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CHAPTER 1

Purpose of this Work

Much of what we presently know about "deep space", and the various

physical phenomena resulting from the interaction of the earth's

magnetic field with the solar wind, has been obtained from experimental

evidence gathered by satellites of the EXPLORER series (IMP, for

interplanetary monitoring probes).

In order to probe, along the same orbital period of a few days,

the near-earth region, the transition region and free interplanetary

space, it is convenient to use satellites in geocentric orbits of very

large eccentricity, typically in the range of eccentricities

0.9 e , 0.95. Such orbits present a critical "stability" problem.

Their initially low height of perigee is so perturbed by the graviva-

tional effects of the sun and the moon that only a judicious choice of

the launch time can guarantee that the satellite orbit will not exper-

ience a premature decay in the earth's atmosphere. The determination

of these times, or "launch window calculation" had very often be

extremely costly proposition if high accuracy numerical integration

programs were used. On the other hand, such computation is impera-

tive when the "target dates" are better known. The present work

aimed at providing the mission analysts with methods and computing

tools for studying the stability and evolution of orbits of large eccen-

tricity. This is the topic ac Chapters 2, 3 and 4. Chapters 2 and 3
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develop an approach for a lower accuracy, but very fast analysis

technique, whereas Chapter 4 resorts to non-numeric omputation to

obtain a "symbolic theory", applicable to high eccentricity orbits

and of average accuracy and computer-time requirements.

Deep space is also investigated by means of satellites in

large circular orbits (20 earth's radii, say), which are similarly

perturbed by the sun and the moon. Although orbital decay is not

a practical problem here, the development of methods of orbital

computation, which would be more economical than conventional

ones, allow for strong perturbations and be singularity-free,appeared

to be a topic of much relevance. Such is the subjects of Chapter 5.

Chapter 6 implements the methods of the previous one, and compares

them to a straight method of variation of parameters, with time as

the independent variable.

It is hoped that the approaches and techniques suggested in this

work will be of help to the mission analyst facing the challenge of

future space missions.
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CHAPTER 2

Method of Approximate Stability Criteria

2.1 The Problem

In the pre-launch phase of the mission analysis of satellites

in orbits of large eccentricity, there exists a definite need for

methods of determination of the orbital stability which would combine

EXTREME COMPUTING SPEED with TOLERABLE accuracy on the results.

To be more specific, given a launcher of known capabilities, a

launch site, a spacecraft of (roughly) known mass, an orbit of known

in-plane geometry (i.e. the initial semi-major axis and eccentricity

e), one wishes to "design" an orbit by adjusting, within limits,

- the orbital inclination on the equator (ia)

- the argument of perigee, referred to the equator (wm)

- the time (hour; day; year) of launch (which in turn permits
computation of the longitude of nodes, Q., and the time of

passage at perigee, Tp)

while satisfying, as explained in more detail in the previous chapter,

- a lifetime constraint

- other constraints of a technical scientific or operational

nature (for instance: the angle between the satellite spin
axis and the earth-sun line, or solar aspect angle, should
be 900 + 150, say, at injection)

Now it should be remembered that the "lifetime constraint" is

relatively imprecise and can often, to some extent, be relaxed. A

requirement that the lifetime be "3 years" is not meant to be taken
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as a request that the reentry of the satellite into the earth's atmos-

phere occur at time t = time of launch +1,095.75 days. Therefore, some

inaccuracy on the a-priori determination of the lifetime might be toler-

able when balanced against the speed and economy with which the prediction

can be made.

If a method of extremely high economy is indeed obtained, parametric

studies and the "mass production" of launch windows becomes practical.

Questions such as this one can be readily answered: "Given this constraint

on the solar aspect angle, when in the year 1973 should we launch this

satellite so as to fulfill all constraints? What is the penalty paid in

lifetime if we make the solar aspect angle condition more stringent? Should

we try to modify the ascent phase and obtain a different argument of perigee

etc.....

In addition to looking, in this chapter, to a method of appreciably

reducing the computing time necessary for obtaining a launch window map,

[2-1]
the accent will be put also, as initially proposed [  , on automatizing

the graphical presentation of the output in the form most suitable to the

users' needs.

2.2 Basic Equations

Let 0 be the center of the earth, of mass M (Fig. 2.1); r = Os

the geocentric vector to the satellite; m the mass of the satellite (m is

infinitesimally small compared to M , md); md,the mass of a disturbing

body d, assumed to describe a known Keplerian elliptical orbit

about 0; rdist - rd = Od. Now define the vector from satellite to disturbing
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body, p, as (Fig. 2.1)

p rd - r (2.2-1)

The following equations hold, if the vectorial pole for the capital R's

is the center of mass of the system,

r
d

= +k2 md 3 (2.2-2)

d

R = -k2(MN - md - ) (2.2-4)

r p

Taking 0 as the origin of vectors, subtracting (2.2-2) from (2.2-3) gives

r d
rd + k2 (md + M)-3 = 0 (2.2-5)

which describes the elliptical motion of d about 0 (with yd+M k2 (ma + M).

Subtracting (2.2-2) from (2.2-4) gives

2M 2 (rd
r + k2M 3 = -kdm 3 - ) (2.2-6)

r drd p

Equation (2.2-6) shows that the elliptical motion of s about 0 (with

S= k 2M) will be perturbed by the disturbing force due to third-body, md,

t k2md r )  (2.2-7)
dist d rd p
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If more than one body is perturbing the orbit of s, or if other perturbing

forces, F ther are acting upon s in a frame centered at 0 and pointing

towards fixed directions on the celestial sphere, Equation (2.2-6) should

be complemented to read

+ k2M- = F + F + ...+ F (2.2-8)
3 distl dist,2 other

in which the F . (i = 1,2,...) have the form given by Eq. (2.2-7).
dist,i

2.3 Lidov's Theory

2.3.1 System of equations

In 1961, M.L. Lidov made an important contribution to the problem of

determining the evolution of satellite orbits under the gravitational

perturbations of external bodies . This approach can be summarized

as follows. Let a, e, i, m, Q be five osculating elements of the satellite

orbit; p = a(I - e2) is the osculating parameter; v is the true anomaly.

Angles such as i, m, Q are referred to a plane (such as the equator)

invariant in inertial space and passing through 0. Along the perturbed

orbit, the following relations hold

r2 dv d + cos i ) = (pP)/ (2.3-1)
dt dt dt

or if

S= [1 + - F cos v - (1 + r)F sin v]-1 (2.3-2)
le r iie p t
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r, s, n subscripts indicate components 
along the radius, the positive

transverse and the normal direction. r2dv and YJIp are related by

2 d =  Y1 / (2.3-4)
dt

A thorough analysis of the order of magnitude of y has been 
made in the

course of this grant and is given in [2-3].

The results are slightly different from those put forth by Lidov [2-2]
, who

argued that, since in the expression (2.3-2) for y,

F v r (at most)
Fr, F r

and if e is close to 1,

S= 1 ± 0 [dr 1
1- rd3 1 + e cos v

(2.3-5)

1 d a3  1
1 ] [ r

P r 3 1 - e

In the reasoning, an average of r over M, mean anomaly, must 
be assumed

since 1-- f2 r dM = a. If Lidov's estimate, as given in (2.3-5),
2sc 0

rather than ours, is taken to assess the departure of y from unity, one

d 1
would conclude for example, that if e = .95, say, and !- 1 (moon);

r 2 2 a then
then if (up to 2 of earth-moon distance), or rkthen

Y 1+ 1 L 20 = 1 + .0091 at most
81 27
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while our estimate (see Ref. r2-33 .) would be

y 1 + .008 at most.

For an extreme eccentricity of 0.95, y will never depart from 1

by more than 0.8%. Consistent with the accuracy we are striving to

obtain (of the order of 1%; Lidov
[ -2 ] quotes 1-3 per cent [2-2, p. 720]h

and in agreement with Lidov's approximation, the factor y is taken to be

1 in what follows. With this approximation, planetary equations are

written in terms of the five osculating parameters a, i, e, m, Q

da = 2a ' (e F sin v + F (1 + e cos v))

de r r 7F E da
dt ae t 2ae dt

d_ 1 /p [-F cos v + F sin v(l +-) - e - F cot i sin(w + v)]
dt e r t p p n

ds r 1 sin(w + v)
dt =ip- sin i F n

di r F cos(w + v)
dt /Pp n

with E = 1- e2 .

Substituting for dt, from Eq. (2.3-4), in which y = 1, and introducing

p = a(l - e2), the differential system considered by Lidov
[2- 2' p. 722] is
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d_ 2r 3 F or da = 2 2a (eF + F t )dv 1 t dv 1e y t

de r2 r+ da

de = r(F sin + (1 + r )F cos v + er F) r 3  da

dv 1 r p t p t pae t 2ae dv

dw _ r2  r rd r2 (-Fr cos + (1 + r)F t sin v - e - cot i F sin(w + v))
dv lie r p t p n

Sr[-Fr +F -Sin v]d-cosi-2 [-F + F r sin v] - cos i d-
le x tp dv

dQ r 3  1
r F sin(o + v)

dv pp sin i n

di F cos ( + v) (2.3-6)
dv pp n

2.3.2 Legendre Polynomial (LP) Expansion

The developments proceed to expand F, the gravitational disturbing

force, i.e. for body d,

-+ + -
S r rd - r r XXd + YYd + zzd

+ (- --- ) d( - d
d 3 d 3 d 3

P rd ird r rd P rd

1 r.rd
Jd(p r 3
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41

in series of Legendre Polynomials (LP) of argument 1 = cos Sd = Irird rrdr d[2-4]

Specifically, since - < 1, with assured convergence

R1 rrdc

perturbation = r

d 2 1/ /2 r

= [(1 + (-d) - 2(- d ) C) - ]  (2.3-7)
r d rd rd rd

Now, with a -
rd

(1 + a2 - 2a) 12 1 (a2 - 2a ) + (a4 _ 4a3  + 4a2 2 )

= 1 + a 2 + a 2 (- + C2) +....

= k=o k

in which the Legendre Polynomials are

Po(C) = 1

1 + 2 1(3C2 - 1)

P() = - + 3 = (5 3 - 3;)

P3() 2 2 2

p4(C) = (35C4 - 30 2 + 3)

P = (63i5 - 70C3 + 15l)
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Going back to expression (2.3-7)

perturbation [ + k2 rd- k() (2.3-8)

The perturbing force, in turn, is

+ __ r k-i 
F = VR - [k -) Pk()l1
d perturbation rd k=2 rd k r

4. 4.

r *r
+ (-) pk( ) V(---)] (2.3-9)

r
in which -r r

Pk) = [k (

Also + +
r r rd -+ r

V (i -- ) = (- r - + (2) A curl -
rdr rd r rd r

Since r = V(r), the second term vanishes and
r

rdxd a Y d Zd z
rd rxr d ax d  x' rdY x

+ I - (r) + . .. .
r Y rd  Y d d

r*Xd x d 3 zd  z
11 () + (-)

z rd az r rd az r rd az r

We have

a _x 1 x ar
-x r r 2 ax



x r ) = r 2 Dx

8 z Dr
xrr.

Gathering terms,

rd r _ d x d y zdz xxd d + ZZd 
( * .) = - Vr

Sd r rd rdr2

+ 1+
d r r

Substituting in (2.3-9), and letting q - k-i

=dd q 1( [[(q + 1)P ( q+1) -P+1 q+1 P ()d

Now, from the recurrence formulae,

-P = (q + 1)P - Pq+1

Finally

S Pd r q
F d  q () [- P 1( + q+1 ()l d]  (2.3-9)

The components of Fd along axes (P,Q,R) are now obtained

'*1 d def 51 Qd def C2 R*id def E3
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The director cosines of the unit vector to the satellite, Vd,in the satellite

system (P,Q,R), namely 1, 52, C3 are illustrated on Fig. 2.2.

In the same system, r has components (cos v, sin v, 0). Also

= r id = 1 cos v + C2 sin v and let

2 2 1/ 1 52
= ( + 2) 2; cos = -- ; sin V =

Now, if successive orders in the LP, i.e. q = 1, 2, ... , are considered,

Equation (2.3-4) gives

+ d r -
(Fd) -) -P ) 1 + P idd rd2 )d -P()r 2(C) ld

r 2
(Fd =d d [-P2(t + P 3

( ) d] (2.3-10)
rd d

These are the two values of q retained by Lidov. Rewriting these expressions,

1 '' 15 2_ 3
with P 1() = 1; P2(t) = 3; P3() = 2

r d r
(d)1 = rd (rd )[-Ir + 3 1d ]

+ d r 2 + 1 2 +
(Fd)2 = rd ) [3 r + - 3)1d

which are Lidov's expressions (4), (5)[2- 2 , p.723]. The computation of

the components of (Fd and (Fd)2 along (r, t, n) are (Fig. 2.2), since

rd .r (rd )*r
r'r -rdr = U cos(v-v ),
d d

(Fd)l,r d r [-1 + 3(2 cos2(v-v )]

~ rd r
(Fd) lt rd2 rd [-3 2 cos(v-v )sin(v-v )]

( d)1,n = r2 rd [3 ((3 cos(v-v )] (2.3-11)
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and similarly for (Fd)2  projected along (r,t,n),

S d r 2 9 15 O 3(-v_)]
-(F--- [- 9 cos(v-v) + cos

d)2,r rd rd 2

(FdP2,t r2 d 2 ~ cos 2 (v-v )sin(v-v) + sin(v-v )]

(F l d r 2 15 cos2(v3-vg (2.3-12)
rd 2,n rd rd 3

At this stage, Lidov introduces the notations:

A _- = 1 + e cos v (for the satellite)
def r

and Pd
S+ e cos v (for the disturbing body)
d def rd d

after which the components of the forces are rewritten:

Pd P i
(Fd ,r= 3 (-86 + 81 cos2v + 283 sinv cos v + 82 sin2 )

Pd

(Fd) = -3 Pdy-[sin v cos v (01 - 2) + (sin 2v - cos2 ) 3

d p 1
(Fd = 3 pd2 ( 5 cos+ B4 sin v)d 1,n Pd Pd

15 ld P2  3 3 3
(Fd)r 2 pd2  d2 a l cos - a sin v + yl cos v

S2,r d

+ 3y3 cos
2v sin v+3Y 6 cos v sin 2v + Y2 sin 3v)12

A
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(Fd2,t = 2 [-Y3 cos 3V (Y1 - 2y7)cos2v sin v

-(2y3 - Y2)cos v sin
2v + y6 sin

3v + al sin v

1 1
- a2 cos v]

15 d 2 4 cos + 2y7 cos V sin v + y5 sin2V
d2,n 2 2 247+

Pd Pd

(2.3-13)
5 2

in which

4 4 4

a1 = 51 Ad, a2 =  2 Ad, a3 
=  

3 Ad ,

2 3 2 3 3
81 = 51 d' 2 =  2 Ad' 83= l 2 Ad'

3 3 3
84 = 2E3Ad,  85 = ElC3Ad ' 06 = Ad '

34 34 2 4
Y1 i= 1Ad ,  Y2 =  2Ad , Y3 =  l d'

2 4 2 4 2 4
Y4 =  AdE13 A Y5 2 3 6d Y6 = Y d'

4
Y7 = lY23 Ad ,



2-14

Going back to system (2.3-6), in which- is taken rather than in

the first equation, and substituting for the forces, their expressions

in (2.3-11), (2.3-12) etc., r.h. sides are obtained which depend on

the motion of the disturbed body (v) and on the motion of the disturbing

body (vd) through

- powers of r= 
p =  P
A 1 + e cos v

- positive powers of sin v and cos v

- the greek symbols ai' j Yk etc. of the form

a c d (2.3-14)

in which (1, ~, C3 are the director cosines of the unit vector

to the perturbing body in the satellite system (P, Q, R).

It is taken for granted that, consistent with the approximation in a

first-order theory, the satellite orbital elements a, e, i, etc., are

taken as constants in the r.h. side of system (2.3-6) and that the

changes in these elements are computed separately, for each disturbing

orbit, over one orbit of the satellite and then linearly superposed.

To summarize: suppose that we have a suitable representation

a b c d
for E1, 2, 3, Ak , given the true anomaly v of the satellite. Then,

for any element z for which an equation in system (2.3-6) is written

(the set of elements z is denoted z)
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After integration of fI (with respect to v) from 0 to 2r, where subscript

I is the order of the LP expansion, i.e. I corresponds to forces

1+1 2+1
0[(r--) ], II to forces 10[(r-) i etc....., we obtain

rd rd

r 2
(Az)I = change in element z due to forces of 10[(j) ]

and, in total,

(Az) = E (Az). (2.3-15)

j = I, II, III.... 3

(2.3-15) expresses the change in any orbital element due to the various

orders in the LP expansion, i.e. ordering these in columns

1 (Az) I

2 (Az)II (2.3-16)

3 (Az)iII
LP

2.3.3 Taylor Series expansion

Lidov's theory then further proceeds to expand any of the above re-

ferred greek symbols ai' j, Yk as

2
a i d a. t 2

ai = (a.) + (--- ref At + (--dt) A + ... (2.3-17)
i i ref dt ref dt2  ref 2!

in a Taylor's series about a given point in time, tref , along the satellite

revolution. In Equation (2.3-17), At is the difference t - tref, measuring

the time elapsed from tre f . From (2.3--17) and (2.3-14), it follows that
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for any (Az) I , (Az)l, ... , any of the rows of (2.3-16) can be further

divided as

: Taylor Series

(Az)1, 1  (Az) 1 , 2 . . . . . . . . .

(Az)2,1 (Az) 2 , 2 . .. . . . . . .

LP (Az)3,1 (Az)3, 2 .......... (2.3-18)

thereby providing 2 directions of expansion: the first one (i, first

r i+1
subscript) corresponds to the LP expansion of the forces (term O( d )  ),

and the second one (j, second subscript) to the number of terms, or the

order increased by one, retained in the Taylor Series expansion of the

quantities i' j ,Yk' .".

To appreciate what is involved in the integration of (Az)ij, we

shall look specifically at the cases:

a) i = 1, 2, 3 ... , = 1 (FIRST COLUMN IN TABLEAU (2.3-18))

This specifically amounts to assuming that the disturbing body

is fixed in space during any one revolution of the satellite. (The

disturbing body is "frozen" at an average position) One should

expect this approximation to be the better the smaller the ratio

of -- (or a-), since the a's, s's, etc. would indeed be sensibly
rd rd

constant if the period of the satellite was infinitesimally small

compared to the period of the disturbing body in its apparent geo-

centric motion.
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The terms to be integrated will involve

a b c d

C1 C2 C3 Ad

appearing as constants: ()tref ( ref ref (+ed cos Vd)ref

and At does not appear.

b) i = 1, 2, 3, ... , J = 1, 2. (FIRST AND SECOND COLUMNS IN TABLEAU

(2.3-18))

Here it is of course assumed that the a's, S 's, etc. are suffi-

ciently well described by a straight line tangent to the corresponding

curve a = a(t) at t = tref, (Fig. 2.3). This approximation should

hold well if the angular motion of the disturbing body is "slow"

compared to that of the disturbed body. For our purpose, such an

approximation is amply sufficient for the sun's contribution to the

perturbations . The additional terms to be inte-

grated (compared to a)) will involve expressionsoriginating from

a b c d
C1 C2 C3 Ad and reading like

' At x[constants computed at t = tref]

Similarly, the third column in tableau (2.3-18) accounts for terms

in (At) 2 etc...

The assessment of the order of magnitudes of each contribution

(Az)ij has been done in detail in [2-3]

2.3.4 Results of Lidov's theory: short-range and long-range

As an example, consider the "11" theory. Namely, only forces of

0(--) are retained in the LP expansion, and furthermore, the perturbing
rd
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bodies are fixed at the position they assume at t = tref* Taking for

di
instance the equation for d

di 3 dv

di= r 3 F cos(w+v)
dv pp n

Replacing (Fn) by (Fn) 1 as given in (2.3-11),

di 3 r ) - cos(o + v)[I cos v + E2sin v]
dv 1 r d p 3

3
lid a 3 A E "d

=3 -) 3 3 cos( + v)[~ 1 cos v + 2 sin v]
= Pd A

It is apparent that the evaluation of the following definite integrals is

required

27 3 cos 2 v 2 r3 sin v cos v
S (Ad 1 3) dv , (Ad23) 3 dv ,

2 3 cos v sin v 2 3 sin
f2 (Ad 1 l 3 ) dv , f sin2 v
0 (A 3  0 (AdE23) - dv

One suspects that as the indices i and j are increased beyond 1, the

volume and complexity of the calculation might become prohibitive. Hence,

resort was made, in the present project, to non-numeric manipulation on

the computer for the development of a modified, extended Lidov's theory.

This is treated in Chapter 3.

[2-2]
In his paper , Lidov gives for the five elements a, e, i, w, Q,

the results of the "ll", "12" and "21" theories in tableau (2.3-18).

Limiting ourselves to the "main" contribution "11", we reproduce Lidov's

results (SHORT-RANGE PERTURBATIONS):
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Alla = 0

Alle = -15T - )* ec 3

.d ( a  i 4
All = 15x () 1/ [(1 - £)5 sin w

d C sin i

+ ~S 4 COS W

Alli = 15 - (a d) [( - )85 cos - 4 sin W]

d 3 1/2

Alc = 37 -- ( ) [481 - 82 - 6 - A110 cos i (2.3-19)

In the last part of his paper, Lidov investigates the secular

changes in the elements of the satellite orbit by integrating the orbit=

to-orbit changes, as given by Equation (2.3-19), over the period of the

disturbing body. He thereby obtains the following expressions for the

secular changes 6z in the orbital elements z, per satellite orbital

period 6Tsa t (LONG-RANGE PERTURBATIONS)

611 a = 0

je = A eE/2 sin2 i sin 2w
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1 cos i 1
61 = - Ad /2 [(1 - e) sin 2 o +

(2.3-20)

1 1 2
611 = Ad /2 [(cos i-) sin2w + 1 E

In the above equations, the plane of reference for measuring the

angles is the orbital plane of the perturbing body d, and for disturbing

body d, Ad is defined here as

Vd a 3 3/2

Ad = 15 -( d Ed (2.3-21)

Finally, using Equation (2.3-20), Lidov is able to classify the

long-range behavior of the perturbed orbits in terms of the two integrals

which, besides the trivial one: a = constant, could be determined, namely

cl = (1 - e2) cos 2i = ccos2i

c2 = (1 - E) ( - sin 2i sin 2w) (2.3-22)

These integrals, which apply to the system of differential equations

describing the secular change of the orbital elements due to one perturbing

body, in the absence of oblateness, will be used in the approximate

stability criteria method which follows.
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2.4 The Approximate Stability Criteria Method

2.4.1 Introduction

The approximate stability criteria method was developed under this

grant by Renard[2 - 5, 2-6]. Its goal is to provide a fast, economical

(if less accurate) way of determining the stability of an orbit of large

eccentricity and, in final analysis, the quick generation of launch window

maps called for in a mission analysis. The method has since been used

with success to study the launch windows of several satellites of the IMP

(Explorer Series) [2- 7 O .2 - 9 , and is operational at NASA Goddard Space

Flight Center.

2.4.2 Some definitions:

- Orbit of large eccentricity: this is defined here as a geocentric orbit

having an eccentricity in the approximate range 0.9 e ' 0.95, or equi-

valently a geocentric distance to apogee RA 2 20 to 40 R (earth's radius),

if an initially low perigee, close to the earth's surface is assumed.

- Stable orbit: rather than being called (as it maybe should) "successful"

an orbit is called stable if the height of perigee hp, remains during the

whole spacecraft lifetime, L, larger than some critical value hp, equal to

or slightly lower than the initial value h . h corresponds to an assumed

height of perigee leading to orbital decay in the atmosphere.

- Launch window, launch window map: A launch window is the set of points

DL, HL (day of launch, hour of launch) for which stability is realized,

and for which a number of technical, scientific or other constraints are

met[2-10 to 2-16]. The boundary of the launch window defines the so-called

launch window "map" (Fig. 2.3).
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2.4.3 Present method and criteria

2.4.3.1 Evolution of the orbital elements

Fig. 2.4 (a. to f.) illustrates the evolution with time of some

characteristic quantities of high eccentricity, stable orbits: the

altitude of apogee, the altitude of perigee, the inclination of the

equator, the longitude of nodes, the eccentricity and the argument 
of

perigee (Ref. [2-5]). It is noted that for such a stable orbit, and

a dense satellite, due to the rapid increase in perigee height, the

effects of Earth's oblateness air drag are very limited and affect

stability rather indirectly. Thus, in first approximation, they will

be neglected in the analysis. Adjustments to the lifetime estimation

might have to be made, however, in those special cases where the

effect of oblateness plays a more significant role, as is mentioned in

Chapter 3.

2.4.3.2 Motivation

A purely numerical determination, on the computer, of the launch

window map for a satellite having a required lifetime of at least one

year could require an average of 50 to 100 hr. of IBM 7090 per year

of possible launch dates. Addressing herself to this problem,

M. Moe [2- 17] developed simplified equations which were later solved

on the analog computer [2 - 1 8 2- 19 ] at a considerable gain in computa-

tional speed and with good agreement between the predicted and exact

[2-10]
window contours

It remained tempting, however, to try and define the launch window on

the basis of approximate stability criteria which if fulfilled at launch,
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would very likely guarantee the whole lifetime. This would result in

an economical and fast method on digital computers, more universally

available, and allow for better ephemerides of the Moon and the Sun,

the orbits of which were taken to be circular in the above mentioned

papers. Leroy and Pace [2 2 0] had mentioned Lidov's theory(Ref. [2-2]),

as a possible way to somewhat restrict the domain to be investigated

numerically. With the goal of establishing stability criteria, we

found very encouraging that many of the orbital features just described

were qualitatively predicted by Lidov's analysis. Of course, the domain

of validity of Lidov's results was presumably restricted to lower

eccentricities than those retained here. For example in Ref. (12-2]),

Lidov was aiming for an accuracy of 1 to 3% with geocentric orbits of

semi-major axis of the order of 30 to 40 x 103 km. These figures were

perhaps too conservative, since analog integration of the similar

M. Moe's equations had given good predictions of the launch windows,

up to eccentricities of the order of 0.95.

2.4.3.3 Setting up the criteria

For stability, we require that r , radius at perigee, not decrease

with time, over the satellite lifetime L. Let a, e. be the semi-major

axis and eccentricity at perigee, respectively, and 6z the change in

quantity z from one perigee to the subsequent one:

6r = 6[a(l - e)] = 6a'(l - e) - a6e (2.4-1)

According to Lidov's "11" theory (and this is also true for the "kk"

theory, k > 1, see Chapter 3)

6a = 0
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Thus,

6r = - a6e
p

Thus, it is required that the orbital eccentricity e have a decreasing

trend with time. The constancy of a, as obtained from computer results,

is illustrated in Fig. 2-5, for the orbit of Fig. 2-4.

The principle of the present method is to simultaneously require

that stability be realized:

1) In the long-term (subscript LR, for "long-range"), having

characteristic time TM(moon) or T0 (sun): CRITERION 1.

2) In the short-term (subscript SR, for "short-range"), having

characteristic time Tsat , i.e. a few days: CRITERION 2.

3) In the intermediate-term, so the "waviness" of the curve of

height of perigee vs. time about its trendline is limited

(characteristic time TM/2 or T /2): CRITERIA 3, 4, 5.

4) In the very-long term (characteristic time TVLR, as yet

unknown): CRITERION 6.

These various stability criteria are now studied one by one.

LONG-TERM STABILITY

In the long-range, stability should exist for the secular effect of

Sun and Moon, i.e. on the average over a period of the perturbing body.

As obtained by Lidov (Ref. [2-2]) for one perturbing body "d", and re-

called in Equations (2.3-20) above:

6e =  A A e /2 sin 2id sin 2wd (2.4-2)

Ad a 3 2/3
Ad = 15( ) d 3
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Note that id , d are the inclination of the satellite orbit, and the

argument of perigee of the satellite, referred to the orbital plane

of perturbing body "d".

For the sun and the moon acting simultaneously, we can therefore

state the long-term stability criterion (CRITERION 1)

6eLR e= e 2(AO sin i0 sin 2w0 + AM sin iM sin 2wM ) 1 0 (2.4-3)

This will define a long-range stability region, which can easily be

plotted in terms of launch hour vs. launch day.

