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ABSTRACT

A COMPUTER MODEL OF A PHASE-LOCK LOOP

BY

RALPH PAUL SHELTON, B.S. E.E.

Master of Science in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico, 1970

Dr. Frank F. Carden, Chairman

This thesis presents a computer model of a PLL (phase-lock

loop), preceded by a bandpass filter, which is valid when the band-

width of the bandpass filter is of the same order of magnitude as

the natural frequency of the PLL. This model is shown to agree

with previously known results for the situation in which PLL

natural frequency is much smaller than the bandpass filter band-

width. New results for the PLL natural frequency equal to the

bandpass filter bandwidth are presented.

The model presented herein is for a second order PLL operating

with carrier plus noise as the input. However, it is shown that

v



extensions to higher order loops, and to the case of a modulated

carrier are straightforward.

The new results presented give the cycle skipping rate of the

PLL as a function of the input carrier to noise ratio when the PLL

natural frequency is equal to the bandpass filter bandwidth. Pre-

liminary results showing the variation of the output noise power

and cycle skipping rates of the PLL as a function of the loop damp-

ing ratio for the PLL natural frequency equal to the bandpass filter

bandwidth are also presented.
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CHAPTER I

INTRODUCTION

The phase-lock loop is a device with a wide variety of applica-

tions in electronic systems. F. M. Gardner lists five representative

applications in his book on the subject [1]. These are: a coherent

transponder, frequency modulation demodulator, stabilizing oscilla-

tors, frequency multipliers and dividers, and pulse code modulation

demodulators. In general, a phase-lock loop is useful whenever one

needs a noiseless version of a noisy signal which is phase coherent

with the original signal.

There is a large body of information concerning many specific

uses of the PLL (phase-lock loop). However, no general solution,

that is, one describing the function of the PLL for all situations,

has been found for a loop of order higher than one. This is a

direct result of the difficulties involved in solving the nonlinear

differential equations describing these higher order loops. In

spite of this difficulty, it is known that a second order PLL is

superior to a first order PLL for many applications. Enough experi-

mental data for second order loops has been obtained to allow such

loops to function better than other known devices for some applica-

tions. One of the most glamorous applications of second order PLL

has been in the communications systems for the Apollo program.

In the applications previously mentioned, the PLL is generally

preceded by a bandpass filter. This bandpass filter is frequently



the IF (intermediate frequency amplifier) of a communications

receiver. Thus, the input to the PLL is signal plus band-

limited no is e. This is the situation modeled in this thesis.

Whenever the bandwidth of the IF is wide compared to the bandwidth

of the PLL, one can ignore the bandpass characteristics of the IF

and analyze the PLL as if the input were white noise plus the

desired signal. This simplifies the analytical problem consider-

ably. Most previous work with the second order PLL has been done

for this case. An important computer model for the white noise case

has been developed by Sanneman and Rowbotham [2]. This model was

used to obtain the mean time to unlock for a carrier tracking PLL.

It will be shown that the results of the computer model developed

in this thesis agree with this mean time to unlock in the appro-

priate region. The model presented in this thesis is an improvement

over previous work because it is valid when the input to the PLL

cannot be considered to be white noise plus signal.

The model development begins with the derivation of a general

baseband model for a PLL. This development, given in Chapter II,

parallels that of Viterbi [3]. Chapter III specializes the model of

Chapter II to the case with no noise. Computer simulation results

which verify this specialization of the model are presented.

Chapter IV is devoted to the development of a digital computer

representation of the noise process used in the general development

of Chapter II. Computer results showing the validity of this model

are presented. Chapter V combines the results of Chapters III and IV
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to give a computer implementation of the general model of Chapter II

for the case when no modulation is present. The results of this

model are compared to previously published work and some recently

obtained experimental data to show the validity of the model as a

whole. Chapter V also presents new results obtained with this model.

Chapter VI gives conclusions and recommendations for future studies

using this model and extensions thereof.



CHAPTER II

DEVELOPMENT OF THE GENERAL BASEBAND MODEL

2.1 Introduction

This chapter develops a baseband model for a phase-lock loop

preceded by an IF. The development begins with the representation

of a PLL in terms of ideal physical components. This representation,

which is standard in the literature, is shown in figure 1 [1,2,3,7,

15). The development of the baseband model parallels that of

Viterbi [3)., The second section of this chapter specializes the

model slightly. This specialization will simplify the explanation

of the computer implementation given in Chapters III and V.

2.2 General Development

The development of the general model will begin with the

mathematical models for the physical devices shown in figure 1.

The VCO (voltage controlled oscillator) is an oscillator for

which the output frequency is directly proportional to the input

voltage. In terms of instantaneous quantities:

0 0 (t) = Klv(t) (2.2.1)

where v is the input voltage and 0(t) is the phase of the

output sinusoid.

The multiplier is modeled as an approximately ideal device,

the departure from ideal being that the output is proportional to



the product of the inputs. That is, for inputs I1 and 12 , and

output Y , we have:

Y = K 21112  (2.2.2)

K2 is the multiplier gain. Since the multiplier is used as a

phase detector in this system, K 2 is often referred to as the

phase detector gain.

The linear filter is characterized by its impulse response,

h(t) . In the work following, it will be specialized to a second

order filter. For the present, it will be most convenient to retain

the general representation.

As mentioned in the Introduction, it is desired to model the

PLL when it is preceded by an IF. In this case, the input may be

represented as the sum of a signal plus noise.

x(t) = s(t) + n(t) . (2.2.3)

The signal considered is a general angle modulated sinusoidal

carrier.

s(t) = NT2A sin [6ot+0i(t)] . (2.2.4)

The noise is a narrow-band process because of the

characteristics of the IF. S. 0. Rice [4] has shown that such

a noise process may be represented as:

n(t) = ns(t)sino0 t + nc(t)cos 0 t (2.2.5)



where ns(t) and nc(t) are independent stochastic processes with

baseband power spectra identical to that of the original process

[9].

