UJ-SINT)*CI
CO = 1.8
DUJ = I6.*VARI*(SINTI(VELJtVELJ_COST)-UJI(VELJ*COST))I(PI*D*UJ)
DUJ = DUJIAN3
DO = 8.*(VARI/(VELJ=COST)-AN3*PI_D=DUJI16.-AN2/D)/(PI_UJ)
VAR4 = (EI÷°5*CD)*COST÷E*(VELJ*UJ-SINT]*CI
DDXDZ= I6.*VAR6/(PI*VELJ$VELJtD_UJ*UJ*COST*COST]
DDXDZ = DDXDZ/AN3
CONTINUE
PAR[IO) = DDXDZ
FPR(1] = DUJ
FPR(2) = DO
FPR(3) = DXDZ
FPR(6) = DDXDZ
RETURN
END

C
C
C
C

C

C

SUBROUTINE VELOC iNItN2tZtXtDXDZ,UJtDtUUEtXJtYJtZJtDJET,CFtPARt
1 XOtYO,ZO,UIFtVIF_WIF,D2XDZ2;

EVALUATES INDUCED VELOCITIES AT ONE CONTROL POINT (XOtYOtZO IN
FIXED COORDINATE SYSTEM) FOR A GIVEN JET

CONMON/BLKI91DIARATtDREF

DIMENSION
DINENSION
DINENSION

Z(1),X(1),OXDZ(l)tUJ(l)tOil)tUUE(l)tPAR(I)
CFI3,3)
D2XDZ2(1)

I

2
3

lt2_2

E2 = PARI2;
E3 = PAR(])
F = PAR(S)
VELJ=PAR(6}
Pl = PARITI
CZ = PAR(8)
DR = PAR(?I
N = N2-NI+I
IF (N/2-IN÷I)/2)
N = (N-I)I2

GO TO 3
M = IN-2II2
XPT = (XO-XJ)/DJET
YPT = (YO-YJ)/DJET
ZPT = (ZO-ZJ)/DJET
CALL ROTATE (XPTtYPTgZPTtCF_AtBtCtO)
UI = O.
Vl = O.
WI = O.
NI = N÷I
DO 21K=NI,NI
El = PAR(I;
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12

II

14

IF (K-M) II,II,I0

IF (N/2-IN+I]/2) 22912,12
I = 2*K-I
ZINCR = Z(l+l)-Z(l)
GO TO 14
I = 2*K
ZINCR = Z([+l}-Z(I-1)

COST = I./SQRT(I._DXDZ(I)*OXDZ(I))
SINT = SIGN([.,DXDZ(I))*SQRT(1.-COST*COST)
SIE = -((ZIIi-CI*COST+iAII)-A)*SINT)
ETA = B
ZETA= (Z(I)-C)_SINT-(X(I)-A)*COST
DI = .5*Oil)
DOUB1 = SIE*SIE÷ETA*ETA÷ZETA*ZETA
DOUB2 = SQRT(DOUBI)

UBLOCK = °5*DI*DI*ZINCR*COST*(I°-3.*ZETA*ZETA/DOUB1)/(DOUBI*DOUB2)
1 -SINT*I.5_SIE*ZETA*DI*DI*ZINCR/(DOUBI*DOUBI*DOUB2)

VBLOCK = -1.5*ZETA*ETA*DI*DI*ZINCR/(DOUBI*DOUBI*DOUB2)

WBLOCK = -.5*DltDI*ZINCR*SINT*(I.-3.*ZETA*ZETA/DOUBI)/(DOUBI*
l DOUB2)-COST*I.5*SIE*ZETA*DL*DI*ZINCR/(DOUBI*DOUBI*DOUB2)

VELJE = VELJ*UUE(I)
CURV = D2XDZ2(I)II(I°÷DXDZII)*DXDZ(I))**I°5)
CURV = 3.*CURV*DREF/DJET
E1 = E1-CURV/COST
E = E2/(1.+E3*COST/(VELJE*UJ(I)))
IF [VELJE*UJ(I}-SINT) 51,52t52

51 E = O.
52 ZSO = (I.-DR)*VELJE*FI.75

ZP = ZII)+ZSO
IF (ZP-VELJE_F) 47t60t60

47 IF (ZP-lO.] 40t60,60

40 IF [ZP-o6*VELJE*F) 42t43,43
42 E = E*.1/.32

GO TO 60

43 IF [ZP-.8_VELJE*F) 44,45_45
4_ E = E*.12/°32

GO TO 60

45 E = E*.211.32
60 ZOVM = ZPIVELJE

IF (ZOVM-F) 31,32t32
31 VAR8 = (1.-.3TS_ZOVM/F)

VAR = SQRT((lo+(l°-.75*ZOVMIF)*_2)/2°)
HT3 = o25*ZINCR_(El+E*PI*VAR_(VELJE_UJ([)-SINT)/COST)
GO TO 33

32 VARB = °625

HT3 = .25*ZINCR*(El+E*(VELJE*UJ(I)-SINT)_Cl/COST)
33 U8LOCK = UBLOCK*VARB

VBLOC

WBLOC

Zl =

Z2 =
Z3 =

USINK
VSINK

K = VBLOCK*VARB
K = WBLOCK*VARB
(C-ZIII)*(C-ZII))÷(A-X(I))_(A-X(I))
SQRT|(B-D1)*(B-DI)+ZI)
SQRTI(B+DI)*iB+D1)+ZI)

= -HT3t(X(I)-A)*I(B-DI)/(ZI*Z2)-(B÷DI)/(ZI,Z3))/p[
= -HT3_(1./Z2-Z./Z3)/P!

