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The numerical method involving both the method of integral relations



and the method of characteristics has been applied to investigate the



steady flow phenomena associated with the occurrence of Mach reflection



and Mach disc from nozzle flows. The solutions of triple-shock inter


section have been presented in detail. The regime where Mach configur


ation appears is defined for the inviscid analysis. The method of inte


gral relations originally developed for the blunt body problem is modi


fied and extended to the attached shock wave and to the internal nozzle



fl6w'problems. This method, together with the method of characteristics,



is-adopted to study ilach reflection from two-dimensional -overexpanded noz


zle flows whereas the axisymmetric underexpanded nozzle flows with Mach 

disc are studied by using the method of characteristics exclusively. The 

reflected shock configuration, as well as the accompanying flow field in

cluding the Mach stem height in two-dimensional cases and the Mach disc 

radius in axisymetric jet flow, is established through the consideration 

that the central core flow downstream of the Mach -configuration should 

reach a state which is equivalent to choking for a uniform one-dimensional 

flow. In the axisymmetric underexpanded nozzle study, it is found that 

the rotationality resulting from the entropy difference must be considered.



The numerical results are. compared with the experimental data of Love and 

Grigsby for the axisymmetric gas jet. An approximate method based on the



idea of matching the interacting force between the streams has also been



developed for quick estimation of Mach stem height in overexpanded nozzle



flows. This simple analysis seems to yield reasonable results even out


side of its applicable flow regime. 



ACKNOWLEDGMENT 

The author wishes to express his sincere gratitude to his thesis 

adviser, Dr. W. L. Chow, for his helpful suggestions and guidance 

throughout the course of this investigation and for his financial sup

port under Research Grant NGL 14-005-140 from the National Aeronautics 

and Space Administration, Lewis Laboratory, Cleveland, Ohio, which not 

only made the completion of this thesis possible, but provided the 

author with the opportunity of pursuing the advanced study.



He is indebted to his colleague, Dr. L. D. Howlett, for supply


ing the information on the solution of nozzle flow by the method of 

.integral relations. Special thanks are due Mrs. June Kempka for her 

assistance in preparing the'final manuscript. 

The author is obliged to his family in Taiwan for their trust, 

patience, and encouragement.



He would also like to acknowledge the healthful discussions with



his colleagues and jogging mates during daily workouts in the gymnasium. 

Their friendship has made the stay at the University of Illinois at 

Urbana-Champaign a very pleasant period of his life. 



iv 

NOMENCLATURE



a,b,c,d coefficients defined in Eq. (39) 

A,B,C,D, 

E,F,G functions, see APPENDIX A and Eqs. (24) and (25) 

A1,BIC1, 

DI,1EIF ! functions, see APPENDIX B and Eqs. (35) and (36) 

Cv specific heat at constant volume 

H2H H a distances defined in Fig. 33 

I incident shock 

L reference length (here maximum body height above the 

centerline of symmetry) 

M Mach number 

M* Mach number based on speed of sound at critical condition 

MS Mach shock 

n dimensionless coordinate normal to the body surface 
measured from the surface 

N number of divisions on the starting characteristic line 

P dimensionless pressure 

q dimensionless magnitude of velocity 

R reflected shock, dimensionless radius of curvature of body 
surface 

r dimensionless radial coordinate in the axisymmetric method 
of characteristics 

s dimensionless coordinate along the body surface measured 
from the shock attached point; entropy per unit mass 

SL slipline 

T triple point 

u,v dimensionless velocity along horizontal and vertical 
direction in internal flow, see Fig. 13b 

V nv s dimensionless velocity normal and parallel to the body 

surface 



v 

V-" velocity vector



V dimensionless velocity



X,Y dimensionless horizontal and vertical coordinate for
 

flow inside a nozzle, see Fig. 13b



XY dimensionless horizontal and vertical coordinate for


supersonic flow over an arbitrary body, see Figs. 12


and 13a



Y dimensionless nozzle exit height above centerline of
e


-symmetry



Y dimensionless Mach shock height above centerline of

0 symmetry 

z parameter defined in Eq. (32)



V del vector operator



R dimensionless shock radius of curvature



(~) dimensional quantity



GREEK LETTERS 

a Mach angle 

y ratio of specific heats (y = 1.4 here for air) 

deflection angle 

Edimensionless shock layer thickness measured normal to 
the body surface 

o - angle from axis of symmetry to surface tangent; flow 
angle in the method of characterisrics 

Kangle from normal to centerline to shock tangent 

A angle defined in Eq. (51) 

p dimensionless density 

oshock wave angle



P/(pY), see APPENDIX A



W Prandtl-Meyer function; Crocco number = q/omax, see 
APPENDIX A 
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SUBSCRIPTS


0 	 stagnation state; starting place at triple point; 
condition on body surface in the method of integral 
relations 

1,2,3,4 	 region 1, 2, 3, and 4, see Fig. 12; integration step


freestrea condition



a 	 ambient condition



a 	 centerline of symmetry



e nozzle exit



f free-jet boundary


i 	 incident wave; integration step index


£ 	 lower part of slipline 

max 	 maximum state 

Md Mach' disc 

MS 	 Mach shock 


n normal to streamlin'e coordinate 

n3,n4 extreme cases of a = 90 degrees or UC, 909 degrees at 
triple point 


P-M Prandtl-Meyer expansion 


r reflected wave; reference state 


rZ limit of regular reflection 


s streamline direction 


so body surface 


sk imbedded shock wave 


sy. sonic condition after shock 


t throat 

u upper side of slipline 

w wall condition 

III 	 characteristics of family I or family II 


conditions just behind the shock wave 
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1. INTRODUCTION



The study of supersonic flow necessarily involves the consider


ations of normal or oblique shock waves since almost any irregulari


ties will produce one or more shock waves in high speed flow field.



Although the appearance of these waves can be explained and taken into



account in many of the flow situations, one of the unsatisfactory and



yet unanswered areas involving their reflection and mutual interaction
 


with the flow field is "Mach Reflection" or irregular reflection. This



tipe of phenomenon was originally observed by E. Mach [l* and later



brought to public attention by von Neumann [2]. The role of shock wave



interactions in the determination of the overall flow field can perhaps



be best appreciated by quoting von Neumann's remark:
 


"No'situation involving two or more shocks can be fully understood



without solving such problem, and a majority of the practically 

or theoretically significant situations involve several shocks."



When an oblique shock I is -generated within a supersonic flow 

field, such as shownin Fig'. la, it must be reflected from the lower



wall, and the flow behind the incident shock must undergo a change of



streamline angle 6 after this reflection. If this angle 6 is less than



6max corresponding to the flow Mach number M42, the reflection of'the in


cident wave is regular--both the incident and the reflected waves I-and



R are straight and intersect with the solid wall. On the other-hand, if



S is larger than the maximum allowable turning angle for the flow Mach 

number M2' a completely different situation appears (see Fig. lb). Some


where along the incident wave a triple point T occurs. A reflected



*Numbers in brackets refer to entries in REFERENCES.
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curved shock R and a strong curved Mach shock MS (Nach stem in two

dimensional problem) appear at this triple point. The flow behind the 

Mach shock is subsonic; the flow behind the shock wave R may be sub

sonic or supersonic. A slipline also emanates from this point tIdicat

ing-the discontinuity in entropy. This type of shock pattern is named 

Mach Reflection; its configuration also fully illustrates the compli

cation of the flow field arising from the multiple interaction of 

curved shocks. It should be mentioned that the incident shock remains, 

nevertheless, to be straight for the case shown in Fig. lb for uniform 

incident flow.



Mach reflection also occurs-within the overexpanded and under

&xpanded two-dimensional nozzle flow field. As it is well known that 

for slightly overexpanded nozzle flow, an oblicue shock which is gener

ated from the corner of the nozzle*will be regularly reflected from the 

centerline (Fig. 2a). If the nozzle is highly overexpanded, i.e. higher 

back pressure, the shock can no longer be regularly reflected and a Mach 

reflection pattern such as shown in Fig. 2b appears. 

In both overexpanded and underexpanded axisynetric nozzle flows 

the irregular reflection patterns occur as well and have appearances



essentially similar 'to those of the two-dimensional counterparts. Re


ferring to Fig. 3 (an underexpanded axisymmetric nozzle): If the back



pressure is much lower than the jet pressure at the nozzle exit, the



compression waves resulting from the reflection of expansion waves from



free jet boundary coalesce into an incident shock wave inside the jet



and the Mach disc eventually appears.



Mach reflection also takes place in many other flow situations



such as the transient flow field within a shock tube, steady flow field





within diffusers and nozzles and the transient shock interaction result

ing from simultaneous explosion of two charges. Close to a wall in 

boundary layer-shock wave interactions, Mach reflection has often been 

observed.



The Mach reflection study finds its application in many military



systems. The flash appearing in the issuing gas jet at the muzzle of



a gun or at the exit of a rocket motor is often attributed to the Mach



reflection phenomenon. The investigation of recoilless and noiseless



rifles is closely related to the jet structure and shock interaction



problem in supersonic flow. Since Mach reflection would generally re


sult in a higher pressure on the reflecting surface than regular re


flection, the maximization of the damage effect in conjunction with



Mach reflection was studied and utilized in the atomic bomb explosion



at..gasaki and at .iroshima,Japan, during World War II [3]. 
 Roke
 

mptors, missiles, jet engines, and other propulsive devices flying at 

yery high altitudes, for example, always have Mach configuration associ

ated with them. 'The relaxation and radiation behind the Mach shock are 

spcintense that they could be detected by a modern electronic device 

Xe..g.,, an -infrared detector [4]). The thorough study of the Mach reflec

tion problem would, therefore, be helpful in the search and detection of 

these flying objects. 

Problems in the design of rocket motors, jet engines or turbine



blades cannot be fully understood without a knowledge of exhaust plume



flow field of a gas jet which, in turn, relies on the study of Mach re


flection in high speed flow.



Academically, the solution of Mach reflection problem is of high



interest. it not only provides useful infornation concerning multiple





.shock wave pattern, but it fills the gap existing in the theoretical noz


zle analysis when the back pressure outside the nozzle is at off-design



condition.



The present investigation is restricted to the inviscid study of



Mach reflection and the associated flow field of steady two-dimensional



overexpanded and axisymmetric underexpanded nozzle flows. The experience



gained in the study of ejector flow problems at the University of Illinois



at Urbana-Champaign [5] suggested that the problem at hand belongs to the



category of inviscid interaction betweenmulti-streams as long as the



central-core flow is distinct while the viscous effects (such as prevail


ing along the slipline or along the jet boundary) can at most contribute
 


to a modifying influence to the flow pattern within this flow regime. it



is thus believed that the shock configuration as well as the accompanying



flow field (such as Mach stem height or Mach disc radius) can be estab


lished under the consideration that the central core flow behind the Mach



shock should eventually assume a state which is equivalent to "choking"



in the uniform one-dimensional flow. Also, previous studies of shock



wave-viscous layer interaction [6] established the conviction that the



shock structure can only be modified within the rarefied flow regime.



Therefore, the Rankine-Hugoniot shock relation for air flow can be ap


plied with confidence for the triple point in the study of Mach reflec


tion.



It is pertinent to point out that, in most of the overexpanded flow



situations under the present investigation, the back pressure is so high



that the flow would separate from the nozzle wall. It would produce a



Mach reflection pattern with non-uniform approaching flow conditions.
 


It is believed that these modifications of the flow field, due to the 
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viscous interaction, can be examined only after the flow models for Mach



reflection with uniform approaching flows and their methods of analysis 

are successfully developed and established. The present investigation



is, therefore, restricted to the inviscid flow field only; even the pos


sible influences of the viscous effects are well recognized.
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2. LITERATURE REVIEW 

Although Ernst Mach (1838-1916) did not bring forth theoretical



solutions, his observation and discovery of experimental facts in com


pressible fluid flow and ballistic research have been the inspiration



and foundation for many theoretical studies in gas dynamics.. Among



his various findings in physical science, the irregular reflection



pattern of shock wave interaction was first observed by him in 1875 

and was later named "Mach reflection" in honor of his excellent experi

mental contribution El]. By igniting two electric spark gaps simultane

ously to produce two intersecting blast waves in the physical laboratory 

at the University of Prague, Mach was able to visualize a trace of triple 

point of forked shockwaves (die gegabelte Verdichtungsstosze) on a flat 

plate covered with a thin sheet of -soot. The intersecting wave phenome

non of the irregular reflection configuration in a supersonic air jet 

exhausting from a high pressure reservoir to low pressure surroundings 

was also discovered by Mach using the then already-kno-n schlieren tech

nique, and the first schleren photograph of Mach configuration from nozzle 

flow was published in 1889. 

It was much later (during WUorld -War Ti) when von N1eumann brought 

this subject into general attention. The importance of study of produc

tion, equilibrium, and interaction of shock waves in he science of 

fluid dynamics was emphasized by von Neumann. In his expository paper" 

[2] he elucidated the basic difference between regular reflection and 

Mach reflection andquestioned the effect of viscosity and heat conduc


tion as an essential part in the study of Each configuration because of



good agreements'between the theoretical regular reflection analysis using
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the conventional inviscid nonheat-conducting shock theory of Rankine-

Fugoniot and the experimental results. Because of considerable dis

crepancy between theoretical analysis and experimental evidence in Nach 

reflection for weak incident shock, he surmised that there might be 

some other unkno. discontinuities existing in nature other than the 

well known discontinuities such as shock wave, density discontinuity 

(slipline), and Prandtl-Meyer-angular expansion and compression in the 

ideal fluid analysis.



The early studies of regular-reflection and Mach reflection of shocks 

were carried out by Bleakney and Taub. They were mainly concerned with 

transient flow situations within the shock tube. Excellent agreement was 

obtained between the theoretical and experimental/results for regular re


flection of shocks [7]. On the other hand, Mach reflection has been ob


served for weak incident shock strengths and wave angles where the three


shock theory for the triple point predicts no non-trivial solution. Ho'w


ever, experimental results did support the three-shock theory when the



.incidentwave of Mach reflection is strong.



The Mach configuration is also viewed by Taub [8] as shocks with 

singularity at triple point where the tangent to shock is discontinuous. 

He proved rigorously that the locus behind the singular point on shock



should be a slipline in inviscid analysis. He also.gave the expressions



for curvature of the shock and the derivative of pressure behind the



shock at triple point singularity in terms of flow variables along the 

shock so that the geometric properties of the shock configuration near



singular point for the- pseudo-stationary flow could be determined. 

Fletcher, et al., [9] reviewed the case of pseudo-stationary M-ach 

reflection of a nearly glancing incident shock using linearized th- or. 



With their own interferometrical experimental results they showed the



adequacy of the linearized theory in handling the pseudo-stationar



Mach reflection of shock waves at nearly glancing incidence.



By using the method of power series expansion of the flow variables,



Clutterham and Taub [10J gave the numerical results of flow variables



near triple point in table form and used them to determine the trace of



the triple point (called world line) and to construct approximately the



Madh configuration in the neighborhood of the triple point for pseudo


stationary flow.



In response to the above mentioned discrepancy between inviscid



triple shock theory and experiment for weak incident shock, Sternberg



[11] took the effect of viscosity into consideration and introduced a



non-Rankine-Hugcniot shock wave zone (incomplete shock wave) at the



-intersection of the three shock waves based on the reason that for weak



incident shock the wave was thicker and that this finite shock zone was



able to support some difference in pressure and flow angle. The con


ditions of equality of pressure and of flow angle across the slipline



were.then abandoned. With the aid of experimental results from a shock



tube, he found that the height of this two-dimensional non-Rankine-


Hugoniot shock zone for weak incident shock was several times greater 

than the thickness of Rankine-Hugoniot shock wave. Using the results



found from Busemann electric tank analogy for two-dimensional subsonic 

flow in distorted hodograph plane, he discovered the reflected and Mach



shocks were so strongly curved at the triple point that the shock wave



.angles between theo'y and experiment could not be compared accurately



because the region involved was too small to be visible by the present



experimental method. The introduction of non-Rankine-Hugoniot shock





wave zone necessarily seems to make theoretical analysis insurmountable



for weak incident shock wave.



The supersonic gas jet has been studied by many researchers after



World War II. The formation of shock wave in a two-dimensional super


sonic gas jet was examined by Pack [12] using the method of characteris


tics. The origin and position of shock wave imbedded inside a free jet



boundary for underexpanded nozzle flow were located based on the reason



that the trace of shock was the result of intersection of compression



waves of the same family. He observed that for two-dimensional gas jet,



the regular reflection still existed at rather high pressure ratio where



Mach reflection pattern already appeared in the axisymmetric jet. How


ever, he did not go further to treat the irregular reflection problem. 

Some experimental investigations have been performed by Ladenburg, et al.,



[133, using interferometric study, for the axisymmetric gas jet from an



orifice instead of a well designed nozzle.
 


By introducing a one-dimensional fictitious nozzle extension, 

Adamson and Nicholls [14] employed the pressure distribution on the center

line of the flow behind an axisymmetric orifice based on the method of 

characteristics to find the location of the first Mach shock. This Mach



shock was assumed to exist at the end of this fictitious nozzle extension



where the ambient pressure would be produced behind the normal shock. 

The analysis is very simple but it is not very helpful in the determin


ation and understanding of the overall flow field. Eastman and Radtke



[40], however, employed a different speculation that the location of



the normal Mach shock wave coincided with the point of "minimum" pres

sure behind the inbedded shock wave. 

The criterion of sonic condition at the throat in the interacting





10 

flow field was used earlier by Chow and Addy [5] in the study of the



mutual interactions between primary and secondary streams of a super


sonic ejector system. A similar idea has been adopted by Ashratov [15]



to find the Mach disc radius of a jet leaving an overexpanded axisymmetric



nokzle flow. By using a one-dimensional approach for the entire core flow 

and applying the method of characteristics for the supersonic flow above 

the slipline, he was able to determine, iteratively, the Mach disc radius 

which agreed well with experimental data. The theoretical results were 

given for M =-2.8 and M = 3.2. 

- Love and Grigsby [15] made an extensive experimental investigation 

on the axisymmetric jets exhausting from sonic and supersonic nozzles 

into still air and into supersonic-stream. Some theoretical consider

ations were also given in their report but were not complete as far as 

Mach configuration study was concerned. Their experimental data are to 

be compared here with the numerical solutions. 

The method of integral relations plays an essential role in the ap


proximate solution of fundamental hydrodynamics equations. Traugott [17] 


carried out a one-strip analysis of integral method of Belotserkovskii 


[18) for supersonic flow over arbitrary blunt axisymmetrin bodies. The 

higher order approximation using the gradient method to evaluate the flow 

variables across the shock layer was also .mentioned and'was different from 

the higher approximation scheme used by Belotserkovskii. His one-strip


analysis [17] is to be modified and applied in this study for solving


supersonic flow over arbitrary two-dimensional body with attached shock


wave.


South and Newman [19] used the method of integral relations to solve



real gas flow problems. They found that this method was generally ap


plicable to supersonic flow past a pointed body with weak attached shock





wave. The effect of the surface flow properties propagating normal to 

the boundary surface rather than propagating along characeristic curve



was found to be self-compensated in the method of integral relations.



