R
VI ot ot vt ot} Wb
e =

~ o gl

—: B
T S T - ”

s
oy




Carnegie-Mellon University

Applied Space Sciences Program

FINAL REPORT

NASA NGR-34-087-001

Launch Window Analysis of Satellites
in High Eccentricity ot

Large Circular Orbits

by
Mare L. Renard (Principal Investigator)
5.K. Bhate

R. Sridharan

September 15, 1973 dﬂ& [. 4€va4

Dr. Marc L. Renard

Associate Prof. of
Applied Space Sciences
and Electrical Engin-
eering



ACKNOWLEDGEMENTS

The authors are very indebted to S.J. Paddack, of the
IMP-Projects Office of NASA Goddard Space Flight Center, for many
fruitful discussions and for providing us with high accuracy computer
orbits and other needed data. Thanks are alsc due to G. Fried for
sending us reference computer results, and to L. Carpenter with
whom some aspects of the present work were discussed.

The efficient help of Cheryll M. Conaway in typing and editing
this manuscript and many reports and papers, during the course of

this grant, is gratefully acknowledged.



TABLE OF CONTENTS

Cover Page
Acknowledgements

Table of Contents

Chapter 1 Purpose of this work

Chapter 2 Method of Approximate Stability
Criteria

Chapter 3 A Study of Orbits of Large
Electricity Quasi-Normal to the
Ecliptic

Chapter 4 A Modified Lidov's Method by

‘ Non-Numeric Computation, with
Application

Appendix A-1 Effect of Earth's Oblateness

Chapter 5 Singularity—-free Methods, Using

Regularization, for Circular
and Elliptic Orbits

Appendix A-2 Auxiliary Developments in
Singularity-Free Methods

Chapter 6 Orbital Programs

Chapter 7 General Conclusions

s/

Page No.

1-1 to 1-2

2-1 to 2-72

3-1 to 3-42

4-1 to 4-83

Al.1 to Al.14

5-1 to 5-44

6-1 to 6~-14

-1 to 7-2



CHAPTER 1

Purpose of this Work

Much of what we presently know about "deep space”, and the various
physical phenomena resulting from the interaction of the earth's
magnetic field with the solar wind, has been obtained from experimental
evidence gathered by satellites of the EXPLORER series (IMP, for |
interplanetary monitoring probes).

In order to probe, along the same orbital period of a few days,
the near-earth regiom, the transition regiom and free interplanetary
space, it ig convenient to use satellites in geocentric orbits of very
large eccentricity, typically in the range of eccentricities
0.9 £ e £ 0.95. Such orbits present a critical "stability" problem.
Their initially low height of perigee is so perturbed by the graviva-
tional effects of the sun and the moon that only a judicious choice of
the launch time can guarantee that the satellite orbit will not exper-
ience a prematu?e decay in the earth's atmosphere. The determination
of these times, or "launch window calculation" had very often be
extremely costly proposition if high accuracy numerical integration
programs were used. On the other hand, such computation is impera-
tive when the "target dates" are better known. The present work
aimed at providing the mission analysts with methods and computing
tools for studying the stability and evolution of orbits of large eccen-

tricity. This is the topic o Chapters 2, 3 and 4. Chapters 2 and 3
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develop an approach for a lower accuracy, but very fast analysis
technique, whereas Chapter 4 resorts to non—numeric omputation to
obtain a "symbolic theory", applicable to high eccentricity orbits
and of average accuracy and computer—time requirements.

| Deep space is also investigated by means of satellites in
large circular orbits (20 earth's radii, say), which are similarly
perturbed by the sun and the moon. Although orbital decay is not
a practical problem here, the development of methods of orbital
. computation, which would be more economical than conventienal
ones, allow for strong perturbations and be singularity-free,appeared
to be a topic of much relevanée. Such is the subjects of Chapter 5.
Chapter 6 implements the methods of the previous one, and compares
them to a straight method of variation of parameters, with time as
the independent variable.

It is hoped that the approaches and techniques suggested in this

work will be of help to the mission analyst facing the challenge of

future space missions.
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CHAPTER 2

Method of Approximate Stabilitvy Criterig

2.1 The Problem

In the pre-launch phase of the mission analysis of satellites
in orbits of large eccentricity, there exists a definite need for
methods of determination of the orbital stability which would combine
EXTREME COMPUTING SPEED with TOLERABLE accuracy on the results.

To be more specifie, given a launcher of known capabilities, a
launch site, a spacecraft of (roughly) known mass, an orbit of known
in-plane geometry (i.e. the initial semijmajor axis and eccentricity

e), one wishes to "design' an orbit by adjusting, within limits,

- the orbital inclination on the equator (i )
- the argument of perigee, referred to the equator (uwg,)
- the time (hour; day; year) of launch (which in turn permits

computation of the longitude of nodes, #,, and the time of
passage at perigee, TP)

while satisfying, as explained in more detail in the previous chapter,

~ a lifetime constraint
- other constraints of a technical scientific or operational
nature (for instance: the angle between the satellite spin

axis and the earth-sun line, or solar aspect angle, should
be 90° + 15°, say, at injection)

Now it should be remembered that the "lifetime constraint" is
relatively imprecise and can often, to some extent, be relaxed. A

requirement that the lifetime be "3 years" is not meant to be taken
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as a request that the reentry of the satellite into the earth's atmos-
phere occur at time t = time of launch +1,095.75 days. Therefore, some
inaccuracy on the a-priori determination of the lifetime might be toler—
able when balanced against the speed and economy with which the prediction
can be ﬁade.

If a method of extremely high economy is indeed obtained, parametric
studies and the "massrproduction“ of launch windows becomes practical.
Questions guch as this one can be readily answered: "Given this constraint
on the solar aspect angle, when in the year 1973 should we launch this
satellite so as to fulfill all constraints? What is the penalty paid in
lifetime if we make the solar aspect angle condition more stringent? Should
we try to modify the ascent phase and obtain a different argument of perigee
etC.au e

In addition to looking, in this chapter, to a method of appreciably
reducing the computing time necessary for obtaining a launch window map,

[2-1]

the accent will be put also, as initially proposed , .on automatizing
the graphical presentation of the output in the form most suitable to the

users' needs.

2.2 Basic Equations

Let O be the center of the earth, of mass M (Fig. 2.1); T =0s
the geocentric vector to the satellite; m the mass of the satellite (m is
infinitesimally small compared to Me, mg); my,the mass of a disturbing

body d, assumed to describe a known Keplerian elliptical orbit

> - >
about O; T ist =ry = 0d. Now define the vector from satellite to distutbing



body, 3, as (Fig. 2.1)

o4

H

- {2.2-1)

The following equations hold, if the vectorial pole for the capital R's

is the center of mass of the system,

-
3 Ta :
R = +k% my T (2.2-2)
s .
. T
R k2 Mo ‘ (2.2-3)
d
3 s 3
R = -k20fg - myPg) (2.2-4)
r p

Taking O as the origin of vectors, subtracting (2.2-2) from (2,2-3) gives

-+
T

- d
r, + k2(m, + M)—
d d g

0 (2.2-5)

which describes the elliptical motion of d about O {(with ud+M = kz(mu + M),

Subtracting (2.2-2) from (2.2-4) gives

>
+ T 2 4 3
I‘+k2M_‘_=—k m(— _.E__) : .26
r3 a4, rd3 p3 (2.2-6)

Equation (2.2-6) shows that the elliptical motion of s about 0 (with

U =hk2M) will be perturbed by the disturbing force due to third-body, o 4

- — - — 2.2
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If more than one body is perturbing the orbit of s, or if other perturbing

forces, , are acting upon s in a frame centered at 0 and pointing

F
other
towards fixed directions on the celestial sphere, Equation (2,2-6) should

be complemented to read

[T -

> 2yt - F t ¥ .2-8

rtk r Fdist,l + Fdist,2 ot Fother (2.2-8)
in which the ¥ (i = 1,2,...) have the form given by Eq. (2.2-7).

dist,i

2.3 Lidov's Theory

2,3.1 System of equations

In 1961, M.L. Lidov made an important contribution to the problem of
determining the evolution of satellite orbits under the gravitational
perturbations of external bodies[zwz]. This approach can be summarized
as follows. Let a, e, 1, w, 2 be five osculating elements of the satellite
orbit; p = a(l - e2) is the osculating parameter: v is the true'anomaly.
Angles such as i, w, 2 are referred to a plane (such as the equator)

invariant in inertial space and passing through O. Along the perturbed

orbit, the following relations hold

204y, duw 4oy 172
T (dt + g toeos 1 {up) (2.3-1)

or if

=[1+ﬁ1~" co -ﬁ(1+£)F i -1
Y e Tp 598 V5 - PIFesin v] (2.3-2)
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r, s, n subscripts indicate components along the radius, the positive

transverse and the normal direction. rzg% and /ﬁ; are related by
28 AR (2.3-4)

A thorough analysis of the order of magnitude of y has been made in the

course of this grant and is given in [2-3]

The results are slightly different from those put forth by Lidov[z_z], who
argued that, since in the expression (2.3-2) for v,
. Nd
F,F v—3r {at most)
and if e is close to 1,
Uy 3 :
= 4 r 1 "
y=1%0 [p rd3 1+ e cosv
ve 3 (2.3-5)
d a 1
+ i e——

In the reasoning, an average of r over M, mean anomaly, must be assumed

since %;- £2n r &M = a. If Lidov's estimate, as given in (2.3-5),

rather than ours, is taken to assess the departure of vy from unity, one
u -
would conclude for example, that if e = .95, say, and Eé-ggéf- (moon) ;

then if = = z {up to 2 of earth-moon distance), or ——-2=l, then
r, 3 3 Ty 3

1 1 _
vyl i-Sl 57 20 = 1+ .0091 at most



while our estimate (see Raf., F2-3] ) would be
Y& 1+ .008 at most.

For an extreme eccentricity of 0.95, ¥y will never depart from 1
by more than 0.8%. Consistent with the accuracy we are striving to

. 2-2 -2,
obtain (of the order of 1%; Lidov[ ] quotes 1-3 per cent[2 2, p. 720]

h
and in agreement with Lidov's approximation, the factor y is taken to be
1 in what follows. With this approximation, planetary equations are

written in terms of the five osculating parameters a, i, e, w,

%5 =22 p/H (e F_sin v+ F (I + e cos V)

t € r t

de . _r_ _£_ da

dt  ae p/u Ft * Tae dt

dw _ 1 . T r .

i Y F cos v + F_sin v(l + p) ® 7 F ocotd sin(w + v) ]

dt “hp  sia f Tn oinle V)

R
=/ip Fn cosw + V)

with ¢ = 1- e2.
Substituting for dt, from Eq. (2.3-4), in which y = 1, and introducing

2.
p = a(l - e2), the differential system considered by Lidov[ 2, p. 722] is



3
dp _ 2r da
dv u t or dv

i

2
rta
= —_
2 e (er + Ft)

de 12 . T r I S g da
& - (Fr sin v + (1 + 5 )Ft cos ¥ + e 5 Ft) =~ Tae Ft +-§;E-E;
do EE'(—F cos v + (1 +-£)F sin v - e~£ cot 1 F sin(w + v))
dv pe r pt r n
X2F +F Isinv] - cos 192
e X tp n dv
df r3 1

— = —

dv yp sin 1 Fn sin(w + v)

di _ rd '
el F cos{w + v) (2.3-6)

2.3.2 Legendre Polynomial (LP) Expansion
The developments proceed to expand %, the gravitational disturbing

force, i.e., for body d,

- T .- T T + +
_— p ds a”_ T 4 1 g T YVg T 224
F = ud('"g - =yt - —3) = uVEe - 3 )
p° T4 |r. - ¥ rq p r
d d
+ >



in series of Legendre Polynomials (LP) of argument [ = cos Sd

Specifically, since fﬂ < 1, with assured convergence

Rperturbation

i

r

Now, with a = r
d

(1L + a? - Za;)_

in which the

d

[2-4]

L TTgl
wals - 731 =
d
_1j2  Trr;t
2 2 _ _ d
ud[(r +r] 2rrd§) rd3 ]
M4 r |2 r RV
T [+ D - 2¢) ) - ¢l
d d d d

l/2

Po(i;) =1

Pl(c) =z
1.3
- _ 3,43

P4(c) =

1

P4 (2)

il

P =

Tt

= I -1 d = rr <

r d
(2.3-7)

1- 22 - 200) + 3 - da¥t + da??)

1+ a2+ a? (- % + %;2) Forun

kgoukpk(CJ

Legendre Polynomials are

(352 - 1)

1
z3 = 5(5¢3 - 3z)

%(BSz” - 3022 + 3)

%(63;5 - 70z + 157)



Going back to expression (2.3-7)

My
Rperturbation = _E-[l + E Gm“) Pk(c>]
The perturbing force, in turn, is
U
—)-_-)- =“g‘ r kl -
Fd h vRperturbation Ty [k( P (c)lr
”?
C—-D 3 &) V( 1]
+
in which 1_ = =
T T
P () =3 [p ()]
k dr 'k
Also > + >
_}rd-r r 1_*
Ve )—(-“--3)+(-—)Acur1;
ra* | Ta
-
Since % = V(r), the second term vanlshes and
T a3 N N B NC A B R
G0t L m @ n @ s @
X y z
T4 x ,’d3 ¥y, d2 2
L @y @t @)
x v z
43 x dd_ ¥y, d3 .z
'FIz[r 3z (r) r, 32 (r) r, dz (r)]
d d
We have

9x °r r r2 X

2-9

(2.3-8)

(2.3-9)
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-
C£Q.$5E ) dex + Y4 - -+ ZdIz _ XXy + ¥¥q + z2Z 4 3}
2
o I T4 ryr
1
- iﬁ Tty i?

Substituting in (2.3-9), and letting q = k-1

SR
fd < f *") [[{a + 1P, (E)-CP ]T +P (gﬁ]
g o 4

Now, from the recurrence formulae,.

-P = + 1)P_ - zP
q (@ + DP - 2P 4,
Finally
> Hyq <
Fy=—>% g (—) [- p (c)l + P (t;)l ] (2.3-9)
rd' q_ d

The components of %d along axes (f,a;i) are now obtained

—> = —)—. - "').—)' =
21 azf & 1y 43 B Rely aif &3
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The director cosines of the unit vector to the satellite, Td,in the satellite
system (ﬁ,a,ﬁ), namely £;, £, £3 are illustrated on Fig. 2.2.

In the same system, Ir has components {cos v, sin v, 0). Also

L= Ir o Id = g)cos v+ & sin v and let
2 A, & &
E=(Ey + Ep) "“; cos Ve ST sin Ve = F

Now, if successive orders in the LP, i.e. q =1, 2, ..., are considered,

Equation (2.3-4) gives

- H 1 > '
E), = ;;33 SRISNORSEAOEN
Y . B St | 2.3-10

These are the two values of g retained by Lidov. Rewriting these expressions,

, T ey = 1. PUrY = Are P oy = 1D L2 3,
with PI(C) - ls Pz(g) - 3€9 PS(E) = 2 C 2 »
) =8 @y 431
d’1 r 2 rd r d
d
i) e E2-a 1+ 2ase? - »ig
272 & £ Ly T3t d
d d
which are Lidov's expressions (4), (5)[2-2’ p.723]. The computation of

the components of <§d)1 and (fd)z along (r, t, n) are (Fig. 2.2), since

S (+ T
_ rd.r _ rdo) r _
L = = = £ cos(v-v_),
rd-r rdor £
F.) = Y4 r [-1 + 382 cos?({v-v )]
d’1,r rdZ T E
(F ) = Bi" E—-[-3Ej2 cos{v-v_)sin(v-v_)]
d’i,t rdz r, g €
M4
(fd)l,n = —-Ej;:-[B £EEs cos(v—vg)] (2.3-11)

s “d
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and similarly for @d)2 projected along (r,t,n),

= M4 o2 9 15 .3 . 3
(Fd)z’r = "“5(;;) -3 ECOS(v-vE) + 5= &% cos (v—vg)]

Ta
@y = @y 1563 (4g2 (ymy )sin(v=v,) + SE sin(v-v)]
d2,t " p 2, 7 = © g8Vl T g £
F.)) . (’:—)2[-1-5l £2¢ g2 (v-v, ) - 35 ] {2.3-12)
dz,n“;;zrd 2 g CosT VY, 273 *

At this stage, Lidov introduces the notations:

= E=314+ecosv (for the satellite)
def T
and - Pd
A, = —=1+ e cos vy (for the disturbing body)
d def rd

after which the components of the forces are rewritten:

=4 Ya P 2 .2 1
(Fd)l,r'_ 3 o2 P (-Bg + By cos?v + 2B3 sinv cos v + By sin u)A
N Pd P 1
(F .} = -3 — -—{sin v cos v (B - B2) + (sin?v ~ cos?v )B3l+

d’1,t pd” Pa A
(i?)F ); = u""'_d B“'(B cos v+ B sin \))-]-:-

H 2

=3 _15d_p° . 3 _3 3

(Fd)z,r =3 5 (- T o1 cosv-Fay sin v + v, cos’v

-+ 373 cos?v sin v+3Y6 cos Vv sin?v + Y2 sing\))_l__
2
A
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Sl d P 3 - 2
) 5 =5 l-v; cos®v (v, - 2y )cos®y sin v

-2y, = v )cos v sin?v + g sindv + % @) sin v

-1 1
T ¢ cOS v] >

H 2
(ﬁd) = li-ii-IL—{Y cos?v + 2y, cos v sin v + Ys sin?v
2,n 2 2 24 7
P4 Py
o
- 0% (2.3-13)
A
in which
N 4 4
ay = £1 A, ag = £2 By, a3z = &3 Ay,
2 3 2 3 3
B1= & Agr B, = &, A By = 515,845
3 3 3
B]_} = Ezgsﬂd, 85 = £1£3Ad ] B.G = Ad ]
3 4 3 4 2 &
Yl = E;]_‘ﬁdl Y2 = 52ﬂd » Ya = Elgzﬂds
2 4 2 4 2 4
4
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Going back to system (2.3-6), in which-%% is taken rather than %% in
the first equatien, aﬁd substituting for the forces, their expressions
in (2.3-~11), (2.3-12) ete., r.h. sides are obtained which depend on

the motion of the disturbed body (v) and on the motion of the disturbing

body (vd) through

- powers of r = E- —_—

= 1+ e cos v

~ positive powers of sin v and cos v

- the greek symbols o, Bj, Yy etc. of the form
c ,d
3 g’; £ ol (2.3-14)

in which &, &, 53 are the director cosines of the unit vector

> > >
to the perturbing body in the satellite system (P, Q, R).

It is taken for granted that, consistent with the approximation in a
first-order theory, the satellite orbital elements a, e, i, etec., are
taken as constants in the r.h. side of system (2.3-6) and that the
changes in these elements are computed sepa;ately, for each disturbing
orbit, over one orbit of the satellite and then linearly superposed.
To summarize: suppose that we have a suitable representation
a b ¢ d
for §, &, Es Ak, given the true anomaly v of the satellite, Then,
for any element z for which an equation in system {2.3-6) is written

(the set of elements z is denoted z)
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After integration of fI (with respect to y) from 0 to 2w, where subscript
I is the order of the LP expansion, i.e. I corresponds to forces

+ +1

r 171 ‘ r 2 .
n 0[(;3? 1, II to forces WD[C;E) ] etce.v.., we obtain

(Az)I = change in element z due to forces of ¥O[(E—)2]
d

and, in total,

(az) = L (az). (2.3-15)
=1, 11, III.... J
(2.3-15) expresses the change in any orbital element due to the various

orders in the LP expansion, i.e. ordering these in columns

1 (AZ)I
2 (Az)yq (2.3-16)
3 {Az)

woor

2.3.3 Taylor Series expansion

Lidov's theory then further proceeds to expand any of the above re-
ferred greek s?mbéls o Bj, Y, &8

2
o107 d o, At2

. i i _
op = (o) op ¥ G ) per 2E T (dtz dret 21 Foer (2.3-17)

in a Taylor's series about a given point in time, tref’ along the satellite
revolution. In Equation (2.3-17), At is the difference t - tref’ measuring

the time elapsed from tref' From {(2.3-17) and (2.3-14), it follows that
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for any (Az)I, (Az)II, ..., any of the rows of (2.3-16) can be further

divided as

-+ Taylor Series
(Az)l,l (Az)l’z..........
(&2)2,1 (AZ)Z,Z..........

LP (Az)3 1 (Az) (2.3-18)

3,2¢lt CRCRE R LN

L] L]
L]
.

thereby providing 2 directions of expansion: the first one (i, first
. . r i+l

subscript) corresponds to the LP expansion of the forces (term ™ OG;*)

d

and the second one (j, second subscript) to the number of terms, or the

),

order increased by one, retained in the Taylor Series expansion of the

quantities Oy s Bj, Yier v

To appreciate what is involved in the integration of (Az)ij, we

shall lock specifically at the cases:

a) i=1, 2,3, s , 3 =21 (FIRST COLUMN IN TABLEAU (2.3-18})

This specifically amounts to assuming that the disturbing body

is fixed in space during any one revolution of the satellite. (The

disturbing body is "frozen" at an average position) One should
expect this approximation to be the better the smaller the ratio
of E; (or %;), since the a's, B's, etc. would indeed be sensibly
constant if the period of the satellite was infinitesimally small

compared to the period of the disturbing body in its apparent geo—

centric motion,
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The terms to be integrated will involve
a b ¢ d
1 82 838y

. b c
appearing as constants: (E?) ¢ (52) . (53) (1+eyq cos vy

3
tI'E'. tre tre ref

and At does not appear.

b) i=1,2,3, ... , J=1, 2 (FIRST AND SECOND COLUMNS IN TABLEAU
(2.3-18))

Here it is of course assumed that the a's, B 's, etc. are suffi-
ciently well described by a straight line tangent to the corresponding
curve o = a(t) at t = t, o¢, (Fig. 2.3). This approximation should
hold well if the angular motion of the disturbing body is "slow"
compared to that of the disturbed body. For our purpose, such an
approximation is amply sufficient for the sun's contribution to the
perturbations ’ . The additional terms to be inte-
grated (compared to a)) will involve expressionsoriéinating from

a b c¢
gl EZ 53 Ad and reading like

~ At x[constants computed at t = tref]

Similarly, the third column in tableau (2.3-18) accounts for terms
in (At)? etc...
The assessment of the order of magnitudes of each contribution

(Az)ij has been done in detail in [2-3]

»

2.3.4 Results of Lidov's theory: short-range and long-range
As an example, consider the "11" theory. Namely, only forces of

2
r , . .
OG;—) are retained in the LP expansion, and furthermore, the perturbing
d
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bodies are fixed at the position they assume at t = t_ .. Taking for

. di
instance the equation for -&‘]j s

L.y cos (utv)
up m

Replacing (F ) by (Fn)l as given in (2.3-11),

H 3
di d ,r r
a1 o, 4 I 475 +
dv 3 " (rd) D ES cos{w + v)[El cos v Ezsin v]
A3
H 3
d ,a d
= 3 — (— St —= cos(w + v cos v + E_ sin v]

It is apparent that the evaluation of the following definite integrals is

required

3 2 3
2 cos“v 2% sin v cos V
2T (b8 1Eg) S dv , [T (8gBe8e) S v,
A A
om, 3 cos v sin v 2T 3 2
————d J sin‘v
é (AqE1E3) . v, 0 (AgE2E3) 3 dv .

One suspects that as the indices i and j are increased beyond 1, the
volume and complexity of the caleculation might become prohibitive. Hence,
resort was made, in the present project, to non—numeric manipulation on
the computer for the development of a modified, extended Lidov's theory.
This is treated in Chapter 3.

In his paper[2_2]

, Lidov gives for the five elements a, e, i, w, i,
the results of the "11", "12" and "21" theories in tableau (2,3-18),

Limiting ourselves to the "main" contribution "11", we reproduce Lidov's

results (SHORT-RANGE PLERTURBATIONS):



2-19

Aj12a =0
Ayje = -157 —;i (-1"?‘;(1-)3 el B3
A119 = 157 ;g'(%g)a —TTL—T——T-[(l - % €)Bs sin w
€ "“gin 1
+ % £By cos w]
A1 = 157 ;i (%;)3 ;%75-[(1 - g £€)Bg cos w — % eBy sin w]
Ayqw = 3m Eg-(%;)s 61/2[461 -~ By = Bg]l — Ap1f2 cos 1 (2.3-19)

In the last part of his paper, Lidov investigates the secular
changes in the elements of the satellite orbit by integrating the orbit=

to—orbit changes, as given by Equation (2.3-19), over the period of the

disturbing body. He thereby obtains the following expressions for the

secular changes 8z in the orbital elements z, per satellite orbital

period GTsat {LONG-RANGE PERTURBATIONS)

0

6113.

1
i1 = 1 A ee /2 sin?i sin 2w

4 7d
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_ .1, cosi - 2 41
6110 = 5 Ad 31/2 (1 - &) sin“w + 5 e]

(2.3-20)

= 1 1
Gllw— 2Ad 1/2,1

[ (cos i-¢) sinZw + z ]
e 5

In the above equations, the plane of reference for measuring the

angles is the orbital plane of the perturbing body d, and for disturbing

body d, Ad is defined here as

U 3
- _da 3/2
A = BTy (Pd) ‘4 (2.3-21)

Finally, using Equation (2.3-20), Lidov is able to classify the
long-range behavior of the perturbed orbits in terms of the two integrals

which, besides the trivial one: a = constant, could be determined, namely

(1 - e?) cos?i = gcos?i

€1

Il

co (1 - ¢) (% - sin?i sinZw) (2.3-22)

These integrals, which apply to the system of differential equations
describing the secular change of the orbital elements due to one perturbing
body, in the absence of oblateness, will be used in the approximate

stability criteria method which follows.
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2.4 The. Approximate Stability Criteria Method

2.4.1 Introduction
The approximate stability criteria method was developed under this

2-5, 2-6 . . .
[ ? 1. Its goal is to provide a fast, economical

grant by Renard
(if less accurate) way of determining the stability of an orbit of large
eccentricity and, in final analysis, the quick generation of launch window
maps called for in a mission analysis. The method has since been used
with success to study the launch windows of several satellites of the IMP

[2-7t0 2-9]

(Explorer Series) , and is operational at NASA Goddard Space

Flight Center.

2.4.2 Some definitions:

-~ Orbit of large eccentricity: this is defined here as a geocentric orbit

having an eccentricity in the approximate range 0.9 £ e £ 0.95, or equi-
valently a geocentric distance to apogee RA ~ 20 to 40 RG (earth's radius),
if an initially low perigee, close to the earth's surface is assumed.

- Stable orbit: rather than being called (as it maybe should) "successful"

an orbit is called stable if the height of perigee hp, remains during the
whole spacecraft lifetime, L, larger than some critical value h:, equal to
or slightly lower than the initial value h:. h: corresponds to an assumed
height of perigee leading to orbital decay in the atmosphere.

- Launch window, launch window map: A launch window is the set of points

DL, HL (day of launch, hour of launch) for which stability is realized,
and for which a number of technical, scientific or other constraints are
2 -
met[ 10 to 2 16]. The boundary of the launch window defines the so-called

launch window "map" (Fig. 2.3).
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2.4.3 Present method and criteria
2.4.3.1 Evolution of the orbital elements

Fig. 2.4 (a. to f.) illustrates the evolution with time of some
characteristic quantities of high eccentricity, stable orbits: the
altitude of apogee, the altitude of perigee, the inclination of the
equator, the longitude of nodes, the eccentricity and the argument of
perigee (Ref. [2—5]). It is noted that for such a stable orbit, and
a dense satellite, due to the rapid increase in perigee height, the
effects of Earth's oblateness air drag are very limited and affect
stability rather indirectly. Thus, in first approximation, they will
be neglected in the analysis. Adjustments to the lifetime estimation
might have to be made, however, in those special cases where the
effect of oblateness plays a more significant role, as is mentioned in

Chapter 3.

2.4.3.2 Motivation

A purely numerical determinationm, on the computer, of the launch
window map for a satellite having a required lifetime of at least one
year could require an average of 50 to 100 hr. of IBM 7090 per year
of possible launch dates. Addressing herself to this problem,
M. Moe[2-17] developed simplified equations which were later solved

[2-18,2-19]

on the analog computer at a considerable gain in computa-

tional speed and with good agreement between the predicted and exact
. 2-10
window contours[ ].

1t remained tempting, however, to try and define the launch window on

the basis of approximate stability criteria which if fulfilled at launch,
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would very likely guarantee the whole lifetime. This would result in
an economical and fast method on digital computers, more universally
available, and allow for better ephemerides of the Moon and the Sun,
the orbits of which were taken to be circular in the above mentioned
papers. Leroy and Paceignzo] had mentioned Lidov's theory(Ref. [2-21),
as a possible way to somewhat restrict the domain to be investigated
numerically. With the goal of establishing stability criteria, we

found very eﬁcouraging that many of the orbital features just described
were qualitatively predicted by Lidov's analysis, Of course, the domain
of validity of Lidov's results was presumably restricted to lower
eccentricities than those retained here. For example in Ref. (2-2]),
Lidov was aiming for an accuracy of 1 to 3% with geocentric orbits of
semi—pajor axis of the order of 30 to 40 x 10° km. These figures were
perhaps too conservative, since analog integration of the similar

M. Moe's equations had given good predictions of the launch windows,

up to eccentricities of the order of 0.95.

2.4.3.3 Setting up the criteria

For stability, we require that rp, radius at perigee, not decrease
with time, over the satellite lifetime L. Let a, e. be the semi-major
axis and eccentricity at perigee, respectively, and 8z the change in
quantity z from one perigee to the subsequent one:

Grp = §[a(l - e)] = 8a* (L - e) — ade (2.4-1)

According to Lidov's "11" theory (and this is also true for the ''kk"
theory, k > 1, see Chapter 3)

§a =0
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Thus,
§r = - ade
P

Thus, it is required that the orbital eccentricity e have a decreasing

trend with time. The constancy of a, as obtained from computer results,
is illustrated in Fig. 2-5, for the orbit of Fig. 2-4.

The principle of the present method is to simultaneously require

that stability be realized:

1) In the long-term (subscript LR, for "long-range"), having
characteristic time TM(moon) or T@(sun): CRITERION 1.