It should be noted that the ratio of the amplitudes Ad, for Moon

and Sun, respectively, is

A P M

A -) 2 = 2.18

and is obviously independent of A. As an example, for an orbit having

the following characteristics:

h = 203,632 km

h = 192.6 km
p

e =-0.93932

Tsat = 4.1047

we obtain

I6hp,LR max due to the Sun = 51.9 km/revolution

6hp,LR max due to the Moon = 113.2 km/revolution
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Computer studies of high'eccentricity orbits have shown that, starting

with a relatively low inclination 0 < i < 
r on the ecliptic, stable

orbits were accompanied by a significant increase in inclination on the

plane of the disturbing bodies. It should also be noted here that if

only one predominant perturbing body is considered, or at high inclina-

tions on the ecliptic, in which case i0 Q iM,the qualitative use of

Tisserand's criterion made in [2-11] to account for the eccentricity vs.

inclination relationship just appears as a quantitative consequence of

Lidov's secular theory to order "11". Indeed,

1 1
6R = - A(l - E) 1 sin i cos i sin 2w (2.4-4)

Dividing (2.4-4) by (2.4-3), and after some manipulation

1/2
6(cos i) 6 1 / Z

cos i 1/2

or

(1 - e2)/2 cos i = constant (2.4-5)

which is one of Lidov's "secular" integrals. Obviously, for stable

orbits of < i < r , the inclination will decrease as time increases.
2

SHORT-TERM STABILITY

As recalled in Equation (2.3-19), Lidov's "11" theory gives for the

short-term (subscript SR, for "short-range") change of e due to dis-

turbing body "d", and per satellite revolution:
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61 1e = - ec 32 ,d (2.4-6)
d/2 3,d

Ed

P 3
in which 3,d 

=  (-) .ref Fig. 2.2 shows the geometrical
3,d 1,d 2,d r ref

significance of 83. If the projection of rd on the satellite orbital

plane is in the FIRST or THIRD quadrants, then B is > 0, and from

Equation (2.4-6), the orbit is stable in the short-range; if the pro-

jection is the SECOND or THIRD quadrants, the orbit 
is unstable in the

short-range.

Now, for the two disturbing bodies (Sun and Moon), we require

short-term stability by stating CRITERION 2:

eS e [/2 + A) (2.4-7)
eSR = - e 3,M 2 3, ]

as shown in Fig. 2.7. An alternative form of CRITERION 2 is

( ) 3 / 2  + A 0 (2.4-8)

INTERMEDIATE-TERM STABILITY

Even if the short-term evolution of the eccentricity is favorable

initially, 3,M will change sign as 1 , unit vector to the moon,

rotates in inertial space. Therefore, the eccentricity will oscillate,

over the lunar month, about an intermediate trendline, which corresponds
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to the long-range effect of the Moon and the short-range of the Sun,

averaged over TM. The slope of this line should be < 0 (Fig. 2-8),

which is expressed in CRITERION 3:

6e NT=<6e 8 > + (6e) < 0 (2.4-9)
INT SR,@ T LR,M

M

If the latter condition is fulfilled, it remains to require that

the waviness of the eccentricity vs. time curve (or alternatively, hp

vs. t) not be so pronounced that e increases again towards its initial

value, at its next maximum (or h decreases again towards its initial
p

value, at its next minimum). j designating the index of the perigee

passage (the initial perigee has index 1) corresponding to that mini-

mum in h , the above requirement is approximately expressed by CRITERION

4 (or 2 + 3 strong).

Sj- A M  (k) Ag (k)
e. = e. - e =  k [ +  ]  2.4-10)

J 3 0 / 3,M 3/2 3

It is apparent that criterion 4, which limits the tolerable lunar

modulation, encompasses criteria 2 and 3, but these are taken in this

order because they are more readily checked than 4. Criterion 4 is

then disregarded if 2 or 3 leads to a failure.

Now, the same reasoning is repeated for the solar modulation of the

eccentricity vs. time curve (Fig. 2-5). The criterion corresponding

here to 3 is 6 eLR < 0 (criterion 1), and the one corresponding to

criterion 4 is now developed. The upper limit on S eLR on account of the

solar modulation about its trendline may be simply approximated, near
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the limit of stability; by { 1 1 e<SR,O>T - eLR } (amplitude of
2 6 e LR Tsat l

wave) x (time to contact) = (6e- eLR
9/2T M 9 F3 <SR,G>TM LR

CRITERION 5 (or strong) is then stated as

(a) 6e < -4-- (6e - 6e ) if 6e < 6e (2.4-11)
LR 9/_ <SR,Q>TM LR <SR,Q>TM LR

(b) taken to be satisfied if 6e > 6eL (2.4-12)
<SR,Q>T LR

All quantities in (2.4-11) or (2.4-12) have been determined previously.

VERY-LONG-TERM STABILITY(FOR ORBITS WHICH ARE NOT QUASI-NORMAL TO THE

ECLIPTIC)

It remains to ensure that the very-long range effect of the

motion of the apsidal line of the satellite orbit with respect to the

orbital planes of the perturbing bodies will not cause the eccentricity

to reach its minimum value before half the expected lifetime has elapsed

(Fig. 2.9).

Computational results, for example those of Fig. 2.9 for IMP-C

under the solar and lunar influences, suggest that e - e might be

approximated in the region of interest, and when the inclination of the

orbit on the ecliptic or the moon's orbital plane is not near 900

(more is said about this in the next section), by a half-sine wave with

unknown "very-long-period" TVLR, in (0, TVLR). As is shown in Fig. 2-10,

e e = (e - e ) sin t (2.4-13)
max max min TVLRVLR

Assume that there exist one predominant disturbing body. The non-trivial

integrals in Lidov's "11", secular theory are, as given before,
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c2 = (1 - e2 )cos
2 i = Ccos2i

c2 = (1 - 6 ) ( - sin 2i sin2) (2.4-14)

From these, the extremal values of c = 1 - e2 can be determined from:

a) if c 2 > 0

5
= - c 2max 2

1 5 5 2
Emin = 2[1 + 5 (cl + c2 ) - {(1 + 5 (cl + c2 ))

20 c}1/2] (2.4-15)

b) if c 2 < 0

E E . are roots of the quadratic equation
max min

E2 - [1 + ( 2 )] 6 + C~ = 0 (2.4716)

Now, in order to be able to compute cl, c2, for a given initial orbit,

we should have a unique plane of reference (orbital plane of the dis-

turbing body), with respect to which angles i and w of the satellite

orbit are measured. For moderate inclinations i on the moon's orbital

plane, in view of the small value of the inclination of the moon's

orbital plane of the ecliptic (iM = 5.1450), and of the dominant effect

of the moon, it can be assumed that the sun approximately describes an

orbit coplanar with the moon's orbit (this approximation would break

down if i r 1 , and for a perigee located "between" the moon's and the

sun's orbital planes[2-6]).
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In this approximation, cl and c2 are computed with values of

i, w referred to the moon's orbital plane. This is the approximation

adopted in an early version of the SABAC program, and illustrated in

the example of Section 2.5.

For more accuracy, we later decided to use values of cl and c2

which would account for the unequal magnitudes of the amplitudes of the

perturbations ("Ad"), for sun and moon, by retaining as values of c1

and c2 the weighted averages

AM A
S) + A (c.) =1,2) (2.4-16)

Cj AM + A i Monly AM + A (j) only (j=l,2)

in which (c ) only and (cj)Q only are computed from (2.4-14) for angles

(iM,' oM) and (i0 , WQ), respectively. This procedure is the one em-

bodied in program SABAC (Version A).

So far, TVLR is an unknown quantity. If the orbit has been found

to be stable in the intermediate range (criterion 3 satisfied), one can

use Equation (2.4-13), to define an angle Eo(0 1 5oS 2), where the

eccentricity is eo

emax - eo 0 <  < T
sin = e. - -

max min

elNT -1

The slope at = (o is estimated to have value T day ) for
sat

TVLR of the order of one year:

I6eINTI 6e
6 T 6 = (e - e ).Cos o Tsat 6t max min VLR
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Normalizing to Tsat , we obtain TVLR'

SVLR= 7T (e - e ) cos o 61e I (2.4-17)
VLsat max min INT

The lifetime condition is satisfied if T = VLR(1 - 2 -a) is
VLR r

larger than L, required lifetime. Thus, CRITERION 6 is stated as

follows:

VLR > L (2.4-18)

VERY-LONG RANGE STABILITY (for orbits quasi-normal to the ecliptic)

When the inclination of the orbit on the moon's orbit (or equi-

valently, on the ecliptic) is in the neighborhood of 900, the lifetime

criterion (6) is modified as follows, for those orbits whole perigee

motion, during a significant fraction of the lifetime, occurs between

the orbital planes of the two perturbing bodies (Fig. 2.11), for

instance under the ecliptic and above the moon's orbital plane.

Since w- is then very small, it is no longer valid, even though

i0 , that % W M This explains why the above described criterion

leads to predicted lifetimes which are systematically in excess of

actual values.

It was found that typically, for an orbit of the IMP-G type

6e
(eo = 0.946; i0 % 900), q was very small and e would vary over a

one-year lifetime between 0.946 and 0.934. Therefore, assuming that

the sun describes an orbit in the moon's orbital plane amounts to
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neglecting the unfavorable effect of the sun on the (already small)

change in eccentricity due to the moon.

The alternative approach taken in the present case (and imple-

mented in digital program SABAC version B) is as follows. A plane w

is defined, which is obtained by rotating, about the nodal line of the

moon in the ecliptic, the plane of the ecliptic towards the moon'sAM
orbital plane by an amount AM + A /0 where i/0 is the mutual

inclination of these two planes (5.1450). For the theoretical

justification ,[2- 6 ] see the treatment contained in Chapter 3.

Now, let w- be the argument of perigee of the satellite orbit,

referred to plane Co. The eccentricity will reach a minimum when the

perigee will be exactly contained in plane o, after a time equal to the

half-lifetime, L/2. For confirmation, the reader should refer to

Chapter 3. For small sin o, in the case of a southwards injection,

we write CRITERION 6 (Version B):

> = _- W_ > L (2.4-18)
2 6W 2

The time-rate of change of w- is computed from = ( M + ( LRS (+

In this formula, from Lidov's formula in the long-range

LR, A [(cos2i - + 2 1/2 (2.4-19)
dd 2s

Factor (1 + w) results from averaging the expression between brackets

in (~)SR' due to the sun, i.e. , with e % 0 ,

6W A0  1/2 2 - 1] (2.4-20)
) SR,Q - 5 1,0 2,0
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The average is taken over half a solar modulation (T /4), to obtain the

2
linear trend of m. vs. time, and (2,S can generally be neglected in

Equation (2.4-20). More details and examples are given in Chapter 3.

2.5 Examples of Application of the Method of Approximate Stability Criteria

From 1968 to the date of this writing, the approximate criteria approach

has been used as a fast, economical tool to generate the launch windows

of satellites in orbits of large eccentricity. The present section will

deal in some detail with examples of application on satellites: IMP-B,

IMP-G, IMP-I, IMP-K and K' (mother-daughter system).

2.5.1 A check of the method: IMP-B launch window

In order to check the effectiveness of the above method, it was

decided to try 'and recover the launch window map for IMP-B, which had

been well documented
[2 - 11]

This launch window map had been established during the preliminary

studies on IMP-B and -C. The orbit had the following initial data

(at injection):

h = 109,952.5 Nmi
P

h = 104 Nmi
p

a = 108,290.5 km

e = 0.93932277

ia = 32.912693 deg referred to a (earth's equator)

S = 133.659044 deg

Days studied: April 11 to June 15, 1965

Hours studied: 8.00 to 18.00 hr. U.T., time of injection, at perigee



2-35

Failure to meet any of the criteria, 1 to 6, led to the rejection

of corresponding launch hour on the day considered. The results are

compared to those obtained by NASA's numerical integration program ITEM,

based on Encke's method (Fig. 2.12). It is seen that the topologically

complicated features of the contour separating the "stable" and "unstable"

regions are well recovered. The error in predicting "peaks" or "valleys"

in the contour is at most of the order of a few tenths of an hour, and

much less on the average. The largest discrepancies are recorded at ITEM

"marginal" points, i.e. for orbits, otherwise stable, having a height of

perigee between 90 and 100 N.mi. for one orbit only, which is of little

consequence in practice. This accuracy appears sufficient for the

purposes of mission analysis.

It should also be emphasized again that the lifetime condition

is far from being the only one to be considered. Constraints of a

technological or scientific nature will further reduce the stable region

into a much smaller one, acceptable for the mission. In this reduced zone

of the maps, a final, accurate sutdy is then made, using elaborate and

expensive digital integration methods.

2.5.2 General comments on the economy of the method

It is obviously impossible to accurately pinpoint the savings

factor obtained by using one method compared to another, particularly

in a time-sharing environment. However, good estimates of the orders

of magnitudes can be given, and to the maximum extent possible, the

conditions in which comparisons are made will be clearly stated.
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As an implementation of the above method, a program called SABAC

(for Stability Analysis By Approximate Criteria) was written in FORTRAN 4

to check, on the basis of the above criteria, whether a point on the

launch map is stable.

On the UNIVAC 1108 of Carnegie-Mellon University and in OS, it

took no more than 0.02 sec per calculation point. This figure should be

compared (with, as we said above the "order-of-magnitude" viewpoint) to

7 to 10 min for conventional numerical integration programs run on the

same machine, integrating over a one-year lifetime. Hence, an economy

factor of the order of 10 , with the same amount of information obtained

in the determination of the overall launch opportunities.

It is worth mentioning that SABAC includes an analytically defined

ephemeris of the Moon, giving the distance with an error smaller than

500 km at maximum. The Sun's ephemeris is read in.

As a last comment, it should be repeated that the method is obviously

no substitute for the detailed study, by a numerical integration on a

digital computer, of a particular set of launch days and hours, and the

corresponding history of the orbital elements over the whole lifetime.

But this may now be done only in those finally selected "target" regions

of the map, where all conditions of constraint are met.

Program SABAC comprises 2 versions, which differ by the method used

to estimate the lifetime. Version A is suitable for orbits which are

not quasi-normal to the ecliptic, i.e. it should not be applied to IMP-G.

Version B is suitable for orbits nearly normal to the ecliptic, such as

the orbit of IMP-G. Both versions are thoroughly documented as part Dl
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of the volume "Documentation of programs and subroutines" appended to this

report. A slightly different version, of the same programs, also exist

at NASA, the difference being that a subroutine, SUNEPH, computes the

Sun's ephemeris rather than entering the Sun's coordinates as data.

2.5.3 IMP-I launch window

IMP-I (IMP6) was a 636 lb. spin-stabilized spacecraft, with its

spin axis nominally perpendicular to the ecliptic plane 2-9 It

carried a payload of 12 scientific experiments and one engineering ex-

periment. It was launched on March 13, 1971 at 11.15 EST, and inserted

into an orbit having the following characteristics

- Orbital period : 4.13 days

- Perigee : 243 km (initial)

- Apogee 206,258 km (initial)

- Lifetime in orbit: 3.6 years

- Inclination : 28.69 deg.

A preliminary orbit was given to us by GSFC, in late 1969. It

had the following parameters Revised, 02/70

- Height of Apogee : 217572.19 km 216676.62 kn

- Height of Perigee : 277.7998 km 240.24 km

- Inclination (equatorial): 28.900530 28.29960

- Argument of Perigee: -53.14560 -66.20370

- Longitude of Perigee: 115.91055 (East) 112.670 E

- Latitude of Perigee : -22.750 (South) -25.8380S

- Lifetime : 3 years 3 years
The launch windows of Fig. 2.13-2.14 were obtained.
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It is of importance to note here that a NASA GSFC's request, a

series of cross-checks were made between NASA's digital integration

program (ITEM), SABAC and C-MU's program EOLA. Excellent agreement

was found, provided the allowed drop in perigee (73 km) was kept in

mind when inputting the data of SABAC. The results are summarized in

the following table.
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Gross-check of ITEM, SABAC-lA and EOLA

Day* TIME* ITEM SABACl-A EOLA

1) 319 1 Success** Success

2 835 days 777 days

18.5 Success Success Success

2) 320 19 Success Success

20 Success Success

21 Success Success

3) 324 20 Success Success

4) 325 19 Failure on 4-th Or- Ripple fail. Perigee history;
bit; perigee ht. = (Criterion 4) 240, 267, 168,
187 km. 327, 189, 142 km.

5) 326 19 Failure on 4-th Or- Ripple fail. Perigee history;
bit; perigee ht. = (Criterion 4) 240, 228, 182,
134 km. 288, 134 km.

6) 328 19 Failure on 1-st Or- Short Range Perigee history;
bit; perigee ht. = fail (Crit. 2) 240, 149 km.
149 km.

20 Perigee ht. drops Short Range Drop of 27 km.
to 190 km. in 4 or- fail (Crit. 2) in 1-st orbit;
bits (drop of 29 km. drops to 200 km.
in 1-st orbit). in 4 orbits.

21 Success Success Success

7) 330 19 Failures on 1-st Or- Short Range Perigee ht. drops
bit; perigee ht. = fail (Crit. 2) to 148 km. in 1-st
153 km. orbit.

21 Perigee ht. drops to Short Range Perigee ht. drops
199 km. in 1-st fail (Crit. 2) to 202 km. in 1-st
orbit. orbit.

8) 331 21 Perigee ht. drops to Short Range Perigee ht. drops
161 km. in 1-st fail (Crit. 2) to 163 km. in 1-st
orbit. orbit.

Day: Day number, 1970 (Reference - Jan. 1 = 0).

Time: U.T. in hrs. at injection (assumed to be at perigee).

**Success: Based on a 3-year lifetime.
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DAY* TIME* ITEM SABAC1-A EOLA

9) 332 22 Perigee ht. drops to Short Range Perigee ht. drops

186 km. in 1-st fail (Crit. 2) 188 km. in 1-st

orbit. orbit.

10) 334 24 Perigee ht. drops to Success

202 km. in 1-st orbit.

SABACl-A results reported here permitted a perigee drop of 73 km. (DPLIM = 73 km).

If no perigee drop were permitted, the failure points would remain so,

while a few of the "success" points would turn into failure.

EOLA is a digital integration program based on a variation of parameters

method with the true anomaly as the independent variable. Earth's oblate-

ness was included in these runs but the atmosphere was not.
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B. Kaufman and D.P. Muhonen, at NASA GSFC, carried out a detailed

analysis of the IMP-I launch window 2-9], subject not only to orbital

stability constraints but also to other conditions, for instance,

- the spin axis (or centerline)-station vector angle, for any

tracking station, should be between 550 and 1250. The reason

for this constraint are -8 db and -10 db in the antenna patterns

in the regions bounded by centerline-station vector angles of

less than about 400 and greater than.1350.

- ecliptic plane apogee-sun angle between 150 and 600, decreasing

with time. This angle is defined as the angle between the Earth

Sun line and the projection of the geocentric vector to apogee

onto the ecliptic plane. In other words, the projected apogee

vector will point to the subsolar point after between 15 and 60

days after injection.

For the fast mapping of the launch window, these authors used

the- Approximate method of SABAC [2- 5 ]. Diagrams such as Fig. 2.14 were

produced.quoting from [2-9]:

"The rapidity of this program allows one to map out a complete

launch window in a single computer run of less than two minutes,
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whereas use of numerical integration would require many hours. While

this program is approximate and is not intended to be highly accurate,

it provides an extremely useful picture of the launch window as

a basis for more detailed study. This program was obtained for the

IMP project office (p. 2).

On p. 4 of the same report, commenting on the SABAC lifetime con-

tour of Fig. 2.14:

"Various parts of this contour were chosen as test points in

the Encke program and it was found that the contour was fairly

accurate until approximately-March 16, 1971, near 1600 to 1800

hours, where some complex forces apparently are beginning to com-

bine in a manner that SABAC may not consider. As can be seen

by the points plotted on the curve, this complex action is most

significant around March 26 and appears to be disappearing at

about April 10 and therefore is probably a cyclic occurrence

related to the Sun. For this reason, if the launch is to occur

later than about March 24, extreme care must be used. Several points

plotted on Jan. 27 show just how sensitive the lifetime is to

injection time where a difference of 1h 15m in injection time

means the lifetime decreases from more than 3 years to about

4 days! Despite the above-mentioned complexities, Fig. 1 is

an excellent starting base for a detailed look at the launch

window".

As a final point of interest, in Kaufman and Muhonen's study,

a Monte-Carlo procedure to account for the dispersion at in-

jection should be mention here. Fig. 2.15, taken from
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[2-9], p. 13, describes the injection covariance matrix. In view

of the significant magnitude of the off-diagonal terms, it was

thought to be inadequate to only examine 3-a perturbations of the

diagonal elements of the covariance matrix. The devised Monte-

Carlo procedure generates a set of 350 random state vectors having

a normal distribution about the nominal, as defined by the co-

variance matrix. These 350 random vectors are then converted into

the SABAC input coordinates, and using the SABAC program, 350

corresponding launch windows are generated for each launch day

considered! (Needless to say, the cost of such a Monte-Carlo

study would have been prohibitive if carried out by conventional

numerical integration). The launch window lower limit differed

by no more than + 15 minutes from that corresponding to the nominal

state vector, and 99% of the upper limits were within 30 minutes

of nominal. On that basis, Kaufman and Muhonen could conclude

that raising the nominal lower limit by fifteen minutes and lowering

the nominal upper limit by 30 minutes should avoid any problems

caused by injection state errors.

2.5.4 Mother-daughter mission

A satellite mission on an orbit of large eccentricity, in which

a subsidiary satellite ("daughter") will be separated from the main

satellite ("mother"), is at present being planned by NASA and ESRO. In

the mission analysis of this spacecraft, S.J. Paddack, D.P. Muhonen and

G.B. Fried [2-2 2] used the approximate criteria method and SABAC to

generate a number of launch windows, spanning intervals of several hun-

dred days, for various values of the argument of perigee. Fig. 2.17 is

an example reproduced from [2-22].
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2.6 Auxiliary Programs

.In this section, we shall briefly describe some auxiliary programs

developed under this grant and to be used in support of the main

program SABAC for the development of launch window maps. They are:

- a program called "ECLIP" (existing in Versions 2, 3) which

defines the relevant orbital and injection parameters, for

given radius and velocity at injection, given inclinations

of the velocity and satellite spin axis vectors on the

transverse. It is often desirable that, at a nominal, "ideal"

time, the velocity at injection (Version 2) or spin axis at

injection (Version 3) be normal to-the ecliptic.

- a plotting program for the SABAC output, called "SABPL2" (a

slightly modified version was written by G. Fried of NASA GSFC).

2.6.1 Program ECLIP

ECLIP (here, more specifically, ECLIP2) is a program designed to

determine, on the basis of given: radius at injection, speed at injec-

tion, inclination on the equator, flight path angle (i.e. angle between

V. ., and the transverse vector, in the direction of flight), the follow-
In3

ing quantities:

1) The nominal injection time, on any given day of the year,

which guarantees perpendicularity of the velocity vector,

V. ,in to the ecliptic plane (the spin axis is sometimes

assumed to be aligned on V. .).
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2) The range of injection time, or "launch opportunity strip",

within which the spin axis of the satellite, at injection

lies within +50 of the negative normal to the ecliptic

(the injection is southwards).

3) The solar aspect angle at the boundaries of the above"strip",

and at the nominal injection time.

The goemetry of the problem is shown in Fig. 2.18.. Let (X , YC, Z )

be the geocentric ecliptic system, and (X-, Y , Za) the geocentric

equatorial system. The coordinate transformations are

X 1 .0 .0 X

Y 0= cos E sin e Y

Z 0 -sin s cos e ZE a

and

X 1 0 0 X

Y = 0 cos e -sin e Y
a S

Z 0 sin e cos E Z

The following vectors and scalars of special importance:
.+ .

a) rinj , unit vector to the point of injection (R.inj = Rinj r.inj

radius vector at injection)

b) v. ., unit vector along the velocity at injection (V.inj V. .inj'vinj'

velocity at injection)
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c) P, unit to perigee and Q unit along the positive semi-latus

rectum

- -+ --

The dependence of P on rinj , Vinj is recalled here.

Rinj injinj sin inj Q

-

in 1Pp [-sin vi P + (e + cos v. )inj inj inj

Solving for Q,

4 . 1 cos vin
Q = rinj v - sin inj

inj inj

Then
1 + e cos v. e + cos v.in

cos inl + A r.
inj sin Vinj sin v. Inj

-*In = In

Finally, with C =  A ' = p

e + cos vin sin v. C
+ = ecos . r i-V. . (2.6-1)

+ ecos v nj r i n j  1 + ecos v inj Inj

d) y, flight path angle, is the angle between the velocity vector

at injection and the transverse vector, in the direction of

flight. y is taken to be > 0 if the projection of Vinj on Rinj

is positive , i.e. if injection occurs after perigee.

e) Ys, the satellite spin axis angle, is counted from Vinj into s,

unit vector along the spin axis (assumed to be in plane rin, V ),inj inj

positive in the direction of positive y.

It is assumed that the injection is southwards. Of two possible

values of 9 a longitude on nodes in equatorial plane, the one
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to be retained is that which delays most the appearance of

long eclipses (more than several hours, near apogee). As

will be seen later, this amounts, for posigrade orbits (ia <

and an injection in the Northern Hemisphere, to requiring that

0a (which could be either in the fourth or second quadrant) be

in the second quadrant (or 0a + w, longitude of descending node is

in the fourth quadrant)

Numerical injection time

By definition, the nominal injection time is that time t ., at
in

which the velocity at injection (or vector vinj ), is aligned on the

negative normal to the ecliptic. Thus, v. inj = [0 0 -1]c = [0 sin E -cos E]

- 4- +
Evaluating r inj A vinj in the e-system, if n is the unit normal to the orbit,

rinj Av inj = cos yn

Thus

(rinj = [n cos , - nX  cosy , -sin y1

or

(rinj)a = [ny cos y, -nX  cos y cos e + sin y sin 6,
S S

(2.6-2)
-n X cos y sin e - sin y cos c,]

Ea

Therefore (r. .inj) can be determined from y, once n is known. Given
inj a

i , n is related to Q through

(n) = [sin Q sin i , - cos Q2 sin i , cos ia ]a

= [sing sin i , - cos E cos a sin i + sin e cos i ,

cos e cos i + sin e cos Q sin i ] (2.6-3)
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The problem is now simply to find Q2 such that Vinj is normal to the

ecliptic. Let (RA) be the celestial longitude of the projection of rinj

on the (XE, Y ) plane. Then

n = [- sin RA, cos RA , 0]

= [-sin RA , cos s cos RA , sin Ecos RA ]
4-a

is being imposed, if za is the unit along the Z -axis,

n.Z = cos i = sin e sin RA

The quadrant for RA (of two possible) being chosen from shadow considera-

tion, as explained above, the angle is determined from

cos i
cos RA - a sin RA = + sqrt(l - cos 2RA ) (2.6-4)

C sin e --

where i., are known.

Now from Equation (2.6-3)
ny cos i

Ca a cos 6
cos -

a sin i sin i sin E

and Q is in the same quadrant as RA . Note that Q has been obtained from

Equation (2.6-4) and (2.6-5) only, and is thus (as well as n) independent

of y, flight path angle. The injection time, tinj , is obtained as follows.

Let C be the angle, measured positively eastwards, between the injection subpoint

on the equator, and the orbital descending node (Fig. 2.18). From vectorial

equalities, if 6 is the injection point,

sin tan 6 cos = + sqrt (1 - sin 2 ) (2.6-6)
tan i

Now let (2.6-6) be computed for the launch point (yielding (1 ) and the

injection point (yielding 2). The Greenwich hour angle at the time of
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injection is

Ginj = G00:00 H.U.T.,on day "d" + 15.041688*(d*24 + tin j ) = Go + 15.041688 (in deg)

t. n, in hours, has to be comprised between 0 and 24. (2.6-7)

Also, if QL is the longitude of the launch site,

Ginj = DL +  1 - 52 + a + 180 (degrees) (2.6-8)

t inj is computed from

G.. - G
t 15.041688 (hours, from 00:00 hrs U.T.)
inj 15.041688

15.041688 (in deg.)

Multiples of 24 are added or subtracted to the numerator so that tinj

lies between 0 and .24.

The reduction to perigee, necessary for running data generated by

ECLIP in Program SABAC, is embodied in formula (2.6-1), in which,

successively,

C = R injVinj cos

Ini

a = 2
1 - e

a3/2
T r = 2

sat
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hA = a(1 +.e) - R

h = a(l - e) - R

cos v. 2= ( - R. .)/(e*R. ) and sin v j (Sign y)sqrt(l-cos2V )
Sinj I~(nj inj inj inj

P, from (2.6-1), is equal to [Xv, Yp, Zp] in the a-system.

Zp, longitude of perigee, is given by: sin SP= Zp;

cos &p= + sqrt(l - Zp)

cos E = e + (Rin j cos v. i)/a ; sin E. . = sqrt (1 - cos2E. .)
inj inj inj inj inj

3/2

T a (e sin E. - E. )
injection to perigee - inj - Einj

(This quantity is positive for injection before perigee or y < 0;

negative for injection after perigee or y > 0)

+ 1 1 t
Finally, if the unit along the nodal line is 

= sin i [A ], then

wa , argument of perigee, is obtained from cos w I =~1 *; sin w.

n [1 A ].