95



6

5

2I
22

691

HSINK = -HT3,IZ||)-C)#I(B-DI)/IZI#Z2)-(BeDI)/IZI*Z3])IP[
[F (UUE|[I-L.) 6,5t6
FACT = I.tUUE(I)
UBLOCK = UBLOCK*FACT
VBLOCK = VBLOCK*FACT
HBLOCK = HBLOCK*FACT
US[NK = US[NK*FACT
VSINK = VSINK#FACT
WSINK = _SINK*FACT
UI = UI+USINK÷UBLOCK
Vl = VI+VSINK+VBLOCK
HI = WI+WSINK+HBLOCK
CALL ROTATE (UIFtVIF_HIFgCF_UItV[tHI_L)
FORMAT (6F12.5)
RETURN
END

C
C
C

C

C

C

C

SUBROUTINE COMP( VXI tVYI tVZI,VX2,VY2,VZ2,X It Ylt Z It X2t Y2, Z2_ Z1Lt Z2Lt
l Ol •DJI •D2 •D J2 tVItV2•SL1 •KS• UUEFF• AI• A2t DRAT t[ND)

COMPUTES U/UEFFECTIVE AND TESTS FOR INTERSECTION OF CENTERLINES

DIMENSION OIRI(IO),DIR2(IO)tZSOI(IO)•ZSO2(LO)tUFACTI(ZO),
I UFACT2(IO)

COMMON/BLK7/ALFQtBETQ,GETQtFItF2tF3tVKONST
CONMON/BLKIS/O|RItOIR2tOIRLT_OIR2T_DR3_ZSOLtZSO2•UFACTItUFACT2
CONMON/BLKIg/DIARATtDREF

IND =
P( =
CALL
CALL
CALL
OIST

0
3.I6L6
XPROD (VXI•VYItVZItALFQ,BETQtGETQ,CFNX,CFNYtCFNZ)
XPROD (VX2•VY2tVZ2tALFQ•BETQtGETQtXT2tYT2•ZT2)
PLANE (CFNX•CFNY_CFNZtXI•YlvZLtXT2tYT2,ZT2tX2tY2tZZ_X[,YItZ[)
= SQRT(iXI-X2)**2+fYI-Y2)**2+(Zl-Z2)**2)

COMPUTE U/UEFFECTIVE

R = OL*DJI*.5-OIST
FACT = (I.O+R/(D2*DJ2*.5))_.5
IF {FACT-I.) 10•10_11

II UUEFF = VKONST
GO TO L5

10 IF (FACT) 13tI3•12
13 UUEFF = I.

GO TO 15
12 TESTI = DI*OJI*.5+DIST

TEST2 = D2_DJ2_°5
IF (TESTI-TEST2) 16tI6tI_

I6 FACT = OI_OJL/|OZ_DJZ)
16 UEFU = I°+II./VKONST-I.)_FACT

UUEFF = 1./UEFU
15 CONT|NUE
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C

C
C

UUEFF = UUEFF=UFACT2(KSJ

TEST FOR INTERSECTION OF CENTERLINES

COST = I.ISQRT(1.+SLI*SLI;
SUMD = OJl_Ol*.5

IF (DIST-SUMD) 22,99,99
22 DISTN = SQRT((XI-XI)*_2÷(YI-YI)_2÷{ZI-ZI)_2)

IF IDIRIIKS)-.2501) 25,25,51
51 ZOVM = (ZSOI|KS)+ZIL)/(VI_UFACTI(KS))

IF (ZOVM-FII 24,24,25
24 FACT1 = I.-.75_ZOVMIFI

GO TO 26
25 FACTI = .25

26 IF (DIR21KS)-.25OI) 28,28,52
52 ZOVM = (ZSO2(KS)+Z2L)/(V2*UUEFFI

IF (ZOVM-F2) 27t27,28
27 FACT2 = I.-.75*ZOVM/F2

GO TO 29

28 FACT2 = .25
29 SUMD = DJI_DI_FACTI_COSTW.5

IF (DISTN-SUMD| 30,30,40

30 INO = I
GO TO 45

40 IF (X2-XI) 30,30t99

45 AI = PI_FACTI*DI_DI_DJI_DJIe.25

A2 = PIeFACTZ*D2_D2eDJ2_DJZ*.25

DRAT = DIARAT

9g CONTINUE

RETURN

END

C
C
C

C

C

SUBROUTINE VELI (MULTeALFA,VKI)

COMPUTES EFFECTIVE VELOCITY RATIO FOR DOWNSTREAM JET AT EXIT

DIMENSION XJIIIO),YJI(IO),ZJIIIO),DJETI(IO),VELJIIIO)
DIMENSION XJ2(IO),YJ2(IOt,ZJZ[IO),DJET2(IO),VELJ2{IO)

COMMON/BLK7/ALFQ,BETQ,GETQ,FI,F2,F3,VKDNST
COMMON/BLKIO/XJI,YJ1,ZJI,DJET1,VELJI,XJ2tYJ2,ZJ2tDJET2,VELJ2

COMMON/BLKI4/V2XI,V2YI,VZZI,V2X2,V2Y2,V2Z2

VELJI(I) = I./VELJI(I)
IF IMULT-2) 15,1,1

1 VELJ2[I) = I./VELJ2(I)
DOTP = IXJZI1)-XJIII))*ALFQ÷(YJ211)-YJI(1))_BETQ+(ZJ2(I)-ZJI(I))

l _GETQ
DEN = SQRTI(XJ211)-XJIII))_Z+IYJ211)-YJI|I))_2+(ZJ2(I)-ZJI(1])

I *_2)

DOTP = DOTP/OEN
IF (ABSIDOTP)-.O2} I0,I0,II

lO VK1 = I.

GO TO 15
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11 CONTINUE
A = ALFA*.0176533
ALF = COS(A)
BET = SIN(A)
GET = O.