2) 1In the short-term {subscript SR, for "short-range"), having
characteristic time Taat? i.e, a few days: CRITERION 2.

3) In the intermediate-term, so the '"waviness" of the curve of
height of perigee vs. time about its trendline is limited
(characteristic time TMIZ or T@/2)! CRITERIA 3, 4, 5.

4) In the very-long term (characteristic time Tyr? 28 yet
unknown): CRITERION 6.

These various stability criteria are now studied one by one.

LONG-TERM STABILITY

In the long-range, stability should exist for the secular effect of
Sun and Moon, i.e. on the average over a period of the perturbing body.
As obtained by Lidov (Ref. [2-2]) for one perturbing body "d", and re-

called in Equations (2.3-20) above:

1
dey = % Ajec /2 sinzid sin 2w, (2.4-2)
Hq 4 2/
= — e 3
Ad 157 y (pd €4
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Note that id’ wy are the inclination of the satellite orbit, and the

argument of perigee of the satellite, referred to the orbital plane

. i

of perturbing body 'd".

For the sun and the moon acting simultaneocusly, we can therefore
state the long-term stability criterion (CRITERION 1)

; 1 1y L. . o <
SELR = e« Z(AQ sin 1y sin 2w@ + Ay sin 1y sin ZwFQ =0 (2.4-3)

This will define a long-range stability region, which can easily be
plotted in terms of launch hour vs. launch day.
It should be noted that the ratio of the amplitudes Ad’ for Moon

and Sun, respectively, is

.
= ;Ju-l“i(p)(;—)
<] @ M ®

P, 3 &, 3
9y My /2 oy 4

and is obviously independent of A. As an example, for an orbit having

the following characteristics:

h, = 203,632 kn
h = 192.6 km
P
e =-0.93932
Teat =74.1047
we obtain
lGh due to the Sun = 51.9 km/revolution
ps LR |max
‘th,LR nax due to the Moon = 113.2 km/revolution
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Computer studies of high eccentricity orbits have shown that, starting
with a relatively low inclinatiom 0 < i < g on the ecliptic, stable
orbits were accompanied by a significant increase in inclination on the
plane of the disturbing bodies. It should also be noted here that if
only one predominant perturbing body is considered, or at high inclina-
tions on the ecliptic, in whichlcase i@ % iM,the qualitative use of
Tisserand's criterion made in [2-11] to account for the eccentricity vs.

inclination relationship just appears as a quantitative consequence of

Lidov's secular theory to order "11'". 1Indeed,

Si = - % ACL - &) :/2 sin 1 cos i sin 2w (2. 4-4)

£

Dividing (2.4-4) by (2.4-3), and after some manipulation

17,
6{cos 1} _ _ de /2
cos 1 1/2
£
or
(1L - ez)llzcos i = constant (2.4-5)

which is one of Lidov's "secular" integrals. Obviously, for stable

T R s
orbits of 3 < i <7, the inclination will decrease as time increases.

SHORT-TERM STABILITY

As recalled in Equation (2.3-19), Lidov's "11" theory gives for the
short-term (subscript SR, for 'short-range') change of e due to dis-

turbing body "d", and per satellite revolution:



2-27

1 .
§j1e = - ec /2 75 B (2.4-6)

€d

in which Ba,d = El,d Ez,dcgijjef' Fig. 2.2 shows the geometrical
significance of 83. If the projection of ;d on the satellite orbital
plane is in the FIRST or THIRD quadrants, then § is > 0, and from
Equation (2.4-6), the o?bit is stable in the sheort-range; if the pro—
jection is the SECOND or THIRD quadrants, the orbit is unstable in the
short-range.

Now, for the two disturbing bodies (Sun and Moon), we require

short—term stability by stating CRITERION 2:

A
GESR = - egl/z[(EAg/z) BB,M + ¢ 3?2) 63’@] (2.4-7)

M o
as shown in Fig. 2.7. An alternative form of CRITERION 2 is

E@ 3/2 >
CE;) AB3,M + A@BBs@ 20 7 {(2.4-8)

INTERMEDIATE-TERM STABILITY

Even if the short—term evolution of the eccentricity is favorable
-5
initially, 83 M will change sign as lM’ unit vector to the moon,
3 .
rotates in inertial space. Therefore, the eccentricity will oscillate,

over the lunar month, about an intermediate trendline, which corresponds
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to the long-range effect of the Moon and the short-range of the Sun,

averaged over T The slope of this line should be < O (Fig. 2-8),

"
which is expressed in CRITERION 3:

GeINT =<5eSR,@>'L' + @ E)LR,M <0 (2.4-9)
M

If the latter condition is fulfilled, it reﬁéins to require that
the waviness of the eccentricity vs. time curve (or alternatively, hP
vs. t) not be so pronounced that e increases again towards its initial
value, at its next maximum {or hp decreages again towards its initial
value, at its next minimum). j designating. the index of the perigee
passage (the initial perigee has index 1) corresponding to that mini-
mum in hp’ the above requirement is approximately expressed by CRITERION

4 (or 2 + 3 strong).

# v Ay ) A (k)
6ej = ej -e, = kgo [;;37; BB,M + ;—57; 33’0 ] 2.4=10)
®

It is apﬁarent thét criterion 4, which limits the tolerable lunar
modulation, encompasses criteria 2 and 3, but these are taken in this
order because they are more readily checked than 4. Criterion 4 is
then disregarded if 2 or 3 leads to a failure.

Now, the same reasoning is repeated for the solar modulation of the
eccentricity vs. time curve (Fig. 2-5). The criterion corresponding

here to 3 is de < 0 (criterion 1), and the one corresponding to

LR

criterion 4 is now developed. The upper limit ontSeLR on account of the

solar modulation about its trendline may be simply approximated, near
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™
. } (amplitude of

2
the limit of stability; by { |8 e
sat

<R, S °IR
A
9

(time to contact) = |-—-—-J~j, @ e<SR,0>TM- GeLR)l

wave)‘x L
9/ 2ty

CRITERION 5 (or strong) is then stated as

4 . _
(a) GeLR < Ve (Se<SR,@>TM - ﬁeLR) if Ge<SR,O>TM < GELR (2.4-11)
(b) taken to be satisfied if de > §e (2.4-12)

<SR,&>1 IR
M
All ﬁuantities in (2.4-11) or (2.4-12) have been determined previously.

VERY—-LONG-TERM STABILITY(FOR ORBITS WHICH ARE NOT QUASI-NORMAL TO THE
ECLIPTIC)

It remains to ensure that the very-long range effect of the
motion of the apsidal line of the satellite orbit with respect to the
orbital planes of the perturbing bodies will not cause the eccentricity
to reach its minimum value before half the expected lifetime has elapsed
(Fig. 2.9).

Computational results, for example those of Fig. 2.9 for IHP—C
under the solar and lunar influences, suggest that e ax ~ © might be

approximated in the region of interest, and when the inclination of the

orbit on the ecliptic or the moon's orbital plane is not near 90°

(more is said about this in the next section), by a half-sine wave with

" _ Ll
unknown “very-long-period TVLR, in (0, TVLR)' As is shown in Fig. 2-10,

- e = (e - sinT
e { e 'n) i

max max mi (2.4-13)

VLR
Assume that there exist one predominant disturbing body. The non-trivial

integrals in Lidov's "11", secular theory are, as given before,
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(1 - e2)cos?i = gcos?i

c2

it

cp = (L-¢€) (% - sin?i sinw) (2.4-14)

2

From these, the extremal values of ¢ =1~ e can be determined from:

a) if cp>0

— 7 -2
E:ma:'c =1 2 €2
e = i3 e tey) - (D (e b))
min 2 3 1 2 3 1 z
1
- By /24 (2.4-15)
b) if cyp < 0
£ , £ ., are roots of the quadratic equation
maxk min
2 2 b) -
gc - [1+ 3 (Cl + Cz)] e + § cy = 0 (2.4=16)

Now, in order to be able to compute c;, ¢, for a given initial orbit,
we should have a unique plane of reference {(orbital plane of the dis-
turbing body), with respect to which angles i and w of the satellite
orbit are measured. For moderate inclinations i on the moon's orbital
plane, in view of the small value of the inclination of the moon's
orbital plane of the ecliptic (iM = 5.145°), and of the dominant effect
of the moon, it can be assumed that the sun approximately describes an
orbit coplanar with the moon's orbit (this approximation would break

. . 3 .
down if i ~ — , and for a perigee located ''between” the moon's and the

2
1 . [2-6]
sun's orbital planes ).
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.

In this approximation, e1 and cp are computed with values of

1, w referred to the moon's orbital plane. This is the approximation

adopted in an early version of the SABAC program, and illustrated in
the example of Section 2.5.

For more accuracy, we later decided to use values of c; and cp
which would account for the unequal magnitudes of the amplitudes of the
perturbations (”Ad"), for sun and moon, by retaining as values of ¢,

and c, the weighted averages

A A

e . _
)Monly + AM + A@ (G=1,2) (2.4-16)

° TE v A 100 only

in which (cj) and (cj) are computed from (2.4-14) for angles

only

(iM, wM) and (i@, mO), respectively. This procedure is the one em-

@ only

bodied in program SABAC (Version A).

So far, T is an unknown quantity. If the orbit has been found

VLR

to be stable in the intermediate range (criterion 3 satisfied), one can

o Y g), where the

use Equation (2.4-13), to define an angle £_(0 £ §

eccentricity is e,

s _ _®Fmax T & < < T
sin £ = T e 0z Eo -3
max min .
Serr, . -1
The slope at £ = £, is estimated to have value -~ (day *) for
sat
TyLR of the order of one year:
Pemel _ se 0 . jiese . on
T 6t max min ° T

sat VLR
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Normalizing to Tsat’ we obtain TVLR’
= - A-1
TR = "Tsat Cpax T Cmin) 08 &0 [Sepyl (2.4-17)
. . . . . * Eoy
The lifetime condition is satisfied if T =1 {1 - 2=2) is
VLR T
larger than L, required lifetime. Thus, CRITERION 6 is stated as
follows:
L
T > (2.4-18)
VLR 1-2 £

i

VERY-LONG RANGE STABILITY (for orbits quasi-normal te the ecliptic)

When the inclination of the orbit on the moon's orbit (or equi-
valently, on the ecliptic) is in the neighborhood of 90°, the lifetime
criterion (6) iz modified as follows, for those orbits whole perigee
motion, during a significant fraction of the lifetime, occurs between
the orbital planes of the two perturbing bodies (Fig. 2.11), for
instance under the ecliptic and above the moon's orbital plane.

Since m-w is then very small, it is no longer valid, even though
%& ; i@, that Wy A Wyt This explains why the above deseribed criterion
leads to predicted lifetimes which are systematically in excess of
actual values.

It was found that typically, for an orbit of the IMP-G type

Le

5. | was very small and e would vary over a

one-year lifetime between 0.946 and 0.934. Therefore, assuming that

the sun describes an orbit in the moon's orbital plane amounts to
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neglecting the unfavorable effect of the sun on the (already small)
change in eccentricity due to the moon.

The alternative approach taken in the present case (and imple-
mented in digital program SABAC version B) is as follows. A plane @
is defined, which is obtained by rotating, aﬁout the nodal line of the
moon in the ecliptie, the plane of the ecliptic towards the moon's
orbital plane by an amount Eg;jrjgg iM/@ , where iM/@ is the mutual
inclination of these two plames (5.145°). For the theoretical
justificationlz_e], see the treatment contained in Chapter 3.

Now, let w. be the argument of perigee of the satellite orbit,
referred to plane &. The eccentricity will reach a minimum when the
perigee will be exactly contained in plane &, after a time equal to the
half-lifetime, k/Z. For confirmation, the reader should refer to

Chapter 3. For small sin w, in the case of a southwards injection,

we write CRITERION 6 (Versiom B):

L
“E_ om-w. L _
9 ZE;?;—— > 2 (2.4-18)
§t
. S Sw Suw
T - - e = (2 -0 .
he time-rate of change of w. 1s computed from roo (GT)LR,M + (6T)LR’S(1+W®
In this formula, from Lidov's formula in the long-range
Su - 2: - (2 2 1
(GT)LR,d A l(cos?iy - e)sinwy + ¢ 3]261/2 (2.4-19)
Factor (1 + w) results from averaging the expression between brackets
. ) . '
in Cgf)SR, due to the sun, i.e. , with e X0,
A
Su no 8 Mo, ? 2
(GT)SR,O = 5 € [4&1,@ - 52,@ - 1] (2-4_20)
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The average is taken over half a solar modulation (10/4), to obtain the
2

linear trend of w. vs. time, and £2 g
3>

can generally be neglected in

Equation (2.4-20). More details and examples are given in Chapter 3.

2.5 Examples of Application of the Method of Approximate Stability Criteria

From 1968 to the date of this writing, the approximate criteria approach
has been used as a fast, economical tool to generate the launch windows
of satellites in orbits of large eccentricity. The present section will
deal in some detail with examples of application on satellites: IMP-E,

IMP-G, IMP-I, IMP-K and K' (mother-daughter system).
2.5.1 A check of the method: IMP-B launch window

In order to check the effectiveness of the above method, it was
decided to try and recover the launch window map for IMP-B, which had
been well documented[z_lll.

This launch window map had been established during the preliminary

studies on IMP-B and -C. The orbit had the following initial data

(at injection):

L 109,952.5 Nmi
h = 104 Nmi
P
a = 108,290.5 Lkm
e. = 0.93932277
i = 32.912693 deg

o referred to o (earth's equator)
133.659044 deg __

w
o

Days studied: April 11 to June 15, 1965

Hours studied: 8.00 to 18.00 hr. U.T., time of injection, at perigee
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Fallure to meet any of the criteria, 1 to 6, led to the rejection
of corresponding launch hour on the day considered. The results are
compared to those obtained by NASA's numerical integration program ITEM,
based on’Encke's method (Fig. 2.12). It is seen that the topologically
complicated features of the contour separating the "stable" and "unstable"
regions are well recovered. The error in predicting "peaks'" or '"valleys"
in the contour is at most of the order of a few tenths of an hour, and
much less on the average. The largest discrepanciles are recorded at ITEM
"marginal" points, i.e. for orbits, otherwise stable, having a height of
perigee between 90 and 100 N.mi. for one orbit only, which is of little
consequence in practice. This accuracy appears sufficient for the
purposes of mission analysis.

It should alsoc be emphasizea again that the lifetime condition
iz far from being the only one to be considered. Censtraints of a
technological or scientific nature will further reduce the stable region
into a much smaller one, acceptable for the mission. In this reduced zone
of the maps, a final, accurate sutdy is then made, using elaborate and

expensive digital integration methods.

2,5.2 General comments on the economy of the method

It is obviously impossible to accurately pinpoint the savings
factor obtained by using one method compared to another, particularly
in a time-sharing environment. However, good estimates of the orders
of magnitudes can be given, and to the maximum extent possible, the

conditions in which comparisons are made will be clearly stated.
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As an implementation of the above method, a program called SABAC
(for Stability Analysis By Approximate Criteria) was written in FORTRAN 4
to check, on the basis of the above criteria, whether a point on the
launch map is stable.

On the UNIVAC 1108 of Carnegie-Mellon University and in 0S5, it
took no more than 0.02 sec per calculation point. This figure should be
compared (with, as we said above the "order-of-magnitude' viewpoint) to
7 to 10 min for conventional numerical integration pregrams run on the
same machine, integrating over a one-year lifetime. Hence, an economy
factor of the order of 104, with the same amount of information obtained
in the determination of the overall launch opportunities.

It is worth mentioning that SABAC includes an analytically defined
ephemeris of the Moon, giving the distance with an error smaller than
500 km at maximum. The Sun's ephemeris is read in.

As a last comment, it should be repeated that the method is obviously
no substitute for the detailed study, by a numerical integration on a
digital computer, of a particular set of launch days and hours, and the
corresponding history of the orbital elements over the whole lifetime.
But this may now be done only in those finally selected "target" regions
of the map, where all conditions of constraint are met.

Progrém SABAC comprises 2 versions, which differ by the method used
to estimate the lifetime., Version A is suitable for orbits which are
not guasi-normal to the ecliptic, i.e. it should not be applied to IMP-G.
Version B is suitable for orbits nearly normal to the ecliptic, such as

the orbit of IMP-G. Both versions are thoroughly documented as part D1
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of the volume "Documentation of programs and subroutines' appended to this
report. A slightly different version, of the same programs, also exist
at NASA, the difference being that a subroutine, SUNEPH, computes the

Sun's ephemeris rather than entering the Sun's coordinates as data.

2.5.3 1IMP-I launch window
IMP~I (IMP6) was a 636 1b. spin-stabilized spacecraft, with its

[2-9] =

spin axis nominally perpendicular to the ecliptic plane
carried a payload of 12 scientific experiments and one engineering ex-

periment. It was launched on March 13, 1971 at 11.15 EST, and inserted

into an orbit having the following characteristics

~ Orbital period : 4.13 days

- Perigee : 243 km (initial)

- Apogee : 206,258 km (initial)
-~ Lifetime in orbit: 3.6 years

— Inclination : 28.69 deg.

A preliminary orbit was given to us by GSFC, in late 1969. It

had the following parameters Revised, 02/70

- Height of Apogee : 217572.19 km ~ 216676.62 knm
- Height of Perigee : 277.7998 km 240.24 km
-~ Inclination (equatorial): 28.90053° 28.2996°
- Argument of Perigee: ~53.1456° -66.2037°
- Longitude of Perigee: 115.91055 (East) 112.67°F

-~ Latitude of Perigee : -22.75° {(South) ~25.828°%5
- Lifetime : 3 years 3 years

The launch windowg of Fig. 2.13-2,14 were ohtained.
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It is of importance to note here that a NASA GSFC's request, a
series of cross—checks were made between NASA's digital integratiomn
program (ITEM), SABAC and C-MU's program EOLA. Excellent agreement
was found, provided the allowed drop in perigee (73 km) was kept in

mind when inputting the data of SABAC. The results are summarized in

the fellowing table.



Cross—check of ITEM, SABAC-1A and EOLA

Daz* TIME* ITEM
1L 319 1 Success¥®
2 835 days
18.5 Success
2) 320 19 Success
20 Success
21 Success

3) 324 20 Success

4) 325 19 Failure on 4-th Or-
bit; perigee ht. =
187 km.

5} 326 19 Failure on 4-th Or-
bit; perigee ht. =
134 km,

6) 328 19 Failure on 1l-st Or-
bit; perigee ht. =
149 km.

20 Perigee ht. drops
to 190 km. in 4 or-
bits (drop of 29 km.
in 1-st orbit).

21 Success

7) 330 19 Failures on l-st Or-
bit; perigee ht, =
153 km.

21 Perigee ht. drops to
199 km. in l-st
orbit.

8) 331 21 Perigee ht. drops to
161 km. in 1-st
orbit.

*

Day: Day number, 1970 (Reference - Jan. 1 = 0).

Time: U.T. in hrs., at injection (assumed to be at perigee).
%%*Success: Based on a 3-year lifetime.

SABACL-A
Success

777 days
Success
Success
Success
Success
Success
Ripple fail.

{Criterion 4)

Ripple fail.
(Criterion 4)

Short Range
fail (Crit. 2)

Short Range
fail (Crit. 2)

Success
Short Range
fail (Crit. 2)

Short Range
fail (Crit. 2)

Short Range
fail (Crit. 2)
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Success

Perigee history:
240, 267, 168,
327, 189, 142 km.

Perigee history;
240, 228, 182,
288, 134 km.

Perigee history;
240, 149 km.

Drop of 27 Lkm.
in 1-st orbit;
drops to 200 km.
in 4 orbits.

Success

Perigee ht. drops
to 148 km. in 1-st
orbit.

Perigee ht. drops
to 202 km. in l-st
orbit,

Perigee ht. drops
to 163 km. in l-st
orbit.
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DAY TIME*  ITEM SABAC1-A E@LA

332 22 Perigee ht. drops to Short Range Perigee ht. drops
186 km, in 1-st fail (Crit. 2) 188 km. in l-st
orbilt. orbit.

334 24 Perigee ht. drops to  Success

202 km., in 1l-st orbit.

SABAC1-A results reported here permitted a perigee drop of 73 km. (DPLIM = 73 km).
If no perigee drop were permitted, the failure points would remain so,

while a few of the "success" points would turn into failure.

EfLA is a digital integration program based on a variation of parameters
method with the true anomaly as the independent variable. Earth's oblate-

ness was included in these runs but the atmosphere was not.
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B. Kaufman and D.P. Muhonen, at NASA GSFC, carried out a detailed
[2-9] '

analysis of the IMP-I launch window , subject not only to orbital

stability constraints but also to other conditions, for instance,

- the spin axis (or centerline)-station vector angle, for any
tracking station, should be between 55° and 125°. The reason
for this constraint are -8 db and ~10 db in the antenna patterns
in the regions bounded by centerline-station vector angles of

less than about 40° and greater than 135°.

- ecliptic plane apogee-sun angle between 15° and 60°, decreasing
with time. This angle is defined as the angle between the Earth
Sun line and the projection of the geocentric vector to apogee
onto the ecliptic plane. In other words, the projected apogee
vector will point to the subsolar point after between 15 and 60

days after injection.

For the fast mapping of the launch window, these authors used
2w-5
the” Approximate method of SABAC[ ]. Diagrams such as Fig. 2.14 were
produced: quoting from [2-9]:

“"The rapidity of this program allows one to map out a complete

launch window in a single computer run of less than two minutes,
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whereas use of numerical integration would require many hours. While
this program is approximate and is not intended to be highly accurate,
it provides an extremely useful picture of the launch window as
a basis for more detailed study. This program was obtained for the
IMP project office (p. 2).
On p. 4 of the same report, commenting on the SABAC lifetime con-—
tour of Fig., 2.14:
"Various parts of this contour were chosen as test points in
the Encke program and it was found that the contour was fairiy
accurate until approximately March 16, 1971, near 1600 to 1800
hours, where some complex forces apparently are beginning to com-
bine in a manner that SABAC may not consider. As can be seen
by the points plotted on the curve, this complex action 1s most
significant around March 26 and appears to be disappearing at
about April 10 and therefore is probably a cyclic occurrence
related to the Sun. For this reason, if the launch is to oceur
later than about March 24, extreme care must be used. Several points
plotted on Jan. 27 show just how sensitive the lifetime is to
injection time where a difference of 1h 15" in injection time
means the lifetime decreases from more than 3 years to about
4 days! Despite the above-mentioned complexities, Fig. 1 is
an excellent starting base for a detailed look at the launch
window'.
As a final point of interest, in Kaufman and Muhonen's study,
a Monte-Carlo procedure to account for the dispersion at in-

jection should be mention here, Fig. 2.15, taken from
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[2-9], p. 13, describes the injection covariance matrix. In view
of the significant magnitude of the off-diagonal terms, it was
thought to be inadequate to only examine 3-o perturbations of the
diagonal elements of the covariance matrix. The devised Monte-
Carlo procedure generates a set of 350 random state vectors having
a'normal distribution about the nominal, as defined by the co-
variance matrix. These 350 random vectors are then converted into

the SABAC input coordinates, and using the SABAC program, 350

corresponding launch windows are generated for each launch day
considered! (Needless to say, the cost of such a Monte-Carlo

study would have been prohibitive if carried out by conventicnal
numerical integration). The launch window lower limit differed

by no more than + 15 minutes from that corresponding to the nominal
state vector, and 99% of the upper limits were within 30 minutes

of nominal. On that basis, Kaufman and Muhonen could conclude

that raising the nominal lower limit by fifteen minutes and lowering
the nominal ﬁpper limit by 30 minutes should avoid any problems

caused by injection state errors.

2.5.4 Mother—-daughter mission

A satellite mission on an orbit of large eccentricity, in which
a subsidiary satellire ("daughter") will be separated from the main
satellite ("mother"), is at present being planned by NASA and ESRO. In
the mission analysis of this spacecraft, S.J. Paddack, D.P. Muhonen and

G.B. Friedlz—zz}

used the approximate criteria method and SABAC to
generate a number of launch windows, spanning intervals of several hun-

dred days, for various values of the argument of perigee. Fig. 2.17 is

an example reproduced from [2-22].
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2.6 Auxiliary Programs

In this section, we shall briefly describe some auxiliary programs
developed under this grant and to be used in support of the main
program SABAC for the development of launch window maps. They are:

- a program called "ECLIP" (existing in Versioms 2, 3) which

defines the relevant orbital and injection parameters, for
given radius and velocity at injection, given inclinations

of the velocity and satellite spin axis vectors on the
transverse. It is often desirable that, at a nominal, "ideal"
time, the velocity at injection (Version 2) or spin axis at

injection (Version 3) be normal to the ecliptie.

- a plotting program for the SABAC output, called "SABPL2" (a

slightly modified version was written by G. Fried of NASA GSFC).

2.6.1 Program ECLIP
ECLIP (here, more specifically, ECLIP2) is a program designed to

determine, on the basis of given: radius at injection, speed at injec-

tion, inclination on the equator, flight path angle (i.e. angle between

>
vinj’ and the transverse vector, in the direction of flight), the follow-
ing quantities:

1) The nominal injection time, on any given day of the year,

which guarantees perpendicularity of the velecity vector,

-
vinj’ to the ecliptic plane (the spin axis is sometimes

.
assumed to be aligned on V. .).
inj
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2) The range of injection time, or "launch opportunity strip",

within which the spin axis of the satellite, at injection
lies within +5° of the negative normal to the ecliptic

(the injection is southwards).

3) The solar aspect angle at the boundaries of the above'strip",

and at the nominal injection time.

The goemetry of the problem is shown in Fig. 2.18.. Let (Xe’ YE, ZE)

be the geocentric ecliptic system, and (Xa’ Ya’ Za) the geocentric

equatorial system. The coordinate transformations are

4 {- N
X 1 0 0 X
€ o
¥ = 0 CO8 ¢ gin ¢ Y
€ o
.ZE 0 -gine ©cos e Zu
J . /L
and
[N « h
Xa 1 0 0 X€
Y| =0 cos £ =-s8in e Y
o £
Z 0 sin € cos ¢ Z
o) \ } LE

The following vectors and scalars of special importance:

> > >
a) r. ., unit vector to the point of injection (R, . =R, ..r __,
inj inj inj “inj
radius vector at injection)
v i long the velocity at injection (V V., v
, vector alo e velocity at injection (V, ., =V, .- .
b) vin]’ unit vector ng y N inj ing vinJ,

velocity at injection)



»C)

d)

e)
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- P
P, unit to perigee and Q unit along the positive semi-latus

rectum
> -> -+
The dependence of P on r, ., V. . is recalled here.
inj inj
R = R D4R i 3
ini = Pinj cos “ian+ inj 51n\’inj Q
-+ > >
= -5i + (e +
vinj uw/p [-sin vinj P+ (e + cos vinj)Q]

—_
Solving for Q,

cos v,

=7, , o - —— A8l 3
inj sin v, sin v, .

inj inj

Then

- 1+ e cos vy e + cos “inj N

Ving == WP P TS ALY e T inj

inj inj
Finally, with ¢ = |t A £'| = Vup
; ) e + cos vinj ? _ sin vinj E.ﬁ (2.6-1)
1 + ecos v,. inj 1+ ecos v, ., ¥ inj iy

inj ing

v, flight path angle, is the angle between the velocity vector
at injection and the transverse vector, in the direction of

- >
flight. v is taken to be > 0 if the projection of V, on R, |

inj ini
is positive , 1.e. if injection occurs after perigee.

- > >
Ygs the satellite spin axis angle, is counted from Vinj into s,
-> —
unit vector along the spin axis (assumed to be in plane rinj’v; j),
in

positive in the direction of positive Y.

It is assumed that the injection is southwards. Of two possible

values of ﬂa’ longitude on nodes in equatorial plane, the one
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to be retained is that which delays most the appearance of
long eclipses (more than several hours, near apogee). As

will be seen later, this amounts, for posigrade orbits (iu < %)

and an injection in the Northern Hemisphere, to requiring that
Qa (which could be either in the fourth or second quadrant) be
in the second quadrant (or Qa + 7, longitude of descending node is

in the fourth quadrant)

Numerical injection time

By definition, the nominal injection time is that time t_nj, at
) i

-
which the velocity at injection (or vector v, .}, is aligned on the

inj

negative normal to the ecliptic. Thus, ?_ = [0 0 -1]E = [0 sin € -cos s]a

ini

- -+ > X
Evaluating rinj A vinj in the e-system, if n is the unit normal to the orbit,

- >
-« = S
rinj A Jinj COos Y
Thus
.+ . L]
(rin.)€ = [nY cos y, =~ ngy COS Y , ~s5in Y]E
] € £
or
—-> . .
(rinj)a = [nY cos ¥, ~-my COS Y COS € + sin vy sin g,
£ 3

(2.6~2)
—nXE cos Y sin € - sin v cos E]a

> -
Therefore (r., .) can be determined from v, once n is known. Given

inj'o

+
ia’ n is related to Qa through

+ » . + L] - 3
(n) [sin @ sin i , —cos & sin i , cos 1_ ]
o o o o a "o

[sin & sin i , — cos £ cos &1 sin i 4+ sin e cos 1,
o o [+ a [+

cos £ cos 1 + sin € cos  sin 1 ] {2.6-3)
o o o e
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The problem is now simply to find ﬂu such that ginj is normal to the

-
ecliptic. Let (RA)E be the celestial longitude of the projection of rinj

on the (Xe’ Ye) plane. Then

>
n [~ sin RAE, CcoSs RAE, O]E

[-sin RA , cos € cCos RAE, sin e cos RAe]a

>
ia being imposed, if Z, is the unit along the Za—axis,
> >
n.Z =cos 1 = sin £ sin RA
o o E
The quadrant for RAE (of two possible) being chosen from shadow considera-

tion, as explained above, the angle is determined from

cos 1

cos RA€ = sin RAE = + sqre(l - coszRAE) (2.6-4)

s8in €

where iu,s are known.

Now from Equation (2.6-3)

s cos i
o] o CoS £
cos Q= =-——"0 =" p
o sin i sin i sin &

o o

and Qu is in the same quédrant as RAE. Note that Qu has been obtained from
Equation (2.6-4) and (2.6-5) only, and is thus (as well as ;) independent

of vy, flight path angle. The injection time, tinj’ is obtained as follows.