They also gave the stability criterion for determining the step size of



integration in hyperbolic domain.



The method of integral relations has also been adopted to solve



.the nozzle flow problem. Liddle and Archer [20] gave the equations for 

one- and two-strip analysis derived from continuity, energy, and irro

tationality relations. Howlett [21] used the one-strip analysis originat

.ing from continuity, energy, and normal momentum equations to investigate 

nozzle flows. His analysis is utilized for solving two-dimensional 

central core flow for the present study.





12 

3. "TRIPLE POINT AND FLOW REGIME FOR MACH REFLECTION 

The Mach configuration is characterized by the mutual interaction 

of several shock waves. This distinguished feature is manifested 

through the appearance of a triple point where shocks of different 

strengths intersect each other. The flow condition in the neighbor

hood.of this triple point has the dominant effect on the downstream, 

flow field because of the necessary existence of subsonic flow behind 

the Mach shock. The study of the equilibrium of flow variables near 

this triple point is, therefore, indispensable in the- investigation 

of Mach reflection. 

- For nozzles operating under the condition where Mach configuration 

occurs, a triple point T accordingly appears (see Figs. Tb, 2b, 3, and 

4). The shock MS belongs to strong shock family and becomes a normal 

shock on the centerline while the reflected shock R can be weak or



strong and is also curved. The strengths of.reflected shock and of



Mach shock in the immediate vicinity of triple point T are determined



locally by the fact that the pressure is continuous and the flow angles



-are the same across the slipline which results from the entropy differ

ences in state 3 and state 4 for this inviscid analysis. Upon combin

ing oblique shock relations [223, the flow regions 3 and 4 aT point T 

for an arbitrary incident shock (arbitrary y, MI and 62 can be solved 

from the following equations: 

P3 2y 2 2 a -I 

P 4 2 y+ M sin 34 ya + (2) 
P1 -1 si Y~ + (2 



-

sin2'22 

a3 142(y + cos 2cr3) (3) 

s i n 2 ta64 an2 a i U4 ( ) 

Tan 6 - 2tan4 1(y cos 2a) + -2 (i) 

33 +64 62 (5)



=
P3 P4 (6)



The solutions are found from Newton-Raphson's method for simul


taneous nonlinear algebraic equations by numerically evaluating partial



derivatives [29]. These equations have trivial solutions corresponding



to M2 = M3 = M4, and three shocks merge into one shock which is of no



interest and is discarded. The nontrivial solutions are plotted in



Figs. 5, 6, 7, 8, and 9.



It is interesting to note that the state behind the reflected



shock may be subsonic or supersonic near the triple point. The con


dition when sonic flow behind the reflected shock occurs can be de


termined, in addition to Eqs. (1) through (6); for any given M1 and y



from the following equations: 

2.2 
2 M sin 2 - 1 

tan 62. tan a (7)


2 M1( +cos 2ar
2) +-2
 

=(+ )2 4A sn 2 -'1M2
 sin 2 - l)y142 +1)in2 2 

.2 [2112 sin2r- -_ 1 2 sinU r2] 

.22~ (Y + r- i T22 - G2 1) ( 1'Y 21) M1 
sin ar - (Y- + 1) M- (3-y) 

2 2 
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These solutions are also given in Figs. 5, 6, 7, 8, and 9 and arc 

labeled M3= . 

Two extreme cases are 6f interest: One is sin a. = 1.0, which i

plies that Each shoek is a normal shock, at triDle point; that is, 

62 = 63' 64 = 0 and is a pseudo-regular-type reflection as shown in 

Fig. 4a. The other case is sin 3 1.0, which indicates that the 
3 

shock between state 2 and state 3 is a normal shock (see Fig. 4b).



This is the physical limit ihere a solution to the triple Doint exists



under the condition of fixed MI and y.



The solutions to these -twoextreme circumstances are easily 

found from solving Eqs.. (1) through (8) with additional restriction of 

sir a4 = 1.0, 64 = 0, or sin Of3 = 1.0, 3 = 0 for the specified value 

of 'and M, and are shown in Figs. 5, 6, 7, 8, and 9 identified with 
t 90 degrees and a3 = 90 degrees, respectively. It should be noted 

that for M1 < 1.484( /y + 3.)/2 as given in [421) with y= 1.4, -o 

triple point solution is possible for this nozzle flow, and for 

M < 2.406, M, will be subsonic regardless of the value of 62. 
a 2'



The numerical values of i -2o solu io rs o r wth 

their two extreme cases for various Mach numbers are tabulated in 

Table 1 through Table 13 where 1, 2, 3, and 4 refer to the different 

states at triple DOint as shown in Fig. 4, DELTA is the deflection 

angle in degrees, SIG ,A is the wave angle in degrees, M is the Mach 

nuber, P2/PO! is The ratio of pressure at state 2 to the stagnation 

pressure at state 1, and (P4/Pi)* is the ratio of the pressure at 

state 4, when expanding to sonic condition, to the pressure at state 1. 

In order to study the flow field associated with Mach reflection, 



it is 'also necessary to identify the regime where l4ach reflection occurs. 

It is well known, according to [7], that for an incident 'shock wave 

striking a horizontal lower wall (see Fig. la), regular reflection would



occur if the turning angle- 6 associated with the incident shock is less



than some limiting value 6 The relations. between flow Mach number I.Y 

6S and wave angles are , 
 

2 2 sin0. 
tan a c s 2 i )  

(y 
. + cos 2c ) + 2 

tan 6r 25 _(.2 1 (!o) 

r



- 2 2 
tan "6n ap

ta M(%+ cos 20 + 2.(1 

2 in 2
(y+ 1)2 M4 sn2 C- 4(M2 si2 a M(y 1.; s a +1) 
112 = 2 1 _r kI2) 

2~~i 2y12210 
-n- a. - ( -C 

sin 2 a = / +1) M 4 
24yM2 

}(-)
!)1± 1) M 4 8 (y ) 142 + 

-- ± (y

The solutions are given in Fig. lOafor y = 1.4. 

Since M2 must be greater than one in order that there may be a 
2 

reflected shock, the upper limit is thus tentatively established under 

the condition of the sonic state behind the incident shock and is 

marked as curve 6 in Fig. 10a. 

If the two extreme results, 6 and 6n4 from triple-noint so. 

lution are also plotted in Fig. 10a, there is some overlapping area 

below curve 6 where both regular and Mach reflections are possible 

and some empty area between curve 6s and curve 6V3 where regular 



reflection is imDossible. The emory area revTeen curve s and curve c 

above regular reflection limit, curve 6 , is, perhaps, due to the limit

ation of the inviscid assumption. For this lower Mach number regime 

(m1 = 1.0), Sterrerg [11] discarded The criterion of equality of pres

sure and of flow angle across the slipline and introduced a non

Rankine-Eugoniot shock at the triple.point with The viscous effect con

sidered. From an electric tank experiment, he was able to find the so

lution to the Mach. reflection problem. Moreover, Milder [23] proposed 

a smooth curving shock pattern for the case where neither regular nor 

Mach reflection is theoretically possible. 

in the overlanping portion both two-shock and three-shock theories 
I



predict nontivial solutions. Whether -wo-shock Theory or three-shock 


Theory should be used depends, at'least, on the boundary conditions. 


As indicated in Fig. 11, if a plug with a particular shape shown were 


inserted at the exit of a two-dimensional nozzle giving a two-shock 


theory pattern, the removal of this very plug might arouse a Mach con


figuration from dormancy under the same ambient pressure. Hypothetically, 


this plug could be used to control the appearance of Mach configuration. 


For the problem shown in Fig. Dh, the exoeri-ental evidence of "Molder 


[23] shows that at IS
± 

= 2.8, the transition from regular to ?,ach reflec

tion occurs at the limiting case of three-shock theory rather than That 

of two-shock theory and that the Mach shock is a normal shock during 

this transition. Therefore, the steady Mach reflection produced frc 

nozzle flow of this stud-i is confined to the domain between curve 0,. 

and curve 6,4 in the present analysis.



The relation between jet deflection angle at nozzle exit 62 and
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the ratio of ambient pressure-to-nozzle stagnation pressure P /P is 
- 2 Thl 

given in Fig. 10b for various- Maac'numbels. For convehience of refer

ence, the region specified in Fig. lOa is also plotted here. At high



Mach numbers the flow is relatively sensitive in the sense that a very 

small change in ambient pressure results in tremendous variation in 

the jet deflectibn angle 6 9 at the nozzle exit. 



4. FUNDAMENTAL EQUATOS 


For a steady inviscid gas flow, without shock discontinuity inside 

the region considered, the conservation eauations in vector form are:



Continuity-: 

V .() = 0 (14) 

Momentum:



*(v) v -VP (15) 

Energy:



0V * v) o(16) 

where the equarion,of state for ideal gas has been tacitly used and C) 

indicates dimensional quantity.
 


The first two equations simply mean that mass and momentum are con


served. The last equation states -ae enItropy is-constant along the 

streamline under the above assumptions. Of course the entropy can change 

across the streamlines in the case of flow behind'curved shock wave. 

The vector form of the fundamental equations shown above' give concise 

expression for the conservation principle without referring to any particu

lar coordinate system. For different physical problems, the conservation 

equations have different forms for specific coordinate systems used which 

.can be derived from the vector form through vector analysis and coordinate 

transformation. 

The fluid considered inthis study is assumed both thermally and 

calormcally perfect with Y = 1,4. 



5. MACH REFLECTION FRO4 OEREXPANDED TWO-DIMENSIONAL NOZZLE- FLO-; 

5.1 	 BASIC DESCRIPTION OF THE FLOW FIELD 

As shown in Fig. 12 for the case of overexpanded two-dimensional 

" nozzle flow with a triple point shock system imbedded in the floI fiela, 

regions 3 and 4 are separated by the sipline of a yet unknown configu

ration. It is obvious that the two streams have to coexist so that 

along their common boundary they shall have the same pressure and flow 

direction. Regibn 3 is usually supersonic (although it may be subsonic 

close to the triple point T) while region 4 is invariably subsonic. It 

resembles 'a great deal the problem occurring within a two-dimensional 

ejector system [5]. It aDears to be extremely attractive to approxi

mate the lower stream by a one-dimensional treatment, especially in v.cw 

of the fact that the variation of entropy seems to be insignificant. 

However, it bas been observed that in the early part of the flow develo:

ment the pressure is increasing along the slipline. A one-dimensional 

flow analysis for the lower stream will not be able to match such a flow 

condition, and a more sophisticated flow analysis is thus needed in this 

region near triple point.



The flow field of region 3 for the unper stream is bounded 

a curved, attached shock and Is to be treated as a supersonic flow nest 

a curved body whose configuration is still unknown (see Fig.. a). I 

presents itself as a part of the flow field produced by a supersonic 

flow 	 past a pointed body. Although the method of characteristics will 

be useful when the flow is supersonic, it was originally expected znaz 

the genera] method of analysis for blunt body problems will be neeced 7 

the 	 flow lis subsonic behind the curved snockc. The method of integral
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relations developed by Dorodnits-n and applied by Belotserkovskii117 

to fluid flow problems is thus adopted for both the upper and lower fl.. 

fields -during the early part of the flow development. 

From the fundamental equations the moirentum equation along the 

streamline direction can be integrated to obtain the Bernoulli's eeuati.n. 

Due to different coordinate systems used, one has different sets of 

equations for external and for internal flow. Hence, one obtains the 

following two-dimensional equations in streamline coordinate system: 

External Flow for Region 3 (Fig. 13a) 

Continuitv:



- R +(- n- 0-- (17) 

Normal Momentum:



+ n-, F. 13 -

WFLPVn I n -__ L R~ 

NOTE: Theseare Tolimien's equatiofis [24] for inviscic
 


flow.



Internal Flow for Region 4 (Fig. 13b)



Continuity:



+ ;__ = 0_! ( ) 

Normal 'o!rentum:



+ pv -- + -= 0 (20) 

The Bernoulli relationship can be conveniently expressed by



f dcs 1 -t2/ --+ a=constant along the streamline (2i) 



and the entropy equation is



D0 where is the substantial derivative. 
 (22)



-Ecs. (21) and (22) are used for both external and internal flows. Here,



() refers to dimensional quantities.



5.2 	 THE 1ETHOD OF INTEGPAL ?ELATIONS 

The basic procedures of applying the method of integral relations 

[17,18,21,25] -to this study are to express the governing nonlinear con


tinuity and momentum equations in streamline coordinates, to irite them 

in divergence forms, and then to integrate them along the normal to 

streamline direction. The unknown integrands are aproxmated by some



polynomial functions (or some other convenient continuous functions). 

With 	 the aid of Leibnitz's rule for differentiation under the integral 

sign, the original nonlinear partial differential equations are re


duced to a set of ordinary differential equations readily solvable by us


ing a digital computer. Since the integration is a smoothing process,



the overall character of the solution is preserved even though the de


tailed description of the flow field cannot be achieved. The accuracy



of the solution depends on the number of strips of the normal direcion

divided.



5.3 	 SUPERSONIC FLOW OVER TWO-DIl.NSIONAL ARBITRARY BODY 

If the normalizing parameters cax Pow, po' and L are intro

duced to normalize the flow parameters in a one-strip analysis, and if 

the unknown integrands are approximated by linear function in normal 

direction 

n 
f(n,s) = f (ns) + - [f (n,s) - f (n,s)] (23)

0 	 S0 



the nonlinear partial differential equations, Eqs. (17) and (18), for



external flow can be integrated along the normal direction from the 

body surface to shock layer thickness c and, after tedious matherai

cal manipulation,will yield:



dE:

G + E -

d?, _s (24) 
ds 

from normal momentum equation, 

dV 
s 
= 	 D- Ads C dsj (25) 


from continuity equation, and



de 
1+-

R (26) 
*ds tan (K + 6) 

which is a shock geometric relationship, see Fig. 13a. 

Functions A, B, C, D, B, F, and G are complicated functions of 
K, Vs , s, y, M , 8, de/ds, and are given in APPENDIX A. Three un

0 
knowms, K, V , and s, are left to be determined. It is interesting 

0 
to note that the above t-wo-dimensional relations can easily be deduced 

from Traugott's axisyrmetric equations [17] by allowing the body ra

dius to approach ,ntn. 

5.3.1 	 Detached Sho: Wave 

If the shock :ve is detached, the initial cc -40,ditio
 

the above coupled first-c -_er nonlinear ordinary clieret:na a-------.



are



=
KIs 	 0 0 vs == 0,. FS = co (27) 

The shock stand-off distance c is unknown and must be solved as narr 
0 
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of the solution. There are two singular pcints involved. One occurs 

at B = 0 and the other at F = 0. The singular point of B = 0 occurs 

at Vso - i)/(y + I) which is the sonic condition. This singular 

behavior has been adequately used as the criterion for iteratively 

determining the correct stand-off distance S for axisymmetric body
0



[17,18,251, since the surface velocity gradient must be finite for



the smooth body profile. On the other.hand, some investigators [251



have questioned the applicability of the one-strip method of integral



relations to two-dimensional detached shock wave problems due .to the



ill behavior of the second singular point F 0. This will be dis


cussed 	 later.



5.3.2 	 Attached Shock Wave



In this study of Mach reflection, the shock wave is al


iairs attached to the triple point.. A limiting case corresponding to 

the zero shock stand-off distance must be investigated, since the fore

going eouations assume undetermined form if The condition E: 0 is im

posed directly into these equations. By formally using L'Iospital's 

rule and by noting v,~nE: 0, PC P at the attached point when S - I 

the coupled differential ecuarons, 5. (2!), (25), and.(27 ,)..c'' 

_s'! (28)rsdE 0 tan (e + K) 

+ K)!
2tan2 (0 	 
v



k k


-
dOv 
 
Go-K 	 v 
 -
L : 	 as tan (6+K) [ - K)(sy 12 ~ ]+sk 

0


(29)
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with 

= d sin (K + 0), from shock geometry (30) 

S16 
 ds



(as *e id



koVo.2_k! k3\



dV V _+ 2 ) v n ((+)+v k1 ko]



0 0 	 S0(3)

--. 	 a-.'+ 2 , vSock3cos¢+ ~k -i0 	 -iv ',+Vsok k2tan(OtK)I< 

s 
0 

The parameters have the same meaning as those of APPENDIX A. 

These are the equations for the initial derivatives of the unknowns 

E, K, and vs The initial values of K and vso can be found from oblicue 

shock relations. These equations can also be interpreted as the relation

ships 	 between shock curvature 1/R and body curvature- = and sur-
R 	 ds ) 

-face velocity gradient dvso/ds (or surface pressure gradient)at the at


tached point of shock wave on the body surfac, Figures 14, 15, 16, and



17 present the behavior of these relationships both for weak and for



strong shock waves. A discussion on the general strong shock relations
 


can also be.found in Reference [26]. It is noteworthy that the exact



expressions for weak shock wave have been derived by Thomas [27], Taub



.[8], and by Lin and Rubinov [28] from different methods of analysis for 

uniform approaching flow, and by.I4older [23] for non-uniform incident 

stream with rotationality in front of curved shock wave. 

5.3.3 	 Treatment of Singular Points



If one sets
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-y /-y1
B. 

and if one uses the transformation



Z so 3 y +1v2,so -(32)
Z= v (l 1 - (2
 

Eq. (25) becomes



dz 1__ D - de C K (33)



ITS~w (33)-T 

Since during the flow development v shall not reach the value of 1,
S



0


which is the maximum velocity, one has, in fact, removed-the sonic



singular point through the above manipulation. The relationship be

tweeh z and v is illustrated in Fig. 18 for y = 1.4. 
0



One should also note that



z 0 when v =0 or v = - _


0Y +



vs =yI
when 
 
0



and


2y 2
2 
 when v =1.



For a fixed value of z > 0, there corresponds two different
 


positive values of v one for subsonic flow and the other for super

s0



sonic flow. At sonic condition, ( '(dv ) = 0. Therefore, near sonic 
0



speed, for a known value of z, thc responding v cannot be determined


0



efficiently from Newton-Raphson's 'bchod for solution of nonlinear alge


braic equations. Other.methods such as the bisect method or the false 

position method [29] will yield the solution near sonic point. At sonic 

condition, for y = 1.4, z = 0.2721655 when v = 0.408248. 
5


0





The ill behavior of the differential ecuation and the inaccuracy 

of interpolating too close or too far near sonic condition as mentioned 

in [17,25] have been eliminated. The singular behavior of the differ

ential enuarion has changed, as a result of the transformation shcrn 

above, to the extree behavior of the nonlinear algebraic equation 

which is much easier to handle. Also, because a small change in z wil 

cause tremendous change in v near sonic point, a smaller integration 
0 

step size should be used there. Since z is an odd function of v


S 

there is another branch of solutions giving negative values of v wIhich


0 

is physically unrealistic and is ignored. 

