SATURN

HISTORICAL OFFICE
MANAGEMENT SERVICES OFFICE

SATURN
ILLUSTRATED
CHRONOLOGY

by
DAVID S. AKENS
A&TS-MS-H

SATURN'S FIRST ELEVEN YEARS
APRIL 1957 through APRIL 1968

NASA
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
<table>
<thead>
<tr>
<th>Year</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1957</td>
<td>1</td>
</tr>
<tr>
<td>1958</td>
<td>2</td>
</tr>
<tr>
<td>1959</td>
<td>3</td>
</tr>
<tr>
<td>1960</td>
<td>8</td>
</tr>
<tr>
<td>1961</td>
<td>13</td>
</tr>
<tr>
<td>1962</td>
<td>35</td>
</tr>
<tr>
<td>1963</td>
<td>49</td>
</tr>
<tr>
<td>1964</td>
<td>72</td>
</tr>
<tr>
<td>1965</td>
<td>99</td>
</tr>
<tr>
<td>1966</td>
<td>127</td>
</tr>
<tr>
<td>1967</td>
<td>158</td>
</tr>
<tr>
<td>1968</td>
<td>203</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>227</td>
</tr>
<tr>
<td>APPENDICES</td>
<td>229</td>
</tr>
<tr>
<td>GLOSSARY</td>
<td>235</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>245</td>
</tr>
<tr>
<td>INDEX</td>
<td>259</td>
</tr>
</tbody>
</table>
SATURN ILLUSTRATED CHRONOLOGY

In April 1957 the scientific organization directed by Dr. Wernher von Braun began studies which led to Saturn, America's first rocket developed for space investigation. The team at Redstone Arsenal, Alabama, hoped to design launch vehicles that could carry 20,000- to 40,000-pound payloads for orbital missions or 6000- to 12,000-pound payloads for escape missions. High-thrust booster stages were essential.

In December 1957 the von Braun group, then working with the Army Ballistic Missile Agency (ABMA), proposed a program to the Department of Defense (DOD). At that time the United States was considering an integrated missile and space vehicle development program. Creation of a booster with 1,500,000 pounds of thrust was the aim of the proposed program.

To secure this much power ABMA first considered clustering four 380,000-pound thrust Rocketdyne E-1 engines.
This initial concept was discarded because of the time required to complete development of this type engine. However, ABMA continued studies to determine if engines already developed could be used.

On August 15, 1958, the Advanced Research Projects Agency (ARPA) formally initiated what was to become the Saturn project. The agency, a separately organized research and development arm of the Department of Defense, authorized ABMA to conduct a research and development program at Redstone Arsenal for a 1,500,000-pound thrust vehicle booster. A number of available rocket engines would be clustered. This design would be tested by a full-scale static firing by the end of 1959.2

The liquid oxygen (LOX) and fuel tanks developed for the Redstone and Jupiter missiles could be
modified for use in the proposed booster. An existing engine, the S-3D, used on both the Thor and Jupiter missiles, could be modified to produce an increased thrust of 188,000 pounds. Numerous tools and fixtures developed for the Redstone and Jupiter program could also be used with comparatively little modification. Thus it was possible to begin booster development with hardware of proven reliability. Time for design and development of some important booster components and tooling could be significantly shortened and cost reduced.

As an immediate step a contract was awarded Rocketdyne Division of North American Aviation on September 11, 1958, to uprate S-3D, the Thor-Jupiter engine. After redesign, simplification, and modification, the engine would be the H-1.

In October 1958 ARPA expanded its program objectives. A multistage carrier vehicle capable of performing advanced space missions would be built. The vehicle was tentatively identified as Juno V. ARPA requested Redstone personnel to study a complete vehicle system so that upper-stage selection and development could begin, and initiated a study of Atlantic Missile Range (AMR) launch facilities which could accommodate the launch vehicle. Later, on December 11, 1958, ARPA authorized the Army Ordnance Missile Command (AOMC) to begin design, modification, and construction of a captive static test tower and
facilities for use in the booster development program. AOMC was also to determine the design requirements for necessary launch facilities. 4

While the booster-vehicle program was being formulated and expanded, development work on the H-1 engine continued. The first full-power H-1 engine firing occurred in December 1958 at the Rocketdyne facility in Canoga Park, California.

Concurrently with development of the H-1 engine, studies were conducted pertaining to the feasibility of a larger single-chamber rocket engine. On January 9, 1959, Rocketdyne agreed by contract to design, develop, and test such an engine, designated as the F-1. This engine, burning LOX and RP-1, a kerosene-type fuel, would generate a very high thrust, approximately 1,500,000 pounds.

Construction of the ABMA static test stand for large boosters began January 10, 1959. Meanwhile, Army representatives of the ARPA board visited AMR to discuss selection of a site for large vehicle launch facilities at Cape Canaveral, Florida. By February 1959, a contract had been awarded for construction of the blockhouse at the site (Launch Complex 34). A design contract was also awarded for a movable structure which would be used to assemble and service the vehicle on the launch pedestal.

On February 3 an ARPA memorandum officially renamed the large launch vehicle project Saturn. ARPA representatives presented the proposed National Vehicle Program to the President and the National Aeronautics and Space Council on March 2, 1959. Included were the proposed Saturn B and C vehicle systems. 5

On March 13 ABMA submitted to ARPA the results of the Saturn System Study. This study indicated that either an Atlas or a Titan could be used as the second stage of the proposed vehicle. 6 During May ARPA decided that modified Titan hardware
could be used for the second stage and that the third stage could use a slightly modified Centaur vehicle.

By April 28 the first production H-1 engine (H-1001) had been delivered on schedule to ABMA. ABMA's first firing test of this engine, later used in the first test booster, was performed successfully on May 26, 1959.7

On July 5, 1959, construction of the Saturn blockhouse for Launch Complex 34 began at Cape Canaveral. On July 27 when the last Jupiter airframe was completed, Redstone Arsenal shops began retooling to support the Saturn project.

Late in July the Director of Defense Research and Engineering notified the Air Force and ARPA to consider common development of the Saturn second stage and the booster for the proposed Dyna Soar; requirements for these stages appeared to be similar. Until review of this, neither agency was to make a firm commitment for the redesign of existing boosters or development of new ones.

ARPA then ordered cessation of the AOMC in-house and contractor work relating to the Titan second stage. An exception was made of some preliminary work not directly connected with the stage diameter.8

Work continued on the Saturn booster stage. While studies of the proposed Saturn-Dyna Soar combination were in progress, ARPA, on August 1, authorized ABMA to proceed toward captive firing the Saturn booster early in 1960.

In September representatives of AOMC, NASA, and the Air Force presented Saturn, Nova, and Titan C systems to the Booster Evaluation Committee of the Office of the Secretary of Defense. On the basis of these presentations ARPA chose Saturn. ARPA then requested that Redstone scientists determine the Saturn configurations which could best carry NASA payloads.
During October 1959 consideration of Saturn vehicle configurations continued. On October 29 and 30 ABMA presented a second Saturn System Study to ARPA and National Aeronautics and Space Administration (NASA), proposing various upper-stage configurations which offered increased payload capability and growth potential. In December 1959, after evaluation of previous presentations, NASA and ARPA requested that AOMC prepare an engineering study for a three-stage Saturn configuration.

Because of its large size and weight, the Saturn booster could not be transported by air or land. Water transportation appeared most feasible, and ARPA, on October 23, 1959, authorized AOMC to proceed with engineering work for dock facilities. These would be located on the Tennessee River at the southern boundary of Redstone Arsenal. In December AOMC was further authorized to construct the facilities and to build a barge to transport the booster to Cape Canaveral.

On November 18 NASA assumed technical direction of the Saturn project pending its formal transfer from ARPA. Administrative direction was retained by ARPA until March 16, 1960, when transfer of both administrative and technical direction would become effective.
On December 15 the Saturn Vehicle Evaluation Committee (the Silverstein Committee) reached a decision on Saturn upper-stage configurations. This committee, composed of representatives from NASA, ARPA, DOD, and the Air Force, recommended a long-range development program for a Saturn vehicle with upper-stage engines burning liquid hydrogen and liquid oxygen. The initial vehicle, identified as C-1, was to be a stepping stone to a larger vehicle, the C-2. A building-block concept was proposed that would yield a variety of Saturn configurations, each using previously proven developments as far as possible. These recommendations were accepted by the NASA Administrator. On December 31, 1959, a ten-vehicle program was established.

The C-1 vehicle configuration included the S-I, the S-IV, and the S-V stages. The S-I stage would have eight H-1 engines. Fueled by LOX/RP-1, the engines clustered were expected to produce a
total of 1,500,000 pounds of thrust. The S-IV stage was conceived of as a four-engine liquid oxygen-liquid hydrogen fueled unit capable of producing a total of 80,000 pounds of thrust. The S-V stage would use two of the same engines as the S-IV stage and this stage would provide an additional 40,000 pounds of thrust.

The Saturn project was approved on January 18, 1960, as a program of the highest national priority (DX rating).

To develop the second stage of Saturn C-1, NASA sought a contractor. A bidder's conference concerning this S-IV stage was held at Huntsville, January 26 and 27, 1960. By February 29 twelve companies had submitted contract proposals.

Redstone Arsenal scientists started to work on the first stage. By 1960 the formal test program to prove out the clustered booster concept was
well under way. A mockup of the Saturn booster was installed in the ABMA test stand on January 4, 1960, to check mating of the booster and stand and to test servicing methods. This mockup was removed from the test stand and the complete test booster, SA-T, was installed in its place during February 1960.

During March the executive order transferring the Saturn program to NASA became effective. Later in the month two of Saturn's eight first-stage engines passed an initial static firing test of approximately eight seconds' duration. This test was identified as number SAT-01, the first live firing of the Saturn test booster (SA-T). It occurred on March 28. In a second test (SAT-02), on April 6, four engines were successfully static fired for seven seconds. All eight engines of the test booster were successfully fired on April 29 in an eight-second test.
SATURN ILLUSTRATED CHRONOLOGY

On May 17 a second eight-engine static firing of 24 seconds' duration generated a thrust of 1.3 million pounds. The third successful eight-engine firing lasted 35 seconds. 13

Meanwhile, NASA reviewed the S-IV proposals received in February. On April 26 NASA awarded Douglas Aircraft Company a contract to develop and build the second stage.

During May NASA announced that Rocketdyne had been selected to develop the high-thrust J-2 engine. This engine, of the type defined by the Silverstein Committee in December 1959, would burn liquid hydrogen-liquid oxygen. It would be used in an advanced Saturn vehicle.

The first ten Saturn flight vehicles would be numbered from SA-1 to SA-10. SA-10 would be the prototype of the operational Saturn.

On May 26, 1960, assembly of the booster stage for the first Saturn flight vehicle began in Huntsville.

On July 1, 1960, the Saturn program was formally transferred to the George C. Marshall Space Flight Center (MSFC). 14 A second series of static tests had just been successfully completed on the first stage of Saturn C-1.

On July 26 NASA signed a supplemental agreement with Douglas Aircraft Company covering the second stage. Douglas would design, develop, and fabricate the four-engine S-IV stage.

