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2. Modification of the large=scale environment by cumulus clouds

Consider a horizontal arca at some le -2l b-e.‘wcen cloud base and ti.2
highest cloud top. This horizontal area, shown schematically in Fig. 1, which
we designate as our urﬁt horizontai area, must be large enough to conlain an
ensemble of cumulus clouds but small enough to cover only a fracfion_ of a large-
scale disturbance. The existence of such an area is one of the basic assumptions -
of this paper.

Because we are not concerned here with acoustic waves , the mass

continuity equation can be simplified to its quasi-Boussinesq form,
2
TP < —
v-(pv )+ aE,(Pw') = 0, (1)

where the density p is ¢ function of height only, v is the horizontal velocity,

v s the horizontal ¢':l operator, W is the yeriical velocity and Z is the

. vertical coordinate. :
_ . by

Let G, ¢ z,1) be the fractional area covered Athe ith cloud, inna

horizontal cross-section at level 2 and time 7 . The vertical mass flux

through c, is

Ma-';ffu(dé’ = PGwWy @

/

vhere f ds is the area integral over the area &, and w; is the average
vertical velocﬂ’y of the ith cloud at fhls level.
The inward mass flux per unit height, normal to the boundary of the ith

~ clod, is given by BMi /2Z from the mass continuity equation (1) (See Fic. 2.)
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Here the boundary is not necessarily vertical. Then the mass added to the cloud,
which may be horizontally expanding or éhrinking, is oMoz + p3C; /ot

per unit height and unit time. The entrainment and detrainment of mass are given by”

enfrainment: ( "-UO ) when -. M; +f> v >0; 3)
. __ (=M 26
detrainment: D;= (T = +/°-5—.;) when Ba.'i_“;. P ¢ o, (4)

E . can be rewritten as G:;B(Pw},)/éz +p(0/0t +w; a/az) S, - Thus, an
“entrainment of mass, which is originally caused by turbulent mixing at the cloud
boundary, appears either as a vérﬁcal divergence of the mass flux within the cloud,
or as a horizontal expansion of the cloud as it rises, or as a combination of both,
depending on the dynamics of the cloud.

The fotal vertical mass flux by all of the clouds in the ensemble is

Mc=2 M; (%)
where z denotes the summation over all clouds which are p :nefrating the level
being considered. _

Let PW be the net \‘/érﬂcal mass flux for the large~scale horizontal

-

unit area. It satisfies the contiguity equation

V- (PV)+ Cf’w')“ 0, (©)

o
where ihe bar denotes the average over the unit horizontal area. In general, the
total vertical mass flux in the clouds, M. , is not the same as the large-scale

net vertical mass flux, piv . The difference between M and PW is equal



to the downward mass flux between the clouds,

~S

- M= M- pw, )
With sufficiently i;\tense cumulus activity, Mg can exceed f’ITI and sub-
sidence, F’l’ <0 , appears in the environment, as in Fig. 1.

At a given height, some clouds may be detrcining while other clouds are
entraining (see Fig. 1). We define total entrainment E and total detrcxinmen‘t D,
-at each level, by
E=2 E; (8)

and |

d.c,

respectively. Here 2:( denotes the summation over all clouds \ .iich are entraining
at that level, and o{zc denotes the summation over all clouds which are detraining
‘at that level. E and D , as well as M¢ , are functions of 3 . From (3),

" (4), (5), (8) and (9), we obtain

- == ‘aMg 2GS, 10
E-D=-5g*Fr%¢, (10)

where
o= 2 o, (1

is the total fractional area covered by all the clouds of the ensemble.

. We define the static energy by

S=Cpl +52, (12)



where Cp, is the specific heaf of air under constant pressure, T is the temper-
ature and g is gravity. CPT is the specific enthalpy of the air, and 9% is
its geopotential per unit mass. The static enerey § is approximately conserved

by the individual air parcel during dry adiabatic processes. Hydrostatic balance,

-which we assume for the environment, gives

-'g_.- ( ‘P_Q_b‘_ (13)

where s the pressure, Po is a standard pressure, R, is the gas constant,
and Q= (Po/P)? T isthe potential temperature.
From the budgets of static energy and water vapor in the environment

we obtain

aat[((- o‘c)f?]-—\V' (PYs) --t:""s'-ro%Dtsm
-gg(m?) -"L'E + Qg 14

2 [(l s*),og]-—v(PM&)' EZ~+7 D Goi
2 (M 5)+ 6 (15)

where the bar denotes the horizontal average over fhe large-scale unit area, the
tilda denotes the value in the environment (which is assumed to be horizontally

homogeneous for all of the variables) and the suffix by the value in the



detraining air from the ith cloud. L is the latent heat per unit mass of water
vapor. € is the evaporation of the liquid water detrained from the clouds

per unit height, and 6;2 is the radiational heating of the environment per

unit height. 8, is the mixing ratio of water vapor. The first three terms on

the right of (14) and (15) come from the horizontal area integrations of

~ Y- (pys) and - v (Py L) over the environment. =~ (M $)/3%
and - a(mg)ﬁ)z represent the convergence of vertical fluxes in the environment.

Using (10), (9), (7) and (6), Egs. (14).and (15) may be rewritten as

25 ~ 2%
(=S)P5E = 2 D (55- $)-LE ~ M35
[v (Fys) = V- (PY) 3’]+ Qe, "
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To simplify Egs. (16) and (1 ‘7), we use the cmpirical fact that the total fractional
area covered by active clouds is small compared to unity. (See, for example,
Malkus et al., 1961.) This is consisteni with the theoretical finding first obtained
by Bjerki.  (1938), that conditional instability favors the smalle;f possible
horizontal cross section for rising motion and the largest possible horizonfal cross
section for sinking motion, if there is no friction nor entrainment. Asai and

Kasahara (1967) found that cumulus convection most efficiently transporis heat



upwards, and thercfore most efficiently releases kinetic energy, when the fractional
horizontal area of the rising motion is of the order of several per cent. It seems
that
‘ C.« | (18)
is an acceptable first approximation when we ax;e concerned with only active
cumulus clouds.
By definition, s and 2 averaged horizontally over the large-scale

unit area are given by

= T e (19
S= ([~6)S + ) S, Sy,

= (-s0g+Y o g, (20)
or using (11), ‘

S = .'§‘+Z(5L-§')9'6) @1)

.--. ~s r~
F= 82 Q-3 (22)
~ ~ h . d [ s . .
(SL"' S) and (83,“ &) are the excess static energy and the excess mixing ratio
of water vapor in the ith cioud over the environmental values. Using the as.mption
(18) and the empirical fact that the tempero?ure difference between the eloud
and the environment is smalll or W(S;’-%‘)« %', we obtain, from (21)

§ = %, (23)

However, the corresponding in_equality, m“’((f}i“’i)« g , does not

hold when the environment is not near saturation. Therefore, we use instead



Ao Lo ~s . . . “« e . .
qu[g‘:-g*)« Z_* ; where g_*. is the saturation mixing ratio of water vapor in

" the environment. Using this in (22), we obtain

E‘E‘T%:*‘(?*"@’c’"c
. - o R
=& [ L+ =L s ] (24)
where Y is the relative humidity of the environment, Z,/g"é When

r> 52/('-.*6" )5 Gt that is, when the environment is not very dry, the second

term in the bracket of (24) ca can be neglected. Then,

7= %, @

We further assume that

TPY) = v (P¥), (26)
T(PYs) = v-(PYU S @7)
v (PYg) = V- (PY §), 28)

Here the bar on the right hand sides denotes a running horizontal space average,
on the scale of the unit area, and not just the average within the fixed area. The
.approximations (26) through (28) are .\A'alid v/hen the net lateral horizontal transports
across the boundary of the fixed large~scale area by cumulus convection (the
horizontal cumulus eddy transports) are negligible compared to the horizontal

transports by the large-scale motion.



Using the approximations (18), (23), and (25) through (28), Eqs.

und (17) may be rewritten as

oS _ — ~ 95
ot = & Dilsym8)-LE -M3y
~pY VS + Qg (29)

(30)
95/05 isa measure of the static stability of the environment (see (13) and
(23)), which 15 usually Rosi’rive. - 3'435/32 represents adiabatic warming of the
environment when -‘I\«f:Mc-PtTJ)O(or cooling when M. -pur< 0 ) due to the
vertical motion. For 9%/487 < O (the normal condition) ~'ﬁa§/az represents
drying of the environment when Mc-Pw>O (or moistening when ™M -p <0 ))
due to the vertical motion.