The output of the VCO is taken to be:

z(t) = 2B cos [i0 t+ 0 (t)
]  . (2.2.6)

Now R(t) can be calculated as follows:

R(t) = x(t)z(t)K 2  (2.2.7)

By substitution (2.2.7) becomes:

R(t) = K2 [ I72A sin[w0t+8i(t)]+ns(t)sin0 t+nc(t)cos0 t ]

[ \B cos0t + O0(t)] . (2.2.8)

This result is now simplified using the following

trigonometric identities:

sin(x)cos(y) = sin(x+y) + ksin(x+y) (2.2.9)

cos(x)cos(y) = cos(x+y) + cos(x+y) (2.2.10)

After applying the identities, (2.2.8) becomes:
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R(t) = 2ABK 2[fsin(w 0 t+e (t)+ m0 t+ 0 (t))

+ sin(w0 t+ ei(t) - 0 t - 90(t))]

+4 2BK 2 n s ( t)( sin[w0 t +p 0 t+ 0 (t)] + sin[ L 0 t -c 0t - 60 (t) ] )

+ 2BK 2 nc(t)(cos[0 t+ o +0(t)] + cos[m0t - t - e0 (t)]) . (2.2.11)

Next y(t) is to be calculated. The calculation can be

simplified by observing at the outset that the linear filter

is a lowpass filter with a corner frequency much less than 0 "

This allows one to ignore the terms centered about 2c 0 and

write:

R(t) = K2ABsin[e9(t)- 0 (t)] +..K 2Bns(t)sin[-O0(t)]

+ NJK 2Bnc(t)cos[-e0(t)] (2.2.12)

With R(t) as the input to a linear filter with

impulse response, h(t), the output may be written as:

y(t) = R(u)h(t - u)du (2.2.13)

Now substituting y(t) for v in (2.2.1),

0 = K1y(t) (2.2.14)

or

y(t) = e /K1 (2.2.15)
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Combining (2.2.12), (2.2.13), and (2.2.15) yields:

0 = KK2AB f sin[i(u) - 00(u)]h(t - u)du

+ KiK2B nsin(u)su)h(t- u)du

+Jk K1K2B nc (u)cos[-0(u)]h(t- u)du . (2.2.16)

This equation is represented by the system shown in figure 2.

2.3 Some Specializations for Simplification

There are some specializations of the model, shown in figure 3,

which simplify the implementation and retain much of the generality.

First, the product BK1K 2  is a combination of loop parameters

which may be considered as one parameter. Thus, the loop gain K

is defined as:

K = BK1K2 . (2.3.1)

Second, note that the sine is an odd function and the

cosine is an even function. Thus:

sin(-e 0 ) = -sine0  (2.3.2)

cos(- 0 ) = cos8 0  (2.3.3)

Further if one considers only zero mean gaussian processes

for n(t), it is immaterial whether one writes n(t) or -n(t).

Thus, both inverters in this portion of the loop may be omitted.



With the two previous simplifications one may model the system

as shown in figure 3. The equation describing the system then

becomes:

0 = AK sin[ei(u) - 00 (u) ]h(t- u)du

t
+ -K n s(u)sin%0(u)h(t - u)du

+J/K J nc(u)cos0 (u)h(t- u)du (2.3.4)
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MULTIPLIER

LOWPASS FILTER

z(t)

The PLL in Terms of Physical Components

figure 1

+(t) +i +K 1K2B h(t) 0(t

sin cos

Block Diagram of the General Baseband Model

figure 2

t) Asin K h(t) 0(t)

n s(t) kn c(t)

sin cos

Simplified Block Diagram of the Baseband Model

figure 3



CHAPTER III

DETERMINISTIC MODEL VERIFICATION

3.1 Introduction

In this chapter the general model of Chapter II will be

specialized to a second order phase-lock loop. Further, only the

deterministic response will be considered. The implementation of

the deterministic model will be discussed in detail. Finally, the

results obtained with this implementation will be shown to agree

with previously published results for the deterministic response of

a second order PLL.

3.2 Deterministic Model

A model for a phase-lock loop with deterministic inputs may be

derived, beginning with (2.3.4). If n s(t) and n c(t) are set to

zero in (2.3.4) one obtains:

60 = AK tsin[ei(u)- e0 (u)]h(t- u)du (3.2.1)

This equation is represented in block diagram form in figure 4.

Figure 4 may also be viewed as being derived directly from figure 3

with ns(t) and nc(t) set to zero.

This is a standard representation for the deterministic base-

band model, and similar developments may be found in books by

Viterbi [31 and Gardner [1].
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All results presented in this thesis are based on the following

specializations. First, the carrier amplitude A is assumed fixed

at unity. The filter, represented in general by h(t) in (3.2.1),

was specialized to a filter of the form:

Hf(s) = +a (3.2.2)

in terms of the s-domain transfer function.

Now rewriting (3.2.1) in s-domain notation, substituting

(3.2.2) for H(s), and setting A = 1, one obtains:

se0(s) = K[sin( (s)- 0(s))] [1 + s (3.2.3)

Thus, (3.2.3) is represented in block diagram form in figure 5.

Figure 5 represents the way in which the deterministic PLL

model was implemented. A few more steps are necessary to represent

this model in terms of the parameters most commonly used in the

literature. The first step in this procedure will be to assume

6i e0 and hence sin( i- eO) z 9i - e0 . Thus, (3.2.3) now

becomes:

se0(s) = K[ei(s)- 0(s) ] [1 + ]. (3.2.4)

This may be rewritten as:

& (s)
0 sK + aK

G.(s) s + Ks + aK
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ei(t) Asin h(t) 0(t)

e0(t) t

General Deterministic PLL Model

figure 4

ei(s) + s(s)

ak

e°(s)

Deterministic Second Order PLL Model

figure 5
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Transfer functions with second order denominators commonly

occur in elementary closed loop systems theory. The response of

such systems is characterized by two parameters. These are normally

referred to as zeta (), the damping ratio, and c , the system
n

natural frequency. The denominator of the transfer function is

normally written as:

2 2
s + 2cw s + w (3.2.6)

n n

Thus, for the second order PLL:

K = 2(un (3.2.7)

aK = 2 (3.2.8)n

In terms of these parameters, (3.2.4) can be rewritten

as:

sB0(s) = [ei(s) - (s)] [W 2 + n (3.2.9)

and figure 5 can be redrawn as shown in figure 6.