By noting that in tio-dimensional flow F/E is a function of K only 

when y, M., and e are independent of K, it also sbems to be possible to 

use the similar treatmen- as before to eliminate the singularitv occur

ring in differeni-ai equarior.s when B = 0. However, because of the a7

pearance of dK/ds in Eq. (25), nothing will be gained when the technique 

utilized above -is applied to Eq. (24)--even the complexity of the func

tion F/S is ignored. Nevertheless, since F/6 = f(K), if y, M and e 

were held fixed, one can investigate, for E 0 0, when F/s w.ill vanish. 

Figure 19 is the result of the solutions of F!c = 0 for y = 1.4. 

Two curveb from oblioue shock equations for M. = 2.0 and M 5.0 are 

also plotted in the same figure for comparison. The intersection of



these curves with solution curves of F/c = 0 at the same flow Mach 

number occurs at the attachment limit which is a particular solucion of 

F/c = 0 and is also one of the starting points for attached snoc- wave



problem. Since shock is a local phenomenon, the magnitude of the ve

locity vector just behind the shock wave at point away from body is 
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independent of the surface tangent angle 0, that is, w = f(I ,) only. 

Therefore, the flow properties just behind the shock wave can be found 

by tracing oblique shock polar for the corresponding free stream Hach 

number. Noting that the sonic state is very close to the attachment 

limit point on 0-K diagram for the same free stream Mach number, one 

has, in general, two different categories, depending on whether the 

state behind the shock is supersonic or mixed type. 

1. 	 Supersonic State Downstream of Shock Wave 

Because K will not decrease in general for the unbounded flow 

field and the maximum value of K is the one when shock weakens 

to become a Mach wave, F/s will not vanish for different com

binations of 8 and K along shock polar as illustrated in 

Fig. 1ga. 

2. 	 Subsonic and Supersonic Mixed State Downstream of Shock Wave



As shown in Fig. 19b, the singular poift F/s = 0 will be un

avoidably met for all the smoothly varying body profiles carry


ing flow changing from subsonic to supersonic state.



From these results the conclusion is That the one-strip method of



integral relations is not suitable for solving two-dimensional blunt 

body with detached shock or pointed body with strong attached shock. 

The two-strip or multi-strip method is required and the calculation 

will be much more involved. This agrees with the comments made in [25]. 

However, for solving two-dimensional pointed body with weak attached 

shock, the one-strip method of integral re.lations is generally applicable 

(see also [19]) for slowly changing body profile with nearly constant 

value of K such as the case in our study of Mach reflection. 


In conclusion, in the one-strip method of integral relations for a
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two-dimensional profile the singular point B = 0 occurs at the sonic 

condition and can be handled without difficulty, but the occurrence 

of the other singular point F = 0 will greatly restrict the applic

ability of the one-strip analysis. 

It does not appear to be necessary to use the multi-strip analy

sis of the method of integral relations with the present method of 

approach in order to avoid the erratic behavior of dK/ds in the one

strip analysis. in weak incident shock regime, where subsonic flow 

behind the reflected shock prevails, it is believed that the triple 

point solutions do not provide adequate initial conditions as they do



not agree with the experimental rdsults according to [73. Worst of



all, the three-shock theory does not give any nontrivial solution 

while.Mach configuration has been observed in actual flow situations 

with weak incident shock. if the multi-strip analysis is to be use

ful for weak incident shock wave,instead of the results from the present



inviscid three-shock theory, the initial ccnditions at triple point



must be obtained from other more sophisticated approaches, for example,



Sternberg's.non-Rankine-Hugoniot model.



5.4 	 FLOW INSIDE A TWO-DIKENSIONAL NOZZLE BY THE METHOD OF INTEGRAL



RELATIONS



As mentioned previously, a one-dimensional treatment of lower 

part of the slipline is not adequate for solving the lower flow field 

close to triple point. A more detailed approach is indispensable. Re

ferring to Fig. 13b, upon introducing the assumptions that entropy dif

ference along the Mach shock is negligible and after the variables are 

non-dimensionalized by reference quantities, The integrands can be 
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approximated by polynomial functions given by:



2 
pu= (pu) + [pu)w 
 - (pu)] n

puv = (pu)vc v n + [(pu)w - (pu) c] vw n
3 (34) 

2 2) 2



where n = y/yw"



The integration of the system of equations for internal flow will



yield twb ordinary differential equations as the consequence of the ap


plication of the one-strip method of integral relations. They are:



dw cI E 1 B F 

- 1 E=1 A
-B-D(35)

dx c A I -B D( 

dqc Al F1 D1 C1
--q,' B1 (O6



With initial conditions 

= 
 qw Ow (35a)



= 
 qc q-- (36d)



where A ' C, Dl, El, and F1 are functions of Y, Y' Y11, Qo, and



q., and are given in APPENDIX B. The detailed derivations and dis


cussions on singular behavior of these differential equations are



given in [21]. Note that Eqs. (35) and (36) are functions of wall



height, slope, and curvature.



The rotationality behind this strong Mach shock is usually very



small and can be neglected, as can be seen from the results of triple



point solution at M1 = 3.0, for example, for 

62 = 25 degrees C4 = 81.434 degrees M'4 = 0.551 

62 = 30 degrees Gi = 86.24 degrees M4 = 0.491 
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in comparison to the normal shock at centerline a = 90 degrees,



M = 0.4752. An extension of the analysis to include the vorticity



can easily be made and was done '[30]. 

.5.-5 	 THE .MTHODOF CHARACTERISTICS



In the supersonic flow field the method of characteristics is a'



powerful tool. If the rotationality behind the curved shock wave is 

also 	 considered, the fundamental equations can be solved by tracing



the physical and the hodographical characteristics simultaneously in



a step-by-step manner. For the two-dimensional case, the characteris


tic equations are (see [31,32]):



dY = tan (e; a) (37) 
dtan 2sn d(s/c v)

!!Mztn a "'(38)T 
d fe; 	 (yy -de-

The last term in the second.equation accounts for the vorticity



behind curved shock. When derivatives are approximated by difference



forms, these equations can be solved simultaneously to give the unknom



quantities and, therefore, the whole flow field (see APPENDIX C).



Because of the erratic behavior of dK/ds of Eq. (24), the one


strip method of integral relations for two*dimensional blunt body prob


lems 	 is not suitable for the calculation of subsonic flow behind the 

triple point in region 3, which is contrary to the original intention 

of adopting this method. Although the method of characteristics could 

be used for all of the supersonic flow comvutations in region 3, the 

requirement of information'on height,,slope, and curvature of wall for 

quasi two-dimensional analysis in the internal flow renders Eqs.. (24), 

(25), and (26) of the method of integral relations to be the natural 
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choice to match with the upper flow based on Eqs. (35) and (36) at the



early part of the calculation. The method of characteristics, however,



will be employed for the upper flow in conjunction with the one


dimensional treatment of central core flow after the early complications



in the core flow have been resolved.



5.6 THE CALCULATION OF INTERACTING FLOW FIELD



With the results at the triple point.and the relations given by 

Eqs. (28), (29), and (31) as the initial conditions for external flow 

and Eqs. (35a) and (36a) as the initial conditions for internal flow, 

the system of differential equations, Eqs. (24), (25), (26), (35), and 

(36), can be integrated numerically. The fourth-order Runge-Kutra 

numerical method is used in the integration. For each-step of inte


gration, one assumes that the slipline has the profile of a polynomial



of third degree.



X2 X3Y = a. + b. X + c. + d. (39)1 1 1 1 

where the coefficients a., i, c., and d. are to be determined for each 

step i (see Fig. 12). 

For the first step of integration, a slinline curvature -1/R is aso 

sumed: This amounts to employing a circular arc for the first step as 

the slipline with radius of curvature R . Therefore,o 

a, = Y(o) = Y 

bI = Y'Co)
1 

= 0Y 
o 

-O -l 2 3/2 
Y"(o) r2+ 

1 2 2 2R L oJ 
0 
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where prime.(') indicates the derivative taken with respect to x, and



is found from solving
dI 
 

• 2 3/2

2
 

+ ( b I + 2c 1 X3d
 x ]
- I2c+ 6d I X 

when an arbitrary increment x is selected. One should note that Yo 

is the Mach sten height having length of unity and Y' is known from
0 

triple point solution. R is yet to be determined.


0 

For the steps thereafter, di is the only unknow.m since a., bi,



and c. can be determined from the results of the previous step. In


a



this way, the slipline would have no discontinuity in slope and curva


ture. For'an assumed Ri, the unknowm d. can be found from 
2 /

12 

2c. + 6d X 1 + b. + 2c. X. + 3d. (40) 

2. i-lwith 

ai Yi


b. Y!



o. = 
a 

Y -1 i-iY /( 
 

2R.Hi i -coodi -! 

Here xi is the x-coordnate at the end of theith integration step and 

1i-is the Y-coordinate at the end of the 5-1st integration step. 

For the selected geometric configuration of the slipline in each



step of the calculations, integrations of Eqs. (24), (25), (26), (35),



and (36) can be carried out. In particular, Eqs. (25) and (35) would



give v and a and thus the pressures across the slipline at the end


0

of each step. The requirement of pressure matching thereby allows the



determination of the correct R. for that particular step (R for the
1 O 
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first step).



It should be mentioned that in the first step of the calculation



of the lower stream, the difference in the x-coordinates of the triple



point and the .leg of the Mlach shock-is ignored for the purpose of



simplification.



It is also obvious from Fig. 20 that the coordinate transformational



relations between the lower and upper portions of the flow field are 

given by



Y = cos 6 - sin 62 + Y (41)



X = Xcos 2 
+ Y sin 62 (42),



The error analysis and the choice of step size in the numerical



integration are discussed, for example,in [33i34]. The simplest way 

in practice to -obtain good results is -to integrate the 'same equations' 

twice: first using reasonably small step size, then using twice larger



step size and comparing the results.



-The integration process is carried out until The fluid along the 

slipline accelerates. Thereafter, the analysis for the lower stream 

is replaced -bya one-dimensional isentronic flow while the werhod of 

characteristics is employed-for the upper flow for simplification 

purposes. -Meanwhile, a Prandtl-Meyer expansion, which would occur as 

the result of reflection of the curved shock from"the free jet boundary, 

is inserted into -he flow calculation. In switching from the method of 

integral relations to the method of characteristics for the upper flow 

field, gradient method [25] can be used to recover from previous results 

of-the method of integral relations the information needed for the 

method of characteristics. In all of the calculations, the reflectad 
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shock is-observed to be rather straight. The vorticity term in Eq. (38) 

can, therefore, be neglected.



Here one notices that another important reason for switching to 

the method of characteristics for the upper flow field is based upon 

the fact that the method of integral relations cannot handle the inter

section between reflected shock and free jet in a satisfying manner. 

The Prandtl-Mieyer expansion zone Aw is arbitrarily divided into an



increment of approximately one degree each where



. e
_(W y + I ta-1 tan-! 
 
+
 1 M 2
)=_± tan t lY +1


_M_* 1Wy-i .y2



is the Prandtl-Meyer function resulting from direct integration of 

the two-dimensional characteristic equation, Eq. (38)., when the entropy 

aradient term is d'isregarded. 

in the field or along the free jet boundary where pressure is con


stant, the unknown flow properties are found from conventional calcu


lation procedure by tracing characteristic curves in physical and in



hodographical planes as described in APPENDIX-C.



The procedure required for matching region 3 using method of charr



acteristics and region 4 using one-dimensional analysis along the slip


line needs special treatment. This scheme is similar to the study of



the interaction between primary and secondary streams of supersonic



ejector systems [5]. Referring to Fig. 20: If Yr and M-Iare the di
r r 

mensionless reference height and Mach number, and if flow field has



been calculated up to state 2 and flow variables at states 1, 2u and 2t



are all known, one may write for state 3





1 ;2] [ / ] - )
P [al Y 
Y / ( ]- I ) ]

P o F_ - i . , 
 

'1-Y -2 1 

from equality of pressure across the slipline, an& 

Yr Q(r
Y (QCN 

from constancy of flow rate for a one-dimensional nozzle flow where 

.1 Y+. -i 2 2Q(1')= -i i l± _,~ )]Q )/d)1 () 

The characteristic equations, Eqs. (37) and (38), with entropy 

gradient neglected, can be written in finite difference form as 

Y Y2u


(46)
= tan ( 23) 
 

Y3u -y lu 3= -tan (13 - 3) (47) 
X3u Xlu



- an (48) 

One now has five equations, Eqs. (43), (44), (46), (47), and (48) 7o 

determine five unkno-ms X Y 3 and M The unknown Y
3u' 3u' f 3u 3' W3 31 

is related to Y3u through coordinate transformations -from Eqs. (') 

and (42), and Po4/po3 is found from triule-point solution. 

An early insertion of Prandtl-i!eyer expansion would cause the 

" lower flow passing through a ni.u.dm area with subsonic Kachnu..er 

while a delayed insertion will cause the lower flow reaching sonic 

condition at a section with decrea.ing area. The correct location 

where the curved shock-jet boundary intersection occurs is such that 
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the lower stream will assume a sonic state at a minimum area location. 

Once this condition is met, it will be a simple matter to determine



the location of the Mach stem height relative to the height of the noz


zle exit section by using triangular relations (see Fig. 12)



+ Y) 2
 2 sin (1800 - a2 X) sin 62

Ye P- P-N o p- Yo49)Xsin (@2- 62 )_1 (4) 

y -y


X 0 e (50)


e tan 2 

here



S= tan 1 y-m -Yo] (51)



nd 2 is the shock wave angle corresponding to M1 and 62 

5.7 RESULTS AND DISCUSSIONS. 

The method of analysis given above is indeed fruitful for the 

present study with supersonic state behind the reflected shock at the 

triple point. A successful calculation using double precision mode 

takes two to five minutes computation time on an IBM system 360/75 

digital computer. Figure 21 shows the flow condition of the lower 

stream when the P-M expansion starts at various places for M1 = 3.0 

and 6 = 30 degrees. It clearly demonstrates the dependence of sonic 

state of the central core flow on"the location of Prandtl-Meyer ex

pansion fan. A similar trend is found for other flow conditions. 

The early occurrence of P-M'fan, say at XpM= 30 in Fig. 21,gives subsonic 

state, 14 = 0.72, at the throat (6_ = 00) for the slipline. The de
t 

layed'appearance of P-N fan, say at Xp M = 40, results in a sonic state



at a position where the area is not a minimum, which contradicts the
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one-dimensional isentropic flow the6ry> :-Th correct position of P-1 

fan is'theref6te found by iteration (approximately at X = 35.53 for 

the present'case). It is to be noticed that the iteration procedure 

is carried out only up to the state where Mach number in central core 

is close to 1.0 at the minimum area. The sonic state at throat cannot 

be reached in an exact manner, since sonic point behaves as a saddle 

point mathematically. 

All above stated discussions are based on the isentropic one

dimensional approach in central core flow after the highly non-uniform 

-state near triple point has been solved by using quasi two-dimensional 

-integral method. For more rigorous and accurate analysis not only the 

vorticity behind the curved Mach stem shock should be considered in 

:t1he quasi two-dimensional integral method, but the nonisentropic effect 

in the continued calculation of the one-dimensional treatment must be 

taken into account also. In that case, the lower stream flow is not 

necessarily sonic at the throat. For one-dimensional nonisentropic 

nozzle flow, Snyder [35], Bryant [36], and Ferguson [37] showed that 

-for nozzle efficiency less than one, the Mach number at throat of the 

nozzle is also less than one. On the other hand, in an irrotarional 

quasi two-dimensional nozzle analysis [21], the "choking" condition 

is 'defined as the throat singular point which permits continuous ac

celeration from subsonic to supersonic flow. However, these deviations 

are small compared with those of [21,35] for high efficiency nozzle



flow.



Figures 22 and 23 give the flow patterns for 6 = 30 degrees and



62 25 degrees, respectively, at MN = 3.0.* For 6 = 25 degrees the



*There was a minor error in reporting the results in [38]. This has


been corrected in Figs. 22, 23, and 24.
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minimum area (sonic state for region 4 in one-dimensional isentropic 

analysis) occurs in the P-M expansion zone as shown in Fig. 22. For 

62 = 30 degrees, however, the minimum area stands at the place where 

the last P-N exDansion wave reflects from the free jet boundary and 

intersects with the slipline, since the ambient pressure is higher 

and the P-M zone is smaller (Aw = 8.84 degrees compared with Am = 15.26 

degrees for the case of 62 = 25 degrees) as shown in Fig. 23.



Figure 24 illustrates the velocity distribution along the slip'ine.



The decrease in velocity along the early part of the slipline accounts



for the necessity of using quasi No-dimensional analysis in region 4



near the triple point.



Figures 25 and 26 present the information of the height and the 

position of Mach stem for two-dimensional overexpanded nozzle flow. 

It is understood that at the same nozzle Mach number, it takes more 

computation to reach the sonic condition in central core flow for lower 

ambient pressure levels. These curves could be, therefore, extrapolated 

to the zero Mach stem height corresponding to the regular reflection 

pattern. For higher ambient pressure, the Mach stem is higher and stands 

closer t6 the nozzle exit plane. 

The correct positions of P-M fan for various flow conditions are 

shoin in Figs. 27 and 28. It has a trend similar to that of the Mach 

stem height. Figure 73 shows the range of expansion of P-M fan. 

Evidently at the same - Le Mach number lower ambient pressure induces 

wider range of P-M exp.: 11. 

The height and Ic- Lion of the throat of central core flow are



plotted in Figs. 30 a .. 31. The higher Mach stem height is associated 
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with higher throat height for the same nozzle exhaust condition. This



indicates that for a propulsional device flying at a designed nozzle
 


Mach number from higher pressure atmosphere to lower pressure sur

roundings, the Mach stein height decreases as does the throat height 

in the central core flow. Therefore, the mass floi rate passing



through the central core is reduced and the pumping effect of this



central core is reduced also. However, the higher surrounding pres


sure does not necessarily result in a throat position closer to the
 


nozzle exit plane. As depicted in Figs. 22 and 23, different ranges



of P-M expansion for various ambient pressure levels would affect the 

location of the throat significantly. This perhaps accounts for the



occurrence of kinks in the curves as shown in Fig. 31.



Figure 32 reveals the values of 1,1*
on the upper side of slipline



,at the place where the lower side is at sonic" condition. it is interest


.ing to note that at the throat the velocity difference on the two sides



of the vortex sheet (slivline) decreases as the ambient pressure in


creases under the same nozzle design condition,



With the data given above, it should be fairly easy to construct



a Mach reflection pattern from an overexpanded two-dimensional nozzle



flow when it occurs. First of all, the nozzle exit height and Mach



number are specified. For a particular ambient pressure one finds a



corresponding 6 from Fig. 10b. The properties at triple point'are

2 

found in Figs. 5 through 9 (or from Tables 1 through 13). Using this



information and the data shown in Figs. 25 through 32, the appropriate



location and height of Nadh stem, P-M fan, and central core throat can



'all be laid out.
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5.8 APPROXIMATE IMTHOD FOR ESTIMATING MACH STEM HEIGHT 

For higher back pressures, state 3 at the triple point becomes



subsonic and the method described previously does not yield any fruit

ful results, since the calculation cannot overcome the singularity 

corresponding to F = 0 (see Eq. (24))-. However, the location of the



Mach stem and its height under these situations can be determined ap

proximately from a model emphasizing the balance, of the interacting 

force between the two streams. As it turns out, this model can also
 


be employed to give reasonable results even when state 3 at the



triple point is supersonic.



