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ABSTRACT

12 '
Cholshevnikov ' has published the results of analytic studies demonstra-

ting that bounds on the zonal geopotential coefficients decrease at least as rapidly
3 2as 1/n and bounds on the tesseral coefficients at least as rapidly as 1/mn .

We show that these bounds are almost certainly conservative, and then proceed

to develop a number of possible modifications designed to incorporate extensive

data on the Earth's density distribution into the analysis. None of the modifica-

tions are implemented; the most promising is, however, discussed at some

length.
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I. INTRODUCTION

of the Earth, p(r ,z ,cp), and the normalized associated Legendre functions, P (z),

The normalized geopotential coefficients can be given in terms of the density

arth, p(r ,z ,cp

used by geodesists, as

f C „! n2ir nf n m l 1 P P f
I s h l n T T j J 1

h+2I I ]

"nm ' """ -1 "0 ' e (i.:

where

A = radius of the smallest sphere centered at the origin
and circumscribing the Earth

z = cos 6 ; 8 = polar angle of spherical coordinates

<p = longitude

A(z ,cp) = distance of that point on the surface of the Earth,
defined by z and (p, from the origin

Knowledge of the behavior of these coefficients as functions of n and m would be

useful in many ways, particularly in providing a rational basis for truncation of the

geopotential in applications to orbital mechanics, and in the formulation of proce-

dures for geopotential modeling.

Since the density, p, is an empirical quantity, an analytic evaluation of

the coefficients from Eq. (1.1) is not possible. With sufficiently detailed density

data, numerical integration of the right hand side of Eq. (1.1) could be used to con-

struct a table of values for the coefficients. Although sufficient data for such a

calculation are not presently available, a considerable amount of data does exist,

on the basis of which various density models for the Earth have been constructed.

The purpose of this report is to discuss how the available data and models might

be used to investigate the behavior, not of the coefficients themselves, but of bounds

on the coefficients. It has been generally supposed for a long time that the geo-



potential coefficients decrease as n increases, a conjecture supported by em-

pirical estimates based on examination of tables of empirically determined coef-

ficients. The most sophisticated analytic estimates, to my knowledge, are those
1 2

of Cholshevnikov,' who gives four mathematically rigorous derivations starting

from Eq. (1.1). His results are on the rate of decrease of upper bounds on the

magnitudes of the coefficients, and we shall describe them in some detail in the

next section. Here we wish only to comment briefly on the approach, and intro-

duce the mathematical background necessary for his development.

.0

A bound of, say, A/n for I C 1 is not the same as a decrease of I C I
nm1 ' nm1

as A/n ; | C | might decrease more rapidly; or, perhaps, starting from a

value much lower than the bound, it might increase for awhile; or it could even

have a damped oscillatory character. However, whatever the variation of I C I
2 n111

with n, | C | would be constrained to lie below A/n , and the bound would

imply lim C = 0 .
n-»z nm

Cholshevnikov's bounds are obtained by using standard inequality relation-

ships on the absolute value of an integral, bounds on P (z) and/or its integral

from -1 to +1, and, for the sharper results, a mean value theorem for integrals

based on the concept of a monotone function. A monotonically increasing function

of x satisfies the inequality

f ( x 1 ) ^ f ( x 2 ) for Xl>x2 (1.2)

It differs from a strictly increasing function since there may exist one or more

intervals over which it remains constant. A monotonically decreasing function

is defined by reversing the second inequality; We now state the mean value theo--

rem; a proof will be found in Reference 3.