The form of the model depicted in figure 6 was used for deter-

ministic studies of the second order PLL.
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3,3 Computer Implementation

It will be most convenient to describe the digital computer

implementation of the model with reference to a block diagram.

Figure 6 represents the system simulated. Since the simulation is

in the time-domain, figure 6 is redrawn, using time-domain notation,

as figure 7.

The digital computer simulation was derived directly from this

block diagram. The operations indicated on the diagram were per-

formed over discrete blocks of time. A computer program for step

response and a block diagram similar to figure 7 annotated with the

computer program variables are included in Appendix A.

Three important points with respect to the simulation will now

be considered. First, the basic simulation rate will be considered;

second, the integration method; and third, the determination of the

input.

The basic simulation rate was empirically determined by starting

at a very high sample rate, with a step input to the system, and then

lowering the sample rate until some degradation was observed. In

this context degradation means a change in the output was observed.

This is based on the assumption that as one increases the sample

rate a better representation of the system is obtained. The sample

rate was then set at a slightly higher rate. This rate may also be

viewed as the integration interval for it is the basic time segment

for the numerical integration technique. For all results presented

in this thesis, the sample rate was 20 samples per second.
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2

eoes) I
S

s-domain Block Diagram of Deterministic Model

figure 6

eiit+ eo(t)) sin 0

n

Time-domain Block Diagram of Deterministic Model

figure 7
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The integration method used was suggested by F. E. Nixon [5].

It was chosen simply because it is easy to implement. This method,

called the weighted average method, averages the derivative of the

integral over two successive time intervals and uses this value as

the rate of change of the integral. The use of an average deriva-

tive is thought to add stability to the numerical technique. How-

ever, no detailed analysis of the technique was made. The

integration method is not claimed to be optimal but merely sufficient

for the needs of the work presented here. However, some preliminary

comparisons indicate this method is much faster on the digital com-

puter than more commonly used differential equation solution methods

such as the Runge-Kutta method. A study to determine which of the

many available numerical integration techniques is optimum in some

particular sense could be a topic worthy of a thesis in itself.

The input to the model just developed is the phase of the

input carrier. It should be noted that references to the type of

modulation refer to frequency modulation. Thus, a step input is a

step in frequency which is a ramp in phase, and a cosine modulation

appears at e.(t) as a sine. This is an important point to remem-

ber when interpreting the programs included.

3.4 Verification of Deterministic Response

One of the primary areas of interest in this investigation is

the cycle skipping behavior of the phase-lock loop. Thus, the

investigations for deterministic inputs were designed to show that
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the phase-locked loop, as modeled in this presentation, loses lock

for the same deterministic inputs as in previous studies.

The results for a frequency modulation step are shown in

figure 8. The heavy lines are from reference [7]. The points

shown with circles were determined with the model described earlier

in this chapter.

Figure 9 shows regions of stability and instability as presented

in reference [6] for frequency modulation by a single sine wave.

Points determined using the model of this chapter are also shown in

figure 9. Circles represent stable points and triangles represent

unstable points.

The agreement shown by the figures is very good. It should be

noted that reference [61 mentioned that the line shown in figure 9

does not represent a sharply-defined boundary. Further, the center

point in each group of three points had rather large phase errors

(greater than i). However, the output was still a reasonable

approximation of a sine wave.
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CHAPTER IV

THE NOISE MODEL

4.1 Introduction

In this chapter a model for the narrow-band noise processes,

ns(t) and nc(t) of Chapter II, will be developed. The model is

specifically designed for easy implementation on a digital computer.

The model begins with a wide-band noise source which is described in

section 4.2. The wide-band noise from this source is passed through

a filter with a passband narrow compared to the spectrum of the

noise source. Thus the output of the filter is the same as if the

input were white noise. The filter is described in section 4.3.

The results of tests on the noise model as a whole are presented in

section 4.4.

4.2 TheWide-band Noise Source

The fundamental noise source was a gaussian random number

generator. The output numbers from this source were independent

with a gaussian probability distribution about a zero mean. This

random number generator is described in Appendix B. Each number

from the random number generator was taken to represent the ampli-

tude of a time function for a period of At seconds. This time

function is illustrated in figure 10.

Now the power spectrum of the process will be found. This is

the Fourier transform of the autocorrelation function. For the
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following calculations the process will be assumed ergodic. The

ergodicity of the process will be used to calculate the autocorrela-

tion function. This development follows that of Lee [8].

For an ergodic process, x(t), the autocorrelation function may

be written as:

T
R(T) = lim x(t)x(t+T)dt (4.2.1)

T-o fT

This integral will be evaluated over two regions and the results

combined to give R(T) for all T.

First, consider the region where I7l>At . For this region,

x(t) and x(t + 7) are independent. Since the process is

generated with zero mean, the average of the product of x(t) and

x(t +) will be zero for this region. Hence:

R(T) = 0 ITl>At (4.2.2)

To evaluate R(T) for ITl<At it will be most advantageous

to first consider a single region of width At. The functions

x(t) and x(t+ 7) are illustrated for a typical region of this

type in figure 11. The number N. is the output of the random

number generator in the interval At . From the illustration the

integral of the desired product in the interval At can be viewed

as an area and written as:

x(t)x(t+ T)dt = N.N. T + N. (At - T) (4.2.3)
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Over this interval the normalizing factor multiplying the integral

is simply . Hence, for the interval, the integral is:

[NiNi. T]/t + [N.2(At T)]/At (4.2.4)

The entire integral corresponds to averaging .over all such

intervals. The average of N Ni+I is zero from the way in which

2
the N. are generated. Further,the average of N.2  is simply

1 i

2
the variance, a , of the random number generator. Hence, applying

the same arguments to negative shifts:

R(T) = 2(At - IT)/At l-l<At . (4.2.,5)

This result is shown pictorially in figure 12.