Contracts were also let on August 10, 1960, with Pratt & Whitney to develop and produce LR-119 engines; the Government would furnish these engines to the contractors responsible for building the S-IV and S-V stages of the C-1 vehicle. The LR-119, an uprated LR-115 engine, was expected to generate 17,500 pounds of thrust.

On August 14, 1960, construction began on the
21. Assembly of main LOX tank for SA-I booster
22. Assembly of tanks on SA-I booster
23. Structural fabrication of SA-I booster
movable service structure for Launch Complex 34 at Cape Canaveral.

On August 15 the Air Force requested NASA assistance in planning the application of Saturn to Dyna Soar. After conferring with Air Force, MSFC agreed on October 6 to provide a preliminary study.

24. Installation of engines on SA-1 booster
25. Initial configuration of the S-IV stage
26. Construction of service tower and pedestal

27. Unveiling bust of General George C. Marshall
28. Dr. von Braun and President Eisenhower
29. Mr. Glennan, President Eisenhower, and Dr. von Braun
30. Proposed Saturn C-1 Apollo Configuration
On September 8 the facilities of the National Aeronautics and Space Administration at Huntsville, Alabama, were dedicated and designated as the George C. Marshall Space Flight Center. President Eisenhower, Mrs. George C. Marshall, NASA Administrator T. Keith Glennan, and many other national, state, and local dignitaries participated in the ceremony.

On October 21 NASA awarded to Convair a study contract for a second upper stage, the S-V. On October 25 NASA selected Convair, General Electric, and Martin to conduct individual feasibility studies of an advanced manned spacecraft as part of Project Apollo.

MSFC started a new series of static firing tests of the test booster (modified to the SA-1 flight configuration and designated SA-T1) on December 2, 1960. An eight-engine test lasting two seconds was first. The next week a test of two engines was conducted in a six-second firing. The series of booster tests was successfully concluded on December 20, 1960, by a 60-second firing of all eight engines. Fabrication of the tanks for the booster stage of the second Saturn flight vehicle (SA-2) was completed during December. Assembly of the booster began immediately.

In January Convair Astronautics submitted a proposal for an S-V upper stage for the Saturn vehicle; however, later in the month Dr. von Braun proposed that the C-1 vehicle be changed from a three-stage to a two-stage configuration in support of the Apollo program. NASA decided to delete requirements for the S-V stage on C-1 vehicles.

On January 16 the booster stage for the SA-1 flight vehicle was moved from assembly to checkout. During January also, wind tunnel testing of a model Saturn booster began at the Arnold Engineering Development Center, Tullahoma, Tennessee; the tests were designed to study base heating phenomena of the clustered stage.
Two additional studies began in January 1961. NASA awarded North American and Ryan Aeronautical Company contracts to investigate feasibility of recovering the S-I booster stage after the vehicle flight by using a Rogallo paraglider. A design contract was awarded for equipment which would be used at MSFC to check out the S-I stage automatically.

On January 25 a meeting was held at MSFC to study S-II stage requirements for the Saturn C-2 vehicle. S-II stage trajectory, performance, and structural analysis calculations were completed and made a part of the preliminary Saturn-Dyna Soar proposal.¹⁶

During January a dummy of the S-IV stage was completed at MSFC and moved to checkout. On January 31 MSFC static fired all eight engines of the SA-T1 test booster for 113 seconds.¹⁷

A dummy S-V stage, built for use on SA-1, was received from Convair on February 8 and mated to the dummy S-IV stage. The first horizontal assembly of the complete C-1 vehicle was accomplished during February. MSFC completed SA-T1 static tests on February 14. By February 27 Convair had provided MSFC with a second dummy S-V stage.¹⁸ This stage would first be used during dynamic tests of a complete dummy vehicle; later the dummy S-V would be used on a flight vehicle.

Liquid hydrogen engine development problems led to studies early in March to determine the possibility of using the first-generation LR-115 type Centaur engine on the Saturn S-IV stage, rather than second-generation Centaur engine, the LR-119.

Meanwhile, the booster was removed from the test stand on March 2 and loaded aboard the Palaemon for river trials. Also on March 2, 1961, as a part of the booster recovery studies, tests began at Cape Canaveral to determine the feasibility of reusing H-1 engines after exposure to salt water.
34. Movement of dummy S-IV stage to checkout
35. First horizontal mating of the Saturn vehicle
36. Removal of the booster from the static test stand
SATURN ILLUSTRATED CHRONOLOGY

Construction work at Launch Complex 34 continued to progress satisfactorily, with the service structure, blockhouse, and gas facilities nearing completion.

On March 7 the SA-1 booster was moved to the MSFC static test stand for preflight checkout. On March 14 the Palaemon, carrying the SA-T1, left the MSFC dock on its first training trip. Following its return the test booster went to MSFC shops for modification to the SA-T2 configuration. Looking beyond the booster, MSFC began construction in March of a facility to be used in familiarizing personnel with the handling of liquid hydrogen. MSFC presented plans on March 23 to accelerate the C-2 program and recommended that a prime contractor be selected to develop the S-II stage. MSFC also recommended use of six LR-115 engines in the S-IV stage instead of four LR-119 engines. Pratt & Whitney would still be the supplying contractor. MSFC then proposed certain design changes in the S-I stage including an increase in propellant capacity, the addition of fins, and increased structural support for later versions of the booster.

On March 29, 1961, MSFC received NASA Headquarters approval for the six-engine configuration
On March 31 NASA approved acceleration of the C-2 program and development of the C-2 vehicle for a three-stage escape mission. MSFC was authorized to begin a two-phase procurement of an S-II stage. During March further decisions were made concerning engines for the S-IV stage. MSFC decided to redirect effort from development of the LR-119 to the RL10-A-1, an engine that could be used in common by both the Centaur and the S-IV stage.

On April 10 NASA announced the Project Apollo objective of developing an orbiting laboratory for the study of effects of radiation and prolonged weightlessness, first with animals and later with
a three-man crew. During April Douglas reported that air transport for the S-IV stage was feasible. Douglas had been authorized in 1960 to study air transportation for S-IV stages. This would greatly reduce the time which would be required if the stages were moved by water from California to MSFC at Huntsville, and thence to Cape Canaveral, Florida. The use of gliders, blimps, and aircraft to carry the stages was also considered.

On April 17 the Palaemon began its first trial run to Cape Canaveral. The barge carried a water-ballasted tank simulating the size and weight of the S-I booster, plus a dummy S-V stage for the SA-1. The barge reached Cape Canaveral on April 30. After rehearsing movement of the booster along roads at the Cape, the simulator was reloaded aboard the Palaemon. The dummy S-V stage remained at the Cape. On May 3 the barge began its return trip, arriving at the Redstone Arsenal dock May 15.21

MSFC completed construction of the dynamic test tower on April 17, the same day that the Palaemon left for Florida. The dynamic tower permits checkout of the mechanical mating of the C-1 vehicle, and aids in determining the vehicle's natural bending characteristics and the effect of simulated flight vibrations.

MSFC held a Saturn S-II preproposal conference April 18; the first phase of S-II procurement was expected to begin during May. On April 21 Douglas reported to MSFC that the major problem in S-IV stage development was disposal of hydrogen gas generated during engine chilldown.

On April 29, 1961, the first flight qualification test (SA-01) of the SA-1 booster was successfully accomplished in an eight-engine, 30-second test. A second static firing of the SA-1 booster, May 5, 1961, was terminated prematurely because of a problem which caused a shutdown signal through the fire detection system.22
A third eight-engine static firing test of the SA-1 booster, performed May 11, lasted 111 seconds and was satisfactory. Meanwhile, assembly of the SA-2 flight vehicle continued, and fabrication of the LOX and fuel tanks for the SA-3 vehicle was begun.23

In May 1961 NASA Headquarters accepted MSFC's March proposal to incorporate design changes into the S-I stage of the C-1 vehicle. The changes would permit the C-1 to be used as a two- or three-stage vehicle possessing satisfactory safety requirements for the two-stage manned mission. This change eliminated the immediate need for an S-V stage with the C-1 except for possible special missions. Also during May 1961 MSFC began re-examination of the capabilities of the Saturn C-2 configuration to support lunar circumnavigation missions. Results of this examination indicated that a Saturn vehicle of even greater performance would be desirable.
SATURN ILLUSTRATED CHRONOLOGY

On May 18 the first phase of S-II procurement began when MSFC requested industry to prepare capability proposals for the design and development of the stage. Also during May Pratt & Whitney shipped a mockup of the RL10-A-3 engine to Douglas and Convair for checks to assure that the engine was physically compatible with both the S-IV stage and the Centaur vehicle. Among other activities in May the Martin Company was awarded a contract to study launch vehicle systems which could be used in lunar exploration beyond the initial Project Apollo flights. These studies included transportation systems for a lunar landing and immediate return for three men, a thirty-day stay on the moon for three men, and a permanent moon base to accommodate 10 to 12 men.

MSFC tested the S-IV dummy stage for the SA-1 flight vehicle May 20-25, 1961. After successful testing the Center began to ready the stage for shipment to Cape Canaveral.

During June construction of the liquid hydrogen test site neared completion at Douglas Aircraft's Sacramento Test Facility (SACTO). Utilizing LOX facilities existing from earlier programs, the site includes two 90,000-gallon liquid hydrogen storage tanks and test stands capable of testing S-IV hardware under a variety of conditions.
Engine gimbal tests performed at MSFC during April and May had indicated the advisability of increasing the stiffness of the engine control support structure in the booster. To investigate this matter further, the control engine support structure of the S-I stage of the dynamic test vehicle was modified and a series of single-engine gimbal tests begun on May 29, 1961. As test results were of marginal satisfaction, a new type of actuator servo valve was installed. Further test results were satisfactory. The dummy booster was moved to the dynamic test stand early in June and, for the first time, vertically mated with dummy S-IV and S-V stages. The assembled vehicle was then readied for dynamic testing. 24

During May and June 1961 Douglas Aircraft had continued fabrication of full-scale mockups of S-IV stage sections. These mockups are used to check the mating of different sections of the stage and to determine equipment locations.

On June 2 a lock collapsed at the Wheeler Dam on the Tennessee River. All movement of river traffic was halted. Because the *Palaemon* was trapped in the upper river, MSFC decided to transport the booster in it overland to a point below the dam. There the stage would be reloaded on barge to continue the trip to Cape Canaveral. To support this plan MSFC obtained a Navy barge which had been mothballed at Pensacola, Florida.
Necessary modifications began so that the new barge, renamed the Compromise, could carry the S-I and dummy S-IV stages and dummy payload.

On June 5, 1961, Launch Complex 34 at Cape Canaveral was dedicated in a brief ceremony and turned over to NASA. In Huntsville final acceptance testing of the S-I stage for the first flight booster began on June 12, 1961. The first operation accomplished was the mechanical mating of the S-IV dummy stage. Design work for later Saturn vehicles also continued at MSFC. On June 15, 1961, a mockup of the new instrument unit portion of the vehicle was completed; this unit, containing guidance and instrumentation, would fly above the upper stages of the last five Saturn C-1 vehicles.

On June 21 Phase II procurement of the S-II stage began. Four companies were invited to attend the Phase II meeting at MSFC and submit proposals.