One realizes'that- under'this'flow situation, the back pressure 

is i'elatively high that the strength of the reflected shock is not ex


cessively strong (although it belongs to the strong shock solution)



at the triple point, and it soon degenerates into a lladh wave as it



extends from the triple point. It is then reasonable to assume that



this variation may be expressed by (Fig. 33):



a. 1 a = a2 + (a -a2) -22 (52) 

.%here a. is found from triple voint solution, 

U is the Mach angle corresponding to M and 
2 2' 

Y and H2 are the distances from the triple point normal'to 

the flow as shown in Fig. 34a and are nondimensionalized by, 

using unit nozzle exit height Y ee 

Similarly, the-Mach shock profile may be approximated by



where Y is the unknown Mach stem height and is'nondimensionalized
0 
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by using unit nozzle exit height, Ye and 

a4 is the shock wave angle found from triple point solution. 

Since the ambient pressure is relatively high such that the



central core f.ow will not be "choked" if it expands isenfropically 

to the ambient pressure, it is thus possible to assune that both the 

upper and lower streams shall expand and tend toward the fifal asymp

totic rotational states borresponding to the uniform ambient pressure. 

A final balance of the flow momentum in the main flow direction associ

ated with the contbl volume as shown in Fig. 34a would allow a unique



determination of the Mach stem height.



From the principle of conservation of mass along stream tube, one



obtains



2 u2- d7 =3a 3a d Y3a (54)



and 

l 7dY = 4a U4a d Y4a (55) 

where subscripts 3a and 4a refer to the asymptotic downstream conditions 

at ambient pressure for region3 and region 4, respectively. 

Using the maximum velocity Vm, local stagnation conditions, and

unit nozzle exit height Y as the nondimensionalizing parameters, one o
e 

tains from Eqs. (54) and (55),



d7Y (Po2/Po3I/y (U3a/Vm) o3


-Y u(56)


Y3a 2 o2


V 

'nd 

(U4 a 
 dY -(P ol/Po4)(Pa/Pol ) ] / y IVm Po4


(57)dY 
 

4a (P(/Po1/y ul/V) ol
.11
01 
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where P 3/Po2 and PoA/Po! depend on"the assumed shock profiles of



Eqs. (52) and (53), and



-
1 3a =/Fa Po2 I(58)

Vn I P o 3J 

with similar expressions for u4a/V , U1/Vm and-u2/V as functions of 

pressure ratios. 

The horizontal integral momentum balance for the control volume 

shown in Fig. 33 gives 

P~ l /y 2 
PI-]P 2o P 4a o4'P a-- 4a dya 

01 Po 01!.0 ol A V-

S3a p l/y 2 1/y 

P P P3 V



2 pa (/y


.(. 2 ) 2co2 005 2 (5)Po2 o2 TVm 2j

Y o Pol 

-One now has three equations, Eqs. (56), (57), and (50), for the three
 


unknown quantities Y0, V3a , and H4 while Eqs. (52) and (53), in con

junction with the shock relationsprovide The results of P 3/P and 

"PQoAPi for the corresponding stream tubes. 

Since 1I and S2 are given, with any initial estimate of Y one 

may find H from geometric relation 

H2 = [l- Y - X tan I1 cos S (60) 

o0 e 2 2 

where X is given in Eq. (50) (with Y = 1 unity). Y0 and H1 are 



43



subsequently divided into small divisions with each division represent

ing the height of a stream tube. Equations (56),and (57) can be in-e

gratednumerically using a trapezoidal rule to.find the unknowns H4a 

and H3a and, simultaneously, the values of two unknowTni integrals ap

peering in momentum balance equation, Eq. (59). These values are then 

substituted into the momentum equation and the correct Mach stem heig't.



Y0 would allow the integral momentum balance to be satisfied. This



must be done in an iterative manner and.is equivalent to finding the so


lution to a nonlinear algebraic equation. The method of false position



[29] works extremely well for the present problem. Upon representing



the left-hand side of Eq. (59) as the residue function W(Yo), one starts



from two initial estimates of Y (identified as Y and 2Y ) such that
 

0 .0 0 

W(1Y0 ) and U(
2Yo).have opposite signs. The-next improved approximation 

will be 

- y 1 o0 2 o o0 (61) 

0 W( 2 y) - W(i (0 0 

If w( < 0 one replaces Yo by Y ; otherwise one replaces 

iY by 3Y . Using Eq. (61) for the next approximation and xepeating theo 0 

calculation in this fashion until the criterion of accuracy is satisfied, 

that 1s; either 3Yo - or 3< - 2Yo1 < e, where c is an arbitrarily 

small positive number, one then stops the iteration. 

A flow case of 1 = 1.92, Po/Pa = 3.67 (which is equivalent to



62 = 12.2071 degrees) is taken as an example. The two initial estimates
 


1 2A 
are Y = 0.999 and y = 0.001 which represent two widely different Mach

0 0



stem heights, and the final results are reached with three additional



iterations. The actual result of all. iterations based on the double
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precision mode -frpm the iBM system 360/75 digital computer using the 

foregoing approximate analysis is presented' in Table 4 for various 

numbers of divisions Nst with which H and Y are divided. It agrees



very well with the Dicture given by A. Feri [43] from schlieren 

photograph technique. Another example of calculation- for V' = 1.92, 

P 0 !/Pa- 3.5q (corresponding to °2 = 12.9309 degrees) is presented in 

'Table 15 which yields relatively lower Macb stem height in cowarison 

with A. Ferri's eperimental data of Y0 0.4. The corresponding te0



*locity profiles in the asymptotic dowrnstream flow are shown in Fig. 324 

for a variety of pressure ratios at M1 = 1.92. 

Extensive calculations for two-dimensional overexpanded nozzle 

flows have been performed by this approximate analysis. The results 

of the height and the position of the Mach stem are shown in Figs. 25 

and 26. in general, this appoximate method gives reasonable results 

for flow cases with subsonic state 3 at-the triple point. They also 

compare favorably with those from the dezailed flow field analysis when 
K 

state 3 at the triple point is supersonic. The cases corresponding to



the two extreme solutions of the triple point are also calculated and



identified as before as = 90 degrees and 4 90 degrees. it is in

teresting to note that, at the extreme condition of 03 = 90 degrees, 

Y /Y = 1 and )X /Y 0 for high Mach number flow ( 1 > 2.5,); Y < Y 
0 e o e 1- 0 a 

hurdlers in the range 1 1.5 2.5; and Y /Y forfor Each of 14 = 0 

N < 1.5 which was predicted before in the triple point investigation. 

At the other extreme of UL= 90 degrees, Y /Y exhibits a maxIr'Mun value 
0 e 

in the neighborhood of I 2.75, and X0 has a rinimunm value in th.e

vicinity of M1 - 2.2. it should be noted that within the region nere 
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a4 = 90 degrees, the flow is within the regular reflection flow regime. 

Furthermore, because of the underestimation of the shock losses in this 

approximate analysis within this flow regime, finite Mach stem heights 

are obtained from these calculations. Also shown in the same figures 

is the line of YNa = 1.0 indicating that*the state at the triple point'
4a 

assumes the sonic state when it expands $nto the ambient presszdre.



The analysis shown in this section provides an approximate method



for estimating the Mach stem height in the -region where M3 can be super


sonic or subsonic at the triple point. Although the detailed flow field



cannot be described, this method does give useful information in the



area where the method of integral relations fails to yield any detailed



information. The method is simple and-does not need extensive calcu


lations. Obviously, the extension of this approximate method to the



axisymmetric overexpanded nozzle flows is straightforward. 



6. MACH DISC FROM UiDEPEXPAI;DED AXISYMI-MTRIC NOZZLE FLOW 

6.1 	 BASIC DESCRIPTION Or THE FLOW FIELD 

For a uniform gas jet exhausting from an axisymmetric nozzle to 

a still medium at lo.er constant pressure, the flow will first foilo'

a two-dimensional Prandtl-Meyer expansion locally at the lit of The 

nozzle. These expansion waves will eventually be reflected as com


pression waves from the constant pressure jet boundary.- When the 

ratio of exit to ambient pressure is nigh, the compression waves cf 

the same family will unavoidably intersect each other at a place where 

6hock should originate to account for the coalescence of these waves. 

As the expansion and compression w-aves interact continuously downsTream. 

the shock becomes stronger because of the accumulating effect of the" 

coalescence of these reflected waves. This imbedded shock wave could 

be reflected from the centerline of symi metry as shown by Back [12] for 

a two-dimensional gas jet. However, if the surrounding pressure is 

low enough, the snowballing compressive effect will result in an im

bedded shock wave at donstrmam field so strong and curved that regu

lir reflection from the centerline of symmetry is impossible. The con

figuration associaed with Nach disc hen comes into play. 

Figure 3 shows a typical Mach configuration from axisyrnmeric un-.



expanded nozzle flow. The previous discussions for -thetwo-dimensional



overexpanded nozzle flow are applicable -o this axisymmetric under


expanded problem bur with several basic differences. First of all, t 

incident shock is no longer straight, and the flow uDstream of the re

f-lected shock (region 2). is highly nonuniform. For simpliciy, the 

central core flow behind Mach disc can be anroximated by a one-diMensirr.lA 

http:one-diMensirr.lA
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analysis which has been used successfully in [15] for overexpanded



cases. Since the incident flow in front of the Mach disc is also non


uniform and not horizontal locally at triple point, a rotation of co


ordinate as shown in Fig. 4 for triple-point solution is necessary.



Furthermore, the rotationality is no longer negligible because of the



rapidly changing shock strength behind the incident and the reflected



shock waves. The method of characteristics will be used exclusively



for the calculation of flow structure of the supersonic axisymmetric



gas jet, while one-dimensional isentropic flow is applied to the



central core flow immediately after the triple-point shock system is



inserted into the flow field.
 


- 6.2 THE METHOD OF CHARACTERISTICS 

-f In axisymmetric, supersonic flow field the fundamental equations, 

- -Eqs. (14), (15), and (16), in cylindrical coordinates can be solved by 

--following characteristic curves in physical and hodographical planes 

-"s-imultaneously [31,32,39]. The characteristic equations are 

d = tan (8 a (62) 

ii-I"II 
 

-1 dM* sin2 d(Sv tan2 a tan ldr


M* do (, -- ) j6 tan 0 ; tan a r d6



(63)



The added last term expresses the difference between axisymetric and



two-dimensional problems. Application of these equations to the field,



free jet, and axis point procedures is well known and is given in AP-


PENDIX C.



During the process of computation, the characteristic curves of the



same family in physical plane are found to intersect each other. It 



48 

indicates the failure of the continuous, single-valued solution, and a



shock discontinuity should accordingly be introduced.into the flow.



field'. This is where the imbedded shock wave originates. The reflected 

wave resulting from the intersectior of the compression wave and shock 

wave should not be neglected since it will reflect from the free jet



boundary and has the augmenting effect on the downstream shock strength.



In this Mach disc problem, the accurate calculation of incident shock



strength is found to be critical since all the downstream flow field, 

including the triple point solution, depends on it. Therefore, the re


gion where compression wave and shock wave of the same family intersect



to produce a stronger shock wave should be examined carefully and is of
 


paramount importance. Moe and Troesch [41] are correct in stating that



,the calculation of the imibdded shock wave is the most complicated part


-of the numerical method. The simple fold-back method [16] or other



simplified methods, though determining the shock position properly,



will not give the appropriate shock wave strength.



As shown in Fig. 35a, I is the characteristic of family 1 and II



is the characteristic'of family 2. The properties at E, A, and C on
 


characteristic curve IIn_ 1 and at F on IIn are known from previous cal


culations. The flow variables at B are found from known properties at



A and F by following characteristic curves AB of I and FB of II n
m n



Similar calculations can be formed to.find point D with DC of I -l and



BD of II . However, if the x-coordinate of D is detected to be at the


n 

upstream part of B on the characteristic IIn, it indicates waves AB and 

CD have intersected each other somewhere at G as shown in Fig. 35a. 

Whenever waves of the same. family intersect each other, extreme 

care should be taken to determine the flow properties at the intersection 
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point. As showm in Fig. 35b, there appears a slipline representing the 

difference in entropy between G and G and a reflected vave, . RG acly4 4 
counting for the pressure difference at G3 and' G4,. The coordinates at 

G are deternined from geometric relations of the intersection of two 

straight lines, AB and CD. The flow Droperties (m and 8) at .1 are 

established from a characteristic calculation with point A and a npoint 

between E and F. Tne flow M4ach numbers at GI between waves AG and CG 

and at G3 behind wave CD are obtained from linear internolation of the 

flow variables at A and B and at C and D, respectively. The oblique 

shock wave relation is used for both compression wave and shock wave. 

Since compressive waves converge; one has



2 1. 
 2 . 

here, 6 is the deflection angle found from M' and M across the shock. 

Since reflected wave RG is usually very weak, one may treat it as 

an isentropic wave. The Prandtl-Meyer function is then employed to 

find the flow angle at G4, from properties at G3.- The flow variables



at G4 behind the merged wave GP is determined from o:lioue shock re


lation. An iteration' procedure is then necessary to determine the Mach 

number and flow angle at G and G from the co-dition of equality of14 4!1 

flow angle and pressure across the slipline GS, which is in a very sihi

lar situation as-that encountered earlier in triple point solution. 

The shock is assumed locally straight with constant strength extending 

from point G up to point P where it intersects with characteristic 

curve Ii and replaces both points D and B in the flow field. it is to 
n 

be noted that the variation of this shock strength due to wave coalescence 

is accounted for in this manner and the existence of the interface 



tO



.GS is completely ignored afterward.
 


This is a systematic manner of treating the wave intersection 

problem since the resulting shock position and strength must be 

registered and recorded at all times. The flow angles at G2 and G3 

cannot be determined from linear interpolation as was done for their 

Mach numbers*since the local shock relation might be violated al

though the difference between these calculations is very minute in 

all of the flow cases with small characteristic grid. Furthermore, 

field has the effect of
the reflected wave RG inserted into the flow 

reducing the grid size and increasing the accuracy of computation.



6.3 THE CALCULATION OF INTERACTING FLOW FIELD



Based on an idea similar to that in the two-dimensional over

expanded nozzle flow, the'position of Mach disc is unknown and must



be solved by an iterative fashion. The correct location and the radius 

'ofthe Mach disc are determined from the considerations that as a re


sult of the interaction between the waves and the flow fields, the cor


responding uniform one-dimensional analysis will give a sonic condition



Hta throat downstream of the triple point.



The imbedded shock strength from the method described above is



checked at every step of calculation toward downstream to see whether



or not it satisfies the condition of triple point solution. When this



condition is met, the central tore flow is then approximated by a uni


form one-dimensional treatment and the flow field including the reflected 

shock wave strength in the supersonic upper part of the slipline is



solved by the method of characteristics. Again,'the Mach disc stand-off



distance is assumed to be zero as has been done in the two-dimensional



case.
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The very first step along the slipline is taken to be very small 

and to be a stiaight line having the slope from The triple point so

lution. As shown in Fig. 36, the first segment of the slipline TS has 

the slope tan 6 where 6 is found from rotation of coordinates 

(a= 6 - a, given in Fig. 4). From the condition of equal pressure along
4 0 

the slipline, the flow Mach nurbers Mu1 and %i.at the end of the first



step can be solved from the following isentropic and one-dimensional



equations: 
 

1. + 2 M (64)- 1-[ul UO/ uo/ 
 (6
-

- I ,2 [y+lJ/[2(y-l)] 2


14/ 1+ Y 2 Z r2



PC)-- _2  r2 


2 tio r



*ith



-
 0 (65) 

: Pti/P 2 
-- uo FZo oo-o Po4 2 

. illo4P _---_-- P!- 7 Pul - p / _ _ 1 + y___-- 1 

and 

r = r + (x - x ) ta 6 

.The characteristic net layout for the subsequent step-by-step cal-

Zulation is shown in Fig. 37. The flow properties are known at T and



S from previous results. The flow variables at RI where characteristics



of family Ii and the reflected shock intersect are found from solving the



characteristic equations for family Ii and the oblique shock wave



equations simultaneously as presented in APPENDIX C. This must be done



in an iterative manner.- One added unkno-m during the iteration procedure



is the flow condition in front of the reflected shock wave which is
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obtained through an interpolation procedure. -As shown in Fig. 38, if 

R1 lies inside the characteristic grid ABCD, then the Mach number and 

flow angle in front of the reflected shock can-be approximated from



linear interpolation:



'* M* M" 
a c 

M- ' + - + i+ 

a - c _ +
 d



-a b + e c (6) 
a b a dR + +1 +11 

Near the free jet boundarxy the grid can be triangular instead of 

quadrangular, and a corresponding modified form consisting of only 

three characteristic points should be used. 

The need for the properties in determining the flow variables up

stream of the reflected shock wave indicates one of the reasons that 

the characteristic net must be stored and registered. The method 

shown above for non-uniform approaching flow is the extension of the 

well known technique for determining the shock wave location shown in 

Fig. 17.21 [31] for uniform free stream conditions. 

Figure 39 illustrates how the location where reflected shock inter


acts with the free jet boundary is determined. When the coordinates of



the point on the reflected shock are found to lie outside of the free



jet boundary, the point of intersection between the shock and the free 

jet is found from the intersection of two straight lines, AB and CD, as



shown in Fig. 39. The flow angle in front of shock wave is found from



linear interpolation between points A and B, and the Mach number is that



of the free jet boundary. The oblique shock wave relations are then 
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employed to obtain the flow properties behind the reflected shock wave 

subsequently followed by a P-M expansion. 

Similar to that of a two-dimensional problem, the slipline point



procedures are governed by the following equations:



2



r 2 Q()

r ) (68) 

3P 

P04 E(Y-!)/yJ = - - i 

y- Su (69) 

Y3 
 I M~u 
= tan 2 (70)



x3u 2u 23 

r3u 
- lu(



Stan ( 13 -'13 ) 

X~- 1~ 

.- ) tan1 3 i 1 3 n [ j 

2
tan a tan 0 r3 r3 (72) 
tan -613 - tan 1 3  r3 

where Q(M) is given in Eq. (45). The simultaneous solution of these 

equations will give the flow variables across the slipline. 

6.4 RESULTS AND DISCUSSIOTS 

The analysis presented above for the underexpanded axisymmetrxc 

nozzle flow is programmed successfully on an IBM system 360/75 digital 

computer using double precision mode. A single successful run of the 

Fortran IV program takes less than four minutes compuzation time. For 

the convenience of reference, Fig. 40 illustraces the free jet Mach
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numbers and pressure ratios. Also shown in the same figure is the cor

responding ratio of abient pressure to nozzle stagnation pressure at 

different nozzle exit to ambient pressure ratios. 

Figure 41a illustrates the results of iteration for determining 

the Mach disc location for the case of Me = 2.0, P e/P = 6.39 (Pa/P = 

0.02) disregarding the effect of vorticity for N = 20 where 11denotes 

the number of uniformly spaced waves initiaed from the initial Mach line. 