Theorem: If F(x) and G(x) are continuous in the interval
(a , b), and also if F(x) is monotone (either in-
creasing or decreasing) in this interval, then
there exists an x in the interval such that

J> *1 b
J F(x) G(x) dx = F(a) J G(x) dx + F(b) J G(x) dx (1.3)
a a x

Clearly, the bounds on C and S must involve the density function
nm nm J

and the shape of the Earth defined by A(z,(p), another empirical quantity. Chol-

shevnikov eliminates A(z,cp) by using A as the upper bound for the integration
G

with respect to r in Eq. (1.1). This implies that the density function must be

set to zero in the gap between the surface of the Earth and its circumscribing

sphere. Cholshevnikov incorporates the density function in his analysis through

the "global" functions of density

p , a global constant (p . =0)
'max & Vf ;

i i *v (r, 8, (p) = — d(p = variation of p with respect to <p (1.4)<p JQ o<p

z
v (r, z, (p) = |— |dz = variation of p with respect to z

Clearly v and v are monotonically increasing functions of <p and z , respec-
Cy Z

tively, and a little thought will show that (v -p) and (v -p) are also monotonically
(p z

increasing with respect to (p and z , respectively. These comments perhaps .al-

ready suggest how Cholshevnikov derives his bounds. Since several modifications of

his analysis are almost immediately apparent, we shall devote Section n to an ab-

breviated derivation of his results which, while rigorous, have two defects:

* For a more rigorous definition of "variation," see Reference 4.



1. One would conjecture that they must be fairly conservative

since the fact that the integrand in Eq. (1.1) has one sign

over approximately half of the region of integration, and

the opposite sign over the rest, appears to have been fully

exploited only in his Theorem II.

2. The parameter, p , can be reasonably well estimated.'max
Adequate data for the estimation of bounds on v (r, 8, 21T)

and v (r, 1, (p), used in the sharper results, are probably
z •

not available.

In Section III we discuss some possible modifications of Cholshevnikov's

methods, aimed at eliminating the defects mentioned above. The primary change

is to introduce-local formulations rather than the global formulations implemented

by Cholshevnikov. In Section IV, we select what appears to be the most promising

of the local formulations for a more detailed analysis. It is beyond the scope of

this report to implement any of the suggested formulations. We do indicate, how-

ever, how data on the density function and the shape of the Earth might be used in

an implementation. In the last section, we make a few comments on "worst case"

constructions and their role in deriving bounds on the geopotential coefficients.



II. CHOLSHEVNIKOV'S BOUNDS FOR GEOPOTENTIAL COEFFICIENTS

The first of Cholshevnikov's papers gives two bounds for the coefficients

of the zonal harmonics, one in terms of p and the other (which is sharper)'max v '
in terms of the variation v . The second paper carries through the corresponding

z
analysis for the coefficients of the tesseral harmonics, the major difference in the

two investigations being that the variation v is used in the second. We shall state
9

these four theorems and sketch the proofs, modified to apply to normalized coef-

ficients (Cholshevnikov used conventional associated Legendre functions and un-

normalized coefficients). The analysis applies to the defining equation (1. 1), for

the geopotential coefficients, written in the form

\ = ^L. [ 2 L . { f f z ,0p (Z){C°Sm<Pid<pdZ}dr (2.1)S J 2n+l J. .n U J ^ ^ nmv ' Ism men J v J v 'nm 0 A -1 0 "^ .
e

This form differs from (1. 1) in the upper limit of the r-integral. There is no loss

of generality; the replacement of A(z, (p) by A can be compensated by setting
6

the density p to zero in the gap between the actual surface of the Earth, defined by

r = A ( z , < p ) (2.2)

and the circumscribing sphere of radius A , since from the definition of Ae e

(2.3)

4?r p A
Theorem!: c | « - (2.4,



Proof: From Eq. (2.1), S =0 and

Ae n+2 1 27T

0 A -1 0
e

max [~ r

(n+3)A 0 -1

Z
max

o

Note: This theorem implies that LUBJC . I decreases as const/n1 nO1

for large n. Cholshevnikov shows, in his first paper, that this

theorem is a "best" result in the sense that a density distribution can
O

be constructed for which | C | itself decreases as 1/n . We com-

. ment_in. more detail on.this in:Section.V. ________ _____ _ ... . ....... _

Proof: Rewrite Eq. (2. 1) in the form

(2.5)

from which the result follows immediately on use of the inequality

r1

J 1 PnQ(z) i dz £ 2 (2. 6)

which Cholshevnikov credits to Hobson. Note that the second inequality

in (2. 5) is strictly "less than" because if p = p for all r , z , <p,
max

Eq. (2. 1) implies C = 0 for all n except for n = 0 .