After a meeting held in June with Douglas, MSFC directed that the S-IV stage be redesigned to incorporate chilldown venting through which accumulated hydrogen gas could be disposed.

Dr. von Braun announced on June 23 that further engineering design work on the C-2 configuration would be discontinued; effort would instead be redirected toward clarification of the Saturn C-3 and Nova concepts. Capabilities of the proposed C-3
On June 27 the first static test of the SA-T2 booster (the SA-T1 booster modified to the configuration of the SA-2 booster stage) was successfully accomplished at MSFC. This was an eight-engine, 30-second test to confirm effectiveness of the new actuator servo valve and the stiffening of the control engine support structure.26

During the last week in June a contract was awarded to Chrysler Corporation for performance of qualification and reliability testing on various engine, hydraulic, mechanical, and structural components of the Saturn booster. Another contract was awarded in the same month for preliminary design of a facility to static test the J-2 engine.

To commemorate the first anniversary of Marshall Space Flight Center, an open house was held at the Center on July 1, 1961. Attending were such national figures as the NASA Administrator, James Webb; the Director of NASA Launch Vehicle Programs, Major General Don Ostrander; and numerous other national, state, and local dignitaries.

A few days later dynamic testing of SA-D1 began for the purpose of investigating the bending modes of the vehicle and also to continue studies into tank resonances initiated by Langley Research Center.
during June. While dynamic testing proceeded at MSFC, Rocketdyne in California began static firing tests of a complete F-1 engine. The engine would build up to 1.5 million pounds of thrust when perfected.

Early in July MSFC awarded a contract to Minneapolis-Honeywell for necessary engineering and manufacturing services to adapt the Centaur guidance set to Saturn requirements. Also in July, MSFC awarded a six-month contract to the Boeing Company to study the feasibility of creating huge vehicles by joining solid-propellant "super-boosters" with liquid-propellant upper stages.

During July MSFC successfully completed the second and third static firings of the SA-T2 test booster. These tests evaluated modifications to reduce engine structure vibration, evaluated flame curtain materials, and checked out a LOX depletion system similar to that used on SA-1.
the third test MSFC simulated for the first time the inflight engine cutoff sequence, that is, shutdown of the inboard engines six seconds before shutdown of the outboard engines.

MSFC awarded a contract to the Space Technology Laboratories, Inc., Los Angeles, California, during July, to investigate the relative merits and potential problems of assembling the giant Saturn boosters in horizontal and vertical positions. Other contracts awarded by the Center in July included qualification and reliability testing of Saturn ground support equipment, subsystems, and components, construction of a special assembly building at Cape Canaveral, and site development for the Center's new static test facility in Huntsville.

Also in July NASA's Space Task Group invited 12 companies to submit proposals for the manned lunar Apollo spacecraft. Meanwhile, the Center contemplated a nuclear-powered Saturn upper stage and awarded contracts for a six-month RIFT (reactor-in-flight test) design analysis to General Dynamics/Astronautics, Douglas Aircraft Company, Lockheed Aircraft Corporation, and the Martin Company.
Assembly of the booster stage for the SA-3 vehicle began on July 31, 1961. The following day the SA-2 booster was transferred from the assembly area to checkout. On August 3 a planned 114-second static test of the SA-T2 booster was terminated after 1.2 seconds when instrumentation indicated an unacceptably high temperature of the LOX pump inlet on engine No. 1. The test was rescheduled for the following week. On August 7 the SA-T2 booster was successfully fired in a 124-second test.

Checkout of the SA-1 flight booster, started in June, was completed early in August. The booster stage, the dummy S-IV stage, and the dummy payload body were shielded with protective covers and loaded on their respective transporters. The stages and payload body were then moved from the MSFC shops to the docking facilities on the Tennessee River and loaded aboard the Palaemon. On August 5 the barge began the first leg of the trip to Cape Canaveral. At Wheeler Dam the units

72. Concept of Saturn with nuclear powered stage
73. Booster movement to docking facility
74. Payload movement around Wheeler Dam
75. Booster movement around Wheeler Dam
76. S-I and S-IV stages aboard the Compromise
were unloaded, transported to a dock below the dam, and placed on the second barge, the Compromise, to continue the 2200-mile trip to Florida. On August 15 the Compromise arrived at the Cape and unloaded her cargo; MSFC began assembling the first flight vehicle on the launch pedestal. 30

Early in August MSFC invited bids for the construction of a new Saturn launch complex (Launch Complex 37) at Cape Canaveral. Scheduled for completion in late 1962, the new complex would support the high launch rate planned for the Saturn vehicle. 31

An F-1 engine was fired on August 16 at Edwards Air Force Base; although the test was terminated after one and one-half seconds, the engine had built up one million pounds of thrust.

On August 24 NASA designated Cape Canaveral as the base for all manned lunar flights and other space missions requiring advanced launch vehicles. NASA would secure an 80,000-acre tract of land, increasing its total area in the vicinity to
97,000 acres. The additional land was needed because of the tremendous vibration and noise expected with later launch vehicles.

On September 7 NASA selected the Government-owned Michoud Ordnance Plant near New Orleans as the site for industrial production of the S-I stage. The plant would be operated by industry under the technical direction of MSFC. MSFC continued preparations for a conference to secure estimates from industry on production of the S-I stage.

On September 11 NASA selected North American Aviation to develop and build the S-II stage for an advanced Saturn launch vehicle. The stage will be used in both manned and unmanned missions.

Army Engineers awarded a contract on September 13 for the construction of Launch Complex 37 at Cape Canaveral. The complex would include a mobile steel tower, a blockhouse, and a cable tower on a 120-acre site at the north end of the Cape.
By September 15, 1961, the SA-1 vehicle was completely assembled on the launch pedestal at Launch Complex 34. The service structure was moved back, leaving the Saturn standing as it would at launch.

On September 26 a preproposal conference was held at New Orleans to secure bids for industrial production of the S-1 stage. Four days later, on September 30, a ground-breaking ceremony was held to begin construction of the Marshall Center's Central Laboratory and Office Building.

Testing continued in September and October at the Marshall liquid hydrogen test facility, where problems in the handling and use of liquid hydrogen are studied. The SA-2 flight booster was installed in the MSFC static test tower early in October. On October 10 a successful eight-engine, 33-second test (SA-04) was performed to check reliability and performance of booster and gimbal systems. Test SA-05 was successfully conducted on October 24 for a duration of 112 seconds. Test objectives included evaluation of the flight cutoff sequence.

Late in October NASA selected a 13,550-acre site in Mississippi on which to build a facility for static testing Advanced Saturn and Nova first stages. This location of the Mississippi Test Facility is only 35 miles from the Michoud Plant
where industry would manufacture the S-I and S-IC stages.

The first launch of the Saturn vehicle took place on October 27, 1961. The vehicle, 162 feet high and weighing 460 tons at liftoff, rose to a height of 85 miles during its journey. The inboard engines shut down after 109 seconds of burning; the outboard engines cut off six seconds later. The booster stage produced the 1,300,000 pounds of thrust intended for the first four flight tests. (On subsequent tests, the thrust would be increased to 1,500,000 pounds.) At a speed of approximately 3600 miles per hour the Saturn followed a precalculated flight path to land within 13 miles of predicted impact, over 214 miles from Cape Canaveral. The launch was considered almost flawless.

On November 6, 1961, MSFC directed North American to redesign the S-II stage to incorporate five J-2 engines, providing a total of 1,000,000 pounds stage thrust.

Work at the new large-booster static test stand at MSFC was interrupted in November for redesign of the stand to accept thrust levels of more than 7.5 million pounds.

On November 10, 1961, NASA received proposals from five firms for the development and production of the advanced Saturn booster. NASA announced selection of Chrysler Corporation on November 17 to negotiate a contract to build, check out, and test 20 S-I boosters. These boosters would be manufactured at the Michoud Plant. The contract was signed in mid-January 1962.

On November 19 the nation's first liquid hydrogen engine, the RL10, successfully completed its preliminary flight rating test. Producing 15,000 pounds thrust, the engine, designed and developed by Pratt & Whitney, performed about 30 percent
better than engines using hydrocarbon fuels. Six such engines would power the Saturn S-IV stage.

After this progress in arranging for development of a large launch vehicle NASA, on November 29, 1961, awarded North American Aviation a contract for the design and construction of its payload, a three-man spacecraft.

Marshall Space Flight Center and Manned Spacecraft Center planned to use the C-1 research and development vehicles for vehicle-payload compatibility tests and early systems tests of the spacecraft. The spacecraft was designated Apollo, also the name of the Saturn vehicle missions project.

The Apollo project would be divided into three basic missions: earth orbital flights, circumlunar flights, and manned landings on the moon. The two-stage Saturn C-1 was to support earth-orbital flights of prototype Apollo command modules during the 1964-1965 period. The advanced Saturn C-5 would support reentry and circumlunar Apollo flights.

Meanwhile, the SA-T3 test stage was installed in the test stand. On November 30, 1961, MSFC conducted a test to investigate flight cutoff sequencing, perform an "engine out" test, and study fuel and LOX tank levels. The test was prematurely cut off at 95 seconds by the automatic fire detection system. No hardware damage occurred. This was the first of a series of tests to verify SA-3 design improvements.38

The last of the Saturn 70-inch tanks to be manufactured by MSFC was completed the week of December 4. Future 70-inch tanks would be built by Chance-Vought in Dallas, Texas, and shipped initially to MSFC and later to Michoud for the Chrysler assembled stages.

On December 5, 1961, Atomic Energy Commission (AEC) - NASA Space Nuclear Propulsion Office
selected the Aetron Division of Aerojet-General Corporation's proposal as the basis for a Nerva engine test stand contract. The Nerva would be used in nuclear stages with a reactor derived from the Kiwi-B test series. Two days later a pre-proposal conference was held at Huntsville, Alabama, to select a prime contractor for the reactor-in-flight test (RIFT) stage launch vehicle. The RIFT vehicle, planned for use as an upper stage of a Saturn vehicle, would be powered by the Nerva nuclear engine. 39

Marshall awarded a design contract on December 6 for modification to the west side of the Center's existing static test tower. The tower, scheduled for completion by the summer of 1963, would be used for acceptance testing of Chrysler S-I stages.

At the Douglas Sacramento Test Facility (SACTO), prototype S-IV stage tankage was installed and propellant loading tests begun on December 11, 1961.

Marshall completed modifications to the Saturn
barge Compromise on December 14, 1961. The barge, renamed Promise, was readied for movement to Wheeler Dam where it would receive stages of the SA-2 flight vehicle. On the same day another F-1 engine test was performed at the Rocketdyne test facility. The engine reached its rated 1.5 million pounds thrust in a short main-stage firing.

NASA selected the Boeing Company on December 15 as a possible prime contractor for the first stage (S-IC) of the advanced Saturn vehicle. The S-IC, powered by five F-1 engines, would be 33 feet in diameter and about 140 feet high. The manufacturing program at Michoud was to produce 24 flight stages and one ground test stage. In December MSFC awarded a contract to the Mason-Rust Company to perform housekeeping and other administrative services at the New Orleans Michoud Plant.
NASA selected Douglas Aircraft on December 21, 1961, to negotiate a contract to modify the Saturn S-IV stage by installing a single J-2 Rocketdyne engine of 200,000 pounds thrust. The modified stage, identified as the S-IVB, would be used as a third stage of the advanced Saturn C-5 configuration.