Let £ be the angle, mea;ured positively eastwards, between the injection subpoint
on the equator, and the orbital descending node (Fig. 2.18). From vectorial
equalities, if & is the injection point,

tan O

tan 1, cos £ = + sqrt (1 - sinZ&) (2.6-6)

sin E =

Now let {2.6-6) be computed for the launch point (yielding El Y and the

injection point (yielding £,). The Greenwich hour angle at the time of
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injection is

= = 8 in de.,
Ginj G00:00 H.U.T.,on day "d" + 15.041688«% (dx24 + tinj) G, + 15.041688 (i g)
tinj’ in hours, has to be comprised between 0 and 24. (2.6-7)
Also, if @L is the longitude of the launch site,
= - + .6~8
Ginj @L + £, - & + Qa 180 {degrees) (2.6-8)
tinj is computed from
G, -G,
g, =-ol_~ (hours, from 00:00 hrs U.T.)

inj 15.041688
15.041688 (in deg.)

N

Multiples of 24 are added or subtracted to the numerator so that tinj
lies between 0 and 24,
The reduction to perigee, necessary for running data generated by

ECLIP in Program SABAC, is embodied in formula (2.6-1), in which,

successively,
= vV,
C RinJ inj COos Y
- sqrell + 29% G v, - 2Ry
e = sar p * %% Ying TR,
inj
-
P "
a - P
2
l1-e
33/2
T = 2

sat il
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hA = a(l +.e} - R$
hP = a(l - e) - RQ

C2 2
cos vinj = (ﬁ - )/(e*R ) and sin vi j = {Sign v)sqrt{(l-cos

?, from (2.6-1), is equal to [XP’ Y ZP] in the a-system.

P’
ZP’ longitude of perigee, is given by: Sblsif ZP;
coss + sqre(l - Z )

= . i = - 2E
cos Einj e + (Rirlj cos vinj)/a ;3 sin Einj sqrt (1 - cos inj)
3/2

a
Tinjection to perigee ;u (e sin Einj - Einj)

(This quantity is positive for injection before perigee or y < 0,

negative for injection after perigee or vy > 0)

Finally, if the unit along the nodal line is T il i [ZaA 3&], then
W argument of perigee, is obtained from cos Wy, T ? sin Wy, =

o [1 AP .

Launch Opportunity "Strip"
The launch opportunity strip is obtained by setting limits on the
' -
angular departure between the satellite spin axis vector, s, and the

negative normal to the ecliptic. WNow, assume that the nominal injection

time has been determined as above. &, latitude of injection, being fixed,

%
at time t (tinj is supposed to be the nominal injection time), we have
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+ - ]
rinj,t = [cos § cos RAa,t’ cos § sin RAu,t’ sin 8]
n = [sin i_ sin O in i Q 1]
n, = [sin 1 sin a,t’ sin 1, cos o,t’ cos 1
= )
Qa,t (Qoa)t*s ., + 15.041688(t - t, .)
inj inj
RA = (RA) %+ 15.041688(t - t.
w,t a,t . E = ting)

inj
The unit vector along the spin axis of the satellite is given by

-+ -+ > . -
8 = cos (Y+vs) n, Ar, ' + sin (y+ys) T

inj, inj,t
The (spin-axis, negative normal to the ecliptic) angle o, is given by
sin o = [S 0 Z| (0 < o < 90%) (2.6-9)

and the solar aspect angle B, givén the Earth-Sun wvector TE—S at t, by

-
sin B = |1

>
pog b S| | (2.6-10)

An example of result of these calculations is shown in Fig. 2.18,

A Fortran V computer program, called ECLIP, has been writtem at C-MU
and is described in documentation D=2.It determines, for given Rinj’ Vinj’
ia’ Ys Yg» the nominal injection time, the launch opportunity strip, the
values of angles o and B. It has also been used by S5.J. Paddack in the
mission analysis of IMP—G[Z-S].

Modified version (ECLIP3)

In this version, the nominal injection point is defined on the basis
of the satellite spin axis vector : {defined by Ys) being normal to the

ecliptic. TFormula (2.6-2) still holds, with Vg replacing v. Obviously,

the latitude and longitude of injection will depend on Yoo The time of
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injection, computed as above, only corresponds to the time when the
orbital plane (of fixed ia) contains the normal to the ecliptic; it
is thus Yo T and y- independent. For instance, if we chose Ys = -y,
; is aleng the transverse and the injection occurs in the ecliptic.
With that equality, the launch window strip can be determined without

any need to restructure program ECLIP.

2.6.2 Program SABPL2

SABPL2Z is a plotting program documented in D-3, accepting the
punched output from SABAC 1 or SABAC 2. It plots fhe launch window
and launch opportunity "strip' as defined above. The strip is hori-
zontal (if output is from SABAC) or oblique (if output is from SABAC 2,

with the "strip" defined by ECLIP)
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319.475 -.301558 ~-1.89925 3.06964 -1.85248
.000314949 ,00168757  -.00303874 00174996
0536578 -.0191042 0116318
0982999 -,0183223
L111156

FIG. 2-16., COVARIANCE TABLE, IMP-I ORBIT
(FROM REF. [2-9])
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CHAPTER 3

A Study of Orbits of Large Eccentricity Quasi-Normal

to the Ecliptie

3.1 Introduction

Relatively early in the present study (1968-1970), it appeared of
interest to initiate a study of the "practiéal" stability (in the
sense specified in Chapter 2) of high eccentricity orbits having an
inclination on the ecliptic close to 90°, This was to be the case
for satellite IMP-G, which was launched in June 1969. A very detailed
description of the results has appeared elsewhere[s—l]’[g_z].
A fhorough study of IMP-G orbit and launch time was carried out at
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NASA GSFC by S.J. Paddack[ 1

, who used ascomputing technique TTEM
and a Perturbation Routine for final, accurate results by numerical
integration on a computer, and our prograﬁ SABAC, based on the
approximate criteria approaéh; for the fast generation of global launch
windows. ECLIP, written at C-MU, was also used to define the launch
opportunity strip, defining a nominal time, and an interval on both sides
of this nominal time, in which the alignment of the satellite spin axis
on the normal to the ecliptic is closely realized.

As is schematized on Fig. 3.1, taken from Ref.[3-3], it is clear
that if, to simplify the reasoning, we assume that the velocity at injec-

tion is very nearly coincident with the satellite spin axis and is normal

to the ecliptic, the resulting orbit will be inclined by iE = 90° on the
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plane of the ecliptic. The corresponding inclination on the equator
i, for a southwards injection, will be comprised between 90° (if

8 = @ = +90°) and 66.55° = 90° - ¢ (if 9 = @ = +180°). The fourth
and first quadrants for Re’ﬂa would correspond to retrograde orbits,

and the third one might lead to prolonged times in eclipse, near apogee,
for up to 9 hours[B—B]: therefore, these three quadrants are not to be
considered, and we shall assume from now on that 90° = QE or 2 < 180°.

In the following, the approximate criteria shall be used consistent-

ly; - the lifetime ecriterion is described in Section 2-4.

3—
3.2 Study of the Stability of Orbits Nearly Normal to the Ecliptic[ 1].

3.2.1 Simplified model: planar case.

As an approximation, we shall first consider, that in view of the
emallness of the inclination of the moon's orbital piane on the ecliptic
(IM= 5.145°), those two planes are approximately coincident. With the

notations of Chapter 2, let i. be the inclination of the satellite orbit om

d
the orbital plane of perturbing body "d". As said above, we have
approximately (Fig. 3.2)

ngiszgo"

Long-Range and Very Long-Range Stability

As explained in Chapter 2, we shall use Lidov's "11", secular theory.
With the above simplification, we can define "Ad“ as the sum AM + AS
(Note again that AM/AS ig independent of a, and equal to 2.18).

The changes in the orbital elements due to the sun and the moon, per

satellite orbit, are (angles, referred to the ecliptic, are not subscripted)



Sa =81i=260=0 (3.2-1)
.Y gin 2w B
e =ec (AM + AS) I — (3.2-2)
Ay * Aq
£ =(5cos 20~ 1)(1 - )] (3.2-4)
5 cos 2w - 1
cg = (1 -¢e)(5 cos 20, - 1)

Subscript "." refers to initial values.

To this approximation, orbits initially normal to the ecliptie will
remain so for all time and will have a constant longitude of nodes, Now
consider Lidov's constants, cq and c¢p, which are integrals of the "11",

secular differential equations of motion:

¢y = cos?i = £, coszio =0
"

C

2
-e)G-sin?) =55 (3.2°5)

c2= -G - sinw)

Any of the orbits will be represented by point (cz, 0) on segment AC of
the ¢, axis of Lidov's (¢y,c,) diagram (Fig. 3.3)., TFrom Equations
(3.2-1) to (3.2-4), the evolutions of w and e are described by Lidov's

-y
d:i.scussion[3 ], in which Ad is replaced by AM + AS.

# 1 1 . % * % % %k
= - - = = — = + = —
Let w, 5 are cos(5) 39.23°, wo =T - wg, we =T w0, 2~ w,.
1/, sin 2w

Then, considering that e = -A(l - €)e 5 R



b)

* *
w, < w < W

* %
b 1 (Region 1, Fig. 3.4) or wy < w < w3y (Region 3, Fig. 3-4)

If initially, w, < 0 (we < 7), e decreases until w reaches 0(m).

The minimum for e is given by

e2 = ;ez(s cos 2w - 1) (3.2-6)
min 4 ° °
Thereafter, e increases and reaches e at w . With R_,
max e,max ®

%
earth's radius, and hp’ critical height of perigee, it is obtained

from %
: Ry + h_
1-e _=1-[1-——2P] (3.2-7)
max a
— —— l -

5 cos zwe,max -1=(1-2¢,)(5 cos 2u, 1)—5 N (3.2-8)
and w is in the same regicn as w . If initially, w, > O

e,max o

(w° > %), there is never a decrease in eccentricity. From the
viewpoint of long-range stability {(Criterion 1 of approximate

criteria method), sub-regions la, 3a are acceptable.
* * * %
w] > w > wy (Region 2, Fig. 3.4) or w3 < w < wy (Region 4, Fig. 3.4)

Here w decreases. If initially, w, > T (w > QE), e decreases
2 2

until w = %- (31/2). The minimum for e is

e =121 - 5 cos 2w) (3.2-9)
min 6 o o )

Thereafter, e increases up to the value given by Equation (3.2-7).
If dinitially we, < %-(wo < 3n/2), the eccentricity is always in-
creasing. Thus, from the viewpoint of long-range—stability, region

2b. and 4b. are acceptable,



By reason of symmetry, and since, as was mentloned earlier, our
interest here lies in orbits with southwards injection, the analysis will
be restricted, without loss of generality, to the second and third quad-
rants of the orbital plame (Fig. 3.2). On Fig. 3.4, point "B" corresponds
to w = w: and appears as an unstable point, whereas point "D", for which
W= mg, appears as a stable point. Only 2b and 3a are acceptable for long-
range stability in these two quadrants.

If very-long-range stability is now considered, an assessment of the
orbital lifetime can be made here, provided it is fairly large compared to
the periods of the perturbing bodies (in practice, the required lifetime
equals many orbital periods of the moon, but only one or a few orbital

periods of the sun.) This so-called "long~range" (LR) lifetime reads,

in satellite pericds,

*
Region 2b (m/2 < w, < wy)

i) =1 dw , (3.2-10)
w

(5) = 2= (T =l gy | (3.2-11)

in which ¢ is given by Equation (3.2-4). As an example, LLR is given,
in days, as a function of w, for an orbit of e, = 0.945991, a = 124,283 km,

Teat = 5.0468 days (Region 3a., neighborhood of ‘the ecliptic) (Fig. 3.5).

* :
If the orbit originates at w= wy; + n (n small and positive angle)

evolution B > A will lead to a larger L than evolution B+% C:

LR



*
if X is the point having argument 7 - 2w, = 101.54", the time spent along

B_ X is the same as that along B,C. Thus

In conclusion, larger lifetimes will be possible in region 2b, the larger
%
the closer the argument of perigee is to wp. In region 3a, for maximum

*
L should be made equal to w, + 0. The upper limit for LLR in this

LR* ©

%*
region is infinite since LLR+ w when w + Wwg.

SHORT-RANGE AND INTERMEDIATE-RANGE STABILITY
The short-range behavior of the eccentricity, which determines the

short-range stability, is described by Equationm (2.4-7 )

A
Y S (3.2-12)

From Fig. 3-1, it is apparent that if w were 180°, as is the case for an
injection, at perigee, in the ecliptic plane, Ez a would vanish and ini-
’

tially, the short-term stability would be neutral (Criteriom 2).

Due to the short-range increase of w, as given by

RV Py, 3 Ag | Pg 3
(6w), —p = 5€ 2] (;;'37'2' (rM) + (2;37;) (;;) 1 > 0- (3.2-13)

there is, however, intermediate-term instability (Criterion 4) since Ez d

L]
will become < 0 at the next orbit. Thus, in the gquadrants considered,
for short-term stability it is required that the perigee be above the

ecliptic plane




% <w<T (3.2-14)

which also ensures LR stability (Criteriom 1)

1
so. =L ec?p sin 20 <0 (3.2-15)

LR

Pl ol

For intermediate-term stability, a margin (of the order of a few degrees)
should be provided, so that the perigee is sufficiently above the plane
of the disturbing bodies. 1In order to obtain actual lifetimes which are
as long as possible, one could possibly select those launch days in the
year leading to a slope, on the e vs. time from launch curve, and over a
time of the order of TS/4, which is assmall as possible. For fixed e,

i w, and thus fixed values of Lidov's constants ¢ and ¢y, (fSeLR)M

=1
d 2’
is flxed. One requires to make <6&SR,S>T5/4 as small as possible, As
an example, for a celestial longitude of the radius vector at injection
RAE, in the fourth quadrant (Fig. 3.6), the best launch day of the year
will be that for which the unit vector to the sun is along axis 3P = 3,

normal to the orbit, on the average over tg5/4 (half a solar modulation.)

An example is treated in Section 3.3.

Conclusions from simplified model

In summary, to the approximation of the simplified model, and with
an analysis restricted, without loss of generality, to the second and
third quadrants of the orbital plane, it is concluded that

a) the highest realizéble value, in region 3a. of Fig. 3.4, for

the long-range assessed lifetime is defined by Equation (3.2-11),
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where w, is the minimum feasible w.

b) short-term and long~term stability are strictly realized for w
in the second quadrant, whereas intermediate-—term stability
requires that w differ from w{or n/2) by a negative (positive)

margin, in practice a few degrees for a lifetime of one year.

¢) it is possible to define a best day in the year leading to maxi-

mum actual lifetime for given e,,w and inclination on the equator.

3.2.2 Effect of the inclination of the moon's orbit on the ecliptic

We still assume that the satellite orbital plane is normal to the

ecliptic, RA is defined as the celestial longitude of perigee (Fig. 2-11)

€,P

If P is sensibly in the plane of the ecliptic, and above the moon's plane,

let ﬂE be the longitude of nodes of the moon's orbital plane, referred to

M
the ecliptic. Thus
- <
Qs,M ™ RAE,P ﬂE,M
Stability is assured in the long-range, since (6e)LR g = 0 and
]
(Ge)LR M < 0. The locus of southernmost {northernmost) admissible perigee
4

points on the unit sphere is obtained by writing

ny —- 1/2 = _
(§e) p X (1 - e)e™ "% (B + Aghg) = 0 (3.2-16)
with ¢d =T =ty It is approximately the arc of great circle having

normal Z_ inclined by

Ay
i = KM—-—-I—A—S' IM (3-2"'17)

on the normal to the ecliptie, ZE, in plane (ZE, ZM).In the long-range,

therefore, IM may be accounted for by rotating the ecliptic by i about the



nodal line of the mecon. This new plane of reference, called am, then re-
places the ecliptic.

As an example, for a nominal injection at perigee and in the ecliptic
{fourth ﬁuadrant), Fig. 2.1l shows that an inclination on the equator
ia = 90° should maximize the long-range assessed lifetime if Q_ ., = 0°

(which is in the case in early spring 1969), in a range for ia

An example is treated in Sectilon 3.3.

In the short-range, were the sun alone, condition
T
— < w<Tw
2

would .still hold, i.e. stability in the short-range would be realized

when the perigee.is in the second gquadrant of the orbit. If the injection
occurs at perigee, in the ecliptic plane, the short-term effect due to

the sun alone is zero; the moon critically determines short-range stabil-
ity. If the projection on the ecliptic of the vector to perigee, 5?, in
Fig. 2.11, is normal to the moon's nodal line in the ecliptic, Eﬁﬁ, the

moon is certainly favorable or neutral if

£ & 0

>
1M °2,M

and cannot be satisfied throughout the lunar month.
In the intermediate-range, the margin on w, to which we referred
above, should not be construed with reference teo plane w.. The condition

2
on the best day of launch still holds approximately, to O(IM).
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3.2.3 Effect of a small departure of the orbital inclination from normal
to the ecliptic
Earlier, we defined a "nominal'" orbit as one normal to the ecliptic,
and it is desirable to qualify the effects of a slight departure, Aie, from
being normal to the ecliptic. Such a departure will be caused, for
example, by the Earth's rotation for a launch slightly earlier or later
than nominal.

[3-4]

Lidov's formulae, in the "11", secular theory , written up to

0(ai ), yield

_ 1 1/, sin 2w :
SeLR =3 A(l - £)e g (3.2-17)

For long-range stability, it is required that ée__ > 0, or sin 2w < 0,

LR

To the same approximation,

1
Surp =3

1
Ae /2[% - sin’w] (3.2-18)
Therefore, the developments of the two previous sections concerning long-

range stability apply.

In the long-range, the orbital inclination varies according to

Al
1 . £
SiLR=..ZA(1 - ) sin 2w 2237; (3.2-19)

and 1 will increase (decrease) for &ie > Qor 1 <_%- (AiE < Dor i-> %D

and tend to % for stable orbits.

The rotation of the line of nodes will be of order Ais,

__l . _ D £ 1
6QLR =-3 A AlE[(l g)sin‘w + 5] 2175- (3.2~20)
Developments relating to short— and intermediate-term stability involve
2
geometrical conditions in the orbital plane, and still apply to O(Aie).
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3.2.4 A Priori Prediction of Orbital Lifetime

It has been seen in Section 2.4.3.3 that, in order to assess the
orbital lifetime, T,, and compare it to the required lifetime, L, one
possible method comsists in computing Lidov's constants cl,d and Cz,d’
for the sun and the moon, and to weigh them with amplitudes AM and AS
to obtain resultant c¢j and ¢ . It has also been mentioned that for

orbits nearly normal to the ecliptic, i Mi_ M 90°, the approximation

5

W, g=ms might not hold at all if, say, ™ - w., is a small angle (injec-—

M d

tion southwards, near the ecliptic), In particular, in the equation

1

l2 . o,
6eLR,d AdeE sin®i, sin 2wd

sin Zmd might be of different sign for the sun and for the moon.
Therefore, it appeared necessary, for satellites spending a signi-
ficant fraction of their lifetime "between" the orbital planes of these
two perturbing bodies, to come up with a better method of estimating the
orbital lifetime T,. Typically, when the unfavorable influence cf the
sun (e > 0) on the evolution of the eccentricity, as wouid be the case
if cj, ¢, were with reference to the moon's orbital plane only, it was

(3.2-1) that the inaccuracy in some parts of the contour of the map

found
(determined by the lifetime criterion) was of the order of 0.3h, a
large error in the case of IMP-G.

The alternative method adopted in this case has been briefly de-

scribed in Section 2.4.3.3, but will be repeated here. Plane GH, as defined

above, is the reference plane used to compute the argument of perigee of
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of the satellite w. (Fig. 2.11). Now, half of the orbital lifetime,
T*/2, will correspond to the time needed for the perigee point to reach

plane w. . The time-rate of change of w. is computed. in equation

Sw.. Sw.. Sw,.

5t - Gyt G e, W

as being due to the long-range effect of the moon and, in order to cap-

ture the linear trend of w. vs. time, the average of the short-range effect

Sw

of the sun (6$) taken over half a solar modulation cycle, tg/4 (see

5R,S

Fig. 2.5). As an example, it is interesting to note, in Fig. 3.7, where
ma vs. time has been obtained from numerical integration program EOLA,
that the crossing of plane B. (as marked by the arrow) quite accurately
corresponds to the tapping off of the height of perigee.

To be more specific, we consider the "11", short-term theory, as

embodied in Equations (2.3-14). Per orbit of the satellite, 6Tsat, if g

is neglected (a(,S 2=ps) and ig A g , for body "8",

Sw_ 1/
dt

_s
sat 3

2 2
e, =% 5" 1

2
In the viecinity of the ecliptiec, &

can be neglected. Now
2,5

2
El < g;cosz(RAS - RAP)

in which RAP is the celestial longitude of the perigee. Let ¢ = RAS - RAP.
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<g$;at>Ts/4 ==% A 81/2 e 305 - tg/h
= % A 51/2 + % Ag 51/2 x (- = sin 21JJmJ)
(g$~ )LR,S+ (g(f:" )LR,SW
sat sat
in which
W= - % sin 2¢inj

For an injection in the neighborhood of the ecliptic, and given i , a "best"

day is one which minimizes %%1, or for which

- = 27 jul s
(RAS RAP)INJ ¢inj 4 +k 5 (k positive integer or zero).
An example is given in the Section 3.3. In the same section, Table 3.3-1I
alsc shows the good agreement obtained, by this procedure, between the
predicted lifetimes, the latter being obtained from numerical integration

programs (EOLA or NASA's ITEM).

3.2.5 Effect of the Earth's oblateness on the orbital lifetime

In the course of the present study and the subsequence application to
IMP-G, it was found that orbital lifetimes can be significantly enhanced
by the effect of the equatorial bulge (J20 term in the Earth's potential),
by up to 20% in some cases under study. It is recalled that so far the
Earth's potential had been considered spherical in the analysis. As is
well known, due to J20’ there will be no secular changes of the satellite

gsemi-major axis, inclination or eccentriecity. The line of apsides (in the
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orbital plane) and the line of nodes (in the plane of the equator) will
rotate at rates proportional to 4-5 sinzia and cos ia’ respectively.
Since all ia considered here are higher than critical, (ﬁmulﬁr)obl is < 0,
and in the range investigated, its magnitude is maximum when ia = 90°,

The same "beneflcial” effect of oblateness on the stability of high
eccentricity orbits of natural satellites is mentioned in examples given

[3-4] and Lidov[s_s].

by J. Kovalevsky

Typically, the kind of orbits studied here have perigees which rise
very little (103 to 2 x 103 km) over the whole orbital lifetime. This
is in contrast with the more frequent occurrence described for example

3-6
by Shute[ ].

3.2.6 Conclusions of the study

The conclusions and practical implications of the above study, when
applied (without loss of generality) to a satellite launched southwards,
into an orbit quaéi—normal to the ecliptic, with a perigee in region 3a
of Fig. 3.4, are as follows:

a) High celestial latitudes of the perigee are required for the
stability in all ranges. They will be the more favorable the
closer the argument of perigee referred to w. is to T - %— arc cos(%).
In particular, a positive flight path angle (i.e. injection after
perigee) will be beneficial, within limits aliowed on the drop in
perigee height as compared to injection height,and mandatory if

the injection is to take place in the close vicinity of the ecliptic.
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b) For a nominal launch, at perigee and in the ecliptic, and fixed
eccentricity e and inclination ia’ it is possible to define a

best day in the year giving the longest lifetdime.

c) The most suitable inclination on the equator, for a nominal
launch, is that corresponding to an orbital ascending node at

+ % from the moon's node.

d) If the nodal line of the moon is sensibly aligned on the vernal
line (the case in early spring 1969), the angular height of
perigee above w. is m - we pt ¥ (Fig. 2.11). Therefore, if

ia < 90°, advantage can be taken of the Earth's rotation to

increase this angle, and consequently the lifetime, by launch-
. ing earlier than the nominal time.
These conclusions were used with profit in the mission analysis of

a high eccentricity satellite in anorbit nearly normal to the ecliptie,

IMPmG[a_z]. This study is described hereunder.

3.3 Application to an Actual Satellite: IMP-G
3.3.1 IMP-G orbital data
The abovementioned study of IMP-G orbit and launch time, carried out

by 8.J. Paddackl?™3

, should be referred to for more specific details and
mission analysis studies., Our motivation here was to use the results of
Section 3.2 and apply them to satellite IMP-G, in order to possibly pre-
dict the qualitative and quantitative effects of the launch parameters

on the orbital evolution, and more specifically the orbital lifetime (re-

quired to be larger than 1 year, even for the 30 velocity dispersion orbit).
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A description of a typical orbit follows:

IMP~-G
hA = 235,463 knm
h = 343 km
P
e = 0.946
Teat = 5,05 days

y (flight path angle = angle (Iy , 1 ), positive if
1

ni transverse

) 'ir. > 0): =2° to +2°.
inj inj

. 90 o
spin axis’® ivinj)' 2° to +2°.

Yq (satellite centerline angle: angle i
iE (inclination of orbit on ecliptic): about 90°, at nominal time

Injection in 4th quadrant of ecliptic

The above list calls for a few comments: IMP~G is spin-stabilized,
without active attitude control. It was desirable that the spin axis
vector TS, aligned within a few degrees on the velocity vector at injection
%inj’ be normal to the plane of the ecliptic, within a narrow tolerance
Ar = + 5°, Injection is made very close to perigee (within a few degrees).
Hence, the resulting orbit will be very nearly normal to the eecliptic. For
example, if v = Yo = Az = 0°, i.e. for an injection at perigee with velocity
and spin axis vectors exactly aligned on the negative normal to the ecliptic,
_Za’ the perigee at the so called nominal time will be in the ecliptic, at
celestial longitude RAE ini depending on the inclination on the equatoer,

ia (Fig. 3.8). For obvious reasons, posigrade orbits are preferred (ia_i 90°),
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and to aveild long periods in the earth's shadow at the outset of the
mission, only injection in the fourth quadrant of the ecliptic are to
be considered:

-90° = RA 0°

<
g,inj ~

The constraint on the alignment of the satellite centerline on -ZE limits
the launch opportunity to a "strip" of width equal to about 1.7 hour,
symmetric about the line of nominal launches (Fig. 3;9). As illustrated
in Fig. 3.10, the degrees of freedom in choosing a "suitable” orbit, with
a special emphasis put on achieving larger lifetimes, are

a) hour of launch, HL, inside the strip, on a given day

b) day of launch, DL

¢) inclination on the equator, i,
d) flight path angle at injection, ¥

e) satellite centerline-velocity vector angle, Yg

The conclusions of Section 3.2.3.6 will now be used in a systematic in-

vestigation of the effect of these parameters on the orbital eveclution.

3.3.2 Parametric study of TMP-G
3.3.2.1 Launch opportunity strip

Above described ECLIF program was psed to define the launch opportunity
strip based on a specified maximum angle A7 between the spin axis and the
normal to the ecliptic. This strip defines a range of permissible injec-—
tion within the specified tolerance. The "backbone" of this strip is the
time of nominal injection times, at which the spin axis and the normal to

the ecliptic are exactly aligned (Fig. 3.9). This can correspond to a
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nominal injection, i.e. in the ecliptic plane. The misalignment v
between the velocity vector at injection and the spin axis, should then

be compensated for by an equal and opposite flight path angle,y (Fig. 3.10).

3.3.2.2 Launch window .
The stability analysis of the orbits derived from program ECLIP was

carried out by means of program SABAC.

a) Influence of the flight path at injection, Yy

To an increase in the magnitude of y for constant R, ., V. .,
inj inj

there corresponds a drop in the height of perigee equal to about

4 km/deg, of change in vy, in the range Iy| < 2° ., The rate in-

creases with increasing v.

All things being equal, a positive flight path angle {injec-
tion "after" perigee) causes a high initial angle of perigee
above plane ». , consequently a larger lifetime. This leads to
an improvement in the ''quality" of the launch windew, as
measured by the area covered by the "success" region within the
launch opportunity strip. Fig. 3-11 to 3.12 graphically portray

this for the IMP-G satellite.

b) Influence of launch time on a given day

It is apparent for Fig. 3.10 to 3.12 that the launch window
seems to be more favorable at times earlier than that of the
nominal injection. Fig. 3-13, which is a plot of the predicted
lifetime as a function of the time of day, alsco indicates the

same effect. As was mentioned in Section 3.2, in early spring 1969,



c)

a)
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the nodal line of the Moon is very sensibly aligned on the
positive vernal line, axis Xe (in Fig. 2.11). The angular
height of perigee, approximately equal to T - wE’P+ P, is
increased, for given ia , when the injection occurs earlier
than at the nominal time, due to the rotation of the Earth
in intertial space. It is also clear that if ia = 90° and
for this position of the Moon's nodal line, the lifetime will

top off at nominal injection time, a fact illustrated by

Fig. 3.13.

Improvement of the lifetime with the satellite centerline

misalignment angle, ysg

Figure 3.14 illustrates that the lifetime increases with w. ,
argument of perigee relative to plane w. . The figure is a
plot for a nominal injection of IMP-G, and 1 = 90°, the high
values of w.being attained by the use of a negative Yq and a

compensating, positive .

Influyence of the launch day

For an injection in the close vicinity of the ecliptic, a

"best day" for given i, is one for which (RAs ~-RA_ ) = ¢, at

e,P

injection, is %l , since %%* is minimized. This is shown by

Fig. 3.15, for i = 83.8° (mominal injection of IMP—G[3‘3]),

Influence of the inclination on the equator, ia

In the period spring~summer 1969, the celestial lengitude

of nodes of the Moon is close to 0° (within 5° over March-July 1969).
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Hence w. , and the lifetime, increase with inclination in
the interval 66.55° = ia 2 90°. For nominal injection con-
ditions, and w = 0, the lifetime is plotted vs. inclination

i imn Fig. 3.16.
a .