The early insertion of the Mach disc, for example at x = 11.86, will 

cause the slipline bending continuously upward yielding only subsonic 

states in the downstream flow field. On the other hand, the insertion 

of the Mach disc at x = 12.025 will cause the central core flow reach

ing a sonic condition where the area is not a minimum. The correct lo

cation of the Mach disc for this flow situation stands at x = 12.00. 

It is obvious that the flow field is very sensitive to the location of 

the Mach disc; a slight change in the location of the Mach disc will 

result in a tremendously different flow pattern downstream. 

It has been mentioned previously that because of the enormous



difference in stagnation pressure behind the curved imbedded in-c- en


and the reflected shock waves, the rotationality cannot be neglected



in this study. Indeed, inclusion of the vorticity into the consider


ation results in a sizable shift in the locaticn of the lach.disc.



Figure 41h gives a comnarison of the numerical results of the flows



with and without vorticity for the case of Me = 2.0, P /P = 6.39
e e a



(Pa/Poe = 0.02) for N = 20. These results clearly demonstrate the in


adequacy of the treatment ignoring the vorticity which gives a much 

smaller Mach disc standing farther away from nozzle exit. In all of 
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the following results, rotationality has been included in the consider


ations.



These improved calculations with vorticity, however, exhibit a



somewhat unexpected phenomenon. in the determination of the-sonic



state in central core, the flow angle does not vanish and thus the 

area is not -a minimum. Moving the Mach disc toward downstream will 

resulz in a steeper flow angle at sonic condition. On the other hand,



no triple point solution is possible for early occurrence of the Mach



disc. Presumably, this is because of small inaccuracies in the up

stream numerical calculation. The reason is twofold: First, the 

linear interpolation used here in the characteristic grid is not accurate 

inough to handle the rapid change in shock strength near the triple 

.pointwhere the flow variables depend sensitively on the incident shock



strength. Secondly, the change in stagnation properties through the 

variation of the entropy gradient term is based on the interpolating 

.properties from known states, and is, therefore, dependent on the lo


cation of streamline passing through the unknown state (see.APPENDIX C).



When the streamline location and direction at the unknoim state have



different values from those found from linear interpolation, the entropy 

gradient term will not be calculated correctly. This influence is more



pronounced at or near the occurrence of the triple point where the de


flection angle of the shock changes rapidly. Taking these circusza;ces



into consideration, the results presenced for flow with vorticity will



be considered as the upper limit of the location of the Mach disc.



A typical characteristic wave pattern in physical scale from the



actual computation of M4= 1.5, P /Pa 5.0, N = 30 is given in Fig. 42,


e oa a
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The location and strength of the imbedded incident shock resulting from



the coalescence of the compression waves are computed automatically by



digital computer from the method described before whenever waves inter


section occurs.



In all the calculations of this study for M = 1.5, 2.0, 2.5, and 
e.



3.0D, the sonic state of the central core flow is reached before the ap


pearance of the P-M fan which results from the intersection of the re


flected shock with the free jet boundary. The computation is stopped



at the place where the sonic state of the lower side of slipline is de


termined. This explains the unfinished calculation of the reflected



shock and its downstream flow field which should be in a supersonic



state and does not have any influence on the already established Mach 

disc and .upstream flow field although the calculation -ofwhole down

stream field including P-M fan is well programmed and is incorporated 

in the same Fortran code.



Some of the free jet boundaries and shock wave patterns for M = f. e



1.5 and 2. 5 are shown in Fig. 43 and Fig. 44. It is evident that higher 

pressiire ratios (P e /Pa) for a given nozzle Mach number would result in 

larger Mach discs at farther downstream locations. At the same pressure 

ratio, however, a reduced nozzle Mach number brings Mach disc closer to 

the nozzle exit plane. 

Figures 45 and 46 show the distributions of various flow .properties 

for N = 30 at He = 2.0, Pe/P = 3.195 (P a /Po - 0.04), and at Me 3.0, 

Pe/Pa = 5.0 (P /Poe = 0.005445), respectively. All the stagnation zres

sures are-normalized by nozzle stagnation pressure. The stagnatic" 

pressure behind the incident shock drops rapid'y near the triple r 
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which is a consequence of the accumulated compressive effect on the gas



jet. Immediately behind the reflected shock, however, the stagnation



pressure increases and deviates away from the constant stagnation pres


sure on the upper side of slipline. All of these signify that the



rotationality certainly needs to be included in the considerations.



The differences in Mach numbers and in flow angles between the 

states in front of the incident shock and the centerline of symmetry 

decrease along the flow direction and are very close to zero in front 

of tie Nach disc. This demonstrates that the flow in the very front of 

Mach disc is rather uniform for the cases shown in Figs. 45 and 46. On 

the contrary, the differences in Mach numbers and in flow angles in 

front of and behind the incident shock are obviously increasing toward 

downstream illustrating the growth of shock strength -and, eventually, 

reachring the state where the triple point solution is able to be satis

fied. 

The trace of the imbedded shock appears when the reflected compres

sive wave from the free jet boundary first intersects with the last P-M 

characteristic wave from the lip of the nozzle. In this numerical study, 

the position where discernible shock wave originates is given in Fig. 47 

when P-M fan at the lip of the nozzle has been divided into approximately 

ond-degree increments. The location where the imbedded shock wave'has 

the maximum radius is shown in Fig. 48. Figure 49 gives the physical 

coordinates where the free jet boundary has the maximum height. Shown 

in the same figure are some calculated data at P /P = 10 from [16] us

ing the fold-back method which agrees perfecrly with the results of the 
present investigation. At the same pressure ratio (Pe/Pa) higher noz


zle Mach numbers always produce wider gas jet profiles with maximum





--

58


width occurring farther downstream.



The Mach disc location and radius are presented in Fig. 50. Some



experimental data from Love and Grigsby [16] are also shown in the same



figure for comparison. Since the characteristic grid size is finite in



the numerical calculations, it is, therefore, apparent that the actual



Mach disc will occur earlier because of the faster growing shack



strength associated with the intersection of infinite number of waves.



For the same reason, the Mach disc of the numerical calculation appears



- shorter than the actual one does. For higher nozzle Mach number and 

.far away from the initial characteristic line, the characteristic grid 

size,becomes quite large which further explains the overestimation in 

--the,x-coordinate of the Mach disc location. On the other hand, at 

- lower pressure ratios, the Mach disc is very small and the characteristic 

net near centerline of symm4try is-usually not< fine enough to produce 

--good results near the triple point and tends to underestimate the radius 

- of the Mach disc. Both effects are more pronounced at higher nozzle 

_.Mach numbers. 
?- Table 16 illustrates the effect of changing The number of initial 

,,grid divisions (N) on the calculated results. The larger value of N cor

- responds to finer initial grid size. As indicated in the table, the use 

of larger N does not necessarily give bexter results compared with experi

mental data. The-finer the initial grid, the more-iterations are needed, 

- and the accumulated numerical errors might aggravate the final answer. 

All of the calculated results show that N = 25 or 30 is a fairly good 

choice for the number of divisions on the -initial characteristic line. 

Another manner of getting more accurate results is the insertion of
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extra field points inta the flow field whenever-the grid size is de


tected to be larger than a predetermined value. This will create 

smaller characteristic grids in downstream field without imposing a 

large value of N on the initial characteristic line and will probably 

eliminate unnecessary-growth of numerical errors. However, this will



somewhat complicate the programming work especially when all the wave



coalescences are to be considered.



One of the salient features in most of the calculations is that



the slipline tends to go upward first in the vicinity of triple point



and then bends downward decreasing gradually to reach a minimum height



at the throat (for example, see Fig. 42). Figure 51 shows the approxi


mate coordinates of the throat as found from numerical results ,when the



center core flow behind the Mach disc is close to sonic state.
 


Finally, Fig. 52 reveals the iiformation necessary for finding the



properties at the triple point. The results are so given that the triple



-point solutions of Figs. 5 through 9 (or Tables 1 through 13) can be



found easily from the corresponding M and 62 given in Fig. 52. From



the computed data, it is noted that the Mach disc occurs in the very



neighborhood of the limiting case of curve 6 in Fig. 10a. Unlike the

n4 

two-dimensional overexpanded flow, the incident flow angle 0i (see



Fig. 3) is not zero at. the triple point in these underexpanded gas jets,



and the interpretation of the angular relationship associated with the



triple point solution must take this inclination, ,,into proper account.
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7. CONCLUDING REMARKS 

Based on the numerical results obtained through extensive calcu


lations on problems with Mach reflection or Mach disc; it may be con


cluded that:



1. 	 The one-strip method of integral relations and the method of



characteristics, together with the one-dimensional isentropic



nozzle analysis for the downstream part of the central core,



are useful to give a more detailed description of the Mach re


flection pattern from the two-dimensional overexpanded nozzle



flows with weak reflected shock at the triple,point. Their



application to strong reflected shock is not successful.



2. 	 The approximate method to estimate the Mach stem height for



the t-o-dimensi6nal overexuanded flow problems, which was



originally developed for flow cases with strong reflected



shocks, would give meaningful results even if the reflected



shock at the triple point were weak.



3. 	 For axially symmetric gas flow with Mach disc, the vorticity



must be taken into account. The wave interactions, including



their coalescence into shock waves wiThin the jet flow field,
 


are extremely complicated; accurate calculations seem to be



difficult, if not impossible, to achieve.



4. 	 Although the viscous effects tend to modify and influence the



ultimate flow patterns, it is believed that the inviscid in


vestigation of these problems is already yielding fruitful re


sults.
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Figure 4 Triple Shocks Intersection of Mach Reflection from Nozzle Flows 
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Figure 4a 	 Limiting Case of Triple Shocks 
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Figure 4b 	 Limiting Case of Triple Shocks 

Intersection ((a3 = 900) 
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Figure 8 Triple-Point Solutions, PiIv. 
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Figure 11 Oblique Reflection of Shock Wave from the Central 
Plug at a Nozzle Exit
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Figure 13b 	 Isolated Region for Lower Part of 
Slipline (Internal Flow) 
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Dimensional Overexpanded Nozzle Flow
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18.0),) 033o$ 1.23) 0. -' 0.e70 2.775 ['.225 5'2.331 82.467 78. l8 2.'29_1.5t8 3.9L1 2.931 
IU3.25 0.)(. i/371i.2 1/T 0.b~ 07d.6 60-2-. 30 15.9)2'O 5r-_i2,831F83. 380 (7. 8*34 2.?.64 2 .W 3 /."a 2.8;0 
18.500 	 O..j7L 1.20)r 0.6 t 0.691 1.837' 15.624 3.328 3,.40 77o2W 2.,!)0 1.507 3.)19 2.5-' 

().) '1i5; ;S h. f -< U'. 7' 	 208 537 f 8, I 
P -Y82 3.5)8 t18.1' 7 O.d11,0.7V: 0.00 L9.4,2 5.4:79 90.0003 72.9z,9 2.7-3 1.3A7 3./;4 2.)09 

- 15J 1i. 	 dL I- 1 .5° 2 . 2. 1. .1590 2-. 

........ 	 ...................
.. 	 . .........
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Table 4 Triple-Point Solutions . = 2;0 

TRIPLE POINT SOLUITICA Ni = 2.000 1.-00 

DELTA2 PZ/PO1 M 2 "3 : D-T DELT /P $I /r,,2SEG[,t13 
12.b21 0.2-9 1.5#1 0.8e2 0.571 12.627 0.0 42.3 2 70.913 

1.13.2500.2,l.517 0.684 0.573 12.00§ 1.2:4, 3.Ou3 71.197 
1 .3 1- -1 -8 413.530 0.260--1.57 0-.45O-.- 7j1-?7iTT1,-5--75 43 , - ?71.30t 

SIGMA", 

90.0)3
J9.252 

-
US .9it 

P2/Pt !3/P2 
j.9A19 2,3)')
2.011 2.2W 

- - -. -
2 .03L2 ./ ' 9 

P4/P1 
4.£00 
,'./499
,'.",95 

(P4/Pl)t' 
2.9d0 
2.9dJ 
2.930 

-

13.750 0. o-3j•f0.L 1.491[410dt 0. 6:6 0.5790. [(9 11.4b211.21e 2. 2A82.7'3t 43. 71044.02' 71./.-2771.>'1 ' 88.S3S408.3 2 2 .0-22.O58 2.L912.1S't 4.4,97t.4%9 2.")R2.981 

14.250 0.270T 1.476 0.847 O.SJ) 
14.Tu. 74i."' ts.b'-t7.8,1 

14 * 750 0.277 1,. O.dz.8 0.5b2 
-5-13T0f...72. 1-¥ L0.5-i8 -.7.83 

10.9,10 3.310 +-.351 71.707 58.004 
10.6 3 3 4; >11-11.888 8 
10.378 4.372 ts .009 72.042 87.3 4-
10.894.91-457tt 2.22 b7.-12. 

2.1 L- 2.12, 
2.tO. 99 
2 .1.672 .072

2-.0 -. 

4,a9 
- 4. K.152 
4.e-91 
T;-.4, 

2.9132 
293 
2.9SB ' 
2 .98c 

-7 

_ 

15.250 0.2o. 1.435 0.6 48 0.5 ')-,79 5 . ' 55 15.;83 12. 37 8-.l 2.222 2.018 
UU.5 -2"3U 1.-, 2,-). 0&--ZT -. "-v 6.006 n.02772. zO 30.335 2.2% 1.9i.. 

15. 750 0.zki 1.ItZr 0.84,9 0.5o8 9.167 6.5.3 4,:..376 72.V00 u--.982 2.279 L.9 
-n4T-oTm -6;2 j - - " )' --7.' - - ----- ----- -- '-Tt ""7-1."Zr3'0.'29-% ' T Od' )--..'9-0 --. 'Y "-7.126. Zb. 731 73.1>9 8=,621 2.308 1..33 

16.250 0.299 1.5 9 3 0.34, 0.59/ b.5b5 7.695 7.090 73.439 85.2;2 2.337 1.912 
1-1Y_oU3cipnyT0 2-1-. Y bt1-'3X .2 6 8. 7-8 .2'7 2 - /3..- ?-8Ijz2 2.376 1.8-6-,.Z3 
16.750 0.306 1.371 0.d 9 0.598 7.895 8.855 4.7.527 7'.065 84.483 2.397 1.uH)0 
- o .31? 3 -5). .i8-06 8.2 04 ,7..5 U, (82 2.- 27 1.81:: 

117.250 0731, 1.34,3 0.850 9.o 0 4 1.205 1.0,045 -8.56b 74.792 53.6,69 2.1,,8 1.308 
5 0 0.318 1 ." A7,08'0 0.60". 5'd 10. 52 5. 980 7.199 d 3.2'- 1 2. 1,.'1/d 1 

17. 750 0.3 22 1.32. 0.8 (0.c12 'd2 11.2.8 Z:9.35 8 19.38 82.798 2..922 1.7r5 

I. 003 0 . 2, o 1.313 0. 5 0. 6-.1, 0116 11. 8 9e"--9. 785 7C. 112 82 . 337 2. I .729 
18. 250 0.33[ Lt3. I(.8*-1 0.52L 5.722 L2.526 0. 201 74.626_8.8%6 2 .'88 1.703 
18.5]M0.305 1.259 1.35 0.626 5.327 13.173 5l.'62& 77.18 81.353 2.622 1.,,76 
13.750 0.3.,1 1.217 0.352 0.5%32 4.i(O L3.630 51.00 77. (90 S0.82522.-7 1..6" 

5,3- T--. -..0.3 1.' 1. 5-?.3V- .5 3. 49? -51. 0t, 7 )2.22i -T2 L.-,22 
19.250 0..9 1.251 0.85% t.64u 4.03 15.177 51.9(4 79.175 79.476 2.728 1.394.,3r) 
19.00 0.53 1.233 0. 5 0. 5 3 .4.3(; 15 .670 .2. 3 79. '72 79.)?, 2.7t 1 .36 
19.750 0.35 '_1 .22K 0. 057.(,3 3. 174 1,,. if E2.921 80.8r,2 7U.34A' 2. :) 1.5-3-7 

20. 0 .363 . 210 o.89 0., 74 .03 17.297 93. 't2 3 81.332 11.610 2.8:3 1. -J)3 
,)20. 25') 0. 3S9 1. 1 ) 0.62 0.do 2.218 1o. 032 r3.943 32.932 7o.t325 2. 83 1.'-77 

20.500 0.37' 1. 131 0.866 O.70 li' 1d.7ol 5-,. ' 8,:.11 7F .93y 2.922 1. 
20. 750, 0.319 1 0.7 ,./ ,; 1.20?7 19.5-3 % . . . 8%..? .O . ,') .'. _2s. 
2.329 0.393 1.12d 0.91 0.170 o.000 2L.329 7.') 90.00,) 7L.93's 3.0/1 1.317 7 

'<6; 
L-j 

. 7 
t .:'73 

:;'8 

4.457 
4 .650 
4-.-43 

*.:,3 
L.427 
4." 17 
4.'n,. 

.39' 
.381 

z .'367 

.331 

1.310 
86 

,.2 5 
.22 
. S 
.0 1 

2.986 
2. 3 
2.989 
2.9 
2.9)3 
2.995 
2.993 
3.000 
3.003 
3.007 
3.'l)C 
3.014 
3.01 9 
3.02
3.029 
3-03 
3.9-2 

. 
3. 0 9 
3 .09 
3 .(l1 

.3.19 
_3.112 

3.1A9 H 



Table 5 Triple--Point Solutions, M = 2.2 

TFIPLE POINT SCLUTICN 	 Mi 2.200 GA4M. = 1.O,00 

DELTA2 P2/POI M2 M3 M4 DELTA3 I§ELTA4 SIlM.2 31(,'4A3 SICMA, P2/P1 P3/2 P4/p'1 (P4/1)1 
---51f U-ZT 6 . 0.918 i 1. 1 h0....- T17-,2 (5. 90.000 2.305 .377 e,8( 3 .- t. 