In addition to the detrainment and evaporation terms, cumulus clouds
modify the environment through the - mulus~induced subsidence in the environ~
ment. The latent heat released within the clouds does not directly warm the
environment, but it maintains the buoyancy of the clouds against the adiabatic
cooling due to the upward motion and the cooling produced by the enirainment
of drier and coldel."air from the environment. .Thus, the latent heat released

within the clouds mairi«ins the vertical mass flux of the clouds and thereby, the



cumulus-induced subsidence in the >avironment. The drying ond viarming of the
environment, by the cumulus induc=d subsidence, are the indirect effects of
condensation and relea-z of latent heat, but tieir vertical distributions can be
very different from the verticai distribution of the condensa..on within the clouds.
This important role of the cumulus induced subsidence in the environment was not
explicitly made use of in parameterizing cumulus convection until Arakawa (1969)].
Egs. (29) and (30) were derived from budgets for the.environmenf only.
But they approximately govern the time changes of § and f, , which are averages
over the total area. This means that the prediction »f thz large~scale averaged
field is practically the same as the prediction of the cloud environmert, insofar
as the thermodynamic variubles are concerned. This important simplif’ Iy
which was used also in the earlier parameterizations by Arakawa (1959) und by
Ooyama (1971), comes from the neglect of acculat? ¢ storage of the static enzrgy
- and water vapor in the ensemble of clouds. In fact, we can rederive the right

“hand sides of (29) and (30), as was done by Yanai (1971b, 1973), from budgets

for the total area. These budgets give

-§-§'= TP - (P + L(ZC - £)
. _ “l'(ZQR:,'\‘ 6;2,)) . (31)‘
-X2 v _ 2 [ 5y _ .

(32)

! A descriptior. of this parameterization was given by Haltiner (1970, pp. .)



where CL and QRL are the rates of condensation of water vapor and radiational
heating in the ith cloud per unit height. Using the epproximations (27), (28) and

(26) with Eq. ), (31) and (32) can be rewritten as

F?—%z: az[[’U’”S ]+L(ZC 2)+ Z@Pu 33)
| -pX- Vs—fufaz +@R)
P3-= =35 [Fog-roE] - (2Ci-€) y

T vR-pTRE
A. The quantities inside the brackets are the eddy vertical transports by cumulus
convection. The eddy fransport of S may be writien as |
purs - pws = (Z M5+ ME) - p#s,
Using (7), (2), (1%9) and (i1), the eddy transport can be rewriiten as
P - pis = 3 [Mi(5:-5)= oM (5-%)]
The second term in the bracket is negligible compared fo the first, when W, IT)')
shere U is the vertical velocity in the enviroﬁmen’r, and §; - S A~ :gi -3,
Then we have
.  pEsopBs E L M(s-F), @,
Similarly, the eddy mransport of Z_ may be rewritten as
C PER-PEE =T M3 B (85}
When there is no accumulative storages of mass, static energy and water vapor in
the cloud ensemble,
o Mc

.E*D*--j'g‘""-':O) (37)



Es- DspL ba., 2. M:s;
+L'ZC + EQM =0,

’Eg‘%c.D-;Zoa‘“ﬁZ M: . (39)
-3 = o,

Using (35) through (39), we can easily show that (33) and (34) ¢ 2 identical to (29)

(38)

and (30), where the heat of condensation and the radiationa’ heating in the clouds
do not explicitly oppear.
If the evaporation of the detrained liquid water takes place at nearly the

same level where the water is detrained from the clouds,

E = Z D;_—eDL, (40)
d.c.

where 20;, is the mixing ratio of liquid water in the air detrained from the ith
clovd. The above assumption is probably justifiable for the evaporation of
detrained cloud droplets, but would not hold for rasidly falling raindrops. With

---the assumption (40) and Eq. (7), (29) and (30) can be rewritten as

/’%’%"—" ZD;(SD;“LQDi'S)+M°5—§-
ad,C.00

~ (41)
~pPYvS - f’w + QR
2% _
Pot = é-' Oi(gpi+ loi- 2)*‘ Mc-g‘,:;”
42
SRR *

The detrainment terms will be further simplified in the next section.



3. Budget equations for an individual cloud and assumptions for the detrainment
We first consider the budgets of mass, static energy, water vapor and
liquid water for an individual cloud. In the entrainment layer of the ith cloud,
\ .

the budget equations can be written as

2 2 |
mass: .é—{(f«u) -..-_- Eu. -5z M, ) (43)

stoticc_znergy: ’b%(f)gt 5.). = E:.-S- - %(ML5£)+ LCL+ QRL, (44)
wateer:por: 'a'a'é'(f)c},%i): ELE-%(ML Zu) - CL, (45)

quid water: 2 [pes 0. ) = 2 (\ -
liquid water: EE([OG‘: f") = -'ﬁ(mi 2.) + C; R 5 (46)

where e‘-’ is the mixing ratio of liquid water in the form of cloud droplefs and R;
the rate of conversion of the liquid water to precipitation per unit height. The
approximations {23) and (25) have.already been used. The budget equations in

 the defrainment layer are -

mass: : 3%(.1"69).":," D, - 59‘5 My, | (47)
static energy: | '-a%(pc;_ s.i.):—.-. -D; SDL—%(MLS;) +LC+ Q Ri, (40
o B g BOng0r s,
* liquid water: -a%-;-(pc.s‘i Q#)}: - D; go-&.—‘ 'a%'<ML 0)+C - R, ©0)

Equations (37), (38) and (39) are obtained by summation of (43), (44) and (45) over



all entraining clouds and of {(47), (48) and (49) over all detraining clouds ond
subsequently dropping the time derivative terms.
We deiine the moist static energy by
= ¢ - 51
N A——S‘I‘LZ,:C,,T-I-JZ-PL%' Gn
where Lg, is the latent heat per unit mass of the air. /i is approximately
conserved by the individual air parcel during moist adiabatic processes. We also
define the saturation moist static energy by
. - * * ’ x
Af=s+lgh= T+gz+1lg" (52)
. . Yoz > .
where the * denotes the saturation value of the variable. 9A/2Z Z O defines
the moist adiabatically stable, neutral and unstable lapse rates, respectively.

We assume that air is safurated in the clouds. Then

Zz'—‘ 3*(‘!}, f’.,)
»."'“"3'*(71,];)1
+ (& ) (T;-T)

AF

=g*+-—c~; ?’,)P(s—s) (53)
where é—.g g.*(‘ F) . SinceAAi=5£+Lchnd I}=§+ Lg; '
- BNy 54
St S_‘+°-(I’i5 ”l)/ (54)
¥

&~ 3= 15 T Ches W), -6

Here, we neglect the effect on 2% of a pressure difference between the cloud
and the environment. Although the scale analysis | y Ogura and Phillips (1962) did
not justify *' s approximation, the recent numerical integration by Wilthelmson and
Ogura (1972) indicates that the pressure difference was overesiimated by the scale
analysis.



where

O
= CP(b:f‘)F

For simplicity, we neg.:ct in this paper the difference between temperature and

(56)

virtual temperature, except for turbulent thermal convection in the subcloud mixed
layer. Then, the sign of the buoyancy is given by
buoyancy = )

= - according {o h‘.’ % b

(57)
Eliminating CL from4(44) and (45) and from (45) and (46), we obtain
a . —
sE(Pshi) = B R 35 (Moh)+ Qw (58)
at[PG(Z+Q)] E: % -3 [M (gt ? ] Ri. 9
Egs. (58) and (59) describe the budgets of the moist static ¢ gy and water substance
| for the entrainment layer of the ith cloud. Combining (58) and (59) with (43), we
“mey write ,
2L yw ) he = - hi-R)+Q
(at +w~ Py /ut( A) RL/M (60)
Grrod)g 00 =~ (it 0:-3) - RZ/M.:, (61)