CALL XPROD (V2XltV2YltV2ZI,ALF,BET,GETtXTI,YTI,ZT1)
CALL XPROD (XT1tYT1,ZTItALF,BETtGET,CFNXtCFNY,CFNZ)
CALL PLANE (CFNX,CFNYtCFNZtXJI(I),YJI(I)tZJI(I)tV2X2,V2Y2,V2Z2,

I XJZ(1)tYJ2(1),ZJ2(1)tXItYI,ZI)
S = SQRT((XJI(1)-XI)_2+(YJI(I)-YI)**2+(ZJI(1)-ZI)**2)/DJETI(I)
VK1 = IS÷.75)/(S-I.}
OOTP = V2Xl*ALFQ÷V2YltBETQ÷V2ZI_GETQ
AIN= ACOS(DOTP)
IF (DOTP) 6t4,5

6 AIN = AIN-3.16159/2.
GO TO 6

5 AIN = 3.16159/2.-AIN
6 CONTINUE

SIN2 = SIN(AIN)_SIN(AIN)
COS2 = COS(AIN)*COS(AIN)
C : 1./VKI
VKI = 1./SQRT(SIN2+C_C_COS2)

15 CONTINUE
RETURN
END

C
C
C

1
2

SUBROUTINE BALANC ( XI,YI, ZItX2,Y2, Z2,UJItUJ2,V1,VZ, AItA2,VXI,VYI,
VZI• VX2•VY2•VZ2tFACT It X3, Y3, Z3t OJ3t VX3, VY3,VZ3,
VELJ3)

ESTABLISHES INITIAL CONDITIONS FOR NEW JET FROM MOMENTUM BALANCE

PI : 3.1416
X3 = [Xl+X2)_.5
Y3 = (Yl÷Y2)_.5
Z3 = tZl+Z2)*.5
XMI = UJI_VI_AI
XM2 = UJ2_V2_A2
DEN = XMI+XM2

UJX = (XMI_UJI_VItVXI+XM2_UJ2_V2_VX2)/DEN

UJY = (XNI*UJI*VI*VYI+XNZ*UJZ*V2_VY2)/DEN
UJZ = (XNI_UJI_VI_VZI+XMZ_UJ2_V2$VZ2)/DEN
VELJ3 = SORT (UJX_UJX+UJY_UJY+UJZtUJZ)
VX3 = UJX/VELJ3
VY3 = UJY/VELJ3
VZ3 = UJZ/VELJ3
A3 = DEN/VELJ3

DJ3 = SORT (6.*A3/(PI_FACTI)I
RETURN
END
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C
C
C

C

SUBROUTINE FIX {UAtVA,WAtUBtVBwWBtNO)

LIMITS MUTUALLY INDUCED VELOCITIES TO A MAXIMUM

DIMENSION UA(I)tVAiI),WA(I),UB|I}tVB(I]tWB(I)

DEL = .6
DO 5 I=ItNO
IF (ABS(UAII))-DEL)

1 IF [ABS(VA(I))-DEL)
2. IF (ABS(WA(1))-DEL)
3 UA(I) = UAII-I)

VA(I} = VAIl-l}
WAll} = WAIl-l}

5 CONTINUE
DO 15 I=ItNO

IF (ABS(UB(II)-DEL)
I1 IF (ABS(VB(I))-DEL)
12 IF (ABS(WBll)}-DEL)
13 UB(I) = USII-I)

VB(I) = VBII-1)
WB(I) = WB(I-I)

15 CONTINUE
RETURN
END

1,1,3

2,2,3
5,5,3

11,11,13

12,12,13

15,15,13

VALUE

C
C
C
C

SUBROUTINE MUINT IALF,BET,GET,U,VtW,ALFMtBETM,GETM,UUIND)

COMPUTES DIRECTION COSINES OF MODIFIED FREESTREAM AND THE
MODIFIED FREESTREAM/FREESTREAM VELOCITY RATIO

A = ALF+U

B = BET÷V

G = GET+W

D = SQRTIA**2+B**2+G**2)

ALFM = A/D

BETM = BID

GETM = GID
UUIND = I./D
RETURN
END

C
C
C
C

SUBROUTINE PRTOUT (IGEOM,XO,YO,ZOtU,V,W,CP,NKtITR, ITFtOV)

PRINTS OUT COMPUTED ANSWERS, INFORMATION INCLUDES JET CENTERLINE
DATA AND INDUCED VELOCITIES AT CONTROL POINTS

DIMENSION

DIMENSION

DIMENSION

DIMENSION
DIMENSION

DIMENSION

XITflOO),ZITIIOO),UJIT(IOO),DIT(IOO)tDXDZIT(IOO)
X2T(IOO},Z2T(IOO},UJ2T(IOO)tD2T(IOO)tDXDZ2T(IO0)

X3(IOO),Z3(IOO),UJ3(IOO),D3(IOO),DXDZ3(IO0)

XBASI(IOO),YBASI(IOO}vZBASI(IOO}

XBAS2(IOO)tYBAS2{IOO)tZBAS2(IOO}

XBAS3(IOO),YBAS3(IOO),ZBAS3(IOO)
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C

C

CONMONIBLK31X1TtZITtUJ1TtD1T,DXDZITtXZTtZETeUJZT,DZT,DXDZZT
COMMON/BLK4/X3tZ3,UJ3,D3tDXDZ3

CONNONIBLKSIXBASI,YBASItZBASI,XBASZ,YBASZ,ZBASZtXBAS3tYBAS3tZBAS3
CONNON/BLKg/NULTtIHOLDItKOUNTIeIONEtITWO, ITHRtNIeN2,N3tIFIXl
COMMON/BLKIZ/XJ3,YJ3tZJ3tDJET3,VELJ3

DIMENSION XOI1),YO(I)wZO(IItU(I),VI1),W(1)tCP(1)