On December 28, the Mississippi Test Facility was officially named Mississippi Test Operations by Dr. Robert C. Seamans of NASA Headquarters.

Assembly of the SA-4 flight booster began January 2, 1962. The SA-3 booster successfully completed functional and pressure engine tests and entered pre-static checkout on January 8, 1962.

NASA announced on January 24 that Aerojet-General Corporation had been selected for design and development of a new liquid hydrogen engine. The engine, known as the M-1, was to power the second stage of the Nova launch vehicle. Its thrust would be 1,200,000 pounds.

MSFC awarded a contract to Consteel-Ets-Hokin late in January for the construction of the umbilical tower for Launch Complex 34 at Cape Canaveral. The tower would carry the electrical, pneumatic, and hydraulic connections used in fueling and servicing upper stages.
On January 25, 1962, NASA approved development of the three-stage Saturn C-5 vehicle under the direction of MSFC. The vehicle would support manned circumlunar flights and manned landings by earth or lunar orbit rendezvous method. The C-5 was expected to be capable of placing 120 tons in low earth orbit or escaping 45 tons to the vicinity of the moon.

On February 6, 1962, a 46-second C-1 booster test firing was successfully conducted at MSFC. Stages of the Saturn SA-2 flight vehicle departed Huntsville on February 16 for Cape Canaveral. The vehicle arrived at Cape Canaveral on February 27, 1962, and by March 1 the vehicle was erected on the launch pad of Launch Complex 34. A static firing of the SA-T3 booster was conducted on February 20, 1962. The test, scheduled to last until LOX depletion cutoff, was terminated at 55 seconds due to fire indication at engine No. 6. No damage resulted.

On February 9 a preliminary contract was awarded the Space and Information Systems Division (S&ID), North American Aviation, to design, develop, and fabricate the S-II stage of the C-5 vehicle. MSFC signed a preliminary S-IC development contract with Boeing Company on February 14.

On March 4 NASA selected Sverdrup Parcell Company to provide design criteria and initial planning for the test facilities at the Mississippi Test Operations.

On March 19 the booster for the SA-3 flight vehicle was installed in the test tower, and preparations were begun for the first flight qualification test. At Douglas Aircraft structural assembly of the first all-systems vehicle was completed in March 1962. The all-systems vehicle, a heavily instrumented configuration of the second (S-IV) stage, would be used to check out all operating S-IV systems.
On March 19, 1962, the Seal Beach, California, site was reconfirmed as the location of the S-II stage major manufacturing and assembly activities. Testing of prototype stages would be performed at Santa Susana, California. Stage acceptance testing would be conducted at the Mississippi Test Operations. Late in March a construction contract was awarded for construction of a second launch area at the Saturn Launch Complex 37, Cape Canaveral. Construction began early in April.

On April 10, 1962, the SA-3 booster successfully performed its first flight qualification test in a static firing of 31 seconds' duration. On the same day representatives of 13 companies attended a preproposal conference at MSFC concerning the Nova launch vehicle designs. Submittal of bids was required late in the month.

The large liquid hydrogen engine, J-2, which would power the S-II and S-IVB stages for advanced Saturn vehicles, reached 90 percent sea-level thrust in its initial hot firing tests on April 11. On the same day the huge F-1 engine, being developed to power the S-IC stage, performed a successful 150-second static firing.
In mid-April reconstruction of the Wheeler Dam Lock on the Tennessee River was completed; transportation of Saturn flight stages could be made without land detour.\(^5\)

NASA Headquarters announced on April 18 that the highest national priority (DX) had been approved for the Apollo, Saturn C-1, and Saturn C-5. The priority included all stages, engines, facilities, and related construction for production, test, research, launch, and instrumentation.\(^3\)

NASA launched the second Saturn flight vehicle, the SA-2, from Cape Canaveral on April 25. As with the SA-1, the vehicle was launched without a technical hold during the 10-hour countdown. This vehicle had a secondary mission. After first stage shutoff at 65 miles altitude the water-filled upper stages were exploded, dumping 95 tons of water in the upper atmosphere. The massive ice cloud produced rose to a height of 90 miles. The experiment, called Project High Water, was performed to investigate the effects on the ionosphere of the sudden release of such a great volume of water. This experiment did not interfere with the major goal of the flight which was achieved when the first-stage engines burned out.
seconds after launch. Every phase of the flight was considered successful.54

A 31-second duration eight-engine test of the SA-3 flight booster was conducted on May 17 with excellent overall performance.55 The final SA-3 booster acceptance firing test was performed on May 24 for a duration of 119 seconds.56

On May 26, 1962, Rocketdyne successfully conducted the first full-thrust, long-duration F-1 engine test. On the same day SA-4 booster fabrication was completed.57

In mid-May MSFC directed Douglas to produce a 260-inch-diameter S-IVB stage. The increase of 40 inches over the initially planned diameter permitted development of a more optimum sized
MAY - JULY 1962

stage. Also during May the Center decided to increase S-II stage length from 75 feet to 81.5 feet and decrease the S-IC stage length from 141 feet to 138 feet.

On June 5 MSFC contracted to modify the Saturn C-1 booster static test stand at MSFC. The stand, originally built to test the Redstone and Jupiter missiles and later modified for Saturn testing, would provide test positions for two C-1 first stages.58

On June 9 Pratt & Whitney completed preliminary flight rating tests of the RL10-A-3 engine for the Saturn C-1 second stage. All test objectives were successfully met. At MSFC the first SA-4 test booster static firing was successfully conducted on June 18 for a duration of 31 seconds.59

During June bids were requested for construction of a static test stand to captive fire the Saturn C-5 booster. The stand, to be located at MSFC, would provide handling equipment and thrust restraint for boosters up to 178 feet in length, 48 feet in diameter, and with thrust of up to 7.5 million pounds. Including a crane at the top, the tower would stand 405 feet high, more than twice as tall as the present Saturn C-1 booster test stand.

NASA and Rocketdyne signed letter contracts on July 2 for further development and production of the F-1 and J-2 engines. The contracts, extending through 1965, cover long lead-time items in F-1 engine research and development and early production effort on F-1 and J-2 engines. On July 7 SA-5 flight booster assembly began at MSFC.60

A new Saturn vehicle was needed. NASA announced on July 11 that a new, two-stage Saturn-class vehicle would be developed for manned earth-orbital missions with full-scale Apollo spacecraft.61 The Saturn would be known as the Saturn C-1B. Simultaneously, NASA announced selection of lunar orbit rendezvous as the method
for performing the manned lunar landing. This lunar rendezvous mode would require the use of only one Saturn C-5 vehicle to inject the spacecraft into an earth-lunar trajectory. The entire Apollo spacecraft would not land on the moon after its separation from the launch vehicle's third stage. Rather, one unit of the spacecraft, a lunar excursion module, or "bug," would land and later rejoin the rest of the orbiting Apollo.

Meanwhile, progress on Saturn C-1 continued. On July 12 the second static test of the SA-T4 stage was manually terminated after 12 seconds; a broken ground instrumentation wire had caused an erroneous pressure drop indication. Pressure measurement loss caused a premature cutoff of a third SA-T4 static test conducted on July 13. A fourth firing of 120 seconds duration was conducted on July 17; overall performance was excellent. The stage was removed from the test stand on July 20, and MSFC began uprating the engines to 188K thrust level. The uprated stage was redesignated the SA-T4.5.62
On July 21 NASA Headquarters announced construction plans for Launch Complex 39, Saturn C-5 launch facilities. The 350-foot-high vehicle would be erected and checked out vertically in a special 48-story assembly building. Following checkout a 2500-ton crawler vehicle would move the Saturn C-5 to its launch pad.

In July NASA announced that a computer center would be established at Slidell, Louisiana, to service the Michoud Operations. The Center, to be one of the nation's largest, would perform engineering calculations necessary in the development, building, and static testing of the Saturn C-1 and C-5 boosters.

To assure C-5 strength, MSFC awarded a design contract in July for a 360-foot-high dynamics test tower. The Saturn C-5 launch vehicle would be suspended in the tower and vibrated by mechanical and electrical means. This simulation of free-flight conditions would determine the vehicle's natural bending modes.
On August 6, 1962, NASA and Chrysler Corporation signed a contract for production of 21 C-1 boosters, to be delivered between late 1964 and early 1966. The stages would be produced by Chrysler at the Michoud Plant near New Orleans. On the same date NASA announced that the Boeing Company had received a supplementary contract from MSFC for work leading to design, development, fabrication, and test of the C-5 booster.

A C-5 second stage contract for design, development, fabrication, and testing of the S-IVB stages was awarded Douglas on August 8. The contract called for 11 of the stages: five for ground tests (two of which would be used later as inert flight stages) and six for powered flight.

Next, provision was made for C-5 guidance and control. On August 13 MSFC selected the C-5 instrument unit design. The cylindrical unit would measure 260 inches in diameter and stand 36 inches high. All vehicle guidance and control equipment would be mounted on panels fastened within this structure.

On August 15 NASA awarded Rocketdyne Division a two-year contract to continue H-1 engine research and development. These first Saturn
booster engines would also be used in Saturn IB boosters.

C-1 second stage progress continued. On August 17 Douglas performed the first S-IV battleship static firing at the Sacramento Test Facility in California. The stage developed approximately 90,000 pounds of thrust for a planned 10 seconds duration; all test objectives were met. A successful full 420-second firing was performed on October 4. In the final phase of testing a total of 11 tests were conducted, the last one on November 8.

MSFC on August 31 awarded a contract for construction in Huntsville of the S-IC static test stand superstructure. During August Phase I construction of the Launch Complex 34 umbilical tower was completed at AMR. Also in August, MSFC received the Douglas preliminary proposal covering modification of the S-IVB stage for use in the C-1B vehicle.

The SA-3 flight booster was shipped to Cape Canaveral on September 9, arrived on September 19, and was erected on the launch pad on September 21. By September 24 the inert upper stages and payload had been erected on the booster.
Early in September ground breaking ceremonies were held at Seal Beach, California, where assembly and test facilities for the second (S-II) stage of Saturn C-5 would be. The S-II facility would be constructed by the Navy and operated by North American Aviation's S&ID.

On September 11 President Kennedy and Vice President Johnson, with other key Government officials, visited MSFC as part of a two-day tour of four U. S. space centers.

On September 15 Michoud technicians installed a 42-foot boring mill, the largest known, for use in C-5 production. Also in mid-September, MSFC provided Douglas 90-day program authorization to investigate minimum changes necessary to adapt C-5 second stages to C-IB. Douglas would also study attachment of the S-IVB stages to the C-1 booster, as well as separation during flight.
On September 25 assembly began of the SA-6 flight booster. Meanwhile, preliminary plans were completed for development of the Mississippi Test Operations. First phase of the three-phase program included building two test stands each for static firing the S-IC and S-II stages and about 20 service and support buildings. Improvement of approximately 15 miles of river channel and construction of a canal within the test facility would permit transportation of stages from Michoud to Mississippi Test Operations test stands.