~where /u L the fract lonql rate of entrainment, defined by

: (62)
The ith cloud may be in its growing stage, with a rising cloud top. We

hen assume that there is entrainment into the cloud at all levels including the

cloud top. Only after the cloud top has lost positive buoyancy and has stopped



rising does detrainment take place in a thin layer at the cloud fop.] From (57),

the level, - % ; at which the cloud top loses positive buoyancy, is given by

1 F) L = | 63
Chi-K)yop = 0. (63)
Also, from (54) and (55), we have
.- S ~ = 64
(5:-5)z-3 =0, (64)
(.gi.“g—k)z-_-'f; = 0, (65)

Egs. (63), (64) and (65) show that all clouds which lose buoyancy at the same level
2 share common values, /L*(Z’)) :S—(Z) and g;(g) , for bLIS;cmd e: at that
level. We therefore assume that these clouds are of the same type and have a

FaN
common value € for -0,; at that level. That is,

- 8)gag, = 0. (66)
,’é is the liguid water mixing ratio at the level of vanishing buoyancy and is not
necessarily equal to the liquid water mixing ratio of the air which spreads info the
environmcn‘f, because an additional condensation (or evaporation) may take place
nea. .he cloud top due to the concentrated Q.p;there. We let E be a function
' of Z , but -’é for different levels refer to different types of clouds.

from (48)

" For the detrainment layer, it is convenient to eliminate CL

P

and (50). Then we have _
o

Ta-%[ﬂdi(si'"’-gi)]—': —DL(S DL-Lebl)“ S'E[Mi(ji—’[_aeoi)] | )

| + LIRL+ QRL. (67)'

! Simpson ct al. (1965) pointed out that their model supports the rule of thumb
that the clouds cease vertical growth when their temperature soundings recross
the environment curve.



We also have the budget equation for water substance,

2 [oa (gt 0] = Oy (oot o) - & [ Mg )]
~R; .

Because the thickness of the detrainment layer, & Zop ¢ is assumed to be small,
the mass budget equation for the detrainment layer, (47), may be approximated by

D; 225, = (M), 5. - (69)

Mi ot Z= ,{";’ is the mass flux of the.cloud entering the defrainment layer from
l:;elow. Similar simplifications of (65) and (66}, and use of (67), (64), (65) and
(66) give .
DL (SDL;L'@DF.)': D\.( s;" L «'.)g:?i + QRL
: A 70)
=D (5-LL) + Qp; (
and ~ DBt 2ot) = Di (Gt £i) oo z.

= Di(-gk_*' E)'g: § .

The radiaticn term in (68) is retained because the radiation flux at the cloud lop

(71)

- is almost discontinuous, whereas QRL aZpe is finite even when a qui,
is infinitesimally small.
. Summations of (70) and (71) over all clouds vhich are detraining in the

same thin layer give

> Di(goL“Lgoa)z D(g-L-@)'*‘ > QR{,I (72)

Vdoco d'c'

2 D Zoitdo)=D(gr+2), (73)

doc'



where D is the totcﬂ detrainment, Z_ D . Substituting (72) and (73) into

d.C.
(41) and (42), we obtain
P 10+ M + Sy
o co% d.c. ki
e pT I eSS 4 & (74)
S PRS- pugE * Qp,
2% SN T 22
f’-a—% = (g*+13~ )+ McSh
- - — a-’
pr-vZ - pir2s
These are the basic equations we use to describe the time changes of the large- -

scale temperature and moisture fields. However, these equations cre valid only
above the cloud base. The subcloud layer and its interaction with the cloud
layer will be discussed in a later section.

Equations similar to (74) and (75), for u three-leve! model of the lurge-
scale temperature and moisture fields, were derived and used by Arakawa (1969).
Equations which are almost identical to (74) and (75), except {or the radiation
~ terms, were derived by Ooyama (1971), Arakawa (1971) and Yanai (1971b).
Yanai et al. (1973) used these equations to determine the bultk properties of
h;opical cumulus cloud ciusters from the observed large-scale budgets of heat and
moisture. In that study, however, the large~scale tendency terms were obtained
from observations, while our prob‘lem is prognostic and the large~scale tendency
~ terms ore exactly what we want to find throgh the parameferization of cumulus

convection.



4. Spectral represcntation of cumulus ensemble
"Eqs. (74) and (75) clearly show which properiies of the cumulus ensemble
must be parameterized to predict the large=scale temperature and moisture fields.

The modification of the large~scale fields by cumulus convection depends on:

(i) the total mass flux in the clouds, M, (?’))

(ii) the total detrainment from the clouds into the environment, D(Z) s
S ‘ A

(iii) the mixing ratio of liquid water at ihe vanishing buoyancy level, £2(%),

(In addition, cumulus ClOL;dS modify the large-scavle temperature through their effect
on radiation.) The problem of paramcterization of cumuklus( conivection is now

. reciuced to relating these three properties of the cumulus ensemble to the large-
scale temperafu.re, moisture and velocity fields.

The fotal defrainment, D(Z), at different levels re_fer fo different types
of clouds. When the thickness of the dc’rrcvzinmen’r layer, AZpy, is infinitesimally
small, the total deh’cinmc;tf in the layer between ® and za gz, D(Z)dz ,
is equal to the tofal mass flux, at level 7 | » of the clouds which lose buoyancy
* within that layer. It is now ciear that finding the total defrainment, D(2), asa
function of height, is equivalent to finding the distribution of the mass flux in
the different types of clouds which lose buoyancy at fhc; different levels. This

suggests that we represent the cloud ensemble in spectral form, by dividing the

_ensemble into sub~ensembles, each of which has a characieristic cloud type.



For simplicity, we assume that a single posiﬁ\"e parameter A can fully
characterize a cloud type. Then the detrainment level, 2 , which is the
maximm-Jm height of the cloud top, becomes a function of A+ By choosing X
‘ prop;ar‘l\,.', we let Zph) decrease as A increases, as shown schematically
in Fig. 3. A more specific choice of A will be made later. Let Ap(%)
_be X of the clouds which are cicfraining at level 2. AplZ) is the inverse
function of F,(\) + which satisfies '

T= wp(Ant) (76)

identically. Ap(R) is also the maximum value of . ai level & , because
the glouds which have larger A than Ap have defrainment levels lower than Z,

The total mass flux in the clouds, Mc, can be expressed as

Ap(Z)
M= | Jhcz,n) dr 7)

' ' [ .

where emo s | e
Mz = Y M, (%) e

CALE (AN
.is-ihe sub-ensemble mass flux d:ue to the clouds which have the parameter A; in
- the inferval (1, A#d2). o
The total detrainment, D[z)c-{z , in the layer between 2z and Z4d% is
equal to the sub~ensemble mass Tlux, at .level %2 , due to the clouds which have

parameter ;. in the interval )\,D(,Y)“(-d)\,pf'z)/d:{) dz  to Ap(Z) 4

_as is shown in Fig. 3. Then we have

D)=~ {2, 2p) %ﬁ;‘?—?— 79

L4
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It is convenicnt to nomalize }71(;1)).) by
(2,0 = D) D (2,0 (80)
/25 ®) = I (5, 2) (81)

where Zp .is a properly chosen ]_o_c_as_e of the updrafts associated with the clouds.
Obviously we have

T Ze,A) =1, 62)
We shall find it convenient to choose the top of the subcloud mixed luyer as 1ae
base, 2g ,as shown in Fig. 4. Obscwai'ion;, which we will refer to i the noxt
section, show that the top of the mixed layer is located somewhot below the cloud
base, &, , which is approximately the lifting condensation level. The vertical
mass flux below the cloud base, then, should be interpreted as the mass flux of

the updrafts associaled with the clouds but not in the clouds.

Next we consider the budgets of mass, moist static energy and water
substance for the sub~ensemble. The summation of (43) over all members of

the sub-ensemble and subsequ2nt dropping of the fime derivative term give

= : / ) dA (82)
oz t A€ (RN fhg )

Here (78) and (80) have been used. Similarly, (58) and (59) give

b 7(‘-/

) ACB) (84)

. 5%’ [.’7 (2,2 AC(%,A)] e

P
-,;g[ n(z,x)(gcz;s,A>+£(z,M)] Bl(?A)gcx) 7(3 2y (89)

* Here (78), (80) and (83) have been used. ACCZ})’ Telz,A) and f(z}).) are A,
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& and &, respectively, in the clouds which are members of ihe sub-ensemble.
‘)"(2',7‘) is defined by

Neoreya= S R (6)
A; € (2 A4dR)

The radiational Eeaﬁng in the entrainment layer is dropped “or simplicity.
.Eqs. (84) and (85) can be rewritten as

'th (2,2) T
TSI (2, 0) | A (Z ) = ALY (67)
. az )[/“c Z ) h-ﬁ:,)

5%[ G (2, +££Z,M] = -/A(Y,A)[gc (g0 + 0z~ 3] ~r(s,>\;(88)

" where fate A)is the fractional rale of entrainment for the sub-ensemble, given by

— ! 2 (B, 2)
MEN) = e ¥ (89)

Except for the cloud microphysical and dynamical procnsses which deterraine
Y (2,) and the subcloud layer processes which determine /I(ZB,A) and 2(2'6 A,
the problem of parame"ccrizir.\g cumulus convec:ion has now been reduced to flnamg
n (2,2;} , the normalized certical profile of the sub-cnsemble mass flux, und
)715 (A) , the mass flux distribution frunction ut the iop of the mixed layer.