15.300 0.217 1.612 0.913 0.547 12v. 955 0.345 41. D30 t fE .79- 89.823 2.323 2.351 %. 8) 3 .5-8 
-- -Y 22 -")-"'O-- T-' -7 - -. g -0' 1 .9 $ "- -.u7 '--9''.513 2.36--2 ."32 - .80 -3 - -

15.900 0.224 1.587 0. 91d 0.54&b It.3"i9 1.561 s -5.2. 70.89.199 2.391 r'.t79 3 .% 9rA.	 2.25 

I T"Z77-15_t -r -177T 2.1Z _ 7It - 2. I1o 9 ohtL. 0) 8 .9 	 43,.2.fl 	88.3 L 	 5.-116 3.1A9 
16.500 0.231 1.5-2 11.911 0.549 13.703 	 2.197 633. 11 65.20 88.t2 2.471 2.21 7..7': 3..50 

-	 --	Th.8ocr"0. 23n1"-.pro'0;vli-1t 54' 	 f3.3l 6"-3"; 2 -- ;3232'5-T6.3; -8.238-'5 2.'1 9"2.16r3--- .Th 7--3-.551-l

S17.100 0.238 1.536 0.91 0.5 0 13.044.	 4.0,(t, 43. r391 AS-.502 87,9O3 2.41.7 2.j:.. =' "72' 3. ;2 
-TI '4 . -it *2Kj 4 12". 70-6 4 1-.1&2 .- - b6--.-73 -87 . 7'---2 0 8 	6 "--r 70 3.5 --- :0- 24 .'01 " 5);--- --

17.790 0.246 1.510 0.915 0.5=,5 12.362 5.338 , ,..t6 ,6..871 8.7.235 2 .';26 2.082 5. 57 3 ..Fr.: 
LO.l't~).~'i1.J u~-.u~ ~K~ . 01 5.89 5.0'2 1.558&.889 2 .9 2 . 049 ~'-A3 3 . 7t 

18.3)) 0.253 1G483 0.912 0.56 11.654 6.646 45.505 67.319 86.536 2.706 2.017 5...9 3.559 
18.00 0.257 1 .-o? 0.911 0.55o 11.2b9 7.311 -,. 9-o7. 57 8$.176 2. 74 8 .93c 5.., 3. r I 
18-. 990 0.2,;1 1.45$- 0.910 0.55 0 10.917 7.933 -,-.3-961.857 85.307 2.79fl 1.954 i. f.1 3. c3 

- 0- -. " O.3, - . 6 7 -6. 7562 . .29 2 832 1.922. . Vr . 3. . f
19.500 0.26 9 .1.4 21 0.9(). 1 .1z t 	 9.353 1;7.223 ea.49% 8.O,.O 2.676 1 .89) '.,,38 3.r%9 

r.--O --	
T;-r;-27r-Tr wTjT Ty-r..ynT.,Tr-r ' d--.T.'.o 	 1 I .,.B) £.1,31 3. 7T-3 
20.100 0.277 1.399 0.902- 0.5 72 9.3',,2 10.7%3 68.129 69.2 4 2,.228 2.936 1.829 5.423 3.'77 
20.400 0.282 1.384 0.902 0.576 8.92-, ii.476 ,8.59 t;c9.68, 83.800 3.,110 1.7')9 5.1 1'- 3.'81 
20. T .2d6 1.3 9- 0.900 .A,%5 12.209 '/9.073 70. 1, 83.3 7 3. ,07 1. ..03,t' . .3 . '1700 	 0.563 ( 
21.000 0.2'-,0 1.35- 0.88 0.85 8.5, 	 0 	 3. 10,, 3. C212.9,,. 59.5.70. t.5 82.895 1.738 5.39", 
21.310 0.29_1.336 	 YA, 50.O) 82.'-1I 3. r.382 .80. 696__0.50) 7k0to 13. 700 71.222- I .Y07 	 
2It.6Ou 0.29t) 1.323 0.895 0.s% (.131 i..4.69 :}.5 2 11.3b 81.904 3.202 1. ,7' 5.3c8 '1. 05 
21. 	 900 0 .3:-t 1 .3.7 0.893 0.6 )2 6 .o-.7 15. 2.3 51 .09 72.511 81.368 3.253 1 . 6:5 5.3', 3.'13



.. 1j -f-4.106 -	 1 - 05.-- 73. 80h00 3.305 1- 1
 .334
-P.2 . 3,) 	 ;7.2-- 25. 8 3.621 
22.500 0.3t-- 1.273 0.689 0.:-,17 5.627 16.373 52.200 74.073 80.193 3.359 1 .5o3 5.316 . 3., 31 
22.800 .319 I. '' :;0 .-t 0-b 2 5.0827 17.713, 5)-2. 179 7-.)9 ( 9.% 9 3. Li 1 . 11 5.294 3. 3.6 	 . 
23.100 0.3L5 1 .2 8 0.387 ().&37 'i.523 18.517 "'3.]80 7,. 02 7-.329 3.,71 1 .518 '.2t8 3 . . 
23 '-. ,}.)33 - 1.220 0.886 0..b-9 3.93$ 19. ,- -. )07 77.19" 7b.t0:;m a 3 20 1. [l, .23J 3.72 
23. 700 0.336 .201 0. 38o . o3 3.318 2). 382 5-'., L3 78..35 77. 177 3.r911 . 9 5.202 3 .&9 

-'-bC)_0-o.3Z-1.11 .63- t'9 z.3-31 5' 35ff: 80,.o 14.153 .3.t I .411 . 1 3.t13 i:7.-8 	 2. 
24.300 0.3t3 i .159 0 890 0.701 _1.987 L2.313 . ' 61 ./ 73.34 3. 123 L ._371 . 10. I 
2..c,00 0.355 1 -137 0.5695 0.(21 1.271 23.329 St.883 6 . 3B 73.' 1.32:- .032 3760 "13.K 

S1 1 O.3 6 1.l. f') i !I .300 (1.000 2" .119 70.174 '.9.3 3. 88_23.I19 1.'VO.,000( 1. 0.223 .3) 
to 

http:696__0.50
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Table 6 Tri2le-Potnt Solutions, M1 = 2.4 

TRIPLE POINT SOLUTION M1 = 2.400 GAMMA = 1.400 

DELTA2 P2/POI M2 M3 M4 DELTA3 DELTA4 SIGMA2 SIGMA3 SIGMA4 P2/PI P3/P2 P4/PI (P4/PiB


-523z76-9-20-- 3-.39O527--92-O - 4039-61; 4 907 -z; 55 624 67&;55T717r 

17.350 0.186 1.690 0.997 0.523 lo.435 0.915 40.950 61.526 89.586 2.720 2.409 6.553 4.172 
-1-7;700-01l69-;675-0.)96-0-;S524f- 08L--I62-41;377-61.6 09-89;267-1770--2 .366--55.Z -7Z-- 

18.050 0.193 1.65S 0.995 0.524 15.720 24330 41.810 61.708 88.945 2.820 2.323 6.551 4.173
T0--Th0-0-. 196-1:T6493-0"39-9 5253 35n--046-4. 249-611 27-886q--87 F228[-7,T49-77 
18.750 0.200 1.627 0.992 0.526 14.983 3,767 42.694 tl1.964 88.289 2.923 24240 64547 4.175



-
- 19.100 '0.204-1.611-0.990 0.527-4iZ07-4;=493-43 115 62.122-87.955-2.976 2°1996454-177


19.450 0.201 1.595 0.987 0.528 14.224 5.22b 43.603 62.300 87.616 3.030 2.159 6.542 4.179



- 19.00-0.211--1.578 0.985-0;529-13.834--59664.06762.501"87.271--3.084 2.120 i
53r-181 
 
20.150 0.215 1.5t2 0.983 0.531 13.438 6.712 44.539 62.726 86.920 3.139 2.081 6.534 4.183



--- 0.-500-0219 l54 0 980053-13,~03-7:46--501962976;% 2-3, 1962,043--Z329-4T -fl 

20.850 0.222 1.528 0.977 0.535 12.622 8.228 .45507 63.253 86.195 3.253 2.006 6.521 4.189


-2r.200"0.226-.511 0.974-0.538-12;202-98-46.f003 63558 85.820-3'.311 1.968-6;518---T193

.
21,550 0.231 1.49A 0.970 0.541 11.772 9.778 46.509 63.894 .85.L)35 3.370 1.932 6.511 4.197 
-21900 0.235 1.476 0.67-0.544-11333*-I0.56747J025 64.264 85038--3.431"1.896--6503---.Z201-
22.250 0.239 1.458 0.963 0.57 10.882 11.368 47.551 61.671 84.629 3.492 1.860 6.494 4.206



-22; 600- '243-T. 4 40- 9 59- 0 55 1-1-42 F-r-i- 9-4-8 9-65,"'117-8 205 5-';.824-67g9 5---.--24: 

22.950 0.248 1.422 0.955 0:556 9.946 13.001+ 48.637 65.608 83.764 3.619 1.789 6.474 4.218



-23.300-0.252-1.403 0.951-0.561--9457-13.843 v9 200'66.i4C7-83.305--3.684- 1754-6.462--225-

23.650 0.257 1.384 0.947 0.566 8.953 14.697 49.777 66.741 82.824 3.751 1.719 6.448 4.233 | 

- 24;0000.261- 1.364'0.942 0572---8.432-15;568-5b.371-67.9T82.3i7-3:820-i.684--'6.433---2:2
24.350 0.266 1.344 0.938 0.579 7.891 16.+59 50.982 68,124 81.781 3.890 1.649 6.416 L.253 

"-Y O:27f-[;32 -DO9y-3O.586---,3A)-Yi37O-" %8,32 81.210 3.96.2 1.614 6396 .266 4 
25.050 0.276 1.303 0.929 0.595 6.74(t 18.306 52.267 69.837 80.597 4.037 1,579 6.374 4.278 | 
-25.it0 0,2d 1.282 0.924 0605-6.13V"1927052.946 70.85679932--.111,53..6.48--'-;293 
25.750 0.287 1.259 0.920 0.61o 5.484 20.266 53.656 72.015 79.203 A:193 1.507 6.318 4.312 
26.100'0.292"1.2Th 0.916 0.6L9.--'Z ,802 212.298" 54.40173.349-78.392--t.276 1.-69 6.261 4.334 
2o.450 0.298 1.211 0.912 0,54o 4.076 22.374 55.189 74.908 77.473 .4.363 1.429 6.237 4.360 

27.150 0.311 1.158 0.909 0.690 2:460 24.690 56.943 79.073 75.116 4.554 1.342 6.110 4'.39 
27.500 0.319 1.128 0.911 0.7241.5025.950 57.949 82.057 73.4734.661 .289 6.010 4.502 

.28.059,0..1.011 0.935 0.825 0.000 28.059 5k).889 90.000 69.098 4.862 1.172 5.698 4.70!, 

10 



-


..



-.. 
 

t 
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Tab!e 7 Triple-Point Solutions, Ml 2.6



TRIPLE POINT SOLUIION 	 M1 = 2.600 G4MMA 1.400



DELTAZ P2/POI M2 M3 Mit DELTA3 DELTA4 SIGMAZ SIGMA3 SIGMA4 P2/Pt P3/P2 P4/PI ,04/Pj)*


1.809 1.080 0.504. 18.141 0.0 39.351 57.863 90.000 3.004 2.570 7.720 
 t.850
18.141 0.151 


18.400 0.153 1.79o 14079 0.504 17.890 0.510 390 659 57.891 89.792 3.046 2.535 7.720 L,.850


3.111 2-81 7.719" '4.851'

.184300 0.156 1.778 1.077 0.504 17.499 1.30L 40. 140 57.949 89.468 

19.200 0.159 1.758 1.075 0.505 17.103 2.097 40.627 58.029 89.143 3.177 2.42.9 7.718 4.8'I 
19.60'0.163-1.739-1.072-0.505- 1G-703'-2. ST-4-1121'58.129"88812
l431-2 '37,--7--tiT-	 8-3-


!.,
 
20.000 0.iu6 1.720 
 1.069 0.506 16.297 3.r03 q1.621 58.251 88.,82 3.313 2.329 7,714 3' ,


20.-00 0;169-1.700 1.0f6-0.507 154886-' 42.129 58.396-88.146-'3.3822.280 7'--7-712'--.8856"-
20.600 0.173 1.681 1.0c2 0.508 15.469 5.331 42.665 58.565 87.805 3.453 2.232 7.708 4.858


21.200 0.177 1.661 1.058 0.510 15.0,,6-6.154 43.169 58.760 87.1159 35125 2.1867704-4.80.


21.600 0.180 1.641 1.054 0.51Z 14.616 6.984 43.101 58.981 87.107 3.598 2.140 7.700 4.8"



22.000-0;18,-1.621---050051 1417 7822442-.2 a-3,t/2206 7.l95Th82?
1i 	 2186.7 
22.400 0.188 1.600 1.045 0.516 13.733 8.667 44.793 
 59.511 86.381 3.7118 2.051 7.689 4.871 

"22.800 0.192 1.579 1.040 '0.519 13.278- 9.522 451353 59.824 86.005 -3.825 2.008 .....7;68-.875


23.200 0.196 1.558 1.0341 0.522 12.814 10.386 45.924 60.172 65.619 3.904 1.966 7.674 ,o881


23,600 0.200 1.537 1.029 0.'525 12.340-11.260 46.507 60.557 85.221 '3.98' 1.92.- -7.4)65 8K


2 .000 0.204 1.516 1.023 0.529 11.854 12.146 4:7.102 60.985 84.810 4.0b6 1.883 7.655 4.893



' ;4 00"0;208I.4 94 r0i-o;533-N r354'13 04"6"7. 7t1.457-4.385---	 3... -4- 1-' 	 864 4"')r
SaO0 0.212 1.472 1.010 0.538 10.84 l 13.959 48.331 61.981 83.942 4.235 1.802 7..532 .908 

Z5.200 0.217 1.449' .003 0.543 4t338 eB.973 	 62.560 83.479 	 " 4 .322 7.6 18-- .18 ....10.312 1.763 ---
25.600 0.221 1.426 0.996 0.5+9 9.765 .15.835 49.629 63.203 82.993 4.1411 1.724 7.t03 4.928 

-- 26.000 0.22o 1.402 0.989 0 555 9.198 16.802-50.305 63.918 82.479-4 .503 "1 .65 --7.5 90.. 

26.400 0.230 1.378 0.981 0.562 8.608 17.792 51-003 6e.717 81.933 4.597 656 7.565 "t93


--Zo.u000 55-1,'5 0. ),'" o.409-1--7.993" 186.07 51.72o 65.tl3"81.349 4.6'4 1.607-75 2- '9



27.200 0.240 1.328 0.966 0.5d0 7.34;.6 19.854 52.6478 66.626 80.716 4.79S 1.567 7.515 4.987


27,oU0 0.2*5" IoJOZ 0.958 0.591 o.6o5 20.935 53.Z63 67.781 80.02.54.898 1.528 -7.83 . d09


2b.000 0.251 1.214 0.950 0.60q 5 .9-t 1 22.059 54.088 69.113 79.257 5.007 1.87 7.4 46 5.034


28.10 0 0.25/ 1.246 0.9 t3 0.620 -5.1o7 23.233 54. 9t2 70. o75 78.389- 5.120 1.44 5 7.40f 5.0 5 
26.800 0.2oJ 1.215 0.935 0.639 4.330 24.470 55.8')8 72.54/ 77.3i.2 5.24 1 1.40)I 7.3_4 5.10'



.9. ).2o) 1.183 0. 29 0.663 .3.'i3 25.731 56.914'4.865 76.1t9 5.370 1a." r .2C9 I I


29. 00') 0.21o I.1 1 0.925 2.39,, 27..206, $6 0-:5 7?.. 8J6 7', .622 5,"11 1 .300 7. 165 .231

Q. 5b 

30,.0L 0o29* 1.0:)6 0. Pfu 0.uIt 0.000 3').-,01 o1. 00 , 90.000 66.422 5.t7 1.134 6 .65355 
- .----- ---- -- -.- -, 

t4 

http:2.1867704-4.80


--

Table -8 T-ple_-Point Solutions_, M, =2.8 


TRIPLE POINT SnLIT TON 
 MI 2.800 GAMMA 1
1.400 

OFLTA' P2/POI Nil . . LTA3ELTASI A2 SIGJMASIrA4_2/ p 2____ 


10.027 0.123 1.910 1.362 0.I.8S 1o.027 
 0.0 31.329 54.861 90.000 3.351 
2.680 P.980 5.584


!).100 	
 0.126 1.Q; 1.160 0.L8B l8.A76 0.724 38.770 r4.P86 89.728 3.420_2.6268.9805,58

1P0 0.12S .8315 0.e,8$ 18.297 1.503 319,240 54.030 89.435 3.4'95 2.969 8.970 5.584
20.200 0.32 1.191 1.154 0.qM 17.915 
 2.2853_.733 5., ,903 .9.14 _.57.L_.5.. ,97. ,58


20.600 0.1354 
1.B0 1.250 0. 90 17.59 
 3.071 40.223 55.075,8.844 3.648 2.461 8.P76 5.586
21.000 0..1-7 	 60_. -0_
 3.860 _40.719 55.177 88.545
460.490 17.1 4 3.7) . q... .97_55.58__
2t.400 0.2,40 1.78q,1.142 0.aQ1 16.747 4.653 4.223 55.100 88.243 3.809 2.358 8.971 5.590
21.800 0.413 1.768:1.1_7 0.493 15.350 
 5.450 41.733 55.444_87.9373.ss8?.30s5.8, 5.592


22.200 0.346 -. 747:. 0.LQ4 15.'948 
 6.252 '42.250 55.61.1 87.628 
 3.968 2.259 
 8.964 5.595

22.600 0.l41 1.726 1.127 0.406 
 15.941__7..09 42.77555.80._87,314 4s.527j 
 8,26_5.58 -,000 0.152 1.705-.121 0.197 15.128 7.872 43.307 55.017 86.994 4.137 2.165 
 8.955 	 .5.602

23.-,00 0).!56 I.t,83 .25 0.10; 14. 710 _ 8.690 43.848 96.259_86.660 
 4.2232.19 
 .9__5.606
23.800 0.595 -2. 005 14.284 
 9.516 44.398 56.529 86.337 4.31 
 2.075
 8.943 5.611

2A.20i 0.162 1.640_2.103 0.504 13.351._ 0.3 '9 44.957 56o.8?85.998 4L%400 2.03, 
 8.135_.616
2-.600 0.165 1.(18 1.096 0.507 23.410 11.190 45.526 57.160 85.690
 /-.491 2.08 8.027 5.62229.0 0.'6 '.0595 1.083O_'10 2?.960 j2.040 4405_%7.5?'i. 5.? 9 3_2.('A6__.2t5 ,6a&
2t.400 0.172 1.572 !.052 0.514 2.500 12,900 46.695 57.928 84.923 
 4.o77 1.905 8.909 5.636 
2;.P00Q0.i76_1.54911073 0.51R 
 ... 030 13.770 -7.198 5$.372 854 5 
... 773_-1864 B.897_- 5.644-
2h.Za0 0.379 1.526 1.065 0.522 H1.547 14.653 4,7.914 58.860 84.147 4.871 1.824 8.885 5.653



-
?.600 0.1'8312.903_.057-0.5271-.651 15.
5 49.545 59.397, 33.736---4.971-1.7-B5-8.871 ti.663--

27.000 0.187 1.478 1.048 0.532 10.539 16.46t /.9.191 5.990 83.306 5.073 1.746 8.86 5.674
7 04 1, 0 _',. , 4 1 .o --.?1, -Q 7,. ..... ..P,! ._60 . 64-,. . 555 -_5., 1 1z 	 _ _82 8_ '..,7,0Z___3 .338_ 5 .6 87 -. 