Now for the power spectrum, S (W), the Fourier transform

of R(T) is taken,

S (W) = R(T)e- TdT (4.2.6)

for this R(T):

0 2 At
S () = (At + + A 2(At r) (42.7)n t At At e r(427)

This transform is a well-known result. (See for example

reference [91 page 340.) For S n() one obtains:

2 2
S (W) - 4a sin (at/2)
n 2 (4.2.8)

o at
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This result is illustrated in figure 13.

The computer model was implemented with At = .05 and

a = 1.0 . This gives the power spectrum a peak amplitude of .05

and the first zero crossing at 125.5 radians.

4,3 The Lowpass Filter

The lowpass filter chosen was a fifth order Chebyshev filter

with a 0.5 dB passband ripple. The 0.5 dB cutoff frequency was set

at 1.0 radian. Thus, the power spectrum of the noise process

previously described is essentially flat (the variation is less

than one percent) with an amplitude of .05 across the passband of

the filter.

The implementation of the filter was similar to an implementa-

tion which could be used on an analog computer. That is, the

differential equation describing the filter was solved using five

integrators in series. The transfer function realized, in terms of

s-domain notation, was:

H (s) = (4.3.1)
c 5 4 3 2

s + b s + b3s + b2s + b1s + b0

A block diagram of the method used is shown in figure 14. The

coefficients, bi , were taken from Weinberg [101. A listing

of the computer program generating the filtered noise is included

as Appendix C.

The frequency domain characteristics of the filter, as

implemented on the digital computer, were determined by passing
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sinusoids of known amplitude through the filter. The results of

this test were found to be very close to that of an ideal Chebyshev

filter. These results are plotted in figure 15. The plot is for a

normalized filter.

There were many reasons for choosing this particular filter.

The integration technique used was the same as that described in

section 3.3. This was the highest order filter which could be

easily implemented on the digital computer with this simple inte-

gration technique. It is sufficiently close to an ideal square

filter to allow many analytical calculations to be done with this

approximation. It is also very close to the characteristics of

many IFs found in practical systems.

4.4 Empirical Verification of the Noise Model

This section describes tests made on the entire noise model

which indicate that the previous analytical work, including

assumptions, is valid.

The first test run was an estimation of the mean and variance

of the output noise. This was accomplished by calculating the mean

and variance of samples of the noise generated. For this test the

output of the filter was multiplied by b0  to give a normalized

result.

The input process was generated with zero mean. Thus, the

output of the linear filter should have zero mean. This was found

to be consistently true, to within the accuracy of the digital

computer, for samples of 2 x 105 points.
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The variance of the output process can be calculated by assuming

the input spectrum to be flat.

a0 = - S0 (w)d . (4.4.1)

S0 ( ) is the power spectrum of the output process. For a

linear system:

S0 (m) = IH(jwm)1 2Si() . (4.4.2)

Thus, for this system:

S00

0
2  d  

. (4.4.3)

With the assumption of an ideal square filter of width one

radian per second, the output variance becomes:

a2 = T1[N 0 /21]2 . (4.4.4)

From the results of section 4.2:

a 02 = .01590 (4.4.5)

The integral:

S H(w) 12 dw (4.4.6)

has been evaluated for a fifth order Chebyshev filter [ll].

Using the tabulated value:



28

2
00 = .01625 (4.4.7)

averaged over 4 x 105 sample points it was found that:

2
00 = .01610 (4.4.8)

This is very good agreement.

Since the determination of the rate of impulses produced by a

phase-lock loop tracking a carrier plus noise is an important

objective of this work, the rate of impulses in the IF noise

model is important. S. O. Rice [4] has developed a formula

for this rate based on the radius of gyration of the noise:

RR = r(l- erf p) impulses per second (4.4.9)

where p is the numerical carrier to noise ratio and r is

the radius of gyration of the noise. The erf(x) is defined

by:

x 2
erf(x) =[2A] e - t dt (4.4.10)

In order to better explain this calculation, a short

digression on the definition of an IF impulse is in order.

A phasor representation of the carrier plus noise is shown in

figure 16. According to Rice's definition, an IF impulse occurs

whenever the resultant phasor crosses the zero axis in the left

half plane. The carrier amplitude in this model is set to 12

Thus, Rice's impulses are counted with this carrier amplitude.
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Rice gives the radius of gyration of noise with an ideal square

power spectrum as:

ri= %/1i (4.4.1)
1

where B is the IF bandwidth. For an ideal square filter with

a cutoff of one radian per second:

r. = .0902 . (4.4.12)

If the spectrum of the noise is assumed to be that produced

by an ideal fifth order Chebyshev filter, the radius of gyration

can be calculated:

rc = .1525 (4.4.13)

This calculation is performed in Appendix D.

An empirical determination of the radius of gyration of the

noise can be made by taking one-half the zero crossing rate of the

quadrature component of the noise [4]. This estimate for the

radius of gyration was made by observing the component for 4 x 104

seconds and gives an empirical radius of gyration of:

re = .1066 . (4.4.14)

This indicates the variation of the filter, as implemented, from

the ideal Chebyshev filter.

These rates and the rate observed during simulations are plotted

versus carrier to noise ratio in figure 17. The IF impulse rate
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observed during simulation is almost exactly that predicted with the

empirically determined radius of gyration. Further, the rate pre-

dicted by the empirically determined radius of gyration lies above

that predicted by an ideal square filter and below that predicted

for the ideal Chebyshev filter.
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CHAPTER V

THE GENERAL COMPUTER MODEL

5.1 Introduction

This chapter gives a detailed description of the digital com-

puter implementation of the general PLL model developed in Chapter

II. The method of inserting noise in the model is described. The

method of determining the occurrence of PLL impulses and IF impulses

is described. Section 5.4 presents cycle skipping rates (impulse

rates) for the case in which the IF bandwidth is much greater than

the PLL bandwidth and compares them to previously published

results.