When 2(z2,2) (and, f.herefore, 'ALLZ,A) ) is known, AC(ZIA) can
be readily obtained by infegrating (84) or (87) with respect 1o height under given
. Z(Z) and A(Zg,l) ¢ and the detrainment level, 2, () , and its inverse function,

)\D(Z), can be found from the cond’tion of vanishing buoyancy

he(Zom,2) = 4F ¢ ép(k)), (90)



ancd
= 25 Apm), 71
Also, 35(:"")\) -(-j‘zr‘-\). can then t 2 obta®:. d by integruiing (85) or (88), with
a parameterized (T ,A) . un-der givet. g(g)ud 5,(23,7\) . Ly,
is zero because leve, g is below the cloud bese. From the known

g(?.,?\)-{-,f(’?z:’l) and the vanishing buoyoncy condition in. the form

§(2.20(2)) = 2* ( )»p(m)) (92)
we can find ' )
A
LR=4 (2, 20)), (93)

which is the liquid v-ater mixi.ng ratio at the vanishing buoyancy level. Theﬁ,
only the mass flux distribution function, )723 ) whi‘ch is needed fo, computing
M(z) and D(Z) from (77, and (79), rcmainsvunknown.

Although our knowledge of the dynamics of clouds is far from sufficient,
the delermination of the normalized vertical orofile of the sub-ensemble mass flux,
- n(z,N) ., is logically more siraightforward than the determination of the mass
" flux d.istﬁbuﬁon function, })ze' Q) . We may assume that the membe.. of o sub-
ensemble are at random phases in their life cycle and, therefore, the summation
. of the mass flux over all members of the sub-cnsemble, as in (78), is proportional
.to the mass flux of a single cloud averaged over its entire lifetime. The con:iant
of proportionality i the number of clouds. But tl.e constant of proportionality
does not matter for % (Z A) , since 77 (Z,A) is nornalized. A dyriamical model

which governs the life cycle of a single cloud should be able to deicrmine the



vertical profile of the time—averaged mass flux of that cloud, and, therefore,
2 (z,2) .« for each cloud type characterized by parameter A . However,
we are assuming that a single scalar paremeter A is sufficient to characierize
the cloud type.. For this assumption to be at least approximaiely valid, we
must ~hoose A properly. |
The one-dimensional model of the cumulus tower, developed by

(Simpson et al. (1965) and Simpson and Wiggert {1969, 1971), has been exten-
sively tested against observations. This model specifies H‘\e fractional rate of

enfrainment by

: . 2d
M= (94)

N
where R is th~ radius cf the rising cumulus fower and of is the entrainment consiant

(see also Simpson, 1971). R is either measured or assumed at the cloud base
and given to the model as an input. The assumption tho£ R is constant with height,
in the Lagrangian sense, leads to better agreement with observations than the
alternative assumptions of horizontally expanding thermals or starting plumes
(Simpson et al. 1965).

_ In our model also, we css;Jme that R is constant with height in the
Lagrangion sense. We are not assuming that the cloud is a column—lil;e steady
jet, and it may consist of a sequence of active elﬁmen'r; which have a negligible
horizontal expansion rate be'low the level of vanishing buoyancy. But we do

assume fhat the fractional raie of enfrainmer* for th~ fime averaged mass {lux

of the cloud is approximately - ons - ht. We now choose this constant



fractional rate of entrainment as the parameter A which characterizes the cloud
type. Although the dependence of the entrainment on th~ radius, as given by
(94), is rot usea in this paper explicitly, we may interpret the larger X as
representing the smaller clouds and the smaller A as representing the larger
. clouds. |
The asumption of constant fractional rate of entrainment greatly simplifics
the determination of 2 (¥,A) . This assumption decouples the determination of
n(z,A) from the sc'ution of the entire system of equations which govern the life
“cycle of a cloud. An .assumpﬁon about the geometry, like the expanding spherical
bubbles used by Ooyama (1971), gives a similar simplificaiion.
Replacing SALR, ) in (89) by A , we obtain
2ALER) — am), (99)
(95), (82) and the definition of ¥, (n) immediately give

erE-Fo) Rk Z & X0

n2,2)= { : '
. 9
-0 o Zpl)a Z (36)

Thus the sub-ensemble vertical mass flux increoses exponentially with height due
to the entrainment. Above the detrainment level, ‘?D());‘ the mass flux
becomes zero. Fig. 5 schematically shows % (Z,X) for various A .

To determine Zpl), we must find Ac(zz") . | The solution of (84)

is given by

-— ’ / Ry ’
ho(2,2)= ;sz[Ac(za,wﬂ‘kfz:’éz,?ﬁ/w(f)0'53 J. (97)

Here, (95) has been used. (54) gives



8z-2



Sc(ZA)=5(%)= “,".T%;‘E}”(/!c"fa’ﬂ”ﬁ(?))) (+8)
where {f 'fs defined by (56). As an example AC (z,) for given /_;(E')J Z’Z(gq &y
and a constan; Ac (25:7\)::/‘!\1 is shown by thz broken lines in Fig. 6 and
(%) is shown in Fig. 7. In the figures the pressure coordinate is used. For »
A= 0, 7(z,0)E | and the second term in the braci:ef of (97) vanishes. Th-en
h¢(2,0)= hy for all 2. As A increases, A, (Z,2) is more reapidly diluted
by K(Z) . From (80}, the deirainment level is given by the intersections of
the broken lines with the curve ﬁ(?) . The curve Pp(A) 4 the pressure at
Thus obtatned,

the detrainment level,:which,\is shown in Fig. 8. The figure shows that smaller
clouds (larger A ) have lower detrainment levels than larger clouds (smaller A ),
because smaller clouds, which have a larger enirainm;nf rate, lose positive
buoyancy more quickly than larger clouds.

To find the mixing ratio of liquid water at the vanishing buoyancy level,
.2(2)) which appears in (74), we infeg;ufe (85) with respec.f to height, from a
given "initial' condition 2clzg ) - In addition, a parameterization of the
rainfall rate, »(z ) , is necessary. A very crude, but perhaps adequate
. parameterizafion i's being used in the authors’ application of this theory (Schubert
and Arakawa, 1973); Arakawa and Chao, 1973).

The remaining problems are to find the base level variables Z g,
_/'c (Za, AVt 2(Fg,\) and, most importantly, the mass flux distribution

function, 7)25()\). Up to this point our theory is not substantially different from
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. that of Ooyama (1971), as far as the basic logic is concerned. He concluded that
" the problem of parameterization of cumulus conveciion reduces to finding what

he Acqlls, “the dispatcher function", the rate of generation of buoyant bubbles ¢s
a function of the initial state of the bubbles. However, Ooyama left the deter-
~minaﬁon of this dispatcher function an open question and, therefore, his

parameterizatic.. was not complete.