3 4/ - 2v +p
47T A V 22 z max

Theorem II: | C A | * ——7; - — • max — (2. 7)1 nO

where

v = LUB(v (r, 1, (p) for aU r, <p) (2. 8)



Zl Z2

_i tfi\ — f) (jt*. —1 f/5^ 1 I -P~~(z\ dz --
' J n

, Z2

for the expression in curly brackets. Cholshevnikov now makes use

of another inequality

(2.10)

A
„ e n+2 n27T . „!_ i r r r r r ,\j ~ — ^ I ~~^~~ I || v (r« z, (u) ¥ f. (z) o,znO 2n+l J n J ^J z nO0 A 0 -1e

-J [v (r, z , < p ) - p ( r , z,(p)]Pn0(z) dz}d<p dr
-1

Since both v and v - p are monotonically increasing functions ofz z
z , the expression in "curly" brackets may be replaced by

1 Z2
v (r, 1, (p) | P (z) dz - C-p(r,-l, (p)] f P (z) dzz J nu J nu

Zl -1

- [v (r, 1, <p) - p(r, 1, <p)] P (z) dzz J n
Z2

where use has been made of the mean value theorem, stated in the

Introduction, and of the fact that

v (r, -1, <p) = 0 (2.11)
Z*

Further, since

1 2 1
f P (z) dz = 0 = f P (z) dz + f P (z) dz (2.12)
J - n J n v n

we can combine the last two integrals of Eq. (2.10) to obtain

,1 J.
vz(rf.l,<p)[J Pn(z)dz - J Pn(z)dz]

(2.13)



|J P (z) dz 1 * —2 V 22 (2.14)
a ,/77(n-l)(2n+l)

to obtain

[2v +p ] — d<pdr (2.15)
— • — — — — — ^ v '1 nO1 2n+l J. z Inax / — • — — — — —

0 max V TT (n-1) (2n+l)

from which the desired result follows immediately. The reader is

referred to Cholshevnikov's paper for the derivation of the inequality

(2. 14), Note that we have dropped the subscript 0 on P , since

for m = 0 , the associated functions become Legendre polynomials.

Theorem HI: { 'CnJ 1 <
 4 f f^ pmax Ae

I |S | / < (2n+l) (m+3)1 nm ' v ' v '

Proof: From Eq. (2.1)

A

Cnm+ l Snm=

.
f°r

luF 1 ' *i-UJ. • • • • ̂  ^JA^L • -i. **_ A v J.Ai&A MB v^>

e

1 nm

e - (2.17)

and hence

C U • e n+2 1 2TT

A (2'18)

n+3 _ e

where use has been made of another inequality credited to Hobson:

F |P (z)|dz * 2*/2 (2.19)J . ' nmv ''



Theorem IV: „ IC L ' ' ' V(D e
C I Y\-rf\ ' i 'Tnovnm"l < ^ax_

S J m(n+3)(2n+l) * '1 nm '

Proof:

. Ae n+2 .1 .277
nm'

. ' "e * - (2.21)

This time, using the variation with respect to (p, we obtain a bound

on the (p integral:

,2rr
i f f c o s m c o l , i i . ~ . f /cos m<p'lpi . ^ ^d(p = v (r, z, 27T) 1 . f'J ^ l s i n m < p J V l ' (pv ;J l s m m < p J

(2. 22)1

where we have used v (r, z, 0) = 0 . From continuity, we have

p(r, z, 0) = p(r, z, 27T) (2.23)

and hence

27T ^2 27T
f cosm<p1 , i i , n . r r c o s m < p " \ , . r t v f f cosmtp

o ns inmcp} d ^l = 'V r ' Z ' 2 7 r ) H S inm(p} d ^ + P ( r 'Z '0)J0 \sinmcp

2vv (r, z, 27T) , sin mcpn - sin mcp, . <
_ i (Ov ; f V2 * \u__

' m Xcos m<p - cos m<p /' m
1 "

Proceeding now as in Theorem HI, the desired result is easily obtained.