+ 30 orbits

Due to the dispersion on the actual values of the velocity
at injection, it is important that the launch window also be
determined for extreme cases, such as a 30 error on the velo-
city at injection. The probability of having more than a 3¢
error on the injection conditions is only 0.26%. The following
list summarizes the 1o (1 standard deviation) with the Delta

launch vehicle, as taken from Ref. [3-3].

1-g Vehicle Errors

Latitude + 0.4337°
Longitude + 0.2335°
Altitude + 15.426 km
Speed + 0.010998 km/sec
Azimuth flight path angle + 0.6526°
Elevation flight path angle + 0.5208°

Spin axis azimuth angle + 2.0435°

Spin axis elevation angle + 1.6827°

The 30 dispersion limits on the velocity at injection were

studied. for the IMP-G launch window, and are illustrated in Fig.

It is seen that until day 160, approximately, the 3¢ window is

3.17.
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totally closed, and that around the middle of the year {(from
day 180 to 210), the window is favorable, even in the +3c

dispersion case.

3.3.2.3 Comparison with numerical integration programs

In more detail than Fig. 3.7, Figures 3.18 and 3.19 show the evolution
of some orbital parameters for a sample IMP-G orbit, as obtained from
digital integration ﬁrogram EOLA. The simultaneous topping off of w. and
of the height of ‘perigee have already been mentiomed, and this provides an
experimental justification to the procedure adopted to assess the orbital
lifetime.

Comparative lifetime values for IMP-G, as obtained from SABAC, Version B,
on one hand, and from NASA's ITEM (Encke's method) and EOLA (Variation of

parameters) are tabulated in Table 3.3-I.

DAY Inj. hour Y Yg Life days Int,
1969 " U,T. deg. deg. pred. act. prog.a
06/01 9.488 1.5 -1.3 413 410 VP
06/01 9,988 1.5 -1.3 340 370 VP
06/14 9.321 -1.28 ~1.3 425 404 VP

397 EM
05/01 11.363 1.5 0 362 389 VP
05/01 12,263 1.5 0 319 b 348 VP
05/08 10.097 1.5 0 FAIL 364 VP
05/08 10.297 1.5 0 355 369 VP

8yp: Method of variation of parameters; EM: Encke's method

bre T + 0.1h:350

Table 3.3-1 Comparison of predicted and
actual lifetimes
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As the tablé shows, the average error between the predicted and
actual lifetime values is of the order of 5%, and on the pessimistic
side. Case 4 is a c¢case in point. It corresponds to the evolution peor-
trayed in Figures 3.18 and 3.19. The predicted lifetime was 362 days
and actual one 389 days. Case 7, on the other hand, illustrates an in-
accuracy in the definition of the lifetime boundary. However, the life-
time predicted for the next point on the same launch day (for a step of

0.1 hour) is in good agreement with the actual value.

3.3.3 Implicationsfor IMP-G orbit

On the basis of the above study, recommendations could be made re-
garding the choice of an orbit having a long lifetime, ample launch
opportunities and still fulfilling a set of additional constraints. The
finally selected orbit would have to conslder, of course, the capabilities
and limitations of the launch vehicle. Of particular interest here, is
the combination of a positive flight path angle with a negative "spin axis
centerline-velocity vector" angle. The latter combination will emnhance
stability throughout the launch opportunity "strip" and/or permit injec-

tion at more moderate spouthern geographic latitudes.

3.3.4 Conclusions

In this example, it has been shown that the method of approximate
stability criteria could be used with profit in a parametric study of the
influence of various orbital elements on orbital lifetimes and the launch
window map. The analysis resulted in practical recommendaticns which can

be assessed within the perspective of the global mission.
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CHAPTER 4

A Modified Lidov's Method by Non-Numeric

Computation, with Applications

In this chapter we shall deal with the application of non-numeric
computation to the theory of geocentric orbits of large eccentricity.
The developments constitute a modification and an extension of Lidov's
theory[h-I]: a modification because it recognizes that Lidov only intro-
duces and studies five orbital elements, whereas rigorously six of them
should appear; an extension, because the developments are pushed to
higher order tham the "11", "21", and "12" terms of Lidov, thanks to
the labor-saving and error-free features of non-numeric computation.
Finally, the effect of oblateness is considered and numerical examples
ére given to illustrate the degree of accuracy and thé marked economy
in computer time obtained by using the present approach. The main lines
of the developments add a few specific examples are given here. For
much more detailed information, the reader should refer to the Ph.D.

[4-2]

thesis written by one of the authors of this report (R. Sridharan),

as the Principal Investigator's (Marc L. Renard) advisee.

4.1 Motivation

It is well realized by any mission analyst that repetitive, high-
" accuracy calculations amounting in one way or another to direct, numeric-
cal integration of the orbit, can be a very expensive proposition in terms

of effort and computer time. Figures of the order of 10 to 15 min per
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launch "point" (day.in the year, hour in the day) of the launch window

are quite realistic if a modified Encke's method is used on a large IBM

system (7094 or 360 series). The awareness of this problem led to the

developmept and use of a method of lower, but sufficient, accuracy, and

of very high computational economy, which has been described in Chapter 2.
Between these ends of the-spectrum, at the inception of the present

study, there seemed to be a real need for a theory of intermediate com-

plexity which basically

would be less costly than digital integration, by a factor

of 10 to 100.

- would include a sixth element, thereby resulting in an improve-

ment of the prediction of the "time flow' along the orbit
- would be adequate for eccentricities up to 0.95

- could be implemented on a digital computer, for the repetitive

calculations called for in mission analysis.

4,2 Main Features of the Approach

There are two main features in the approach: an extension of Lidov's
theory so as to include a sixth osculating element, and the use of sym-
bolic manipulation on the computer. These two points are mnow discussed

in more detail.

4.2.1 Extension of Lidov's theory

[4-1]

Lidov's theory has been described at length in Chapter 2. It is

recalled that the equations of motion which are retained are five in
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number. They describe the time-rate of changes of elements, a, e, 1, w, 0
as equal to expressions in the right-hand side, in which the small per-
turbing forces due to a third body appear as factors. DBut any sixth
element, such as T,, the time of perigee at the epoch (perigee), in

Kepler's equation of time

E-esin E=n( - T,)

is conspicuously absent from Lidov's theory. Furthermore, the "11v, “2iv,
"31" terms given by.Lidov for five elements do not suffice to obtain high
accuracy in the case of high eccentricity orbits (0.9 = e £ 0.95).

L3
[ 3]developed more such terms by hand computation, but did not go

Roth
far enough in the Legendre Polynomial (LP) expansion of the force, as will
be shown later. Furthermore, his choice of the sixth element is apparently
inconsistent, as will be shown in a later discussion.

The goal will thus be to obtain a "theory" describing the perigee-to-
perigee variations of the orbital elements. The developmenté will be
rendered more accurate both by the inclusion of a sixth osculating element,
which will result in a more accurate timing of the occurrence of perigees
and in a better computation of lifetimes; and by carrying the LP and Taylor
series of the perturbing forces to the order deemed necessary from esti-

mates of accuracy.

Alternate, relevant approaches and methods are examined by Sridharan in

-2 " -
a literature survey[L+ '], and include contributions by Kozai[Lb 3]
L 4-6 -7 - -
Musen[ v to ] s Smithlq 7],Fisher and Murphy[L+ 8], Fisher[L+ 9] and
Cook and Scott[q_lol.
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4.2.2 Symbolic manipulation (non-numeric computation) on the computer

A rough assessment of the algebra and "bookkeeping" involved in pro-
ceeding to develop a modified Lidov's theory along the lines described
in Chapter 2, rapidly points up the need for mechanizing the worle through
the use of SYMBOLIC COMPUTATION. As a result of using this technique, in
a spgcial—purpose program, the extension of the theory to any order would
be carried out automatically on the computer. The process flow would be
as follows:

I INPUT: Coded differential equation, "order" desired etc...

l

Processor: implements the

1I
algorithm, reorders terms etc.

l

IIT OUTPUT: Theory, expressed as a set of formulae, to order

specified

Parts I, II, ITI-will be examined in detail hereunder. At this stage,
however, the advantages of symbolic manipulation could already be described
as follows:

- Automatic development of the theory to any otder

—~ Mechgnization of substitution, transformation, etc. to auto-

matically condense, simplify, compare formulae
- Saving of analyst's time and effort
- No errors in algebra, given a pre-tested "correct” program and a

“"good" computer. The latter are not minor reservations, of course,



but given a sufficient volume of computation, any analyst is
bound to make errors, in spite of the fact that most of his

time might have been spent in rechecking algebraic expressions.

It is apparent in the literature that with the availability of compu-
ters came a vivid interest in automating the development of analytical
theories. Considerable eii:'fort[q_11 to q_sq]has been invested in build-
ing special purposes programs and using existing lanpguages for literal
computations in perturbation theories for the moon, ﬁlanets and satellites.

Thorough surveys of existing systems and problems being studied were

[4—11] [4-12]

made by Davis and Jefferys

Poisson Series, of the form

> > > - - .
b (x,y) = E[Pj COS@T y) + Qj sin(jp ¥)1
in which

is a n-vector of polynomial variables
is a m~vector of trigonometric variables

is a n-vector of integers

o e MY

’ 6 are polynomials in the polynomial variables having,

(]
[N

possibly, negative exponents also.

. L~-13 to 4-26
have been the object of numerous special purpose programs[ ° ],

which aim at economically and efficiently performing the following manipu-

. L-11
latlons[ ]

creation and annihilation of series

parsing

I

differentiation and integration

substitution



4-6

~ numerical evaluation

[u—14]

Among many contribution, we could mention Barton's expansion

of the lunar disturbing function to the tenth order in the LP expansion

[u-16]

and his attempt to develop Delaunay's canonical transformation

for the elimination of periodic terms, whiech ran into severe space problems
on the computer. This "space" constraint, and the enormous amounts of
Central Processing Unit (CPU) time needed for list processing are the

two major difficulties encountered in symbolic computation. Eckert and

[4-15]

Eckert used an IBM 620 and a Symbolic Programming System to obtain a

lunar theory of increased precision.

[5-25]
[4-32]

Deprit developed an analytical theory of the moon based on Lie

transforms , using a set of processors developed for series manipula-

[u—zz]_ [4=20]

tion Deprit and Rom also used Lie transforms and series
processors to develop the analytical solution of the main problem in
Satellite Theory (all gravitational harmonics are zero except JZ)'
[4~27]

Carpenter developed a program for automatic computation of general

planetary perturbations to first order, using Hansen's theory. Sei~

[4-28]

delmann modified Hansen's method by using an iterative process in-
stead of a Taylor series.

To conclude, it can be sald that the adoption of techniques or proce-
dures to economize on time and space results in a restriction of the class
of problems that can be handled and conflicts with characteristics of porta-

bility and readability of the programs. The more complex and more specialized

the system, the more dependent it becomes on specific hardware configurations.
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4.3 The Choice of.Elements

It is recalled that Lidov's original theory[q_ll was developed in
terms of the true anomaly, v, as the independent variable. Yet only
five elements appear in the differential equations expressing the rates
of change of the parameters with true anomaly, namely a, e, i, w, §
(angles are referred to some plane of reference, not necessarily the
orbital plane of a disturbing body, but so that { is defined). An ele-
ment is missing: it could plausibly be T, (time of perigee at perigee)
or M, (mean anomaly at epoch}. Tﬁe inclination of this elément in the
present theory which thus modifies Lidov's theory, will be shown to be

critical in timing the occurrence of perigee in the orbit, as opposed to

geometrically defining the trajectory.

In the present study, M,, mean anomaly at epoch, was chosen as the
sixth element. In Appendix A- 1, the derivation of the differential
equation for M, is given, with the procedure for computing the elapsed

time from M.

Since Lidov, in his work, only used five elements, it implicitly

amounted to asstuming that the unperturbed period of the satellite adequately

[4-29 ]

represented the flow of time along the orbit. M. Moe made a similar

assumption, which is also present in the analog application of her

rk[4-—&3-0] [u-y to u—6]

WO . In Musen's work on long-perturbations . where

mean anomaly is used as the independent variable, or on short-period

[4=31 to 4-32]

perturbations , in which the eccentric anomaly is used, the

perturbations of a sixth element were considered.



4-8

4-33 to b-
thI 33 to h-3y)

Ro , in his attempted extension of Lidov's study, used

time E:as the sixth variable. The equation for %%—was arrived at by

extending and truncating the equation relating t to V. From equation

2 2

dv _ Jup

= Yi xr~ . I i
e = 1+ o Fr cos Vv o (1 + p)Ft sin v]
or
d 2 2 2
L < . r ; -1
T vy i1+ o Fe cos v e (1 + P)Ft sin v]
r2z_ r2 r? r 2
= Vip [1- e Fr cos v + e {1 + B)Ft gin v] + O(e*) {(4.3-1)

2 .
if the forces are of 0(e,). Neglecting terms of 0(e,), the equation for
the pertﬁrbations of time is arrived at by considering the first term in

the above bracket to be the 2-body expression {which it is not), or that

x?

ar o dbey o o
dv’pert ‘dv “2b vup 2b°  Me

¢ F_c \J+ﬁ(1‘+£)F in v] (4.3-2)
r 05 Ye P rSln .

In our opinion, there is a basic flaw in this approach. In the first five
equations as in Lidov and in our work, Y has been set to unity, whereas in
the sixth equation, Y has been expanded in order to generate an equation for
time t. This equation is linear in the forces, and thus allows superposition.
But nowhere does the feature of double integration appear, which normally

[#=35]

accompanies this element in any perturbation theory. To quote Kovalevsky
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", ...We must therefore carry out a double integration

of the equation giving the semi-major axis before
being able to obtain the mean anomaly. This is an
important general result. Whatever method is used,
no problem 6f perturbed trajectory can be solved

in celestial mechanics without carrying out a double

integration at some stage....."

In the light of this comment, we can recall that t is not an osculating
element. Thus in the perturbed motion, the first term in the bracket of
Equation (4.3-1), which is an "instantaneous analog" to the mean motion
will be perturbed as compared to its value in the unperturbed case, the per-

turbation being of order € and noted 03(€). Thus

% = 0(1) + 03(e,) + Op(e,)

where 0,(e) corresponds to the two last terms in the bracket of Equation

(4.3-1). This yields

d
2
At é T (At)dv

[0(3) + 07(e,) + 0, ()]
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r2
and OI(E*) results from the perturbation of‘jﬁ; . Thus, to be consistent,

perturbation of the mean motion should be included, which in turn will

. . . . \ ; d
lead to introducing into the sixth equation a term invelving a + E%

before integrating with respect to v over (0, 27). As Equation (4.3-1)
illustrates, this Roth has failed to include.

This problem does not arise with osculating element M, (mean ancmaly

at epoch) adopted in the present study. We have, as in Appendixz A-1 ,

- 2 . 40 do
£ {cos i av + > h]

v uae 5 T 2a 4dv

It is seen that the unperturbed mean motion does not appear alone, and that
the term linear in time accounts for the double integration.

In Appendix A-1 , the sixth quantity use& by Roth has been evaluated
for the J20 term of the earth's oblateness. The result has been compared
against a digital integration program (EOLA~TP) run for a high eccentricity
orbit with J20 perturbations only, Fig.A .l shows this comparison for the
time of passage at perigee using either Roth's sixth element or Mg, or
EOLA-TP. Table 4-1 also gives the data from which Fig. 4.1 is plotted. It
is seen that Roth's elements predict negligible change in the apsidal period,
which is not true. Using M, gives a close approximation to the d;gital

integration. Incidentally, Roth's work does not at all comsider the

. sometimes significant effects of oblateness in orbits of high eccentricity.

4.4 Number of Terms 'Az to be Retained

1]

4

With the same notation as in Chapter 2, let Azij designate a change in

osculating element z over an orbit of the satellite {more precisely, over
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an interval (0, 2n) in the true anomaly v). The first subscript, i,

is the "order" of the Legendre Polynomial term considered, in the LP
expansion of the perturbing force %d' The second one, j, is decreased

by one, the order of the derivative retained, for the term studied, in the
Taylor's series expansion of products such as E? Eo Eg Ad about the posi-

tion that the disturbing body assumes at the reference time, €

ref

One remembers that in Chapter 2, expression vy
= [1 +-£E F cos v - = 1+ E)F sin v]_1
Y e 'r ue Pt

such that

never differs from 1 by more than 0.8%, at maximum, in the worst possible
case, for e = 0,95. It was therefore taken to be 1. Barring other comn-
siderations, the approximation on Y should set a lower bound on the terms

to be generated.

Ref. [2-3] as said above, gives estimates of "maximum" amplitudes[q_Z]

for the (Az). To recapitulate the formulae -

a) along the LP expansion,

< 8 gt2 2q+5
|(Az)q+1 - (pk) qtl q+3 I<Az)ql

with q the order of the force term being considered.
b) along the Taylor Series expansion

1 Tl :
[ e M [CON
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where j is the order of the derivative retained in the term being
considered.

On the basis of these estimates, tables of relative "maximum' ampli-
tudes of such terms were drawn up: Table 4*2 lists three such examples,
for various "large" eccentricities, with the moon as perturbing body.
Table 4-3 containslan example for the sun. Needless to say, we should
expect that for the moon, it will be required to much higher values of Hin
and "j" in the case of orbits of large eccentricities, than might be the
case for the sun as the perturbing body. An answer as to how many terms
ought to be retained in a specific case is of great interest. Previous

- 33
[4=33] did not set up a precise

work did mot focus on the question: Roth
estimate, and Lidov examined the "11", "12" and "21" terms for five ele~
ments only. Table 4-2 shows that for orbits of e > 0.92, the number of
terms needed, if the approximation of v were regarded as the criterion
would be very high (beyond q = 5 in Aij) for the moon as perturbing

body. Now, despite the use of symbolic computation? the required computer
time and memory space are very high for high orders of the theory, as will

be discussed later. In all cases tabulated in Table 4-2, it is seen that,

for the moon as perturbing body,

0.12(&\11 + Aoy + Agp F Aq,l)

ie

b5
g1 v 0.09(A11 + Agy + Agq F Ay + L\Sl)

1 being the (normalized) magnitude of the "11" contribution to Aztotal'

As a tentative cut-off point, the value 0.1 was adopted for the factor

multiplying the parentheses in the above expression, and the theory
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developed includes terms

By, Ay2, Ays, Aoy, b2, A3y, Aypsand dg)

In the section where the results of the developments are checked against
high-precision numerical integration, at will be seen that this order of
the theory is indeed adequate in practice for orbits of e < 0.95.

To conclude this question, we might remark that the relative effects
of Sun and Moon, in the "qth" force term can be listed, as in Table 4-4.

Let, from TMef. [4-2]
u
k,r .4
=) ()
d

.
¥, |
q'max

. . dg , ;
In a perturbation equation, that for E;-example, this gives

dfy Y4 r r \q+2
av '3 psin i (q+1)(rd) sinw + v)

and the relative effects of sun and moon are measured by the ratio

et e a"]
(881 p Tg

(AQ) R TOR =
5 ] ng)q+2

In this estimate, sun and moon have been assumed to describe coplanar
orbits. The ratio is listed in Table 4-4 for low values of q. The same

estimate would apply to the other osculating elements.

4.5 The Effect of Earth's Oblateness

The effects of earth's oblateness on orbits of large eccentricity

-36
have been found to be quite significant on natural satellites[u ] or

PR, . [l+_.37 to 4_38]
artificial satellites, such as IMP-G . In the present study,
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only J, will be retained, since other harmonics are of order 10" 36r

20
less compared to it. Its secular effect, obtained by integrating the
corresponding perturbation equation with respect to v, will be superim-
posed on the effects of the sun and the moon. It is well known that

there are no secular variations in elements a, e, or 1 due to J The

20°

secular variations in Q,w and M, due to J20 are evaluated in 4.170.

4.6 Symbolic Integration System

In the present section, a field of integrals 1s defined which are to
be computed in order to obtain closed form expressions for the changes
of the elements, over one orbital period of the unperturbed orbit. The
recursive relations involved in the calculation are obtained. An estimate
is made of the "explosive" growth in the number of terms to be calculated

" contribution. The results of this study stress the de-

for the "Az_,
_ i3
finite need to resort to symbolic computation for error-free algebra and
for bypassing the formidable task of hand computation. The elements
involved in the choice of a particular programming language are discussed.

The system is described in its various parts. Finally, the relevant

programs and space and time estimates are given.

4.6.1 Field of integrals
It has been seen in Chapter 2 that the integral form '(I.F.)}' to be

dealt with needs



4-15

. U v
(1.F.) 52“ (ar)S B Y EOS & g, (4.6~1)

5,4,V,q de:f (1+e cos \))q
in which

s,u,v,q are non-negative integers

gzl ;

q>u+vy (4.6-2)

Integrating (4.6~1) implies a series of recursive operations in
a finite field of expressions (A 'field' is defined here as a set of
expressions closed under integration, such as polynomials in several varia-
bles, polynomials in sine and cosine of an angle, etc.). Basic form
(4.6-1) will in the process of computation evoke only linear combinations
of numbers of the set. The element members of the field of expressions
are not separately tabulated, but the recursion relations hereunder are

defining each and every one of them.

4.6.2 Notations

Let AZ1 + e cosv

U v
S1in Vv Cos V

L
u,v,q = Aq
. u
H - sin v =
u,q B Aq u,o0,q
v
T = COS v =L
v,q q 0,V,q
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. v
_sin v cos v

J . = = L
V&q Aq l,ng
sinuv v
K 81V COS Vo
u,q Aq u,1,q
Moo=i -
q Aq o,0,Q
" _ 2 (=e) v
S1 =S My dv 172 arctan| YE tan E]
£ £
and
; 2 gy
- 1
1i, . /2
Let Sm =/f MZSm—l dv
_ (4.6-3)
Rl =f M2 dv
c, = li: =
1 \Jpa E3/2
Note that
2 M
d 2 U h hen
1y (8) = Jp c, (4.6-4)

At is the time measured from some fixed reference time, tref’ and should
be considered as one variable, in contrast with the motation 'A' defined

above, or A in Azij, designating the change of element z in the "ij" theory.

4.6.3 A set of vanishing definite integrals (I.F.)S 0,v.q
- 3 L

The reference time, tref’ is chosen as that corresponding to the occurrence

[4-1 ]

of apogee along the unperturbed orbit . Hence, At is an odd function

of v about v=m,
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(1R
1A
[
T
1A

palA

and

(ae) = =),

It is readily apparent that the integrand of (4.6-1) is odd or even
about T = v, depending on the sum of the exponents of (At) and

sin v, (stu). Thus

(1F) = | (ur)® (4.6-5)

21 . u v 0 if (s+u) is odd
- sin v cos v
Ssu,Vv,q J

A {1+e cos v)q #0 if (s+u) is even

and the corresponding sets of (IF)'s can be ignored in what follows.

4.6<4 Recursive relations for s = 0

Let s=0 in (IF) . The case s # 0 will be treated in 4.6.5.
ByU,V,q

In all recursive relations, the goal is to monotonically decrease the

value of the integer value of g (q 2 1). Since q has to be larger than

utv, non-negative integers, u and v will also have to decrease to 0

or 1. After applying the relevant recursion forms the final results

obtained is a lengthy primitive expression, evaluated by substitution

of the limits 2w and O for v.

4.6.4.1 Integral of L
u,v,q

Using integration by parts, and the fact that

sin v 1 1
Ba g4y = 6
A VT @De o1 (4.6-6)




it is easy to obtain

L d ___1_L _u-l
u,v,q 0 T (g-1e ‘u-l,v,q-1  (a-1)e

v
(g-1e

+ dv

JLu,v—l,qvl

withg> 1 .

4.6.4.2 Integral of Kh

JLu—Z,v+l,q—l

2
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dv

(4.6-7)

2

By integration by parts, and using (4.6-6) and cos®v = l=-sin“v ,

we get
1 1 u-1
I emrr——— —_——— - —— d

JKu,qd“ Lye fu-1,q-1 * (g-Dye JHu,q-ld" (a-D)e Jﬂu—z,q-l v (4.6-8)
with q » 1 .
4.6.4.3 Integral of H

u,
Using
1

cos v = E(A_l) (4.6-9)

we obtain
u-1
1 sin u -1
dv= - K dv 4.6-10

JHu,q YTe-e a1 (a-De J u-2,q-1 ¢ )

or
1 u -1
- -— d L6-
JHu,qdv (e Pu-1,q-1 ~ (g-1)eZ JHu-Z,q-Z v (46711

u-~-1

¥ (q-1)e?

JHu—Z,qﬂl dv



4.6.4.4 Integral of Iv

3

This computation requires the value of |I dv , i.e.
v-1,q-1
cosv_lv
JIv-l,q—ldv =,I_—_E:1_ dv

A

sin v sv_zv cos —Sv sin®v

= + (v-2) dv

a4l , A9-1

+ .2 v
s1n“v CO8 Vv
A4

- (g-1l)e dv

Solving for JIV qdv, using cos?v = 1-sin?v
3

JI dv = 1 1) dv
VG

T e Yv-2,4-1 T @ De JIv—l,q-l

_ v=2)
¥ le-2,qdv (g-1)e Iv-3,q-1dv

valid for v > 2, q > 2.

For v. =1

Jll,qdv =

Wi

JM dv - 1 JM dv
q-1 e Jq

2

4.6.4.5 Integral of Jv

1 v
J dv=-—F1I +—— |J dv
J v,q (g-l)e “v,q-1 (q-1)e J v-1,q-1

with g > 1

(4.6-12)

(4.6-13)

(4.6-14)

4-19
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4.6.4.6 TIntegral of Mq

I
JM dv =  §2
q e Aq
. 2
§51n v d\J +§COS LY d
24 A
- 1 sin v _ 1 cos V v
(@-Le ,q-1  (g-1)e Ad-L
L -] £y (Y (4.6-15)
e’ |ad a4 N

wherein the identity
cosZy = éf-(ﬂz - 24 + 1)
e

has been used. Using (4.6-13) in the expreasion for Jquu y E = 1-e2,

and rearranging,

_ e 2q-3 J 2q-3 J

dy = = e + =122y _dy + M _d

J Myev (a-De ,9-1 T (-1 q-1 (q-1ye] g1
a2 -
D J Mq_zdv (4.6-16)

valid for q > 1.
For g=1, we defined

JMldv ESl {4.6-17)
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Also, from (4.6-16), written for g = 2

= =. & —_ -
R, = JMzdv == H + (4.6-18)

4.6.5 Recursive relations for s> 0 ,

The recursive relations for the integration of (IF) =
5,U,V,q

3 - 8 _ 5 58— _
J (At) Lu,v,qdv At JLu,v,qu c; JAt lMZ[J Lu,v,qdv]dv

From the formulae of the previous section,
= + . . . B
JLu,v,qdv aosl gam (function of type H,I,J,K or L) (4.6-19)

with the ai's (i = 0,1,2...) being constant. Thus, in (4.6-19), we are

reduced to integrating known forms, plus a term of the form
_ 5 _ 5 5—
J(At)SMZSmdv = {At) Sm+l Cl J(At) 1M28m+ldv

4.6.5.1 Evaluation of Sm

5 = Jsm_ledv
= Sm—l[JMZdv] - JMZSm—Z[JMZdv]dV

But Rl E Pﬂzdv, de = Mzdv. Thus

i
e
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Finally
m—1 Ra m-1
a-1 R o D m-1
= - — + M.R 4.6-20
Sm ugl L Sm—1 o ! (m—-1)! J 11 dv ( )
Let
T = % lav ‘ (4.6-21)
m 11
Thus, since
e Sl
R=-elha*e
we get
e Sl m-1
FCm = JM]_(— z Hl,l + -E-—) dv

The integrand is expanded by the binomial. formula. For the complete

evaluation of‘Em—,the following relations are also needed:

q - q- -
JHu,v S1 Hu,vdv qul Hﬂl[JHu’vdv]dv (4.6-22)
and ‘ G+l
q _ L _
JSl Mldv e {(4.6-23)

This completes the set of recursive formulae
4.6.6 Closure and character of the field ¢f expressions.
The field of expressions is closed under integration under the
conditions specified in Equation ( 4.6-2 ). Ref. 4~2 shows that
it was necessary to use ''mixed" axes for the components of the forces in
. . . e ol S .
the differential equations of motion, namely (r,t,u): radial, trans-

verse and normal directions, and (ﬁ,a,ﬁ): to perigee, normal to perigee



in the orbitai plane, and normal to the orbital plane.

It is also evident from the reduction formulae and associated
definitions, that the field of expressions is esgentially not
polynomial or trigonometric, neither is it "poly-trig'. Tramscen—
dentals such as arctan (al tan a2) are involved, and the field,

though finite, is rather general in character.

4.6.7 Explosion of terms

The "explosion' of the number of terms under integration is
briefly reviewed in this section, and given in much more detail
in Ref. [4-2]. As an example, for the first few orders (q = 1 to 5
of the LP expansion, and for each variational equation, we have the

following number of terms generated, as_a minimum:

g=1 T, = number (1) Z 2

1
q=2 T, = number (2) 2 15
g=3 T3 = number (3) Z 18
q=4 T4 = number (4) 2 60
q=5 T5 = number (5) 2 70

2[largest integer in 41 + 2
following, roughly, a law v 2 [larg € 2]

Further, in the Taylor's series expansion of the perturbing

body motion, the next stage is to multiply each of these terms by

;2 and integrate. Each of the above terms again produces at least
A

Tq terms of its own; thus

2
>
Ttotal - (Tq)

4-23
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Therefore, both along the LP expansion {q > 1) and the Taylor Series
expansion (s > 0), the process "blows up'': a large number‘of terms

are produced which have to be cataloged and collated during integra-
tion. As has been pointed earlier, a very significant amount of

the analytician's time is spent in gathering and checking the results.
In the approach based on machine symbolic computation, once the pro-
gram has been checked against known results, the theory can be extended
to any order automatically, subject to time and memory limitations.
More important, the recitude of the results is assured, without

extensive rechecking.