All objectives were met during the second SA-4 booster flight qualification static firing on September 26. A record burning time was set when the inboard engines operated for 121.5 seconds and the outboard engines for 127.43 seconds. The SA-4 booster was removed from the static test tower on October 1; post-static checkout began. On the same day MSFC let a contract for construc-
SATURN ILLUSTRATED CHRONOLOGY

ation of the vertical assembly building foundation at Michoud.11

During September MSFC directed S&ID to develop a plan for C-5 dual plane separation. In dual plane separation, S-IC separation would be followed by separation of the S-II interstage.

The first industry-produced booster was started October 4 at Michoud when Chrysler began fabrication of S-I-8, the first of 21 Saturn C-1 boosters it was scheduled to produce.

Two J-2 engine full-thrust firing tests, of 50 and 94 seconds duration respectively, were successfully performed prior to a long-duration static firing on October 4. The long-duration engine test conducted by Rocketdyne was satisfactory throughout the scheduled 250 seconds operation.12 A second long-duration test of 220 seconds was successfully conducted on October 6 at the Santa Susana Test Facility.

During October MSFC began tests on the C-1 up-rated test stage SA-T4.5. Tests were to check the integrity of the propulsion system and effect of the 188K engines on the flame deflector. After tests were successfully concluded the stage went to Michoud for use in checking out facilities.

MSFC awarded a Saturn C-5 contract on October 5 for construction in Huntsville of a combined S-IC stage vertical assembly building and hydrostatic test tower.13 NASA Headquarters approved on October 12 the Saturn C-5 second stage (S-II) long-term research and development contract with S&ID.14

On October 15 NASA Headquarters approved the Saturn C-5 vehicle development schedule, Plan V.15 The plan includes funding and test program adjustments, assembly of the first S-IC flight stage at MSFC, and launch and ground test schedule changes.
In October NASA arranged to dredge an access channel to the Saturn C-5 Complex 39 Vertical Assembly Building and Launch Pad area at Merritt Island, Florida. On October 2 MSFC contracted for construction of a flame deflector for the MSFC Saturn S-IC test stand.

During October MSFC decided to fly a Jupiter-type payload with the fifth Saturn flight. Saturn C-1 second stage progress included completion of the S-IV Hydrostatic/Dynamics Stage at Santa Monica. It began its trip to MSFC via the Victory Ship Smith Builder on October 26, was transferred to the barge Promise at New Orleans, and delivered to MSFC on November 16 for six months of comprehensive dynamic testing.

The Launch Operations Center awarded a contract in October to modify the Complex 34 fuel, LOX, and liquid nitrogen servicing systems in preparation for Saturn C-1 Block II vehicle launches. SA-5 flight booster assembly was completed on November 6 and the booster transferred for pre-static checkout. Assembly of the SA-D5 booster for dynamics testing was completed on October 29. This stage was installed in the MSFC dynamics test tower on November 13, 1962. The SA-D5 booster simulated configuration of the final Saturn C-1 boosters which were expected to be used for manned flights.

During November Douglas awarded subcontracts for development of the S-IVB's 1750-pound thrust ullage motors and 150-pound thrust attitude control motors.

On November 8 the last S-IV battleship test with RL10-A-1 engines was completed at SACTO; 11 tests totaling 1137.6 seconds were accomplished. The A-1 engines were then removed and installation began of RL10-A-3 operational-type engines for the next phase of battleship hot firing tests.

Cost negotiations between MSFC and Boeing began
on November 15 for the long-term S-IC stage development and production contract.

The third Saturn flew on November 16. SA-3 was successfully launched from Cape Canaveral, carrying a full propellant load of 750,000 pounds. It rose to a height of about 104 miles. Flight range was 131 statute miles. Inboard engine cutoff occurred as planned after 141 seconds of flight; outboard engine cutoff came eight seconds later. Project High Water was performed as a secondary mission on SA-3 as on SA-2.81

On December 13 a contract was awarded for the construction of the Michoud S-IC Hydrostatic Test and Vertical Assembly Building. Also at Michoud, Chrysler Corporation began fabrication of the tenth and final research and development Saturn booster, S-I-10.82

In December design of Marshall's C-5 Dynamic Test Tower was completed; Douglas awarded a contract for fabrication of the S-IVB battleship tank; and, at Cape Canaveral, the Corps of Engi-
neers awarded a contract for design of the Launch Complex 39 Vertical Assembly Building.

Initial checkout of the S-IV all-systems vehicle began at Santa Monica in late December. Douglas began fabrication of S-IV-111, the first production S-IV flight stage.

Rocketdyne studied causes of the F-1 engine combustion instability first encountered during June 1962. Testing with modified engine hardware began in the latter part of 1962 and was scheduled to continue during 1963.

During early January 1963 construction began at the Huntington Beach Assembly Facility where Douglas Aircraft Company will assemble S-IVB stages.

In January MSFC began dynamics tests of the SA-D5 vehicle configuration. The Center finished expansion of its static test tower for Saturn C-1 Block II first stages.

Douglas completed checkout of the S-IV dynamic/facilities vehicle at Santa Monica and, during January, sent this vehicle to Cape Canaveral for use in checkout of Launch Complex 34 facilities.

MSFC shipped by barge the complete SA-4 vehicle from Huntsville to Cape Canaveral. The complete vehicle was erected on Launch Complex 34 by February 5.
On January 26 at SACTO, Douglas static fired the RL10-A-3-powered S-IV battleship vehicle. Test duration was 468 seconds. On February 1 Douglas shipped the S-IV all-systems vehicle from Santa Monica to SACTO for testing. At Launch Complex 37B the launch control center, automatic ground control station, and umbilical tower were completed on January 30.

During the first week of February NASA Headquarters announced a change in Saturn vehicle nomenclature. Saturn C-1 became Saturn I, Saturn C-IB became Saturn IB, and Saturn C-5 became Saturn V.

Saturn V hardware development was under way. In early February Boeing began S-IC bulkhead gore-forming operations at Wichita, Kansas.

On February 4 MSFC decided to modify the west side of the MSFC static test tower for F-1 engine testing. The modification would allow single F-1 engine tests to begin several months earlier than scheduled. The stand would later be reconverted for S-1 static testing. On February 8 MSFC awarded a contract for construction of a single F-1 engine test stand superstructure at MSFC.
Early in February S&ID began occupancy of the Seal Beach assembly and test facility where Saturn V second stages would be assembled and tested. Also in February S&ID successfully completed S-IC/S-II stage dual plane separation impingement tests.92

The first live Saturn I second stage would be powered by liquid hydrogen, still not flight proven. The S-IV battleship stage permitted tests of this
new technology. On February 18 and 19 S-IV battleship turbine spin-up tests were unsuccessful due to inadequate purge procedures; however, on February 23 a successful spin-up test was accomplished. Two days later the second battleship firing testing RL10-A-3 engines was terminated after 6.5 seconds when a hydrogen leak caused a fire at engine No. 4. No damage resulted.

On February 20 NASA began contract negotiations for design, fabrication, erection, and testing of
the crawler-transporter which would transport the Saturn V vehicle to the launch pad of Launch Complex 39. The contract was signed on March 29, 1963.

NASA Headquarters on February 20 approved the plan for modification of the basic Chrysler contract. The plan provides for redesign of the S-1 stages. For Saturn V, NASA Headquarters approved the Boeing S-IC definitive contract on February 21. Boeing will design, develop, and manufacture one ground test stage and nine flight stages at the Michoud Plant in New Orleans. On February 27 the Corps of Engineers awarded a design contract for the Saturn V test facilities at the Mississippi Test Operations.

MSFC awarded a contract in February for construction of three micrometeoroid satellites, two for flight and one for backup. The satellites, secondary payloads for Saturn I vehicles SA-8 and SA-9, would be used to obtain data on frequency and penetration of micrometeoroids in low earth orbits and to relay the information back to earth. On February 27 the first S-I-5 flight qualification static test (SA-11) was successfully conducted at MSFC for a planned duration of 32 seconds.
SATURN ILLUSTRATED CHRONOLOGY

On February 19 at the Michoud Plant, Boeing completed the first Y-ring for the S-IC test fuel tank; on March 4 the Y-ring was delivered to MSFC where the fuel tank would be assembled. Also at Michoud during February a contract was awarded for design and construction of the engineering building.

During February, construction of Test Stand 2B at SACTO was completed and the propellant pneumatic systems were installed and checked out.

On March 1 Rocketdyne successfully gimballed an F-1 engine during a hot firing test in California. On the same day qualification of explosive forming dies for S-II gore segments began at North American's El Toro Facility.

S&ID awarded a construction contract for the electro-mechanical mockup at Downey, California, on March 1; the mockup will be used for design and engineering verification of various S-II systems. On March 8 MSFC awarded a one-year contract to industry for operation of the Slidell Computer Facility at Slidell, Louisiana.

Dynamic testing of the SA-D5 vehicle was completed on March 7. On March 13 a second flight qualification static firing of S-I-5 was conducted.
for a planned period of 143 seconds. Subsequent analysis revealed propulsion system irregularities, and a third static firing was conducted on March 27 to confirm corrections. This test, successfully conducted for a duration of 144 seconds, concluded S-I-5 flight qualification testing. 109

NASA Headquarters approved MSFC procurement plan for four additional S-IVB stages on March 22.101 On the same day, at MSFC, checkout of the SA-5 instrument unit was begun.

Saturn SA-4, the fourth and last of the single-powered-stage, Block I vehicles, was successfully launched on March 28 from Launch Complex 34. The vehicle, carrying several Block II components for test, reached an altitude of 80 statute miles. Range was 218 statute miles and peak velocity 3660 miles per hour. As a secondary mission the No. 5 inboard engine was cut off at 100 seconds to test the vehicle engine-out capability. Overall performance of the flight was very satisfactory. 102

As the Saturn I project entered its final phase, work on the larger Satans proceeded. On March 12 Douglas, S-IVB stage contractor, invited bids for a construction contract for the Beta Complex at SACTO; the contract was awarded in late March. 103 Also in March S&ID placed a contract for the S-II battleship tank structure; fabrication of components began early in April. The first S-IC cylindrical skin segment was completed by Boeing at Wichita during April.

The S-I-D5 stage was removed from the Dynamics Test Tower at MSFC on March 18. The booster was shipped to Cape Canaveral on April 5 for use in facilities checkout of Launch Complex 37B. The stage arrived at the Cape on April 15 and was erected three days later. On April 19 the S-IV Dynamics/Facilities vehicle was erected. Calibration and mechanical checks were begun the week of April 24, followed by propellant loading tests early in May.
During early April Douglas finished checkout of S-IV-5 at Santa Monica. On April 19 the stage arrived at SACTO and was installed on Test Stand 2B on May 22. Static testing followed modifications and engineering changes.

On April 22 MSFC installed S-I-6 in its static test tower. The first short-duration static firing was successfully conducted on May 15 for a duration
Douglas Huntington
Beach Facility

S-IVB for mockup

of 33.75 seconds.

Douglas initiated S-IV all-systems propellant loading tests at SACTO on April 1. Tank bending and insulation cracking halted testing for field repair of the tank. On May 14 another test was performed and a hydrogen leak was detected in the common bulkhead. The vehicle was removed from Test Stand 2B for inspection repair on May 18.