WRITE (6e660)
IF (OV-.Ol) 15e15,10

10 WRITE 16,601)
60I FORMAT (IHOe//)

IF (ITR) 5,5,6
S WRITE |6,606)

606 FORMAT (1HOe65X,29H_ INITIAL APPROXIMATION _)
GO TO 15

6 IF (ITR-ITF) 7,8,8
7 WRITE (6,607) ITR

607 FORMAT (IHO,67X,ZOH_= ITERATION NUMBER,IZ,IX,3H*_)
GO TO 15

8 WRITE (6e608) ITR
608 FORMAT (IHO, 39X,20H_ ITERATION NUMBER,12t21H, FINAL ITERATION _

1")
15 WRITE (6,601)

IF (MULT-2) 1,2,2
1 WRITE |6,602)

602 FORMAT (IHO,66X,27H_t SINGLE JET CENTERLINE _¢)
GO TO 20

2 WRITE (6t603)
603 FORMAT (IHO,63Xt33H_ CENTERLINES OF JETS I AND 2 _e)

IF (IHOLDI-2) 20,4,4
4 WRITE (6t605)

605 FORMAT (IH ,SIX,17HAND COALESCED JET)
20 CONTINUE

WRITE (6,630)
630 FORMAT (IHOt42Xe3SH_==_=_t=t_t=_==t_=_=_==t=_==//)

IF (MULT.GE.I) WRITE (6,610)
IF (MULT.GE.2) WRITE (6_611)

610 FORMAT (IHOe3X,6HXCGORO,3Xt6HYCOORD, 3Xt6HZCOORDt3X,2HUJ,6Xt3HDIA)
611 FORMAT (1H+,62XtbHXCOORO, 3X,6HYCOORD,3X,bHZCDORD, 3X,2HUJ,4X,3HDIA)

WRITE (6,612)
612 FORMAT (IHO)

IF (NULT-2) 30,40,40
30 CONTINUE

WRITE (6,616) (XBASlil),YBASI(I),ZBASI(1),UJ1T(I),DIT(I), I=I,NI|
616 FORMAT (IH ,IX,FS.2,1X,FS.2,lX,F8.2,1X,FS.3,1X, FSo2)

GO TO 90

60 IF (N1-NZ) 41,42,42
6I IPI = N1

IP2 = N2
GO TO 63

62 IPl = N2
IP2 = NI

63 CONTINUE
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47

613

48

45
614

44

46
50

5L

615

9O

200
64O

635

22X
632

634

222
636

637

638
99

DO 47 I=I,IPI

WRITE (6t613} XBASIII)tYBASI(I)tZBASIII),UJIT(I)tDIT(I),XBAS2(I)t
I YBAS2(I)IZBAS2(I),UJ2Tll),DZT(I)

FORMAT (IH vlX,F8.2,1X,F8.2tIX,F8.2tlX,FS.3,1XtFS.2, IX,F8oZ,IXt
1 F8°2,1X,F8.2,1X,FS.3,1X, FE.2,1X,F8°2,1X, F8.2,1X, F8°Z,1XtFS.3, IX,
2 F5.2)

IF (N1-N2) 48,50,64
IPP = IPl*l

DO 45 I=IPP,IP2

WRITE (6t614) XBAS2fl),YBAS2(1),ZBAS2(1),UJ2T(1),D2T(1)

FORMAT ([H t4OX,FB.2,1X,F8.2,1X,F8.2,IX,FE°3,1X,FE°2,IX,F8°2,1X,
I F8.2,1X,FS.2,1X,FE.3,1X_FE.2}
GO TO 50
IPP = IPI+I

DO 46 l=IPP.lP2

WRITE (6t6[3) XBASI(I),YBASI(1),ZBASI(1),UJIT(1),DIT{I)
CONTINUE

IF {IHOLDI-2) 90,51,51
CONTINUE

V3 = I°IVELJ3

ZP = YJ3

YP = -ZJ3

WRITE (6,615) XJ3,YP,ZP,V3,DJET3

FORMAT (IHO,3X,27HPROPERTIES OF COALESCED JET,3X,2HX=,F9°2t3X,2HY=
I,F8.2,3X,2HZ=,F8.2,3X,6HUIUJO=,FE.2,3X,5HDIDO=,F5.2)

WRITE (6,610)

WRITE (6,616) (XBAS3(1),YBAS3(1),ZBAS3(1),UJ3(I)tD3(I), I=XIN3)
CONTINUE

IF (IGEOM) 200,99,200

WRITE (6,640}
FORMAT (IHI)
WRITE (6,635)
FORMAT (IHO938X,46H_ INDUCED VELOCITIES AT CONTROL POINTS _)
IF (IGEOM-3) 221,221,222
WRITE (6,632)
FORMAT (IHOt27X,IHX,8XtlHYt8X,IHZtI2X, IHU,14XtIHV,14X, IHW/)
WRITE (6,634) (XO(I),YOII),ZO(I),U(I),V(I),W(I), I=I,NK)
FORMAT (1H ,21X,Fq°3,1XtFg.3,1X,Fg.3,3E15°5)
GO TO q9

WRITE (6,636}
FORMAT (IH tAOX,3qHPRESSURE COEFFICIENTS AT CONTROL POINTS)

WRITE (6,637)
FORMAT (IHOtZOX,IHX,8XtIHYt8X,IHZtI2X,2HCP, IAX, IHU, 1AX, IHV,IAX,

1 IHW/)

WRITE (6,638) (XOII),YOII),ZO(1),CP(1),U(1),V(1),WII), I=I,NK)
FORMAT (IH ,IAXtFg.3,1X,Fg.3,IXtF9.3,AEIS°5)
CONTINUE
RETURN
END
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C
C
C
C

C

C

C

4

5

SUBROUTINE TRANSI (MULTtALFAtBETAtPSID)

TRANSFORMS INPUT COORDINATES TO PROGRAM COORDINATES (FIXED)
CONVERTS ANGLE OF ATTACK AND SIDESLIP TO FRSTRM DIRECTION COS.