We now combine the methods used by Cholshevnikov for Theorems n and III

to obtain a fifth theorem:



Theorem V:

C

nm

27T A

(2n+l)(n+3) [2v
Zv / v / max ' 1

dz 25>

Proof:

C + iS1 nm nm1 2n+l

e n+2r f
n «L

3|-|| p(r, z,cp)Pnm(z) dz|d(p dr (2.26)

or

isrJ0

e n+2 n2lf
r r [2<

where the z-integral has been treated as in Theorem n. Note that use

of inequality (2. 20) would yield a result inferior to Theorem IV. Pre-

sumably, Cholshevnikov would have included this theorem also had an

estimate of |T P (z) dz| decreasing faster than 1/m been available

J \
P (z) dz are not known to me.

_1 nmv '

Of his various theorems, Cholshevnikov proved only that Theorem n is a

best result, i. e., that density functions (however "unrealistic") exist for which the

equality, rather than the inequality, holds. If Theorem n is "best," Theorem I

cannot be "best." In fact, since both Theorems I and in involve only p and
'max

bounds on ftp (z) I dz (which do not exploit the oscillatory character of P ),j i nmv / i \ f J nm/

both can certainly be sharpened. Theorems IV and V make use of a variation of

p and include the oscillatory character of both P (z) and cos (m<p) or sin (m<p);
nm

it is possible that at least one of them is a "best" result. The variations vz

and v,. must, however, be enormous numbers, and even rough estimates of(ftnax ' '
their values are probably impossible to make from available density data. In

10



spite of this, Theorem II, involving v_ is a "best" result, at least for thezmax
order of magnitude of the rate of decrease. We shall return to this point in

Section V.

The theorems discussed in this section all involve constant factors de-

pending upon "global" functions of the density: p , v7 , and V. .InF B v & J 'max' zmax' <Pma.x
the following section, we propose a method for sharpening at least the constant

factors by constructing a local rather than a global formulation, with the possi-

bility of using local rather than global bounds on the density and its variations.

Such a formulation should enable us to make more effective use of the available

density data.

11



in. LOCAL PROCEDURES FOR BOUNDING THE GEOPOTENTIAL COEFFICIENTS

Our local formulations will be based on rewriting the defining equation (1.1)

for the geopotential coefficients in the equivalent form, for m > 0:

n-m+1 2m-l

nm

with

Z<-H P'-rx
f r>ns m en~\

(3.2)..
ii J J nm ' L sin

V .*

where

A(z,<p)
Rn(z,(p) = J p ( r , z ,<p ) — — dr ,

e

the z. are the n-m+2 zeroes of P (z) with z, = -1, . (3. 3)i nnv ' 1 ' v '
Zn-m+2=+1 •

the <a. are the 2m zeroes of -j . f in the interval1 n ^ sin mw JJ

The case m = 0 requires special treatment and, since it may not be amenable

to a local formulation, it will not be discussed in this report.

The z. and (p. define a grid of spherical quadrilaterals (triangles at the

poles) bounded by the latitude and longitude lines corresponding to the zeroes of

that spherical harmonic which defines C (or S ). Note that this representa-nm nm
tion is unique for each of the coefficients C , S as n and m run fromnm nm
zero to whatever upper limit is imposed.

12



The particular representation of Eq. (1. 1) as a double sum has the property

that for

Z- < z ^ z. ., P does not change signi i+1 nm & &
r ' (3.4). . / cosm<p\ . , , . v '

<Pj ** * Vl I sin m«p / d°es not Change Slgn

which implies that the inequality usually present in relating the absolute value of

an integral to the integral of its absolute value degenerates for I., to

. z (3.5)
ii nm sm m <p J n v 'z. cp. i «P i

i J .