4.7 The Choice of a Language

Due to the abovementioned "general" character of the field of
expressions, we are prevented from using a prepackaged symbolic inte-
gration program for the generation of the theory. A special system
for integration within said field was written[RFZ], in a suitable
programming language. The latter was chosen on the following con-

giderations:

-~ the language should "mateh" the character of the field

the program at hand uses a large amount of normal,

i

the language should be capable of numerical work

it should be generally available, for portability

Additional factors were: compact representation of elements and

functions; dynamic allocation of storage (space saving; growth of
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expression not always predictable); recursion, garbage collection

features; compact storage of lists in a canonical form (to recognize

common

or identical sub-~expressions); facilities for rational

arithmetic (accuracy, recognition of identities).

Among the languages examined for the task, were ASSEMBLER,

FORTRAN, ALGOL, PL/1, SAC, FORMULA ALGOL, LISP and FORMAC. FORMAC

[4='39]

was retained here for the following reasons:

it satisfied most of the above requirements

it is a general purpose algebraic manipulation language

it has built-in simplification and substitution procedures
through a canonical form of storage of expressions

it is embedded in PL/1, making the arithmetic, control,
recursion and dynamic features of PL~1 readily available.
PL/1 string storage is used for lists not being processes,
thereby counteracting the storage expenses of FORMAC (double
word at each node in a list)

space allocation can be céhtrolled by an intelligent use of
a 1is£—erasing instruction

the program is rveadable; it performs algebraic operatidns
as easily as arithmetic ones

it is widely available at most IBM scientific computer

installations
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4.8 Overview of Theory Gemnerator
Fig. 4-1 shows the main parts of the Theory Generator used to
generate the extended, modified Lidov's theory contained in what

follows.

Equation Generator: it accepts as input the order of the LP expansion

of the force term (i.e. the highest value taken on by i) and delivers
as output the variational equations for all six elements considered

here, with the force components internally generated.

Preprocessor: this minor routine scans the output of the Equation

Generator and collects terms which have an identical "operative' part.

The symbolic integration is performed on the equation
s
Cl(&t) flv)

with £(v) containing sin v, cos v and A terms, and Cl {not necessarily
numerical) a coefficient, and preprocessing assures that only the
"operative'' part (At)sf(v) is operated upon only once, with the Cl's

as coefficients.

Symbolic Integrator: this "core" program accepts as input the varia-
tional equations, and the order of the Taylor Series expansion. The
equations (to the order specified) are inteprated, and the integrals

are evaluated between the limits 0 and 2w in v, true anomaly

Simplifier: accepts the "new" output of the Symbolic Integrator, pro-

cesses it through a series of substitutions and simplifications,
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collects terms and generates, in an internally specified format, the

final theory.

The design of the package is such that each program is 2 "block",
written in FORMAC, independent of the other blocks, with communication
between blocks, or to the user, effected through punched cards or
files in punched card format stored in mass memory. Printouts of the
input, and printouts or storage of the outputs at each stage facilitate
the checking of the flow of information.

The final output will be the "theory', as a file or a set of

punched cards. In order to render the theory usable for the user's
numerical calculations, a small amount of further processing was re-
quired, more specifically:

- the replacement of integer fractions by their decimal equi-

valents:

- the definition of "user's variables' to replace common sub-
expressions appearing in the variation formulae for more
than one element, which will improve the speed of numerical

calculation using the theory.

The formulae obtained on the fimal result of the theory were
then incorporated in a PL/1 program, V@LER, described in Section 4.11.

As regards storage requirements for expressiloms, they are in-
herently high, since each operater, operated and associated pointer
occuples one or two wofds of storage. Formula manipulation systems

and user programs are also very cumbersome. Thus, in order to
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successfully execute any large program, it is of importance that space-
conserving and —-releasing techniques be used whenever possible. In

FORMAC, this is made possible by the commands

- SAVE, which stores unneeded expressions on disk;
- ATOMIZE, which erases a list and releases the corresponding

space

Furthermore, the compact string storage feature of PL/1 has been used
to a considerable extent to economically store lists not in immediate
use. ATOMIZE has also been used profusely, but SAVE has not been used
desirably, as iF is too expensive in time. Instead, at every stage,
as soom as an output is generated, it is stored on to a file, or
punched out, and the space is released by erasing the list. 1In the
trade-off between time and working storage, a penalty has often to

be paid in time, due to the memory space limitations of most digital
computer systems. This might take the form of integrating again a
previously integrated "operative part" of which the result had to be
outputted in a previous run, or of allowing the package to be segmented,
with the user interacting with the system between blocks. The
attached risk of error is decreased, however, by visual checks against

‘user—or system—created errors.

4.9 Details on Theory Generator
Each of the above parts is now briefly analyzed.
4.9.1 Equation Generator: Program FREQN
Fig. 4-2 gives a flow chart of the program, and Pef. [4-2]1 con-

tains a complete listing:;given the recursion formulae. the Legendre
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polynomials are generated up to one order higher than the required "¢
Théir derivatives are computed using the DERIV function of FORMAC, and
some common symbolic coefficients are generated in the order shown in
the last box of the flow chart.

As soon as it is generated, each differential equation is expanded.

‘s : . dz R
Each rate of variation of an element z with v, E;-w1ll be a series of
terms ? cifi(v), where as described before the ¢y are coefficients

i
and the fi(v) are "operative parts”. Each separate such term is punched

out or stored on file.

Along with the whole FORMAC system and service routines, the pro-
gram requires:

-~ 107 k bytes of memory omn an IBM 360

- for PORDER, & (or "g¢" = &), a CPU time of 7.5 minutes (CMU

IBM 360/67 TSS)

4.9.2 Preprocessor program COLLECT

The function of COLLECT, as mentioned above, is to gather terms
having identical operative parts. This is carried out separately
for each differential equation, in order to save time by avoiding re-
peated integration of identical operative parts. A listing is given

"in Mef. [4-21.

4,9.3 Symbolic Integrator
This "block" implements the recursive procedures of Section 4.6 ,
with the appropriate control, parsing and evaluation routines. A flow
chart of this block is given in Fig. 4-3.
I/0 ROUTINE: Procedure INPUT 1
wan

Data : -~ order "j" of Taylor's series expansion desired

- output of FREQN, for given g, one term at a time
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Function: the term is passed to the supervisor for integratiom

Qutput: the final integrated output is printed and punched
out, or stored on file

SUPERVISOR: Procedure HIGHORD

Input + term furnished by I/0 routine

Function: a) examines the terms to be integrated

b) if it has no operative part, it is returned to
the I/0 as a "constant"

c) if it has an operative part, the latter is isolated;
the Taylor index ,i, is updated if necessary; a call
is issued to the Pattern Recognizer

d) after completing the integration, it calls on the
Evaluator

e) it also monitors integration that might be needed

during the evaluation process

Qutput: result of completely evaluated result is passed back to the

I1/0 routine.

PATTERN RECOGNIZER: Procedure SICODEL, with its internal procedure

PATTERN.

Function: The term is examined to see if the relation of Equation { 4,6-9
is satisfied. If so, the integral is set to zerc and sent

back to the supervisof. If not, the exponents of "

sin v7,
"eos V", VA" are determined, and the appropriate integra-

tion procedure is used.
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Procedures for the integration:

DELDEL:

1

DELCOS5:

DELSIN:

DELSICO:

1

. (
for integrating JM dv JL dv
q 0,0,4

1

for integrating |L dv jL dv
Vsq 0,V,q

]

for integrating JH dv JL dv
u,q i1,0,9

for the integration of the generél term JL dv
u,v,q

Note that in Fig. 4.3, the diodes indicate direction of calls.

For instance, DELSIN can call on DELDEL, DELCOS or itself, but not on

DELSICO.

EVALUATOR: Procedure EVLUAT

Function:

its primary function is to substitute the limits 0
and 2n on v, in the integrated result. Further inte-
grals, of type Sm, which might have to be evaluated,
are obtained by calling internal routine SSVALU,

which may issue a call to TIVALU. It also determines
d

the derivative of the perturbing body terms E? E: 53 A
k

The TTVALU procedure integrates terms like

T = JRm—lM dv
m 11

. The

in which expression (4,6-1@is substituted for Rl

expression is carried out. Control is passed back to

the Evaluator for substitution of the limits.
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As can be seen, the Symbolic Integrator is fairly complex. In terms
of time for integration, it is very much effected by the "explosion"
of terms to be processed, specially along the Taylor Series Expansion

dimension, j. As an illustration

— Space occupied in core, including FORMAC and series routines: 161 K bytes.

- Time for AllM* = 1.5 minutes
A13M* = 28 minutes
Aleie = 9.5 minutes
AzzM* = 40 minutes
M* = 25 minutes
31
zi\.SlM?,c = 4.5 hours

This integration is by far the most time-consuming because of the
presence of term t %% , which necessitates going to
one order higher in (At}s than specified by the input data "j" (order

of Taylor Series expansion).

- Time for Ajpw = 3 minutes
Ayse = 11 minutes
Agoe = 8 minutes
Agye = 10 minutes
Ay1® = 28 minutes

A51® = 1.5 hours
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The above estimates are made on a TSS environment, and are not

actual CPU time (the system overhead may be as high as 50% under

peak load).

SIMPLIFIER:

Function:

Output:

Procedure SIMPTF6

to compress the result and print it out in "usable'
form. The set of simplifications is based on visual
examination of the integrated output. It maiﬁly
consists of substitution and removal of common fac-
tors. The final result is collected according to
the coefficients dependent on the perturbing bodies.
Consequently, an extremely compact form of the final
theory results, as compared to their volume prior

to the SIMPLIFIER. A listing of SIMPLF6 is given in

Pef, {4-21 .

a set of punched cards (or file) containing the theory
for each element, for each pair (ij). As mentioned
earlier in Section 4.8, two later subsequent steps
geared to efficient numerical computations are the
decimalization of fractions, and the labeling of

common sub—expressions.

Space requirements: about 100 K bytes, including FORMAC and

service routines.

Time requirements: they are quite significant. For example,

5 minutes

1l

Al3m

12 minutes

ﬂzzw
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Agjw = 2 minutes
Ayqw = 2.5 minutes
hgiw = 3.5 minutes

4.9.4 CExample
An example, going from raw data to final output, is given in
Pef. [4-2) | Times taken at each stage are also tabulated.
4.10 Results of the Theory: perturbations formulae
4,10.1 The formulae
In this section, all six osculating elements a, e, i, w, 2, M, are

tte « 11

tabulated for the following orders "ij" (Aij z is the "ij" change of

element z).
Ay Byo A3
Aoy P
Az
Ay

Ag

An important point to mention here is that the formulae were checked

against those of Lidov{u—l], for the first five elements and orders "I1",
fu=33]
12" and "21"; and against those obtained by hand by Roth - ', for the

first five elements and orders o1ty vzt vist, "21t, “227 and Y31". (The
sixth quantity he used as a variable is discussed in Section 4.3). The
agreement was complete, which gives us the highest degree of confidence
of the recitude of formulae éroduced by our theory generator.

For completeness, the secular perturbations of I, w and M, due to
the J20 term are also reproduced.

Notice that, in the formulae, names have been given to some common

sub-expressions. They may be repeated and should be strictly associated

with their definitions within the scope of the "ij" order in which they

appear at any moment.
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Formulae Ajjz

LP expansion 1st order ((f—) term)

k

ist order ("constant' term)

. Taylor expansion

Let 3 'u 3
k.a
¢ = Ak ] | § = " (pk) y
2 2
Bl = £1¢ » 62 = EZ¢ ’ BE] = £1£2¢- »
Bh = €2£3¢ » 85 = g1€3¢ » BG = ¢ ]
e =1-e2,
T = time at epoch {perigee), Tt = period of satellite
n = mean motion of satellite
Ayj2a = 0
' 1/2
Ayre = -15ndece Bj
* 3 ‘ .
Apl” = 3n"j7§'[(5-45)55 cos w - €By sin w]
: £
§
AR = 3r 172 [(5-4e)Bs sin w + eBy cos w]
£ (sin i)
- 1/2 .
Allm = 3né¢c (481 - 82 "Bs) - (COS 1)A119
3 1/2
Ay, = 3% (A1a) - € (A119(cos 1) + Apqw)
: +'% G[(8 + 12e + l5e2)85 ~(cont'd on next page)

*The coefficient § of A;31 is incorrectly printed as (a/pk)

instead Of.(a/pk)3 in Lidov's paper( 1%,
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-3(1+12e+22e2) B,

-21882]

AllT = -(AllM*)/n

Formulae Ajo2z

LP expansion' = lst order (tf;) term)

Taylor expansion = 2nd order ((At) term)

Let
k ,a.3 . .
5 = 7:-(;—) » [, = mean motion of perturbing body,
k S
ey = eccentricity of perturbing body
Bk‘ = true anomaly of perturbing body in its orbit,
o as
Gk = EEE = angular speed of perturbing body in its orbit,
£ dEl . dEz . dEs3
’ = 3a ! T
1p dek 2p dek 3p dek
3 dd 2 .
$ = Ak s ¢p = ao,] = -3Akek(51n Bk)

. 2 »

2 .
B2 = (2E282p0 + 4,08,
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By = [(E1Eap + E1p82)¢ + E1E20,16,
By = [(ExEap + EopEade + 5253¢p]ék

Bs = [(E1fsp + C1pEadé + E2Eat 10,
Bg = .8,

3 B
Alza = - 55 af[e(e+4)(82 - 3’)

+(2e” +he-1) (B1-B) ]

' 1 Be
Ajpe = - 3bet [z(e-ﬂp) (Bo—- T)

FE - 3)(81-82)]

2
Aypl = % 6 e+ --39 e - %](Bq cos w - Bgs sin w)
_ 9 2 32 2
Ayof = 3 8 T3 fe® + 5 e- 5](55 cos wt By sin w)
Aeow = =3 8 18 3 8 2 4
12!.0—-*5;('8'65 +§e-e—3)83

~A128(cos 1)
3 172
A12M* = E g (ﬂlza) - € / (élzﬂ(COS i) + ﬂlzm)

172 15 45
+i¢e _T(_z‘- 40e - e e?)B3

AlzT = —(Ale*)/n
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Formulae 4;3Z

Let

LP expansion = 1st order (C;EQ term)
k
Taylor expansion = 3rd order ((At)z.term)

¥ Py
2
- d Bk ,
Bk= ] 2 = angular acceleration of perturbing body
t
in its orbit.
. dek
Bk =3 - angular speed of perturbing body in its
orbit
. ..
1p dek * P2p dek ? 3p dsk
3
$ = 8
] = (- -3A2e sin 6
p dek k'k k
¢ S8 gp ? sin®e, - a0 0
op dez 1S St 6y 1 & €08 Oy



B2

Bs

By

Bs

B

2 2 2 2
[20(k, ) = £)) + 45,8, 0, + £,¢ 1o

ip'p 1'pp 'k

2 a
(26,8, 0 % £600,

o2 2 2 2
[2¢€E, — £, + 4EE, ¢+ £.¢ 16
2p 2 2p'p 2 x

PP

5w
+ (252€2p¢ + Ez¢p)9k

[2¢(£1p52p“ E1E5) + 2¢p(51€2p + E1p€2)

2 .
+ 51€2¢pp]9k + [(E185p + §1p€2)¢.+ 51£2¢p]0k

2 - + 2 +
[ ¢’(EEPE,%P 5253) ¢P(§2£3P Eapss)

. " . 2 L
6 + + B
*E S bpplO ¥ [ 5, £ 600 EE 818

[2¢ (g

tEES 1604 [(EE _+E ENG+EE G0
13 pp k 1 3P 1P 3 1 3P K

8
pp k

1P£3

+ 40

- + 2 +
p 5153) ¢p(€1£3p Elpﬁa)

Pk
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8138 .

hyae

Let C

Then,
AR

Ayai

Ay3w

2 .
a_ T e - A2 o2 3.2 8 43
651/2“83(43 Se+4e+ e+4)
1/2°
£ § 12 ¢ 26 5 2
—— = — =2 o - +
2a (A133)+2'u e [Be e
27 o _10 3 _ 2L i _ 3
Le? - 3 ed -5y et - ilfs
s (—2-‘-?"' +(n2-§§'ez+2e3+-e"‘+ﬁ+
Rk 3 32 4
1 2
B,E /2.(4 e +-%§ el + %— - %)
1 2 8
T
3 (sin 1)1-1_[() sin w + D cos w]
1 2
T . .
e G[Ccpswj-Ds'.lnw]
7—(A139.)COS]'.
5 10 /2 33 11
2 - == 2 2 2 .3 _ ==
+2“ {64¢ 32e+11:e+3e + e 3
P A Z
2V 4 32 16 3
2 2
il e & _ &,
+ BG( 4 e + g - 3 16 + l)]

440
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1

37 /2
A13M* = i ; (6133) - £ (A]aQ(COS i) + Alam)
2
§12 (o 39 _13 5 _26 111,
+5 oy [eB Gy~ g mt - g e — g e
“2 2
+ Be{'§'+ E(§ neE - 13)
2,7 2 _ 13, 13 3 13 4
tef(gnt - T g et v e
' 14 2
+ g3 02 - redzd - 200
2429 17 o _ 433 . 39
+e(64 4Tr2) 13e lﬁe}.]
Ay3T = —(A13M*)fn

Formulae 4,32

2
LP expansion =  2nd order ((?r-) term)
k
Taylor expansion = 1st order ( "constant" term)
B 4 4
k ,a
§ = — (= = A
ay = El¢ » s = £2¢ y g3 = 53¢ ’
3 3 : 2
Y1 = &9 ’ Yy = E2¢ 4 Y3 = EIE2¢’
2 2 2
vy = 61830, ys = E2839, Yg = Ex£1d,



ﬁz]la =

Ao € =

0
%3 née / [(7-6e)yy + EY2
' o
- @ - ;a)-g"ll

Letting, for brevity,

C =

we write,

An 18 =

Az 1i =

hp =

Ay T =

g3
[(7’—4&:)*{1+ + eyg - (7—35)7;]

2377

75 e 1

- %% wé E:;Z [C cos w - D sin w]
1 .
=G e - & - 2
2 e '\ 17T e

T 1/2
; (A21a) - £ (azlﬂ(cos i) + A21m)

- Rl

+ %? 78 [45eevg +(8+219+24e2+52e3)y1

% u1(8+369+24e2+37e3)]

(821M) /n

4-42

p— L] + )
B LT 51/2 oin 1) [C sin w + D cos ]

%
"""(13"9‘6) ]"Az 13-?. (COS 1)
20

— i ,
The term underlined is misprinted as y, in Lidov's paper
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Formulae AspZ

Let

12
1p

(=X )

a1
0‘.2‘
oy
Yl‘
Y2
Y3
Yu
Y5
Y6

Y7

2
LP expansion = 2nd order ((iLﬁ term)
: k

2nd order ((At) term)

]

Taylor expansion

3
— —— a = - - »
= " (Pk) y & Ak ’ ) Ahkek(SLn ek)
] dEl : ) d&z . . dE3
] ? 1] -
dek 2p dek 3p dek
d6

= ——= = angular speed of perturbing body in its orbit,

(€ ¢+ XML

¢+ HRLN

€t * RN .

(2 0+ E300

(38284 + 83608,

(28 &850 * EiE,p0 * £22,0 08,

2
1po3? T 818

2t £ + g2 + £2 8
(268, 8.0 825 o8 ¥ SR )%

s
(2 & b+ E1E0)0

2 Y + 228 6 )8
(268 8 8+ E2E 0+ 655,00

P
+ + ‘
[(glpszaa £1£2p£3 Elazaap)¢

+ 8
51€2€3¢p ] .



Agza =
Azze =
Letting

c =
D =
we have

Azzn =

Azzi =

75 I PO 2 4 21 3
16 S€Ye 3 (12 6e + 36e- + e?)

218 af 2

+2y (4 -

8 e + 12e2 + 6e3)]

[ =RY

615 o, 645

. 845
T4 s [(30e + 6s S T 64 )eY6

-3 3 2,21 3.3
+ al( e + 5 © + e’ + =)

255 25 '
tnGem T - e )

£
t Zee (A222)

255  _ 2 _ 15 3 _
(32 e - 25e , © S)Y7

6.

in 1) [C sin w + D cos w)

-185[C cos w - D sin w)

l=ti
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.8 3,3, 111 o _
Azzm Te{az( 8+28+64 e

+Y(._2._5_5.__£’_5_ _.6..1...5.&2

I3 .3 L
Mo > €~ 32 +2e-l_-15e)

é_‘ _ 2
-'T 64 Y2( 9 + 64e + 36e“)e]

= Apofi(cos 1)

1
T
A22M* = % ;(Azza) -€ lz(ﬁzgﬂ(cos i) + Azzw)

1/2 135
+ 8te © [y,e(20 + 7 e
=1 =28 2 3
+8 Y3(16 2 e + 80es + Z4e*)
+9u(-2.+§—.2e2—3—e3)]
2 2 16
AzzT = - AzzM*/n
Formulae A3 2z
r 3
LP expansion = j3rd order((;—) term)
‘ k
Taylor expansion = 1lst order ("constant” term)
Let
u 5 5
k ,a
§ = — (& =2
y (pk) ' ¢ Kk



L

2 2
a; = 614 s ap = E2¢ , a3 = §182¢
ay = 5253¢ , as = 1839 ag = ¢
. 3 2 2
By = E1d N By = 1820 By =-£182¢
: 3 M
By = £1E2¢ Bg = £2¢ ’
3 2
Y1 = &1839 Yo = E;828134,
2 . 3
va = £1E2834, vy = E2839
15313 = 0
A3je = l%§5n51/2e[3a3(2 + e?)
- 78,(2e2 + 1) - 7eBy]
Letting :
Y3 615 ‘2 135 15.%s
= [(630e? + 105)8 3 + = et + T
+ c&li e2 + 105 &% + 135) —]
£
D e -2 62 + 3, + (63002 + 105)Ig
[-Cg e 2 7%y © 8
Then, 1/2
Ay = O %;15727 (C sin w + D cos w]

1TE1/2

[C cos w = D sin &)

3

446
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Aalm = - Aalg(cos i)
1/2,525 735 2 1
+ wde (T[T eBy - g e285 - (540e” + 615)¢
+ (105e2 + '%-5')81
+ '];85-’(6\92 + 1)as - —'%i €Bs
45 o 1o
+ g © + 2 )9’-5]
AgM, 5z {A31a) -€ (A319(cos i) + Azqw)
05 2 3 b
+ G'n[-—-—"' 61(- + 8e + 21e? + 8ed + 20e™)
141
- Z ag (8 + 12e + 37e2 + 12e% + =g= e*)
155, 165 2y, + 22 0, (10 + 48e(1+e?)
—--32 £“Bg +—---—16 o (4 + 3e<)e 8 1
+ 337 2 4+ B7e "-l-}.. 1125 83 (1 + Se - 66“)]
a5 T = -

(3311"_1*) /n

Formulae A, 12

[}

b
4th order ((‘;") term)
k

LP expansion

|

Taylor expansion 1st order ('constant' term)

Let "B
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For economy of notations, only the following symbols will be

explicitly defined:

2 L [
ay =£&; ay = &1 , ag = £ »

2 : 4 6
Bl =& , Bz = &z » By =& »

Y1 = £18p,
Note that these symbols are not identical to, or consistent with

those used for Ay, 821, A31; that ¢ appears as a factor in the

products and that &, &,, E3, also appear explicitly.
Ayja =0

172
Ayje = mwbe / ¢ [- %%i 118, (2 + 23e2 + ge*)

2205
64

+ asky (1 + 16e2 + 16e")

+ 202 £ (8 + 2062 + 56t
64

2205

32

. : + a1B1E2(1 + 8e?)e

735
- 35 B182(2 + e¥)e

2205

Letting

Lt- 15 (8 + 2002 + 545

¢ = 535

+ 2205(2 + Te? + 2e%)% o)

- 6615(1 + 2e?)ea;R,

~{cont'd.)



D =
we have

Ayqi &=
by o =
Agi ].M* =

Y |

4-42

- 2205 (5 + 20e? + Be“)g to

_ 2205
2

ecBy, + 735(2 + ez)eBll

"“'[735(2 + e2)ey; - 2205eey By - 2205(1 + 2e%)eyay]

1r2
e !

(sin 1)

£5¢[C sin w + D cos w)

6w51/2£3¢[c cos w ~ D sin w]

%%g e /%y [-735(-2 + 3e2 + 5e*)E18y

2205 (-1 + 5e2)eE,Bs

- 1%2 (8 + 60e2 + 25e%)£,

~ 2205(1 + 3e2 - 10e*)£q0,8;

4 735 (2 + 21e? + 10e)E10,

2305(1 + 12e2 + Be*)Ejap) - (cos 1)4,30
1
% g (Ayya) - lz(ﬁqlﬂ(cos 1) + dyw)
+ 8¢ [- 9555(2 + e?)eek B
335 2 .85 .3
32 (64 + =5 e+320e‘ 5 e°)eg1By

{cont'd.)



%—2-(12 + 122e + 12022 + 335e? + 60e" + ﬁ%l e’}

545
- 63(3 -~ e 15e2 -20e3)egjayfy
105 2 3 4 5
- 32 (16 + 102e + 160e? + 477e° + 80e* + 166e”)E 0y
+ %}}—i (43e + 96e2 + 268e3 + 48e" + 136e> + —"Sﬁ)gluz
2 ¢ 3. _ & o _e3 4 945 _ 2835
5 16, ,945 2835 2
+(ge +'Ig)0—§- E1B2 - T Eja1B1d¢e ]
AHIT = - (AL}IM*)/H

Formulae for Agyz

LP expansion

Taylor expansion

With the same notation as

7
"
k
a=u—<ﬁ—> ,
Py
. 2
ay = E1 oy =
2
81 =E&2 By =
¥y = £182,

5th order

- L)
X
((rk) term)

1st order ("constant''term)

for A'-Ivl’ let

7

¢‘=Ak
4 6
£l » a3 = &)
b 6
Ea By = &y



AS 13

dgye

Letting

0

5“953/2¢[“ él%%i € Y182

+ 9456%% e? +-% ot 4 %)Y:ul
- 2079 €2 + %.eh N 22)3_%3_

2
+ 2335c§§~ + e,

— 10395¢2% + Lyvia18;] + s (851a)
4 32/ V19151 705 (851

4
{3865 (e? + %}s&lﬁg
+ 105(19_ e2 + 225 et + 525 + l)E-l—
8 *2 8 ' €
945 23 1
- ““ (-é- e2 + e + 3)5_151
9 %1

345 (45e2 + 80e% + 16ef + 2)6, —

693 o)
+ 0 (12062 + 240e% + 64eb + 5)E1~ ]

3465

2
845 (2 + e2)egyBy + o Eabae

- 32
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+ -1*%5; (20e2 + 5e" + 8)&,
+§-j—:~§§ (e + %)ef,zalﬂl
i 2 1
- 22'2 ('5'3' e2 + e?-i-z) Ezal
+ —3-%‘—3-5— (2e2 + 2e" + %)Eza?_]
we have
1/2
Ag i = br -z-s;—n"j—_-)— E3$[C sin w + D cos w]

.6511 = 6nell2£3¢[c cos w - D sin u)
1/2 10395 5
Agw = € 6n¢[—3-§'—(1 - 4e“)a)Bse
+ -———2225 (e2 + 1)Bse
+ —2%%—5- (10e? + 8e* - 7)a;8;
+ g—?- (75e2 + 20e* + 26)a,
#1995 10t 4 syan,
- %22 (160e2 + 48e" + 45)ay
+-§—g—3— (20e? + 8e'* + 5)uy
- %%:5' (10e2 + 5e* - 4)B,
15 35 2 _ 33 & _
+ 8 ( 2 e 8 e 7)
- 35

(cos 1) A5 10

4

52
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AgiM,, % T (4512) —61/2(A519(cos 1) + Agyw)
+ 8ng[- E;S (20e? + 5e* + 8)eB;
+-l%%22 (23e? + Be't + 2)eaB
- 5-}3;5 (1662 + 16e" + L)easf;
PUE o - B,
+ (25 +—1-]i-§-2e2+%5—e3+—6%%§-e‘++%5—65
+-%%§2 e® ‘E—)
—%5“(249 + 135e? + 80e 3+825 4
+ 24e® + 46e® + 6o,
+ 2%2 (3e + g%i 22 + 10e3 + 30e" + 3e5 + 7eb + “—0m2
- %’—% (12e + 45e2 + 40e3 + 120e" + 12e° + 38eb + g)da
- 531L975 (8e? + 1)e2aB,]
AsyT = - (AsM)/n

Formulae Az due to Oblateness

The only term in the oblateness potential considered in the

following formulae is J2.

R, 2
Leth = J2 (p)
where R = equatorial radius of earth
p = parameter of satellite orbit

= ae
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AR = - 3Kn(cos i)

Aw = BEKn(l - % sin?i)

M, = 3K g (1 + )3 (1 - 3 sin?i sinZw)
AT = - (&M, )/n

4,10.2 Auxiliary formulae relating to the perturbing body

It was explained earlier that all terms which depend on the position
of perturbing body "d" are calculated at a time, Crof? corresponding to
the occurrence of apogee along the unperturbed orbit.

Keplerian orbits are adopted as models for the sun and the moon. At

any time, the orbital elements are calculated using the mean elements at

epoch 1900 Jan 0.5 and their secular variation[k_qc}. The mean anomaly of

o

the perturbing body is similarly calculated. Gk, which is here the true

anomaly of the perturbing body in its orbit, is computed using the formulae
4l .

of elliptic expansions[ ]. G;, angular velocity, and Gk, angular accel-

eration, respectively,are calculated by taking the time derivatives of ek

in terms of the mean anomaly, the mean motion of the perturbing body being

known. The coordinates of the perturbing body in its orbit are also

e i r r
[ 1] for k cos 8, and X sin &, .
a Ik ay k

caleulated using relevant formulae

Let [Tr] be the transformation matrix from the (gk’ 6k’ in ) system
k
to the (ﬁ, 6, in) system of the satellirte. [Tr} is independent of Gk. If
Ey1, £, £3 are the derived director cosines of the unit to the perturbing

> > >
body in the (¥, Q, ln) system, then

r R r
£1 cos ek

T ,
[ r} sin 6

52_ k

E3J Y O

LY
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dg,
. 4 = ——l 1 =
and if, as in 4.10.1, Eip dak (i 1,2,3),
£y -sin Bk
Eo| = IT.] cos Bk
s 0
Similarly, with & =4 (g, 1, (i=1,2,3)
L) 1pp dek 1.p L) P Rt | H
Elpp =" E1
S2pp ~ 752
“3pp ~ %3

In other words; second and higher order derivatives of £&;, Z», &3, with

respect to €, can be written in terms of &€;,5,, E3 or Elp: Eops &3p-

k
4.10.3 Some comments

1t is readily apparent that at higher orders of the LP expansion, the
formulae became increasingly longer and more complex. The formulae might be
condensed a little by recognizing common subexpresgions in a hand translation
of the formulae. The chances of error, however,might in final analysis far
outweigh the improvement in computer time.