DIMENSION XJI(IO)eYJI(IO),ZJI(IO),DJETI(IO),VELJI(IO)
DIMENSION XJ2(IO)tYJ2(IO),ZJ2(IO)tDJET2(IO)tVELJ2(IO)

COHMON/BLKT/ALFQtBETQ,GETQ,F[,F2tF3,VKONST
CONMON/BLKIO/XJltYJltZJ1,DJETItVELJltXJ2tYJ2tZJ2tDJET2_VELJ2

DIMENSION PSID(II

A = ALFA*.OIT6533

B = BETA*.OI76533
ALFQ = CDS(A)*COS(B)
BETQ = SIN(A)*COS(B)
GETQ = SIN(B)
YS = VJl(l)
YJI(I) = ZJI(I)
ZJI(I) = -YS
PSIO(I) = -PSID(I)

IF (MULT-2) 5,4_4
YS = VJ2il)
YJ2(I) = ZJ2(1)
ZJ2(1) =-YS
PSID(2) = -PSIO(2)
CONTINUE
RETURN
END

C
C
C
C

C

SUBROUTINE TRANS2 (YtZ_NO)

TRANSFORMS INPUT COORDINATES

DIMENSION Y(l),Z(l)

DO 1 I=I_NO
YS = V(I)
Y(I) = Z(l)
Z(I) = -YS
RETURN
END

TO PROGRAM COORDINATES (FIXED)

C
C
C
C

SUBROUTINE TRANS3 (Y,ZtVtH,NO,KStNS,TNEGtNLST)

TRANSFORMS PROGRAM COOROINATES (FIXED) TO OUTPUT COORDTNATES,
JET CENTERLINE AND CONTROL POINT COORDINATES ARE AFFECTED

DINENSION XI(II,IO)tZI(IltlO)tUJI(ll,IO)tDI(II, IO),DXDZI(lltlO)
DIMENSION X2(11,lO),Z2(II,IO)tUJ2(ll,lO),D2(II, lD),DXDZ2(11,lO)
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C

C

C

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

DIMENSION

XIT(lOO) ,ZIT(IOO),UJIT(IOO),DIT (I00) ,DXDZIT(tO0)

X2T(IOO) ,Z2T! IO0},UJ2T(IO0) ,D2T (IO0),DXDZZT(I00)
XBASI (IO0) •YBASI (I00) •ZBASl( lO0 )

XBAS2 {I00) ,YBAS2 (I00) ,ZBAS2 (I00)

XBAS3 (I00) ,YBAS3 (I00} ,ZBAS3(lOO)

XJI(IO} •YJltlO) •ZJ1 (10) • DJETI( 10 ),VELJI(10)
XJ2(10)•YJ2(IO) •ZJ2(10)•DJET2(10),VELJ2|10)

COMMON/BLK21XItZI•UJlwDI•DXDZItXZoZ2tUJ2•D2tDXDZ2
COMMON/BLK3/X1TtZIT•UJITtD1T,DXDZ1T_X2T_ZZTtUJ2T,D2T•DXDZ2T
COMMON/BLK51XBASI,YBASItZBAS1,XBAS2tYBAS2tZBASZtXBAS3tYBAS3_ZBAS3
COMMONIBLKg/MULT•IHOLDItKOUNTI•IONEtITWOtITHR•NltN2•N3tIFIX[
COMMON/BLKIO/XJltYJI•ZJItDJETI•VELJI•XJ2, YJ2•ZJ2tDJET2_VELJ2

DIMENSION Y(1)tZ(I}tV(1)tW{I)

DO I I=I,NO

YS = Y(I)

Y(1) = -Z(I)

Z(1) = YS

VS : VII)
V|I) = -WII}

Wfl) = VS

KTRI = 0
KTR2 = 0

IF {MULT-2) 8•5,5

5 IF (TNEGI 6,6•7

6 KTR2 = KOUNTI

GO TO 8
7 KTR1 = KOUNTI
8 CONTINUE

UJIT(I) = UJI|I,I)
DIT(I) = DI(I•I)
JK = 1
DO 20 I=I,KS
IF (I-l) lOtIO•II

10 NF = NS+I-KTRI
GO TO 15

It IF (I-KS) 12,13,13
12 NF = NS÷I

GO TO 15
13 NF = NLST
15 CONTINUE

DO 20 J=2,NF
JK = JK_I
UJITIJK) = UJI(JtI}*VELJIII]/VELJIII}

20 D1T(JK) = DI(J•I)*DJETI(I)/DJETI(I)
IF (MULT-2) 50•25•2_

25 UJ2T{I) = UJ2(I•I}
D2T(1) = D2|I•I)
JK = 1
DO 40 I=I,KS
IF (I-1} 30,30,31

30 NF = NS÷I-KTR2
GO TO 35
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3I IF (I-KS] 32,33t33
32 NF = NS÷I

GO TO 35
33 NF = NLST
35 CONTINUE

DO 40 J=Z,NF
JK = JK÷I
UJZT(JK) = UJ2(J,I]_VELJZII)/VELJ2(I)

40 D2T(JK] = D2(J_I)_'DJETZ(II/DJET2(1)
50 CONTINUE

DO 52 I=leNl
YS = YBASI(I)
YBASI(I} = -ZBASIII)

52 ZBASI(I) = YS
IF (N2) 60t60_53

53 DO 54 I=leN2
YS = YBAS2II)
YBAS2(II = -ZBAS2|I)

54 ZBAS2(I) = YS

IF IN3] 60,60t55
55 DO 56 I=ItN3

YS = YBAS3(I)

YBAS3(I] = -ZBAS3(I]