Further, the fact that the z. and c5. are zeroes of P (z) and i . f ,i j nan ' L sin m<p J
respectively, implies that

I.±1 . and I. ., have signs opposite to that of I.. (3.6)

since one factor of the integrand changes sign if either i or j (but not both)

change by 1 , while the other factor does not change sign. Similarly,

I.± has the same sign as I.. (3.7)

for all four combinations of the +'s and -'s.

Now let us examine the contribution to the sum over i and j in Eq. (3.1)

of two neighboring sectors with common boundary (p.. Referring to the sketch,

we see that the positive contributions come from one zigzag path, and the negative

contributions from another. Note that if R were constant, the total contributionn
of this pair of sectors would vanish and, hence, C and S would also vanish

nm nm

13



since there are 2m sectors and, therefore, an

integral number m of pairs. Next let us set

R..ij,max

R. . .ij,mm

= LUB R

G L B R (z , <p)nv ^'

(3.8)

3+1

for "block i, j", defined by the inequalities of

(3.4). :

sketch,

(3.4). If we take I., to be negative, as in the

< (R - Ri ij,max ij.min'LJ nm'
Z.

I

cosm
>*]

(3.9)

2[R.. -R.. . ]i], max i], mm
m

rl+1

J Pnm<z> dz

and the more nearly equal are R.. and R.. . , the more fully can theJ H ij.max ' J

cancellation effect from integrands of opposite signs come into play. Also, the

more accurately the interval integrals between successive zeroes of P can be

estimated, the more accurately can the n,m dependence of the bounds of the

geopotential coefficients be determined. References 5 and 6 discuss various

properties of P (z) pertinent to this latter problem. Our primary concern

here is with the incorporation of data into the analysis — that is, with possible

procedures for the e
th

for the i , j block.

procedures for the estimation of the bounds R.. and R.. . of R ( z , < p )ij, max ij,mm nv

We first recall that R depends upon the two empirical quantities; A(z ,<p),

which defines the shape of the Earth, and the density function p(r , z , (p); and

14



that, in fact, these empirical quantities appear explicitly only in R in this for-
n

mulation. Basic inequalities involving A(z , <p) which might be useful are

: A " (3.10)

where B(z) is the distance from the origin to a point with polar angle arccos z

on the smallest oblate ellipsoid with semi-major axis A , centered at the origin,
6

and circumscribing the Earth. A . is the radius of the largest sphere, centeredmm
at the origin, and contained by the surface of the Earth. The inequalities (3.10)

are "global." Local LUB's and GLB's of A(z,<p) would clearly be useful,

and can probably be fairly well sized over most of the globe. Probably the real

key to the estimation of realistic bounds for R lies in finding an effective way

to handle p. A discussion of this problem is given in the next section for the

"radial" formulation developed above.

Before discussing the radial formulation in depth, however, we wish to

point out that the local approach, including the symmetry properties of the "block"

integrals incorporated in Eqs. (3. 5), (3. 6), and (3. 7), can also be given the fol-

lowing formulations:

B(z) n+2
I.. = I I P (z) - - $ . ( r , z )d rdz
1 J J nm n
..
13 z. 0

A
l * (3. 11)

n+2"e n+2 ^j+1
r r r J f cos mo 1 _ , ^ , ,

i . f Z.(r ,<p) dto drJ n J I sin m (O J in A .A *0 A <f>.
e ^'

with

(3.12a,

15



Vi
z.

i

p(r,z,<p)Pn m(z) dz (3.12b)

The inequalities (3.10) have been used in writing Eq. (3.11) and, in order to main-

tain Eq. (1.1), p(r , z , ip) must be set equal to zero in the gap between the surface

of the Earth defined by A(z , <p) and the surface defined by B(z) in the first of Eqs.