Launch Opportunity "Strip"

The launch opportunity strip is obtained by setting limits on the

angular departure between the satellite spin axis vector, s, and the

negative normal to the ecliptic. Now, assume that the nominal injection

time has been determined as above. 6, latitude of injection, being fixed,

at time t (tinj is supposed to be the nominal injection time), we have
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rinj t = [cos 6 cos RAa t , cos 6 sin RAa,t, sin 6]

n t  = [sin ia sin Q , - sin i cos Qat, cos i a

1at tt . + 15.041688(t - t.*)

RA a = (RA) * + 15.041688(t - t in )
inj

The unit vector along the spin axis of the satellite is given by

s = cos (y+ys) n A injt + sin (y+y s) rinj, t

The (spin-axis, negative normal to the ecliptic) angle a, is given by

sin a = IS A _sE (0 < o a 900) (2.6-9)

and the solar aspect angle 5, given the Earth-Sun vector IE-S at t, by

sin = S A S (2.6-10)

An example of result of these calculations is shown in Fig. 2.18.

A Fortran V computer program, called ECLIP, has been written at C-MU

and is described in documentation D-2.It determines, for given Rinj, Vinj,

i , y, ys, the nominal injection time, the launch opportunity strip, the

values of angles a and B. It has also been used by S.J. Paddack in the

[2-8)
mission analysis of IMP-G

Modified version (ECLIP3)

In this version, the nominal injection point is defined on the basis

of the satellite spin axis vector s (defined by ys) being normal to the

ecliptic. Formula (2.6-2) still holds, with ys replacing y. Obviously,

the latitude and longitude of injection will depend on y s . The time of
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injection, computed as above, only corresponds to the time when the

orbital plane (of fixed i ) contains the normal to the ecliptic; it

is thus ys - and y- independent. For instance, if we chose ys =-Y

s is along the transverse and the injection occurs in the ecliptic.

With that equality, the launch window strip can be determined without

any need to restructure program ECLIP.

2.6.2 Program SABPL2

SABPL2 is a plotting program documented in D-3, accepting the

punched output from SABAC 1 or SABAC 2. It plots the launch window

and launch opportunity "strip" as defined above. The strip is hori-

zontal (if output is from SABAC) or oblique (if output is from SABAC 2,

with the "strip" defined by ECLIP)
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INJECTION STATE VECTOR

1. ALTITUDE, ABOVE MEAN EQUAl OR (km) 231.35075

2. VELOCITY (km/sec) 10.806989

3. FLIGHT PATH ANGLE (deg.) 0.
4. FLIGHT PATH AZIMUTH (deg.) 73.5944

5. LATITUDE (deg.) -23.966 (SOUTH)
6. LONGITUDE (deg.) 111.449 (EAST)

COVARIANCE MATRIX

319.475 -.301558 -1.89925 3.06964 -1.85248 -7.01463

.000314949 .00168757 -.00303874 .00174996 .00661598

.0536598 -.0191042 .0116318 .0393667

.0982999 -.0183223 -.0649491
.0111156 .0392638

.159351

FIG. 2-16. COVARIANCE TABLE, IMP-I ORBIT

(FROM REF. [2-9]1
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CHAPTER 3

A Study of Orbits of Large Eccentricity Quasi-Normal

to the Ecliptic

3.1 Introduction

Relatively early in the present study (1968-1970), it appeared of

interest to initiate a study of the "practical" stability (in the

sense specified in Chapter 2) of high eccentricity orbits having an

inclination on the ecliptic close to 90*
. This was to be the case

for satellite IMP-G, which was launched in June 1969. A very detailed

[3-1],[3-2]
description of the results has appeared elsewhere

A thorough study of IMP-G orbit and launch time was carried out at

NASA GSFC by S.J. Paddack [ 3- 3 ] , who used ascomputing. technique ITEM

and a Perturbation Routine for final, accurate results by numerical

integration on a computer, and our program SABAC, based on the

approximate criteria approach, for the fast generation of global launch

windows. ECLIP, written at C-MU, was also used to define the launch

opportunity strip, defining a nominal time, and an interval on both sides

of this nominal time, in which the alignment of the satellite spin axis

on the normal to the ecliptic is closely realized.

As is schematized on Fig. 3.1, taken from Ref.[3-3], it is clear

that if, to simplify the reasoning, we assume that the velocity at injec-

tion is very nearly coincident with the satellite spin axis and is normal

to the ecliptic, the resulting orbit will be inclined by i = 900 on the' S
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plane of the ecliptic. The corresponding inclination on the equator

ia, for a southwards injection, will be comprised between 900 (if

0= = +900) and 66.550 = 900 - s (if 2 = 0 = +1800). The fourth

and first quadrants for E ,EQ would correspond to retrograde orbits,

and the third one might lead to prolonged times in eclipse, near apogee,

for up to 9 hours [ 3- 3 : therefore, these three quadrants are not to be

considered, and we shall assume from now on that 90
0 S 9 or Qo < 1800.

In the following, the approximate criteria shall be used consistent-

ly; - the lifetime criterion is described in Section 2-4.

[3-1]
3.2 Study of the Stability of Orbits Nearly Normal to the Ecliptic

3.2.1 Simplified model: planar case.

As an approximation, we shall first consider, that in view of the

smallness of the inclination of the moon's orbital plane on the ecliptic

(IM= 5.1450), those two planes are approximately coincident. With the

notations of Chapter 2, let id be the inclination of the satellite orbit on

the orbital plane of perturbing body "d". As said above, we have

approximately (Fig. 3.2)

=1 iS '= 900

Long-Range and Very Long-Range Stability

As explained in Chapter 2, we shall use Lidov's "11", secular theory.

With the above simplification, we can define "Ad" as the sum AM + AS

(Note again that AM/AS is independent of a, and equal to 2.18).

The changes in the orbital elements due to the sun and the moon, per

satellite orbit, are (angles, referred to the ecliptic, are not subscripted)
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6a = 61 = 60 = 0 (3.2-1)

6e =e /2(AM + AS) sin 2w (3.2-2)

A6 = AS (3.2-3)
20

c",

= (5 cos 2w - 1)(1 - 2) (3.2-4)

5 cos 2w - 1

it

c 2 = (1 - eo)(5 cos 2wo - 1)

Subscript "o" refers to initial values.

To this approximation, orbits initially normal to the ecliptic will

remain so for all time and will have a constant longitude of nodes. Now

consider Lidov's constants, cl and c2 , which are integrals of the "11",

secular differential equations of motion:

cl = cos2 i = o cos2 i0 = 0

c2

2 = (1 - )( - sin 2w) = (1 - )( - sin 2wo) 10 (3.2-5)

Any of the orbits will be represented by point (c 2, 0) on segment AC of

the c2 axis of Lidov's (c1,c2 ) diagram (Fig. 3.3). From Equations

(3.2-1) to (3.2-4), the evolutions of w and e are described by Lidov's

discussion [3- , in which Ad is replaced by AM + AS•

* 1 1 * * * * * *
Let 1 w arc cos(5) = 39.230, w 2 = w - w l 3  + w1 w4 

= 2f - wl.

1/ 2 sin 2m

Then, considering that 6c = -A(1 - 1/2 sin 2w
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a) 4 < W < Wl (Region 1, Fig. 3.4) or W2 < W < 
*3 (Region 3, Fig. 3-4)

If initially, w, < 0 (w. < 7), e decreases until w reaches 0(7).

The minimum for e is given by

e = 2e2(5 cos 2w - 1) (3.2-6)
nn 4 o

Thereafter, e increases and reaches e at w . With R ,max e,max

earth's radius, and h , critical height of perigee, it is obtained
P

from

2 R +h
1 - e = - [1 - ] (3.2-7)

max a

5 cos 2w - 1 = (1 - Co)(5 cos 2w o - 1) --- (3.2-8)
e,max emax

and w is in the same region as wm. If initially, w. > 0
e,max

(wo > r), there is never a decrease in eccentricity. From the

viewpoint of long-range stability (Criterion 1 of approximate

criteria method), sub-regions la, 3a are acceptable.

* * * *

b) wl > W > w2 (Region 2, Fig. 3.4) or w3 < w < m4 (Region 4, Fig. 3.4)

I 37
Here w decreases. If initially, w. > ( > -), e decreases

until w = (3r/2). The minimum for e is

emin  e (1 - 5 cos 2wo )  (3.2-9)

Thereafter, e increases up to the value given by Equation (3.2-7).

If initially wo < 7 (wo < 3r/2), the eccentricity is always in-

creasing. Thus, from the viewpoint of long-range-stability, region

2b. and 4b. are acceptable.
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By reason of symmetry, and since, as was mentioned earlier, our

interest here lies in orbits with southwards injection, the analysis will

be restricted, without loss of generality, to the second and third quad-

rants of the orbital plane (Fig. 3.2). On Fig. 3.4, point "B" corresponds

to w = m2 and appears as an unstable point, whereas point "D", for which

w = w3, appears as a stable point. Only 2b and 3a are acceptable for long-

range stability in these two quadrants.

If very-long-range stability is now considered, an assessment of the

orbital lifetime can be made here, provided it is fairly large compared to

the periods of the perturbing bodies (in practice, the required lifetime

equals many orbital periods of the moon, but only one or a few orbital

periods of the sun.) This so-called "long-range" (LR) lifetime reads,

in satellite periods,

Region 2b (rr/2 < mo < w2)

)LR 20 f/ -1 dw (3.2-10)
2LR A

Wo

Region 3a (w2 < w. < r)

(L) 2 =- 1  - d, (3.2-11)
2 LR A oW

in which is given by Equation (3.2-4). As an example, LLR is given,

in days, as a function of w, for an orbit of e. = 0.945991, a = 124,283 km,

rsat = 5.0468 days (Region 3a., neighborhood of the ecliptic) (Fig. 3.5).

If the orbit originates at w= w2 + n (n small and positive angle)

evolution B_ - A will lead to a larger LLR than evolution B + C:
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if X is the point having argument f - 20w = 101.540, the time spent along

B_ X is the same as that along B+C. Thus

tB-+A B-+X X+A B-*C

In.conclusion, larger lifetimes will be possible in region 2b, the larger

the closer the argument of perigee is to W2. In region 3a, for maximum

LLR' w should be made equal to m2 + 0. The upper limit for LLR in this

region is infinite since LLR + - when w - 02."

SHORT-RANGE AND INTERMEDIATE-RANGE STABILITY

The short-range behavior of the eccentricity, which determines the

short-range stability, is described by Equation (2.4-7 )

6e = -e/2[ 3, M + S 3,S] (3.2-12)
SR /2 3,M 3/2 83,5]

EM  ES

From Fig. 3-1, it is apparent that if w were 1800, as is the case for an

injection, at perigee, in the ecliptic plane, E2,d would vanish and ini-

tially, the short-term stability would be neutral (Criterion 2).

Due to the short-range increase of m, as given by

(6w/2[(. AM PM3 As pS 3
(3w) ]-) + ( ) (S) > 0 (3.2-13)

WO= M rM M S

there is, however, intermediate-term instability (Criterion 4) since E2,d

will become < 0 at the next orbit. Thus, in the quadrants considered,

for short-term stability it is required that the perigee be above the

ecliptic plane
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< W < 7 (3.2-14)

which also ensures LR stability (Criterion 1)

e 1 e /2A sin 2m < 0 (3.2-15)
LR 4

For intermediate-term stability, a margin (of the order of a few degrees)

should be provided, so that the perigee is sufficiently above the plane

of the disturbing bodies. In order to obtain actual lifetimes which are

as long as possible, one could possibly select those launch days in the

year leading to a slope, on the e vs. time from launch curve, and over a

time of the order of T s/4, which is assmall as possible. For fixed eo,

id = 2 wO and thus fixed values of Lidov's constants cl and c2 , (
6eLR)M

is fixed. One requires to make <6eSRS>Ts/4 as small as possible. As

an example, for a celestial longitude of the radius vector at injection

RA , in the fourth quadrant (Fig. 3.6), the best launch day of the year

will be that for which the unit vector to the sun is along axis 3 = 3

normal to the orbit, on the average over Ts/4 (half a solar modulation.)

An example is treated in Section 3.3.

Conclusions from simplified model

In summary, to the approximation of the simplified model, and with

an analysis restricted, without loss of generality, to the second and

third quadrants of the orbital plane, it is concluded that

a) the highest realizable value, in region 3a. of Fig. 3.4, for

the long-range assessed lifetime is defined by Equation (3.2-11),
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where w. is the minimum feasible w.

b) short-term and long-term stability are strictly realized for w

in the second quadrant, whereas intermediate-term stability

requires that w differ from (or 1i/2) by a negative (positive)

margin, in practice a few degrees for a lifetime of one year.

c) it is possible to define a best day in the year leading to maxi-

mum actual lifetime for given eo,w and inclination on the equator.

3.2.2 Effect of the inclination of the moon's orbit on the ecliptic

We still assume that the satellite orbital plane is normal to the

ecliptic, RA ,p is defined as the celestial longitude of perigee (Fig. 2-11)

If P is sensibly in the plane of the ecliptic, and above the moon's plane,

let RcM be the longitude of nodes of the moon's orbital plane, referred to

the ecliptic. Thus

QM - 7 < RAp <0e,M

Stability is assured in the long-range, since (
6e)LR,S = 0 and

(6e)LR,M < 0. The locus of southernmost (northernmost) admissible perigee

points on the unit sphere is obtained by writing

(6e)L R  (1 - )6 /2 (AM + AS*S) = 0 (3.2-16)

with d = f - d. It is approximately the arc of great circle having

normal Z inclined by

AM (3.2-17)
AM + AS M

on the normal to the ecliptic, Z , in plane (ZE , ).In the long-range,

therefore, IM may be accounted for by rotating the ecliptic by i about the
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nodal line of the moon. This new plane of reference, called w-, then re-

places the ecliptic.

As an example, for a nominal injection at perigee and in the ecliptic

(fourth quadrant), Fig. 2.11 shows that an inclination on the equator

ia = 90' should maximize the long-range assessed lifetime if oC,M = 00

(which is in the case in early spring 1969), in a range for i

rr * -
2 < i <-2 a 2

An example is treated in Section 3.3.

In the short-range, were the sun alone, condition

2

would still hold, i.e. stability in the short-range would be realized

when the perigee is in the second quadrant of the orbit. If the injection

occurs at perigee, in the ecliptic plane, the short-term effect due to

the sun alone is zero; the moon critically determines short-range stabil-

ity. If the projection on the ecliptic of the vector to perigee, OP, in

Fig. 2.11, is normal to the moon's nodal line in the ecliptic, ONM, the

moon is certainly favorable or neutral if

p1,M 2,M > 0

and cannot be satisfied throughout the lunar month.

In the intermediate-range, the margin on w, to which we referred

above, should not be construed with reference to plane o.. The condition

2
on the best day of launch still holds approximately, to 0(L).
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3.2.3 Effect of a small departure of the orbital inclination from normal

to the ecliptic

Earlier, we defined a "nominal" orbit as one normal to the ecliptic,

and it is desirable to qualify the effects of a slight departure, Ai , from

being normal to the ecliptic. Such a departure will be caused, for

example, by the Earth's rotation for a launch slightly earlier or later

than nominal.

Lidov's formulae, in the "11", secular theory , written up to

0(Ai ), yield

6LR =1 A(1 - E) 1/2 sin 2w (3.2-17)
LR 2 2

For long-range stability, it is required that 6ELR > 0, or sin 2m < 0.

To the same approximation,

= 1 Ae/ 2- sin2m] (3.2-18)
LR 2 5

Therefore, the developments of the two previous sections concerning long-

range stability apply.

In the long-range, the orbital inclination varies according to

1 E
6iLR = - A ( 1 - e) sin 2w 1-- 2 (3.2-19)

and i will increase (decrease) for Ai > 0 or i < - (Ai < 0 or i > -)

and tend to 1 for stable orbits.

The rotation of the line of nodes will be of order Ai ,

6LR = Ai [(1 - e)sin 2  + (3.2-20)

Developments relating to short- and intermediate-term stability involve
2

geometrical conditions in the orbital plane, and still apply to 0(Ai ).
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3.2.4 A Priori Prediction of Orbital Lifetime

It has been seen in Section 2.4.3.3 that, in order to assess the

orbital lifetime, T*, and compare it to the required lifetime, L, one

possible method consists in computing Lidov's constants cl, d and cZ,d '

for the sun and the moon, and to weigh them with amplitudes AM and AS

to obtain resultant cl and c2 . It has also been mentioned that for

orbits nearly normal to the ecliptic, i 1 iS ,_ 900, the approximation

wM I wS might not hold at all if, say, w - wd is a small angle (injec-

tion southwards, near the ecliptic). In particular, in the equation

1/2
6eLR,d = Ad e/sin2id sin 2wd

sin 2wd might be of different sign for the sun and for the moon.

Therefore, it appeared necessary, for satellites spending a signi-

ficant fraction of their lifetime "between" the orbital planes of these

two perturbing bodies, to come up with a better method of estimating the

orbital lifetime T*. Typically, when the unfavorable influence of the

sun (6e > 0) on the evolution of the eccentricity, as would be the case

if C 1, c2 were with reference to the moon's orbital plane 
only, it was

found (3 2- 1) that the inaccuracy in some parts of the contour of the map

(determined by the lifetime criterion) was of the order of 0.3h, a

large error in the case of IMP-G.

The alternative method adopted in this case has been briefly de-

scribed in Section 2.4.3.3, but will be repeated here. Plane w-, as defined

above, is the reference plane used to compute the argument of perigee of
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of the satellite w. (Fig. 2.11). Now, half of the orbital lifetime,

T,/2, will correspond to the time needed for the perigee point to reach

plane c. . The time-rate of change of w- is computed. in equation

-( ) 6+ (1 + w)
6T 6T LR,M + LR,S

as being due to the long-range effect of the moon and, in order to cap-

ture the linear trend of w. vs. time, the average of the short-range effect

of the sun taken over half a solar modulation cycle, Ts/4 (see

Fig. 2.5). As an example, it is interesting to note, in Fig. 3.7, where

w vs. time has been obtained from numerical integration program EOLA,

that the crossing of plane . (as marked by the arrow) quite accurately

corresponds to the topping off of the height of perigee.

To be more specific, we consider the "ll", short-term theory, as

embodied in Equations (2.3-14). Per orbit of the satellite, 6Tsat, if eS

is neglected (a6 pS ) and i S % , for body "S",

6_ AS 1/2 2 2

_a 5 (4,S - S2,S - 1)
sat

In the vicinity of the ecliptic, 52,S can be neglected. Now

2
2 _ cos 2 (RAS  - RAp)
1,S

in which RA is the celestial longitude of the perigee. Let 6 = RA - RAE.



3-13

6w~ 1 1/2 1 + cos 2_
<6-----As As4

sat Ts/4 2 s/4

1 A 1/2 1 A /2 4
5 s 5 S x inj

_6W__ 6w w
6 sat LR,S + LR,S

in which

w = - - sin 2
I inj

For an injection in the neighborhood of the ecliptic, and given i , a "best"

6w~
day is one which minimizes 6--- , or for which

(RA+ k (k positive integer or zero).
(RA S - R)INJ =  inj k2

An example is given in the Section 3.3. In the same section, Table 3.3-I

also shows the good agreement obtained, by this procedure, between the

predicted lifetimes, the latter being obtained from numerical integration

programs (EOLA or NASA's ITEM).

3.2.5 Effect of the Earth's oblateness on the orbital lifetime

In the course of the present study and the subsequence application to

IMP-G, it was found that orbital lifetimes can be significantly enhanced

by the effect of the equatorial bulge (J2 0 term in the Earth's potential),

by up to 20% in some cases under study. It is recalled that so far the

Earth's potential had been considered spherical in the analysis. As is

well known, due to J2 0 ' there will be no secular changes of the satellite

semi-major axis, inclination or eccentricity. The line of apsides (in the
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orbital plane) and the line of nodes (in the plane of the equator) will

rotate at rates proportional to 4-5 sin 2i and cos i , respectively.

Since all is considered here are higher than critical, (6w /6T)obI is < 0,

and in the range investigated, its magnitude is maximum when ic = 900.

The same "beneficial" effect of oblateness on the stability of high

eccentricity orbits of natural satellites is mentioned in examples given

[3-4] [3-5]
by J. Kovalevsky and Lidov

Typically, the kind of orbits studied here have perigees which rise

very little (103 to 2 x 103 km) over the whole orbital lifetime. This

is in contrast with the more frequent occurrence described for example

by Shute [3 6 ] .

3.2.6 Conclusions of the study

The conclusions and practical implications of the above study, when

applied (without loss of generality) to a satellite launched southwards,

into an orbit quasi-normal to the ecliptic, with a perigee in region 3a

of Fig. 3.4, are as follows:

a) High celestial latitudes of the perigee are required for the

stability in all ranges. They will be the more favorable the

1 1
closer the argument of perigee referred to w, is to R - 2 arc cos().

In particular, a positive flight path angle (i.e. injection after

perigee) will be beneficial, within limits allowed on the drop in

perigee height as compared to injection height,and mandatory if

the injection is to take place in the close vicinity of the ecliptic.
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b) For a nominal launch, at perigee and in the ecliptic, and fixed

eccentricity e and inclination i , it is possible to define a

best day in the year giving the longest lifetime.

c) The most suitable inclination on the equator, for a nominal

launch, is that corresponding to an orbital ascending node at

+ from the moon's node.
2

d) If the nodal line of the moon is sensibly aligned on the vernal

line (the case in early spring 1969), the angular height of

perigee above w. is n - W + p (Fig. 2.11). Therefore, if

i < 90', advantage can be taken of the Earth's rotation to

increase this angle, and consequently the lifetime, by launch-

ing earlier than the nominal time.

These conclusions were used with profit in the mission analysis of

a high. eccentricity satellite in anorbit nearly normal to the ecliptic,

IMP-G[3 -2 . This study is described hereunder.

3.3 Application to an Actual Satellite: IMP-G

3.3.1 IMP-G orbital data

The abovementioned study of IMP-G orbit and launch time, carried out

by S.J. Paddack [3- 3], should be referred to for more specific details and

mission analysis studies. Our motivation here was to use the results of

Section 3.2 and apply them to satellite IMP-G, in order to possibly pre-

dict the qualitative and quantitative effects of the launch parameters

on the orbital evolution, and more specifically the orbital lifetime (re-

quired to be larger than 1 year, even for the 3a velocity dispersion orbit).
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A ,description of a typical orbit follows:

IMP-G

hA = 235,463 km

h = 343 km
p

e = 0.946

Tat = 5.05 days

y (flight path angle = angle (tVinj, transerse), positive if

tV. . r. > 0): -2o to +20.
inj inj

y (satellite centerline angle: angle Ispin axis' V inj): -2 0 to +20.

i (inclination of orbit on ecliptic): about 900, at nominal time

Injection in 4th quadrant of ecliptic

The above list calls for a few comments: IMP-G is spin-stabilized,

without active attitude control. It was desirable that the spin axis

vector Is, aligned within a few degrees on the velocity vector at injection

Vinj, be normal to the plane of the ecliptic, within a narrow tolerance

AC = + 50. Injection is made very close to perigee (within a few degrees).

Hence, the resulting orbit will be very nearly normal to the ecliptic. For

example, if y = = AC = 00, i.e. for an injection at perigee with velocity

and spin axis vectors exactly aligned on the negative normal to the ecliptic,

-Z , the perigee at the so called nominal time will be in the ecliptic, at

celestial longitude RA .. depending on the inclination on the equator,
( .3.8. For obvinj

is (Fig. 3.8). For obvious reasons, posigrade orbits are preferred (i< 900),
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and to avoid long periods in the earth's shadow at the outset of the

mission, only injection in the fourth quadrant of the ecliptic are to

be considered:

-900 ! RA < 00
E,inj

The constraint on the alignment of the satellite centerline on -Z limits

the launch opportunity to a "strip" of width equal to about 1.7 hour,

symmetric about the line of nominal launches (Fig. 3.9). As illustrated

in Fig. 3.10, the degrees of freedom in choosing a "suitable" orbit, with

a special emphasis put on achieving larger lifetimes, are

a) hour of launch, HL, inside the strip, on a given day

b) day of launch, DL

c) inclination on the equator, ia

d) flight path angle at injection, y

e) satellite centerline-velocity vector angle, Ys

The conclusions of Section 3.2.3.6 will now be used in a systematic in-

vestigation of the effect of these parameters on the orbital evolution.

3.3.2 Parametric study of IMP-G

3.3.2.1 Launch opportunity strip

Above described ECLIP program was used to define the launch opportunity

strip based on a specified maximum angle A between the spin axis and the

normal to the ecliptic. This strip defines a range of permissible injec-

tion within the specified tolerance. The "backbone" of this strip is the

time of nominal injection times, at which the spin axis and the normal to

the ecliptic are exactly aligned (Fig. 3.9). This can correspond to a
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nominal injection, i.e. in the ecliptic plane. The misalignment Ys

between the velocity vector at injection and the spin axis, should then

be compensated for by an equal and opposite flight path angle,y (Fig. 3.10).

3.3.2.2 Launch window

The stability analysis'of the orbits derived from program ECLIP was

carried out by means of program SABAC.

a) Influence of the flight path at injection, y

To an increase in the magnitude of y for constant Rinj , Vinj '

there corresponds a drop in the height of perigee equal to about

4 km/deg, of change in y, in the range Iyl 20 . The rate in-

creases with increasing y.

All things being equal, a positive flight path angle (injec-

tion "after" perigee) causes a high initial angle of perigee

above plane w- , consequently a larger lifetime. This leads to

an improvement in the "quality" of the launch window, as

measured by the area covered by the "success" region within the

launch opportunity strip. Fig. 3-11 to 3.12 graphically portray

this for the IMP-G satellite.

b) Influence of launch time on a given day

It is apparent for Fig. 3.10 to 3.12 that the launch window

seems to be more favorable at times earlier than that of the

nominal injection. Fig. 3-13, which is a plot of the predicted

lifetime as a function of the time of day, also indicates the

same effect. As was mentioned in Section 3.2, in early spring 1969,
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the nodal line of the Moon is very sensibly aligned on the

positive vernal line, axis XE (in Fig. 2.11). The angular

height of perigee, approximately equal to f - w C+ P , is

increased, for given ia , when the injection occurs earlier

than at the nominal time, due to the rotation of the Earth

in intertial space. It is also clear that if in = 900 and

for this position of the Moon's nodal line, the lifetime will

top off at nominal injection time, a fact illustrated by

Fig. 3.13.

c) Improvement of the lifetime with the satellite centerline

misalignment angle, ys

Figure 3.14 illustrates that the lifetime increases with m. ,

argument of perigee relative to plane o. . The figure is a

plot for a nominal injection of IMP-G, and ia = 900, the high

values of mbeing attained by the use of a negative ys and a

compensating, positive y.

d) Influence of the launch day

For an injection in the close vicinity of the ecliptic, a

"best day" for given i is one for which (RA - RA ,p) = 4, at

5rr 6OX
injection, is - , since 6 - is minimized. This is shown by

Fig. 3.15, for i = 83.80 (nominal injection of IMP-G[3-3]).

e) Influence of the inclination on the equator, i

In the period spring-summer 1969, the celestial longitude

of nodes of the Moon is close to 00 (within 50 over March-July 1969).
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Hence w, , and the lifetime, increase with inclination in

the interval 66.550 S i a 90° . For nominal injection con-

ditions, and w = 0, the lifetime is plotted vs. inclination

i in Fig. 3.16.

f) + 3a orbits

Due to the dispersion on the actual values of the velocity

at injection, it is important that the launch window also be

determined for extreme cases, such as a 3a error on the velo-

city at injection. The probability of having more than a 3a

error on the injection conditions is only 0.26%. The following

list summarizes the lo (1 standard deviation) with the Delta

launch vehicle, as taken from Ref. [3-3].

1-a Vehicle Errors

Latitude + 0.43370

Longitude + 0.23350

Altitude + 15.426 km

Speed + 0.010998 km/sec

Azimuth flight path angle + 0.65260

Elevation flight path angle + 0.52080

Spin axis azimuth angle + 2.04350

Spin axis elevation angle + 1.68270

The 30 dispersion limits on the velocity at injection were

studied.for the IMP-G launch window, and are illustrated in Fig. 3.17.

It is seen that until day 160, approximately, the 3a window is
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totally closed, and that around the middle of the year (from

day 180 to 210), the window is favorable, even in the +3a

dispersion case.

3.3.2.3 Comparison with numerical integration programs

In more detail than Fig. 3.7, Figures 3.18 and 3.19 show the evolution

of some orbital parameters for a sample IMP-G orbit, as obtained from

digital integration program EOLA. The simultaneous topping off of w. and

of the height of perigee have already been mentioned, and this provides an

experimental justification to the procedure adopted to assess the orbital

lifetime.