56 ZBAS3(I) = YS
60 CONTINUE

RETURN
END

C

C

C

C

SUBROUTINE OUTPT (XL,ZLtOXDZ,CF,DJ,XJ,YJtZJ,XB, YBtZB,VXtVYvVZ}

TRANSFORMS LOCAL COORDINATES TO PROGRAM COORDINATES (FIXED]

DIMENSION CF(3_31

PHI = ATAN(DXDZ)
VXT = SINIPHI]
VYT = O.
VZT = COSIPHI)
CALL ROTATE (VX_VYtVZtCF_VXTtVYTtVZTtI)
CALL ROTATE (FXtFYtFZtCFtXL_O.tZL_I]
XB = FX_DJ+XJ
YB = FY_DJ÷YJ
ZB = FZ_DJ÷ZJ
RETURN
END

C
C
C
C

SUBROUTINE OUTPT1 (XL,ZL_DXDZtCF,KS,DJtXJtYJtZJeXB_YBtZBe
VX,VY,VZ)

TRANSFORMS LOCAL CCORDINATES TO PROGRAM COORDINATES (FIXEDI,FDR
THE SEGMENTED JETS

DIMENSION CF(3_3tlO)
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PHI = ATANIDXDZ)
VXT = SIN(PHI)
VYT = 0.
VZT = COS(PHI)
CALL ROTATE (VX,VYtVZ,CF(ltItKS),VXT,VYTtVZT, I)
CALL ROTATE (FXtFYtFZtCF(ItltKS)tXL,O. tZLtl)
XB = FX*DJ+XJ
YB = FY*DJ+YJ
Z8 = FZW_DJ+ZJ
RETURN
END

C
C
C

C

SUBROUTINE PLANE (CFNItCFN2,CFN3,XItYI,ZI,CSNI,CSN2tCSN3tXLLtXL2t
1 XL3,COORItCODR2t COOR3 )

COMPUTES INTERSECTION OF A GIVEN PLANE WITH A LINE

DIMENSION CFN(3),CSN(3),XL(3),COOR(3)

CFN(1) = CFNI

CFN(2) = CFN2

CFN(3) = CFN3

CSN(1) = CSN!
CSN(2) = CSN2

CSN(3) = CSN3

XL(1) = XLI

XL(2) = XL2

XL (3) = XL3
IL= I

IM = I

IN- I

SUBI = O.

IF (ABS(CSNil))-I.OE-04) I,I,2
1 IL = 0

SUBI = CFN(I)_WXL(I)
COOR(1) = XL(1)

2 IF (ABSICSN(2))-I.OE-04) 3,3,4
3 IM = 0

SUB1 = SUBI÷CFN(Z)*XL(2)

COOR(2) = XL(2}

4 IF (ABS(CSNI3)i-I.OE-O_) 5,5,6
5 IN : 0

SUBI = SUBI÷CFN(3)*XL(3)

COOR{3) = ILl3)
6 D = CFN(I)w_XI+CFN(2)w, YI÷CFNI3)_ZI

IF (IL+IM÷IN-2} 10,30,50
IO IF (IL) 12,11,Z2
II IF (IM) 14,13,14
12 IP = 1

GO TO 15

I4 IP = 2
GO TO I5

13 IP = 3
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15 COORKIP) = (D-SUBL)/CFNIIP)
GO TO 90

30 IF (IL) 32e31t32
31 IPl = 2

IP2 = 3
GO TO 35

32 IF (IM) 36,33,36
33 IPI = I

IP2 = 3
GO TO 35

34 'IP1 = 1
IP2 = 2

35 SLOPE = CSNIIP1)/CSN(IP2|

COOR(IP2) = (D'-SUBI+CFN(IP1)*SLOPE_XL(IP2)-CFN(IPI)*XLIIP1))/
1 (CFNIIPI)_SLOPE÷CFN(IP2))

COOR(IP1) = SLOPE_(CCOR(IP2)-XL(IP2))+XL(IP1)
GO TO 90

50 COEFX1 = I./CSN(I)
COEFYI = -I=/CSN(Z)
D1 = XL(1)/CSN(I)-XL(2)/CSN{2)
COEFX2 = I./CSN[])
COEFZ2 = -I.ICSN(3)
D2 = XL(I)/CSN(I|-XL(3)/CSN(3)

CALL SOL |CFN(1)tCFN(2)tCFN(3)tD,COEFXI,COEFYI,0.,D1,COEFX2,0.,
1 COEFZ2,DZ,COOR(I;,CCCR(2),COOR(3))

90 COOR1 = COOR(1)
COOR2 = COOP(2)
COOR3 = COOR(3)
RETURN
END

C

C
C
C
C
C

C

10
C

20
C2O

C4OO
C
C
C

.SUBROUTINE ADAMS(NtSTART,FINALtHePRINTt ICOUNT,RELB, ABSB,ISKIPt
I XOtXPtPAR,DDERIV)

SUBROUTINE ADAMS SOLVES A SYSTEM OF *N_ FIRST ORDER DIFFERENTIAL

EQUATIONS BY MEANS OF A FOURTH ORDER ADAMS PREDICTORICORRECTOR
METHOD. THE STARTING SOLUTION IS BY RUNGE-KUTTA METHOD.

AUTOMATIC ERROR CONTROL IS OPTIONAL.

DIMENSION XKSO,5)tVKKSO,4]tF(SO,5)tE(50)
DIMENSION XP(I},XO(1),PAR(1)

IBOOL = 0

IF (PRINT) 20,10t20

IF (ICOUNT) 20t31,20

CONTINUE

WRITE (6,600) IDtN
IBOOL = I

FORMAT (17HOPROBLEM NUMBER IlO,5XI2HSOLUTION OF

I 13,5X35HFIRST ORDER DIFFERENTIAL EQUATIONS.)