At SACTO Douglas completed the S-IV battleship test program with a final LOX depletion firing of 444 seconds on May 4. Sixteen tests totaling 4302.5 seconds were accomplished using the RL10-A-3 engines. The complete battleship test program (including both A-1 and A-3 engines) had a total firing time of 5440.1 seconds. On May 13 a one-engine gimbal test was conducted. On May 21 the battleship tank was shipped from SACTO to MSFC. It was used by the Center for liquid hydrogen slosh test. Five of the six engines were shipped to MSFC and used on the dynamic vehicle for gimballing tests.
During May the S-IVB Huntington Beach fabrication and assembly building was completed and construction of the assembly tower begun. Also during May MSFC received the S-IVB forward area mockup from Douglas to be used to determine interface requirements between the S-IVB and instrument unit.

On May 18 at Michoud Chrysler finished clustering of propellant containers for S-I-8, the first booster fabricated by industry rather than by federal personnel at MSFC.¹⁰⁸

During early May the J-2 engine, used on S-IVB and S-II stages, was successfully fired for the first time at a simulated space altitude in excess of 60,000 feet. The engine developed 200,000 pounds thrust; after 20 seconds the test was terminated as programmed.¹⁰⁹

On May 13 NASA negotiated a firm cost proposal for incorporation of dual plane separation for S-IC/S-II stages with S&ID.¹¹⁰ During mid-May land clearing at Mississippi Test Operations began in preparation for the dredging of a barge harbor and access channel; a 10.5-mile track of railroad was completed into the test site.

Dynamic testing of the S-IV stage, instrument unit, and Jupiter-type payload was completed at MSFC during mid-May. On May 23 the Apollo boilerplate and associated units were installed and testing resumed; this phase of testing was completed on June 16. Also during May MSFC engineers completed the design of the S-IC stage transporter.

On May 28 MSFC awarded a contract for Federal Aviation Agency (FAA) certification flights of a modified B-377 aircraft. The aircraft would be used for transportation of the S-IV stage and other cargoes. Formal FAA certification was received on July 10.¹¹¹

During the first of June MSFC personnel began occupancy of the new Central Laboratory and Office.
Building. Also at MSFC construction of the Saturn V Dynamic Test Tower foundation began in early June. A full-duration, S-I-6 flight qualification static test was successfully conducted on June 6 for 142.37 seconds. The inboard engines were cut off by LOX low-level sensors at 136 seconds and the outboard engines six seconds later. On June 17 the stage was removed from the stand for post-static checkout.112

On June 5 limited beneficial occupancy was granted
SATURN ILLUSTRATED CHRONOLOGY

on the S-IC stage Vertical Assembly and Hydrostatic Test Facility at MSFC. Clustering of tanks for S-I-9, the last Saturn I booster to be fabricated at MSFC, began on June 4 and was completed on June 19; inboard engine installation was completed on July 17.

On June 17 the Corps of Engineers awarded contracts for excavation for lock and bascule bridge, emergency service building, dredging of East Pearl River and clearing of Saturn V complex at
the Mississippi Test Operations. At MSFC gimballing tests on engine No. 1 of the S-IV stage were completed in pitch and yaw directions on June 28. Three days later dynamic tests of the S-IV stage with Apollo boilerplate and launch escape system were completed.

Pre-static checkout of the S-IV-5 stage at SACTO began on June 18. During late June repair of the all-systems common bulkhead was completed. On July 6 the vehicle was installed on Test Stand 1 at SACTO. At Santa Monica, Douglas completed checkout of the S-IV-6 stage on July 19.

During June MSFC welded the upper bulkhead for the S-IC test fuel tank to the Y-ring. Also during June facility checkout of Launch Complex 37 Pad B was completed at Cape Canaveral. The S-IV Dynamics/Facilities vehicle was flown to the West Coast for flight performance test of the Pregnant Guppy aircraft.

The S-I-D5 stage departed Cape Canaveral on July 1 aboard the barge Palaemon, arriving at MSFC on July 6.
on July 14; the stage was used for additional dynamic testing. On July 9 MSFC directed Chrysler to proceed with fin redesign as part of the S-IB stage redesign effort.

On July 25 the Corps of Engineers awarded a contract for construction of S-IC and S-II stage test stand foundations at Mississippi Test Operations. At MSFC during late July the concrete towers for the S-IC Static Test Stand were completed and steel erection begun. The Center successfully welded the S-IC upper cylindrical skin section to the Y-ring.

During July construction of foundations was completed for Test Stand 1 and 3 at SACTO Beta Complex. Also at SACTO, Douglas initiated hydrostatic test and calibration of the S-IVB battleship tank on August 2.

On August 5 NASA completed S-IB contract negotiations with Chrysler Corporation at Michoud.
The following day S-IVB/Saturn IB contract negotiations were completed with Douglas Aircraft Corporation at Santa Monica.

On August 6 the Corps of Engineers awarded a construction contract for the Mississippi Test Operations Laboratory and Engineering Building. During August hydraulic dredging and fill operations were completed for the vertical assembly building at Cape Canaveral. MSFC awarded a contract on August 6 for assembly of two S-IC transporters; assembly began two days later.

On August 11 MSFC started the S-I-5, S-IU-5, and Payload toward Cape Canaveral. MSFC installed on the barge Promise a complete dynamics test vehicle of the SA-6 configuration in the dynamic test tower.

Also at MSFC during early August the S-IC aft area mockup was completed, with two F-1 engine mockups attached.

On August 5 the first attempt to acceptance fire the S-IV-5 stage at SACTO was aborted at 63.6 seconds due to an indication of fire in the engine area; however, inspection revealed an instrumentation malfunction in ground support equipment. On August 12 a successful 477-second, full-duration S-IV-5 flight qualification firing was conducted. During August the S-I-5 stage, booster
for the fifth Saturn flight vehicle, was erected at Cape Canaveral.

On September 1 Dr. Wernher von Braun, MSFC Director, announced a major reorganization of the Center. Progress in the Saturn program, and a rise in industrial participation to approximately 90 percent of the budget, necessitated the changes. The Center created two major subdivisions — Research and Development Operations and Industrial Operations. Research and Development Operations, composed of the nine technical divisions redesignated laboratories, was strengthened for its Huntsville-based operations and for specialized contractor assistance. Industrial Operations was created to direct the portion of the Center's work performed by prime contractors, mainly the development of stages and engines for the Saturn I, Saturn IB, and Saturn V multi-stage rockets.¹²³
In mid-September Douglas flew the S-IV-5 from SACTO to the Cape via the Pregnant Guppy aircraft. Other Saturn I progress in September included MSFC's final assembly of the S-I-9 and Douglas' beginning of pre-static checkout of the S-IV-6 stage.

The Saturn IB second stage contract modification was signed by Douglas and submitted to NASA on September 10. In the same month a joint MSFC/Manned Spacecraft Center Ad Hoc safety meeting considered Saturn IB crew safety and developed a "Preliminary Emergency Detection System" specification. Douglas began installing insulation on the S-IVB battleship stage, a heavier version for ground tests of the S-IVB flight stage.

During September MSFC completed Saturn V's S-IC forward area mockup and completed the S-IC-T (all systems) intertank assembly. Numerous research activities were underway: MSFC's Test Laboratory studied sound suppression problems, Jet Propulsion Laboratory (JPL) and Lewis Research Center began S-IC base heat-
ing tests. The contractor for the Saturn V second stage, S&ID of North American Aviation, began PERT reporting at Seal Beach on the S-II program with eleven networks reflecting about 8500 activities. On September 23 S&ID sent MSFC the S-II and forward interface mating mockups for use in mating tests of the S-IC forward skirt.127

In October technicians at Launch Complex 37B joined the S-IV-5 stage, payload, and instrument unit to the S-I stage. Pre-launch checkout of the SA-5 vehicle continued.128 In Huntsville MSFC completed the SA-5 flight operational sequence plan, providing for nine-hour completion of launch day tasks.

Progress on the other Saturn I vehicles continued during October. Chrysler completed assembly of the S-I-8 stage at Michoud.129 MSFC personnel discovered and corrected minor problems in the in-
instrument unit network of the SA-6 vehicle. The Center's Test Laboratory static tested the SA-7 booster for the first time, and on October 22 performed the second and final acceptance test on S-1-7 for a duration of 138.93 seconds. The Douglas second stage work at SACTO included initiation of pre-static checkout of the S-IV-6 and start of assembly of the S-IV-10.

NASA approved a Chrysler contract modification in October that provided for 12 Saturn IB boosters in lieu of operational Saturn I boosters. At Michoud, Chrysler continued design studies on components for these S-IB stages. MSFC approved the design release for the S-IB spider beam and completed the 50 percent design review of the gaseous oxygen line and diffuser. Douglas continued work on hydrostatic and dynamic test equipment for Saturn IB's second stage and began assembly of its S-IVB battleship stage at SACTO. Douglas began fabricating an S-IVB liquid hydrogen test tank in Huntsville for use in J-2 engine tests.

Boeing personnel at Michoud completed the Saturn V booster lower thrust ring assembly in October. MSFC personnel continued fabrication of the fuel tank and other major components for the S-IC test stage. S&ID continued fabrication and assembly of ground test S-II stages and construction of test stands. On October 31 MSFC received from Rocketdyne Division of North American Aviation the first production model of the huge F-1 engine.

NASA announced on October 30 a rephasing of Saturn manned flight missions. Saturn I manned missions were dropped and six Saturn I vehicles thereby deleted. The Saturn I program will terminate with completion of the ten unmanned flight vehicle research and development program. NASA approved speed-up of Saturn IB development. The more powerful Saturn IB vehicle will launch the Project Apollo manned flights in preparation for Saturn V's manned moon mission. "All-up" testing will be utilized in future Saturn flights.
SATURN ILLUSTRATED CHRONOLOGY

is, there will be no further flights with dummy stages; development flights will test Saturn vehicles in final configuration. 134

In November NASA postponed the fifth Saturn I flight because of technical problems with the SA-5 vehicle. 135 At SACTO Douglas placed the SA-6 vehicle’s second stage in a test stand. On November 22 Douglas conducted a successful 460-second acceptance firing of this S-IV-6 stage. 136 During November Douglas finished assembly of another Saturn I second stage, the S-IV-7. The first Chrysler-built booster, S-I-8, was in final check-out.

MSFC and Chrysler completed their study of the use of uprated H-1 engines in Saturn IB’s booster

156. Erection of SA-5 at Cape Canaveral, a. instrument unit, b. S-IV-5 stage, c. hoisting instrument unit, d. payload adapter, e. hoisting payload, f. payload, g. SA-5 at Launch Complex 37B

157. S-IVB liquid hydrogen test tank, MSFC
158. Michoud mechanic drilling holes in the first S-IC lower thrust ring.

159. S-II test stand construction at Santa Susana;
a. flame deflector in battleship test stand, b. all-systems test stand, c. battleship test stand.
stage. On November 8, after Chrysler determined engine load criteria and Saturn IB schedule impact, MSFC directed Rocketdyne to develop the more powerful engine. Douglas occupied its joint Engineering Development Systems Integration Laboratory/Systems Integrations Area facility on November 1. Second stages for Saturn IB (S-IVB) will be assembled and tested in this Huntington Beach facility. At Michoud during the month Chrysler completed a mockup of the S-IB spider beam and began manufacturing the second stage adapter.