The relationship between loop carrier to noise ratio and output

noise power is compared to recently obtained experimental results.

Section 5.5 presents some new results obtained with the model pre-

sented in this thesis. These illustrate ways in which the model may

be used.

The model was implemented in two phases. First" two time series

of noise were generated on magnetic tape. Second, these noise pro-

cesses were read into the PLL modeling program and used for n (t)

and n c(t) which are described in Chapter II. This approach was

necessary because large amounts of time were required to generate

the noise. A program was written which generated the noise it used

internally. This approach was over 12 times as slow as the simula-

tion using the noise from tape.
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The noise processes, n (t) and n (t), are assumed independent

in the derivation of the model. This was guaranteed in the compu-

ter model by the fact that the processes were generated in blocks

of 2 x 105 points (see Appendix B). The last random number in the

random number generator was saved at the end of each run and used

to initialize the random number generator for the next run. The

random numbers were independent of one another and thus the only

correlation was that produced by the filter. The 2 x 105 points

correspond to 104 seconds which is many times the decorrelation

time of the filter. Thus, corresponding points in all of the time

series are uncorrelated.

The same time series of noise from tape were used for many

runs. The variations in carrier to noise ratio were obtained by

multiplying the noise from tape by appropriate gain factors. The

calculation of the gain factor is described in detail in section 5.2.

While the simulation was running, the test described in sec-

tion 5.3 determined the occurrence of impulses in the IF noise.

Section 5.4 describes the method used to detect PLL impulses. The

time of occurrence of each IF impulse was printed as was the time

of occurrence of each PLL impulse. The duration of each IF impulse

was also part of the output. Finally, the total number of impulses

of both types was summarized at the end of each run. The average

noise power out of the PLL was also calculated for each run. The

output format was such that additional information may be gleaned
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from the data collected. This information is not directly appli-

cable to the specific objective of this thesis.

A complete listing of the main simulation program is included

in Appendix E.

5.2 The Gain Factor

A gain factor (called GAIN in the FORTRAN program) was used to

adjust the amplitude of the noise time series to give the carrier to

noise ratio desired in each simulation run. The components of this

factor will be presented in three parts. First, there is an adjust-

ment for the Chebyshev filter gain; second is the main portion of

the factor which includes the carrier to noise ratio, and finally a

factor of N1/2i introduced by the way in which the noise appears in

the baseband model.

In the developmental stages of this work it was found that the

simplest way to view the filter was as a normalized filter followed

by an ideal amplifier. The noise generated on tape was the output

of an unnormalized filter with gain, 1/b0 . Thus, the first portion

of the gain factor was b0 which effectively normalized the filter.

In section 3.2, the model was specialized by setting the rms

values of the carrier amplitude to one. Thus, the CNR(carrier to

noise ratio in the IF)is simply the reciprocal of NP (noise power

out of the fifth order Chebyshev filter).

CNR = 1/NP (5.2.1)
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The wide-band noise process has been shown to be flat across

the passband of the filter with an amplitude in the passband of At

The noise power out of the filter is:

NP 1
NPO - 2 SO(w)dn . (5.2.2)

For a linear system with an input of white noise with spectral

density, N0/2, the output power spectrum is given by:

SO (m) = [N0 /2] IH(j)12 . (5.2.3)

Thus, substituting (5.2.3) in (5.2.2)

1 N

NPo - 2 m 2 H(jw)H(-ja)d . (5.2.4)

Now a change of variables, substituting s for jc , gives:

NPO = NO/2 2 j S- H(s)H(-s)ds (5.2.5)

where H(s) is the s-domain transfer function of the filter.

The integral in brackets (defined I for convenience) hasm

been tabulated for a fifth order Chebyshev filter [11]

Im = 1.02/n . (5.2.6)

For convenience the approximation 1.02 " 1.0 will be used. With

this approximation, substituting (5.2.6) in (5.2.5) gives:



37

NP0 = N0/2 (5.2.7)

Next, note that passing the output of the filter through an

ideal amplifier with gain, G ,will multiply the output power

by G . Using such an amplifier in the model to provide

the necessary amplitude changes gives:

NP = G2N0/2 . (5.2.8)

Substituting (5.2.8) in (5.2.1) and solving for G gives:

G ;-/20 /CNR . (5.2.9)

This is the gain factor which would be needed on the output

of a normalized filter to give a particular CNR.

Finally, from Chapter II, it can be seen that when the

IF noise processes are ns(t) and nc(t), the noise processes

in the phase-lock loop model are i~ ns(t) and F n c(t)

Thus, the gain factor for the PLL model must be divided by the2 .

Combining the three factors just described gives the gain

factor found in the PLL modeling program.

GAIN = .178923 ,20/2CNR (5.2.10)

In (5.2.10), .178923 is b0  for the fifth order Chebyshev

filter [101].
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5.3 IF Impulse Detector

The definition of IF impulses has been described in detail in

section 4.4. The most significant point to be brought out here is

related to the gain factor previously calculated. The noise pro-

cesses of the IF were divided by the NI2 for input to the PLL

model. It is much faster, in terms of computer time, to determine

the IF impulses with the scaled version of the noise than to rescale

the noise for this operation.

From the phasor diagram of figure 16 one can see that no IF

impulse can occur while the amplitude of n (t) is greater than the

negative of the carrier amplitude. This condition was sensed by

logic in the program. When this condition existed, each sign change

of ns(t) was counted as an IF impulse.

In section 2.3 the carrier amplitude was fixed at v2 . Thus,

for an IF impulse to occur, the condition:

nc(t) < - V2 (5.3.1)

must exist. This condition implies that, in terms of the

input noise processes for the PLL:

n (t)/ ,f2 < -1 (5.3.2)

This was the test used in the program logic. The sign changes of

ns(t) are the same as those of Sk n s(t) . Thus, when the first

condition was satisfied, the sign of the product of the current and

previous points of 1 n (t) was tested. If the sign was negative,
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an IF impulse was said to have occurred. One should note that the

definition of an IF impulse used here is that given by Rice [4].

Other definitions have been used and could yield different results.