SETUP INITIAL VALUES

106



30
31

35
40

45

50

C

C
C

IIII

C
2222

60

C

70

C

80

C

85
90

00 30 I=l,N

Xil,l) = XOlI)
CONTINUE

CONTINUE

IF (ICOUNT) 40,35,40
ICOUNT = 9999
I TEMP = 0

BOUND = START+PRINT

T = START
IF {ISKIP) 45,50._.5
IA = 2

IB = 4

GO TO 2222

RLTEST = 16.2*RELB

ABTEST = 14.2WWABSB

FACTOR = RELB/ABSB

BLB = RLTEST/200.O
H = 2.0*H

RUNGE-KUTTA STARTING METHOD

IA = 2

IB = 2

DO 90 J=IA,IB

CALL DDERIV {T,XII,J-I),FII,J-I),PAR)

DO 60 I=ltN

VK(I,l) = H*FII,J-1)

X(I,J) = XII,J-1)+.5*VK(I,I)
CONTINUE

TTEMP = T+.5*H

CALL DDERIV {TTEMP,XII,J),F(I,J)tPAR}

DO 70 I=I,N
VK(I,2) = H_F(ItJ)
XlI,J) = X(I,J-II+.5_VK|I,2)
CONTINUE

CALL DDERIV (TTEMP,X(1,J),FIItJ),PAR}

DO 80 I=I,N

VK{I,3) = HtF(I,J)

X(I,J} = X{I,J-1)+VK(I,]}
CONTINUE

T = T+H

CALL DDERIV (T,XiI,J),F(I,J),PAR)

DO 85 I:I,N
VK{I,4) = H*F(I,J)

X(I,J) = X{I,J-II+.16666667*(VK(I,1)+2.0_IVK{I,2|+

I VK(I,3))+VK(I,_)}
CONTINUE

CONTINUE
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C
C
C
C

C

120

C120

C_IO

125
130

420

C
140

IF lIB-2; 150,3333t150
3333 DO lO0 I=ltN

XP(I) = X|It2}
lO0 CONTINUE

C
150

C
C
C

160

XPII)=DOUBLE INTERVAL RESULT TO BE USED IN ERROR
ANALYSIS

T = T-H
H = .5*H

IF (IBOOL) 120t125,120
CONTINUE
WRITE {6,410) H
FORMAT (34HOIN THE FOLLOWING CALCULATIONS H =El4.8)
IF (H-.O000001) 130,130t140
WRITE (6,420)
FORMAT (IHO,LO(IH*)_////

1 49HOEQUATIONS CAN NOT BE SOLVED FURTHER WITHIN GIVEN
2 14H ERROR BOUNDS.)

RETURN

IB = 3
GO TO 2222

IF (IB-3) 200,160t200

IS ACCURACY CRITERION MET

J = 3
4444 DO 190 I=ItN

170

175

IBO

C
185

187
188

lqO
C

195

C
C
C

20O

EII)=ABSiXPII)-XII,J))
IF(E(I)-ABSiX(I,J)*RLTEST})ITO,175tI75
E(I)=E(I}IABS(XII_J))

GO TO 190

IF (E(I)-ABTEST) 180_185t185
Eli) = EIII*FACTOR
GO TO 190

T =T-H
IF IJ-5) 3333,187,3333
DO 188 K=ItN
X(K,1) = X{K,4)
GO TO 1111
CONTINUE

IF IJ-5)195,6666e195

IA = 4

IB = 4

GO TO 2222

SHOULD ANY OF THE STARTING VALUES BE PRINTED OUT

T = T-3.0*H
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2.10
22(]
9999

C9999
C430

C
230
240
25O

C
C
C

5555

260
C

270
C

280

C
6666
29C

C
295

300
C

C

C

C

310
320
7777

C

DO 250 J=2,4
T = T+H
ITEMP = ITEMP+I
IF (PRINTI 210,230,210
IF (T-BOUND) 230t220,220
BOUND = BOUND+PRINT
CONTINUE
WRITE (6t430) T,{I,X(I_J),I=I,N)
FORMAT (4HOT =EI4.8/ 5( 2H X, I2tlH=IPEI2.5))
ITEMP = 0

IF (ITEMP-ICOUNT) 240,9999,240
IF (T-(FINAL-H/IO.O)) 250,999,999
CONTINUE

BEGIN ADAMS METHOD

CALL DDERIV (T,X(I,6),F{I,4)tPAR)
DO 260 I=I,N
XP(I) = X(I,4)+.O41666667*Ht{55.0*F(It4)-59.0*F(I,3)

I +37.0_FII,2}-g°O_F(I,1))
CONTINUE

T = T+H
CALL DDERIV (T,XPII),F(I,5),PAR)
DO 270 I=ItN
X(I,5) = X(I,6)+.O6166666T*H*(9.0*F(I,5)÷lg.0*F(I,6}-

I 5.0_F(It3)+F(Ie2))
CONTINUE

IF (ISKIP)

J = 5

GO TO 4444

6666,280t6666

IF (T-(FINAL-HIIO.O))
J = 5
GO TO 999

295,290,290

DO 300 I=I,N

X(l,4) = X{I,5)

DO 300 J=2,5

F(I,J-I) = F(I,J)

CONTINUE

ITEMP = ITEMP+I

TEST WHETHER COMPUTED VALUES SHOULD BE PRINTED

IF (PRINT) 310,330,310
IF (T-(BOUND-H/IO°O))330,320,320
BOUND = BOUND+PRINT
j -- _

WRITE (6,430) T,(I,X{I,J)tl--I,N)
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C
330
340