With regard to the perturbgtions in oblateness, note that they depend

on factor Wi
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2
R
2

1
Aw, AR ™ K=J2 N ?

o

and

i

® I 53

In orbits of large eccentricity,e is of the order of 0.1, and changes quite
significantly overtime. Thus oblateness perturbations are quite sensitive
to inaccuracies; the next section will illustrate this problem of small
divisor.

Finally, as long as any one plane, say the equator, has been used as
the same reference throughout, the perturbations on the angles, as well as
those on a and e , which are due to the sun, the moon or the oblatenesg,

respectively, can be summed up directly.
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4.11 Numeri;ai Verification of the Theory

The "closed form" theory describing the changes in the orbital
elements, z, to orders iR, t12", "i13't, "21", 22", which has been
obtained by non—numeric computation, is expressed by the formulae
of Section 4.10 and is implemented in program V@LER, was checked by
comparing 1ts predictions to those of high accuracy numerical inte-
gration programs (NASA's ITEM and C-MU EOLA-T). The present section
discusses those verifications and analyses the signifiecant gains

realized in computer time and the level of accuracy achieved.

4.11.i Program VLER

A program called VPLER (for eVolution of Orbital eLements in
high Eccentricity oRbits) has been written in PL/1, which uses the
theory of Section 4.10 to predict the evolution of orbits of satellites
perturbed by the gravitational effects of the sun, the moon and the
earths oblateness. A flow chart follows, which lists the names of
all procedures in the ﬁrogram. A brief descfiption of these is given
hereunder.
VOLER.

Frocedure VOLER is the main calling procedure. It initializes
structures and arrays, reads in data and calls all the major proce~

dures. Input and output are controlled by this procedure.

SUN.

Procedure SUN computes the position of the sun at any given time,
The model used is based on the mean elements of the sun at epoch 1900
Jan. 0.5 and their secular variation. The procedure calculates the
position of the sun in the equatorial system of the earth; and then

computes the array & of the projections of the unit vector to the sun

on the orbital axes of the satellite. The array gp, being the deriva-



Start
+
Read in Data
¥
Compute Initial
"Orbital Elements
+

Procedures
STABILITY  « .
+ VOLER
Compute Oblateness SUN
Perturbations MOON
' ¥ TALON
Compute Lunar COORD
Coefficients ORBIT
¥ ECLEQ
Compute Lunar EQORB
Perturbations ~ MOOXEQ
¥ o CALNDR
Compute Solar REDUCE
Coefficients PERTEBN
¥ © SUMMER
Compute Solar OBLATE
Perturbations UPDATE
+
Update Orbital yes
Elements

Orbit Success

Orbit Failed

" .. Flow Chart of Program VOLER
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tives of the array £ with respect to the true anomaly of the sun in

its orbit, is also computed.

MOON.
Procedure MOON performs the same functions as procedure
SUN but for the moon. The arrays £ and Ep, for the moon, are also

computed. The model for the moon is again based on epoch data at

1900 Jan. 0.5 and the mean secular variation of the elements.

TALON.

Procedure TALOR computes the longitudé of nodes of the satellite
6rbit, given the geocentric, equatorial latitude and longitude of the
perigeé, the direction of launch (north or south), the time, and the
sidereal time at Greenwich at 0.0 Hrs. U.T. on Jan. 1 of the year of
launch. The direction of launch, along with the latitude indicates
whether the satellite is approaching or leaving the ascending node, i.e.,
the intersection of the positive nodal line with the orbital plane.

It is always assumed that the satellite is injected into orbit at

perigee (or that reduction to perigee has been effected elsewhere).

CODRD.
Procedure COORD is called by procedures SUN and MOON. It computes
the coordinates of the perturbing body in its orbit, given its mean

anomaly and eccentricity, using formulae of elliptic expansioms.

ORBIT.

=5
Procedure ORBIT computes the components of the P, a and Tn axes
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of the orbit of the satellite in the geocentric equatorial system.

¥

ECLEQ, EQORB, MOONEQ.

Procedures ECLEQ, EQORB and MOONEQ transform co-ordinates from
one reference system to another. ECLEQ transforms from ecliptic to
equatorial; EQORB from equatorial to satellite orbital axes; MOONEQ

from the moon's plane to the equatorial system.

CALNDR.

Procedure CALNDR converts the time, day and month of launch to
an equivalent number of days since the beginning of the year of
launch. This procedure is also called when a satellite orbit decays;
it then calculates the day, month and year of the collapse of the

satellite given its lifetime.

REDUCE.
Procedure REDUCE normalizes angles to a value between 0° and

360°.

PERTRBN.

Procedure PERTRBN is the major procedure which contains all the
theoretical results, obtained as formulae and bresented in Chapter 4.
It caleculates the perturbations of the osculating elements of the

orbit over one orbital period.
SUMMER.
Procedure SUMMER is called by PERIRBN and merely sums up all the

perturbations of various orders.



OBLATE.
Procedure OBLATE computes the secular oblateness perturbations

due to the J term on the satellite orbit, using the formulae in

20
Chapter 4.

UPDATE.
Procedure UPDATE updates the orbital elements by adding the

total perturbations to their initial values.

The time requirements are: about 0.6 sec of CPU time (IBM

360/67, TSS, version 8.1) to compute over one orbital period. Thus
the computing time is inversely proportional to the orbital period.

As an example

Orbital Period CPU time/year of orbit
2.5 days 90 sec
4.0 days 55 sec
5.0 days _ 43 sec
6.0 days 37 sec

The above range corresponds to 0.92 < e < 0.95, with a low initial
perigee (hP é 200 km.).

This should be compared to the time taken for the digital inte-
gration of the equations of motion over one orbital period by ITEM,
EOLA-T... Typically, for the higher eccentricities, the CPU time

might be of the order of 10 to 20 minutes per year of orbital evolu=-

tion. Therefore, in a rough sense (since comparisons ought to be made
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on the same computer, using the same input /output procedures etc.), the
savings factor of VOLER is in the range of 10 to 60, the high factor
applying to larger eccentricity cases. This, obviously, is obtained at
a cost in accuracy, but this cost is often perfectly tolerable for
many purposes in missioﬁ anslysis.

In the following, a few significant examples are described. For

a more exhaustive treatment, the reader should refer to [4-2 ].

4.11.2 Type of orbits studied in the examples
Two major parameters characterize the exampleg studied
1) Ecéentricity:weconsider "large'" eccentricities defined here by
0.9 % e X 0.955
Note that, in the "11" Lidov's theory, it is shown that

a .3 1/2
A v (—) ee
11 (Pk)

and if we compute the ratios

(8e) (op. 9457 280,92 = 2+9

Therefore, it is seen that the perturbation increases by a

factor of about 3, even over the "small" range considered.

2) Inclination: both planetary-type orbits, i.e. having small in~
clination on the orbits of the perturbing body, and orbits quasi-
normal to the ecliptic (such as for IMP-G) will be considered,
with data considered by NASA for specific satellites, and in omne

case post-flight data of an actual satellite.

4-p 2
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EOLA-T. It is a numerical integration program, developed at
C-MU under this grant, using a method of variation of para-
meters (conventional osculating elements), with time as the
independent variable. Its detailed features are given in
Chapter 6. Again, for the purposes of the comparison, EQLA-T
was run only with the sun, the moon and oblateness (the latter

only where indicated).

4.11.4 Some examples treated

A,

High inclination orbit (IMP-G type orbit)

These are described best by the tables below comparing the re-
sults of VOLER with those of a high accuracy numerical integra-
tion, which can be characterized as follows

1A: "medium high" eccentricity v 0.93 with OBLATENESS

1B: "medium high" eccentricity * 0.93 without OBLATENESS

The agreement appears very good, with errors of the order of
2 days/year (0.55%) on the timing of perigee, 0.04%/year on

the eccentricity.



TABLE

Initial Orbital Data: INP-G - Example 1

1A
B-Per" _ 405. 62
a - o . 95,804.57
e = C 0.929191
i 86.8665
Q 105.8008
. -160.0022
w I
t, .* Year 1969
inj
Month,Day June 24
i Hour (UT) 17.96431

are used:

N : Orbit number

t : Time since injection (days)
R-Per; Distance to perigee'(Km)
H-Per: Height of perigee (Km)

a : Semi-major axis (Km)

e Eccentricity
iz Inclinaﬁion (deg)
@ : Longitude of nédes (deg)
w ¢ Argument of perigee (deg)
t : Time at injection into orbit at perigee

inj

1B

402.78

94,940.95

0.928577

86.8659
105.8045

~159.9953

1969
June 24

17.96448

In all tables in this chaptér, the following abbreviations

b6 4



TABLE

Coﬁparison of Nuwmerical Results (IMP-G — Example 1A)

B oD

- h4-65

*

Theory N.T. . Theory N.I

53 53 107 107
t 179.28 178.69 362.70 360.77
R~Per 8,128 8,123 9,447 9,430
H-Per 1,750 1,745 2,069 3,052
a 85,746 95,412 95,690 95,132

0.91511 0.91486 0.90128 0.90087
86.55 86.41  - 86.51 86.46
105.23 105.11 104,87 104.83
w 200.04 200.04 . 201.57 . 201,47
No lifetime figures available
#N.I.: Numerical Integratibn (Program ITEM)
TABLE
Comparison of Numerical Results (I¥P-G - FExample 1B}
*

Theory N.I. Theory N.I.
N 53 53 107 107
t 178.66 178.69 360.66 360.78
R=Per 7,745 7,763 7,970 7,968
H-Per 1,367 1,385 1,592 1,590
a 94,908 94,927 94,831 94,844
e 0.91840 0,91822 0.9159%6 0.91599
i 86.47 86.46 - 86.90 86.78
Q 105.79 105.78 106.14 106.06
A} 202.98 203.05 206.42 206.59
%

.N.I.: Numerical Integration (Program ITEM)

&
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Low Inclination orbits
The orbital inclination on the orbital planes of the perturbing

bodies is relatively low. Considering, as one example among

many listed in Ref. [4-2], a "very high" eccentricity orbit

such as that of IMP-I (e, = 084 3).

The comparison between the results of this theory, through

VOLER, and of a numerical integration are given graphically

(Fig4=4 to4-7 ) and also in the table hereunder. It is seen

that an accumulating error is present, which however does not

grow to be very large at the end of one year: about 1% in

the timing of perigee and in the distance of perigee due to the din-
accuracy in a and l—ez. Yet, the errors are not unduly

large, and the overall trend is sufficiently well captured at

a savings in computer time of the order of about 50.



H-Per

inj

TABLE _

Initial Orbital Data: IMP-I - Lxample

236.28
115,067.60
0.9425169
28.7763
216.0352

302.3777

Yeap..........:197l
Month,Day.........March 13

Hour (UT)..... «e. 16.00
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TABLE

Comparison of Numerical Results (IMP-T ~ Example )

H

R—-Per

- H~Perx

.
N.I.:

Jheory NI Theory N.I.
40 40 80 80
179.24 177.83  359.13  355.7
14,535 14,256 22,858 23,116
8,157 7,878 16,480 16,738
115,103 114,186 115,047 114,240
0.87372 0.87515 0.80131 0.79765
37.54 38.81 44 .34 43.36
193.18 - 193.13 184.78 186.48
324. 4 324.38 334.53 332.70

Numerical Integratidn (Program ITEM)
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4.12 Conclusions

The present chapter demonstrates the power of non-numeric computa-
tion to generate a closed-form theory (from perigee to perigee) for
high eccentricity orbits. An extended, modified Lidov's theory has
been developed and implemented in a numerical program VOLER, which
simply evaluates the values taken by the symbolic expressions obtained
after one satellite revolution. This method seems to be ideally suited
for calculations in a mission analysis, where requirements for ex-
tremely high accuracy might be treated for the low computer time and

ease of use of the present approach.
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TABLE 4.1

Comparison of Roth's Sixth "Element"”, Our Sixth

Element and Numerical Integration

Initial Orbital Period of Satellite = 5.04630 days

Orbit No. Time at Perigee (in days) by
Roth's Sixth ~ Our Sixth ~ EOLAT
- "Element" "Element"

1 5. 0468 4.9624 4.9629
5 25,2339 24.8073 24.8148
10 50. 4677 49. 6068 49. 6294
15 75.7015 74,3987 74. 4442
20 100.9354 - 99.4831 99. 2599
30 151. 4029 148.7276  148.8918
40 201, 8705 198. 2434 198.5261"
50 252. 3382 2477310 248.1615
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TABLE 4-2

Orders of Magnitude of Terms: LP and Taylor Expansion

v “"Extremely high” eccentricity

e =0.95, a/pk = 0. 342 for the moon, (wn/nk) =(.588

for the moon

q=1 4.0* 0.6  0.17
2 . 0.9 0.54  0.15
3 0.74  0.44  0.12
4 0.58 0.3
5 0.44

6  0.32



TABLE 4-3

Orders of Magnitudes of Terms: For the Sun

1

e =0.95, a/pk =0.88 X 10-3 for the sun, (7rn)/nk =0.05

Baj
j= 1 2
i=1 1.0 0.05
2 2.3 x107
TABLE 4-4

Ratio of Perturbations Due to the Sun and the Moon

K
M /I"" :—-S-LJ'- =3X‘105X81
. "sun’ "moon BB
m
= 2,43 % 107
/ = 3,844 x 10°/(1.5 x 100)
Tmoon’ Tsun 7" ' _
= 2.56x 10>

I.et R = ratio of the effects of sun and moon for the
q-th LP force component

Then, R, =2.43 x 107 x (2.56)3 x 10”7

= (,39

R, =2.43 = 107 x (2.5:5)4 x 10”12

=0, 001 etc.
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APPENDIX A

Effects of Earth's Oblateness

A satellite, in an orbit of high eccentricity, spends
a considerable portion of its orbital revolution quite far
away from the earth (on the apogee side of the orbit)., WNever-
theless,.the effects of the oblateness of the earth are signi-
ficant. The secular effects of the principal term, Jzg, ﬁas
the sole term considered. Note that J3p and subsequent terms
are at least of order 10_3 compared to JZD‘

It is well known that there are no secular variations
due to Jpg,over an unperturbed orbital period of the satellirte,
in tne semi-major axis, pccentricity and inclination. The
variations in the longitude of nodes and the argument of perigee
_are found in many books on celestial mechanics. The variatioﬁ
for the last element M,, however, is not given elsevhere in the
form presented here, to the author's knowledge; The integra-

tion.of this element is dealt with in detail.
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Ohlatencss: Potential and Yorce

For a spheroid (symmetry with respecct to polar axis),

the potential is given as

m
U= }i[l -5 3 (F—"?) P (s.in 8)) (A.1.1)
r m=2 wWex m .
where
T = distance from the center of mass of the earth
to the satellite
Jm' = numerical coefficients
Re = radius of the earth
Pm(sin §) = m—th Légéndre Polynomial in the argument (sin &)
" 4§ = 1atitudeiof the satellite
and ¢ = gravitationai constant of the earth.

The values of the first few constants Jﬁ

are.:
J, = 1082.86 + 0.1 x 10°°
I3 = =2.45 £ 0.07 x 107°
J, = -1.03%0.2x107°

Consider the m-th term

K
I ,
Um TS Pm(51n 8) {A.1.2)
where K =ulR

AL.2



Then, the force due to this term is

+ —
Fm—VUm
- K P V(E—) “n V(P ) " (A.1.3)
T T mm +1 L] ' MR
>, 1 . fm 4+ 13
v(rm+1) - Lot2 lr : (A.1.4)
where ir is the unit vector directed to the satellite.
T ) =% P
o = I o%, m’

L
" where x5 = unit vectors of the earth reference system (referred

t 1 h )
(o] elsevhere, as X Z
! ? o’ y"l ? o

- ' " 1 3 .
. . (Pm) = in Pm,axi {sin &) (A.1.5)
! d
where : Pm(z) =1 Pm(z)
Note that
sin 6 = (I * 3
T 3 -

Carrying out the algebra, Eq. (A.8.5) reduces to

N
] i IX3
p =-p BmE&T L p 2 (A.1.6)
m m T Y mY
Now,
-+ > > - A
= +
x, G, 1r)Tr (x3 Tt)It + (x3 in)fn (4.1.7)

e
where (Ir, lt, Tn) are the instantaneous orbital axes and

the parentheses indicate dot preducts.
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~ Also, from orbital geometry,

(;3 Tr) = gin § = sin 41 sin (wtv)

(;3 Tt) = gin 1 cos{u+tv)

(; i Y = cos i . (A.1.8)
3 n .

Substituting Egqs. (A.1.7) and (A.1.8) in Eq. (A.8.6) and

simplifying,

2 fme Lo + .
VPm = r[51n i cos(w'h))lt + CDSAl Tn] (4.4.9)

Substituting Egqs. (A.f.4) and (A.1.9) in Eq. (A.4.3),

- >
E VU
m m

K
m

rm+2

i

1
{(m+1)PmTr - Pm (sin i cos(m+v)it + cos i in)] (A.1.10)

. 1
where the argument of the LP, Pm and Pm’ is sin 8. The prime
denotes differentiation of Pm with respect to the argument.
-
The components of Fq along the instantaneous orbital axes can

be determined by taking the appropriate dot products. Thus,

F = 1) = K 1) A2 p
1 m 2 m
‘K
> m  om+2 ',
F2 = (Fm ft) = T ok A Pm sin i cos{whv)
P
- - KT' +2 T
F = (f i ) = -~ " P cos i (A.1.11)



where (L + e cos v}

==
I

and r p/A

Secular Variation in ©

3
a ___x

dv  pae(sin i) F3 sin(wtv) (A.1.12)

Substituting from Eq. (A. .11) for m=2, and integrating with
respect to v between the limits 0 and 2r .

3K

, . 2
(An)ob = - —7 7 cos 1
HP
. - K2 Re 2
Letting K=-—"5= J ) (A.1.13)
Up 2 P
(AQ)ob = -3¥ w(cos 1) (A.1.14)
Secular Variation in o
dw r? r . 4
S8 o2 [-F_+F - - (cos i) °— .
T " [ Fx F2 5 sin v] (cos 1) . {A.1,15)

Note that

F =F c¢cos v-=F sinwv
X 1 -2

Substituting from Eq: (A.1.11) for n=2, and integrating with

respect to v between the limits 0 and 2m ,

AL
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K?ﬂ
(Am)ob =3 — (18 giuzi - 12) - (cos i){(aR)

yup”

Substituting for Al from Fq. (A.J.13) and for K2 from Eq. (A.1.14),
and simplifying

(hw) , = 6Kn(L - g sin?i) (A.1.16)

Secular Variation in M,

M, -’ 3 nt da _1/2 .42 | dw
dv uaellz ?1 + 2 a2 dv  ® (cos 1 dv + dv)
where n = mean motion of satellite
‘ da Zrza
and _ ks —;E‘ (EFY + F2> (A.1.17)

This integration will be looked at term-by-term.

Substituting from Eq. (A.1.11) for n=2,

Term(l):__.z_E.B_.Fh__ﬁi.; EE'&A“P
Y2 7y B 1/2 t 2
pag ! yae P
= —6K51/2P A
2
1/2

= -3Ke = 4(3sin?i sin?(wtv) - 1)

for P = Pz(sin 8) and sin 8= sin i sin{wtv)
2



Thus, on integration,

Term (1} = - 3K€1/2 £2ﬂ A(%—sinzi -1
3 . .
-3 sinZi- cos 2(whv))dv
1/2
= =6Ke ﬁ(% sini - 1) (a.1.18)
MNext,
_ 3 nt da
Term (2) = 5 s dv
3 nt da 3 n{At) da
B 2 .
2 2adv 2 a dv (A.1.19)
where t = time measured from perigee
T
==+
S+ (a0)
t = period of satellite
and (at) = time measured from apogee

Since the secular variation in a is zero, the first

Lorm on the right—hand side of lqg. (A.1.19) drops out on inte-

grntlon;
2
r .
Term (2 = 3n(At) — (eF_ + F
ern (2) (be) I (e, + ¥ )
2
= QEE—'Lé%l (eF sin v + F A)
HE A 1 2
as F = Flsin v+ F, cos v (A §.20)

"AL7
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' InK .
. . Term (2) =.”g"(At)[§(3 sin?i sinz(w+v)—l)A2 sin v

A%
- 7{'Sinzi sin 2{wtv)] {(A.1.21)

integration of Eq. (A.1.21) will be written out in detail.

The generic form would be

ALY W)y = (At) JE(v)dy - é f%% (£ (v)dv)

1
where
p__ 1 _ 11 ' (A.1.22)

T a2 claz

i

]

d
a’;(ﬂt) =

Thus, (the 1imits, 0 and 27, are not marked for convenience)

- % J{at) Azsin v dy

- (At)a 1l
[ ( BGCIIA dv] .
T 3 I2ﬂ
='€(l +e) - i | ' {(A.1.23)

%% sin?i sinZw f(At) AZsin v cos2v  dv

2
38 Sin21 sig £ 7 (ae)s2(a2 - 24 + D)sin v dv

._(.];-i.?_l._(l+3e,6e2)

3e
2L 5in?i sin? w

2

+ (2 + 3e2)] (A-P-Zﬁ)
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2
%? sinzi cos®e F(at)A” sindv  dv

= 2? sin?i cos?w f(At)AZ sin v (l—coszv)dv

3
= 32 gini cos?e[MHEL (1-3e-de?) + —Tgm(-2417eM)] (A.1.29)
. 30e 30e°C,

§§ sin2i sin 2w S(4t)A% sin?v cos v dv

= 0 as (At) 1s odd about v=m

2
- sig 1 sin 2w f(at)ad (coszv_— sinZv)dv

=0

- gin?i cos 2w S(at)A3 sin v cos v dv

y
[T!l+§) (1-4e) + n2 (7&2"2)} (A, 1.26)
20e 20e"Cy

= - gin®i cos 2w

Putting Eqs. (A.. .23) to (A. .26) together, and simplifying,

3
Term (2) = 225[31"&-1(3 sin?i - 2)+ %(1+e) (1-3 sin?i sin®w)] (A.1.27)
Finally,
- 172
Term (3) = —¢ . (cos 1 (AR) + (Aw))
1/
- % ke | 2(sin2i - %} (A.1.28)



Then
(AM*)Ob = secular variation in M,due to Jyy

= Term (1) + Term (2) + Term (3)

Summing Eqs. (4.1.18), (A.1.27) and (A.1.28)

2
(ﬁM*)ob = —BKEI/ (3 sin%i - 2)
+ gKn 2 (3 sin?i - 2)
2 eCl
+ %Kﬂellz(B sin%i - 2)

3
-+ % nT%-(1+e) (1 - 3 sin?i sin2w)

1
Substituting'i% € /2 and nt = 2r ,
’ |

Il

' 3
(AM*)Db Q%E (1 +e) (1 - 3 sin?i sinw) (A.1.29)

Eag—

Features of AQ%

There are several interesting features in the final ex-
pression for the secular variation in M, over an orbital

period of the satellite, as given by Eq. (A.8.29). Firstly,

R IR |
=Jp o = 55 (A. 1.30)
pe ae

2
e

m |

Since a 1s relatively invariant in high eccentricity orbits,
Eq. (A.l.éO) shows that € (being of magnitude 0.1 ~ 0.2} acts

as a small divisor in (aM*)Ob {as also in (Aﬂ)ob and (Aw)ob).

¢

ALID
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The effect is rather proncunced in (AH*)ob b;cause g3 is pre-
sent while, in (AQ)Ob and (ﬁm)ob, g2 is present. Thus small
inaccura?ies in e, the eccentricity, are magnified.

Secondly, because of the presence of e3 in the denomina-
tor, the magnitude of (AM*)ob is rather large. This is con-
firmed by experimentai results as shown in Chapter 2.

Thirdly, the final exp?ession for &M, arises exclusively

" from Term (2) in the integration process (Eq. (A.1.27)). The
contributions of Term (1) (Eg. (A.1.18)) and Term (3)
{Eq. (A.1.28)) cancel with part of Eq. (A.1.27). Thus, the
"short-period" variations in the semi-major axis contribute

to the secular variation of .

Fourthly, the secular variation in M, is zero only when

1 - 3 sin?i sin‘w = 0

Secular Variation of Roth's Sixth FElement

From Eq. (2.21) of Chapter 2,

4

ar _ ¥ ___ [_ T :
e ue/ﬁﬁ'[ F, cos v + (1 + p)F2 sin v] {A:1.30)

Substituting from Eq. (A. .11) and after some manipulation

ar _ ke /2 [~3P. cod v <P, sin i si o+ 1
™ — , cos v =P, sin i sin v cos{w v}(1l 5)} (A.1.32)

Instead of transforming to E, the eccentric anomaly, as the in-

dependent variable, this expression will be integrated with



Al.12

respect to the true anomaly. The result in either case will
be the same so far as the secular variation over an orbit is
concerned. Detailing the integration'term—by~term, the limits

being assumed,

Term (1) = - f[g sin?i sin?{wtv)cos v - % cos vijdv (A.1.33)
=0 {A.1.33)
Term (2) = —,r% sin?i sin v sin 2(wtv)dv
= Q (A.4.34)
Term (3) = - g sin?i f %}[sin v sin é(m+v)]

Splitting Term (3) further,

Term (3.1) = sin 2w f 512 Y cos?v dv = 0
P 3
Term (3.2) = -sin 2w f512 2 dy = 0
. s 2
Term (3.3) = 2 cos 2w f 512 Y cos v dv
. 3
= 2 cos 2w[/S Czs dv - S EQ'E"‘X'dv]
= 2 cos Zm[l f {8=1) dv
e A
1 dv
- 3 T(e3-302430-1)5
e
Substituting
dv 2
f el *7%3- between the limits
£



and carrying out some gimplifications,

cos 2 1/2 2
Term (3.3) = - 2r ——35— (L - ¢ )
e
Summing Terms (3.1), (3.2) and (3.3},
3% 1/2 2 :
Term (3) = =3 sin?i cos 20 (I1-e ' 7). (A.1.35)

e .

Summing Eq. (A.1.33) to Eq. (A.{.35) and substituting in the

integration of Eq. (A.8.32),

3f/2 1/2 2

2 )  sin2i cos 2w (A.1.36)

(AT)Ob = 31K neq {1-€

This is the final expressicn for the secular variation of the

time at epoch,due to Jy3, as obtained from Roth's sixth element.

Notice that ¢ does not appear as a small divisor unlike in

Eq. (A.1.31). Thus, the magnitude of (AT)Ob would not be large:.

A1.13
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CHAPTER 5

Sincularity-free Methods, Using Repularization,

for Circular and Elliptic Orbits

5.1 Introduction and Motivation

Under this grant, singularity-free methods of orbit calculation,
using regularization, and applicable to both the circular {e=0) and
elliptical orbits, have been developed and comparatively studied,

in a Ph.D. thesis by 5.K. Bhate[s—l]

, as the Prin-
cipal Investigator's (M.L. Renard) advisee. TFor a much more detailed
treatment, the reader should refer to Ref. [5-1]. Although the ori-
ginal grant, in April 1968, had the title "Launch Window Analysis of
Highly Eccentric Orbits", it became readily apparent that for missions

such as that of IMP-H, methods of orbital and mission analysis for

large circular orbits were required, which should be insensitive to

the following singularities introduced by the choice of the standard

“osculating elements"

a, &, i’ Wy Q: T, (5-1"1)

a) e = 0, The orbit is exactly circular. Since perigee
strictly does not exist, the "argument of perigee” or
"time of passage at perigee' 1oée their meaning. Mathe-
matically, in the equations expressing the time-rate of
change of the osculating elements, (5.1-1), small or zero

divisors "e'" appear .

b) i = 0° or 180°. The orbit is exactly equatorial, posi-

grade or retrograde. Since the line of nodes strictly
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does not exist, the '"modal line'" is left undefined.

Mathematically, small or zero divisors "sin i" appear.

If the small, perturbing forces do not derive from a potential,
or if such forces might have to be encompassed by the theory, it
appears normal to write the equations expressing the time-variations

of the elements in Gaussian form. The problem of developing a varia-

tion of parameters scheme in which derivatives are expressed in terms

of perturbing forces was attempted by A.M. Garafalo[S—z], R.R. Vewton[srsl,

C.J. Cohen and E.C. Hubbard[S_q}. In all of these studies, however,
absence of any perturbations, which defeats the wvery purpose of the

[5-5]

method of wvariation of parameters. 8. Pines presented the first
"authentic® variation of parameters scheme, which used as osculating

elements the position and velocity vector at some instant, time being
and as the Independent variable. Basically, the same method was used

[5-6] f5~71 [5-8, 5-9]
, 5. Herrick s B Pithin "« Program NICE-T

later by P. Wong
developed under this grant at C-MU » and described in
Chapter 6 of this work, has been written based on Pitkin's version

of the variation of parameters, and will be compared to other methods
presented in this chapter.

In the following, non-singular elements such as the radius and
velocity vector at some epoch are combined with the use of differen-
tial transformation of the independent to result in the extremely
simple form for the unperturbed equations of motion; those of the

harmonic oscillater. 3Based on this unperturbed solution, a singular

free method of variation of parameters can be developed. This is the



object of Section 5.2. In Section 5.3, a modification of Brouwer's

n{5-10] which 1s

method of "perturbations in rectangular coordinates
applicable to circular orbits is developed, again starting from the
unperturbed solution mentioned before. In Section 5.4, the perturb-
ing forces due to a third gravitational body (such as the sun or the
moon) are expressed in terms of mixed Fourier—Chebychev series, for
which series computational algorithms are derived which maintain a
good accuracy by avoiding the problem of taking the differences of
large, close numbers. This leads to the development of a theory
which is semi-analytic, namely closed form integration is performed
on series of the type indicated, the coefficients of which are
aumbers "wvalid" over one orbit of the perturbed body {(the satellite).
In Section 5.5, a numerical comparison is made between the results
of the integration, in their various forms, of the system of differ-
ential equations. Two "benchmark' examples are considered: an orbit
of large eccentricity (e = 0.936227) with a period of 4.45 days, and
an essentially circular orbit (e = 0.8018212 x 10—5) having é period
of 12.05 days (orbital radius = 35 mean Earth radii).