Comparative lifetime values for IMP-G, as obtained from SABAC, Version B,

on one hand, and from NASA's ITEM (Encke's method) and EOLA (Variation of

parameters) are tabulated in Table 3.3-I.

DAY Inj. hour y Y Life days Int. a
1969 U.T. deg. deg. pred. act. prog.

06/01 9.488 1.5 -1.3 413 410 VP

06/01 9.988 1.5 -1.3 340 370 VP

06/14 9.321 -1.28 -1.3 425 404 VP
397 EM

05/01 11.363 1.5 0 362 389 VP

05/01 12.263 1.5 0 319 b 348 VP
05/08 10.097 1.5 0 FAIL 364 VP

05/08 10.297 1.5 0 355 369 VP

aVP: Method of variation of parameters; EM: Encke's method

bAt T + 0.1h:350

Table 3.3-I Comparison of predicted and

actual lifetimes
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As the table shows, the average error between the predicted and

actual lifetime values is of the order of 5%, and on the pessimistic

side. Case 4 is a case in point. It corresponds to the evolution por-

trayed in Figures 3.18 and 3.19. The predicted lifetime was 362 days

and actual one 389 days. Case 7, on the other hand, illustrates an in-

accuracy in the definition of the lifetime boundary. However, the life-

time predicted for the next point on the same launch day (for a step of

0.1 hour) is in good agreement with the actual value.

3.3.3 Implicationsfor IMP-G orbit

On the basis of the above study, recommendations could be made re-

garding the choice of an orbit having a long lifetime, ample launch

opportunities and still fulfilling a set of additional constraints. The

finally selected orbit would have to consider, of course, the capabilities

and limitations of the launch vehicle. Of particular interest here, is

the combination of a positive flight path angle with a negative "spin axis

centerline-velocity vector" angle. The latter combination will enhance

stability throughout the launch opportunity "strip" and/or permit injec-

tion at more moderate southern geographic latitudes.

3.3.4 Conclusions

In this example, it has been shown that the method of approximate

stability criteria could be used with profit in a parametric study of the

influence of various orbital elements on orbital lifetimes and the launch

window map. The analysis resulted in practical recommendations which can

be assessed within the perspective of the global mission.
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CHAPTER 4

A Modified Lidov's Method by Non-Numeric

Computation, with Applications

In this chapter we shall deal with the application of non-numeric

computation to the theory of geocentric orbits of large eccentricity.

The developments constitute a modification and an extension of Lidov's

theory[4-1]: a modification because it recognizes that Lidov only intro-

duces and studies five orbital elements, whereas rigorously six of them

should appear; an extension, because the developments are pushed to

higher order than the "11", "21", and "12" terms of Lidov, thanks to

the labor-saving and error-free features of non-numeric computation.

Finally, the effect of oblateness is considered and numerical examples

are given to illustrate the degree of accuracy and the marked economy

in computer time obtained by using the present approach. The main lines

of the developments add a few specific examples are given here. For

much more detailed information, the reader should refer to the Ph.D.

thesis [4- 2 ] written by one of the authors of this report (R. Sridharan),

as the Principal Investigator's (Marc L. Renard) advisee.

4.1 Motivation

It is well realized by any mission analyst that repetitive, high-

accuracy calculations amounting in one way or another to direct, numeric-

cal integration of the orbit, can be a very expensive proposition in terms

of effort and computer time. Figures of the order of 10 to 15 min per
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launch "point" (day in the year, hour in the day) of the launch window

are quite realistic if a modified Encke's method is used on a large IBM

system (7094 or 360 series). The awareness of this problem led to the

development and use of a method of lower, but sufficient, accuracy, and

of very high computational economy, which has been described in Chapter 2.

Between these ends of the spectrum, at the inception of the present

study, there seemed to be a real need for a theory of intermediate com-

plexity which basically

- would be less costly than digital integration, by a factor

of 10 to 100.

- would include a sixth element, thereby resulting in an improve-

ment of the prediction of the "time flow" along the orbit

- would be adequate for eccentricities up to 0.95

- could be implemented on a digital computer, for the repetitive

calculations called for in mission analysis.

4.2 Main Features of the Approach

There are two main features in the approach: an extension of Lidov's

theory so as to include a sixth osculating element, and the use of sym-

bolic manipulation on the computer. These two points are now discussed

in more detail.

4.2.1 Extension of Lidov's theory

Lidov's theory [4 - 1] has been described at length in Chapter 2. It is

recalled that the equations of motion which are retained are five in
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number. They describe the time-rate of changes of elements, a, e, i, w, 0

as equal to expressions in the right-hand side, in which the small per-

turbing forces due to a third body appear as factors. But any sixth

element, such as T,, the time of perigee at the epoch (perigee), in

Kepler's equation of time

E - e sin E = n(t - T*)

is conspicuously absent from Lidov's theory. Furthermore, the "11", "21",

"31" terms given by.Lidov for five elements do not suffice to obtain high

accuracy in the case of high eccentricity orbits (0.9 e < 0.95).

Roth [ - 33 ]developed more such terms by hand computation, but did not go

far enough in the Legendre Polynomial (LP) expansion of the force, as will

be shown later. Furthermore, his choice of the sixth element is apparently

inconsistent, as will be shown in a later discussion.

The goal will thus be to obtain a "theory" describing the perigee-to-

perigee variations of the orbital elements. The developments will be

rendered more accurate both by the inclusion of a sixth osculating element,

which will result in a more accurate timing of the occurrence of perigees

and in a better computation of lifetimes; and by carrying the LP and Taylor

series of the perturbing forces to the order deemed necessary from esti-

mates of accuracy.

Alternate, relevant approaches and methods are examined by Sridharan in

[4-2] [4-3]
a literature survey , and include contributions by Kozai

Musen [4 - 4 to 4-] , Smith Fisher and Murphy , Fisher and

Cook and Scott
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4.2.2 Symbolic manipulation (non-numeric computation) on the computer

A rough assessment of the algebra and "bookkeeping" involved in pro-

ceeding to develop a modified Lidov's theory along the lines described

in Chapter 2, rapidly points up the need for mechanizing the work through

the use of SYMBOLIC COMPUTATION. As a result of using this technique, in

a special-purpose program, the extension of the theory to any order would

be carried out automatically on the computer. The process flow would be

as follows:

I INPUT: Coded differential equation, "order" desired etc...

II

algorithm, reorders terms etc.

III OUTPUT: Theory, expressed as a set of formulae, to order

specified

Parts I, II, III-will be examined in detail hereunder. At this stage,

however, the advantages of symbolic manipulation could already be described

as follows:

- Automatic development of the theory to any order

- Mechanization of substitution, transformation, etc. to auto-

matically condense, simplify, compare formulae

- Saving of analyst's time and effort

- No errors in algebra, given a pre-tested "correct" program and a

"good" computer. The latter are not minor reservations, of course,
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but given a sufficient volume of computation, any analyst is

bound to make errors, in spite of the fact that most of his

time might have been spent in rechecking algebraic expressions.

It is apparent in the literature that with the availability of compu-

ters came a vivid interest in automating the development of analytical

theories. Considerable effort [4- 11 to 4-34]has been invested in build-

ing special purposes programs and using existing languages for literal

computations in perturbation theories for the moon, planets and satellites.

Thorough surveys of existing systems and problems being studied were

made by Davis[411] and Jefferys [4- 12]

Poisson Series, of the form

(x,y) = E[Pj cos y j sin(jT Y

in which

x is a n-vector of polynomial variables

y is a m-vector of trigonometric variables

j is a n-vector of integers

S -
P., Qj are polynomials in the polynomial variables having,

possibly, negative exponents also.

have been the object of numerous special purpose programs [4-13 to 4-26]

which aim at economically and efficiently performing the following manipu-

lations
[4- 11]

- creation and annihilation of series

- parsing

- differentiation and integration

- substitution
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- numerical evaluation

Among many contribution, we could mention Barton's 4-14] expansion

of the lunar disturbing function to the tenth order in the LP expansion

and his attempt [4- 16 ] to develop Delaunay's canonical transformation

for the elimination of periodic terms, which ran into severe space problems

on the computer. This "space" constraint, and the enormous amounts of

Central Processing Unit (CPU) time needed for list processing are the

two major difficulties encountered in symbolic computation. Eckert and

Eckert [4- 15] used an IBM 620 and a Symbolic Programming System to obtain a

lunar theory of increased precision.

Deprit[4 -25] developed an analytical theory of the moon based on Lie

transforms 4-32] , using a set of processors developed for series manipula-

tion[ .  Deprit and Rom [4- 20] also used Lie transforms and series

processors to develop the analytical solution of the main problem in

Satellite Theory (all gravitational harmonics are zero except J2).

Carpenter [4-2 developed a program for automatic computation of general

planetary perturbations to first order, using Hansen's theory. Sei-

delmann [4-28] modified Hansen's method by using an iterative process in-

stead of a Taylor series.

To conclude, it can be said that the adoption of techniques or proce-

dures to economize on time and space results in a restriction of the class

of problems that can be handled and conflicts with characteristics of porta-

bility and readability of the programs. The more complex and more specialized

the system, the more dependent it becomes on specific hardware configurations.
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4.3 The Choice of Elements

It is recalled that Lidov's original theory 
[4 - ] was developed in

terms of the true anomaly, %,, as the independent variable. Yet only

five elements appear in the differential equations expressing the rates

of change of the parameters with true anomaly, namely a, e, i, o, Q

(angles are referred to some plane of reference, not necessarily the

orbital plane of a disturbing body, but so that 0 is defined). An ele-

ment is missing: it could plausibly be T, (time of perigee at perigee)

or M, (mean anomaly at epoch). The inclination of this element in the

present theory which thus modifies Lidov's theory, will be shown to be

critical in timing the occurrence of perigee in the orbit, as opposed to

geometrically defining the trajectory.

In the present study, M*, mean anomaly at epoch, was chosen as the

sixth element. In Appendix A- 1 , the derivation of the differential

equation for M, is given, with the procedure for computing the elapsed

time from M,.

Since Lidov, in his work, only used five elements, it implicitly

amounted to assuming that the unperturbed period of the satellite adequately

represented the flow of time along the orbit. M. Moe [4- 9 ] made a similar

assumption, which is also present in the analog application of her

work [4- 0]. In Musen's work on long-perturbations
[ - 4 to 4-6 , where

mean anomaly is used as the independent variable, or on short-period

perturbations[4-31 to 4-,321, in which the eccentric anomaly is used, the

perturbations of a sixth element were considered.
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Roth[4-33 to 4-34] in his attempted extension of Lidov's study, used

time t as the sixth variable. The equation for - was arrived at by
dv

extending and truncating the equation relating t to v. From equation

dv r / r 2  r2d__ = ! [1 + F cos v - r (1 + ) sin v]
dt r2  pe r pe p t

or

dt r r 2  r 2  r -1
d-- = r [1 + - F cos v - -- (1 + -)F sin v]

ipe e lie p t

r2 r 2  cos r 2 (1 + )F sin v] + O( (4.3-1)
1p Iae r ye p t

2
if the forces are of O(*). Neglecting terms of O(es), the equation for

the perturbations of time is arrived at by considering the first 
term in

the above bracket to be the 2-body expression (which it is not), or that

dt dAt) r2 2 2

( pdt dt r r F cos ( + )F r sin v] (4.3-2)

dv pert dv 2b /jp 2b le r le p r

In our opinion, there is a basic flaw in this approach. In the first five

equations as in Lidov and in our work, Y has been set to unity, whereas in

the sixth equation, Y has been expanded in order to generate an equation for

time t. This equation is linear in the forces, and thus allows superposition.

But nowhere does the feature of double integration appear, which normally

accompanies this element in any perturbation 
theory. To quote Kovalevsky

[4 - 3 5
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"....We must therefore carry out a double integration

of the equation giving the semi-major axis before

being able to obtain the mean anomaly. This is an

important general result. Whatever method is used,

no problem of perturbed trajectory can be solved

in celestial mechanics without carrying out a double

integration at some stage....."

In the light of this comment, we can recall that t is not an osculating

element. Thus in the perturbed motion, the first term in the bracket of

Equation (4.3-1), which is an "instantaneous analog" to the mean motion

will be perturbed as compared to its value in the unperturbed case, the per-

turbation being of order C and noted 01(E). Thus

dt
dv = 0(1) + 01(*) + 02 (*)

where 02 (6) corresponds to the two last terms in the bracket of Equation

(4.3-1). This yields

At = /2 d (At)dv
0 dv

= [0(1) + 0i(c , ) + 0 I()]
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r 2

and 0 (s, ) results from the perturbation of . Thus, to be consistent,

perturbation of the mean motion should be included, which in turn 
will

da
lead to introducing into the sixth equation a term involving a + dv

before integrating with respect to v over (0, 2r). As Equation (4.3-1)

illustrates, this Roth has failed to include.

This problem does not arise with osculating element M* (mean anomaly

at epoch) adopted in the present study. We have, as in Appendix A-I ,

dM 2r3  3 nt da 1/2 .ds dw
= + - - dv + dv

dv 1/2 r 2 a dv dv dv

It is seen that the unperturbed mean motion does not appear alone, and 
that

the term linear in time accounts for the double integration.

In Appendix A-I , the sixth quantity used by Roth 
has been evaluated

for the J20 term of the earth's oblateness. The result has been compared

against a digital integration program (EOLA-TP) run for a high 
eccentricity

orbit with J 2 0 perturbations only. Fig.A .1 shows this comparison for the

time of passage at perigee using either Roth's sixth element or M,, or

EOLA-TP. Table 4-1 also gives the data from which Fig. 4.1 is plotted. 
It

is seen that Roth's elements predict negligible change in the apsidal period,

which is not true. Using M, gives a close approximation to the digital

integration. Incidentally, Roth's work does not at all consider 
the

sometimes significant effects of oblateness in orbits of high eccentricity.

4.4 Number of Terms 'Az..' to be Retained
11

With the same notation as in Chapter 2, let Azij designate a change 
in

osculating element z over an orbit of the satellite (more precisely, over
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an interval (0, 2r) in the true anomaly v). The first subscript, i,

is the "order" of the Legendre Polynomial term considered, in the LP

expansion of the perturbing force Fd. The second one, i, is decreased

by one, the order of the derivative retained, for the term studied, in 
the

a b c d
Taylor's series expansion of products such as j 2 3 A about the posi-

tion that the disturbing body assumes at the reference time, tre f '

One remembers that in Chapter 2, expression y

2 2
r r

= [1 + F cos v - -(1 + )F sin v]1
ie r ie p t

such that
dt r
dv = Y y

never differs from 1 by more than 0.8%, at maximum, in the worst possible

case, for e = 0.95. It was therefore taken to be 1. Barring other con-

siderations, the approximation on y should set a lower bound on the terms

to be generated.

Ref. [2-3] as said above, gives estimates of "maximum" amplitudes[4
- 2

for the (Az). To recapitulate the formulae

a) along the LP expansion,

J(Az ) q + l < (a q+2 2q+3 I(Az)ql
q+1 - pk q+1 q+3 A

with q the order of the force term being considered.

b) along the Taylor Series expansion

7< nk j
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where j is the order of the derivative retained in the term being

considered.

On the basis of these estimates, tables of relative "maximum" ampli-

tudes of such terms were drawn up: Table 4-2 lists three such examples,

for various "large" eccentricities, with the moon as perturbing body.

Table 4-3 contains an example for the sun. Needless to say, we should

expect that for the moon, it will be required to much higher values of "i"

and "j" in the case of orbits of large eccentricities, than might be the

case for the sun as the perturbing body. An answer as to how many terms

ought to be retained in a specific case is of great interest. Previous

work did not focus on the question: Roth [ 4- 33] did not set up a precise

estimate, and Lidov examined the "11", "12" and "21" terms for five ele-

ments only. Table 4-2 shows that for orbits of e > 0.92, the number of

terms needed, if the approximation of y were regarded as the criterion

would be very high (beyond q = 5 in Az qj) for the moon as perturbing

body. Now, despite the use of symbolic computation, the required computer

time and memory space are very high for high orders of the theory, as will

be discussed later. In all cases tabulated in Table 4-2, it is seen that,

for the moon as perturbing body,

A5 1 :! 0.12(All + A2 1 + A3 1 + A41)

A6 1  0.09(A1 1 + A2 1 + A3 1 + A41 + A5 1)

1 being the (normalized) magnitude of the "11" contribution to Aztotal'

As a tentative cut-off point, the value 0.1 was adopted for the factor

multiplying the parentheses in the above expression, and the theory
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developed includes terms

All, A1 2, A1 3, A2 1, A2 2, A 3 1, A4 1 ,and A5 1

In the section where the results of the developments are checked against

high-precision numerical integration, at will be seen that this order of

the theory is indeed adequate in practice for orbits of e < 0.95.

To conclude this question, we might remark that the relative effects

of Sun and Moon, in the "qth" force term can be listed, as in Table 4-4.

Let, from Pef. [4-2]

IF(q+l)q max 2 r
rdd

In a perturbation equation, that for d- example, this gives

d_ m (q+l) (--) sin(w + N)
dv p p sin i rd

and the relative effects of sun and moon are measured by the ratio

)s s q+2

M m S

In this estimate, sun and moon have been assumed to describe coplanar

orbits. The ratio is listed in Table 4-4 for low values of q. The same

estimate would apply to the other osculating elements.

4.5 The Effect of Earth's Oblateness

The effects of earth's oblateness on orbits of large eccentricity

have been found to be quite significant on natural satellites or

artificial satellites, such as T4IP-G 3 7 to 4-38]. In the present study,
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only J20 will be retained, since other harmonics are of order 10- or

less compared to it. Its secular effect, obtained by integrating the

corresponding perturbation equation with respect to v, will be superim-

posed on the effects of the sun and the moon. It is well known that

there are no secular variations in elements a, e, or i due to J20. The

secular variations in Q,m and M, due to J20 are evaluated in 4.10.

4.6 Symbolic Integration System

In the present section, a field of integrals is defined which are to

be computed in order to obtain closed form expressions for the changes

of the elements, over one orbital period of the unperturbed orbit. The

recursive relations involved in the calculation are obtained. An estimate

is made of the "explosive" growth in the number of terms to be calculated

for the "Az.." contribution. The results of this study stress the de-
13

finite need to resort to symbolic computation for error-free algebra and

for bypassing the formidable task of hand computation. The elements

involved in the choice of a particular programming language are discussed.

The system is described in its various parts. Finally, the relevant

programs and space and time estimates are given.

4.6.1 Field of integrals

It has been seen in Chapter 2 that the integral form '(I.F.)' to be

dealt with needs
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(I.F.) 2 (At)s sin v cos dv (4.6-1)
s,u,v,q def 0 (1+e cos v)q

in which

s,u,v,q are non-negative integers

q > ;

q > u + v (4.6-2)

Integrating (4.6-1) implies a series of recursive operations in

a finite field of expressions (A 'field' is defined here as a set of

expressions closed under integration, such as polynomials in several varia-

bles, polynomials in sine and cosine of an angle, etc.). Basic form

(4.6-1) will in the process of computation evoke only linear combinations

of numbers of the set. The element members of the field of expressions

are not separately tabulated, but the recursion relations hereunder are

defining each and every one of them.

4.6.2 Notations

Let A- 1 + e cosv

iu v
sin v cos v

L
u,v,q = q

u
sin v

H =L
u,q q u,o,q

A

v
cos v

I L
v,q q o,v,q
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V
S-sin v cos v

v,q q  1l,v,q

. U
sin v cos v

K - = L
u,q s q u,l,q

1
M --- = L
q q o,o,q

S E M dv 2 arctan[ (1e) tan ]
11 1/2 1/2 2

and

27T 2Tr

Sl 1/2

Let S f MS dvm 2 m-1

R1 f M2 dv 
(4.6-3)

1 3/2

Note that
2  M

(At) = d- (4.6-4)
dv C1

At is the time measured from some fixed reference time, tref, and should

be considered as one variable, in contrast with the notation 'A' defined

above, or A in Az.., designating the change of element z in the "ij" theory.

4.6.3 A set of vanishing definite integrals (I.F.)suvq

The reference time, tref, is chosen as that corresponding to the occurrence

[4- 1
of apogee along the unperturbed orbit . Hence, At is an odd function

of v about v=n,
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< At <
2- 2

and

(At)v = -(At) 2 -v

It is readily apparent that the integrand of (4.6-1) is odd or even

about r = v, depending on the sum of the exponents of (At) and

sin v, (s+u). Thus

2 .sinu v 0 if (s+u) is odd

(IF) = (At)s sin v cos { (4.6-5)
s,u,vq (l+e cos v)q 40 if (s+u) is even

0

and the corresponding sets of (IF)'s can be ignored in what follows.

4.6-4 Recursive relations for s = 0

Let s=0 in (IF)s,u,v,q . The case s # 0 will be treated in 4.6.5.

In all recursive relations, the goal is to monotonically decrease the

value of the integer value of q (q i). Since q has to be larger than

u+v, non-negative integers, u and v will also have to decrease to 0

or 1. After applying the relevant recursion forms the final results

obtained is a lengthy primitive expression, evaluated by substitution

of the limits 27 and 0 for v.

4.6.4.1 Integral of L
u,v,q

Using integration by parts, and the fact that

sin v dv - 1 1 (4.6-6)
Aq (q-l)e Aq-1
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it is easy to obtain

1 u-l dvdv = 1 L (q,-1 L vl qI
Luv,q (q-l)e Lu-,v,q-1 (q-)e u-2,v+,q-1

+ (q-1)e Lu,v-l,q-id (4.6-7)

with q > 1 .

4.6.4.2 Integral of K
u,q

By integration by parts, and using (4.6-6) and cos2v = 1-sin 2v ,

we get

K dv K +J H dv - q1)eH l2 dv
K u,q (q-1)e u-l1,q-1 (q-q- (q-1)e u-2,q- (4.6-8)

with q > 1

4.6.4.3 Integral of H
u,q

Using

cos v = -(A-1) (4.6-9)
e

we obtain

Su-i
Hu dv =  1 sin - u - 1 K dv (4.6-10)

uq (q-l)e Aq- (q-l)e u-2,q-1

or

H dv H H dv (4.6-11)
fHu,q (q-l)e u-l,q- (q-)e 2  Hu 2 ,q- 2d (4.6-

u uq-l dv
(q-1e 2 Hu-2,q-1
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4.6.4.4 Integral of I
v,q

This computation requires the value of Ivl,q-1idv ,i.e.

v-1
I dv = v
v-l,q-1 q-1

v-2 ( v-3 2

Avdv
q-1 q-1

f ~v- 2

- (q-l)e sin2 osv-2 dv

=q

Solving for I vdv, using cos 2v = 1-sin2v

dv 1 (v-l) I
Jvq (q-1)e v-2,q-1 (q-l)e Iv-l,q-1d

+ I dv - (v-2) I dv (4.6-12)
+ v-2,q (q-l)e f v-3,q-1

valid for v > 2, q > 2.

For v =1

I d = 1 M dv -1 IM dv (4.6-13)
1,q e q-1 e q

4.6.4.5 Integral of J
v,q

dv 1 1 + v J dv (4.6-14)

v,q (q-1)e v,q-1 (q-1)e v-l,q-1

with q > 1
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4.6.4.6 Integral of M

Mqdv d dv
q jA q

( sin2 cos2v
-dv +j dv

1 sin v 1 cos V dv

(q-l)e Aq-1 (q-l)e Aq-1

1 2dv 2J dv d i (4.6-15)
e2 1q - 2  Aq - 1

wherein the identity

cos 2v = - (A2 - 2A + 1)
e

has been used. Using (4.6-13) in the expression for IMqdv , e = 1-e2 ,

and rearranging,

M dv e H + 2q-3 I  dv + 2q-3 M dv

q (q-l)E l,q-1i (q-1) fq-1 (q-1)Ef q-1

- q-2 Mq dv (4.6-16)
(q-1) j q-2

valid for q > 1.

For q=l, we defined

M1l dv S (4.6-17)
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Also, from (4.6-16), written for q = 2

R 1 = M 2d = H + (4.6-18)
1 M2 1,1

4.6.5 Recursive relations for s > 0

The recursive relations for the integration of (IF)s,u,v q

(At)SL dv = Ats L dvq C. ts 2 [J Lu dv]dv
u,v,q uvq C uvq

From the formulae of the previous section,

IL dv = aoS + Ea . (function of type H,I,J,K or L) (4.6-19)
u,v,q 1 mm

with the ai.'s (i = 0,1,2...) being constant. Thus, in (4.6-19), we are
1

reduced to integrating known forms, plus a term of the form

(At)SM2 S dv = (At)sSm+1 - (At)s-1 2Sm+ldv

4.6.5.1 Evaluation of Sm

Sm = S m-lM2 dv

= Sm-l[JM 2dv] - IM 2Sm_2[ 2dv]dv

But R1  M2dv, dR1 = M2dv. Thus

S = S RI- S MRldv

2 2
1 1

=S R -S -+ S M dv
m-l 1 m- 2 2! m-32



4-22

Finally

m-1 R -.
S m= E (- )1) I  m-1dv (4.6-20)
m a=1 m-1 a! (r-1)! 11

Let

'm IP-i dv (4.6-21)

Thus, since
S1e 1

1 = 1,1 +

we get

c = fMI(- H + Sm-ldv

The integrand is expanded by the binomial. formula. For the comrete

evaluation of Cn ,the following relations are also needed:

Huv S H dV - q Sq- M [Huvdv]d v (4.6-22)
u,v 1 uv 1 1 u

and q +

S M dv = 1 q+1 (4.6-23)
1 11 q+1

This completes the set of recursive formulae

4.6.6 Closure and character of the field of expressions.

The field of expressions is closed under integration under the

conditions specified in Equation ( 4.6-2 ).' Ref. 4-2 shows that

it was necessary to use "mixed" axes for the components of the forces in

-+ + -+

the differential equations of motion, namely (r,t,u): radial, trans-

verse and normal directions, and (4,6, ): to perigee, normal to perigee
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in the orbital plane, and normal to the orbital plane.

It is also evident from the reduction formulae and associated

definitions, that the field of expressions is essentially not

polynomial or trigonometric, neither is it "poly-trig". 
Transcen-

dentals such as arctan (al tan a2) are involved, and the field,

though finite, is rather general in character.

4.6.7 Explosion of terms

The "explosion" of the number of terms under integration is

briefly reviewed in this section , and given in much more detail

in Ref. [4-2]. As an example, for the first few orders (q = 1 to 5)

of the LP expansion, and for each variational equation, we have the

following number of terms generated, as a minimum:

q = 1 T1 
= number (1) 2

q = 2 T 2 = number (2) > 15

q = 3 T3 
= number (3) 2 18

q = 4 T4 = number (4) , 60

q = 5 T5 = number (5) 70

2 [largest integer in 9] + 2
following, roughly, a law v 2 argest in2

Further, in the Taylor's series expansion of the perturbing

body motion, the next stage is to multiply each of these terms by

12 and integrate. Each of the above terms again produces at least

A

T terms of its own; thus
q

2
T t (Tq)
total - q
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Therefore, both along the LP expansion (q > 1) and the Taylor Series

expansion (s > 0), the process "blows up": a large number of terms

are produced which have to be cataloged and collated during integra-

tion. As has been pointed earlier, a very significant amount of

the analytician's time is spent in gathering and checking the results.

In the approach based on machine symbolic computation, once the pro-

gram has been checked against known results, the theory can be extended

to any order automatically, subject to time and memory limitations.

More important, the recitude of the results is assured, without

extensive rechecking.

4.7 The Choice of a Language

Due to the abovementioned "general" character of the field of

expressions, we are prevented from using a prepackaged symbolic inte-

gration program for the generation of the theory. A special system

for integration within said field was written [ , in a suitable

programming language. The latter was chosen on the following con-

siderations:

- the language should "match" the character of the field

- the program at hand uses a large amount of normal,

- the language should be capable of numerical work

- it should be generally available, for portability

Additional factors were: compact representation of elements and

functions; dynamic allocation of storage (space saving; growth of
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expression not always predictable); recursion, garbage collection

features; compact storage of lists in a canonical form (to recognize

common or identical sub-expressions); facilities for rational

arithmetic (accuracy, recognition of identities).

Among the languages examined for the task, were ASSEMBLER,

FORTRAN, ALGOL, PL/1, SAC, FORMULA ALGOL, LISP and FORMAC. FOI
4AC [

was retained here for the following reasons:

- it satisfied most of the above requirements

- it is a general purpose algebraic manipulation language

- it has built-in simplification and substitution procedures

through a canonical form of storage of expressions

- it is embedded in PL/1, making the arithmetic, control,

recursion and dynamic features of PL-1 readily available.