5. Budgets of siatic energy and moisture for the mixed layer '
In this section we pl;cs.enf a model of the subcloud mixed layer, which
interacts with the cumulus ensemble. Obscrvations over the Carribbean sea by
Bunker e% al. (1949) and by Malkus {1958) show that between the ocean surface
.and the cloud base fevel there typically exists a mixed layer in which the
potential temperature, @ , and the mixing ratio of water vapor, ¢ . and
therefore § and A are approximately constant with P;.eighf. The top of the
mixed layer is somewhat (aLout 200 m) lower than the cloud base level. Except
for the region right below the clouds,-ﬂwere fypico”y exists a very thin transition
]cyer{immediately above the mixed layer, in which & and, therefore, $
rapidly increase and 3, rapidl:- decreases with height.
‘We denote the height of the mixed layer by 2z (see Fig. 9). Zp
is assumed to be lower than the cloud base, Z., which is approximately the

" level of lifting condensation. Therefore, we consider only non-saturated mixed

layers. We model the transirion layer as a discontinuity in §. and & ot Zg .
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. In this respect, our approach is similar to those given by Ball (1960), Lilly (1948},

- Déardorff (1972), and Betts (1972). We define

As = Z(2gt) —= Spm, (99)
AR = T(ggt) - M, (100
Ak = /:-(333*‘) - Awm, (o)
where 5(234))'-22(5?@) and 7;(25‘;-) are valuesof 5, 2 , and h
evaluated just c;bove the discontinuity at 23 end Sy, gm and Awq are the
' mix;d layer values of s , g. and A, respectively. 4aA is given in terms
nf as and Ag.by ‘
. ah="sas + Lag. (102)
.lh typical cumulus sijuations LAZ, dominaies over 48§ , making aA negative.
%\A,* is given by
A= ﬁ%;?—?—;As, - 102y
"Where ¥ is defined by (56). Typical vertical pr'ofiles of A and A* necar the
mixed layer are schemaﬁcal& shown in Fig. (10). Because of the sign of aA ,
" the cumulus cloud updraft prefers to originate from the mixed layer. In this paper,
we shall onl); treat that type of situation. -
h In the mixed layer
| /o%—séﬂ-—_--f,g-vsm-%—gi{Qg,} (103)
PE < - pgevpy - 22 ton

% ,
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where ES and Fg, are the vertical furbulent eddy fluxes of s and &
Integration of (103) and (104) with respect to Z from zcre to 25 gives

ﬁq%—%i = "(PE)M'VSA4+—2L;3 [(Fs)o"(FS)B] + (Q@)M, (105)

M _ _saoy e _ :
D A 2N = [ (), (Fh] (10¢)
| where | Zg
.j_o”: g jo faz, (107)
- 1 (% _
(r¥), = ?éf Py az, (102)
. o
‘ 8
=1 (% . ]
(@R)M = 23_} QR 0(’;.' (109)
(/]

(F$)° and (FZ_)O are the fluxes of s and & at the surface, while (FS)B and

. (Fg>3 are the fluxes of s and & just beneath Zg (sce Fig. 9). The turbulent
eddy fluxes jump to zero across Zp since the turbulence is confinad below this
level. .

To derive equations for the time chaonge of 2Zg we consider the heat

~ - and moisivre bud~ets in the infinitely thin transition layer shown in Fig. 9.

MB is given by
'Amax
Mg= Mczey= [ a0 dx (110)

o

" which is the total vertical mass flu.: foward the cloud base ai level 25 and
Mg - foX JPB is the subsidence between the clouds ot the top of the

mixed layer. The mass flux info the mixed layer, the thickness of which may



be ‘changing with time, is givenby £ (D 7o /Dt - Erfg )+ Mp .

The downward fluxes of 5§ and @, through the top of the transition loyer,

)
at ;Z‘-"ng , are

' (SM+A5) [.78( (z)r;és" @y ) + MB]
B - y,

(grtap) [ £5(B2-Te) + Ms]

The downward fluxes of § and 2 through the botiom of the trunsition layer,

at Zg ,are

5M Tﬁ;( DZB 5‘7’&)%”8] - (g,

Here we have defined

The continuity of heat and moisture fluxes across 7, yields

joB_EE_QH -(MB PBWB)” AS(FS)B,

f DZ —-"(MB FBWB) Ag(f},)a,

- N

This effect is of critical importance when the Uppel; part of the mixed layer is

saturated and has a layer of stratus cloud (s;e Lilly (1966)), but no’ with our

)

(112)

(112)

(114)

(115)

(116)

(117)



unsaturated mixed layer. Cousistency of (116) and (117) requires

= .___A—?:. ', N
(Fg.)g A5 (Fa)g‘ (119)
A relation between the fluxes of virtual g at the bottom and top

of the mixed layer can be derived from the turbulent encryy balance as given
~ by Lilly (1968). We let
(FSV)B: hk(F‘SV)o. (19

The flux of virtval & is given in terms of the fluxes of § and 5, by

sy T F.S. + GT S Fg__ (120)
where T is a reference tempercture, wnich is assumed to be constant, and &
is cqual to 0.61. Lilly (1968) dizcussed the extreme cases k =0  and
k =1, which he called the mirimum and i, nirainment cc.2s.
The minimum enirainment case corresponds fo total friciion dizsiration of tu.bulent
kinelic energy, while 1he.mc:ximum entrainment cace corresponds to zzro
frici’ional.dissipqﬁon of turbulent kinetic energy. Dcardorff et al. (1969)
'su;ggcsfed k# 0.10, fron laboratory experiments on non-steady penefiative
coﬁvecﬂon in a water tank. Betts (1972) suggested k + 0.25,

“(118) and (119) can be combined to give

kas

(FS)B.:'_ ';‘E;(Fsv)o) (]"2])
‘(Fz,)a == )ZZ% (FSV)o, (122)-

where

ASy = As 4+ T dag. (123)



Positive AS, is required for dry convective stability. (121) and (122) show
that with an upward surface flux of virtual § , there is a downward flux of s
and an upward flux of 2. at Zg .« This is shown schematically in Fig. 8.

Egs. (105), (104), (116}, (121), and (122) combine to give

fm—?—g—'ﬂ 2z —(f V)M VSmt— [(FS) +‘ZA$ (rgv)(;] (QR) (124)

o
251! = - (Pg>f-1' VzZM [( Fg) + {2 (Fsv) } (125)

joM ot
~b — '2 .
U’vs —_— —— 4 — ’.\ -‘:; \ g v ( (]26)
08 by = Mg~ Fegvwes " ASv‘FSV’)O-

Eqs.v(]24) and (125) give
fmal"“,-(ﬁv) vh ¢ [(F,) +kZ (Fsv)o] (Qrdis | (127)

where (Fh)o is the surface flux of h .
In (124) through (127), &5, appears as a denominator. When 45y is
“small, the direct estimate of AS, may be inaccurcte and cause a difficulty.
-.Follow'mg Deardorff et al. (1969) and Betts (1972), we car. derive the following
aliernative epproximate expression for a5, , which may be used when o5,
is sm-l (see Appendix 1):
A4Sy, = /_,.k/\ 25 (5 QSV

)2' Tt for small &Sy, (128)

Eq. (126) reflects the fact that what really determines the moss inflow
into the mixed layer is the entrainment due to turbulent eddies, which depends

on the turbulent cdd.y flux of virtual s at the surface. Without the entratnment,



| the top of the mi.xed layer is simply pushed down by the subsidence M g= pgivg s
Without cumulus clouds (Mg=0)  the depth of the mixed layer

increases with time, when Pe\Wat k (Fst')o/45v> O . With cumulus cloud.,

however, the cumulus induced subsidence between the clouds counteracts the

deepening. When the cumulus ensemble is very active, the subsidence may

even make the mixed layer shallower. However, the mixed layer cannot be

made too shallow, beccuse the shallower the mixed layer becomes, the less is

the fraction of air which enters the cloud from the mixed lqyc;r and the greater

is the fraction of air which enters the cloud from the environment above the

mixed layer; and that environmental air has not been reached by the iurbulent

upward transport of moisture. A shallow mixed layer is therefore not favorable

for maintaining an intensely active cumulus ensemble.  In this sense, the variable

¥g is apart of the mechanism which controls the total mass flux into the

- - clouds from the mixed layer. Betts (1972) obtained Mp from (126) and (128),

for a given W'B and (Fgy), s assuming Zg=Z. .« We do not assume
Zg= Zc ¢ however, but we lef Zg vary in time, in. order to let the
thickness of the r'nixcd layer be one of the controls on the intensity of the
cumulus conveciion. A more quantitative formulation of this mechanism will
be given later in this paper.