- - 2 i l9 o 0 20! * t.4 9 . O.0 1 O .r ~ p 1 . 727.800 0.-95 1..429 1.030 0.545 9.463 18.137 50.537 61.369 82.379 5.285 1.669 8.89 5.701
 
...0_2 .2 	 03_.020 --0.c 893.19. 307. 51 .24 2 62.175 .81.872--.395_-.63L-8.797-5.718 

29.600 0.201 1.377 1.010 0.961 9.298 20.3,02 51.971 63.077 A1.329 5.509 1.592 8.772 5.7A6 


2Q.000 0.207-A.350--.000.0570___7.673 .21.327152.72.6A.091 80.725.626.5548.7435758_
2'-.-00 0.212 1.322 0.090 0.982 7.014 22.386 53.521 66.244 80.101 5.747 1.516 8.710 5.783
 __. 2o o. !!_ , -o ":I kQ. ! __i ..L2,'4 7 5 ,35?__66.568_7.9.3..	 91__95. 8 M -1 - 76-__A. 6 70-_5. 8 13_ 
39.200 0.2?1 1.263 0.96-) 0.609 5.561 24.639 55.232 61.113 78.589 
 6.006 1.436 8.622 5.850


.0.00.226i.221-0.95!-0.627--4.746-25.854 5S.175 69.95? 
 77.662--6.146.3 3-8,562s-.a896

3J.000 0.22 1 .196 0.f4 ) 0.650 3.850 27.150 57.199 72.227 76.549 6.2q6 1.,4. 8.1t85 5.956

31.400 0.238 U.0.<41 0.687&2.345 23.555 58.338 75.165_75.14iLi6.460.1.297___8.3738_6.0a ...
3!o00 0.25 1.116 0.93D 0.72811 1.66? 30.1i 59.660 79.327 7.166 6.646 1.236 8.213 6.175..... (IL-Q . 5-W. DQ .2-3 uO.!2o6---.00_2.303..6J. 889. 90.000 .67..90--.6.9 9--.107t-__.6,96.619__ 

http:uO.!2o6---.00_2.303..6J
http:75.165_75.14iLi6.460.1.297___8.3738_6.0a
http:21.327152.72.6A
http:8,26_5.58
http:4.2232.19


_Ta le_9._Tri pe-olhit solutions ,_ l _ 0 

TTILE Prl NT SCtLUT MNN 	 ml 3".000 rAmm4, = ./no0 

DELTA? P2!FPO1 P.-2? W..	3..... I- ('=.LT,3. D.ELTA! SIGMA2 SIG"!'A3 SIGHA4,-P-)/Pl ---P3/P? .. P4i-/.Pl.1. ... ( P P )5 
-	 ' 3 , l 0. 52.319 3.700 2.793 10.333 6.3720. 10",2. 047 . 65 -7.35:9 90.000 

. 0.475 9 	 ?.6S0 10.3?320.1-00 0.i05 1 .973 ??26 ],11.gT' .424 , 8o.2 38 52. 56 i9. 501 _. i 96 	 _6.;,72 
2 0. 800 0.' 07 9571 -L.2 32 '0. 4 7t ',A. 608 2.192 18. 728 52-400 81). 2'2 3 .9 4 2.521, 10.3311 6.373 

" *" 0 0.1101 " q20 22P 0.,7 39 2 ) 5?.453 8 £ q 6 4.o0 2,1 1.0.%3 ., ', . , 1q.2 'q 2 ' 290 4 	 6 7 

6 1.0	 88.698 7 2.509 10 3 3 .7 
. 	22.U00 .0.115.1.IA6 J1..?l.R 0.47B 17. t4 0. 4.910 40.1,2, 52.64?..88.414. .+.2 0r 2;455 10 . 2 6.378 .. 

?2 1-O0 0.117 1.3964 1,21% 0.479 17.1i2 5.286 40.695 52-.761 88.136 4.°-97 2.1-02 10.122 6.380 

0O . ;O 1,..	12 0.1-7T 17.865 3.734 39.695 52.943 4:1. 

22.800 0.120 1 .8z- 1. .0 7 0.4 80 16.731 6.069 4! .205 q.900 87.956 4 3O2351 0. 9--6 M 
e,3.200 	 0.122 Iog!-) 1.201 ().48 16.346 6.854 41.721 53.060 87.572 4. q4 2.300 10.314 6.386 

.6 ( 0 0.1?5 1 . 7 7 1.Q 1 0.4 PA 5 .'9 57 7.643 41.245 53.242 fl7 . 2R5 4 .5i70Q - ')51 0 3,. 6 3'00,
-.....h o -- [q-!-T - - . 1-8- :0.85-. 5 63 8--.437 4 2 .775 . .446-R 6.'9 I---1. 6 - 2 0 4 o. 3oL 6.19/T 

24,.400 0.1-0 1.752 1.180 0.6a87 15.i64 9.236 435.3t"3 53.675 86. 6,6._4.774, 2.157 ,0.298., 6 o30 

z2. 2?00 0O.1.5 ]9.70f, 1.!6 5 0.-,92? -,. '5() 10.350 ,4.,4 14 54.211 b.6 40f ,, P 76 2 .0 67 10 . 28 .-- 6."t 0 .. 
, 	
25. 0-0.! 1 2 . 57 0.,t,-)5 1 ' 
	 978 5Lr.521 ,B5.768 5.079 2.023, 10 .276 6.4171 	 17, i..6 67 I-z. 

q_ 13_ . 42 4. -_ fo. AL-.• ,O 10. _6. e

7..0j0.1.44 .6 5 .10 0o . 13.075 3.3.325 'q6.1.35 55.?"36 85.121 5.2,qi 1.o39 'L0.?57 6.432 
.2A,.0000. 14-1._[1. --.5 , - 3 0_.,1 .,5_09_ 1 ?2.4 - 2 _'4 5. 5.5 1 Ra, 9 4 4 'I 9 1. ?-67 , +.. 

0.14771 	 10 . [13 0 n1.705 12.5-4 4 '.1 6o6 4.6.729 5 5 .646 	 ..400 1.51)7 	 0 , 245-2 . 4, -,01-	 ,81-.76,8_-.5 
27 . 200 0. 150 1 5ct7 1 . 1. 1 0.903 12.! 2 195.0,18 47. 35 55.094 8,4.41.4 5.511I 1 .8 57 10.234 6 -)0 

, _.., 1-0.- .9.3-_I!.719 15 AS! 1.,7.?54 56;.586 84.047- . ioZ18i7. 10 .Z20-.6 .461 ... 
2 q.000 0). 5( 1 .537 -,..10-; O.51 11 . 5,.757 4.8.586 'i7.1.24 33.664 5.739 1.77F) 10.205 6.47 

__; O; . r.Q , 2. _, 1,')?.,.Q _.. •7_ _ .6.6 q. . 4"9 . 2_4.. 57 .71 . 5... 83.. 6 .... ._ -- 86 - _ ,_ -. 14 Q .. ,.l 0,1JER _6. 43
24.800 0.1,63 .-. 116 1.0,90 0.5.V 0 1O.?1-7 '8.553 40.89 -? 58.165 82 &846 5.977 1.702 10.!70 6.50! 

-9n2( 0 0 . 1.f-6 1.. (0. 1.04)--1 0 .535 -9,72 3 A.1 ,7 _50.. . 55 5-3. 0 82 8_2. -04,.-.6.!00 1.- 6 1 . 5 -6 . ... 

2-Q.. 00 0.16 1 . ZII' I. 05S3 0.543 9 ._179 20.4?'1 5"..296 5)..8 7 6 8' '. 9 3 A.2'26 i -,'6 1.0 . 727 6.536 
.. I, ku0)0 O. 7,) _ ." j ... .46. 0 51 - 6 610 21 .'......0 52.014 .60.759_81.43Z-_-6.35b, -.. 58') i0.100 ....557 
30.L-00 0.177 1.37 	 , 1~)- 0.560 8.014 2. 5l3 52 .7o9 6'-.747 8 0)., 80 6. ,10 1.552 10.0 70 (. 'i2 

I. 10 , 1. (.. ..... ... .a 2 3. 4 1 /+,,' 5 50 ,2 .86 -_90 . 306-...... ,?a.-_1. 51I 1. . on .i1


3 .--00 0 .1I . 1 :.UI 0." 52 0.711) 2" - ,; 1 54.381 6z-. 13 9 79.65A 61.772. 1.&76 ,9,q 5 6.6"4

0",. 1 . -,17 	 0o. ,7 	 ().5"7 6153 . .. 5 -2 . 0) 

.... 6, 0 , ,55 6 E5.25 6 5 15 72,.930 ... 6°..!- o 37 9.94-6 6.6. -
, -. 0 1. 44 1).'' , .0.' i.t" , ' 26,.77t0 5 6., IR . 67.',58 7 8.'9 7. 08q , . 3c?6 9.8L17 6.734 

7. 	 00 0 o71 . ' 0 . .,3 5 .3 0 P .0 0 57.!'87 U) . 74 77. 109 _7.. 50 2. . 7 9 
.) ,. . ,r' . I . 1) 6 Q. 709 6,., A.6? 	 .¢ . , !1 4 0.1-(3 3 2 ) % : 1..:A .29, 1 7 Z . 5. - 7" ,F 7 .4 't, 

.		 ' ,3,1 ., n ,. 7 0 0 3. :; E 57! 535 f"7 / 1. , 1,1'17 	 " , CZ. q7o 751 I" 	 ,' ' 

., ,... , .. .) O ) d'7 2 107 90.0-00 ,67.712 F:. " ; 9 112. 7. 7!3 

http:0j0.1.44
http:1-8-:0.85


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Table 10 Triple-Point Solutions, N = 3..2 

TRIPLF POINT SntLITION 	 MI = 3,700 GAMMA = 1.400 

. FI.TA2 /POl M2 M3 Mt DFLTA.DELT.A-_SG AA2 STGMA3 STGMA4_._2/PJ .P3feP-- /..__(P4/P!. 
20.100 0.052 2.115 1.321 0./64 20.100 0.0 	 36.451 50.145 90.000 4.051 2.908 11.780 7.214


20.50 0 0.084 .2.2 ;.317. 464 19.7t7__0.753 36.Q"9 50.146 _9.751,4.34 2,8



-
21.000 O.0q6 2.06 1. 12 0.465 19.304 1.696 	 37.511 .50.171 89.440 4.263 2.763 11.779 7.215 
21.500 0.0'4 2.015 1.306 0./65 1..959 2.641 	 38.11.1 50.220 89.127 4.3P4 2.68L_1.777 72A. 
22.000 0.09! 2.006 1.20-1 0.466 181412 3.588 38.719 50.297 88.313 4.507 2.612 11.775 7.218 
2?.500 0.04 1_.977 1.292.)0. 67 17.963 .4.537..3. 335 50.400_.P.496__4.63._2.541__i1 772-7. 22 
23.000 0.006 1.o4) 1.294 0.668 17.510 5.490 	 39.960 50.531 89.176 4.761 2.472 11.768 7.224 
2 .500 0.009 1.9111.275_-.-7- 17.014 6.I4 	 40.594 50.692-87.852.-A.892..2,405_--i .763 -7.228 
24.100 0.102 1.R8Q !.267 O."7 16.593 7.407 41.238 50.8,3 87.,524 5.024 2.3/0 11.758 7.233 
S24.500 0.10" 1.90 1.297 0.1-74 16.127 8.373 7.1.05_ 1j,.7557.1.6 P6Q.Z7Lj3,5_7,23_ 
25.000 0.i07 1.330 1.247 0.&76 15.654 9.346 42.596 51.363 86.95i 5.298 2.23.7 11.744 7.244 
2:.500 0.11 0 I .400 1.3A 0.978 5.75 5135..23251.65f6- 86.5045.438 2.158-._11.736.-7.252. 
25.000 0.11? 1.769 1..25 0.421 14.689 11.311 43.920 5 .987 86.149 5.532 2.101 11.726 7.260 
26S500 0.316 1 .739 1. 21 3_ 0.-485 1t. t-93J?.307 .:-621 ..52.359-.85. 7R C 5.72% 2.045 l1 .715 _7.269 -. 
27.000 	 0.119 1.708 1.201 0.489 13.687 13.313 45.335 52.776 85.409 5.877 1.992 11.703 7.279 

_27.500 0.i , '" 1.677 1.1A8 0;t93 13.170 14.330 46..05_53241_.,.Q2L_.,9.T_21,69O2.29m._ 
2.000 0.125 1.AL 1.175 0.497 12.540 15.360 46.821 53.760 84.618 6.181 I.38 11.675 7.303 
?Q.500 0.i , .6i 31 . h1 0.502 ?.,095 16.405At.571 54.337 84.986.343-1.838 1-,1 658-7.17
2V.000 0.4 1.581 1.t/7 0.508 !.1.532 17.4684 8.358 54.q81 83.759 6.505 2.789 11.639 7.334 
2q. 500 .0.115 _5S1._32-0.515 10.950-18.550 	 4.163_55.700.83.296-_-6.672-1.7&1-11.617-7.352
20.000 0.138 1.514 1.117 0.'522 10.344 19.656 	 49.994 56.5Q6 82.806 6.843 1.694 11.593 7.373



-- 03.500 0 .142h 1 S O S30 ~ t0 i788-.5 0.a 5?-57itI4lL-2.2 8 -. 0-1-.6 4A1 .5 6-7.39&
31.000 0.146 .,+15 1.085 0.S?- 9.048 2i.Q52 51.764 58.439 81.727 7.200 1.602 11.532 7.426


._l.500 0.1-.-!t09 L.06_0.550 -8.346_22.15c 54t.674.59.6118i.102.81.55S._1.49t7.459_


32.000 0.:53 1.371 1.090 0.563 7.597 24.403 	 53.651 60.n64 P0.421 7.983 1.510 11.449 7.499 
32 . 500 0.'5. 1 3.B_I.033 0.579 .b.Y90. 25.710.54. 635.62.552 .79.654.-.78B-l.463-11.395__7.547 
32.000 0.162 1.91 1.014 0.596 5.910 27.090 	 55.793 64.4r,7 7A.768 8.004 1.&19 11.327 7.60R 

..... 	 kf___0.. .. .... .. . 293_le.LZ.a..571 55.992 .66.9!9_7..O7___2.23&_U.365__l!.23Si-_.638._ 
0.1.72 	 3.'Q8 Q077 
 0.650 3.807 30.493 5..350 69.909 76.352 8.4I 1.309 11.115 7.80174.009 	
 

7 /1 4 3 3
24.900 0.iZa 17.84 ).960 0.693-..2.464i 3,.U36 59.940 . 3 77 74. -- _.783.1.243--10.920--7.986-
35.1 HO 0.18 ".0 0.170 0.993 0.000 35.1,t)0 63.19 90.000 67.534 9.351 .073 10.036 08.897 

C 

http:25.710.54
http:658-7.17
http:52.359-.85
http:9.751,4.34


Table 11 Triple-Point Solutions, M, = 4.0



TRIPL5 POINT SOLUTION MI = 4.000 GAMMA ='1.4n0



fELTA2 P2/01 M2 M3 M4 OELTA3. QeLTA4__SI GMA2 ,IGM , --.$ I GM A4 P2fP/P./P__-RL-.1)
20.8 O.086 2.507 1.61.0 0.435 20.354 0.0 31.444 A3.921 90.000 5.503 3.362 18.500 11.130 
21.600 0.038 2.53 1.598 .435 _0.?65 1_.335_14.314 43.892 89.626 5.7653.209 +!8.494I1.13 
22.200 O.039 2. 0 1.587 0.436 19.794- 2.406 35.023 &3.904 89.326 5.982 3.092 18.497 11.132 
22.POO 0.041 2 .17 13.57L 0.L36 .9.A2'5 3.475 35.742t_3.:?7 8'O25 602.9 82 t.4995.25__ 
23.400 0.0!-2 2.224 ,9A61 0.437 18.356 4.54t , 36.470 44.023 R;.722 6.428 2.876 18.491 11.139
24.000 0._--4 ?:."! .547 0.438 18.183 5.612 37.207 t4.13l 8.41,8___6.6592.776je.486A,..14 

2t.500 0.0-5 2.23q1 1.53? O.)40 17.'),8 6.682 37.955 44.272 .9.111 6.R QL 2.680 18.480 11.150 
2. )00 0.0,',7 2., 1.5.516 0 4 2_1747. 7.753_38.713, 44.448 87.01_7. 5_2589.18.4731,156_ 
25.800 O.14q .A5 1.500 O.-44 16.973 8.827 39.481 44.659 87.487 7.380 2.502 18.464 11.166


25.400 0.0:0 2.1o 1.482 0.446 6.496 9.904 0.2ol 4.908_81.6_.L_,,_5_LL176.


27,000 0.052 2,0.A6 1. 64 0.-49 16.014 10.W86 4.053 45.196 f6.843 7.885 Z.339 18.1L3 11.187


27.600 0.0 ?.02? 1.445 _.1-52 l35.526 12.074J 4.858345.524_86.510__8. 5_.2o263-.Il431 _1.200_


2S°2OO 0.055 1.779 .'25 O.-55 l,.031 13.169 42.676 45.897 86.170, 8.410 2.190 18.417 11.2,.4


?3.OO 0.05,7_!.5 1.4o 0.459_14.5?B_14.272 43.509_t6.,17 85.820 8.681 ?,120-8.101-11.230-

2q.400 0.059 1.392 1.383 0.463 14.015 15.385 44.358 46.787 85.459 8.958 2.052 18.393 ii.24,


30.000 0.,11. .9)W .361_ 0.-69 13.400 16.510 1-5.224_ 7.31485.Q859.?'t 
Thb.600 0.063 1.005 ..33) 0.47 , 12.-)51 17.649 46. 109 47.901 84.696 9.528 1.925 18.341 11.292 
3'.200 0.069 1.7oO_i.314 Q.!.71.3 740.037.04 8.557.-4.290.9.9221,865-18.315-1.318--_ 
31.800 0.067 1.716 1.z- 0.4P5 11.823 19.977 47.943 4.9.20 83.863 10.124 1.806 18.287 11.348 
3? 0/00 0.0o_ .67(L,.67_Q.49_21. 2q.2172 IZS. 693-50.1 1183.4il_11O.433 1.750._18.254_1.38L-
33.000 O.071 1.625 1.242 0. 01 20.607 22.393 49.893 51.034 82.930 10.750 1.695 18.?17 11.420
2'. -0) 0.073 ? .578 ,.?16 0.50 .55i.4%50.9Q3.48 12. ± iD-t. 6 413w5i-.486a. 