(3.11), and the circumscribing sphere of radius A in the second. These formu-
G

lations lend themselves to the application of the methods used by Cholshevnikov in

a local rather than a global manner; that is, p and the variations v and v0 Inax tp z
can be defined for the individual blocks to obtain bounds on $ and Z .

j i

Proceeding just as in the analysis leading to inequality (3. 9) and using the

symmetry properties of the blocks, we find the corresponding inequalities

I. . , +!..<[$..i,j-l ij L i], - *.. .max ij.mm

B(z) rn+2

-1 "*. n

.3 z..,
A _ i+l

dr f P (z) dz
J nmv '
z.

i

<[$.. ' - $.. . 1 -% f IP (z) I dzL i],max i j ,mmj n+3 J ' nmv ' ' (3.13)

and

I. . - + I..i,]-l 13

e n+2
..ij.max

_ z . . I f r _ d r . r
ij.minJ Jn .n J

0 A

]+l

sin mcp

= fz - z 1
L ij, max ij, min J

2A"

m(n+3)
(3.14)

The task of estimating bounds for Z. and <E>. appears to be somewhat less

tractable than that of estimating bounds for R . Further, in the first of these for-

mulations, (3.13), the empirical function B(z) is present in the first of the inequalities

16



although, as indicated in the second inequality, it can be eliminated at the expense

of weakening the bound.

No effort has been made to implement these two formulations; they are

suggested because the utilization of the variations v and v by Cholshevnikov
<p z

appeared rather effective, although the difficulty of estimation of global bounds

for v and v renders his results of theoretical rather than practical interest.< z .
The estimation of local bounds, particularly for n» m» 1 (so that the blocks

are all small), may be feasible.

17



IV. INCORPORATION OF DENSITY DATA INTO A LOCAL RADIAL

FORMULATION

We designate our principal local formulation, based on R , as a local radial

formulation for rather obvious reasons: it is local and R is the radial part of the

defining integral (1.1.) for the geopotential coefficients. The function R contains

all the empirical quantities and. once we can establish bounds on R for each block
n

i, j , the bounds on the geopotential coefficients are constructed from a weighted

sum of the interval integrals

J

Vi
Pnm(z) dz (4

Zi

of P (z) between successive pairs of its zeroes, as outlined in the previous

section. A computer program has been written to calculate the interval integrals

and can operate with accuracy adequate for this purpose up to degree and order

40 , 40 . Analytic estimates of the interval integrals as functions of n and m

would be highly desirable. No such estimates are known to me, and their deriva-

tion appears to be a problem of considerable difficulty.

The local formulation (3. 1) of the defining equations for the geopotential

coefficients has somewhat the character of a numerical integration. The original

triple integral of Eq. (1. 1) has been replaced by a double sum of block integrals:

n-m-KL 2m-l

nm i=1 j=1 z.

m- i+l j+i
Y f I"' P ( z ) { C O S m n R ( z , < p ) d < p d Z (4.2)
L J J nnr ' l s i n m < p J nv v/ r v '

with

A(z,<p) n+2,
Rn(z,<p) = J p ( r , z , < p ) — - dr (4.3)

e

18



No approximations have been introduced up to this point. Notice that the sizes of

the blocks are determined by the values assigned to n and m , and may be too

large for a conventional numerical integration. This could, of course, be remedied

by further subdividing each block. The available density data and data on the shape

of the Earth's surface defined by A(z,<p) are, however, not adequate to carry out

a direct numerical integration of Eqs. (4. 2) and (4. 3) with sufficient accuracy'to

give realistic estimates of the values of C and S . We seek, instead, boundsnm nm
on R to be used as input for calculation of bounds on the coefficients.n *

One way to attack this problem is to note that r is a monotonically in-

creasing function of r and hence, using the mean value theorem in the Introduction,

n+2 (0)
p- J

0

n+2
dr

p ( r , z , < p ) d r

rA(z>
J__
r (z , tp)v v/

-ip ( r , z , < p ) dr]

(4.4)
— . .
rn(z,<p)

This approach has the consequence of eliminating the factor —- which we are nown+o
accustomed to associate with the radial integral. This loss may, however, be com-

pensated by the lower limit "r (z , <p) on the last integral. If we transform the vari-

able of integration by

then R (z,<p) becomes [Eqs. (4.3) and (4.4)]