NASA contracted on November 12 for a Saturn V launch pad at Kennedy Space Center, Complex 39. The pad will cost over $19 million. MSFC continued manufacture of Saturn V booster test stage components in November. The Center began S-IC stage test fuel tank assembly in its new Vertical Assembly Building. Additions to the Saturn V booster contract increased Boeing support to MSFC and raised the total value of the S-IC contract to more than $447 million. On November 8 MSFC contracted for a $13.4 million test complex at Mississippi Test Operations for the Saturn V.
second stage (S-II). At Seal Beach, S&ID continued assembly of the S-II battleship stage for static tests.

An important engine development milestone occurred on November 27 with Rocketdyne's first extended-duration firing test of the J-2 engine. This successful test of the 200,000-pound thrust, liquid hydrogen-fueled engine lasted for more than 8 minutes. The J-2 will power upper stages of both the Saturn IB and the Saturn V vehicles.140

On November 28 the name of the NASA facility at Cape Canaveral was changed officially to John F. Kennedy Space Center (KSC). MSFC in December postponed the SA-5 flight until January 1964 after discovering cracks in fuel line fittings on the S-I-5 stage. MSFC decided to replace critical tubing on it and all remaining S-I stages. On December 13 MSFC accepted from Chrysler at Michoud the first industry-built Saturn I booster (S-I-8).

By the end of December Chrysler had completed and MSFC had approved most of the structural redesign of Saturn IB's first stage.141 During the month NASA awarded the basic S-IVB contract modification which also accelerated the program for this Saturn IB second stage.142 Also, Douglas completed fabrication of major components for the S-IVB hydrostatic test stage.143

Saturn V progress during the month included MSFC's first F-1 engine tests on December 3 and 5. Duration of the first firing tests was 1.25 seconds. The second firing lasted 10 seconds.144 On December 20 NASA updated the Boeing S-IC contract to amend the stage delivery schedule.145 The contract as changed meant that MSFC rather than Boeing would provide the second S-IC flight booster. On December 27 NASA amended the prime S-II stage contract with S&ID in order to make the first S-II flight stage "live" instead of
During December NASA signed an agreement with the Military Sea Transport Service (MSTS); by the agreement the USNS Point Barrow would be used for shipment of S-II stages from the West Coast manufacturing site to test and launch sites.

January 1964 saw the beginning of the last phase of the Saturn I research and development program. The first four flight vehicles had carried dummy second stages. Now flight testing of second stages began.

Early in January technicians installed new tubing assemblies in the SA-5 booster. On January 24 Douglas second stage work under way at SACTO suffered a setback when the S-IV all-systems vehicle exploded during an attempt to static fire it. An overpressurized oxidizer tank caused loss of this vehicle as well as damage to the test stand.
DECEMBER 1963 - FEBRUARY 1964

and ground support equipment. On January 27 a blocked fuel line caused a two-day postponement of the SA-5 flight; technicians had failed to remove a flange used in checking the LOX line. 148

On January 29, 1964, NASA launched the fifth Saturn I. The liquid hydrogen-fueled second stage, flight tested for the first time, functioned perfectly. First-stage engines shut off as planned, 147 seconds after liftoff. The second stage separated, ignited, burned for 8 minutes, and with the attached instrument unit and sand-filled nosecone attained orbit as an earth satellite. Time from liftoff until orbit was 10.32 minutes. The almost 19-ton satellite was the heaviest ever orbited. 150

Meanwhile, MSFC continued production of test components and expansion of test facilities for Saturn IB and Saturn V multi-stage rockets. NASA announced in January that construction budgets for Saturn IB and Saturn V facilities at Michoud and the nearby Mississippi Test Operations would be $6,534,000 and $61,991,000, respectively, for FY 65.

In February MSFC shipped Saturn I's sixth flight booster and instrument unit from Huntsville to

166. a. Fifth Saturn I flight
b. second stage separation

166 a.
SATURN ILLUSTRATED CHRONOLOGY

KSC; the trip by barge took eleven days. Douglas flew the S-IV-6 stage to the Cape. On February 19 MSFC successfully completed meteoroid payload fairing separation tests for SA-8 and SA-9 missions. MSFC decided that the sixth Saturn I vehicle would have an active guidance system.

In February, Chrysler started fabrication of components for the first two Saturn IB boosters, utilizing some of the components available from cancelled Saturn I vehicles. Second stage accomplishments included Douglas's fabrication work on the S-IVB/IB-1 as well as further development of the S-IVB hydrostatic, all-systems, dynamic, and battleship test stages. Douglas also worked on an S-IVB facilities checkout stage.

Saturn V progress included MSFC's successful hydrostatic testing on February 8 of the first stage (S-IC) test fuel tank. During February the Center conducted seven static tests on an F-1 engine. At Edwards AFB an F-1 engine systems test on February 28 ended in an explosion and severe engine damage. Rocketdyne attributed the explosion to structural failure of the LOX pump. Rocketdyne's other systems tests were generally successful. S&ID continued manufacture of the S-II battleship stage thrust structure and aft skirt assembly in its stand at Santa Susana.
During February atmospheric physicists of MSFC's Aero-Astrodynamics Laboratory participated in a wind data study. In the ten-day search for atmospheric jet streams which affect rocket flight they released 161 weather balloons (rawinsondes). This was part of an extensive measuring program in the southeastern United States originated by MSFC to aid Saturn stage structural designers in studies on sound propagation.

In March Kennedy Space Center technicians worked overtime preparing for the sixth Saturn I launching. In Huntsville, MSFC performed vibration tests on the SA-9 instrument unit, S-IU-9, and also began dynamics testing on vehicles in the SA-8, SA-9, and SA-10 configurations. MSFC successfully static fired S-I-9, final booster manufactured by the Center, in a short duration test. Douglas continued second stage production and started static tests on the S-IV-7 at SACTO. Chrysler completed fabrication and replacement of critical tubing assemblies for S-I-10 at Michoud.

Saturn IB activities during March included begin-
ning of fabrication of components for the second S-IVB flight stage, the S-IVB/IB-2. Douglas also started assembly of the S-IVB dynamics test stage in its assembly tower at Huntington Beach. Early in March the Center awarded a contract to IBM for Saturn IB and Saturn V instrument unit digital computers and data adapters. MSFC also arranged for integrating the eight systems of the Saturn IB and Saturn V instrument units. These systems are: guidance, control, electrical, measuring, telemetry, radio frequency, structural, and environmental. International Business Machines (IBM), under a $5.5 million contract, will provide development plans, test plans, and procurement specifications during the five-year first phase of the contract. On March 23 NASA published Saturn IB mission assignments as coordinated with MSFC and Manned Spacecraft Center.

At Seal Beach, S&ID began assembly of the first Saturn V second stage (S-II) flight hardware. S&ID technicians conducted three successful tests of S-IC/S-II separation techniques. In Huntsville MSFC moved the completed S-IC test fuel tank to its load test facility on March 6. Other MSFC Saturn V activities during the month included con-
construction progress on the $30 million static test facility in the Center's West Test Area. This Saturn V static test facility will be used to test four S-IC stages in Huntsville: one flight booster built at Michoud by Boeing, a nonflight MSFC-built stage, and the first two S-IC flight stages, both to be built by MSFC. The Center completed the Dynamic Test Stand superstructure in March. 164

NASA completed Saturn I second stage negotiations with Douglas Aircraft Corporation on April 17; scope changes increased the Douglas S-IV contract by $22 million. During April the Apollo command module was mated to the spacecraft. This Apollo payload was then joined to the SA-6 vehicle at Cape Kennedy. 165 On April 24 the first industry-produced Saturn I booster arrived at MSFC from Michoud. The Chrysler-built S-I-8 stage went directly to MSFC's static test stand. On April 29 Douglas successfully acceptance fired the S-IV-7 stage. 166 During April the Center decided to make minor changes in the S-IU-9 on the basis of vibration test results. MSFC announced that the SA-10 vehicle would carry a meteoroid detection satellite as its payload. This type payload, also to be used for the SA-8 and SA-9 flights,
will aid the investigation of hazards from meteoroid particles to both manned and unmanned spacecraft. 187

During a Saturn IB procurement discussion early in April, NASA and MSFC discussed the problem of orbital debris. NASA inquired about the possibility of controlled reentry of the S-IVB stage. Marshall feared a critical loss of load capability if the S-IVB were redesigned to provide this, but study of the problem continued. Early in April Douglas completed the S-IVB structural test stage at Huntington Beach. On April 14 the forward dome of the dynamics test stage for Saturn IB second stages was damaged during production proof testing of the propellant tank assembly. At Michoud during April, Chrysler progressed in the fabrication and assembly of the S-IB-1, the booster stage for SA-201, the first Saturn IB flight vehicle. 188 Chrysler technicians were putting together two major structural assemblies, the second stage adapter and the thrust structure, for the S-IB-1.

Early in April MSFC negotiated with Radio Corporation of America (RCA) for 19 ground computer systems to be used in checkout, static test, and launching of Saturn IB and Saturn V vehicles. Cost of these systems and seven ordered last year will total more than $47 million. They will be used at Michoud, Mississippi Test Operations, and Cape Kennedy Launch Complexes 34, 37, and 39. 189 NASA completed instrument unit arrangements for Saturn IB and Saturn V during April. Under a prime contract effective May 1, IBM became lead contractor for work which, together with previous instrument unit assignments to IBM, is expected to cost $175 million over a five-year period. 179 NASA delegated management of this work to MSFC. Meanwhile, Army engineers requested bids for an MSFC facility to study noise characteristics and sonic environment data independent of full-scale firings. Saturn IB and V upper stage engine production and testing continued at Rocketdyne's Canoga Park and Santa Susana sites. Rocketdyne delivered the first J-2 production
174. Mockup of instrument unit for Saturn IB and Saturn V

175. First J-2 production engine delivered to Douglas

engine to Douglas for the S-IVB battleship during April.171

Saturn V booster facilities in Huntsville continued to expand during April. MSFC awarded a con-
TRACT WORTH MORE THAN $2 1/2 MILLION TO SULLIVAN, LONG, AND HAGERTY OF BIRMINGHAM, ALABAMA, FOR A 100-FOOT-HIGH HANGAR TO HOUSE LARGE COMPONENTS OF THIS S-IC STAGE. NASA PROVIDED ALMOST $6 MILLION ADDITIONAL SUPPORT FOR THE S-IC BOOSTER PROGRAM AT MICHoud IN A CONTRACT SUPPLEMENT AWARDED THE BOEING COMPANY FOR ADDITIONAL RESEARCH, QUALITY ASSURANCE, AND MISSION PLANNING. AT DOWNEY, CALIFORNIA, S&ID COMPLETED FABRICATION OF TWO GIANT BULKHEADS FOR THE SATURN V SECOND STAGE (S-II). NASA ALSO MODIFIED S&ID’S CONTRACT IN APRIL, ADDING MORE THAN $12 MILLION TO PROVIDE FOR VERTICAL CHECKOUT OF THE S-II STAGES AT SEAL BEACH AND AT MISSISSIPPI TEST OPERATIONS. THE CENTER STUDIED GROUND SUPPORT EQUIPMENT (GSE) NEEDS FOR SATURN V. ON APRIL 22 MSFC HELD A CONFERENCE ON ELECTRICAL SUPPORT EQUIPMENT (ESE) TO BE FURNISHED BY GENERAL ELECTRIC. MSFC PERSONNEL PREPARED A PRELIMINARY SCHEDULE OF SATURN V GSE DELIVERIES AND INSTALLATION.
Early in May stress corrosion was discovered in aluminum tube assemblies in the S-IV-6 stage. These were replaced without delay to the SA-6 flight. However, minor problems in fueling the S-IV-6 stage caused a six-day launch delay and GSE compressor trouble held up the flight two days. MSFC negotiated with Douglas on May 19 for Saturn IB ground support equipment and additional Saturn IB second stages. On May 27 MSFC and Douglas personnel agreed on a Douglas program of computer reporting for MSFC on S-IVB/IB status.