5.4 PLL Impulse Detector

PLL impulses were detected by observing a short term average of

the output phase of the PLL. When comparing the results of this

thesis with other work in the area, one should note that the output

phase in this model is the negative of the difference in the phase

of the VCO and the phase of the carrier. This result is obtained

because carrier phase is set to zero in this model; that is, no

modulation is present.

The differential equation describing the PLL, for no modulation

present, has been shown to have stable points for an output phase of

± 2nn where n = 0,1,2,3 ....[3]. In the case with no modulation,

the PLL produces an output impulse when the PLL moves from the

vicinity of one stable point to another. This event requires a

change in the average value of the output phase of 2n . The output

of the PLL is the derivative of the output phase, and hence a level

change in the output phase corresponds to an impulse at the PLL

output.

In the early stages of the development of the model, the output

phase was printed at each simulation interval. It was observed that

whenever the long term average of the output phase changed by 2n ,

the change was very definite. Furthermore, the initial transient
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occurring during the move from one stable point to another carried

the output phase beyond the next stable point.

In the model presented in this thesis, the output phase was

averaged over intervals two seconds long. Whenever this average was

greater than 2r from the stable point around which the loop had been

operating, the loop was said to have moved to a new stable point.

This new value of ± 2nn was used for future comparisons. The two

second averaging interval was chosen on the basis of the fact that,

when the output phase was continuously printed, the output phase

never went to a new stable point and stayed in that vicinity for this

length of time and immediately returned to the original stable point.

Qualitative analysis of the output phase points indicated that the

changes from one stable point to another were sufficiently definite

that the choice of the averaging interval was not critical.

5.5 Comparison with Other Results

The first results presented for comparison were originally pre-

sented in a paper by Sanneman and Rowbotham [21. Through a computer

simulation they determined the mean time to unlock for a PLL operat-

ing with carrier plus white noise as the input. Their result is

given as a function of the CNRL (carrier to noise ratio in the

loop) in (5.5.1).

T = [2/ln]exp A(CNRL ) . (5.5.1)
ave n
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The CNRL was calculated using the equivalent noise bandwidth

(BL) for the linear baseband model of the PLL, This is derived by

Viterbi [3].

B = [2t0 n + cJ/2t]Hz (5.5.2)
L n n

In order to achieve an effective approximation of white noise

at the input to the PLL, co of the loop was set at .1 and was
n

set to .707. This gives an equivalent noise bandwidth of .333

radians per second compared to a filter bandwidth of one radian per

second.

To compare the results of the model developed in this thesis to

those of Sanneman and Rowbotham, the mean time to unlock is con-

verted to an average cycle skipping rate. This rate is then used to

predict the number of impulses in the time intervals over which the

thesis model was run. This comparison is shown in figure 18.

When comparing the results one must remember that the results

from Sanneman and Rowbotham's work represent a mean time to unlock.

Thus, if the loop skips two cycles in a relatively short time inter-

val, this would correspond to unlocking only once. This bunching

effect has been observed previously [12] and was observed with the

model of this thesis. However, bunching does not begin to occur

until several cycles are skipped. Further, the bunching effect

increases as the CNRL is decreased. Thus, for high values of

CNRL , one would expect the rates found by this model to agree
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closely with that predicted using the mean time to unlock. At low

values of CNRL one would expect the rate given by the thesis model

to be higher than that predicted using the mean time to unlock. In

addition, one would expect the difference to increase as CNR,

decreases. All these results are apparent in figure 18.

A comment on the variation of the data is in order at this

point. Computer runs were made in segments of 104 seconds each.

The number plotted represents the average number of impulses in four

such runs. The number of PLL impulses observed on individual runs

varied by as much as a factor of four. This is, in part, due to the

fact that, for an tn of one tenth, the decorrelation time of the

loop is a significant fraction of the total simulation time. At

high carrier to noise ratios this meant the number of impulses

observed was not sufficient to obtain a reliable estimate of the

impulse rate. At low carrier to noise ratios the bunching effect

previously mentioned indicates all the impulses observed are not

independent events. In this case, the run times were not long enough

to give a number of independent events which would allow as accurate

an estimate of the impulse rate as one might like. This accounts

for the variance apparent in figure 18. Considering these factors,

the agreement is very good.

A second comparison which supports the model is shown in figure

19. This is a comparison of the average noise power out of the loop
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versus CNRL with the same results obtained experimentally.* The

experimental results are plotted with a constant offset. This is a

result of differences in total noise powers. The significance of

the curves is not in the exact values of output noise power, but in

the fact that the shapes are almost the same. Further, the varia-

tions appear at low values of CNRL . In this region accurate

experimental measurements are very difficult to obtain.

5.6 New Results

This section presents results obtained with the computer model

for wn of the PLL equal to the IF bandwidth. Figure 20 is a plot

of the cycle skipping rate versus carrier to noise ratio in the IF.

The CNR was used as the base parameter because the loop noise

bandwidth is a meaningful parameter only when the white noise

approximation at the input is valid. The results here were taken

from two runs of 104 seconds for each point plotted. It was noted

that the variation in the number of cycles skipped on each run was

much smaller in this case than for the simulations run with a) of
n

the PLL set to one tenth. The variation was generally on the order

of one tenth the value shown. For a comparison, the PLL impulse

rate predicted with Sanneman and Rowbotham's mean time to unlock is

also plotted. This assumes the carrier to noise ratio in the loop

* The experimental results were obtained by A. Gilbert. They will be
published in an upcoming report to the National Aeronautics and
Space Administration under grant NGR-32-003-037. A similar curve
is also given in reference [13].
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is equal to that in the IF. The rate of IF impulses observed, as

defined by Rice, is also plotted on the same graph.