3
------- R-(-Z -ttp) =-Ae J

<4-5>

; (z, to)maxv ^'
_ p( r ,z ,<p)

'^'^ (4.6)

19



We note that one factor, at least, of the integrand of the first integral decreases

rapidly with increasing n over most of its interval of integration. On the other

hand, £ , the corresponding factor for the second integral is very close to

unity and will decrease comparatively slowly for values of n of any immediate

concern: for example, k must exceed 128 before . 9966 drops below ^ —

. 9966 is approximately the ratio of the polar to the equatorial radius of the Earth.

One would thus expect £ (z,(p) to approach £ (z.co) fairly rapidly as n in-
n ndcix

creases. To translate this expectation into a quantitative estimate of £ (z »<P) is

the difficult step in calculating bounds on R (z ,co). In principle, £ (z ,<p) could
n n _

be evaluated by equating the two integrals in Eq. (4. 6) and solving for £ (z , <p) ,

but this is not feasible in practice.

We postpone, briefly, the discussion of this problem in order to investigate

just what information on £ (z , <p) might be required in order to place bounds on

R (z ,<p). Using the second form of R (z , <p) given in Eq. (4. 6), we see that if

A (z , (p) = £ (z , (p) - 1 (z , <p) (4. 7)
n max n

is "small, " fairly tight bounds can be placed on R (z ,<p) as follows:

A £** (z , (p) A (z , <p) p . (z , to) < R (z , o) <A £? (z , <p) A (z , <p) p (z , <p)e maxv ^ nv ' Inur v/ nv ^' e ^max ^' n rmaxv ^

(4.8)

where p (z , cp) and p . (z , <p) are maximum and minimum values of the density^max^ v/ ^ninv 'v/ _ J

along the "ray" (z ,<p) in the shell bounded by £ (z ,<p) and £ (z ,(p). Now re-max n
call that what we need for Eq. (3. 9) are the bounds R.. and R.. . onv ' ij,max 13, mm
R ( z , < p ) for each pair of blocks i ,( j- l) and i , j . Introducing the bounds
(

A.. . = GLB.. A (z,(p) , A.. = LUB.. A (z,<p)ij,mm ij nv *' ij,max ij nv ^'

4.. = -r LUB. . A(z,<p) , 4.. . = T-GLB.. A(z,<p) (4.9)sij,max A ij v '*' ij.mm A LJ v v/ v

6 6

p. . . = G L B. . p . (z , to) , p.. = L U B. . p (z , <p)H H v ^ ; ^ ^ v ' ^ '
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taken over block i,(j-l) and its neighbor i,j (as done for R in Section HI),

we can write

A3 £.n+2 . A.. . p.. . = R... . <E (z,<p)<E..e ij,imn ij , mm *ij , mm ij,mm n ij,max

. A.. p.. (4.10)e i] , max i j , max 'ij , max

Estimates of £• . . and £. • can probably be made with reasonable ac-ij.mm ^i
curacy. If it turns out that A is small, the estimation of p and
_ ij,max Ij.max
p. . . can be based on knowledge of the density function near the surface of theij , mm
Earth where considerable direct observational data is available.

In any case, we see that A (z ,ip) rather than £ (z ,<p) itself is the sig-

nificant parameter, and "block" bounds, rather than point values, are what we

need. As a first step, to get a feel for the order of magnitude of this parameter,
7

we might consider a recent radial model, constructed by Wang, for the density

distribution of the Earth. In this model, the Earth is considered to be a sphere,

the density depends only upon r, and a great deal of averaging is implicit in the

construction. The basic idea would be to use Wang's model to approximate the

two integrals of Eq. (4. 6): the first for various values of n, and the second for

various values of the lower limit (£ =1 for this model), and then by directv max _ _
comparison, construct tables of values for £ and A = 1 - £ . Following this,n n 'n
one should carry out similar calculations based on more realistic models and/or

construct density variations along selected "rays" (z ,<p), for which a good supply

of density data is available. Clearly, considerable analysis and numerical ex-

perimentation will be required to determine realistic estimates of A..ij.max
and A..ij,mm