In this section, we have shown that zg , Su,, y and,
thcréforc, Apn can be determined prognostically. However, whether we can

represent Sc (2,2, §clZp ) and A, (Z5,2) by the characteristic values



Am
SmM, Zm qnd/\in the mixed layer, is a difficult question. It depends

- on whether the cumulus clouds have their roots in the thermodynamical veriables
within the mixed layer. It has been reported that the roots are not observed
for trade wind cumuli (Bunker et al., 1949; sce also Riehl, 1954). The cvaporation
from falling precipitation would give S (Zg,A} lower than Sy and
20z M) higher than 244 , but would lcav‘e hpny vnmedified. :f/\(Z)
depends on 2(26 L) ; but even more on how we pcrqme'rcr'l.ze Yig,n) .
Apparently, some perturbations of the mixed layer are necessary for triggering
the onset of a cloud within an otherwise uniform environment. But even there,
the perfurbat%on couldA be on Zg , rather fhunon s, or Zm (sce Matkus,
). We postulate that the primary role of the mixed layer is fo supply iis
“moisture and siaﬁé encrgy to the cumulus clouds, rather than triggoring the onsel

of the clouds, and we let

Sc(Ze, A)= Sm, (12%)
C9c(Zp, ) S P, (130)
. holz, 2= hn, (a1

However, the existence of more or less organized vpdrafts at level Zg
toward the cloud base, is required for the mixed layer to supply its moisture

~to the clouds.



6. The cloud work function

Our final problem is to find the mass flux distribuiion function,
}7?3(21).\’\’11&! we have done up to this point is relatively sirmighiforward. Of
" course, our models of cumulus cloucs, cloud environment, subcloud mixed
layer, and of their interactions are highly idcalized. But cven so, ihe real
conceptual difficulty in parameterizing cumulus convection siarts from this
point. We must answer the question:  how do the large~scalc processes
control the ‘specfral distribution of clouds, in terms of the mcs; flux distribuiion
funcf?on, })36 (A) , assuming that they do so at all?  This is ’rhé essence
of the parameferization problem.

In the spe'cial case when the mass flux distribuiion function has a
sharp maximum oround @ certain A, the entrainment relationship (94) will
give the predominant size of the clouds. In this particular case, therefore,
finding MB () will also solve the problem of the cumulus size. However,
as Simpson siated (1971), "Although cumulus size appears to be at ieast roughly
proportional to the horizontal convergence in the synoptic regime, what
really dei'crm?nes‘.ihc scale of convection remains one of the critical unsolved
problems in meieorology”.

The solution of )723()L) may bé even more difficult, because we
must o'éfermine the spectral distribution, and not only the predominant size.
However, in a parameterization theory, it is necessary to find only the most

Longe -

probable staiistical properties of the cumulus ensemble, under given place

Scale condctions, and nol the ,éro/»frzft'es of an cndividial clpud
al a dfn‘ven place



and time. Alwo, wha! we must obtain is the mass flux distribution, and not
necessorily the population distribution in A =space. These fwo are generally
not equivalent.

One might take the view thai the mass {lux distribution function is
determined entirely by subcloud layer processes. Such a point of view is
supported by one~dimensional cumulus cloud models, in which the horizonial
velocity componenis and induced pressure gradients are neglected. With the
exception of precipitation effects, such onc~dimensional cloud models do
not allow dynamical interaction between the upper and lower paris of the
cloud. An initial cloud base condition det~rmines the solution only clong
a characteristic linc in the Z- ¢ plane. While such a model can predict the
height and some other properties of the cloud top reasonally well, the prediction
of the properties of the cloud air which follows the cloud top is doubiful, unless
proper cloud base conditions are given as a continuous {ime sequence of 'initial’

,

" conditions. Such 'initial’ conditions and, therefore, the time integraied mass
flux at cloud base can be specificd independently from the dynamics of the
cloud, because there is no way for the dynamical processes above cloud base
fo control them, as long as an uvpdraft is produced ncar the cloud base. Therefore,
only local subcloud layer processes remain ¢: a possible mechanism {or defermining
* the cloud base condiiions;

The situation is different in models which have more than one dimension.
An impulse is still needed, if the initial condition is oiherwise unform lorizontally,

but only for the first cloud io get started. Afier the inifial time, the cloud base



conditions for the first cloud and for all subsequent clouds cannot be specified
but are determined as a part of the solution of the entire system of cquations,
which inclides the dynamics of both the cloud and subcloud layers. Small
tﬁrbulenf perturbations in the mix~ d layer below the clear environment are not -
likely to i'rigéer new clouds, if the fop of the mixed layer is sufficiently far
below the condensation level. Thus, the formaﬁon‘ of new clouds between
existing clouds usually requires stronger impulses, possibly stimulated by the
dovmdraflts associated with neighboring cleuds. OH‘xer\'."lAse, c’xi‘ncw cloud (or
a new active part of a cloud) is likely to form in the wake of a preceding
cloud (or a preceding active part of a cloud), because the solencidal field
associated with the preceding cloud (or the Ercceding active part of the cloud)
pr‘oduccs a circulation in a vertical plane.

It was pointed out in section 4 that the sub-ensemble mass flux is the
population times the mass flux of a single cloud, averaged in time over its

entire life. Atlevel zgz , we have

4 A
gy = -}Z%f;' g A, (132)

_Here R(A)dL is the population of the sub~ensemble.  TOX) is the lifetime

-and 725(1) s the vertical mass flux, at level Zg , of a single cloud
integrated over its entire life times. Because all clouds which exist at time t
-must have formed during the time inferval ( t-T),t ), )Z(A) dg/T@)

is the rate of cloud formation. This corresponds to the "dispaicher function"



of Ooyama (1971).  215(A) is the folal mass which passes level g through
the entire life of a singie ciéud. If we represent each cloud by a spherical
bubble, a: Ooyama (1971) did, the toilal mass becomes the mass of the bubble,
which depends on its radius only. Becausé fhc radius is related to the fraciioral
rate of entrainment A through an entrainment relation similar 1o (94), ihe

fotal mass 22g(A) becomes a prescribed function of A, which remains the
same regardless of the large~scale conditions. Then the mass flux distribution
function ];713 (») for different large-scale conditiors is co;%roﬂed only
through different "dispatcher functions". This agrees with Ooyama's conclusion.

However, if we do not assume sphericity, or any other preseribed
geometry which relates the veriical dfmcnsi(;n to the horizontal size, the
functional form for 225 (A ) is unknown. ?7g (x) is a gross measure
of the activity of a single cloud of type A , and it is highly probable that
large-scale conditions control the mass flux distribution function by giving
different functional forms to 972 (1) »

The numerical simulation of a cloud by Ogura and Takahashi (1971),
with a *one and half' dimensional model, clearly shows that the time-integrated
mass flux near the cloud base is highly sensitive to the rcate of conversion of
cloud droplets fo rain drops {sce Fig. 7 of their paper). When the conversion

rate is sufficiently small, the cloud ottains a steady sfc?c] (icce g

is infinitely large), while the cloud undergoes a life cvele ( Mg ) is

The time change of the environment is neglected in this model.



finite) with larger conversion rates. According to their interpretation, this
difference is due to the different drag force by rain drops in the middle portion
of the cloud where the buoancy force is acting. This does not directly show
that 7mg(r) is sensitive to the large=scale conditions, but it does inticate
that g (.) issensitive 1o work done by forces in the middle poriion of the
cloud.

Recently, ra-pid progress fowards the realistic simulation of cumulus
clouds has been made with hwo-dimensional models, notably by Arnason et al.
(1968, 1969), Murray et al. (1970, 1971}, Orville et al. (1968, 1970},
Takec}q (1971) and Wilhelmson and Ogura (1972). But so far the studies have
been limited to the formation and the decay of a single cloud. There has been
no long-term numerical simulation of a cumulus cloud ensemble amalogous to the
numerical simulation of the general circulation of the aimosphere.

) In this paper, we do not attempt to defermine }Z();) , T) cmd. DN ()
separately, although that should be an eventual goa! of statistical cumulus
dynamics. But the preceding arguments suggest that vie look into the generation
of the kinetic energy of cumulus clouds.