Figure 21 shows the effect on the number of PLL impulses of

varying with the IF bandwidth equal to a) of the PLL.n

Figure 22 shows the variation in average noise power out of the PLL

for these same parameters. These results are of a preliminary

nature and are included to illustrate the types of information that

may be obtained with this model.
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CHAPTER VI

CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

The conclusion that may now be drawn is that a useful model of

a second order PLL has been developed and verified. The model, as

shown in this thesis, can provide data on performance of a second

order PLL for a wide range of carrier to noise ratios and ratios of

loop bandwidth to IF bandwidth. There are many areas in which this

model is valid for which no analytical solutions predicting the

performance of a second order PLL have been obtained. This is

particularly important for the case where c of the PLL is of the
n

same order of magnitude as the IF bandwidth.

6.2 Recommendations for Future Study

Since the direct simulation approach used in this thesis has

been shown to produce valid results, one area of future study would

be a thorough study of the many numerical integration techniques to

determine the method which will give the best trade off between

machine computation time and accuracy.

As mentioned in Chapter V, there was some output from the com-

puter runs which was not analyzed for the purposes of this thesis.

This includes the duration of IF impulses and the times of occurrence

of IF impulses and PLL impulses. Analysis of this data may allow a

determination of a general relationship between IF impulses and PLL

impulses.
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As mentioned in the Introduction, only minor modifications

would be required to add modulation to the model. This would simply

involve structuring the main portion of the simulation in the manner

shown in Chapter III. The desired output could be calculated and

subtracted from the actual output to leave a measure of noise and

distortion. It should be noted that the results presented in this

thesis required approximately 15 hours of time on the IBM system

360 model 50. Each run of 10 seconds required from 4.5 to 5.5

minutes of computer time. The additional computations required for

modulation could easily double this figure. Thus, detailed studies

with modulation would require a faster computer. The problem is

further complicated by the fact that the introduction of modulation

increases the dimension of the parameter space of interest.

The extension to higher order loops is also straightforward.

One may change the lowpass filter in the PLL to model any linear

filter of reasonable order. The only restrictions are the accuracy

of the computer and the computer time required.
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APPENDIX A

COMPUTER PROGRAM FOR THE DETERMINISTIC MODEL

DIMENSION A(1000),B(1000),Z(1000),C(1000)
DO 100 JJ=1,20
READ(5,2) ZETA,SS,WN

2 FORMAT(3F1O.5)
WRITE(6,40) ZETASS,WN

40 FORMAT('1ZETA=',F 10.7,5X, 'SS=',F10.7,5X, 'WN=',F10.7)
C1=2.0*ZETA*WN
C 2=WN*WN
T=0.0
THO=0. 0
THO1=0.0
THOO=0.0
THOSO=0..0
THOS20=0.0
DO 20 I=1, 000
DO 10 J=1,5
T=T+.05
THI=SS*T
THE=THI -THO1
TH1=SIN(THE)
THOS11=C1*TH1
THOS21=THOS20+C 2*(TH1+THO)*.025
THOS1I=THOS11+THOS 21
THO=T--RHO0+(THOS1+THOSO) *.025
THOO=THO1.
THOS 0=THOS 1
THOS20~I'HOS21

10 THO=TH1
Z(I)=T
C(I)=THOS1
A(I)-iHO1

20 B(I)=THE
WRITE(6,50) (A(I),B(I),Z(I),C(I),I=1,1000)

50 FORMAT(1H ,4E20.10)
100 CONTINUE

CALL EXIT
END
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Block Diagram of Deterministic Model Annotated
with Computer Program Variables

figure 23
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APPENDIX B

THE RANDOM NUMBER GENERATOR

The program generating the gaussian numbers was obtained from

the scientific subroutine package written for the computer used in

this study. The subroutine which produced the normally distributed

random numbers is called GAUSS. It utilizes another subroutine

which generates uniformly distributed random numbers. This sub-

routine is called RANDU. Listings of GAUSS and RANDU, along with

short descriptions, can be found in the manual for this package [14].

The general approach of GAUSS is to combine 12 uniformly dis-

tributed random numbers from RANDU to produce each normally distrib-

uted random number. This is significant because the uniform random

number generator is a pseudorandom sequence generator. That is, it

generates a finite sequence of random numbers and then repeats the

sequence. If.a subsequence of length less than the repetition length

of the main sequence is subjected to statistical tests it will have

all the statistical properties of a sequence of random numbers. The

main sequence length with the subroutine used is 229

Approximately 2 x 105 gaussian random numbers were used for each

noise sequence generated for use in the model. This means 2.4 x 106

numbers were used from RANDU. However, 229 is approximately

5.36 x 108 . Thus, more than 200 such sequences could be generated

before the basic random number generator repeats.
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APPENDIX C

THE NOISE GENERATOR

DIMENSION A(1000)
READ(5, 1)IX

1 FORMAT(I10)
BO=0.1789234
Bl=0 .7525181
B2=1.3095747
B3F1.9373675
B4=1.1724909
Y51=0.0
Y4I=0. 0
Y31=0.0
Y21=0 .0
Y1I=0.0
YOI=0.0
DO 100 III=1,210
DO 99 J=1,1000
CALL GAUSS(IX,1.0,O.O,X)
Y50=X-Y4I*B4-Y3I*B3-Y2I*B2-Y1I*BI-YOI*B0
Y40=Y4I+(Y50+Y5I)*.025
Y30=Y3I+(Y40+Y4I)*.025
Y20=Y2I+(Y30+Y3I) *.025
Y1O=Y1I+(Y20+Y2I)*.025
Y0O=YOI+(Y10+Y1I)*.025
Y51=Y50O
Y41=Y40
Y3I=Y30
Y21=Y20
Y1I=Y1O
YOI=YOO

99 A(J)=YOO
WRITE (10) A
IF(III.LT.10) GO TO 100

100 CONTINUE
WRITE(6,2) IX

2 FORMAT(1H ,120)
STOP
END
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APPENDIX D

RADIUS OF GYRATION OF NOISE FROM A FIFTH ORDER CHEBYSHEV FILTER

The radius of gyration, , of a narrow-band noise process is

given by:

SG(a)dw
-0

[ w o (D.l)

where G(w) is the lowpass equivalent power spectrum of the narrow-

band noise [15]. For convenience, the integral in the numerator will

be called II and the integral in the denominator will be called

12 . The spectrum of the noise out of the Chebyshev filter used in

this thesis is:

G(w) = [NO/2] H(jw) 12  (D.2)

where H(jw) is the transfer function of the Chebyshev filter.