It is possible that the theory of isostatic compensation can be used in the

analysis. For if £ ( Z » < P ) turns out to be fairly close to, or below, the level of
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compensation, it will follow that the second integral in Eq. (4. 6) will be quite in-

sensitive to z and <p , so that the block bounds

determined primarily by bounds for [ A(z , <p) ] .

sensitive to z and <o . so that the block bounds R.. . and R.. will bei], mm i], max
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V. "WORST" CASE ANALYSIS AND "BEST" RESULTS

In the estimation of bounds by rigorous procedures, such as those imple-

mented by Cholshevnikov, inequality relationships are used and the question arises

as to whether the final result "really" contains a < or a ^ condition. In some

cases, the method of analysis clearly indicates that equality is not a possibility,

as in Cholshevnikov1 s first and third theorems. If equality is not a possibility,

then, clearly, the result is not "best": a sharper analysis should exist for which

the bound can be tightened to the point where equality is a possibility. The realiza-

tion of the condition of equality is a "worst case" because it, in effect, limits the

further tightening of the bound.

One way to test whether or not a result is "best" is to try to construct the

"worst case" consistent with the hypotheses of the analysis. This is the method

employed by Cholshevnikov in showing that his Theorem II is a "best" result for

m = 0 . His "worst case" is a homogeneous hemisphere bounded by the z = 0
3

plane ("equatorial" plane) for which C . decreases as 1/n . This very extremenU
density distribution is consistent with the hypothesis of bounded density with bounded

variation of his theorem. Actually, the numerical factors for C and the bounds

of Theorem n do not quite match and neither does the exact dependence upon n;

what Cholshevnikov is really claiming is a "qualitatively best" result.

Now, of course, we know that the Earth is not a homogeneous hemisphere;

V
—3after all, the facts that J ~ 10 fj. and all other coefficients appear to be of order

—fi
±10 n indicate that the Earth is nearly a homogeneous sphere. If constraints are

imposed on the density function so that a "worst case" construction is limited to

more or less realistic density models, it is highly unlikely that any of the theorems

quoted in Section II would qualify as best results.
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One interesting conjecture is confirmed both by Cholshevnikov's example and

by the less extreme construction outlined below. The conjecture is that a worst case

constructed to match a bound, or more accurately to approximate a bound, for some

subset of coefficients, will most likely imply that many other coefficients are far

below their theoretical bounds. In Cholshevnikov's example, all the tesseral co-

efficients C , S ( m > 0 ) vanish. A less extreme construction assumes realistic
nm nm

upper and lower bounds p . and p for the density. Then a particular C —
^ 'mm Mmax nm

(or S — ) is maximized by assigning density p to all blocks for which the cor-v n m . / o o j 'max
responding spherical harmonic is positive, and p . to the rest. It is easy to show

that this distribution implies that S — (or C — ) vanishes, and that (at least) allnm v nm' v '
C (or S ) with m = 2km also vanish for k any integer > 0 . Similar results
nm v nm7 &

can be obtained when an average value for p is imposed as an additional constraint.

"Worst case" constructions are useful in a number of ways although, as in-

dicated above, some care must be exercised in the interpretation of the implications.

Certainly such constructions are useful to obtain a "feel" for the problem in the early

stages of analysis, and it is in this application that caution must be observed since

such constructions are usually based on a very few "global" parameters. In later

stages of the analysis when, perhaps, some results have been obtained using a limited

data base, construction of a worst case can be revealing: the extent to which the

worst case satisfies constraints imposed by data, which are not incorporated in the

analysis, could be a measure of the practical value of the results. Finally, a worst

case construction utilizing an extensive data base is a possible means of obtaining

realistic bounds, and, in fact, the methods outlined in Sections HI and IV might be

regarded as algorithms for such constructions.
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