For such "large circular” or "high eccentricity" orbits, it should
be stressed that:

- as compared to close-to—earth orbits, the oblateness effect
and atmospheric drag, as perturbing forces, are most of the time, or
even always, much smaller than those due to the gravitational pertur-
bations of the sun and the moon.

-~ as compared to classical problems of Celestial Mechanics

dealing with natural satellites: the perturbing forces considered in



these problems are small either because of the large distances involved,
compared to the orbital semi-major axis (in the case of the moon) or
on account of the small ratio of the masses (the largest for Jupiter
but still < 10-3). Typically, the ratio of the magnitude of the per-
turbing force to that of the central force is largest in the case of
" Mars perturbed by Jupiter, and is .763 x 10-—5 at most.

To fix the ideas, the relative order of magnitudes of the per-—
turbing forces, with the central force as a norm, are, along large

circular orbits:

=27
Atmospheric pressure < 10
P -16
Radiation pressure < 10
Oblateness <1077
Perturbation due to the sun = 10 2
—2

Perturbation due to the moon ~ 10

Now, in studying orbits, the main motivation might be:

1) High accuracy computation of ephemerides: for this, numerical

integration is well suited and can be carried out to a very high
degree of precision.

2) Determination of the evolution of the orbital elements, for mission

analysis purposes: Here, since the requirement on accuracy is re-
laxed, it might be allowéd to linearly superpose perturbations, at

least over one orbit of the satellite, in spite of the significant

magnitude of some of the forces listed above. One might then

. 5-10 -
consider to use close—earth satellite theories[ to 5 15]. Lunar
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and planetary theories would have to be excluded if the perturbing
function is expanded in powers of the inclination as a small
parameter, and if the theory is therefore unsuitable for the large
inclination commonly encountered for artificial satellites. A

[5-16] theory for the computation

notable exception is Tisserand's
of Pallas perturbed by Jupiter, in which the perturbing function

is expanded in powers of both sin2 %-and c052 %u

Orbit classification: Here the emphasis is on gualitatively

classifying orbits, such as being able to say if they are of

circulatory (line of apsides rotates monotonously) or oscillatory

[5-17]

(line of apsides oscillates between limits) nature To this

effect, some sort of development in series (Legendre Polynomials

[5-17] '[5—18,5—19])

and Taylor series , Fourier series in M and ¥
is considered and some "main' contribution is analyzed to define a

qualitative behavior of classes of orbits.

The present chapter strive for the development of methods of rela-

tively moderate accuracy and concentrates on this objective along the

lines described in item 2).

. As a last remark in this introduction, we should mention that we

initially proposed, in 1969, that the study of large circular geocentric

orbits be a part of the material studied under this grant

5-20
L 1, for

orbits having a ratio of the orbital semi-major axis to the semi-major

axis of the moon up to about

3 along the following lines of effort:
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- Regularization (for instance, Xustaanheime-Stiefel's trans-
formation)

— (Closed form theories.

These are indeed, the directing lines taken in this chapter. However,
in view of the magnitude of the dynamical perturbations, the "analyti-
cal" integration of the equations of motion was carried out with
numerical coefficients (as opposed to literal coefficients) inside

the computer program and its result evaluated to give the desired
output. Hence the name "semi-analytic integration" was thought to be

more appropriate.

5.2 Unperturbed and perturbed two-body motion
5.2.1 Development of the linear equations for the unperturbed problem
In its classical form, the unperturbed two-body problem, referred

to the center of the Earth, say, is described by the non-linear differ-—

ential equations
% + uzg- =0 (5.2-1)

T
in which ; is the geocentric vector to the perturbed body, and u= k2

Y or p v kZ M if a

+ if << .
(Mearth msatellite = earth Boatellite earth

"small" magnitude compared

perturbing force ﬁ, assumed to be always of
to the magnitude of the central force, is present, {5.2-1) has r.h. side
o
F.

Using the well-known Sundman's transformation

|ﬁ-

d
E (5-2""2)

0,
-

It
=
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leading to

Equation (5.2-1) from which the consideration of collision orbits is

-1
excluded (thus r # 0), will read after multiplication by 2y,

=0 (5.2-3)

which is still non-linear. Now, in two-body motion with an inverse-
. . -+ > > 1
square attractive law of forces, and with ¢ = r Ar = constant vector

(' are derivatives with respect to time)

-1 - d -+t -+
r A c = dt(r A )
> >t
- WEEE -T Y
—_— — u —
3 r
?' -+ ?' d T
-, 2 _r
=wC-r )= Fra
Therefore, upon integration,
.
ef =T AT AT) -u T (5.2-4)
Let A be the Laplace vector
-
- e > T 1> > 1
A = ==P=-=->=9¢ Mr A L2
Aot y : (r Ax) (5.2-5)

It is a constant in the unperturbed motion. So is the energy inte-

gral (a > 0 for elliptic orbits)



> ¥ 1 4 d

A= I- —5-*§ A (+ A'*E
r r< dx dx
1 df dr 2

o = "7 LT T

> -
or + A = - 2r + 1 (é§--9§-
r 2dx d
-
fo L
r dx

-> >
r,ldrgdr
T gx dx

Equation (5.2-3) is rewritten

MR+

5-8

(5.2-6)

(5.2-7)

(5.2-8)

(5.2-9)

(5.2-10)

(5.2-11)
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Defining a new, auxiliary vector which is constant in the unperturbed

motion,
. .
B oz aA (5.2-12)
def
we obtain
d2r + >
SEX o a(r -8B =0 , (5.2-13)

dx
>
A variable z is defined as

->
de¥—§=}’-aA (5.2-14)

U]

and the final system of uncoupled, constant coefficient system of

linear differential equations reads

=0 ' (5.2~15)

Its solutiom is, in terms of the z variable

~ + o~
> > x 4z . x
z =z, cos j> + Va (dx)o sin /=
AN RO SR N
dx Va Va dx’ o Va
+
in which ?0, Ci%)oare the initial conditions, given at x = 0. In terms
X
S
of r .
dr x
ToB 4+ (2 -3 £ ¢S sin F~
r =38+ (r, = B)cos Ja +a dx e Ja
N (5.2-17)
- ~
QE = - o8 sin §_+ (éz) cos =
d'\ l/_a— ‘/é' dx o \/a
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(5.2-17) is the solution of the unperturbed two-body problem in terms

of independent variable %X. The time t corresponding to any x, is

~

if £t = t, for X = Ko

i

o,
;;—a-
t = J Ir] dx + to (5.2-18)
Vil
0

Looking at Equation {5.2-17), it appears natural to introduce a new
variable J% . However, since a is not a constant in the perturbed
motion, the introduction of the new variable "E" is done in differ-
ential form:

dE = (5.2-19)

by 18

In the unperturbed problem, considering that a is a comstant of mo-

tion, by integrating (5.2~19), we obtain

~

with E= 0 for x =0 (5.2-20)

s
1l
N

whereas for the perturbed problem

E
X = J/Z dE with x = 0 for E = 0 (5.2-21)
0

With this new wariable,

4_
E

(=N

da L 4 (5.2-22)



5-11

In the unperturbed problem, %% is zero. Thus Equations (5.2-3),

(5.2-11) and (5.2-15) become

.
&x

dr dr

T
4 g — = . 22
5 E 4B a 0 (5 3)

2
a@r 7.3 (5.2-24)

=0 (5.2-26)

Therefore, in variable "E'" and for the unperturbed problenm,
-> - d+
z =2, cos E + (E% sin E
Q

(5.2-27)

dz -* d+
£ _ . z, sin E + (—ED cos E
dE »

dE

-5

F =3+ (;D - %) cos E + C%%% sin B

> >
dr _ _ 2 . dr
5 - (r, ﬁ) sin E + (dE , cos E

To obtain the differential equation satisfied by the scalar r, the

identity

is differentiated twice with respect to E

N
L4 2, dc

dE dE
> a% | dr a’ dr, 2
R IR R R R o))

dp’ ~ ¥ gp? | 4B



5-12

From Equation (5.2-23)

- > 2
2 & E e dn?
4g2 't dE’dE dE
Substituting, and dividing by r,
d’r __,, 1diy (5.2~29)
dEz r"dE
From (5.2-9)
Lol g & _2_ 1 df dr 2
r?dx dx ¥ ar?dE dE r
we obtain in Equation (5.2-29)
-
1.dr _
f(dE = aro + 2a = r + 2a
Hence
2
g—§-+ r—-—a=20 (5.2-30)
dE
or with =z = r - a,
def
42z _
d—E§-+ z =0 (5.2-31)

the solutions of which are

z = cl gin E + c2 cos E

(5.2-32)
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and
_ _ dr.
r=ate, sin £ + c, cos E = a + (ro—a)cos E +(dE)o sin E
-QE = ¢y cos E - ¢cp sin E ©-2733)
dE 1 2 n
with ¢

1+ S, constants equal to

_dr
CI—(dEo

Note that the above equations (5.2-32), (5.2-33) will still hold true
for a perturbed problem, if a, r. and C%%) are osculating parameters
of the orbit at any given time.

The equation relating time to E, in the unperturbed problem, is

E
J/a r .
t-t, = a Jn dE with t = tg for E=0

0
or
3/
a2 [E+ - Dcos B+ 265 (1 - cos B)]  (5.2-34)
‘/E a a

t -t =

If the reference (t = to; E = 0) is the perigee of the unperturbed orbit,
then,

a(l - eE)

) Y

dr -
(dEo_O
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Therefore, in (5.2-34),

3/

t =t = JE [E - e sin E] (5.2-35)

which is the classical form of Kepler's equation of time, E being the
"eccentric anomaly". (5.2-34) this appears as a more general equa-
tion, or generalized equation of time, with E playing the role of a

generalized eccentric anomaly.

5.2.2 Differential equations in the perturbed problem
If a perturbing force ¥ exists, Equatiom (5.2-3) written with X

as the independent variable will read

2> -+ > >
dr 1 dr ,dr T ? 2
—_ - = == —== + - = — ¥ 5.2'3_
2T (dx) i ( 6)

Similarly, with E as independent variable, and taking Equation (5.2-22)

into account,

2 -+ > > —
dr 1dr dr r F 2 1 da dr
52 rdE QB tT¥rTuTt®t I aE aE (5.2-37)
or
2, > >
dr > _3_F¥ 2 1 dadr
e +r-B8B= X2t 00 E en (5.2-38)

5.2.3 TFormulation of the variation of parameters method, with E as
independent variable
5.2.3.1 Variational equations
Following Lagranze's method of variation of consténts, the solution

to the perturhed nroblem is written as
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+
; = + (r0 - B)cos E + ( ) sin E
(5.2- 39)
d+ +
r 3 — -
a5 (r° §)51n E + (dE)uCOS E

Tf at the instant considered, i.e. for the value of E considered,
+

-
the perturbations were removed, vectors B, rO and ( ) would be
constants of the motion in the unperturbed motion that would ensue.
: +

However, due to the continuing action of F B, ro and ( ) will be func-

tions of E, the variations of which are now determined.

Taking the derivative of r in Equation (5,2-39),

3

d °
ar | —(1 cos E) + 5=* cos E + ——(( ) sin B (Z.-B)sin E

dE

( ) cos E (5.2- 40)

Subtracting the second equation of (5.2-39) from (5.2-40), we obtain

-

d¥, dr
(1 - cos E) + g °o8 E + ——(C——) )sin E =0 (5.2-41)

. . T+ 2 .
The 1.h. side of Equation (5.2-36) is equal to EE§-+ r — B, thus in the

perturbed problem

_in.+ F -3 = QE-sin E - d¥° sin E +g—(fgz) Jcos E
dE2 dE dE dE*dE"°
> >
_F o, 1l dadr
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In terms of Ef& and g—(('g-l:-) }, this is rewritten
€ dE dE " ‘dE’ °”? s ¢
- >
dr, a ,dr F 4B
-_ci [§  e—m——r — —_— = - 2 ] i N
sin E 15 + cos E dE((dE)°) ” r<a i sin E
(5.2-42)
2a dE dE
wy
. . . To
Solving (5.2-41) and (5.2-42) for the six-vector 4 dr , ylelds
dE| (35 )
[+]
'3
-
4 To cos E -sin E - EE-(l—cos E)
a8 | dr.| T x (5.2-43)
(EE sin E cos E -d—_ﬁsinE+(E)rza+}—-§-3£
dE M 2a dE dE
or explicitly
&, T o2 1 da dr dB
s - _ L . _ = 4da db . ab _
e y r a sin E >3 dE dE S E + 15 {1 - cos E)
> e - -
4 _F o 1 dadf 4
dE((dE)°) . r*a cos E + %a dm dE ©°% E °r sin E

This system of differential equatioms of sixth order defines the varia-

tion of parameters scheme, describing the variation with E of the oscu—
Y. 4
r . ,
lating elements r°’CE§&) , integrals of the unperturbed motion.

o

-
To be complete, there remains to compute %%, %%-,

da _ da dt
4%  dt dE



Now, by definition

_1_1dr dr_ 2
a 1 de dt T
1 da_2dr._ 4% 2 dr
a? dt  wdt g¢2 L2 dt
=gd_;_.(§_u§__)+;2_d_r
u dt 3 2 dt
2y df_ 2 dr 2 dr
I dt 2 dt 2 dt
da _ 2a F QES
dt u dt
Thus
E.t;—-—-—zaz(_ﬁ--ﬁ)
dE u dE
. dB . e
To obtaln'a€ ; 8ince by definition
- -
+* _r ldr , >  dr
A Ty dtiﬁ(r e
> >
B =ah
.
db _day . _da
dt dt dt
gk _ 14 % dr_1d%,; ,dF 1dr,
dt r dt 2.dt g2 - de’ uodt

5~17

(5.2-45)

(5.2-46)
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2
%—% is substituted from (5.2-1) and triple products are expanded,
L
-+ -+ ->
da _1dr Q.F_+.?__.d;¥.__]:_@.£ _(F—*)dr
dt r dt 2 dt 2 dt dt
1> div>1ldr . 2>, 12> g;
Finally,
- > - >
dA _ 1. Z.oydr 2 dryx o, diya -
= LlE DT+ 6 PF - 20 DT (5.2-47)
dB
To compute ag °
- + > —>- > o>
dB F dr +.dr -+ dr . F
db _ F . _ F o, 2ydr dr, ¥ 048
dE 2a(u )(aA r) + a( L + a(r 'y (5.2 )]
and
- > -+ = >
dB F dr,, ” = F.2 dr N
= = - . = - = == -49
I 2&(u dE)(aA t) + a(u TV + a(r a8 ] (5.2-43)
Equation (5.2-43) together with Equations (5.2-46) and (5.2-49)

are a complete formulation of the method of variation of parameters in

-
elements tq, ,» with E as independent variable

(dE)
5.2.3.2 Equation of time

Using equation

E
t - t, =| ¥Ya
0

dE (t = t, for E = 0) (5.2-50)

- T
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in which necessarily r is given by

r=a+(r°—a)cosE+(§-§~)°sinE

as in (5.2-33), but this time with the elements a, r., (g-%)

functions of E. Substituting in (5.2- 50,

E
t—t°=J //:% [a+r°—a)cosE+( )s:.nE]dE

0

- 3 3
Yu (t—-ty) = a /2E - E %—E(a /Z)dE +/a(r,~a)sin E

O S—,
=3

E
E
—J sinEg-E-{‘/;( o—a)} dE - /a( ) cos E}O
0
E
+ J {(dr) va)} cos E dE
g
orY
32 | E £(8)
t-to = = [E+ G- Dsin E + 25, (1 - cos B)] + J v E
0
— dr
/a ((dE) Yo — /a(E—E— . (5.2-51)
Vi
with
(@) = - B4 2y gtn g 4 [alroma)] + cos B 60,1 (5.2-52)

v
Written in the form of (5.2-51), and by comparison with Equation (5.2-34)

for the unperturbed motion, it can be seen that the "change in time' is

given by the last two terms
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E
tperturbed - tunperturbed - fégg-dE +
u
0
- ,dr — dr
Yao (G e)e — Valgm)o (5.2~ 53

o

By observation of Equation (5.2-53, it can be seen that iIn order to
know the perturbed time, one more integration in E is needed (the

order of the system being seven). This feature is equivalent to that
of a double integration, a step which cannot be avoided at some point

-2}
as commented upon by J. Kovalevsky[s 1

5.2.3.3 An approximate variation of parameters scheme: a approximately
constant
Tf the nature of forces is such that along the perturbed orbit

2

H

¥ dr o -
F. at n 0 (5-2 5[0

|

1

3
tlm

is approximately zero (i.e. always much smaller than the time-rate

of the other elements), or if, in the absence of a priori knowledge of

da

dt

such smallness of , numerical experiments have shown that such was
the case in the problem at hand, a simplified scheme can be developed
along the lines described in what follows. Extreme caution has to

be exercised, however, in making sure that (5.2-54) holds sufficiently

well.

Let E be defined here as in the unperturbed problem:

&
o 118
Sl'l\hbh
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Thus

E
dx Ja + 1 £ da

)

dE 2 Va dE
- 1 Eda
= Ya Q+ 2 a dE)
a_ . 1 d_
dx — . . 1Eda dE
[1/a(l+-éa E)]
. . . da/2a . '
The simplification made is that dE/ 2E is always very small compared
to unity, thus
dE _ 1
ax Ve
With this simplificatiomn, 1.&. %%- neglected in the differential

transformation, the equations for the perturbed motion as given in

Section 5.2.3.1 simply reduces to

and the Equation (5.2-44) for the variation of the parameters

become |

dr a8 ¥

—=2 = (1L - cos E)EE - (; r?a) sin E

dl

E (5.2-55)

- -

d L, , dB | F

-&’E[(EE")O]=—81REEE+J r2a cos E

The relation between time and E is given by (5.2- 34.

5.2.4 TFormulation of the method of variation of parameters, with
time as independent variable.
The solutions developed for the unperturbed or perturbed motion,

with E as independent variable, are now transformed to the case where
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t (time) is the independent variable.

5.2.4 Unperturbed motion

One wishes to obtain

-
) = £(0) To + e D)
(5.2:56)
> -
P
dr =fr, tg (dt o

' designating now derivatives with respect to t. Since, from

Equation (5.2-38),

>
>

dr
r = % + (?o - ﬁ) cos E + (dE? sin E
=]

Now

wH
i

constant in unperturbed motion

x EE QQEQ g (r éﬁgﬂz
u dt | dt’dt

r
a =- =
r

-
+ .1 2 1 ar ,dr.dr
ar(r r + a) + u dt)dt

il

> . _ @&, 8, dr. 4f
(1= 20+ == G, D,

-

Using the relation dt = dE —— ,

ro/a | Ja dr dr
e {gin E + ?ﬁ (az)o(l—cos E)}QEE)O

5+ - a
r=r, {1~ " (1 - cos E)} +

Therefore, in Equations (5.2-56),

Hh
]

a
1- ;:—(l - cos E)

5?_‘53 (sin E +% (%E—)D(l ~ cos E) | (5.257 )

sy}
il



Computing the time-derivatives:

€ a1 A
it - T, sin E - .
£f=- /Z./z sin E
rr,
. — Ja
g = ro_/a {cos E + == dr, snE)—-}‘l—-
/u /u dt rs/;
= £°—(cosE+-’/—E(d—r)n sin E)
T Ju dt

To summarize,

E = _Y/_Mél_ sin E

T T,

Ja

= —h{cos E + == (dr)D sin E)
yu

o
t
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(5.2-58)

From these expressions, an algorithm can be implemented, which for a

given value of t, will require, to obtain the corresponding value of

E, to solve the transcendental generalized Kedl.er equation (5.2-34) by

gome numerical methed.

5.2.4.2 Perturbed motiecn

Again the perturbed solution is written in the form

+

r(t) = f To + g( )o
> >
dr _ .2 cdr
dt = f Yo + g(dt)o

(5.259)
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_)-. .
> dr P
where ro, (E)" are now functions of time, and f, g, £, g are func-

tions given in 5.4.2.

r /a

From Equations (5.2-44) and dt = dE il and Equation (5.2-49),
>
dB da
{(5.2-45) for It ’ dc
a7, ¥ . 1 da _dr . aB
at = " r/a sin E o/ dt r at sin B + clt(1 cos E)
(5.2-60)
-+ > - > > >
& _ LA T2 ok Dl ar, ¥
e 2{:1(u dt)(aA Ty + a(u r)dt + alr dt) y
da a2 > d;;
22 _ 92 7 . ==
dt M t
d—)-
Finally, (El—;-)o ig needed. From Equation (5.2~ 49,
TR -4l D
aErqE’° T dE-Nat’e /p
- —
Jddny rrea, dry drofs, T, de
dt"dt’° " dt’°"dE 4 @ 2/a7 dt
r a ,.4dv . 1 4 1 d
_rrea & do ar, L _dY¥e 4 da
! [dt((dt)"] + (dt)‘“(ro dt 2a dt)]
and
- > >
ddry o _ fu 4B >, 1 dadrr
Gl = Tom a s B oy ac ary, ¢os B
(5.2-61
1 d 1 da. dr
4 _dr, . 1 _da, Or
B (Za dt + 2a dt) (dt)°

given the form (5.2-59) to the solution of the perturbed problem, Equa-

tions (5.2-60) and (5.2-61) define the equations for the variations
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+
> dr . . . .
of parameters Tg, QEE)O with time as the independent variable.

This form of the method of variation of parameters is implemented

in program NICE-T, described in Chapter 6.

5.2.5 Brief Comments

To conclude this section, a few comments are made on other
gimilar approaches taken by other workers. In his "Theory of Orbits",
Szebehely gives a treatment of regularization, with an extensive
bibliography. The attention is focused on the restricted three-body
problem, two-body problem and the collision orbits (one-dimensional
problem). In this, the lLevi-Civita transformation, or the use of
complex variables, is possible. A recent extension of the Levi-
Civita transformation to 4-dimensional space (its extenslon to three-
dimensional space not being possible), by Kustaanheimo and Etiefel

) 522
(KS transformation) is used by Stiefeland Scheifele[ ]

, with the
Same independent variable as was used here, A disadvantage of using
the KS transformation is that the degree of the differential equa-
tion increases to'Egg, whereas the present treatment uses only six
differential equations, plus one additional one to go back to physi-
cal time, in a derivation which is thought to be simple and straight-
forward. The method of variation of parameters developed by Stiefel
and Scheifele[5_22] s ten parameters, with the equations of
constraints used as numerical checks during integration. Furthermore,
and this is of pérticular importance in view of our goal to develop
methods suitable also for circular orbits, Stiefeland Scheifele's

5=22 .
parameters[ ] make reference to perigee and as such are not suitable
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[5-3]

for circular orbits. Finally, as compared to Pitkin's develop—

ment of the method of variation of parameters with time as the inde-
pendent variable using the perturbative operator technique, the

method developed here is thought to be much more straightforward.

5.3 A Modification of Brouwer's Method of Perturbations in Rectangular

Coordinates, Applicable to Circular Orbits.

5.3.1 Intreduction

-2
In 1944, D. Brouwer[5 3] published a method of calculating per-—

turbations in rectangular coordinates, which is described in Brouwer

5204
nl ] as being apart

and Clemence '"Methods of Celestial Mechanics
from Hansen's method, the only other ome that "need to be considered
seriously for application where the numerical values of the elements
are used from the start, and where a precision compatible to that of
observation is desired." The method was applied by M.S. Davis[s—zsl
to compute the motion of Eunicke (first order). Recently, S5.A.

5-26
[ ] developed a second-order planetary theory using this method.

Hamid
Tn Brouwer's method, two main parts exist: the first one is to
set up the differential equations of motion, the second one to integrate
a suitable representation of the perturbing potential or forces, in
expressions which are easily integrable.
In order to assess Brouwer's method as regards to formulation of

the differential equation, a comparison is made in Chapter 6 between

Brouwer's approach and the classical variation of parameters method
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method using the same package for computing the forces and identical
algorithms for the integration. On this very limited sample, it appears

that a slight advantage might exist for Brouwer's method.

5.3.2 Differential equations in a form valid alsc for circular orbits.
Since Brouwer's method was using a reference orbit given in

Delaunay's variables, it cannot be used for circular orbits. A new

method is developed on the basis of the equations of Section 5.2,

namely the use of elements ?o, ?o with E as the independent variable.
In Section 5.2, the variable

> > >
z =1t - B

was introduced. In the unperturbed case, it satisfied the equation

2
d2o 47, =0 (5.3-1)
dE? %o :

with subscript "e" reminding us that it is the solution in the case
g

where perturbations are removed. With the same notation, we can de-

fine
_ -
B, dé} "B  on the two-body reference orbit (a constant)
=
Teo dé% r on two-body reference orbit, at E
-> > - ->
dé% r - B,, ¥ taken along the perturbed orbit

This gives in Equation (5.2-38 ), from which (5.3-1) is subtracted,

¥ dr
(- --a%) 2a% is substituted,

. . da _
and in which aF 0

2+ > > - >
d (z ~ z5) - + -x > f ) F dr dr
- = - - yoLoaxr, &

dEz + (z Zo) B B, + u r€a + (p dE)a iE
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Let
- >
§z dgf Z - Zs , the vector difference between
actual and reference orbit
> > >
GBEB_BQ
Thus
2 — 2 + -
4 53 7 = F 2 F dr, dr -
Py (6z) + §z 5% + " Tca + (u 15 2 45 {5.3-3)

The solution to (5.3-1) can be written as in (5.2-27), with E, i}
introduced to avoid confusion in the notations,

-+ - >
2o = L 8in E + D cos E

-+ (5.3-4)
dzy _ ¢ E - D sin E
dE a = CoS sSin

The solution to Equation (5.3-3) in its homogeneous form (r.h. side = 0)
is of the same form as (5.3-4), thus

6
-
> 8Zo

(5.3-5)

L}

in which the Ki's are constant coefficients, and Ci (i =1,2,3) are
the projections of E on axes X, Y, Z} Ci(i = 4,5,6) are the projections
of 3 on the same axes.

In the perturbed case, one requires that (5.3-5) still be the sélu—
tion to (5.3-3), but now with the Ki's being 6 unknown funetions of E,
which can be determined with the additional requirement that the actual

and osculating velocity be the same.



Thus,
6 >
d dKi 3z
- g 9Ki
dE 32) 121K1 dE( )+ i=1 4% 8 ¢C,
A —
4

term appearing
in unperturbed pro—
blem

and it is required that

©
. dK1 3z,
i=1 dE aci

=0

Further differentiation of (5.3-6) gives

2 9>
d > 6 dK;j 5  dz 5 4%z
— 62) = ¥ (=) =) + LK =)
dE2 i=1 dE aC i aC dE2
a2 .
Replacing ——~& by —z° .
2 6
d > dz° 5 3 >
or using (5.3-5)
2 -»>
d - + _ 8 d¥; 3 dzg
w28 T2 T ik & 5, as )
Thus we have six equations for the Eﬁi
6 d&y 3 dl.
L) 38 aci(dE ) = 6, 6, Gl
in which

> ) >
-+ _ F 2 F . dr dr o
G 45 5 et (3R 2

(5.3-6)

(5.3-8)

(5.3-9)
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From Equation (5.3-4), if ¢ has components (C;, C,, C3) and D com-

ponents (Cq, Ces CE), the following holds

2 (20,4) = 89 sin E (4, i=1, 2, 3)

8C, ,
i i
i )
= 6 cos E (L =4, 5, 6; 3=1,2,3)
(i-3)
>
) dz _ J ..
EEI Caﬁﬂﬁj 61 cos E (i, § = 1, 2, 3)
+ .
o dz, . _ _ed . . .o
Eﬁ:; Q§EV ;T 61—3 sin E (i = 4, 5, 6; j =1, 2, 3)

In matrix form

r

sin E 0 0 cos E 0 0

0 sin E 0 0 cos B 0

0 0 sin E 0 0 cos E
cos E 0 0 -gin E 0 0

0 cos E 0 0 -gin E 0

0 0 cos E 0 0 -sin EJ

(5.3-9)



After inversion

(&) (sin E 0
0 sin E

a_ {K3] _ 0 0
dE

K, cos B 0

Ks 0 cos E

%6 0 0
or

dk1p e

iF = cos E %

dK2

E cos E G

dK4 e

'&"E—‘ = cos E 2

dK4

&‘—' = =gin E Gx

»

dKsg .

EE" = —-gin E G

dK6 .

i - -gin E Gz

5-31

cos E 0 0 Y (o]
0 cos E 0 0
0 0 cos E 0

-sin E 0 0 Gx
-sin E 0 G

0 s y
0 0 -gin E G

/ \ ZJ

(5.3-10)

To go back to physical time, €, use can be made of Equation (5.2-48).

Alternatively, using

::‘IL%I

dt =
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E E

t -ty = (rva - ro/ae)dE + r/a, dE (5.3-11)

=i

Y
Vi

ro having here the meaning of r, along the reference orbit, at E. But
it is known that, if ( ), designates the value of the quantity between
parenthesis at E = 0 ,
- da .
ro = a, + ((re)o~ @) cos E+ ((5)a)o sin E
Let, in (5.3~11)

dK7

aE dgf wWa - ro/E; (5.3-12)

Then the equation of time becomes

t =ty = 7% JE ggz dE + ﬁ%& {a,E + ((re)o = 8o) sin E
k (5.3-13)
+ (D))o (1-cos B)}
[5-1]

An algorithm can be developed on the basis of the above formulae

and is implemented in program BROUWER-E described in Chapter 6.