Now I1 will be calculated:

1 = N0/2 1 [joH(jw)] [-jaLi(-jc)]do (D.3)

Substituting s for jw , (D.3) can be rewritten as:

I = [N0/2]-2 [i [sH(s)] [-sH(-s)]ds . (D.4)
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The integral in brackets has been tabulated in a general form [16].

Using the values for a fifth order Chebyshev filter one can obtain:

I1 = (N 0 /2)42 (.0475) (D.5)

The integral 12 is simply the equivalent noise bandwidth for a

fifth order Chebyshev filter. This is also tabulated [11]. From

the tabulated value for wc = 1.0:

12 = 2(N0/2)(1.02) (D.6)

Combining (D.5) and (D.6) one obtains:

= [2- (.0475/1.02)] . (D.7)

This gives a 7 of .915. Rice's work was done in terms of frequency

in cycles as opposed to the radian frequency shown here. Thus, the

r for Rice's formula, shown in (4.4.13), is 7 divided by 2n .
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APPENDIX E

MAIN SIMULATION PROGRAM

DIMENSION SS(1),XS(1000),SA(1),XC(1000)
SS(1)=O.O
SA(1)=0.0

C
C READ IN NUMBER OF SETS OF DATA
C

READ(5, 1)NDATA
1 FORMAT(15)

DO 100 NNN=1,NDATA
C
C READ INPUT DATA FOR RUN
C

READ(5, 2)SN,WN, ZETA
2 FORMAT(3F10.5)

C
C WRITE OUT DATA FOR RUN
C

WR.ITE(6, 3)SN,WN, ZETA
3 FORMAT('1 SN='F10.5,5X'WN='F10.5,5X'ZETA='F10 .5)

C
C COMPUTE GAIN TO GIVE DESIRED CARRIER TO NOISE RATIO
C

ANP=O. 0
PI=3.1415927
PI02=PI/2.0
GAIN=0.1789234*SQRT(20.0*PI/(SN*2.0))

C
C INITIALIZE VARIABLES
C

NRI=O
N=l
NPLLP=O
NPLLN=0
NIMP=0

NPLUS=0O
NMINUS=0
MUE=0
PI2=2.0*PI
AVINT=0.0
M=O
T=0,0
THO1=0.0
THOO=0.0
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THOSO=0 .0
THOS20=0.0
THO=0. 0
C1=20*ZETA*WN
C 2=WN*WN

C
C START MAIN LOOP
C

DO 98 J=1,200
READ(10)XS
READ(11)XC
DO 50 L=1,1000
XS(L)=XS(L)*GAIN

50 XC(L)=XC(L)*GAIN
DO 98 K=1,25
DO 99 MM=1,40
I=MM+(K-1)*40
T=T+.05
TH=-SIN(THO1)
THI=TH-XS (I)*TH+XC (I)*COS(TH1)
THOS11 TH1*C1
THOS21=THOS20+(THO+TH1)*.025*C2
THOS1=THOS11+THOS21
THO1 THOO+(THOS1+THOS 0)*.025
THO 0=THO1
THOSO=THOS1
THOS 20=THOS 21
THO=TH1

C
C MAIN PORTION OF SIMULATION ENDS
C BEGIN TESTS FOR CYCLE SKIPPING
C

ANP=ANP+THOS 1*THOS1*0.05
AVINT=AVINT+THO 1

81 IF(XC(I).LT.-1.000) GO TO 83
IF (M.NE.1)GO TO 99
WRITE(6,6) M,N,TST,T

6 FORMAT(3H M=,I5,5X,2HN=,I5,5X,4HTST=,E15.7,5X,2HT=,E15.7)
IF(N.EQ.'1) GO TO 87
NIMP=NIMP+1
IF(XS(I).GT. .0) GO TO 86
WRITE(6, 200)

200 FORMAT(' POSITIVE IF IMPULSE')
NPLUS=NPLUS+1
GO TO 87

86 WRITE(6,300)
300 FORMAT(' NEGATIVE IF IMPULSE')

NMINUS =NMINUS+1
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87 N=1
M=0

TE-T-TST
WRITE(6, 7)TE

7 FORMAT(' IMPULSE DURATION=',E15.7)
GO TO 99

83 IF(XS(I)*XS(I-1).GE.0.0) GO TO 84
N (N (-1)
NRI=NRI+i1
WRITE (6,85)T

85 FORMAT('OZERO CROSSINGS'E15.7)
84 IF(MoNE.1) TST=T

M=1
99 CONTINUE

AVINT=AVINT/40.
IF((MUE+1)*PI2.GT.AVINT) GO TO 90
MTEI=MUE+1
NPLLP=:-NPLLP+1
WRITE(6,91)TAVINT

91 FORMAT('OPOSITIVE PLL IMPULSE AT',2E15.7/)
90 IF((MUE-)*PI2.LT.AVINT)GO TO 98

MUE=MUE-1
NPLLN:=NPLLN+1
WRITE(6,92)T,AVINT

92 FORMAT('ONEGATIVE PLL IMPULSE AT' ,2E15.7/)
98 AVINT=0.0

WRITE(6 94000)NPLUS,NMINUS,NIMP,NPLLP,NPLLN
4000 FORMAT(' NPLUS=',15,5X, 'iMINUS=',I5,5X,'NINP=',I5,5X,'NPLLP=',I5,5

IX, 'PLLN" ' , :5)
ANP=ANP/10000.0
WRITE(6,4001)ANP

4001 FORMAT(' ANP=',E15.7)
WRITE(6,4010) NRI

4010 FORMAT(' NUMBER OF RICE IMPULSES =',I 10)
WRITE(6,9) NNN

9 FORMAT(4H RU'N, 12,2X,8HCOMPLETE)
REWIND 10
REWIND 11

100 CONTINUE
CALL EXIT
END