- PL/l string storage is used for lists not being processes,

thereby counteracting the storage expenses of FORMAC (double

word at each node in a list)

- space allocation can be controlled by an intelligent use of

a list-erasing instruction

- the program is readable; it performs algebraic operations

as easily as arithmetic ones

- it is widely available at most IBM scientific computer

installations
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4.8 Overview of Theory Generator

Fig. 4-1 shows the main parts of the Theory Generator used to

generate the extended, modified Lidov's theory contained in what

follows.

Equation Generator: it accepts as input the order of the LP expansion

of the force term (i.e. the highest value taken on by i) and delivers

as output the variational equations for all six elements considered

here, with the force components internally generated.

Preprocessor: this minor routine scans the output of the Equation

Generator and collects terms which have an identical "operative" part.

The symbolic integration is performed on the equation

C (At)sf(v)

with f(v) containing sin v, cos v and A terms, and C1 (not necessarily

numerical) a coefficient, and preprocessing assures that only the

"operative" part (At)sf(v) is operated upon only once, with the C1's

as coefficients.

Symbolic Integrator: this "core" program accepts as input the varia-

tional equations, and the order of the Taylor Series expansion. The

equations (to the order specified) are integrated, and the integrals

are evaluated between the limits 0 and 2n in v, true anomaly

Simplifier: accepts the "new" output of the Symbolic Integrator, pro-

cesses it through a series of substitutions and simplifications,
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collects terms and generates, in an internally specified format, the

final theory.

The design of the package is such that each program is a "block",

written in FORMAC, independent of the other blocks, with communication

between blocks, or to the user, effected through punched cards or

files in punched card format stored in mass memory. Printouts of the

input, and printouts or storage of the outputs at each stage 
facilitate

the checking of the flow of information.

The final output will be the "theory", as a file or a set of

punched cards. In order to render the theory usable for the user's

numerical calculations, a small amount of further processing was re-

quired, more specifically:

- the replacement of integer fractions by their decimal equi-

valents;

- the definition of "user's variables" to replace common sub-

expressions appearing in the variation formulae for more

than one element, which will improve the speed of numerical

calculation using the theory.

The formulae obtained on the final result of the theory were

then incorporated in a PL/l program, VOLER, described in Section 4.11.

As regards storage requirements for expressions, they are in-

herently high, since each operator, operated and associated pointer

occupies one or two words of storage. Formula manipulation systems

and user programs are also very cumbersome. Thus, in order to
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successfully execute any large program, it is of importance that space-

conserving and -releasing techniques be used whenever possible. In

FORMAC, this is made possible by the commands

- SAVE, which stores unneeded expressions on disk;

- ATOMIZE, which erases a list and releases the corresponding

space

Furthermore, the compact string storage feature of PL/l has been used

to a considerable extent to economically store lists not in immediate

use. ATOMIZE has also been used profusely, but SAVE has not been used

desirably, as it is too expensive in time. Instead, at every stage,

as soon as an output is generated, it is stored on to a file, or

punched out, and the space is released by erasing the list. In the

trade-off between time and working storage, a penalty has often to

be paid in time, due to the memory space limitations of most digital

computer systems. This might take the form of integrating again a

previously integrated "operative part" of which the result had to be

outputted in a previous run, or of allowing the package to be segmented,

with the user interacting with the system between blocks. The

attached risk of error is decreased, however, by visual checks against

user-or system-created errors.

4.9 Details on Theory Generator

Each of the above parts is now briefly analyzed.

4.9.1 Equation Generator: Program FREQN

Fig. 4-2 gives a flow chart of the program, and 7ef. [4-2] con-

tains a complete listinglgiven the recursion formulae. the Legendre
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polynomials are generated up to one order higher than the required "q".

Their derivatives are computed using the DERIV function of FORMAC, and

some common symbolic coefficients are generated in the order shown in

the last box of the flow chart.

As soon as it is generated, each differential equation is expanded.

dz
Each rate of variation of an element z with v, will be a series of

dv

terms E c.f.(v), where as described before the c. are coefficients
i 11 1

and the fi(v) are "operative parts". Each separate such term is punched

out or stored on file.

Along with the whole FOR4AC system and service routines, the pro-

gram requires:

- 107 k bytes of memory on an IBM 360

- for PORDER, 4 (or "q" = 4), a CPU time of 7.5 minutes (CMU

IBM 360/67 TSS)

4.9.2 Preprocessor program COLLECT

The function of COLLECT, as mentioned above, is to gather terms

having identical operative parts. This is carried out separately

for each differential equation, in order to save time by avoiding re-

peated integration of identical operative parts. A listing is given

in ef. [4-2].

4.9.3 Symbolic Integrator

This "block" implements the recursive procedures of Section 4.6 ,

with the appropriate control, parsing and evaluation routines. A flow

chart of this block is given in Fig. 4-3.

I/O ROUTINE: Procedure INPUT 1

Data - order "j" of Taylor's series expansion desired

- output of FREQN, for given q, one term at a time
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Function: the term is passed to the supervisor for integration

Output: the final integrated output is printed and punched

out, or stored on file

SUPERVISOR: Procedure HIGHORD

Input : term furnished by I/O routine

Function: a) examines the terms to be integrated

b) if it has no operative part, it is returned to

the I/O as a "constant"

c) if it has an operative part, the latter is isolated;

the Taylor index ,j, is updated if necessary; a call

is issued to the Pattern Recognizer

d) after completing the integration, it calls on the

Evaluator

e) it also monitors integration that might be needed

during the evaluation process

Output: result of completely evaluated result is passed back to the

I/O routine.

PATTERN RECOGNIZER: Procedure SICODEL, with its internal procedure

PATTERN.

Function: The term is examined to see if the relation of Equation (4.6-9

is satisfied. If so, the integral is set to zero and sent

back to the supervisor. If not, the exponents of "sin v'.,

"cos v", "A" are determined, and the appropriate integra-

tion procedure is used.
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Procedures for the integration:

- DELDEL: for integrating JMq dv = L dv

- DELCOS: for integrating L vqdv = Lvq dv

- DELSIN: for integrating Hu q dv = Lu,o,q dv

- DELSICO: for the integration of the general term Lu,v, qdv

Note that in Fig. 4.3, the diodes indicate direction of calls.

For instance, DELSIN can call on DELDEL, DELCOS or itself, but not on

DELSICO.

EVALUATOR: Procedure EVLUAT

Function: its primary function is to substitute the limits 0

and 2w on v, in the integrated result. Further inte-

grals, of type Sm , which might have to be evaluated,

are obtained by calling internal routine SSVALU,

which may issue a call to TTVALU. It also determines

the derivative of the perturbing body terms Ca 1b C A

The TTVALU procedure integrates terms like

T = JRm-1M dv

in which expression (4.6-1is substituted for R1. The

expression is carried out. Control is passed back to

the Evaluator for substitution of the limits.
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As can be seen, the Symbolic Integrator is fairly complex. In terms

of time for integration, it is very much effected by the "explosion"

of terms to be processed, specially along the Taylor Series Expansion

dimension, j. As an illustration

- Space occupied in core, including FORMAC and series routines: 161 K bytes.

- Time for All N = 1.5 minutes

Al 3M* = 28 minutes

A21M, = 9.5 minutes

A2 2M* = 40 minutes

A 31M = 25 minutes
31 *

A51M* = 4.5 hours

This integration is by far the most time-consuming because of the

da
presence of term t , which necessitates going to

one order higher in (At)s than specified by the input data "j" (order

of Taylor Series expansion).

- Time for A 12W = 3 minutes

A1 3W = 11 minutes

A2 2e = 8 minutes

A3 1e = 10 minutes

A4l e = 28 minutes

A5 1 e = 1.5 hours
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The above estimates are made on a TSS environment, and are not

actual CPU time (the system overhead may be as high as 50% under

peak load).

SIMPLIFIER: Procedure SIMPF6

Function: to compress the result and print it out in "usable"

form. The set of simplifications is based on visual

examination of the integrated output. It mainly

consists of substitution and removal of common fac-

tors. The final result is collected according to

the coefficients dependent on the perturbing bodies.

Consequently, an extremely compact form of the final

theory results, as compared to their volume prior

to the SIMPLIFIER. A listing of SIMPLF6 is given in

Ref. [4-2] .

Output: a set of punched cards (or file) containing the theory

for each element, for each pair (ij). As mentioned

earlier in Section 4.8, two later subsequent steps

geared to efficient numerical computations are the

decimalization of fractions, and the labeling of

common sub-expressions.

Space requirements: about 100 K bytes, including FORMAC and

service routines.

Time requirements: they are quite significant. For example,

A1 3w = 5 minutes

A22W = 12 minutes
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A 3 1  = 2 minutes

A41W = 2.5 minutes

A 5 1W = 3.5 minutes

4.9.4 Example

An example, going from raw data to final output, is given in

Ref. [4-2 . Times taken at each stage are also tabulated.

4.10 Results of the Theory: perturbations formulae

4.10.1 The formulae

In this section, all six osculating elements a, e, i, w, 2, M, are

tabulated for the following orders "ij" (A..ij z is the "ij" change of

element z).

A 1 1  A 1 2  A1 3

A 2 1  A2 2

A 3 1

A41

A5 1

An important point to mention here is that the formulae were checked

against those of Lidov
[  , for the first five elements and orders "11",

[4- 3 3]

"12" and "21"; and against those obtained by hand by Roth ; for the

first five elements and orders "11", "12", "13", "21", "22" and "31". (The

sixth quantity he used as a variable is discussed in Section 4.3). 
The

agreement was complete, which gives us the highest degree 
of confidence

of the recitude of formulae produced by our theory generator.

For completeness, the secular perturbations of 2, w and M, due to

the J20 term are also reproduced.

Notice that, in the formulae, names have been given to some common

sub-expressions. They may be repeated and should be strictly associated

with their definitions within the scope of the "ij" order in which they

appear at any moment.



4-35

Formulae Allz

LP expansion = ist order ((-) term)
rk

Taylor expansion = ist order ("constant" term)

Let 3
3 k a

11 Pk

2 2

61 = 5, ,  82 = 52 83 1=  2 '

84 =  2534 , 85 =  3 ,1 B 6

£ = - e 2

T = time at epoch (perigee), T = period of satellite

n = mean motion of satellite

Alla = 0

1/2
Alle = -15n 6 e E 83

Alli* = /2 [(5-4e)B5 cos w - CB4 sin w]

A11 = 3 6 1/2 [(5-4E)85 sin w + C84 cos W]

C (sin i)

Allw = 3 6 1/2(481 - 82 -6) - (cos i)All

llM = 3 (Al 1 a) - E ( 1 1(cll(os i) + A11l)

+ 6[(8 + 12e + 15e 2 )86  -(cont'd on next page)

*The coefficient 6 of Alli is incorrectly printed as (a/Pk)

instead of. (a/pk) 3 in Lidov's paper (1.19)
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-3(1+12e+22e 2)81

-21082]

A11T -(A11M,)/n

Formulae A12z

LP expansion = Ist order ((r) term)

Taylor expansion = 2nd order ((At) term)

Let

Prk a3
6 = - ( nk = mean motion of perturbing body,

ek = eccentricity of perturbing body

k . = true anomaly of perturbing body in its orbit,

. dOk
8k = = angular speed of perturbing body in its orbit,
k 2  ddt3

Ip dek 2p d8k 3p dOk

S 3 _P = -3Akek(sin 6k)
= k  p d k

2
81 = (21ip + P) k

2
82 = (2 E2C2p + E24p)Ok
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83 = [(Sp + +p2) + &1 2 p] k

84 = [(2&3p + +2p23)3 +  2 3 k

05 " [(1l3p + Sppl3) + 13 p]Ok

86 = pe
= p k

3 " 6
Al2a = - 6 aT[e(e+4) (2 -

+(2e 2 +4e-1) (81-82)

1 86
Al2e = - 36t[(e+4) (82- T)

1
(- )( 8 1-82)

9 32 2
A121 = - 6 T[e 2 +- e - 3](84 cos w - 85 sin w)

9 T [e2 + 32

A12P = 6 -- [e 2 + e - ](85 cos W+ 84 sin w)
8 sin i 9 3

I 9 3  8 2 4
12 -= 3 6 e8 e + e - e 3)83

-A12S(cos i)

A12M (A 1 2 a) - 1 /(A2f01(cO i) + A12)

+62 T 2 -(A42M,)n

A12T = -(AM)/n
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Formulae A1 3Z

LP expansion = ist order ((r) term)
k

Taylor expansion = 3rd order ((At) term)

Let

"k a 3

Pk

2
d e

=--- = angular acceleration of perturbing body

dt
in its orbit.

dSk
-dtk angular speed of perturbing body in its

orbit

dE 1  d'2  dC 3

c1p dok E2p dok ' 3p dok

3

S Ak

S= -3Akek sin 0k
p dOk kk k

2 2 2 2
S d = 6Ake sin 6k - 3Akek cos O k

PP d
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2 2 2 .2
1 =  [2((l1p - 1 ) + 4 lp p + 1 pp]6k

2 "
+ (2 Cipp + 1 p) k

2 2 2 -2
2= [2'(2p - 2 ) + 452+2pp +  2pp]ek

2
+ ( 2 E2C2p + 2 p)e k

=3 [ 2 (C1p~2p2p- C 2) + 24 (152p + C1pE2)

.2
+ ~~12 ppk + [(~l~2p + ~1pS2)4 + 51524p] k

S[2- 5 ) + 2 (E + E)
2P 3P 2 3 P 2 3P 2P 3

.2

2 3 pp k 2 3p 2 3P 2 3 P

=5 [2 (Sgp - 5( ) + 24 ( ( + )

1 3 pp k + H 3P 1P3 1 3 P

.2

$6 E ppk + k
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13a = 6 3 (-e - e2 + 4e 3. + e +

1 3 a 61/2 (-4e 8 8 4

1/2 "
6 T2 C1/2 26 5 2e2 +

A A1 e 3 a) + 2 6 e
2 

3

27e2 0 3 21 e 3
16 _ 3 32 4

Then, 2
1 6 [C sin +Dcos

=13 2 (sin i) [

2

* A3 _ 6 [C cos w - D sin 

A13  = -(A 1 30)cos i

2 1/2 3 11

i/2( e + 2 e + 3e2 + e3 - -)

g (- e +2 e 2e2- - +)

22 3
26- e e2  e + 1)

+ 6(- e + 3 16
4 3 16
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1A3M*= 2a (Al 3a) - (1/2A1 3S(cos i) + A13w)

6 T 39 13 2 26 117 2)+ ,- - [ E2(- - -- - -- e - -
216 8 3 64

+ 2 3 2  13)+ 6{ + e( 2

7 13 13 e3 13

+ e2( 2 - ) + - e3 + 1 e4 }
8 ,16 9 64

2 39 _ 143 9 2+ 2 n + e(
8 16 - 2

+ e2 429 17 2) _ 13e3 39 e4 }]64 4  16

A 1 3T = -(Al 3M*)/n

Formulae A21 z

LP expansion 2nd order ((-) term)
rk

Taylor expansion st order ( "constant" term)

6 k a 4 A

a

al =C 1 , a2 = E2k , a3 " 3

3 3 2
Y1 = 51 9 Y2 = C24 , Y3 =  1E 2 ,

2 2 2
Y. = E1 3  Y5 = E2 3, Y6 = C251C ,

Y7 " C12&3O,
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A2 1a = 0

A2e75 - 6/2 [(7-6)y3 + sY2
8

a2
- (7 - 3 )T ]

Letting, for brevity,

a 3

C = [(7-4s)y4 + Y5 - (7-3)- 5

D = 2cY 7

we write,

75 T6 [C sin w + D cos ]

A21 = 8 1/2 (sin i)

2i -75 6 e [C cos w - D sin m]
21 8 c1/2

1/2 a
-75- -5 - 1(13-9C)]-21(coS i)

2 1W 2 e 2 4 )Y 20

37r 1/2

21M = (02 1a) - E (A2 1Q(cos i) + A2 1W)

+ -15 6 [45eEy 6 +(8+21e+24e2+52e
3)yl

- a(8+36e+24e
2+37e 3 )]

A21T - - (A2 1M )/n

The term underlined is misprinted as Y4 in Lidov's paper
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Formulae A2 2 z

2

LP expansion = 2nd order ((- term)

k

Taylor expansion 2nd order ((At) term)

Let

k 4 4  3
6 = .- ( ) k  p -4Akek(sin k

dE d dE d 3

IP d k 2P 3p dO kp k k

dO

dk angular speed of perturbing body in its orbit,
k dt

al (ip 1 p)5k

a2 = (2P 2 + C2p)Pk

3 = (E5P13 p 3 p)6k

Y1 = (3 2C )k

Y 2 2P 2p k

Y'3 (2 i C + 23p +

Y4 = (2j p 3  + I3p +  13P )6k

y = (2 5 + 2 + C2 3 p)6 k2 2P 3 2 3P 2

2 2P 1 2 1P 2

S [(5 5 + C 5 + 5 C )*
Y7 2 3 1 2P 3 1 2 3P

+ &2E3 p ]ak
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A22a 2T6 a[ e - (12 - 6e + 36e 2 + - e3)

+ y(4 - e + 12e 2 + 6e3)]

8615 2 645
A22e = T6 e [(30e + 6415 e2  64 )e

3 3 2 21 3
+ a - e + - e2 + e3 + )

1 8 2 64 2

255 25 2 15 3 5+y ,(- e-- -- )]1 64 4

+2ae ( 2 2a)

Letting

.255 15 3
C = (-- e - 25e 2  - e - 5)y

32 2 7

3 3 e2 21 e3 +

D = [3(- - e +-- +- 3 )
3 8 2 6 4  2

255 25 2 15 3 5+4 (26- e --2 - 4 )

+5(5 - 64 e)E ]

we have

A22SI [C sin w + D cos m](sin i)

A22i -TS[C cos A - D sin w]
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6 3 3 111 2 9 3 21 4)
A22 T 2(- 2 +  e + e 2- 2 e

22 e 8 2 64 2 16

255 45 615 e2 + 75 e3 + 15e4)
3"64 2 32 2

+ Y4 (-9 + 64e + 36e 2)E]

- A22n(cos i)

3 iT /2
22, (A2 2 a) - C (A22n(cos i) + A2 2 )

1/2 135
+ 6T 1[y 2 (20 + 1 e)

+ 15 3(16 - - e + 80e 2 + 24e3 )

e 7 .2..
+ 9a 2 (-2 +  -2e 2 - e ) ]

A2 2 T " - A2 2 M,/n

Formulae A31z

LP expansion = 3rd order((r-) term)
rk

Taylor expansion = ist order ("constant" term)

Let
P a5 5
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2 2

al = 0 , a2 =  , a3 = 152 ,

a4 = c230 , as = 1 3 , 6 = =

4 32 22
1 = 82 = 5524 , 83 .'524 ,

3 4

84 = t152 0 5s = 52

3 2

Y1 = 1534 ' Y2 = t1t2&3O '

2 3

Y3 = E12E34O, Y4 " 2534

A3 1a = 0

105 1/2 2)
A 3 1e = 6Tr1/2e[3a 3 (2 + e

- 782 (2e
2 + 1) - 784]

Letting

-C [(630e2 + 105)3 615 2 135 e4  15 a5
--C -[(630e2 e + e + 2

8 4 4 2 c

+ 315 e2 + 105 e4 + 105

4 + 15 22
D = [- e2 + 2-) + (630e2 + 105)8

105
8 EY 4]

Then, 1/2

A31 = 6Tr [C sin w + D cos w]
(sin i)

A 31 i = 6r£l/2[C cos w - D sin w]
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A31 - A31(Cos i)

1/2 525 735 e283 (540e2 + 615)-8

315
+ (105e2 +- )81

+ -1-(6e2 + 1)c 2 - 58

+ (4 e2 +~I )

3 1  - ( 3 1 a) -e 2(A 3 1Q(cos i) + A31)

105 (3 + 8e + 21e 2 + 8e3 + 20e4)
+ 6[- 81 4

3 (8 + 12e + 37e 2 + 12e 3 + 1 - e4)

85 5 a ( 4 + 3e 2 ) + 15 10 + 48e(l+e
2 )

32 - 16 a2(4 + 1 2 8

+307 e2 + (1+ 7e
2 

} 6e_4)

A 3 1T = (A31M,)/n

Formulae A4 1z

LP expansion = 4th order ((rk) term)

Taylor expansion = ist order ("constant" term)

Let 66

6= k k=  k

1 Pk
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For economy of notations, only the following symbols will be

explicitly defined:

2 4 6
al 1 , a 2 = 51 , a 3 = 1 '

2 4 6
1 " 52 02 52 a 03 = 2

Y1 " C152,

Note that these symbols are not identical to, or consistent with

those used for All, A21; A3 1; that appears as a factor in the

products and that 1l, t2, E3 , also appear explicitly.

A la = 0

I 1/2 735
A4le = 1 [- 32- ai 2 (2 + 23e 2 + 8e4 )2205

S2205 2 C2 (1 + 16e
2 + 16e 4 )

105
+ --4 2(8 + 20e2 + 5e4 )

64

+ 2205 a 101 2 (1 + 8e2)c
735

3- -- 812(2 + e2)e

+2205 C282 21
64

Letting

C -- 105 (8 + 20e 2 + 5e4) e

32 2

+ 2205(2 + 7e2 + 2e) e a1C

- 6615(1 + 2e 2 )eal 8 1

(cont'd.)
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2205 (5 + 20e 2 + 8e4) e a22

- 2205 eg2 + 735(2 + e2)e 1]2

D 1 [735(2 + e2)eyl - 2205ecy 181 - 2205(1 + 2e2 )eylll]

we have

1/2

A41S 1= 6r & 3 [C sin w + D cos w]
(sin i)

A41i = 6r 1/2 3 [C cos w - D sin w]

16_ 1 /2€ [-735(-2 + 3e2 + 5e4 )E181.A41w 32e

2205
+ (-1 + 5e2) 1 2

1- (8 + 60e2 + 25e4 )51

- 2205(1 + 3e2 - 10e4)&1alil

+ 735 (2 + 21e2 + 10e4)jlal

- 205( + 12e 2 + 8e ) la2 - (cos i)A41

A = Ma (04 1a) -e 1/2 (A41(cos i) + A41 )

+ 6- 9555(2 + e2)e(ljl
6 32

+ ±3 (64 + 2 e + 320e2 - 5 e3)E 1B2

(cont'd.)
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+ 1(12 + 122e + 120e 2 + 335e 3 + 60e 4 + 407 e5)51
16 4

- 63(3 - --e + 15e 2 -20e 3 )e ja 1

S105 (16 + 102e + 160e 2 + 477e 3 + 80ek + 166e 5)E1al
32

+ (43e + 96e 2 + 268e3 + 48e 4 + 136e 5 +  -8)la2
64 5

3 4 2 e3  4 945 2835

+ (-8e - -e2 - 3L - 1 1 1)E- 15 3 2 - -

5 16 945 2835 2
+( e + 2 182 4 --- E181)

A4 1T  = - (A4 1M , ) /n

Formulae for A1z

5
LP expansion 5th order (("k) term)

rk

Taylor expansion = ist order ("constant"term)

With the same notation as for A41, let

k 7
6 = (p) = Ak

Pk

2 4 6

a l  51 a2  E 1 , a3 = C1
2 4 6

81 = E2 , 82 E= 2 , 83 = E2

Y1 = EP2,
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A5 a 0

3/2 31185
A5 1 e 6ec [- 64 Y182

5 15 e4 + Y1
- 315( 4 e2 + - -+

4 64 4

+945( e2 + e4 + 3 y1
32 4 4 c

- 2079(& e 2 +3 e4 + -)--y 1 2

4 4 64 c

3e 2  1
+ 2 8 3 5(-- + 1Ya

3 2  3
- 10395( + 2)Ya ] + - ( 5 1a)

Letting

3465 2
c [--- (e2 + 1 02

+ 10539 e2 + 225e
4 + 5e6 + 1)

82 8

945 23 2 + e4 +

S45 (45e2 + 80e 4 + 16e 6 + 2) 1 a
32

+ 3465 (2e2 + 2e4 + !) 1181a4 8

693 a2
+ 63 (120e2 + 240e4 + 64e6 + 5)E- I

64 ]

D [ 5 32 (2 + e2)E 21 + 64 2 2C (Cc
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+ 105 (20e2 + 5e4 + 8)E264

3465 (e2 +
+ 4 (e + 8)e 2al1

945 23 e2 + e4+ 1)2ti
4 8 4

+ 3465 (2e2 + 2e4 + )E22]8 8

we have

1/2

51 = 6 (sin 3) ~[C sin w + D cos w]
(sin i)

A51i " /2E 23[C cos w - D sin w]

E 1/2 10395 - 4e2)2835

+ 63 (e2 + 1)82c

+ 2835 (10e2 + 8e4 - 7)ala1
32

+ 315 (75e 2 + 2Qe4 + 26)al
32

10395
+ 1064 (-16e4 + 5)a281

945 (160e 2 + 48e 4 + 45)a 264

+ 693 (20e 2 + 8e4 + 5)a3

315 (10e2 + 5e4 - 4)81
64

15 35 2 35 e4 7)
8 2 8

3465 C283]
64

- (cos i) A51SI



4-53

3 1/2
A51M = 2 (A5 1a) -e (A5 1Q(cos i) + A 51 )

+ 6 1575 (20e2 + 5e4 + 8)c81128

+ 14175 (23e 2 + 8e4 + 2)EajB164

51975 (16e2 + 16e4 + 1)sC 2 1128

14175 17325
+ 128 (2 + e 2 )F 2

2 -3 128

45 1125 2 75 3 6075 e4 45 5
4 16 2 64 4

2385 6 15+y e + )128 2

315885 4315 (24e + 135e2 + 80e3 + 
8 8 5

32 4

+ 24e 5 + 46e6 + 6)al

+ 945 (3e + 435 e2 + 10e3 + 30e4 + 3e5 + 7e6 + I-)a2
4 32 16

693 (12e + 45e 2 + 40e 3 + 120e4 + 12e 5 + 38e 6 + )U316 8

51975 (8e2 + 1) 2a12]128

A 5 1T = - (A5 1M,)/n

Formulae Az due to Oblateness

The only term in the oblateness potential considered in the

following formulae is J2

Let K = J2 ( )2

where R = equatorial radius of earth

p = parameter of satellite orbit

= as
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A = - 3Kn(cos i)

Aw = 6Kr(l - sin2i)

S= 3K 1 (1 + e) 3 (1 - 3 sin 2 i sin 2w)
E

AT = - (AM*)/n

4.10.2 Auxiliary formulae relating to the perturbing body

It was explained earlier that all terms which depend on the position

of perturbing body "d" are calculated at a time, tre f , corresponding to

the occurrence of apogee along the unperturbed orbit.

Keplerian orbits are adopted as models for the sun and the moon. At

any time, the orbital elements are calculated using the mean elements at

epoch 1900 Jan 0.5 and their secular variation .40]. The mean anomaly of

the perturbing body is similarly calculated. ek, which is here the true

anomaly of the perturbing body in its orbit, is computed using the formulae

[4-41 ]
of elliptic expansions •1 e, angular velocity, and k, angular accel-

k

eration, respectively,are calculated by taking the time derivatives of ek

in terms of the mean anomaly, the mean motion of the perturbing body being

known. The coordinates of the perturbing body in its orbit are also

[4-4 i ] rk
calculated using relevant formulae for -k cos (k and a sin ek.

ak ak

Let [Tr ] be the transformation matrix from the (Pk' nk ) system

to the Q(, n) system of the satellite. [Tr ] is independent of 0 k" If

El, 52, 53 are the derived director cosines of the unit to the perturbing

body in the (P, Q, 1 ) system, then

cos 0k

521 = [Tr ] sin 8k

. 3, o
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d i

and if, as in 4.10.1, p (i = 1,2,3),
ip dek

[1 -sin 0k

C2 = [Tr ] cos ek

53, 0

d
Similarly, with C d k  1, (i=1,2,3),

ipp dOk [ip]'

C1pp = 1

2pp = -2

C3pp = -3

In other words; second and higher order derivatives of 1I, (2, E 3, with

respect to 0k can be written in terms of 1',2, 3 or ~ip, c2p, c3P"

4.10.3 Some comments

It is readily apparent that at higher orders of the LP expansion, the

formulae became increasingly longer and more complex. The formulae might be

condensed a little by recognizing common subexpressions in a hand translation

of the formulae. The chances of error, however,might in final analysis far

outweigh the improvement in computer time.

With regard to the perturbations in oblateness, note that they depend

on factor K:
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2
R 1

Aw, A2 n K=J2 R2 2
p E

and

S1
AM , -- -

In orbits of large eccentricity,E is of the order of 0.1, and changes quite

significantly overtime. Thus oblateness perturbations are quite sensitive

to inaccuracies; the next section will illustrate this problem of small

divisor.