The time change of the kinetic energy of each sub~ensemble can be
writfen as |

Al ’
doﬁ( = A o, (1) - D), (133)

where ACA)dA and (X)) dA  are respectively the kinetic encrgy and the

dissipation rate due to all the clouds with fractional entrainment rates between



M and AtdX . The first ferm on the right of (133) is the ratc of generation
of kinctic energy by buoyancy forces. The work done by downward drag due
" fo raindrops is included in the dissipation. It is important to note that (133)
holds for three~dimensional clouds, as far as the clouds are driven mainly by
- buoyancy force. Mechanical interactionswith the verticoi shear of the horizontal
velocity of the environment and with other types of clouds are neglected.
A () is the kinetic encrgy generation per unit W]B()u) d>.  orthe

efficiency of kinefic encrgy gencration for cloud type 2. . I is given by

Zp)

A= j 7
GpT(2)

g :
We call AQ) the "cloud work function" for type A « Egs. (97), (98) ond

2(2,2) (sc(gll) -5 4z, (134)

(131) give

8 ——

-— / ’ s ’ ﬁn

)~ = +A P ZIZ =2 2) [ (R)
’Z(Z,A)(Sc(z)) ,S(Z)) /+J(2)[/m LZ(Z /(2 7 A ]

-

for ZoMg E L Epr), (135)
and
_ \‘ Z ’ -— ’ -
AEA) (5cz)-3@) = Sy + A [ PRINS(X) A%~ 7 (2,20 5€2)
.. Z5 '
for Zg8 T £ 2. (130

(Vo)

' !
The condensation level is given by the consistency of (+35) and (136) at
Z =R () +» Anapproximate expression for Z () is given in Appendix 1.
From (134), (135) and (136), we can see that A(R) is a static property of the

. environment, including the subcloud mixed layer.



In the gpeciql case of Ze ()= ZB+ , substifution of (135)

‘into (134) gives

) Zp(N
AN = [ pepa]fiis / Ptz e A)/m] (37)
23+ /
- 3/
and /0 @)f &)= ?(z)(/fﬁ(z)) _ (138)

We have the identity

- — z ~ .
Dz )= A (26t) + / 2 (= FE) 4, s
26‘!‘
Using (139) and (95) in (137}, we obtcin
Do
Am PEIBE)| L= Rt / 7{2/\){/\ (Rt Rz - 9“?’} ]a; (140)

Zgt -
/CZZ)//D’/Z)_ (Am— /L""[.?b"')) is the buoyancy at cloud base. =~ dAN/e¥

- is positive when the lapse rate is steeper than the moist adiabatic lcpsg rate.
When there is no buoyancy at cloud base and the envirsnment is saturated
(,7.: = }‘) ¢ (142) is simply a measure of the conditional instability.

" When the enviror;meni‘ is not saturated, the contribution to A()) by Z—- }z—;"
(i.c. [(g—- é—""))}s always negative and opposes the positive contribution
by the conditional instability. To have a positive A(A) , which is nccessary
for kinetic energy generation, the environmcnt must be not only condiiionally
unstable , but also moist enough to give a sufficienﬂ).r small A= A%

This effect becomes increasingly imporfant as X increases. Unentraining



clouds, for which A= 0 , ore of course not influencedr by the environmental
:‘urﬁidity above the cloud base.

A{A)> 0 can theiefore be considered as a generalized criterion
for moist convective instability. Because of the entrainment, the criterion

depends on cloud type.  AM)< O forall X gives u stable envirorment.

: 7.. The quasi-—equi.librium assumption

The purpose of cumulus parameterization is fo relaie the statisiical
pfoperﬁcs of a cumulus cloud ensemble 1o the large-scale variables, and
ther;ab)' to obtain a closed system of prognosiic equations for ihe large-scale
variables. However, there is no apriori rcason to believe that this is always
possible.

Suppose that initially there arc no cumulus clouds but the vertical
distributions of temperature and moisture are such that the cloud work function
- A(R) s positive for a certain range of A . Cumulus clouds will then
form and develop, and, sooner or later, will enter a non-lincar regime.

In this regime the environment will be modified by the cumulus clouds.
Typically, the modification will be such that moisture is removed from the
environment, especially from its lower part, and warming occurs in the
environment, especially in its upper part. The cloud work function vill then

decrease in time and eventuolly upproach zero for the entire range of 2



(i.e. a ncutral state is reached). We ~all the time needed for this
adiu.-.‘mz;nt to a neutral state "the adjustment time seale”, Tapy . After
this adjusiment is over, there will be no generation of kinetic encrgy, and
the clouds will dissipate. We call the time nceded for dissipation "ihe
dissipative time scales”,  Tp s (1) -

However, if there is ¢ counteracting destabilizaiion (@ gencration of
_the cloud work function) by large-séule.proccsses, which we call "ihe large~
scale forcing”, the cumulus activity will be maintained. If the large-scale
forcing is constant in time, it is probable that the cumulus ensemble will
op-proach an cquilibrivm. The time necded fo reach the equilibrium should
- be about the same és the odjustment time, af least when the large~scale forcing
is weak.

When the large-scale forcing is changing in time, the cumulus ensemble
will not reach an cquilibrium. But when the time change of the forcing s

Slower than the adjustment time.,

sufficiently sior.t,Awe can expect the cumulus ensemble to approach a sequence
of quosi-cquilibria. In such a sequence of quasi-equilibria, the large—scale
forcing and the c1;|mulus ensemble vary in fime in a coupled way, and, therefore,
the time scale of the statistical properties of the cnsemble is equal to the time

scale of the large scale fields, 7T ¢ . We call this relationship "the quasi-

equilibrium assumption”. It is also an assumption on parameierizability,

because, unless a cumulus ensemble is in quasi-equilibrium with the lorge-scale

processes, there is no hope that we can uniquely relate the siatistical properties



of the ensemble {o the large-scule variables.
The quasi-cquilibrivm assumpliion applicd fo the spectral distril . tion
q P P i

of the kinetic energy allows us fo write

d ) KA (141)
AC Trs

From the definition of the dissipalive {iine scale, we have

A
DOy ~ L (142)

For T s> Tpie(A) (typically, 7 s~(0 5 sec and
Tois W) % 103 sec , we see that the time change of ih: kinetic encrgy
is nzgligible in (133), and we have a balance between the kinetic encrgy

generation ond the dissipation. Wher cumulus clouds of iype Do exist
(7}13 () > O) ; wWe have

g (A) (143
~ The ri.gh’r hand side pf (143) is the dissipation per unit )713(/1) dA
or the efiiciency of dissipaiion for cloud type  + We call this the "cloud
dissipation funciion”. Because the cloud dissipation function st be

- positive, the cloud work function must aluo be positive, for any cloud type

which exists ( ?7?8 (A)>0 ).



8. Generation cmd. destruction of the cloud work function

In this section, we consider the time derivaiive of the clocd work
function. Because the cloud work {unction depends only on the vertical
distributions of the static energy and the waicr vapor mixing ratio of the
environment, including the subcloud misxed layer, the prognostic equations
'74), (75), (124), (125) and (126}, which respectively gevern the time
derivatives of S (23, ’2.('5) + Sm ¢ gM qnd Zg ¢ aresulficiect 1o jive
the time derivative of the cloud work function. Those prognostic equations
involve torms of two types:  “cloud terms” which depend on the mass flux
distribution function cither through the 1'oic1l vertical mass flux, Mc(2) (or /\’73)
‘or through the total defrainment, D[5) ; and "large=scale ferms"” scch as
large~scale advection, surface eddy fiuxes und radictional heating ierms,
which do not depend on the mass flux distributinn 7 sction. Then the time
derivative of the c|01;d veork fun;ﬁon can also be expiessed as o summaoticn

~ of cloud ferms and large~scaule ferms. We may write

O( lq ()‘) . a’/l. (/\\) \ ’ 1//1)
az = (L) + BN, (1

where the suffices ¢ denote the cloud terms. Fren) , which vee call "large-

scale forcing”, represents large=scale terms. Positive F(A) means genciation
of the cloud work function (destabilization) for fype 2\ by the large=scale

processes.