4.2OU 0.075 1.530 1.11) 0.520 9.265 24.935 51.964 53.26c 81.830 11.413 1.588 IR.125 11.517 
l Q0.Q 77 ' .i 1"6,. 533_8. 5,t.. L6.272.53.074 54.641-81.230-1.762-1.536-18.66-11.579.--

' 35.400 0 0 00 1.431 1.1.33 0.5/7 7.733 27.667 54.245 56.247 80.534 22.127 1.484 17e9q5 11.655 
36.000. O.O21.573_L1.1G3_O,565-T.863_2.137_55.'t96_58.166--79.735 12.51.0-.1.43--17.907-11.750
36.600 O.OR'; I.A2 1.073 0.587 5.9R) 30.711 56.852 60.533 78.784 12.919 1.377 17.794 11.874 

7.?C"0 0P3~ L - L.,2 t- _,-LU2 .38-. 3 76.L.3236_12--.638--l.2.04Z.-77.65563616-33 

37.R60 0.091 1.1C0 1.006' 0.661 1.397 34.403 60.138 67.989 75.92.1 13.A72 I.254 17.395 12.324


3 .72 O."00_.O! TO,3Q.92_O.OOO.38.72Z 64.777, 90.000 .67.295-15.10 4,040__15.719_14.497 .... 

http:740.037.04
http:t.4995.25
http:8.494I1.13


'fable 12 Triple-Point Solutions, _M - 5'0



Tv IPLFr P('INT SOLUITIIN P41 = .000 CAMMA ,.()O0 

SDELT A? PlPr)! M _-) !'Nilr DELTA3-.DELTA- S IGMA2 ST, AA3.SIGMA4. PUlP! P IP _[aZ __ P4/PI )A: 

2£62 'O.014 
2.600 0.0 511 

.Q I.!O 0.4'L5 20.q62 
O.3 4 

0.0 ;0.796 
52.731 . 659 

39.271 
30.23 

90.000 7.479. 3.87-1 
89. _c 7.86 P 5.A 66 

29 .000 1 T.250 
?9.PQ9 17.251--... 

2 ? . 2 0 0.0152.,I30. .9*77,9.12,8 .2.272 "2.169 '49.'-,4 89 .431 8 .1c 3. 539 21.997 17.254 
22.10 0 , 6 2 .7 ,3 H. l(0 0.e.1 1 1.;) !6 3.2q4 33 .0OH5 3 1. 261 P o. 7 7 8.I 0 ? ..q 94. 17 .2 57 

,
2... 1.;2 0./41.f 3ct 9.,"10 28,1 q..2'-.000 0O.0'7 ;2,' . ..a 19. 700 9.300 .r42 9, 05 8 8 .66 9 .1117 1 
74600.] .0 !a 20. 1, 8.!t .306 5 .2 82 34 . 18 88a J 9.564 3.030 28.978 17.27,6 

.2i.20)00. 0, 4?11'P 7qj 0.,9 17. '19 7.311 1,A.030 in.660 88.151 9.925 2.q 19 _28. q70 17.2 5 
,
2q 800 0.0!CI ?.4Q5 1.7 q 0.z22 17.L,84 9.316 36.786 294f!30 87.802 10.202 2.814 23.q6I1 7.2Q5 
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Table 13 Triple-Point Solutions, M1 = 10.0 

.
Tk IPL P01'N SftJT.If N, "I iii, .li=30.f00 	 GAMMA = 1.400 

'LTA2 &I 

;
 

o2f'IO , M' M4 DPLTA3 flELTA4 SIGM"-A2 SIGMA3 SIfMA4 P2/Pi P-'/P2 D/PI (P4/P1 11 
19.520 0.000 -. W 2.75' 0.37 , 152.0 0.0 25.240 30.191 90.000 21.047 5.535 116.500 69.263 

.
20.7CG 0.00 4.07" "0_ 18.1793 ?: 	 ).489 
 68.279%_04 .9 661.	 ' .02 	2.684 0 .388 .721 26.664 0.P.63 92.329 4.q0 116.495 68.269 

21 ."40--0.00±3 -'54 2. -L4-0"0.-,1 .8".C65 2.7-5 27.516 31.12 Rg.419 24.736 4.709 116.458 68.279



f2.1n 
 . .- 6 1.I- 53 3.71,7 Z9.371 3.249 89.203 26.1q2 .t49 116.477 69.294
0.001 

22.8)3 	 0.0A 3.717' S.950 C.1Q10 1.QA4 t.756 2Q.218 t .391 P8.-)97 27.667 4.209 116.464 68.313


3,.0Q 0)00 3.60o 2.502 0.300 17.735 R.765 30.203 31.5 59 R8.770 2q.191_3. "S 921.6.446 68.337
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Table 14 Actual Results of Iteration from Approximate Method for Estimating Mach Stem Height,


M, !-,1 9'21 P VP' 3.67I ' oJ a 

Nst Y Xe H2 H3a a 3aHa fH4a(..') dY a W(Yo) 

0.99900 0.00105 0.00076 0.00078 0.89010 0.00009 0.08237 0.04175 

0.00100 1.04689 0.75505 0.76110 0.00089 0.08990 0.00008 -0.01086 

20 0.20700 0.83101 0.59936 0.60549 0.18445 0.7128 0.01707 0.00059 

0.19645 0.84207 0.60733 0.61346 0.17505 0.07223 0.01620 0.13695 X 10-5 

0.19642 0.84210 0.60735 0.61348 0.17502 0.07223 0.01620 0.70090 X 10

0.99900 0.001.05 0.00076 0.00078 0.89010 0.00009 0.08237 0.04175 

0.00100 1.04689 0.75505 0.76138 0.00089 0.08993 0.00008 -0.01110 

40 0.21059 0.82725 0.59664 0.60300 0.18765 0.07098 0.01736 0.00060 

0.19984 0.83852 0.60477 0.61113 0.17807 0.07195 0.01648 0.13036 X 10- 5 

0.19982 0.83854 0.6,0479 0.61114 0.17805 0.07195 0.01648 0.57496 X 0-11 

0.99900 0.00105 0.00076 0.00078 0.89010 0.00009 0.08237 0.04175 

0.00100 1.04689 0.75505 0.76155 0.00089 0.08995 0.00008 -0.01124 

100 0.21271 0.82503 0.59504 0.60153 0.18954 0.07080 0-01754 0.00061 

0.20185 0.83641 0.60325 0.60974 0.17986 0.07178 0.01664 0.12579 X 10-

0.20183 0.83643 0.60327 0.60976 0.17984 0.07179 0.01664 0.50140 X 10-

Experimental result Y 
o 

= 0.20 by A. Ferri [43]. 



Table 15 Actual Results of Iteration from Approximate Method for Estimating Mach Stem Height,


M1 ='1.92, Fol/Pa 3.54 

Nst Yo Xe H2 H3a H4 

/H3a 

J (..) dY 

H4a . 

Ja (") dY4 W(Y) 

0.99900 

0.00100 

0.00102 

1.01372 

0.00075 

0.74682 

0.00077 

0.75214 

0.88080 

0'00088 

0.00009 

0.08874 

0.08112 

0.00008 

0.04055 

-0.01276 

20 0.23984 

0.22884 

0.22880 

0.77136 

0.78253 

0.78256 

0.56827 

0.57650 

0.57652 

0.57367 

0.58190 

0.58192 

0,211.52 

0.20182 

0.201.78 

0.06744 

0.06842 

0.06842 

. 

. 

0.01947 
0.01858 

0.01858 

0.00062 
0.20009 X 10- 5 

0.19920 X 1010 

0.99900 0.00102 0.00075 0.00077 0.88080 0.00009 0.08112 0.04054 

40 

0.00100 

0.24282 

0.23164 

0.23.61 

1.01372 

0.76834 

0.77968 

0.77972 

0.74682 

0.56605 

0.57440 

0.57443 

0.75239 

0.57163 

0.57999 

0.58001 

0,00088 

0.21415 

0.20q29 

0.20426 

0.08877 

0.06719 

0.06819 
0.06819 

1 

0.00008 

0.01971 

0.01881 
0.01880 

-0.01297 

0.00063 
-50.19330 X 10 

0.17200 X 10-10 

100 

0.99900 

0.00100 

0,24458 

0.23330 

0.23327 

0.00102 

1.01372 

0.76655 

0,77800 

0.77803 

0.00075 

0.74682 

0.56473 

0.57316 

0.57318 

0.00077 

0.75254 

0.57042 

0.57886 

0.57888 

0.88080 

0.00088 

0.21570 

0.20576 

0.20573 

0.00009 

0.08879 

0.06705 

0.06806 

0.06806 

0.08112 

0.00008 

0.01986 
0.01894 

0.01894 

0.04054 

-0.01309 

0.00064 
0.18865 X 10- 5 

0.15590 X 10 - 0 

=
Experimental result Yo 0.40 by A. Ferri [431.





Table 16 The Effect of Changing the Number of, Divisions on the Initial Characteristic Line


on the Calculated Mach Disc Result



Me pe/Pa N Xsk r sk Xsk at rsk xf at x r

rsk m ax f max

smax. max 

20 1.8127 1.1523 2.8754 1.2241 3.8859 1.8961' 5;4369 0.7478 

4.0 	 30 1.7652 1.1460 2.9067 1.2208 3.8960 1.8962 5.4216 0.71421,



40 1.6729 1.1345 2.9082 1.2206 3.8958 1.8956 5.4190 0.7383



1.5 	 3.0 30 1.9097 0.9515 2.1042 0.9542 3.4187 1.6359 4.8779 0.3406



40 1.8641 0.9503 2.1173 0.9539 3.415 1.6359 4.8847 0.3318



1.3657 3.7906 1.6762 4.6869 
 .2.3416 6.1909 1.3478

6.0 	 25 1.6359 


40 1.4843 1P327?. 3.9601 1.6695 4.788i 2.3429 6.1838 1.3444



1.3192 4.6932, 1.5623 6.0133 2.2995 
 8.2792 0.9055

2.0 	 5.0 25 2.1300 


40 	 1.9856 1.2930 4.5528 1.5573 5.9322 2.2998 8.3509 0.8604



2.0842 8.4816 2.8652 12.4430 1.1712

25 2.2450 1.4686 6.9194 
7.0 	
 

2.5 	 L40 2.0939 1.4322 7.0029 2.0780 8.5051 2.8736 12.5155 1.1558



30 2.4854 1.3249 5.6870 	 1.6130 7,6451 2.3909 10.8680 0.6680
5.0



40 2.3525 1.3038 5.7954 	 1.6099. 7.5325, 2.3894 11.0602 0.5718



30 2.6189 1.3929 7.8606 	 1.8927 9.8373 2.7064 14.9062 0.5927
6.0



3.0 	 40 2.6163 1.3911 7.7557 1.8941 9.8856 2.7045 14.9046 0.5707



7.0 	 20 2.7939 1.5110 8.6360 2.1330 10.3414 2.9484 16.207 0.7031



30 2.5454 1.4592 8.3920 2.1206 10.3385 2.9421 15.8100 0.8307
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APPENDIX A 


FUNCTIONS FOR EQS. (24) and (25) OF TWO-DIMENSIONAL 

See Fig. 13a and References [17,25].



A= - v v 1 - VS[& 
Bso/ so . o 

B c~( 2 0)[(2fl)/(y-1)] (a y + 1 ~2) 

E: 	 vv~r 2(: m4{[- - - l( 2) K3 

2 	 nes 1seKNEE 

D = 	 - - 2 f4y ) 

EV v 

2 i 2SEv2 K2 
F'= KI LPS{V [ - 222 (i 

2 se K E PC ss 

y-- dO 2p)1 1 L. (p 

[=s[+V 1 2d)
G = 	 p n 1 + 2y 2R (P 

E d8 2 

2*s Po Vso 

where



K 4 14 y-1 	 14+ 1 2+ y ) Y1+21 

EXTERNAL FLOW 

(A.1)



A2



A



(A.3)



(A. ) 
 

(A.r)



nE K (A.6) 

I
P 

(A.7) 

(A.8) 



1135


2 
 2 sin 2 K] cos - cos K sin K sin 0 (A.9) 

[i C,1 
os

[21 1 2 - sin 2 K] sin 8 + cos K sin K cos 6 (A.10) 

[;YCosY:2cs KKtI~~zK 

2 ) Co22 1 
1 2.K 
 

2K4 T + i(y + 1) 14 o [2 + ( - 1) M2 os 

rK 2 4 

M 0 KK - (A.11)*

F[2yK ( 1 M22osM2CO ]~2+-(y K ]J(A.12) 

v o j [I l os2K~+ C0os


Vs y + 1 M2s



-
F2 tan K(os2 K lSn 

vVnE = l y+2 1 Cs K -2 (-sin 6) 

+ OS? -Co s
tan K K (A.14)



) 4 -
P = 1- ) @ 1(-) (A.15)



P = P4 (A.16) 
2 qt=JvT v 

2 n (A.17)


S n 

and for attached shock wave, K K as E + 0; for derached shock wave 
0



K +0 as £ E .


0



*In Reference [17] for axisymmetric'case, J = 2. However, in the present


derivation, K4 is twice as large, that is, J = 4 for both axisymmetric


and two-dimensional cases, which agrees with the results of [25].
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FUNCTIONS FOR EQS. (35) and (36)'0F TWO-DIMENSIDNAL iNTERNAL FLOW



See Fig. 13b and Reference [21].
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APPENDIX C



CHARACTERISTIC EQUATIONS FOR NUMERICAL CALCULATION OF A



STEADY SUPERSONIC FLOW FIELD



The characteristic equations for a two-dimensional or an axisym

metric flow are written as [31]: 

dr I I tan (C.1) 

1 dMz% + tan2 tan e drd=*d tan a + 
 V a 

N* j 1 1 i t +tan G T tana



0 si.2 at d(v (C.2) 
y(y - 1) dT 

0 for two-dimensional flow 

where V = 

- l fo axisy-mmetric flow

- - - 0 for irrotational flow 

1 for rotational flow



Furthermore, for an adiabatic process of a perfect gas, the change



in entropy can be related to the variation of stagnation pressure



through the second law of thermodynamics.



S2- S 
 

-1) L
Po2)
 

(C.3)
S -y nPoL 
 

C.1 PRANDTL-NEYER CORNER EXPANSION 

At"the corner point where the expansion from state 1 to state 2 is



two-dimensional and isentropic, that is, V = 0, S1= 0, the direct inte


gration of Eq. (C.2) will give
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S-° = - [W(M*) - wCMji - (C.4) 

where



+ . -1 M 1 -1 -1 
an " -1 tan (C.) 

-+yI 2 .2


is the Prandtl-Meyer function.



EQuation (C.4) is used to establish the flow properties of the ex

pansion fan at the nozzle exit corner or at the location where shock 

intersects with the free j'et boundary. 

C.2 FIELD POINT PROCEDURE



As shown in Fig. C.1, points 1 and 3 are joined by a characteris

tic line of family I aind points 2 and .3are joined by a characteristic 

line of family iI.. Points 1 and 3 are known, and point 3 is to be de

termined. Equations (C.1) and (C.2)>,when written,in finite difference 

-forms, give


- = tan(W -; ) (C.6) 

x3 -1 3 13 

x - 2 tx 23 + '23 ) (0.7)
3 
 

M* - M V tan2 tan e P r 
3 13 *13 3 1

II 3- tan a +3 3 - 1 13 + tan - e )tan --13 + 
 13 '13 3 
 1 

nlsin 2


a
+ + l)i LPo3olj
 (0.)- 13 
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1 M -p . _ vtan 2 
2 3 tan 2 3 r 3 

2 = 
1- 3 tan - --23 2,t '3 '2


8 62 23 tan 6 + tan a 2 (6 - 623


23 23 23 3 2'
23s 2 


sin2 a2 3  FPo3](C.)



+ 03 2) Lo2J 

where Eq. (C.3) has.been applied. The bar superscript indicates that 

an average value is to be taken. 

In the small characteristic grid shown in Fig. C.1, if the stream

line passing through point 3 intersects line 12 at point s, the co

ordinates of point s can be found from the geometric relation of the



intersection of two straight lines, 12 and s3. Hence,



tan 60 -x 2 tan 1



s 
 

r2 -r 3 + x3 
 

tan 
 -tan

s



r - (9 x tanS (C.lI)
-. s _ -' s)* 

The flow angle and stagnation pressure at point s can, then, be approxi

mated by using linear interpolation. 

r s -r2 
=e + (e - 62) 2 (C.12)

s -2 1 2rI r2 

Pos Po3 Po2 + P 1 o2 rs r C.3 

where P = Po3, because point 3 and point s are on the same streamline 

-and have the same entropy. 

The iterative solution of the simultaneous equations, Eqs. (C.6),



(C.7), (C.8), and (C.9), with the help of Eqs. (C.10), (C.11), (C.12),



and (C.13), will furnish the unknovm flow variables at point 3.



To begin with an iterative solution, the property at point 1 is
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usually used as the average value between points 1 and 3, and that at 

point 2 is used between points 2 and 3. However, Eqs. (C.8) or (C.9) 

will blow up when points 1 or 2 are on the axis of symmetry. This 

difficulty can be avoided through the following modification- Refer


ring to Fig. C.-2, when point 2 is on the axis of symmetry, and intro

ducing 

tna tan 6ta

lim lm-tan 23 23 1 - 232 tane23 

r2 0 tan 63 + tan a 32 3. r 2 -0 (tan 63 + 1 r


- 23 23 2 233



2~ -o2 tan 2 3
 


'23 '3 '

 - (C.14)" 23 '3 

because ldm a 2323tan 23 


2 


Equation (0.9),becomes 

- 3(1 +±V)tan an3 + 3 n (C.15) 
3 Y02



which is used to replace Eq." (C.9) for the special case when point 2



is on the axis of symmetry.



C.3 CONSTANT PRESSURE JET BOUNDARY POINT PROCEDURE
 


As shown in Fig. C.3, points 1 and 3 are on the same free jet 

boundary without intersecting with shock discontinuity, and points 2 

and 3 are joined by a characteristid line of family II. Points 1 and 

2 are know-n, and point 3 is to be calculated. 

The slope of the jet boundary between points 1 and 3 is given by



_r3 3tanrl_ (C:16)


-x3 -x .13
I
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On the constant pressure jet boundary



3 
M*=vi**

1 
(C.17) 

and-, since free jet boundary is also a streamline, 

=
Po3 o (0.18)



Therefore, Eqs. (0.7), (0.9), and (0.15), plus conditions (Eqs. (0.17) 

and (0.18)) can be solved for x.,r3 , and e8 . 

C.4 AXIS POINT PROCEDURE



- If point 3 is at the intersection of a characteristic line and 

the axis of sTmmetry as shown in Fig. 0.3 and points 1 and 3 are 

joined by characteristic curve of family I. Points 1 and 2 are known, 

and point 3 is to be determined. 

Since points 2 and 3 are on the same axis streamline,



P03 =Po2 (C.19) 

Also, on the axis of symmetry
 


S3 = 0, r8 = (C.20)



Therefore, Eqs. (C.6) and (C.8) can be used to solve for two unknowns, 

1* and x3 3 

C.5 DOWNSTREAM POINT OF A SHOCK WAVE 

Downstream of a shock wave, the points 1 and 2 are known; point 3 

just behind the shock wave is to be determined. Referring to Fig. C.5, 

points 2 and 3 are joined by characteristic line of family II. In front 

of the. shock wave, the flow is nonuniform and the flow properties are 

known. 
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The slope of the shock wave between points 1 and 3 is given by 

1,3 -rl(C21


: tan 13C.21)
- x
x 3 
 

where



(.22)
l3 =2 

Deflection" angle 63 and stagnation pressure Po3 are readily available 

from obliQue shock wave equations whenever the shock wave angle a3 is 

assumed known during the iteration process (Note:. 03 =1331+ 63w). 

Equations (C.21), (C.7), and (C.9), together with the oblique 

shock wave relatinns, are sufficient to determine the unknowns, x3 , r3 , 

, 03, and P at point 3. 
3' 3, an o3



http:Note:.03
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