Finally, as long as any one plane, say the equator, has been used as

the same reference throughout, the perturbations on the angles, as well as

those on a and e , which are due to the sun, the moon or the oblateness,

respectively, can be summed up directly.
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4.11 Numerical Verification of the Theory

The "closed form" theory describing the changes in the orbital

elements, z, to orders "11", "12", "13", "21", "22", which has been

obtained by non-numeric computation, is expressed by the formulae

of Section 4.10 and is implemented in program VOLER, was checked by

comparing its predictions to those of high accuracy numerical inte-

gration programs (NASA's ITEM and C-MU EOLA-T). The present section

discusses those verifications and analyses the significant gains

realized in computer time and the level of accuracy achieved.

4.11.1 Program VOLER

A program called VOLER (for eVolution of Orbital eLements in

high Eccentricity oRbits) has been written in PL/1, which uses the

theory of Section 4.10 to predict the evolution of orbits of satellites

perturbed by the gravitational effects of the sun, the moon and the

earths oblateness. A flow chart follows, which lists the names of

all procedures in the program. A brief description of these is given

hereunder.

VOLER.

Procedure VOLER is the main calling procedure. It initializes

structures and arrays, reads in data and calls all the major proce-

dures. Input and output are controlled by this procedure.

SUN.

Procedure SUN computes the position of the sun at any given time.

The model used is based on the mean elements of the sun at epoch 1900

Jan. 0.5 and their secular variation. The procedure calculates the

position of the sun in the equatorial system of the earth; and then

computes the array C of the projections of the unit vector to the sun

on the orbital axes of the satellite. The array Ep, being the deriva-
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Start

Read in Data

Compute Initial
Orbital Elements

Procedures
STABILITY

+ VOLER
Compute Oblateness SUN

Perturbations MOON
+ TALON

Compute Lunar COORD
Coefficients ORBIT

+ ECLEQ
Compute Lunar EQORB
Perturbations MOONEQ

+ CALNDR
Compute Solar no REDUCE
Coefficients PERTRBN

+ .SU4ER
Compute Solar OBLATE
Perturbations time > lifetime UPDATE

Update Orbital yes
Elements

no Orbit Success

H < min.?
per

yes

Orbit Failed

Flow Chart of Program VOLER
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tives of the array C with respect to the true anomaly of the sun in

its orbit, is also computed.

MOON.

Procedure MOON performs the same functions as procedure

SUN but for the moon. The arrays E and Cp, for the moon, are also

computed. The model for the moon is again based on epoch data at

1900 Jan. 0.5 and the mean secular variation of the elements.

TALON.

Procedure TALON computes the longitude of nodes of the satellite

orbit, given the geocentric, equatorial latitude and longitude of the

perigee, the direction of launch (north or south), the time, and the

sidereal time at Greenwich at 0.0 Hrs. U.T. on Jan. 1 of the year of

launch. The direction of launch, along with the latitude indicates

whether the satellite is approaching or leaving the ascending node, i.e.,

the intersection of the positive nodal line with the orbital plane.

It is always assumed that the satellite is injected into orbit at

perigee (or that reduction to perigee has been effected elsewhere).

COORD.

Procedure COORD is called by procedures SUN and MOON. It computes

the coordinates of the perturbing body in its orbit, given its mean

anomaly and eccentricity, using formulae of elliptic expansions.

ORBIT.

Procedure ORBIT computes the components of the P, Q and i axesn
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of the orbit of the satellite in the geocentric equatorial system.

ECLEq, EQORB, MOONEQ.

Procedures ECLEQ, EQORB and MOONEQ transform co-ordinates from

one reference system to another. ECLEQ transforms from ecliptic to

equatorial; EQORB from equatorial to satellite orbital axes; MOONEQ

from the moon's plane to the equatorial system.

CALNDR.

Procedure CALNDR converts the time, day and month of launch to

an equivalent number of days since the beginning of the year of

launch. This procedure is also called when a satellite orbit decays;

it then calculates the day, month and year of the collapse of the

satellite given its lifetime.

REDUCE.

Procedure REDUCE normalizes angles to a value between 00 and

3600.

PERTRBN.

Procedure PERTRBN is the major procedure which contains all the

theoretical results, obtained as formulae and presented in Chapter 4.

It calculates the perturbations of the osculating elements of the

orbit over one orbital period.

SUMMER.

Procedure SUMMER is called by PERTRBN and merely sums up all the

perturbations of various orders.
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OBLATE.

Procedure OBLATE computes the secular oblateness perturbations

due to the J20 term on the satellite orbit, using the formulae in

Chapter 4.

UPDATE.

Procedure UPDATE updates the orbital elements by adding the

total perturbations to their initial values.

The time requirements are: about 0.6 sec of CPU time (IBM

360/67, TSS, version 8.1) to compute over one orbital period. Thus

the computing time is inversely proportional to the orbital period.

As an example

Orbital Period CPU time/year of orbit

2.5 days 90 sec

4.0 days 55 sec

5.0 days 43 sec

6.0 days 37 sec

The above range corresponds to 0.92 < e < 0.95, with a low initial

perigee (hp 200 km.).

This should be compared to the time taken for the digital inte-

gration of the equations of motion over one orbital period by ITEM,

EOLA-T... Typically, for the higher eccentricities, the CPU time

might be of the order of 10 to 20 minutes per year of orbital evolu-

tion. Therefore, in a rough sense (since comparisons ought to be made
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on the same computer, using the same input/output procedures etc.), the

savings factor of VOLER is in the range of 10 to 60, the high factor

applying to larger eccentricity cases. This, obviously, is obtained at

a cost in accuracy, but this cost is often perfectly tolerable for

many purposes in mission anslysis.

In the following, a few significant examples are described. For

a more exhaustive treatment, the reader should refer to [4-2 ].

4.11.2 Type of orbits studied in the examples

Two major parameters characterize the examples studied

1) Eccentricity:weconsider "large" eccentricities defined here by

0.9 r e < 0.955

Note that, in the "ll" Lidov's theory, it is shown that

a 3 e 1/2
All n ( !) ec

Pk

and if we compute the ratios

(Ae)e=0.9 4 5/ Ae)0.9 2 = 2.9

Therefore, it is seen that the perturbation increases by a

factor of about 3, even over the "small" range considered.

2) Inclination: both planetary-type orbits, i.e. having small in-

clination on the orbits of the perturbing body, and orbits quasi-

normal to the ecliptic (such as for IMP-G) will be considered,

with data considered by NASA for specific satellites, and in one

case post-flight data of an actual satellite.
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2) EOLA-T. It is a numerical integration program, developed at

C-4MU under this grant, using a method of variation of para-

meters (conventional osculating elements), with time as the

independent variable. Its detailed features are given in

Chapter 6. Again, for the purposes of the comparison, EOLA-T

was run only with the sun, the moon and oblateness (the latter

only where indicated).

4.11.4 Some examples treated

A. High inclination orbit (IMP-G type orbit)

These are described best by the tables below comparing the re-

sults of VOLER with those of a high accuracy numerical integra-

tion, which can be characterized as follows

1A: "medium high" eccentricity " 0.93 with OBLATENESS

lB: "medium high" eccentricity ' 0.93 without OBLATENESS

The agreement appears very good, with errors of the order of

2 days/year (0.55%) on the timing of perigee, 0.04%/year on

the eccentricity.
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TABLE

Initial Orbital Data: TIIP-G - Example 1

IA IB

l-Per : 405.62 402.78

a : 95,804.57 94,940.95

e : 0.929191 0.928577

i 86.8665 86.8659

105.8008 105.8045

-160.0022 -159.9953

t in Year 1969 1969

Month,Day June 24 June 24

Hour (UT) 17.96431 17.96448

In all tables in this chapter, the following abbreviations

are used:

N : Orbit number

t : Time since injection (days)

R-Per; Distance to perigee (Km)

H-Per: Height of perigee (Km)

a : Semi-major axis (Km)

e : Eccentricity

i : Inclination (deg)

2 : Longitude of nodes (deg)

w : Argument of perigee (deg)

t. : Time at injection into orbit at perigee
inJ
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TABLE

Comparison of Numerical Results (IMP-G - Example IA)

Theory N.I. Theory N.I

N 53 53 107 107

t 179.28 178.69 362.70 360.77

R-Per 8,128 8,123 9,447 9,430

H-Per 1,750 1,745 3,069 3,052

a 95,746 95,412 95,690 95,132

e 0.91511 0.91486 0.90128 0.90087

i 86.55 86.41 .86.51 86.46

105.23 105.11 104.87 104.83

w 200.04 200.04 201.57 201.47

No lifetime figures available

N.I.: Numerical Integration (Program ITEM)

TABLE

Comparison of Numerical Results (IMP-G - Example 1B)

Theory N.I. Theory N.I.

N 53 53 107 107

t 178.66 178.69 360.66 360.78

R-Per 7,745 7,763 7,970 7,968

H-Per 1,367 1,385 1,592 1,590

a 94,908 94,927 94,831 94,844

e 0.91840 0.91822 0.91596 0.91599

i 86.47 86.46 86.90 86.78

105.79 105.78 106.14 106.06

m 202.98 203.05 206.42 206.59

SN.I.: Numerical Integration (Program ITEM)
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B. Low Inclination orbits

The orbital inclination on the orbital planes of the perturbing

bodies is relatively low. Considering, as one example among

many listed in Ref. [4-2], a "very high" eccentricity orbit

such as that of IMP-I (e, = 094 3).

The comparison between the results of this theory, through

VOLER, and of a numerical integration are given graphically

(Fig.4 - 4 to 4- 7 ) and also in the table hereunder. It is seen

that an accumulating error is present, which however does not

grow to be very large at the end of one year: about 1% in

the timing of perigee and in the distance of perigee due to the in-

accuracy in a and l-e2 . Yet, the errors are not unduly

large, and the overall trend is sufficiently well captured at

a savings in computer time of the order of about 50.
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TABLE

Initial Orbital Data: IIP-I - Example

H-Per 236.28

a 115,067.60

e 0.9425169

i. 28.7763

S216.0352

w302.3777

tinj Year.............1971

Month,Day.........March 13

Hour (UT)......... 16.00
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TABLE

Comparison of Numerical Results (IMP -I - Example

Theory N.I. .Theory N.I.

N 40 40 80 80

t 179.24 177.83 359.13 355.7

R-Per 14,535 14,256 22,858 23,116

H-Per 8,157 7,878 16,480 16,738

a 115,103 114,186 115,047 114,240

e 0.87372 0.87515 0.80131 0.79765

i 37.54 38.81 44.34 43.36

193.18 193.13 184.78 186.48

w 324.4 324.38 334.53 332.70

N.I.: Numerical Integration (Program ITEM)
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4.12 Conclusions

The present chapter demonstrates the power of non-numeric computa-

tion to generate a closed-form theory (from perigee to perigee) for

high eccentricity orbits. An extended, modified Lidov's theory has

been developed and implemented in a numerical program VOLER, which

simply evaluates the values taken by the symbolic expressions obtained

after one satellite revolution. This method seems to be ideally suited

for calculations in a mission analysis, where requirements for ex-

tremely high accuracy might be treated for the low computer time and

ease of use of the present approach.
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TABLE 4.1

Comparison of Roth's Sixth "Element", Our Sixth

Element and Numerical Integration

Initial Orbital Period of Satellite = 5. 04680 days

Orbit No. Time at Perigee (in days) by

Roth's Sixth Our Sixth EOLAT
"Element" "Element"

1 5.0468 4.9621 4.9629

5 25.2339 24.8073 24.8148

10 50.4677 49.6068 49.6294

15 75.7015 74.3987 74.4442

20 100.9354 99.1831 99.2599

30 151.4029 148.7276 148.8918

40 201.8705 198.2434 198.5261'

50 252.3382 247.7310 248.1615

c>~"
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TABLE 4-1

Orders of Magnitude of Terms: LP and Taylor Expansion

v "Extremely high" eccentricity

e = 0.95, a/p k = 0.342 for the moon, (rn/nk) = 0. 588

for the moon

A.
qJ

j= 2 3

q = 1. 0* 0.6 0. 17

2 0.9 0.54 0.15

3 0.74 0.44 0.12

4 0.58 0.35

5 -0.44

6 0.32
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TABLE 4-3

Orders of Magnitudes of Terms: For the Sun

-3
e = 0.95, a/p k =0.88 x103 for the sun, (an)/nk =0.05

qJ

j= 1 2

i = 1 1.0 0.05

-3
2 2.3 x 10

TABLE 4-4

Ratio of Perturbations Due to the Sun and the Moon

Sh = = 3 x 105 x 81
sun moon } m

L Lm

= 2.43 x 10 7

r moon/rsun = 3.844 x 105/(1.5 x 108)

= 2. 56 x 10 - 3

Let R = ratio of the effects of sun and moon for the
q q-th LP force component

Then, Ri =2.43 x 107 x (2. 56)3 x 10 - 9

-0.39

R 2 =2.43 107 x (2. 56)4 x 10 - 1 2

- 0.001 etc.
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APPENDIX A]

Effects of Earth's Oblateness

A satellite, in an orbit of high eccentricity, spends

a considerable portion of its 
orbital revolution quite far

away from the earth (on the 
apogee side of the orbit). 

Never-

tlheless, the effects of the oblateness of the earth 
are signi-

ficant. The secular effects of the principal term, 
J2 0 , was

the sole term considered. Note that J 3 0 and subsequent terms

-3
are at least of order 10

- 3 compared to J2 0

It is well known that there are no secular 
variations

due to J2 0,over an unperturbed orbital 
period of the satellite,

in tne semi-major axis, eccentricity and 
inclination. The

variations in the longitude of nodes and the argument of perigee

are found in many books on celestial mechanics. 
The variation

for the last element M,, however, is not given elsewhere in the

form presented here, to the author's knowledge. The integra-

tion of this element is dealt with in detail.
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Oblateness: Potential and Force

For a spheroid (symmetry with respect to polar axis),

the potential is given as

R m
U = [I - 2 J (-) P (sin 6)) (A. li)

r m=2 mr m

where

r = distance from the center of mass of the earth

to the satellite

J = numerical coefficients
m

R *= radius of the earth
e

Pm(sin 6) = m-th Legendre Polynomial in the argument (sin 6)

6 = latitude .of the satellite

and P = gravitational constant of the earth.

The values of the first few constants J
m

are:

-6

J2 = 1082.86 ± 0.1 x 10 6

J3 = -2.45 ± 0.07 x 10-6
-6

J4 = -1.03 ± 0.2 x 10 6

Consider the m-th term
K

U = - P (sin 6) (A.1.2)
m rm+l m

where K = J R
m me



AT 3

Then, the force due to this term is

F = VUm

K

= -K P ( ) m- (P ) (A.,.3)
mm rm+ rm+1] m

- 1 (m + 1) 1 (A.1.4)
v( 

) = r 1
r r+ 2  r

where 1 is the unit vector directed to the satellite.
r

V(P = Exi x. P

1

where . = unit vectors of the earth reference system (referred
1

to, elsewhere, as x , ya, z )

(P) = x Pm (sin 6) (A.1.5)

d
.,here P (z) - P (z)

m dz m

Note that

sin 6 = (1 x )
r3

Carrying out the algebra, Eq. (A.8.5) reduces to

Ssin 6 -+ ' X3
P = -P 1 + P - (A. .6)
m m r r mr

Now,

x= (x )Ir + (x t)I t + (x n)In (A.t.7)
3 3 3 3n

where (1r it n) are the instantaneous orbital axes and

the parentheses indicate dot products.



Also, from orbital geometry,

(x ir) = sin 6 = sin i sin (w+v)
3r

(X ) =t sin i cos(w+v)

(x 1 ) = cos i (A.i.8)
3 n

Substituting Eqs. (A.1.7) and (A.i.8) in Eq. (A.8.6) and

simplifying,

VP = -[sin i cos(+v)t + cos i ] (A.1.9)
m r t n

Substituting Eqs. (A.1.4) and (A.I.9) in Eq. (A.1.3),

F = VU
m m

Km i + i

rm+- [ (m +l)P 1r - Pm (sin i cos(+v)1t + cos i )] (A.1,10)

where the argument of the LP, P and Pm, is sin 6. The prime

denotes differentiation of Pm with respect to the argument.

The components of F along the instantaneous orbital axes can

be determined by taking the appropriate dot products. Thus,

K (m+l)
F = (Fm r) 2 P
1 r m+2 m

K
S (F ) = - Am + 2 P sin i cos(w+v)

F m t m+2 m

3 n m+2
F 1 )+=2 A P cos i (A. )3 in~ P



where A = (1 + e cos v)

and r = p/A

Secular Variation in Q

3
dQ r F sin(w+v) (A.1.12)
dv paE(sin i) 3

Substituting from Eq. (A. .11) for m=2, and integrating with

respect to v between the limits 0 and 21 ,

3K2

(AD)ob = - 2 I cos i
lP

K R 2

Letting K e (A..13)
lp2 2 P

(AP)ob = -3K T(cos i) (A.1.14)

Secular Variation in w

dw_ .2  
dw r2 [-F + F sin v] - (cos i) (A.115)
dv e x 2 Pdv

Note that

F = F cos v - F sin v
X 1 2

Substituting from Eq. (A.1.11) for n=2, and integrating with

respect to v between the limits 0 and 2 



lK2

(Am)ob 4 2 (18 sin 2 i - 12) - (cos i)(AS)

Substituting for At from Eq. (A.I.13) and for K2 from Eq. (A.1.14),

and simplifying

(AW) 6K5(l - sin 2 i) (A.i.16)
()o b = 6K( 4 -

Secular Variation in M

3
dM* -2r 3 nt da 1/2 d+ d)

d 1 F + c (cos i -- +)
dv 1/2 1 2 a dv dv dv

yae

where n = mean motion of satellite

2

and da 2ra (eF + F2 ) (A..17)
dv E' e y 2

This integration will be looked at term-by-term.

Substituting from Eq. (A.1.11) for n=2,

Term () 2r 3  F 2r 3  3K 2 4
Term (1) = - F 1-2 n P

1/ 2  a 1/2 p4 2

=-6KE/2 PA
2

1/2
= -3K /2A(3sin 2 i sin 2 (w+v) - 1)

for P = P (sin 6) and sin 6= sin i sin(w+v)
2 2
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Thus, on integration,

Term (1) 
=  _ 3KcE

/ 2 f (2 sin2i- 1
0 2

3 sin2i-cos 2(w+v))dv
2

-6Kc/2 (3 sin2i (A.1.18)
= -6KE w(- sin2i - 1)

Next,

3 nt da
Term (2)= 2 a dv

3 nT da 3 n(At) da (A.1.19)
2 2a dv 2 a dv

where t = time measured from perigee

T- + (At)
2

- = period of satellite

and (At) = time measured from apogee

Since the secular variation in a is zero, the first

Lcrmn on the r lg It-hiand side of Eq. (A. 1.'9) drops out on inte-

graL Ion.

2

Term (2) = 3n(At) (eF + F2

y 1
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Term (2) 9' (At)[e(3 sin2i sin 2 (w+v)-l)A sin v
E: 2

- sin 2i sin 2(w+v)] (A. .21)
2

Integration of Eq. (A.i.21) will be written out in detail.

The generic form would be

1 dv
f(At)f(v)dv = (At) ff(v)dv - /d_ (ff(v)dv)

C1 A

where
3/2

d (At) P -_ 11 (A.f1.22)
V 2 2

Thus,(the limits, 0 and 27, are not marked for convenience)

e f(At) A sin v dv

e .(At)a3 1= - --- ) + fA dv]
2 3e 3eC

2rr
(1 + e) - 6(A.1.23)6 6C

3- sin2 i sin 2w f(At) A2sin v cos 2v dv
2

2e sinni -i A 22 2A + 1)sin v dv
e

3

2 sin i sin w[ 3 (-1 + 3e- 6e2)
2 30e

+ 3- (2 + 3e2 )) (A. 1.24)

30e C 1
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3e sin osw f(At) A sin3v dv
2

3e sin2 i cos 2w f(At)A2 sin v (l-cos2v)dv
2

=3e sin2i cos 2 w[l(1+ (1-3e-4e 2 ) + Tf (-2+17e2 )) (A.1.25)
2 30e 30e C1

3e sin2 i sin 2w f(At)A2 sin2v cos v dv
2

= 0 as (At) is odd about v=n

sin 2i sin 2w f(At)A 3 (cos2v - sin 2v)dv
2

=0

- sin 2i cos 2w f(At)A3 sin v cos v dv

= - sin2 i cos 2w[1+e (1-4e) + -2 (7e 2 -2) (A.1.26)

20e 20e C1

Putting Eqs. (A...23) to (A. .26) together, and simplifying,

Term (2) = [ - 1(3 sin 2i - 2)+ (l+e)(1-3 sin2i sin2)] (A.1 27)

Finally,
1/2

Term (3) = - 2 (cos i (An) + (Aw))

9 1/2
= KT~ (sin2i -2) (A.I.28)
2 3
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Then

(a*,)ob = secular variation in NMdue to J20

= Term (1) + Term (2) + Term (3)

Summing Eqs. (A.1.18), (A.1.27) and (A. 1.28)

(M)ob =-3Kl /2r(3 sin2i - 2)

+ 3Kr n (3 sin 2i - 2)
2 C

1

+ -Kie/2 (3 sin 2 i - 2)
2

3 K 3
+ 2nT- (1+e)3 ( - 3 sin 2i sin2w)2 c

Substituting - c1/ 2 and nT = 2 ,
CC1

(A* 3K)ob (1 + e) (1 - 3 sin2 i sin 2w) (A.1.29)

Features of AM,

There are several interesting features in the final ex-

pressiQn for the secular variation in M, over an orbital

period.of the satellite, as given by Eq. (A.8.29). Firstly,

2
K Re JR

S= J2e e (A. 1.30)
C 2  2 3

pC ac

Since a is relatively invariant in high eccentricity orbits,

Eq. (A.1.30) shows that E (being of magnitude 0.1 n 0.2) acts

as a small divisor in (A *)ob (as also in (A )ob and (AW)ob).
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The effect is rather pronounced in (AM,)ob because c3 is pre-

sent while, in (AQ)ob and (Lw)ob, 2 is present. Thus small

inaccuracies in e, the eccentricity, are magnified.

Secondly, because of the presence of 3 in the denomina-

tor, the magnitude of (AM,)ob is rather large. This is con-

firmed by experimental results as shown in Chapter 2.

Thirdly, the final expression for LIM* arises exclusively

from Term (2) in the integration process (Eq. (A.1.27)). The

contributions of Term (1) (Eq. (A.1.18)) and Term (3)

(Eq. (A.1.28)) cancel with.part of Eq. (A.1.27). Thus, the

"short-period" variations in the semi-major axis contribute

to the secular variation of M4,.

Fourthly, the secular variation in 1M, is zero only when

1 - 3 sin 2 i sip2r = 0

Secular Variation of Roth's Sixth Element

From Eq. (2.21) of Chapter 2,

dT r r
dv - rie/-p [-F1 cos v + (1 + P)F sin v] (AI.31)

Substituting from Eq. (A. .11) and after some manipulation

dT Kc 3 /2 1dT ne [-3P cos v -P sin i sin v cos(+v)(1 + )] (A.1.32)
dv ne 2 2

Instead of transforming to E, the eccentric anomaly, as the in-

dependent variable, this expression will be integrated with
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respect to the true anomaly. The result in either case will

be the same so far as the secular variation over an orbit is

concerned. Detailing the integration term-by-term, the limits

being assumed,

Term (1) = - f[ sin 2i sin2 (w+v)cos v - cos v]dv (A.1.33)

= 0 (A.1.33)

Teim (2) = -fI sin2 i sin v sin 2(w+v)dv

= 0 (A . . 34)

Term (3) = - sin2 i -[sin v sin 2(w+v))
2

Splitting Term (3) further,

sin v 2
Term (3.1) = sin 2w cos v dv = 0

sin 3v
Term (3.2) = -sin 2w J/--- dv = 0

sin2
Term (3.3) = 2 cos 2w f sn cos v dv

cos cos v
= 2 cos 2w[/ dv - If dv]

A

1 dv
= 2 cos 2[I f dv

--f(A 3 -3A 2 +3A-l) -

e

Substituting

dv 2n
A -- 1/2 between the limits

C
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and carrying out some simplifications,

cos 2w 1/2 2
Term (3.3) = - 2r 3 (1 - c )

e

Summing Terms (3.1), (3.2) and (3.3),

37 2i (Ai. 35)

Term (3) = 3 sin2 i cos 2 (-/2) (A.1.35)
e

Summing Eq. (A.1.33) to Eq. (A.I.35) and substituting in the

integration of Eq. (A.8.32),

3/2 2
(AT)ob 3K 3/ 1-1/2 2 sin 2 i cos 2w (A.1.36)

ne

This is the final expression for the secular variation of the

time at epoch,due to J2 0 , as obtained from Roth's sixth element.

Notice that c does not appear as a small divisor unlike in

Eq. (A.1.31). Thus, the magnitude of (AT)ob would not be large,.
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CHAPTER 5

Singularity-free Methods, Using Regularization,

for Circular and Elliptic Orbits

5.1 Introduction and Motivation

Under this grant, singularity-free methods of orbit calculation,

using regularization, and applicable to both the circular (e=0) and

elliptical orbits, have been developed and comparatively studied,

[5-1]
in a Ph.D. thesis by S.K. Bhate , as the Prin-

cipal Investigator's (M.L. Renard) advisee. For a much more detailed

treatment, the reader should refer to Ref. [5-1]. Although the ori-

ginal grant, in April 1968, had the title "Launch 
Window Analysis of

Highly Eccentric Orbits", it became readily apparent 
that for missions

such as that of IMP-H, methods of orbital and mission analysis for

large circular orbits were required, which should be insensitive to

the following singularities introduced by the choice of the 
standard

"osculating elements"

a, e, i, w, Q, To (5.1-1)

a) e = 0. The orbit is exactly circular. Since perigee

strictly does not exist, the "argument of perigee" or

"time of passage at perigee" lose their meaning. Mathe-

matically, in the equations expressing the time-rate of

change of the osculating elements, (5.1-1), small or zero

divisors "e" appear .

b) i = 00 or 1800. The orbit is exactly equatorial, posi-

grade or retrograde. Since the line of nodes strictly
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does not exist, the "nodal line" is left undefined.

Mathematically, small or zero divisors "sin i" appear.

If the small, perturbing forces do not derive from a potential,

or if such forces might have to be encompassed by the theory, it

appears normal to write the equations expressing the time-variations

of the elements in Gaussian form. The problem of developing a varia-

tion of parameters scheme in which derivatives are expressed in terms

[5-2] [5-3]
of perturbing forces was attempted by A.M. Garafalo [5- 2], R.R. Newton

[5-41
C.J. Cohen and E.C. Hubbard 5  . In all of these studies, however,

absence of any perturbations, which defeats the very purpose of the

method of variation of parameters. S. Pines [5- 5] presented the first

"authentic" variation of parameters scheme, which used as osculating

elements the position and velocity vector at some instant, time being

and as the independent variable. Basically, the same method was used

[5-6[5-7] [5-8, 5-91
later by P. Wong , S. Herrick ,E. Pitkin . Program NICE-T

developed under this grant at C-MU , and described in

Chapter 6 of this work, has been written based on Pitkin's version

of the variation of parameters, and will be compared to other methods

presented in this chapter.

In the following, non-singular elements such as the radius and

velocity vector at some epoch are combined with the use of differen-

tial transformation of the independent to result in the extremely

simple form for the unperturbed equations of motion; those of the

harmonic oscillator. Based on this unperturbed solution, a singular

free method of variation of parameters can be developed. This is the
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object of Section 5.2. In Section 5.3, a modification of Brouwer's

method of "perturbations in rectangular coordinates [5
- 101 which is

applicable to circular orbits is developed, again starting from 
the

unperturbed solution mentioned before. In Section 5.4, the perturb-

ing forces due to a third gravitational body (such as the sun or the

moon) are expressed in terms of mixed Fourier-Chebychev series, for

which series computational algorithms are derived which maintain a

good accuracy by avoiding the problem of taking the differences of

large, close numbers. This leads to the development of a theory

which is semi-analytic, namely closed form integration is performed

on series of the type indicated, the coefficients of which are

numbers "valid" over one orbit of the perturbed body (the satellite).

In Section 5.5, a numerical comparison is made between the results

of the integration, in their various forms, of the system of differ-

ential equations. Two "benchmark" examples are considered: an orbit

of large eccentricity (e = 0.936227) with a period of 4.45 days, and
-5

an essentially circular orbit (e = 0.8018212 x 10-5) having a period

of 12.05 days (orbital radius = 35 mean Earth radii).