5.4 Semi-Analytic Integration Method: Mixed Fourier-Chebyshev Series
5.4.1 Introduction
Given a system of differential equations describing the rates of change
of the parameters , the first step in Picard's iteration scheme will
consist in substituting in the r.h. side of the equation the solution
to the unperturbed problem, and proceeding to analytically integrate
this r.h. side to obtain the changes in the parameters over a suit-
ably selected interval.
For the large circular orbits considered here, it has been found

that results of sufficient accuracy (in a sense to be precised later)
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are obtained over a range (0, 2m) for E. For larger intervals of E, one
préceeds to the integration over (0, 2m), "updates' the elements by add-
ing their changes over the interval to the initial values, and so on.
The r.h. sides in the differential systems, in order to be able to
integrate these mumerically, are to be expressed in a series of suit-
able analytic functions, the coefficients of which are numerical, intro-
duced from the start usiné the initial conditions. Such analytic
functions are oftentimes double Fourier Series in the mean ancmalies
of perturbed and perturbing bodies. However, in the case of artificial
satellites undergoing strong perturbations, it is no longer true that
the elements will not "change" too much over a period of the perturb-
ing body. From that viewpoint, the periodicity in M', say (mean anomaly
of the perturbing body), for constant a, €,..., has been destroyed, and
it appears perfectly reasonable to use non-periodic approximation func-
tions, valid over a suitable interval in E, to represent the motion

A

of the perturbing body. Chebyshev's polynomials have been used in
planetary theory by Carpenter[5-271

The analytic series chosen here to represent the terms in the r.h.
side are mixed Fourier—Chebyshev series: the Fourier part accounts
for the motion of the satellite, and the Chebyshev part, having an

argument which has a linear relation with the variable in the Fourier

Series, represents the motion of the perturbing body.

5.4.2 Development of mixed Fourier-Chebyshev Series for the derivatives

The point of departure is the system of equations for the variation
' -+

-+ dr . . ,
of parameters 1., (Eiﬁo, with E as independent variable, written in
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(5.2-44), which are repeated here

>

_}
dre . dB
sin E + {1 - cos E)dE

¥ oo 1 dagdr
dE H

r“a sin E - 5a dF dE

d ,.dr F 1 da dr dB
a_./ar =< .2 L ga dr _ ab
a ((dE) ) L ta cos E + 5o 48 dF °°S E - sin E 15
(5.4-1)
> > - 5 O
dB ¥ dr > -+ F + dr F dr
85 . 5, (L . 2L - + (£ . ar , £, 8Y
3E 2a (u dE)(aA r) (u ra g+ u(r TP
da _ 232 E . dr
dE 1) dE

with & (in this first order scheme) being a constant vector dependiﬁg
on the initial conditions.

In order to determine what calculations are involved here in the
development in series of the r.h. sides of (5.4-1), we shall, as
angounced in the beginning of this chapter, consider the analysis
is limited to gravitatiomal perturbing forces due to other bodies

{ncon and sun):
> F %

% i T *r
I e il A
p=moon, 1D P
sun

> >
Standard notations are used: rp, T are the geocentric vectors to the
perturbing body and satellite, respectively, and r1P is the magnitude
+ -
of vector lrp"r .
First of all, the r.h. sides of (5.4-1) involve scalar r and

-+ dr 2 .
vectors t, FiL B, which areto be taken as.those of the undisturbed

motion, namely
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_).
+ (r° - B)cos E+ ( )051n E

-+ +
T

dr dr

TE = —(r° - B)smn E + ( ) cos E

> ax (5.4-3)
r=a-+ (r0 - alcos E + ( ) sin E

dr dr

3E - —(rD - a)sin E + G—*)ocos E

Substitution of (5.4-3) into (5.4-1) permits to express the r.h.
5 .

sides as Fourier Series in E, multiplied by E . In Equation (5.4-2)
-
it can be seen that for given T s E could be expressed as a Fourier
series in E; ;é could be developed as a Fourier series in the mean
anomaly of the perturbing body. However, here, these series lose their
validity rapidly, if the range of E, for which {5.4-3} is adopted with
values of ?0, (%%)o, Bat E = 0, exceeds (0, 2r). It was decided to
adopt Chebychev series for representing gp, by the method of special
valpes[Swzs]. With a judicious choice of the argument of the Cheby-
chev series, the integration of the resulting mixed series could also
be simplified.
Let x be an argument linearly related to E as follows
= {(x+ L)y (5.4~4)

Thus, X has range (-1, +1) when E varies over (0, 2m). The ephemeris

time, t, corresponding to E, is obtained from Equation (5.2-34)

3
3/2

Y

;p corresponding to this t (or E) can be determined by any suitable

t -t = [E +(§— - 1l)cos E + - ) (1 - cos E)] {5.4~5)

means (ephemerides, tapes, tables) with a suitable interpolation routine

(here: fourth order central differences). The numerical coefficients



5-36

of the expansion of ¥ in Chebychev's polynomials follows the method

-28
given by Fox and Parker[5 ].

Mixed Fourier-Chebychev Series will be expressions encountered

in the r.h. side of (5.4-1) having the canonical form

Jmax Kmax
f = ng { Kgl Cl(J,K)TK_l(x) lcos (J-1)E

(5.4-6)

Jmax Kmax
 { Z Sl(J,K)TK_l(x)} sin JE

J=1 EK=1

The following properties and calculations atre derived in S.K.

5—-1
Bhate's thesis[ ], to whon the reader should refer for a more de-

tailed proofs:

f. are series such as in (5.4-6), so are

) If £, £,

f1 + f2

cfl (c scalar
gf1 (g Fourier Series in E)
hfl (h Chebychev series in x)

fl X f2

(From this results that when the proper substitutions and operations

are carried out, all r.h. sides in system (5.4-3) will be mixed Fourier-
+

Chebychev's Series, provided the components of % themselves can be ex-—

panded in such series.)

r 3
C—R—) and D
r

lp

11)

D1 43¢ p daf °1
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are mixed Fourier—-Chebychev series.

Indeed, 1 = I.<1, 8= angleb T and T
ndeed, let p daf Tt s = nNgle between rP and r
r 3 r 3 1
& = . 37, ° 1
T 2 2 2 - 3
r“+r " - 2rr_ cos 0 o+ /2
P o p ) (1 + p% 20 5

L
if o dgf ed”, Thus, after Taylor's series expansion about x;= pG =0,

and x, = 077" = 0,
2y - L !
3 -
e -2 a-eeH e

-] ° I o 1 -
¢ 3 (znt+1) ! pnon)( 7 (2m+1)! pm . m)
n={ ,2n m=0 ,2m
2" ninl 2 mim!

o o0

z L A A

n+m Un—m
n=0 m=¢ nn

]

(5.4-7)

with = L2kt (k = n,m)
e T ’

Now, in Equation (5.4-7), the double summation is effected along lines,

in an "n,m" plane, of constant r, = n+m or r, = n-m. (5.4-7) simplifies
to
X 3 ) 2 9 o o0 -+
BT o Aty 3 A mrry, T
(r1 ) 20 n° r1=1 ¢ ngo (Am mtr )p )o
P (m=n)
+ S (Faa )My

rs=1 'n=0 n n+rs
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] = 2m, r
P A
n=0 Anp + 2 r=1 ( még(Am m+r)p )p cos r@

(m=n)

From the above expression for Ak’ it is easy to see that

A, =1

_ 1/2
Ay = G+ DAy

and one can calculate, for given m ,

max
M nax
a - maxX 2 om
2 def m=0 °
il
max om
= Q i L
a, a5¢ 2 mEDAmAm+Rp integer > 0 (5.4-8)
r, .3
Thus, (;E—ﬁ can be rewritten
1p
¥ 3 o r
GJLQ =a, + I a_p cos () (5.4-9)
rlp r=l1 r

-1
It can be shown[5 ] that the sum (5.4-9), truncated to N terms, can
be computed without running into the problem of subtracting two almost
equal numbers of large magnitude, in the following manner.

b =0

N: 2
bN=l =0 '

= -2 = -— —
br 20 cose‘br+l o br+2 + a. (r = N, N-1,...,0) (5.4-10)

= _ -1 )
SUM = b, bl p cos § 5 (be = p b2 + ag)

As is evident from (5.4-8) and (5.4-10), the mixed Fourier-Chebychev
series for pzm and p cos 0 are needed. These are given in Appendix A- %l
and A-2.,2. Once these have been obtained, it has been proved that D

and Dl_as defined above, are mixed Fourier-Chebychev series.
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i

III) The components of can be expressed as mixed Fourier-Chebychev

series. Indeed, with the above definitions, and assuming that %— has
P
been developed in Chebychev series by the method of special values as

in Reference [5-28],

= H |
F 1 i -> P 1 a > ->
" “‘P'u —3‘rp [ o'p 1] T a2 (rp),[ 5o 1]

From what precedes, the component terms between brackets should be

3 .
Fourier-Chebychev series, and so is CE—) . Thus, so are the components
i ?
of - .
u

The other terms in the r.h. side of (5.4-1), these mot involving

E alone, should also be shown to the series of some type. Indeed,

i@.:za (E.ﬁ_):_]iEg_(:L)S[D?.Q}:_D;,d_;_
dE dE U a rp pp dE 1© dE
> -+
is. such a series. Indeed, ?P -%% and T = %% are, from (5.4-3), the
mixed Fourier—Chebychev series
-+ d;_t' > -+ > - d?
Ty "5 < —(rp)(r° - B}) sin E + (rp'(ag)o)cos E

dr = dr 5 dr
= . (9L . 4T
rt g T (B (dE)o)cos E + (C (dE)°)COS 2E
> -
> > 1, ,dr dr -
-B+C sin E + E[(dE)D (dE)° - C+Clsin 2E

>
Also,-%%

& Yo @ piis g - E@-b e @ Sy
dE (rp P rp TaE rp dE ’r r dE)rp]
= -
_ zgr_ —>.g_']:"_ +_—)—
Dl(r 05 + (r dE)(2B r)}

will be a series of same kind provided
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-
‘r

P

5
-> _ 2 —)-.-» -+ d_r .
T = (rp B) + (rp cos E + (rp (dE)°)Sln E

is of the same kind, which holds true.

d
In summary, the equations (5.4-1) for the variation of ¥°’CE%)°
can be written with each r.h. side in the form of a mixed Chebychev—
Fourier series. The latter can be integrated analytically to yield

the changes of the elements over an interval (0,2n} for E.

5.4.3 Integration of mixed Fourier-Chebychev series

Ref. [5-1] develops in great detail the algorithms needed for
the integration, with respect to E, of the mixed Fourier—Chebychev
series present in the r.h. side of Equation (5.4-1). These algorithms
are briefly listed in Appendix A- 23.

The following should be noted

integration is to first order of Picard's iteration.

r 3
the series C;E—ﬁ is suitably truncated
1p
the motion of the perturbing bodies are represented by

I

finite Chebychev series.
- in series multiplicatien, truncation is &fected without
loss of accuracy
This being said, no other approximation is introduced, since the inte-
gration of the terms being kept is rigorous.
A computer program, based on the above technique, is developed
and has been tested for close to zerc as well as for large eccentri-

city orbits. It needs some more work, however, to incorporate time-

saving shortcuts.
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5.5 -Concluéions

In this chapter, methods of deriving variational equations for the
elements of elliptic or circular orbits which are totally singularity-
free (in the absence of collisions) have been developed. They should
be particularly useful for the study of nearly circular geocentric
orbits étrongly perturbed by the sun and the moon. Programs based on
them furthermore have shown that significant savings in computer time
could be realized for the same accuracy, compared to the more common
versions of the method of variation of parameters, with time as the in-

dependent variable.
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APPENDIX A2

Auxiliary Developments in Singularity-Free Methods

A.1 Mixed Fourier-Chebychev Series for pzm

Since

2m r . om

P =(;—)
p

we write, in the unperturbed motion

E: l:.l_. ..]:g'-z- 3
1+ (a 1dcos E + a(dE)051n E

i

. r,2 . . . . . r,2m .
Since (5) is a Fourier series in E, so will CZ) using the

recurrence

a . 2m a . 2.a .2(m1
@ = @2 @yP ey
P P P
Finally, pzm is obtained as a Fourier~Chebychev series by multi-
2
plication of the series for (E)2m and (%-) m
P

A.2 Mixed Fourier-Chebychev series for p cos 8

Since,
> -+
r r-r ? r.oa .2
pcose=;—'—'—2—2 a=(;'ﬁ(;—)
p a rrP P
_>
T
;E'has components which can be developed in Chebychev series
using the method of special values, with x as independent
S
variable. g has components which are Fourier series in E,
since
r_B, o B 1.4y
T Y ¥
I -2 (e 2 + == ;
= (a a)cos E a(dE)°Sln E

Therefore, p cos 6 will be a mixed Fourier-Chebychev series,

2 . . .
because C%—) is in turn a Chebychev series in x.
P
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A.3 Integration Algorithms

[5-28]

Using the expressions given by Fox and Parker for the inte-
grals with respect to x of Chebychev's polynomials Tr(x), and
by a judicious use of integration by parts, the following algo-

rithms, proved in Ref. [5-1], were obtained:

(Note that %% = constant = )

Kmax
a) Integration of (Kgl SO(J,K)TK_l(x))sin JE

Let the integral of the above expressions be:

“ogx o in iE + max o JE
{ o1 (J,K)TKrl(x))51n j ( Kél C1(J+1,K) K__:L(:‘{))cos FE

Then the algorithm follows, starting with the known S0's.

Sl(J,Kma )y =20

x
ClGF + 1,k ) = = = 5,(J,K__)
*“max J "°Y *Tmax
2(Kmax -1
— - - -+
S1(J,K__-1) N CLE+LK )
dx
Cl(J+1,K - 1) = - l S (J,K - 1)
*“max J T°M *Tmax
Kmax -2
Sl(J’Kmax - 2) = - 2 —J__d_f-—— Cl(J + 1, Kmax - l)
dx
72 = 2 —22% S1(J,K - 2)
dE max
dx
T -
_ 20max=3) i,k -2)
Z21= m
d®
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D¢ 1K=Kmax'— 3, 4’ —ll

CL( + 1,K) = %(SO(J,K)— 22)

S1(J,K-1) = =2 ~5§%7- CL(J+1,K) + S1(J,K+1)
J_..
dx
722 = 22
72 =71
71 = 2 X2 g (J,K~1) + 222
a& 1Y
dx
CL(J+1,3) = - %(SO(J,B) - z2)
S1(J,2) = — —=— C_ (J+1,3) + S1(J,4)
& %1
J—-—
dx
222 = 72
z2 =71
_ 1 1
21 = SLU,D) + 5 222
CcX

—.x _
c, (F+1,2) = =(30(J,2) - 22)

S1(3,1) = - —5~ CL(+1,2) + % $1(J,3)
J Pomfe
dx
z2 = 71
C1(J+1,1) = - -.]]: (so(1,1) - ZZ)

END



K
max

b) Integration of { CO(J+1,K)TK_1(X)} cos jE

K1

Let the integral of the above expression be

K K
max max

( Kél Sl(J,K)TK_l(x)) sin jE + (K£1 Cl(J+l,K)TK_l(x))COS jE

Algorithm is as follows, starting with the known S0's

CL{J+1, Kma y=20

x
S1(J, K ) = = CO(I+L, K__)
' Tmax J * Tmax
Kmax -1
CL(F+1, K = 1) = 2 —Soe—= S2(3,K )
J —_—
dx
S1(J, K __ - 1) = X co@+l, X__ - 1)
* “max J * Tmax
Kmax B
C1{J+1, Kmax -~ 2) = 2 ——**Tﬁg_- 52(J, Kmax -1
J —_
dx
max
22 = 2 Vg CL(I+1, K- 1)
dx
_ max " _
Z1 = 2 dE Cl{J+1, Kmax 2)
dx
D 1 K = Kmax - 3,4, -1
' 1
S1(J,K) = - F(CO(I+1,K) - 22)
K-1
CI(J+1, K-1) = 2 iF S1{J,K) + Cl(J+1, K+1)
J —_—
dx

222 = 22

22 Z1

A-2.4



c)

71 = 2 %—;—2 C1(J+1, K-1) + 222

dx

51(J,3) =% (CO(I+1, 3) -22)

CL(I+1, 2) = % SL(J,3) + CL(J+L, 4)
J ———
dx
722 = 22
72 =21
1 L
z1 = I CL(I+1, 2) + 3 222
dx
1
51(J,2) = - 5 {CO(J+1, 2) -22)
| 1 1
C1{J+1, 1) = aE 81(J,2) + 3 Cl{J+1, 3)
dx
72 = 71
1
S1(3,1) = 3 (CO(I+L, 1) -Z2)

Constant of integration

The intepgrals being computed from E = 0 to E, we note that the
perturbation should vanish at E = 0. Thus from the indefinite
integral result, the value of the series at E = 0 fr x = -1)
should be subtracted i.e., in the final series (containing the
constant of integration, J K

max max

z -
{ 2, CLEL,K)T,_,( 1)}

! = - E
€1(¢(1,1) to be used = C1(1,1) above g21 b ks

the other coefficients remaining unchanged.

A-2.5
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CHAPTER 6

Orbital Programs

6.1 Introduction

In this chapter we briefly 1list, analyze andICOmpare various
programs, developed under this grant for the integration of
perturbed orbits[s—l]. Other programs, such as SABAC, ECLIP, VOLER,

etc. have been previously described. The program examined here

differ from each other in the following aspects:

a) the parameters, or osculating elements, being integrated

b) the independent variable retained

In order to make comparisons valud, it was decided to integrate
by all methods examples which would serve as numerical standards in
the analysis. These two reference solutions were obtained by NASA's
numerical integration program ITEM, based on a modified Encke's

. . [6=~2]
method and briefly described by B. Lowrey .

In all methods

- identical integration techniques were used

The same integration routine was used, a fourth order
prediction-corrector method, of the Hamming type, with

fourth-order Runge-Kutta-Gill starter.
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~ identical perturbation forces models

These forces consist of

1.

"Phird" body gravitational perturbation (by
sun and mecon)

Gravitational perturbations due to the asphericity
of the earth

Atmospheric drag

Solar radiation pressure

The two last forces were set to zero on the examples treated.

The position of the sun is interpolated from the American

Ephemeris data for the sun's position at 0 h. E.T. every day.

The moon is given by formulae having an error of + 0.75 min

of arc at most, over 3 years from Jan 1, 1969,

- identical reference standards

6.2 Test

The conditions for these are listed below, for two examples, one

=5
for close to zero eccentricity (e = 0.8 x 10 "}, a = 0.58 x Earth-

moon distance, orbital period = 12.05 days; one for high eccentricity

(e = 0.936), a =

days.

0.297 x Earth-moon distance, orbital period = 4.45



INITIAL CONDITIONS TOR THE NUMERICAL EXAMPLES

Example 1: Large Circular Orbit
-+ 8 ~»
r,o=- 0.2932796 x 10 a
- 2.0338597 x 10° 3&
g
+ 0.87225166 x 10 aZ meters
- dr 3 >
r_
(EE o= 1.2405 % 10 a_
3 -
- 0.3358361 x 10 ay
3+
- 0.36598403 x 10 a meters/second
T = Feb. 18, 1971, 6.00 hours Ephemeris time

From which

Period

0

i

i}

223235.8 Km 35 x radius of earth mean

0.58 x mean earth moon distance
1.336252 Km/sec.

223234.0 Km
0.8018212 x 107°
28.50035°
133.2179°
~54,99945°
180.0285°

12.05 days
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Example 2: Highly -Eccentric Orbit

7= ~0.39275819084844 x 10° 2
~1.623139606007665 x 10° 2&
+0.8969904059411103 x 10° a K

-5
EZy - 0.1954377352706032 a
dt’o ) e
~0.7854274357862668 Zy
+0.24190151060205798 Ez K_/sec

TO = January 5, 1971, 18.5 hours Ephemeris time

¥rom which

r0 = 189563.5 Km % 29,72 x radius of earth

2 0.494 x mean earth-moon distance
v = 0.8447536 Km/sec
a = 114151.4 Km % 17.9 x radius of earth

~

% 0.297 x mean earth-moon distance

e = 0.936227
i = 33.40927°
¢ = 130.9163°
w = =50.62353°
v = 171.3767°

Period 4,45 days
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~The programs.were designed to be "modular" in structure. Some
modules, concerned with the computation of the perturbing forces,
are identical with all the programs. Those dealing with integration
are almost identical, except for the number of differential equations
required and some print-outs. Such a modular arrangement makes it‘ 
much easier to bring changes in soﬁe part of the computational scheme.

A list of the programs to be discussed is given below

INDEPENDENT VARIABLE DEPENDENT VARIABLES
NICE-T N M
(for Numerical Inte- t Tos To
gration of Gircular
& Elliptic Orbits)
> 3
NICE-E E Yo, Ta
NICE-EA E; elements kept | To, To
constant over (0,2m)
in E
BROUWER-E E K, (i =1,...,6)
(Brouwer's method -
modified for circu-
lar orbits)
ECLA-T t Conventional oscu-

lating elements

6.2 Program NICE-T
Independent variable: time

» s s > + -
Osculating parameters position vector T, and velocity wvector r,,

along the osculating orbit at time "T," (fixed)

Equations: six equations, in (5-2.60,61) of Chapter 5.



Tested: against NASA's ITEM, on the two examples quoted above.

Thereafter used as a standard of comparison.

Comparison with other programs: as most other programs had "E"
as independent variables at intervals of 2w in E,
data from these other programs consisting of time t;
osculating parameters, elliptical osculating para-
meters, radius and velocity vectors at t were punched
out. At these times, the output of NICE-T was computed.'
The differences in the instantaneous values of the os-

-

culating elements, ?0 and (%%)o, the elliptical para-
meters and the values of the Instantaneous radius and
velocity vectors were computed and compared. The
differences were then normalized by the maximum values
of the quantities, as shown below.

The integration spanned about 25 orbits, i.e. about 195 days in
the high eccentricity case, and 300 days in the case of the large cir-
cular orbit.

Since their did not appear to exist any definite trend for these
differences (except that the two first orbits had always much smaller
differences than the remaining 23), it was decided to 'represent” them
in the tables by their arithmetic mean Am and standard deviation SD.

A cowmparison of computer times is given in each case (CMU 360/67

T55) and will be commented upon for each program.



RELATIVE ACCURACIES AND SPEEDS OF VARIOUS COMPUTER PROGRAMS

Per unit errors in various quantities are defined as follows:

T
£ = a
a T
ee=e-eT
] i- lT
€4 180
i Q- 0
€q 360
“CU"U)T
€ 360
E=\)""\JT
v 360
It -7
T
E=
I -
Ty
It -
T
E_ Q
|z
T
where

a = semi-major axils (meters).

e = eccentricity.

i = inclination (degrees)

Q = longitude of ascending nodes (degrees).

w = argument of perigee (degrees).



true anomaly (degrees).

instantaneous radius vector (meters).

Hie Hi <

instantaneous velocity vector (meters/sec.).

Quantities with subscript 'T' refer to values computed by program

NICE T used as reference.

Am = arithmetic mean of 25 values fone at the end of each orbit for 25
orbits).
SD = gtandard deviation of the same 25 quantities.

Example 1 -~ Large.circular orbits (data as per example 1)

Comparison of Computer Time/Orbit

(Average of 25 Orbits)

Progran cpu Time/Orbit, Seconds
NICE T o 16.9
NICE E 4.08
NICE EA 2.8
NICE EP 3.88

BRHUWER E 4.84



Example 2: Highly

Program

NICE T
RICE E
NICE EA
NICE EP-

BROUWER E

LA - T

69

eccentric orbit (data as per example 2) .

Comparison of Computer Time/Orbit

(Average of 25 Orbits)

cpuDTiﬁe/0rbit {(Seconds)
261
5.48
3.07
5.21
5.15

9.95



EXAMPLE 1

COMPARISON OF ACCURACIES

NICE E NICE EA . NICE EP BROUWER E
Am 'SD _Am sD Am sD Am SD.
. 0.13x107" 0941072 -0.18x107%  0.77x107°  0.81x107>  0.59x107°  0.11x107°  0.13x107"°
e, 0.65x107° 0.20x10™% 0.39x10"Y  0.19x1072  —.15x107%  .37m1072  0.19x10°%  0.68x107/
e, c0.27x1078  o.a2x1071d  —0.13x1073  0.11x107% . -0.40x1073  0.55x1077  -0.85x107°  0.62x1072
eq -0.10x107°  0.12x107" 0.57x1073  0.11x107° -0:17x10"3  0.94x10°% -0.70x1077  0.17x10712
e, -0.75x1070  0.45x1070  -0.37:107%  0.26x1077  -0.10x1071  0.79x107°  0.91x10” 0.20x10"°
e, 0.94x10™> 0.67x10" 10 ~0.74x10™2 0.28x10" 0.20x10™2 0.74x107°  -0.42x10" 0.26x1073
ex  -0.10x107° 0.39x10° 1 0.13x107r  0.34x107%  —0.44x107%  0.16x107%  0.11x107%  0.76x107M0
er 0.11x107  0.27x10 7 20.14x10°Y  0.53x107% 0.5x1072  0.18x107%  -0.11x107%  0.94x10710

019



EXAMPLE 2
COMPARISON OF ACCURACIES

NICE E NICE ZA NICE EP BROUWER E T

A 55 i 5 A 5 & 5 g 5
e 0.79x107° 0.32x10°10  _0.46x10"2  0.32x107°  0.12x1073  0.34x10°7  0.56x107°  0.41x1070 -0.19x10™%  0.47x107°
e, -0.74x10"°  0.18x107%? 20.19x1073  0.14x1077  0.28x107%  0.72x107% -0.60x107>  0.17x1071°  -0.18x10™%  0.19x107°
e, 0.85x107°  0.36x107" ~0.13x10°°  0.16x1077 -0.12x10°%  0.18x107° -0.13x107>  0.10x10°  0.29x107%  0.78x107°
e, 0.36x107°  0.18x1071% --0.90x107" 0.26x1077 -0.88x107°  0.51x10™°  0.14x107°  0.10x1070 -0.20x107%  0.46x107°
e - - ~0.12x107%  0.48x107° -0.66x107%  0.87x107°  0.17x107°  0.25x1070  0.71x107°  0.15%107
e, 0.45x107%  0.11x1070  0.85x107%  0.44x10™% -0.79x107  0.6x107°  0.76x107>  0.10x107°  0.11x10° 0.14x10°
ex  0.46x107°  0.10x107°  0.56x107" 0.14x10°2  0.74x1072  0.53x107%  0.57x10%  0.67x107°  0.64x1073  0.16x10"%
e3 =0.14x107 0.11x10"7  -0.36 0.96x10 Y  0.24x10°%  0.56x107>  0.22x107°  0.98x10™’ - _

TT-9
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6.3 NICE-E

Independent variable:"E'" of Chapter 5 (not eccentric anomaly)

Osculating parémeters: ;o, ;o at E=(

Number of differential equations: 7, given in
of Chapter 5.

Time required and accuracy: the method is about four times
faster than that based on time as independent var-
iable. At high eccentricities, a significant part
of the gain could be that Kepler's equation of time
does not have to be inverted. However, the small
time needed to do this inversion at small eccen-
tricities fails to explain that the same gain still
exists. Maybe the reason is teo be found in the
regularizing effect of using variable E, rather than
time, which could be equivalently be seen as using a
variable epoch time T, along the unperturbed orbit,
in a way which presumably reduces computer time for

a prescribed relative accuracy by keeping the motion

L 4
N -+ >
in space (ro, Yo, To) small.

6.4 NICE~-FA

~

Independent variable: E modified, defined as 52: in

" d r d
defined by - = == 41—
x defin v = dr

. - -
Osculating parameters: =r,, I, at E =0

Approximation mcde:hg—‘éé.

aF, << 1 used in the definition of the

independent variable; see Section 5.
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Time required and accuracy: least of all methods. If the
above approximation can be justified, either by the
nature of the perturbing forces or, a posteriori by
numerical experiments, this method could give a 20%
saving in analytical integration (6 equations instead
of 7 are used). The (relatively low) accuracy is
of the same order as that obtained by a first-order

Picard scheme.

NICE-EP

If the differential equations of motion are integrated in the
iterations of a Picard scheme, no adequate analysis seems to
exist on how long an interval of integration and how high an
order of iteration one should take to minimize the computer
time required for computing over a given interval with a pre-

scribed error bound.

Therefore, it was thought to be appropriate, to get an idea
of what error is introduced only by retaining a first-order
iteration scheme. To that effect, the equations of NICE-E
were integrated over the typical (0, 27) interval for E while

keeping the values of the elements constant over the interval.

EOLA-NU

This program integrates the classical elements a, e, i, w, Q with

respect to v, and obtains time t by integrating equation (2.3-4).

No mean anomaly at epoch is used. The speed 1s comparable to that of

EALA-T.
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CHATTER 7

General Conclusions

At the conclusion of this work, we wish to briefly review the
material developed under this grant and to make a few recommendat ions
for future topics of study.

New methods have been developed for the mission analysis and or-
bital studies of satellites of the IMP-type, which describe trajectories
strongly perturbed by the gravitational fields of the Sun and the Moon.
These techniques cover a wide interval of the "accuracy vs. computer
time" scale, ranging all the way from very fast methods of relatively
low‘accuracy (as in SABAC) to high accuracy, more time—consuming schemes
(as in the NIGE programs) through a method based on non-numeric compu-
tation, giving results of intermediate accuracy and time—-consumption
(as in VOLER). All of these will be chosen at some point in the
mission analysis :in the preliminary phase, in establishing large num-—
bers of possible launch windows; later on, in more detailed studies
of better accuracy, and finally, in a few calculations by means of
high accuracy programs suitable for low or high eccentricities, and
which appear to -save computer itme by a factor of 3 to 4, compared
to conventional methods.

Without going in detail into possible ways of implementing
these suggestions, we think that various topics of investigation de-
serve further study. One is the comparative analysis of existing

methods, or the development of other techniques, which are most



7-2

suitable for multiple satellites, the dimensionality of the state
vector (;o, %o), say, going from 6 to 12, 18 etc. Another topic
would be the development of literal theories based on regularized
variables, since much insight is gained in the qualitative behavior
of orbits even by means of "low-order' theories. Another area where
more study appears to be needed is in minimizing computer time for a
given error bound, or conversely, on a small computer of limited
memory, in determining which method, for a given calculation time,

assures the best accuracy in orbit determination.