C
C
C

350

355
C

358

360
362

365
380

382

C
999

C999
C440

385

C

I TEMP = 0

IF (ITEMP-ICOUNT) 340tTT77t340
IF (ISKIP) 5555t350,5555

TEST WHETHER INTERVAL CAN BE DOUBLED

DO 355 I=I,N
IF (EIII-BLB)
CONTINUE

355,355,5555

IF (PRINT) 358t380,358
Ol = PRINT/(Z-O*H)
DII=ABS(FLOAT(IFIX(D1))-D1)
IF (OlI-.l; 362t362,360
IF (DlI-.9) 5555t362,362
D2 = (80UND-T)Ii2.O*H)
D2I=ABS(FLOAT(IFIX(DZ))-D2)
IF (D2I-.II 380,380,365
IF (D2I-°9) 5555t38Ot380
DO 382 I=ItN
X(l,l) = X(l,4}
CONTINUE
H = 4.O_H
GO TO IIlI

CONTINUE
HRITE (6,440)
FORMAT (20HOFINAL
DO 385 I=ItN
XPlI} = XlltJ)
CONTINUE

FINAL = T

WRITE (6t430)
RETURN
END

T AND XP().o°)

T,(I,XII,JItI=I,N)

C
C
C
C
C

C

SUBROUTINE CFCAL (ALFQtBETQ,GETQ,CXJ,CYJtCZJtCF)

COMPUTES DIRECTION COSINES FOR THE LOCAL COORDINATE SYSTEM, X
DIRECTION OF FREESTREAMtY NORMAL TO FREESTREAM AND INITIAL JET
DIRECTIONt Z IS XCROSSY

IN

DIMENSION CFI3,3)

CF(1,L) = ALFQ
CF(1,2) = BETQ
CF(I,3) = GETQ
CALL XPROD (CXJ,CYJ,CZJtCF(I,I)tCF(I,2I,CF(1,3),CF(2,1),CF(2,2),

I CF(2,3) )
CALL XPROD (CFil,I),CF(I,2),CF(I,3),CF(2,1),CF(2,2),CF(2,3),

I CF(3,I),CF(3,2)tCF(3,3))
RETURN
END

II0



C
C
C
C
C
C

C

SUBROUTINE CFCAL| (ALFtBETvGETtCXJtCYJ,CZJ,CFtK)

GIVES DIRECTION COSINES FOR THE JET-ORIENTED COORDINATE SYSTEM

X-AXIS IS IN DIRECTION OF FREESTREAM,Y IS NORMAL TO THE PLANE

DEFINED BY THE FREESTREAM AND JET EXHAUST DIRECTIONS,Z AXIS IS

X-CROSS-Y. CFCALI SAME AS CFCAL EXCEPT FOR PARAMETER K

DIMENSION CF(3t3,10)

CF(I,ItK) = ALF

CF(I,2,K) = BET

CF(It3tK) = GET

CALL XPROD (CXJtCYJtCZJtCF(ltI,K)tCF(ItZtK),CF(lt3tK)tCF(2tZ,K)t
I CF(2,2tK)tCF{2,3,K))

CALL XPROD (CF(ltI,K)tCF(I,Z,K)tCF(I,3,K),CF(2, I,K),CF(2tZ,K),
I CF(Z,3,K),CF(3tItK)tCF(3_2,K),CF(3t3,K))
RETURN

END

C
C
C
C

C

SUBROUTINE ROTATE (AtB,CtCFtStT,U,L)

L=O ROTATES A,B,C INTO S,T,U,(FIXED COORDINATES TO ROTATED)

L=I ROTATES S,TtU INTO A,B,C,(ROTATED COORDINATES TO FIXED)

DIMENSION CF(3,3),D(3),V(3)

IF (L) 1,1,2

I D(I) = A

D(2) = B

D(3) = C

GO TO 3

2 D(I) = S

D(2) = T

D(3) = U
3 CONTINUE

DO 4 I=l,3

4 V(1) = O.

DO 5 l=It3

DO 5 J=l,3

IF {L) 9,9,10
g M = I

N = J

GO TO 5
I0 M = J

N = I

5 V(1) = Vil)÷D(J)*CF(MtN)

IF (L) 6,6,7
6 S = V(l)

T = V(2)

U = V(3)

GO TO 8
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• A = V(I}
B = V(2)
C = V(3)

8 CONTINUE
RETURN
END

C

C

C

SUBROUTINE XPROD (ALFI,BETltGETItALF2tSET2tGET2tALF3,BET3tGET3)

COMPUTES CROSS PRODUCT OF TWO VECTORS,RETURNS A UNIT VECTOR

ALF3 = BETI*GET2-BET2tGET1
BET3 = ALF2*GETI-ALFI_GET2
GET3 = ALFI*BET2-ALF2*BET1
OENOM = SQRT(ALF3*ALF3+BET3tBET3÷GET3*GET3)
ALF3 = ALF3/DENOM
BET3 = BET3/DENOM
GET3 = GET3/OENCM
RETURN
END

C
C
C

SUBROUTINE SOL (AI1,AL2,AI3,AKItA21tA22,A23,AK2tA31,A32,A33,AK3,
I XltX2,X3)

SOLVES A SET OF THREE EQUATIONS BY METHOD OF DETERMINANTS

DELTA = AII*(A22*A33-A23*A32}+A21*(A32*A13-A12*A33)
1 +A31*(A12*A23-A13*A22|

Xl = (AKI*(A22_A33-A23*A32)+AK2_(A32*A13-A12*A33}
I +AK3*(AI2*A23-AI3_A22))/OELTA

X2 = (AlI_(AK2_A33-A23*AK3)+A21_IAK3*A13-AKl*A33)
l +A3t_KAKI_A23-A13_AK2))/OELTA

X3 = (AlI_(A22_AK3-AK2*A32)+A21*(A32*AK1-A12_AK3)
1 +A31*IAI2#AK2-AKl_A22))/DELTA

RETURN
END
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