The cloud terms (d/\/dt )C ; lircarly dependon Me (Z)
and D(z). M™Mc(2Z) isanintegral transform of 7o (W) (see (77) and
(80, D(Z) isalso determined by ),1;5(,\} (sce (79) end (80)). Thus ihe
whole spectrum of cloud.’ryp:s can participate in dciermining M (2) and

D(2) . and, thzre™yre, in defermining (O(A()\)/dl‘.)c . Then (144)

may be rewritien os

max
A o o B N
_Q{QTAI—,(—)- /0 K(A'/\)//Isl/\)d/\.l“{‘ r(x\)' (145)

~r - 7’
When the kernel K ONASis negative » KOLA) [ 000 s the cmount of
destruction (stabilization) of the cloud work function for iype AL through the

[4

modification of fhe environment by type A7 . Hewever, the kernzl may become

gositive for some combinations of A and A
'd ’ . .
The actual forms of  F/(X) and [S(A ) are given below. A brict

derivation is given in Appendix [ll. First we defina

p(z)q'(Z)* P(Z)B(R) = Z
GT 7(z) £ (/+o‘("))(,,/() (146!
o ;T BNEZE Zp)
r@az =1 g0y (147)
j AURIP(ZVIT for Rt REZ Q)
Z
ZD()J
EYPEIEE For B )z R4 Zp0)
Ple) bz )= IS,DW - ) ’ (145)
() Py iz for TR LY ’
]Zc()\)ﬂ )P( ’ ° K e )

The large~scale forcing is given by



FOO=F)+ Fun) (149)

where

)-D(/\) ~
Fen j’zrz a[ @3 AN ED) e N oo

and

Frm= f’s[a(zsx\fs"’ + b “’*”

34‘ 2 H IS \ -~ .
+ Pe(35) S{&‘('zg)z.\s—);(—%u’-ﬂ(x?a,)n/oé’r':(z ne)} | s

~.r

The suffix LS denstes large-scale teims as previously defined. We call
Fc (V) the "cloud layer forcing™ and FMO)  the "mixed iayer forcing”.

The first term in the bracket of (150), which is the most dominant ferm,
represents genzeration of the cloud worlk fuinciion due fo the conling of ihe enviren-
ment by large-scale processes, typically by adiabatic cooling due to the large-
scale upward motion. The term vhich depends onah seems fo be at lcast one of
the domincnt terms in (151). When oh isa large ncgative, the moist siclic
energy in the mixed layer is large compared to that in the environment ebove the
mixed layer. The effect of large=scale uvpward velocity ¢t the top of the mixed

),
fayer on BZB/atis positive, and, therefore, the cloud work funciion is gencrated.
An examination of telative importence of the terms in the large-scale forcin
g
(150) and (151) for actual observed situations will be prcscnfcd in t+e osuthor's

subsequent paper (Schubert and Arakawa, 1973).

The kernel is given by

K ()\IN) = kV ()\’)\,) + KD ()"JX) -+ Kb’o (}“)l (] 52)



where

YD()))

:. .,‘?‘:' , -:\?E Vre .
Zy
B [ o Forx<A
Kpp‘,)\'):f

L.l?("pf}‘)7( ")\)[ h:l;):?\ «D)‘*’xb( v,7‘)(?k(7p) ’(
Jor )\l\/)\,/

KM 7Y = ~ol(Z2g)as A {% A Te)os + 5 (Zs,x)ah } (s

In (154), the symbol ZD, has been used for  Zp(A) . Ky (O ,?\l),
KD(A,N') and KmOh) originate respectively from ™M () in (74) and
(75), DI(Z) in (74) and (75), and Mg in (126). We call Kv (AN the
"vertical mass flux kernel®, Kp(h N2  the "detrainment kernel”, and
KO the "mixed layer kernel®. |
The most dominant term in (153) is the first tcrm in the bracket. This
term represcnts destruction of the cloud w rk function for type A clouds through
adiabatic warming of the environment due to the subsidence induced by type
N clouds. Because % [Z,A) vanishes above Zolr) , the upper limit of
the integral can be replaced by  Zp(N) . if Zp20)> Zpn) .

Tken we can sce that Kv (AN) s symmetric with respecito X and A



if other terms which follow the first term are neglecied. This symmetry of

KV (X ,N\") means that the amount of destruction of A by iype b4
clouds per unit 7]?8()\') dX’ , (through the mechanism described ahove) is equal
fo the destruction of A(X) by type A clouds per unit )7,6()\) oA . This
situation is illustrated in Fig. 11,

The detrainment kernel is always positive for A /> . This. ons
that shallower clouds gencrate the cloud work function of deeper clouds through
cooling of the environment due to the evaporution of detrcined liquid water and
moistening of the environment due fo the deirainment of morc moist air from
clouds. This situation is illustrated in Fig. 12,

The role of varying Zp  as a control on the intensity of the cumulus
conveciion was discussed in secifon 5. This role is represenicd by the last term
in (155), which kas a negative contribution to the mixed layer kernel because

ak s negative.

7o Be Contlinued,
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Appendix !l

Derivation of the Kernels and the Large Scale Forcing

Using the definition of AR) given by (134) we can write

7,0
-C.)A(x) — - a - c/’ 7 oe DZP ry ~ Cr-
- _g?(z)o.(,{)s;f{?(f,l) [sc(a,?.)—s\@)j& - SE [5G0~ s(.-_;«:)} (1. 1)
g '

where  p(Z)x(z) s defined by (146). A term involving the time change
of 7,(A) does not dppcar since  Z,(2) is a vanishing buoyancy level

for cloud type A . Using (129), (135), and (3134) (1H.1) can be vritten
7.0

AR EY PUEN SO
el S?(z)ozu)é—z lSM + 2} i "2} (7 A ~7(K,R)a(?>} .
7 7
B
Zp(?) 7 ‘
+ Sg(z);?(z) %{ bt kj?g(z;z)ﬁ(z')dz'-73(2,71) h iz)} 3
7 Zp

2%p
+ 0 5t o{%,) AS (1.2)

where f(Z)F('Z) is also defined by (146). After evaluation of the time

derivatives in the integrands of (111.2), we can write



QA) . as '“A,,
2t 7 a(laa)%f)_iﬁ 1 5(7357)f) : L‘

2.(2)
+ | f@) 'Z){R'ng 2) —-—(1_3 dz’ - exy 35(?)}6{,;
78
LAY Fd
+ e ?tj?zv’ 2 2L iz ?ii-} e
Z() g

5o

where ¢)0(7,2) and S’(i’.)b(f,?s) are given by (147) and (148). The

¥ 5’3?..7,’&{ (7)) AS = X IAO)“‘("“P‘MS +hez, ,y_h)}

first double integral in (111.3) is over the hatched triangular region of
figure while the second double integral is over the stiplcd area of ihe

fiaure. The first double integral can be written as
Z(2) Z,(A)

Z.(%)
j {Sf(/)oﬁ(")a’f} A7 (Z,2) "2-'5—({’(12' = 72(2 2yAalZ2) ¢ --—~@o’"‘ (11.4)
Z, % Z,

while the second double integral can be written as

D(R)? ) Zc( ) 70> )
S { 5’(2),9(2)0(22 Az, -\)E’h(?)ol + {‘gf(z),@(zpzb?p @9"_( 3

it CL
Z‘(R) ZB 7 (?\>
Zy (2}
r
2(EZ2A) AbE,) o) 75 Q-L@-ﬂ/:’ (111.5)
Zg

Substitution of (I11.4) and (H1.5) inte (l11.3) yields



QA L 3 9}\ A
—é—t@ = alg,)p =+ b('zg,z)%—é—é
Z,(2)
o 3 _ﬁ(z) ,
X 72(7 a){z {0(7 2)92)""" +b(2,2) p) 3 —~~- ] A (Z)E7) } r
Zq

D78 ~
+ %5% {0\( L) 68 "/L[

Substituiion of (74), (75), and (126) into (111.6) gives

Z(R)
)
'aAc,\ _ sz 7>{ nED ;[ ez EP 416 d}} M, ()
g

AR) ; g
207, 2)as 45(&)2):::(]} (in.6)

8

7.0 '
v
g L?(Z?){o((z),[( )+ ?k["O(L?\>£(/) + b0z )(23(2)“5’(?3)}'5 Dz
g

TR M + R+ Q) (11.7)

Using (77) and (79), and changing the detrainment term from an intcgral over 2

. ’ .
to an integral over A, we obtain



2 max 'A mav.

QA

YEuE K,(2,2) MS(?‘,)C{'A/ 4 KD(Z,?L')'mB(?fJ vy
0
7
thx ’
+SKM(2)7nB(>~’>d7L' + (2 4 F () (I11.8)
0

The vertical mass {lux kernel and the mixed layer kernel appear in terms of
Fredholm type while the detrainment kernel eppears in a term of Volteria 1ype.

- Neglecting the time change of /\O) and combining terms ve obtain

Amax
S K m (x0) 20+ F(a) =0 (n.9)
(4