For such "large circular" or "high eccentricity" orbits, it should

be stressed that:

- as compared to close-to-earth orbits, the oblateness effect

and atmospheric drag, as perturbing forces, are most of the time, or

even always, much smaller than those due to the gravitational pertur-

bations of the sun and the moon.

- as compared to classical problems of Celestial Mechanics

dealing with natural satellites: the perturbing forces considered in
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these problems are small either because of the large distances involved,

compared to the orbital semi-major axis (in the case of the moon) or

on account of the small ratio of the masses (the largest for Jupiter

but still < 10-3). Typically, the ratio of the magnitude of the per-

turbing force to that of the central force is largest in the case of

Mars perturbed by Jupiter, and is .763 x 10-5 at most.

To fix the ideas, the relative order of magnitudes of the per-

turbing forces, with the central force as a norm, are, along large

circular orbits:

Atmospheric pressure < 10-27

Radiation pressure < 10-16

Oblateness < 10- 5

Perturbation due to the sun r 10-3

Perturbation due to the moon U 10- 2

Now, in studying orbits, the main motivation might be:

1) High accuracy computation of ephemerides: for this, numerical

integration is well suited and can be carried out to a very high

degree of precision.

2) Determination of the evolution of the orbital elements, for mission

analysis purposes: Here, since the requirement on accuracy is re-

laxed, it might be allowed to linearly superpose perturbations, at

least over one orbit of the satellite, in spite of the significant

magnitude of some of the forces listed above. One might then

[5-10 to 5-15]
consider to use close-earth satellite theories Lunar
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and planetary theories would have to be excluded if the perturbing

function is expanded in powers of the inclination as a small

parameter, and if the theory is therefore unsuitable for the large

inclination commonly encountered for artificial satellites. A

notable exception is Tisserand's [5- 16] theory for the computation

of Pallas perturbed by Jupiter, in which the perturbing function

2i 2i
is expanded in powers of both sin -

2 and cos 2

3) Orbit classification: Here the emphasis is on qualitatively

classifying orbits, such as being able to say if they are of

circulatory (line of apsides rotates monotonously) or oscillatory

[5-17]
(line of apsides oscillates between limits) nature . To this

effect, some sort of development in series (Legendre Polynomials

and Taylor series[ 5- 17], Fourier series in M and M'[5-18,5-19 )

is considered and some "main" contribution is analyzed to define a

qualitative behavior of classes of orbits.

The present chapter strive for the development of methods of rela-

tively moderate accuracy and concentrates on this objective along the

lines described in item 2).

As a last remark in this introduction, we should mention that we

initially proposed, in 1969, that the study of large circular geocentric

[5-20]
orbits be a part of the material studied under this grant , for

orbits having a ratio of the orbital semi-major axis to the semi-major.

axis of the moon up to about 2 , along the following lines of effort:2
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- Regularization (for instance, Kustaanheimr-Stiefel's trans-

formation)

- Closed form theories.

These are indeed, the directing lines taken in this chapter. However,

in view of the magnitude of the dynamical perturbations, the "analyti-

cal" integration of the equations of motion was carried out with

numerical coefficients (as opposed to literal coefficients) inside

the computer program and its result evaluated to give the desired

output. Hence the name "semi-analytic integration" was thought to be

more appropriate.

5.2 Unperturbed and perturbed two-body motion

5.2.1 Development of the linear equations for the unperturbed problem

In its classical form, the unperturbed two-body problem, referred

to the center of the Earth, say, is described by the non-linear differ-

ential equations

S+ -- = 0 (5.2-1)

r
~ - = 2

in which r is the geocentric vector to the perturbed body, and = k2

(earth + m satellite) or V k2 M if m satellite <<<M If a
earth satellite earth s earth

perturbing force F, assumed to be always of "small" magnitude compared

to the magnitude of the central force, is present, (5.2-1) has r.h. side

F.

Using the well-known Sundman's transformation

d r d (5.2-2)
dx -/ dt
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leading to

d J d d 2  / d ( d) d2 _ dr d

dt r dx dt 2 x  dx r dx r dx 2  r 3 dx dx

Equation (5.2-1) from which the consideration of collision orbits is

excluded (thus r # 0), will read after multiplication by r21 P,

2 + +
dr dr dr r = (5.2-3)

dx r dx dx r

which is still non-linear. Now, in two-body motion with an inverse-

square attractive law of forces, and with c = r Ar = constant vector

(' are derivatives with respect to time)

-11 + d +t +
r Ac =- (r A c)dt

p 3 r )
P r

r - + r
- r - - =

r r dt r

Therefore, upon integration,

A(r A ) -jr (5.2-4)

Let I be the Laplace vector

Se r 1 + -,
A E -- = r A(r Ar ) (5.2-5)

def 1 r P

It is a constant in the unperturbed motion. So is the energy inte-

gral (a > 0 for elliptic orbits)
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+2

E -r (5.2-6)
2a 2 r

or equivalently the quantity

+ 4.
2 ldr dr 2 1

= E dr dr 2 1 (5.2-7)
11 dt dt r a

-

Now A and a are rewritten in k variables as

A r 1 dr A ( A dr) (5.2-8)
r r2 dx dx

1 dr dr 2 (5.2-9)

r2 dxk dx r

_. --

From these expressions, ar + A can be expressed as

4 2r 1 dr dr - dr dr + r
or + A = + -.. -- )+

r 2 dx dx dx dx r

r 2 dx d

r 1 dr dr
r r dx dx

Equation (5.2-3) is rewritten

dx 2  ar = A (5.2-11)
dx
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Defining a new, auxiliary vector which is constant in the unperturbed

motion,

B E aA (5.2-12)
def

we obtain

d2r +
d2r - B) = 0 (5.2-13)
dx2

A variable z is defined as

z - =r -aA (5.2-14)
def

and the final system of uncoupled, constant coefficient system of

linear differential equations reads

2-*
d-+ 1 = 0 (5.2-15)
dx2 a

Its solution is, in terms of the z variable

z= cos /+ a (2-)o sin -a

(5.2-16)

-f 4-
dz 2E dz X

- - sin + ( o cos
xz az

in which zo, ()o are the initial conditions, given at x = 0. In terms
dx

of r

dr x
+ + + x. - (-) s in

r = B + (r - B)cos /a dx sin a

(5.2-17)

dr - - x dr x

dx - sin Va x cos /Va
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(5.2-17) is the solution of the unperturbed two-body problem in terms

of independent variable x. The time t corresponding to any x, is

if t = to for x = xo = 0,

x

t f J i-dx + t. (5.2-18)

0

Looking at Equation (5.2-17), it appears natural to introduce a new

variable v . However, since a is not a constant in the perturbed

motion, the introduction of the new variable "E" is done in differ-

ential form:

dx
dE = (5.2-19)

In the unperturbed problem, considering that a is a constant of mo-

tion, by integrating (5.2-19), we obtain

E = Va with E = 0 for x = 0 (5.2-20)

whereas for the perturbed problem

x= fVa dE with x = 0 for E = 0 (5.2-21)

0

With this new variable,

d dE d

dx dx dE

d 2  1 d 1 d (5.2-22)

dx2 = -aE (a _ E

1 d2  1 da d
a dE2 2a dE dE
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da
In the unperturbed problem, d is zero. Thus Equations (5.2-3),

(5.2-11) and (5.2-15) become

dr 1 drdr a = 0 (5.2-23)

dE2  r dE dE r

21 >
S+r = B (5.2-24)

dE2

2+
-dz + = 0 (5.2-26)
dE

Therefore, in variable "E" and for the unperturbed problem,

S+- dz
z = zo cos E + ( ) sin E

(5.2-27)

dz -- dz
z0 sin E + (-) cos E

dE dE o

+ (r E dr
= B+( o -B) cos E + () sin E

dEo

4 -
dr - dr

S-(ro - sin E + ()o cos E
dE dEo

To obtain the differential equation satisfied by the scalar r, the

identity

2 + 4
r = r'r

is differentiated twice with respect to E

dr + dr
r -r *-)

dE dE

2 + 2
S d2r dr 2 dr d 2

r *-- + ( = +
dE 2 dE dE 2
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From Equation (5.2-23)

2+ + -
- dr r dr dr dr 2

rar () -ar
dE2  r dEE dEdE

Substituting, and dividing by r,

2 ->
dr 1 dr 2 (5.2-29)

dE2  r

From (5.2-9)

1 dr dr 2 1 dr dr 2

r2 dx dx r ar2 dE dE r

we obtain in Equation (5.2-29)

--

1 dr 2
1 d) = ara + 2a = - r + 2a

Hence

d2r + r - a = 0 (5.2-30)
dE

or with z r - a,
def

d2z + z = 0 (5.2-31)
dE

2

the solutions of which are

z = c1 sin E + c2 cos E

(5.2-32)

dz c1 cos E - c2 sin EdE2
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and

r = a + cl sin E + c cos E = a + (ro-a)cos E +( d) sin E

(5.2-33)
dr C1 cos E - c 2 sin E

dE

with cI, c2 constants equal to

dr

c 2 = ro - a

Note that the above equations (5.2-32), (5.2-33) will still hold true

dr
for a perturbed problem, if a, ro and (~ ) are osculating parameters

of the orbit at any given time.

The equation relating time to E, in the unperturbed problem, is

t-to = i/ dE with t = to for E = 0

0

or

a3/2 [E + ( - l)cos E + 1 ) (1 - cos E)] (5.2-34)
t - to = a dE

If the reference (t = to; E = 0) is the perigee of the unperturbed orbit,

then,

ro = a(l - eE)

dr
Po
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Therefore, in (5.2-34),

3/2
t - = to [E - e sin E] (5.2-35)

which is the classical form of Kepler's equation of time, E being the

"eccentric anomaly". (5.2-34) this appears as a more general equa-

tion, or generalized equation of time, with E playing the role of a

generalized eccentric anomaly.

5.2.2 Differential equations in the perturbed problem

If a perturbing force F exists, Equation (5.2-3) written with R

as the independent variable will read

2 - = --)+- r (5.2- 36)
dx r dx dx r P

Similarly, with E as independent variable, and taking Equation (5.2-22)

into account,

2-- 4-
d r 1 dr dr r F 2 1 da dr (5.2-2  r ( + a =  r a + - (5.2-37)
dE2 r dE dE r 2a dE dE

or
2+ 4-

dr + F 2 1 da dr
+ r - B = -r a + (5.2-38)

dE2 p 2a dE eE

5.2.3 Formulation of the variation of parameters method, with E as

independent variable

5.2.3.1 Variational equations

Following LagranRe's method of variation of constants, the solution

to the perturbed nroblen is written as
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+ + -dr
r = B + (r - B)cos E + ) sin E

(5.2- 39)

dr =drd r = -(ro - i)sin E + (-)ocos E

If at the instant considered, i.e. for the value of E considered,

the perturbations were removed, vectors B, ro and (dr) would be

constants of the motion in the unperturbed motion that would ensue.

However, due to the continuing action of F, B, ro and (( ) will be func-

tions of E, the variations of which are now determined.

Taking the derivative of r in Equation (5.2-39),

dr B do d dr
d = (l - cos E) + d cos E + d (() )sin E-(ro-B)sin E

dE dE dE dE dE o

+ ( ) cos E (5.2- 40)

Subtracting the second equation of (5.2-39) from (5.2-40), we obtain

+ do d (dr
(1 - cos E) + d-- cos E + -((( )o)sin E = 0 (5.2-41)

dE dE dE dE

2+
dr + +

The l.h. side of Equation (5.2-36) is equal to - + r - B, thus in the
dE

perturbed problem

d2 dB dro d dr
+ r B = sin E - sin E + r )cos E

E dE dE dE dE c

+ 4

Fr2 1 da dr
2a dE dE
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di d dr
In terms of --d and -(( -)), this is rewritten

dE dE dE

dro d dr F 2 dB
-sin E + cos E -( )o) = - sin E

dE dE dE i dE

(5.2-42)
1 da dr

2a dE dE
ro

Solving (5.2-41) and (5.2-42) for the six-vector dE dr yields
dE

SdB
ro cos E -sin E dB (1-cos E)

d sndE (5.2-43)

dE (d) sin E cos Ed 2 1 da dr
- sin E + (-)r a + -a dE

or explicitly

4- . ._+

S r a sin E da dr sin E + dB (1- cos E)

dE 2a dE dE dE

(5.2-44)

d d4- 1 da dr dB
dr(( E) ) =F r2a cos E + cos E - sin E

E t - 2a dE dE dE

This system of differential equations of sixth order defines the varia-

tion of parameters scheme, describing the variation with E of the oscu-

lating elements r d , integrals of the unperturbed motion.

da dB
To be complete, there remains to compute dE' dE '

da da dt
dF" dt dE
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Now, by definition

1 1 dr dr 2

a 1 dt dt r

1 da 2 dr d2r 2 dr

a2 dt p dt dt2 r2 dt

2 dr + r 2 dr_. (F - p -- ) + 2

Sdt r 2 dt

2 + dr 2 dr + 2 dr
dt r2 dt r2 dt

2 +.
da 2a -- dr) (5.2-45)
dt dt

Thus

da 2a d) (5.2-46)
(F (5.2-46)

dE -- dE

dB
To obtain , since by definition

- 1 dr -+ dr
A - A(r A ~)

r dt: dt

B =aA

dB da dA

dt dt dt

dA i dr r dr 1 d2r ( dr 1 dr - dr

dt r dt r 2 dt dt 2 dt dt dt
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2-
d is substituted from (5.2-1) and triple products are expanded,
dt

dA 1 dr r dr r dr 1 dr 1 +.dr
+ + -(F-r)dt r dt r 2 dt r 2 dt r dt (F dt

1 dr 1 dr + + 1 dr +
-(F -)r-F)r + (r )F
u dt 1 dt u dt

Finally,

dA 1 - r - + dr - dr
[( + (r* -) 2( r] (5.2-47)

dt - dt dt dt

dB
To compute - ,

dB F dr - - F 4 dr + dr F
- 2( )(aA - r)+ r + a+ a(r ) (5.2-48)

dE 9' dt dt dt

and

dB F dr - F ,dr dr F
=2a( -)(aA - r) + a(- • r)q + a(r -)- (5.2-49)

dE dE dE

Equation (5.2-43) together with Equations (5.2-46) and (5.2-49)

are a complete formulation of the method of variation of parameters in

4-

elements ro, (dE , with E as independent variable

5.2.3.2 Equation of time

Using equation

t - to =Va dE (t = to for E = 0) (5.2-50)

0
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in which necessarily r is given by

r = a + (r. - a)cos E + ( dr sin E

dr
as in (5.2-33), but this time with the elements a, ro, (

dE)a

functions of E. Substituting in (5.2- 5q,

E fa dr
t - to = E [a + ro-a)cos E + (E)osin E]dE

0

VPd (t-to) = a3 E - E --(a3/2)dE +/a(ro-a)sin E

0

sin E -{/a(r-a)} dE - a( cos E
0 dE dEo cos

0

E dr
+ {() a)} cos E dE

dE o

0

or

3/2 E f(E)
a +r + .dr B

t-to = (- [E + - l)sin E + a )o(l - cos E)] +

0

/a o ( ~- o) o - -Jad) (5.2-51)

+

with
d 3/2 + Ed[/- dr

f(E) = - E (a sin E [/a(ro-a)] + cos E-[a (E-)] (5.2-52)

Written in the form of (5.2-51), and by comparison with Equation (5.2-34)

for the unperturbed motion, it can be seen that the "change in time" is

given by the last two terms
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tperturbed - tunperturbed f(E) dE +

0

dr - dr
ao o - (5.2-53)

By observation of Equation (5.2- 5.), it can be seen that in order to

know the perturbed time, one more integration in E is needed (the

order of the system being seven). This feature is equivalent to that

of a double integration, a step which cannot be avoided at some point

as commented upon by J. Kovalevsky- 
1

5.2.3.3 An approximate variation of parameters scheme: a approximately

constant

If the nature of forces is such that along the perturbed orbit

2 +
da - dr 0 (5.2- 54)
dt 2 dt

is approximately zero (i.e. always much smaller than the time-rate

of the other elements), or if, in the absence of a priori knowledge of

such smallness of 1 1, numerical experiments have shown that such was

the case in the problem at hand, a simplified scheme can be developed

along the lines described in what follows. Extreme caution has to

be exercised, however, in making sure that (5.2-54) holds sufficiently

well.

Let E be defined here as in the unperturbed problem:

E ef
def a
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Thus
^ E

dx = + 1 da
dE 2 /a dE

= a ( +1 E da
2 a dE

d 1 d
dEdx / 1 + Eda dE

2 a dE

da/2a is always very small compared

The simplification made is that dE/2E is always very small compared

to unity, thus

dE 1
=

da

With this simplification, i..e. a neglected in the differential

transformation, the equations for the perturbed motion as given in

Section 5.2.3.1 simply reduces to

2_ -

dr F 2
+ r B- ra

dt 2

and the Equation (5.2-44) for the variation of the parameters

become

---- -
dr dB -Fr2 sin E

dro = (1 - cos E)j (- r2a) sin E

dE (5.2-55)

4. + -*

d dr dB F
d-[( )o ] = -sin E + - r2a cos E

The relation between time and E is given by (5.2- 34.

5.2.4 Formulation of the method of variation of parameters, with

time as independent variable.

The solutions developed for the unperturbed or perturbed motion,

with E as independent variable, are now transformed to the case where
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t (time) is the independent variable.

5.2.4 Unperturbed motion

One wishes to obtain

- f t + dr
r(t) f(t) ro + g(t)( )dt o

(5.2,.56)

dr ' dr
= f ro + ()

dt dt

designating now derivatives with respect to t. Since, from

Equation (5.2-38),

(dr
r = B + (ro - cos E + ) sin E

Now

B = constant in unperturbed motion

- 4 4- +
r ar dr a dr dr

= a - + (r
r + dt dt

1 2 1 ar dr dr
= ar(- - - + -) +-(--

r r a 1 dt dt

a are dr dr
= ro(l- o) + -() ( )

r I dto dto

Using the relation dt = dE

- -r a dr dr
r = ro { - o(- cos E)} + {sin E + - (1-cos E)}(-t)o

17 ,/o dt dt

Therefore, in Equations (5.2-56),

f = 1 - (1 - cos E)
ro

r Va va dr
S(sin E + - (t-)o(l - cos E) (5.2-57)g ~ =, ,/" ,
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Computing the time-derivatives:

df a 1d = a sin E i
dt ro r a

f = - sin E
r r o

ro /a a dr
g = (cos E + (-t) sin E)

r= _ (cos E + : .dr sin E)

To summarize,

f= -vL sin E
r ro

(5.2-58)

g = (cos E + (-) sin E)x - dt

From these expressions, an algorithm can be implemented, which for a

given value of t, will require, to obtain the corresponding value of

E, to solve the transcendental generalized Kal.er equation (5.2-34) by

some numerical method.

5.2.4.2 Perturbed motion

Again the perturbed solution is written in the form

4 - dr
r(t) f ro + g(-)o

- +(5.2-59)
dr dr

dr = f ro + g C==dt "dt"
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. dr
where ro, (0t)o are now functions of time, and f, g, f, g are func-

tions given in 5.4.2.

From Equations (5.2-44) and dt = dE r-  and Equation (5.2-49),

dB da
(5.2-45) for dB ' d

dt ' dt

dr = _ _ 1 da dr s E dB
d3 - r/a sin E r sin E + dB(1-cos E)
dt 2/J7p dt dt dt

(5.2-60)

- - - 4-

dB F dr + F .dr dr F
- 2a = - -)(aA - r) + a(- r)j + a(r ) -

2
da a c

2 a F * T
dt p dt

Finally, (t)o is needed. From Equation (5.2- 4),

d da d d) ro a

ddE d E dt o

+ [dr a ro da

d dr r roa +dr) dr ro da
dt t P t dE /i 2 dt

Sroa dr dr 1 dro 1 da

[ dt dt dt ro dt 2a dt

and

d dr dB 1 da d r
t (-)ol ro- dt sin E + (F + 2a dt cos E

(5.2-61)

1 dr. 1 a dr
- (--- + ) )

2a dt 2a dtq

Given the form (5.2-59) to the solution of the perturbed problem, Equa-

tions (5.2-60) and (5.2-61) define the equations for the variations
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* .dr
of parameters ro, ( -)o with time as the independent variable.

This form of the method of variation of parameters is implemented

in program NICE-T, described in Chapter 6.

5.2.5 Brief Comments

To conclude this section, a few comments are made on other

similar approaches taken by other workers. In his "Theory of Orbits",

Szebehely gives a treatment of regularization, with an extensive

bibliography. The attention is focused on the restricted three-body

problem, two-body problem and the collision orbits (one-dimensional

problem). In this, the Levi-Civita transformation, or the use of

complex variables, is possible. A recent extension of the Levi-

Civita transformation to 4-dimensional space (its extension to three-

dimensional space not being possible), by Kustaanheimo and Stiefel

(KS transformation) is used by Stiefeland Scheifele [5-22]
, with the

game independent variable as was used here. A disadvantage of using

the KS transformation is that the degree of the differential equa-

tion increases to ten, whereas the present treatment uses only six

differential equations, plus one additional one to go back to physi-

cal time, in a derivation which is thought to be simple and straight-

forward. The method of variation of parameters developed by Stiefel

and Scheifele[5- 22] has ten parameters, with the equations of

constraints used as numerical checks during integration. Furthermore,

and this is of particular importance in view of our goal to develop

methods suitable also for circular orbits, Stiefeland Scheifele's

parameters [5-22 ] make reference to perigee and as such are not suitable
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for circular orbits. Finally, as compared to Pitkin's
[5- 3] develop-

ment of the method of variation of parameters with time as the inde-

pendent variable using the perturbative operator technique, the

method developed here is thought to be much more straightforward.

5.3 A Modification of Brouwer's Method of Perturbations in Rectangular

Coordinates, Applicable to Circular Orbits.

5.3.1 Introduction

In 1944, D. Brouwer [ 5- 23] published a method of calculating per-

turbations in rectangular coordinates, which is described in Brouwer

and Clemence "Methods of Celestial Mechanics" [5-24] as being apart

from Hansen's method, the only other one that "need to be considered

seriously for application where the numerical values of the elements

are used from the start, and where a precision compatible to that of

observation is desired." The method was applied by M.S. Davis
[5-25]

to compute the motion of Eunicke (first order). Recently, S.A.

Hanid[5-26] developed a second-order planetary theory using this method.

In Brouwer's method, two main parts exist: the first one is to

set up the differential equations of motion, the second one to integrate

a suitable representation of the perturbing potential or forces, in

expressions which are easily integrable.

In order to assess Brouwer's method as regards to formulation of

the differential equation, a comparison is made in Chapter 6 between

Brouwer's approach and the classical variation of parameters method
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method using the same package for computing the forces 
and identical

algorithms for the integration. On this very limited sample, it appears

that a slight advantage might exist for Brouwer's method.

5.3.2 Differential equations in a form valid also for circular 
orbits.

Since Brouwer's method was using a reference orbit given in

Delaunay's variables, it cannot be used for circular orbits. 
A new

method is developed on the basis of the equations of Section 5.2,

namely the use of elements ro, ro with E as the independent variable.

In Section 5.2, the variable

+ + 4.
z = r -B

was introduced. In the unperturbed case, it satisfied the equation

2-
d zt + zo = 0 (5.3-1)
dE 2

with subscript "o" reminding us that it is the solution 
in the case

where perturbations are removed. With the same notation, we can de-

fine

def "B" on the two-body reference orbit (a constant)
def

ro d=f r on two-body reference orbit, at E

z df r - B0 , r taken along the perturbed orbit

This gives in Equation (5.2-3 8 ), from which (5.3-1) is subtracted,

and in which 
= ( ) 2a2 is substituted,

24. - 4.
d2~~~ -t + 2 ( dr dr

+ - T + -)a

dE dE dE



5-28

Let

6 d z - zo , the vector difference between
actual and reference orbit

--- -*
6B -B - Bo

Thus
2 + -+

d + + F F dr drd (6z) + 6z = 6 + - r2a + (F dr) a --r (5.3-3)
dE2 P P dE dE

The solution to (5.3-1) can be written as in (5.2-27), with C, D

introduced to avoid confusion in the notations,

zo = C sin E + D cos E

(5.3-4)

S=C cos E - D sin E
dE

The solution to Equation (5.3-3) in its homogeneous form (r.h. side = 0)

is of the same form as (5.3-4), thus

S 6 z.
6z = i Ki  o (5.3-5)

1=1 i C.
1

in which the K.'s are constant coefficients, and C. (i = 1,2,3) are
1 1

the projections of C on axes X, Y, Z; Ci(i = 4,5,6) are the projections

-

of D on the same axes.

In the perturbed case, one requires that (5.3-5) still be the solu-

tion to (5.3-3), but now with the K.'s being 6 unknown functions of E,
1

which can be determined with the additional requirement that the actual

and osculating velocity be the same.
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Thus,

6
d dKi (5.3-6)

dE i=1 i dEC i= dE c. (5.3-6)
1 1

I .
t

term appearing
in unperturbed pro-

blem

and it is required that

6 dKi zo
E =0

i=1 dE DC.

Further differentiation of (5.3-6) gives

2 6 2
d2  6 dKi  d .dzo 6 d

dE dE C. dE = 1 C. dEi= E1

2-+d z. +
Replacing 2 by -zo

dE

d2 (+ 6 dKi D  6
d z) = ,--  ) + E K .- z

dE2 i1 dE C dE 1=1 lC

or using (5.3-5)

2 z 6 dKi dz
(6 z) + 6z = i 1

dE i=l dE aC dE

dK i
Thus we have six equations for the dE

6 dKi (d.) = [G G G (5.3-8)

i=1 dE C. dE x y z T
1

in which

F 2 F dr dr
G - ra+ ( - dr)a +6B (5.3-9)

df F dE dE
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-t -

From Equation (5.3-4), if C has components (Cl, C2 , C3) and D com-

ponents (Cq, C5 , C6), the following holds

S(zo,j) = 6 sin E (i, j=l, 2, 3)
i i

= 6 cos E (i = 4, 5, 6; j = 1, 2, 3)
(i-3)

C ~C d = 6 cos E (i, j = 1, 2, 3)C. (dE j i1

dzo -6 sin E (i = 4, 5, 6; j = 1, 2, 3)aC. dE j i-3

In matrix form

sin E 0 0 cos E 0 0 0

0 sin E 0 0 cos E 0 0

0 0 sin E 0 0 cos E 0

cos E 0 0 -sin E 0 0 Gx  (5.3-9)

0 cos E 0 0 -sin E 0 Gy

0 0 cos E 0 0 -sin E Gz
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After inversion

K sin E 0 0 cos E 0 0 0

K2  0 sin E 0 0 cos E 0 0

d K3 0 0 sin E 0 0 cos E 0

dE
K4 cos E 0 0 -sin E 0 0 G

K5 0 cos E 0 0 -sin E 0 Gy

Kg6  0 0 cos E 0 0 -sin E G

or

dK1-l= cos E GdE x

dK 2
= cos E G

dE y

dK3  = cos E G (5.3-10)
dE z

dK 4 = -sin E G
dE x

dK 5 = -sin E G
dE Y

dK 6 = -sin E G
dE z

To go back to physical time, t, use can be made of Equation (5.2-48).

Alternatively, using

da
dt = - dE1Wr
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t - to = (ra - r o/ao)dE + roa 0o dE (5.3-11)

0 0

ro having here the meaning of r, along the reference orbit, at E. But

it is known that, if ( )o designates the value of the quantity between

parenthesis at E = 0 ,

da
ro = ao + ((ro)o- ao) cos E + (( E)O)o sin E

Let, in (5.3-11)

dK
7 d rVa - ro/ao (5.3-12)

Then the equation of time becomes

1 E dK 7  ao

t - to - dE + {aoE + ((ro)o - ao) sin E

0 (5.3-13)

dr
+ (( )o)o(l-cos E)}

An algorithm can be developed on the basis of 
the above formulae[5-11

and is implemented in program BROUWER-E described in Chapter 6.

5.4 Semi-Analytic Integration Method: Mixed Fourier-Chebyshev Series

5.4.1 Introduction

Given a system of differential equations describing the rates of change

of the parameters ., the first step in Picard's iteration scheme will

consist in substituting in the r.h. side of the equation the solution

to the unperturbed problem, and proceeding to analytically integrate

this r.h. side to obtain the changes in the parameters over a suit-

ably selected interval.

For the large circular orbits considered here, it has been found

that results of sufficient accuracy (in a sense to be precised later)
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are obtained over a range (0, 2u) for E. For larger intervals of E, one

proceeds to the integration over (0, 27), "updates" the elements by add-

ing their changes over the interval to the initial values, and so on.

The r.h. sides in the differential systems, in order to be able to

integrate these numerically, are to be expressed in a series of suit-

able analytic functions, the coefficients of which are numerical, intro-

duced from the start using the initial conditions. Such analytic

functions are oftentimes double Fourier Series in the mean anomalies

of perturbed and perturbing bodies. However, in the case of artificial

satellites undergoing strong perturbations, it is no longer true that

the elements will not "change" too much over a period of the perturb-

ing body. From that viewpoint, the periodicity in M', say (mean anomaly

of the perturbing body), for constant a, e,..., has been destroyed, and

it appears perfectly reasonable to use non-periodic approximation 
func-

tions, valid over a suitable interval in E, to represent the motion

of the perturbing body. Chebyshev's polynomials have been used in

planetary theory by Carpenter
[5- 2 7]

The analytic series chosen here to represent the terms in the r.h.

side are mixed Fourier-Chebyshev series: the Fourier part accounts

for the motion of the satellite, and the Chebyshev part, having an

argument which has a linear relation with the variable in the Fourier

Series, represents the motion of the perturbing body.

5.4.2 Development of mixed Fourier-Chebyshev Series for the derivatives

The point of departure is the system of equations for the variation

of parameters r0 , o, with E as independent variable, written inOf prameersr,, i-E
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(5.2-44), which are repeated here

dr F 1 da dr dBdr _ Fr2a sin E - da sin E + (1 - cos E)
dE P 2a dE dE dE

d dr F 2 1 da dr dB
-- ((--)) = - r a cos E + cos E - sin EdB

dE dE 2a dE dE dE
(5.4-1)

dB F d 4r ( F dr F dr
S 2a ) (aA - r) + r)a + (r -)a

dEdE dE p dE

da 2 dr
= 2a

dE p dE

with A (in this first order scheme) being a constant vector depending

on the initial conditions.

In order to determine what calculations are involved here in the

development in series of the r.h. sides of (5.4-1), we shall, as

announced in the beginning of this chapter, consider the analysis

is limited to gravitational perturbing forces due to other bodies

(moon and sun):

'P r *r r
(L2) (- .)p( 3 - 3 (5.4-2)

1 r r
p=moon, irP P

sun

Standard notations are used: r , r are the geocentric vectors to the
P

perturbing body and satellite, respectively, and rlp is the magnitude

of vector r p-r.

First of all, the r.h. sides of (5.4-1) involve scalar r and

+ dr
vectors r, d- B, which areto be taken as.those of the undisturbed

motion, namely
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r = B + (r- B)cos E + (--)osin E

-+
dr + B dr

- = -(r - sin E + ()ocos E

(5.4-3)

r = a + (r - a)cos E + dr sin E

-(r - a)sin E + dr )cos E
dE dE

Substitution of (5.4-3) into (5.4-1) permits to express the r.h.

sides as Fourier Series in E, multiplied by F . In Equation (5.4-2)

+- F
it can be seen that for given r , could be expressed as a Fourier

series in E; r could be developed as a Fourier series in the mean

anomaly of the perturbing body. However, here, these series lose their

validity rapidly, if the range of Efor which .(5.4-3) is adopted with

4- dr
values of ro, ()o, B at E = 0, exceeds (0, 2Tr). It was decided to

adopt Chebychev series for representing r p, by the method of special

vales[5- 28] . With a judicious choice of the argument of the Cheby-

chev series, the integration of the resulting mixed series could also

be simplified.

Let x be an argument linearly related to E as follows

E = (x + 1) (5.4-4)

Thus, x has range (-1, +1) when E varies over (0, 2w). The ephemeris

time, t, corresponding to E, is obtained from Equation (5.2-34)

a3/2 lr 1 dr
t - t [E +( - l)cos E + () ) (1 - cos E)] (5.4-5)

r corresponding to this t (or E) can be determined by any suitable

means (ephemerides, tapes, tables) with a suitable interpolation routine

(here: fourth order central differences). The numerical coefficients
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of the expansion of r in Chebychev's polynomials follows the method
P

given by Fox and Parker[ 5- 28]

Mixed Fourier-Chebychev Series will be expressions encountered

in the r.h. side of (5.4-1) having the canonical form

J K
max max

f= { Cl(J,K)T (x) }cos(J-1)E
J=1 K=1 K-1

(5.4-6)
Jmax Kmax

Z { Z Sl(J,K)T (x)} sin JE
J=l K=

The following properties and calculations are derived in S.K.

Bhate's thesis[ 5- 1], to whom the reader should refer for a more de-

tailed proofs:

I) If fl9 f2 are series such as in (5.4-6), so are

fl + f2

cfl (c scalar

gfl (g Fourier Series in E)

hfl (h Chebychev series in x)

fl x f2

(From this results that when the proper substitutions and operations

are carried out, all r.h. sides in system (5.4-3) will be mixed Fourier-

Chebychev's Series, provided the components of - themselves can be ex-

panded in such series.)

r 3
II) D d (---) and D D -1 (r < r )1 def p p def 1 p
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are mixed Fourier-Chebychev series.

r - -
Indeed, let p df _ < 1, = angle between r and r

def r pp.

r 3 r 1

) = 2 2 3/ -1(rp (r 2+ r 2 2rr cos ) 2 (1 + p2- 2p 3/2

if a d ej . Thus, after Taylor's series expansion about x1 = p = 0,
def

a-i
and x = p = 0,

r) 1 1

1p (1 - p 3 / 2  (1 - p )3/2

0 0 (2n+l)! n n C (2m+l)! m -m)
= (E p n,)( p a )

n=O 22nnpn! m=0 22mm!m!

0n-m n-m
E AA p n-m (5.4-7)

n=0 m0O nm

with Ak (2k+l)! (k = n,m)
S2 k!k!

Now, in Equation (5.4-7), the double summation is effected along lines,

in an "n,m" plane, of constant r1 = n+m or r2 = n-m. (5.4-7) simplifies

to
r 3 m 2 2n 0A m+rl r1
( ) = + ( (AA ) pm+l)
r = m-O n rl=1 n=0 m m+r

(m=n)

+ ( (AA )2n+r 2 ) r 2
r2=1 n=0 n n+r2
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= 2 2n 2m r
c Ap + 2 0 ( (AA )p 2m)p cos r8

n=0  n r=1 m=0 m m+r

(m=n)

From the above expression for Ak, it is easy to see that

Ao = 1

A 1/2)
k+1 = + k+ Ak

and one can calculate, for given mmax

max 2 2m
ao def m= AmP

m
max

a e 2 A A p2m integer > 0 (5.4-8)
P def m=O m m+£

r 3
Thus, (-i-) can be rewritten

ip

)3 = a + r a pr cos (rO) (5.4-9)
r r=1 r

lp

It can be shown [ 5- 1] that the sum (5.4-9), truncated to N terms, can

be computed without running into the problem of subtracting two almost

equal numbers of large magnitude, in the following 
manner.

b = 0
N: 2

b =0N: 1

b r = 2p cos br+l -p2 br+2 + ar (r = N, N-1,...,0) (5.4-10)

SUMt = b. - b1 p cos e = (bo - p2 b 2 + ao)

As is evident from (5.4-8) and (5.4-10), the mixed Fourier-Chebychev

series for p2m and p cos 6 are needed. These are given in Appendix A-2.1

and A- 2 .2. Once these have been obtained, it has been proved that D

and D as defined above, are mixed Fourier-Chebychev series.
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+

III) The components of F- can be expressed as mixed Fourier-Chebychev
a

series. Indeed, with the above definitions, and assuming that -- has
p

been developed in Chebychev series by the method of special values as

in Reference [5-28],

F P D[D Dlr]
Pr P r p a2 'P p

From what precedes, the component terms between brackets should be

a 3
Fourier-Chebychev series, and so is ( -) . Thus, so are the components

P
of -

The other terms in the r.h. side of (5.4-1), these not involving

alone, should also be shown to the series of some type. Indeed,

da ( d dr
da 2a (F dr 2 )[D dr D r* d

dE p dE p a r p p dE 1 dE
p

+ +
Sdr dr

is- such a series. Indeed, r .- and r = - are, from (5.4-3), the
p dE dE

mixed Fourier-Chebychev series

dr dr

r dE = -(r p)(r - B)) sin E + (r . ( o)cos E

dr -t dr
r (B (B )o)cos E + (C( )o)cos 2E

dEdE

- 1 dr dr
-B.C sin E + > )o - C.C]sin 2E

2 dE dE

dB
Also, -ddE

dB _ a3 -d - dr - + dr
(-) { [D (r .r) + (r -) (2B -r) + (r- )r

- -
D 2 dr + dr (2
1 ( + (r -)(2B - r))

dE kin d provided

will be a series of same kind provided



5-40

+ f+ + + dr
r *r = (r *) + (r cos E + (r (-))sin E
p p p p dE

is of the same kind, which holds true.

In summary, the equations (5.4-1) for the variation of ro,()o

can be written with each r.h. side in the form of a mixed Chebychev-

Fourier series. The latter can be integrated analytically to yield

the changes of the elements over an interval (0,2w) for E.

5.4.3 Integration of mixed Fourier-Chebychev series

Ref. [5-1] develops in great detail the algorithms needed for

the integration, with respect to E, of the mixed Fourier-Chebychev

series present in the r.h. side of Equation (5.4-1). These algorithms

are briefly listed in Appendix A- Z3.

The following should be noted

- integration is to first order of Picard's iteration.

- the series ( -) is suitably truncated
iP

- the motion of the perturbing bodies are represented by

finite Chebychev series.

- in series multiplication, truncation is effected without

loss of accuracy

This being said, no other approximation is introduced, since the inte-

gration of the terms being kept is rigorous.

A computer program, based on the above technique, is developed

and has been tested for close to zero as well as for large eccentri-

city orbits. It needs some more work, however, to incorporate time-

saving shortcuts.
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5.5 Conclusions

In this chapter, methods of deriving variational equations for the

elements of elliptic or circular orbits which are totally singularity-

free (in the absence of collisions) have been developed. They should

be particularly useful for the study of nearly circular geocentric

orbits strongly perturbed by the sun and the moon. Programs based on

them furthermore have shown that significant savings in computer time

could be realized for the same accuracy, compared to the more common

versions of the method of variation of parameters, with time as the in-

dependent variable.
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APPENDIX A-2

Auxiliary Developments in Singularity-Free Methods

2m
A.1 Mixed Fourier-Chebychev Series for p

Since

2m r 2m

rp

we write, in the unperturbed motion

= 1 + - l)cos E + -(d)osin E
a a a dE

Since (-) is a Fourier series in E, so will ()2m using the

recurrence

a 2m a 2 a 2(m-1)

p p p

Finally, p2m is obtained as a Fourier-Chebychev series by multi-

plication of the series for ( )2m and (a )2m
ap

A.2 Mixed Fourier-Chebychev series for p cos e

Since,

ror + r a2
p cos = --- a = ( •4()

rp 2 a a r p

r

--P-has components which can be developed in Chebychev series
a

using the method of special values, with x as independent
-

variable. has components which are Fourier series in E,
a

since

r B r + dr
S= (- -)cos E + d r-)sin E

a a a a adE

Therefore, p cos 0 will be a mixed Fourier-Chebychev series,

because (-a)2 is in turn a Chebychev series in x.
r
p
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A.3 Integration Algorithms

Using the expressions given by Fox and Parker [5
- 2 8 ] for the inte-

grals with respect to x of Chebychev's polynomials Tr (x), and

by a judicious use of integration by parts, the following algo-

rithms, proved in Ref. [5-1], were obtained:

dE
(Note that = constant =

dx

Kmax

a) Integration of (K SO(J,K)TKl(x))sin jE

Let the integral of the above expressions be:

Kmax Kmax
( E S1(J,K)TK_1(x))sin jE + ( Ki Cl(J+l,K)TK_-1(x))cos jE

K=1

Then the algorithm follows, starting with the known SO's.

Sl(J,K ) = 0max

Cl(J + 1,K ) = So(J,K )
max J max

2(K - 1)

S(J,Kmax-1) = - maxdE C(J+l,Kmax
max dE max

Cl(J+1,K - 1) =  S - 1)
max J max

K - 2
- 2 max Cl(J + 1, K - 1)

S1(J,Kma x - 2) =- 2 dE max
max Jd

dx

K 2
Z2 = 2 max - Sl(J,K - 2)

dEmax

dx

2(IKmax-3) Sl(Jmax2)

dE

dx



(zZ -(T'f')os) -=(T'cT+f)TO

xpf

(W'rTS + (Z'T+f)TO T --= ( WT)S

(Qz -('OOr)s)= (Z'T+f) T
T

ZZ + (OTr)Is = TZ

TZ = Z

xp

('r)TS + (W'+r) T D HP (WrTS

(QZ -(C' r)OS)E -W~T+f)TD

xp

~ZZ+ (T-xrc) T s a Z TZ

-r-

(T+'r)TS + (X'T+)TD HP- Z- = (T-X1ir)TS

(ZZ -Oi'r)OS)L = (X'T + O)L

T- ' ' 'C -X = X)T I 0
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K
max

b) Integration of { K 1 CO(J+1,K)TK_I(x)} cos jE

Let the integral of the above expression be

K K
max max

( KE Sl(J,K)TKl(x)) sin jE + (K 1 C1(J+1,K)TK-(x))cos jE

Algorithm is as follows, starting with the known SO's

Cl(J+l, K ) = 0
max

1
Sl(J, Km ) = CO(J+l, K max )max max

C1(J+l, K - 1) = 2 max 2(JK )
max dE max

dx

1
Sl(J, K - 1) = CO(J+1, K - 1)

max J max

K - 2

C1(J+1, K - 2) = 2 max S2(J, K - 1)
maxdE max

dx

K -2
Z2 = 2 max CI(J+1, K - 1)

dE max
dx

K - 3
Z1 = 2 max Cl(J+1, K - 2)

dE max
dx

Do 1 K = K - 3,4, -1
max

S1(J,K) = - I(CO(J+1,K) - Z2)

K-1
CI (J+1, K-1) = 2 dE Sl(J,K) + Cl(J+1, K+1)

dx

Z22 = Z2

Z2 = Zl
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K-2
Z1 = 2 C1(J+1, K-1) + Z22

dE
dx

1
S1(J,3) = - (CO(J+1, 3) -Z2)

C1(J+l, 2) = 4 Sl(J,3) + Cl(J+1, 4)
dE

dx

Z22 = Z2

Z2 = Z1

1 1
Z1 -L Cl(J+1, 2) + - Z22

dE 2
dx

S1(J,2) =- (CO(J+l, 2) -Z2)

1 1
C1(J+1, 1) dE S1(J,2) + C1(J+l, 3)

J-
dx

Z2 = Z1

S1(J,l) = - (CO(J+I, 1) -Z2)

c) Constant of integration

The integrals being computed from E = 0 to E, we note that the

perturbation should vanish at E = 0. Thus from the indefinite

integral result, the value of the series at E = 0 (r x = -1)

should be subtracted i.e., in the final series (containing the

constant of integration, J Kmax max

C1(1,1) to be used = C1(1,1) above - Z K E Cl(J,K)T (-1)1
J= Kefficients K-

the other coefficients remaining unchanged.



6-1

CHAPTER 6

Orbital Programs

6.1 Introduction

In this chapter we briefly list, analyze and compare various

programs, developed under this grant for the integration of

[6-1]
perturbed orbiLts [  . Other programs, such as SABAC, ECLIP, VOLER,

etc. have been previously described. The program examined here

differ from each other in the following aspects:

a) the parameters, or osculating elements, being integrated

b) the independent variable retained

In order to make comparisons valud, it was decided to integrate

by all methods examples which would serve as numerical standards in

the analysis. These two reference solutions were obtained by NASA-'s

numerical integration program ITEM, based on a modified Encke's

method and briefly described by B. Lowrey
[6- 2 ]

In all methods

- identical integration techniques were used

The same integration routine was used, a fourth order

prediction-corrector method, of the Hamming type, with

fourth-order Runge-Kutta-Gill starter.
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- identical perturbation forces models

These forces consist of

1. "Third" body gravitational perturbation (by

sun and moon)

2. Gravitational perturbations due to the asphericity
of the earth

3. Atmospheric drag

4. Solar radiation pressure

The two last forces were set to zero on the examples treated.

The position of the sun is interpolated from the American

Ephemeris data for the sun's position at 0 h. E.T. every day.

The moon is given by formulae having an error of + 0.75 min

of arc at most, over 3 years from Jan 1, 1969.

- identical reference standards

6.2 Test

The conditions for these are listed below, for two examples, one

for close to zero eccentricity (e = 0.8 x 10-5), a = 0.58 x Earth-

moon distance, orbital period = 12.05 days; one for high eccentricity

(e = 0.936), a = 0.297 x Earth-moon distance, orbital period = 4.45

days.
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INITIAL CONDITIONS FOR THE NUMERICAL EXAMPLES

Example 1: Large Circular Orbit

-+ 8+
r = 0.2932796 x 10 a

o x
8 +

- 2.0338597 x 10 a
Y

8 +
+ 0.87225166 x 10 a meters

z

dr 3+
(--)=  1.2405 x 10 a

3 +
- 0.3358361 x 10 a

y
3 *

- 0.36598403 x 10 a meters/secondz

T = Feb. 18, 1971, 6.00 hours Ephemeris time

From which

r = 223235.8 K = 35 x radius of earth mean
o m

= 0.58 x mean earth moon distance

v = 1.336252 K /sec.
o m

a = 223234.0 K
m

e = 0.8018212 x 10-5

i = 28.500350

0 = 133.21790

m = -54.999450

v = 180.02850

Period = 12.05 days
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Example 2: Highly Eccentric Orbit

+ 5
r = -0.39275819084844 x 10 a

o x
5

-1.623139606007665 x 10 a
5

+0.8969904059411103 x 10 a K
z m

dr +
)o = 0.1954377352706032 a

-0.7854274357862668 a
y

+0.24190151060205798 a K /secz m

T = January 5, 1971, 18.5 hours Ephemeris time

From which

r = 189563.5 K 29.72 x radius of earth
o m

0.494 x mean earth-moon distance

v = 0.8447536 K /seco m

a= 114151.4 K z 17.9 x radius of earthm

z 0.297 x mean earth-moon distance

e = 0.936227

i = 33.409270

Q = 130.91630

* = -50.62353*

v = 171.37670

Period = 4.45 days
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The programs were designed to be "modular" in structure. Some

modules, concerned with the computation of the perturbing forces,

are identical with all the programs. Those dealing with integration

are almost identical, except for the number of differential equations

required and some print-outs. Such a modular arrangement makes it

much easier to bring changes in some part of the computational scheme.

A list of the programs to be discussed is given below

INDEPENDENT VARIABLE DEPENDENT VARIABLES

NICE-T
(for Numerical Inte- t ro, ro
gration of Circular
& Elliptic Orbits)

NICE-E E ro, ro

NICE-EA E; elements kept ro , ro
constant over (0,2r)

in E

BROUWER-E E K. (i = 1,...,6)
(Brouwer's method
modified for circu-
lar orbits)

EOLA-T t Conventional oscu-
lating elements

6.2 Program NICE-T

Independent variable: time

Osculating parameters position vector ro, and velocity vector r,,

along the osculating orbit at time "To" (fixed)

Equations: six equations, in (5--2.60,61) of Chapter 5.
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Tested: against NASA's ITEM, on the two examples quoted above.

Thereafter used as a standard of comparison.

Comparison with other programs: as most other programs had "E"

as independent variables at intervals of 2f in E,

data from these other programs consisting of time t;

osculating parameters, elliptical osculating para-

meters, radius and velocity vectors at t were punched

out. At these times, the output of NICE-T was computed.

The differences in the instantaneous values of the os-

+ dr
culating elements, r and (t)o, the elliptical para-

meters and the values of the instantaneous radius and

velocity vectors were computed and compared. The

differences were then normalized by the maximum values

of the quantities, as shown below.

The integration spanned about 25 orbits, i.e. about 195 days in

the high eccentricity case, and 300 days in the case of the large cir-

cular orbit.

Since their did not appear to exist any definite trend for these

differences (except that the two first orbits had always much smaller

differences than the remaining 23), it was decided to "represent" them

in the tables by their arithmetic mean Am and standard deviation SD.

A comparison of computer times is given in each case (CMU 360/67

TSS) and will be commented upon for each program.
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RELATIVE ACCURACIES AND SPEEDS OF VARIOUS COMPUTER PROGRAMS

Per unit errors in various quantities are defined as follows:

a - aT
E =
a aT

Ee e - e T

i - iT
E 180

Q - QT
Q = 360

w - WT

- T

= 360
V - V T

S =

+o
r rTI

IrTI

where

a = semi-major axis (meters).

e = eccentricity.

i = inclination (degrees)

Q = longitude of ascending nodes (degrees).

w = argument of perigee (degrees).
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v = true anomaly (degrees).

r = instantaneous radius vector (meters).

r = instantaneous velocity vector (meters/sec.).

Quantities with subscript 'T' refer to values computed by program

NICE T used as reference.

A = arithmetic mean of 25 values (one at the end of each orbit for 25

orbits).

SD = standard deviation of the same 25 quantities.

Example 1 - Large circular orbits (data as per example 1)

Comparison of Computer Time/Orbit

(Average of 25 Orbits)

Program cpu Time/Orbit, Seconds

NICE T 16.9

NICE E 4.08

NICE EA 2.8

NICE EP 3.88

BROUWER E 4.84
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Example 2: Highly eccentric orbit (data as per example 2).

Comparison of Computer Time/Orbit

(Average of 25 Orbits)

Program cpu Time/Orbit (Seconds)

NICE T 26.1

NICE E 5.48

NICE EA 3.07

NICE EP 5.21

BROUWER E 5.15

EOLA - T 9.95



EXAMPLE 1

COMPARISON OF ACCURACIES

NICE E NICE EA NICE EP BROUWER E

A S A S A S A S
m D m D m D m D .

-6 -12 2 - 5 0-3 -6 -5 -10
0.13x10- 6  0.94x-12 -0.18x10- 2  0.77x10 5  0.81x10- 3  0.59x10 0.11x10- 5  0.13x10- 0

a

E 0.65x0 - 6  0.20x10- 8  0.39x10 0.1910-2  -.15x10 .37x0 - 2  0.19x10 0.68xi0
e

E. -0.27x10 0.42x10- 1 3  -0.13x10- 3  0.11x0 - 6  -0.40x10 - 3  0.55x10 -0.85x10 - 6  0.62x0 - 1 2

-6 -13 O13x1O 3  -6  _3 -8 -7 -12

E: -0.10x10 6  0.12x10-13 0.57x0 - 3  0.11x0 - 6  -0.17x10 0.94x0 - 8  -0.70x10- 7  0.17x10 1 2

c -0.75x10- 5  0.45x10-10 -0.37x10- 2  0.26x0 - 2  -0.10x10-1 0.79x10- 3  0.91x10- 5  0.20x10- 8

e 0.94x10- 5  0.67x10- 10 -0.74x10-2 0.28x10- 2  0.20x10- 2  0.74x10-  -0.42x10 4  0.26x10-8

e+ -0.10x10- 5  0.39x10- 1 1  0.13x10- 1  0.34x10 4  0.44x10-2 0.16x10 0.11x10 - 4  0.74x10 1 0

r

0 -5 -11 -1 -4  -2 -4 -4 -10
e- 0.11x10 5  0.27x10 -0.14x10 0.53x10 0.5x10 0.18x10 -0.11x10 0.94x10
r



EXAMPLE 2

COMPARISON OF ACCURACIES

NICE E NICE EA NICE EP BROUWER E T

A S A S A S A S A S
m D m D m D m D m D

s 0.79x10 - 6  0.32x10- 10 -0.46x10- 2  0.32x10- 5  0.12x10 - 3  0.34x10 0.56x10- 5  0.41xl 0 - 10 -0.19x10 0.47x10
a

S-0.74x0 - 6  0.18x10 2  -0.19x10 - 3  0.14x10 7  0.28x10 0.72x10 -0.60x10- 5  0.17x10- 1 0  -0.18x10 0.19x10
e

-6 -12 -3 -7 -4 -9 -5 -10 -4 -9
Ei 0.85x10 0.36x10 -0.13x10 0.16x10 -0.12x10 0.18x10 -0.13x10 0.10x 1 0  0.29x10 0.78x10

-6 -12 -4 -7 -5 -9 -5 -10 -4 -9
E 0.34x10 0.18x10 --0.90x10 0.26x10 -0.88x10 0.51x10 0.14x10 0.10x10-0  -0.20x10 0.46x10

S- -0.12x10- 2  0.48x10- 6 -0.66x10 0.87x10- 9  0.17x10- 5  0.25x10-  0.71x10- 5  0.15x10

s 0.45x10 0.llxlO- 1 0  0.85x10 - 2  0.44x10 -0.79x10 - 3  0.6x10 - 6  0.76x10 - 5  0.lOxlO- 9  0.llx10- 3  0.14x10-6
v

-4 -8 -1 -2 -2 -4 -4 -8 -3 -4
C- 0.46x10 0.10x10- 8  0.56x10- 1  0.14x10 0.74x10- 2  0.53x10 0.57x10 0.67x10- 8  0.64x10- 3  0.16x10

r

. -3 -7 -1 -1 -3 -3 -7
F-- -0.14x10 0.11xlO -0.36 0.96x10 0.24x10 0.56x10 0.22x10 0.98x10 - -

r

!\
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6.3 NICE-E

Independent variable:"E" of Chapter 5 (not eccentric anomaly)

Osculating parameters: ro, ro at E = 0

Number of differential equations: 7, given in

of Chapter 5.

Time required and accuracy: the method is about four times

faster than that based on time as independent var-

iable. At high eccentricities, a significant part

of the gain could be that Kepler's equation of time

does not have to be inverted. However, the small

time needed to do this inversion at small eccen-

tricities fails to explain that the same gain still

exists. Maybe the reason is to be found in the

regularizing effect of using variable E, rather than

time, which could be equivalently be seen as using a

variable epoch time To along the unperturbed orbit,

in a way which presumably reduces computer time for

a prescribed relative accuracy by keeping the motion

in space (ro, ro, To) small.

6.4 NICE-EA

Independent variable: E modified, defined as . in

d r d
x defined by d- =

dx y/ dr

Osculating parameters: ro, ro at E = 0

Approximation mode:E dE << 1 used in the definition of the

independent variable; see Section 5.
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Time required and accuracy: least of all methods. If the

above approximation can be justified, either by the

nature of the perturbing forces or, a posteriori by

numerical experiments, this method could give a 20%

saving in analytical integration (6 equations instead

of 7 are used). The (relatively low) accuracy is

of the same order as that obtained by a first-order

Picard scheme.

6.5 NICE-EP

If the differential equations of motion are integrated in the

iterations of a Picard scheme, no adequate analysis seems to

exist on how long an interval of integration and how high an

order of iteration one should take to minimize the computer

time required for computing over a given interval with a pre-

scribed error bound.

Therefore, it was thought to be appropriate, to get an idea

of what error is introduced only by retaining a first-order

iteration scheme. To that effect, the equations of NICE-E

were integrated over the typical (0, 2') interval for E while

keeping the values of the elements constant over the interval.

6.8 EOLA-NU

This program integrates the classical elements a, e, i, w, 0 with

respect to v, and obtainis time t by integrating equation (2.3-4).

No mean anomaly at epoch is used. The speed is comparable to that of

EOLA-T.
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CHAPTER 7

General Conclusions

At the conclusion of this work, we wish to briefly review the

material developed under this grant and to make a few recommendations

for future topics of study.

New methods have been developed for the mission analysis and or-

bital studies of satellites of the IMP-type, which describe trajectories

strongly perturbed by the gravitational fields of the Sun and 
the Moon.

These techniques cover a wide interval of the "accuracy vs. computer

time" scale, ranging all the way from very fast methods of relatively

low accuracy (as in SABAC) to high accuracy, more time-consuming schemes

(as in the NICE programs) through a method based on non-numeric compu-

tation, giving results of intermediate accuracy and time-consumption

(as in VOLER). All of these will be chosen at some point in the

mission analysis:in the preliminary phase, in establishing large num-

bers of possible launch windows; later on, in more detailed studies

of better accuracy, and finally, in a few calculations by means of

high accuracy programs suitable for low or high eccentricities, and

which appear to save computer itme by a factor of 3 to 4, compared

to conventional methods.

Without going in detail into possible ways of implementing

these suggestions, we think that various topics of investigation de-

serve further study. One is the comparative analysis of existing

methods, or the development of other techniques, which are most
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suitable for multiple satellites, the dimensionality of the state

vector (ro, ro), say, going from 6 to 12, 18 etc. Another topic

would be the development of literal theories based on regularized

variables, since much insight is gained in the qualitative behavior

of orbits even by means of "low-order" theories. Another area where

more study appears to be needed is in minimizing computer time for a

given error bound, or conversely, on a small computer of limited

memory, in determining which method,for a given calculation time,

assures the best accuracy in orbit determination.