On May 4 Saturn V personnel met in Washington to consider the Apollo reliability and quality assurance program. During the month MSFC completed a plan for integrating computer information from Saturn V systems, stages, and projects. MSFC and Manned Spacecraft Center continued Saturn/Apollo interface study in meetings during May.

The sixth Saturn I flight occurred on May 28. The SA-6 flight was successful, as all preceding flights had been. The vehicle's guidance system, active in this flight for the first time, corrected a deviation from the planned trajectory caused by premature shutdown of one of the engines. The payload, 37,300 pounds and slightly lighter than that of the record SA-5 load, included a boilerplate Apollo spacecraft which reentered the atmosphere and disintegrated as expected after 3.3 days and 50 orbits of the earth. On the day this flight took place, MSFC started the seventh flight booster and instrument unit on the water voyage to Cape Kennedy.

At the end of May 1964 four Saturn I flights remained. Fabrication of stages for the Saturn IB was under way. Saturn V, the launch vehicle for the Apollo mission, began to emerge. Ground test stages were taking form, and huge facilities that would test them were rising at MSFC,
Michoud, Mississippi Test Operations, and contractors' sites.

During June MSFC, KSC, Manned Spacecraft Center, and associated contractors evaluated the sixth Saturn I flight. Included in their data were films from eight onboard movie cameras recovered after the flight and nearly 1200 performance measurements telemetered to ground stations during the flight. Analysis affirmed success of the onboard guidance system, severely tested by unexpected shutdown of one of the first stage engines. This ST-124 guidance system became active shortly after second stage ignition and corrected trajectory deviation. After the SA-6 review NASA decided to lighten the S-IV stage on the four remaining flights by reducing fuel reserve.\(^{174}\)

Other Saturn I activity in June included arrival of SA-7 payload and vehicle major components at Cape Kennedy;\(^{175}\) MSFC's successful ground firing

178. Saturn IB and Saturn V progress at time of sixth Saturn I flight; a. LOX tank assembly for S-IVB stage, upper stage for Saturn IB and V, b. first Saturn V second stage, S-IV, flight hardware, c. Saturn V booster full scale mockup at Michoud

179. On-board camera photograph of SA-6 stage separation
of S-I-8, the first booster produced by private industry; and start of assembly of S-IU-8, instrument unit for the SA-8 vehicle.176

NASA's middle-sized Saturn, Saturn IB, progressed during June to beginning of manufacture of the first flight booster. By mid-June North American Aviation-Rocketdyne had delivered the first four uprated 200,000-pound thrust H-1 engines to Michoud for the Saturn IB booster.177

Chrysler began clustering tanks of the first flight booster, S-IB-1, during June.178 Douglas continued work at Huntington Beach on the Saturn IB second stages and progressed with assembly of a facilities checkout stage. Instrumentation problems delayed cold flow tests on the second stage propulsion test stage, the S-IVB battleship, but Douglas reported successful checkout of the S-IVB structural test stage before testing. A ground support equipment development highlight at Huntington Beach was successful checkout of second stage prototype automatic test equipment.
SATURN ILLUSTRATED CHRONOLOGY

With Saturn V manufacture continuing, NASA announced during June that it would study the feasibility of increasing the weight-lifting capacity of the vehicle by more than one-third. MSFC sought proposals on which to base contracts for preliminary studies expected to cost about $2 million. 179

In early July MSFC completed the last phase of the Saturn I dynamic test program with successful tests of the SA-8, 9, and 10 vehicle configuration. MSFC's Saturn I dynamic test stand would now be one of the complex of MSFC Saturn IB and Saturn V test stands.

183. Fabrication of Saturn V; a. fuel and LOX tanks being built in Huntsville, for the Saturn V first stage, S-IC, b. structural test stage thrust unit at Seal Beach, for the Saturn V second stage, S-II
Preparation for the seventh Saturn I flight included installation of a nonpropulsive propellant tank venting system in the second stage to reduce tumbling of the vehicle's payload in orbit. Also, following discovery of "stress corrosion" cracks,
all eight engines were removed from the SA-7 vehicle’s first stage and sent back to Rocketdyne where aluminum alloy domes were substituted.181

The final three Saturn I vehicles neared completion. Douglas employees at Santa Monica finished inspecting the S-IV-8 stage before its delivery to SACTO for static test. Chrysler personnel at Michoud completed pre-static checkout of the final Saturn I Booster, S-I-10.182 Meanwhile, MSFC personnel at Huntsville conducted checkout of instrument unit, S-IU-9.183 Besides these events in July, NASA amended its S-IV stage contract with Douglas to add research and development work valued at more than $21 million.

By mid-July Chrysler at Michoud had clustered all tanks for the first Saturn IB booster, S-IB-1, and by the end of the month installed all eight up-rated H-1 engines.184 Chrysler worked on the second booster (S-IB-2) components and began the
third booster. Chrysler personnel also began converting the Saturn I dynamic test booster to a Saturn IV dynamic test stage. After dynamic tests this stage will be used to check out Kennedy Space Center Saturn IB launch facilities. This modified stage was designated S-IB-D/F.185 Meanwhile, Douglas second stage (S-IVB) progress during July included insulating the dynamic test stage, rework on the battleship stage, and hydrostatic testing for leaks in the liquid hydrogen tank of the structural test stage.186 Douglas continued work on ground support equipment.

Saturn V booster production at Michoud was several weeks behind schedule in July; parts shortages...
accounted for some of the delay. Third stage problems included rupture of the S-IVB hydrostatic test stage because of two faulty weld repairs: tests were considered complete, however, because sufficient information had been obtained.

The first of two test stands for the Saturn V second stage (S-II) was completed by North American Aviation at its Santa Susana Field Laboratory in July. On July 11 Douglas delivered its first Saturn V third stage test hardware to Huntsville. Flown from Long Beach, California, this S-IVB stage forward skirt would connect the top of that stage to the vehicle instrument unit.

Saturn V contract action included addition of over $22 million to Rocketdyne's F-1 engine contract for acceleration of combustion stability research and a variety of hardware and services, a $3.6 million J-2 facility contract to Rocketdyne, a
launch vehicle computer contract with IBM, and two contracts for more than $2 million each to Douglas for S-IVB rocket stage items and S-IVB automatic checkout equipment, respectively. On July 13 Army's Corps of Engineers of Mobile, Alabama, acting as NASA's agent for Mississippi Test Operations construction, awarded a contract worth more than $17 million for construction of the first test position on the giant S-IC dual test stand.

On August 6 at Sacramento Douglas personnel successfully acceptance fired S-IV-9, second stage of the SA-9 flight vehicle. During August the Fairchild Hiller Corporation continued work on meteoroid detection satellites to be orbited by the last three Saturn I vehicles. Each satellite, soon after second stage separation and orbit, would extend its wings to a span of 96 feet. During the month NASA named the satellites "Pegasus" after the winged horse of ancient mythology. Problems with their development threatened the schedule of the last three Saturn I launches.

NASA launched its seventh Saturn I from Cape Kennedy on September 18. The two-stage rocket placed approximately 37,000 pounds of payload into an orbit similar to the interim orbit for future three-man Apollo lunar missions (145-mile apogee, 112-mile perigee). Boilerplate Apollo spacecraft command and service modules, instrument unit, and the spent S-IV stage comprised the satellite. All major test objectives were met: final development testing of Saturn I propulsion, structural, guidance, and flight control systems; development testing of Apollo spacecraft structure and design; demonstration of physical compatibility of launch vehicle and spacecraft; and test-jettisoning of spacecraft launch escape system. Cameras ejected after the flight were abandoned because of Hurricane Gladys, but some were later unexpectedly recovered. After this flight Saturn I was declared operational, achieving its goal three vehicles early.
Saturn IB accomplishments by late September included MSFC's strengthening of the structure and start of component assembly for S-IU-200V, a nonflight Saturn IB instrument unit. At Michoud, Chrysler personnel were modifying flight tail section, and other Saturn I test stage components, with a new spider beam. Douglas had completed propellant loading in an S-IVB propulsion test stage, the S-IVB battleship. A Saturn IB program assessment had caused MSFC to extend the test period for this stage and to terminate the all-systems test program. The S-IVB all-systems test stage became a facilities checkout stage. MSFC was reviewing the S-IVB battleship test program on a daily basis, having found that problems with propulsion testing were affecting the Saturn IB second stage development schedule. 190

Progress on both Saturn V engines was substantial by the end of September. MSFC had conducted a number of F-1 firing tests, and Rocketdyne was testing F-1 engine systems at Edwards. Four J-2 engines had been tested, accepted, and delivered to stage contractors. 191
North American Aviation-S&ID announced completion of a 33-foot-wide bulkhead for the hydrogen-powered Saturn V second stage during September. The Electro-Mechanical Mockup for the S-II stage was completed at Downey, California, but not fully instrumented. Douglas personnel began...
SATURN ILLUSTRATED CHRONOLOGY

fabricating the first flight version of the Saturn V third stage, the S-IVB/V-1.

NASA had completed negotiations with Bendix Corporation for the Saturn V instrument unit guidance platforms by the end of the month.

On October 6 MSFC concluded three and one-half years of Saturn I first stage static testing with a test of the final booster. The 156-second test indicated that the S-I-10, manufactured by Chrysler at Michoud, was satisfactory. The major units of the SA-9 vehicle went to the Cape in October, and the other two Saturn I vehicles neared completion. Development of the Pegasus satellites to be carried by the last three Saturn I vehicles proceeded. During October Fairchild Hiller Company conducted tests on a canister designed to provide power, communication, and data electronics for these meteoroid measurement satellites. An adapted Apollo spacecraft service module would protect each satellite from aerodynamic heat before its injection into orbit and operation.

Two flight booster stages for the Saturn IB were visible in the Chrysler Final Assembly Area at Michoud in October. The first, S-IB-1, was ready for inspection before ground test firing. Tank clustering of the S-IB-2 was complete and other assembly operations were underway. Also near completion was S-IB-D/F, dynamic test stage converted from Saturn I. Meanwhile, Douglas had four. Saturn IB second stages under way. As these S-IVB flight stages were being manufactured, Douglas was conducting tests of the propulsion subsystems and of engine chilldown procedure before full-duration static firing of the J-2 engine-powered S-IVB battleship.

Progress on Saturn V test facilities was substantial in October. Personnel at the Rocket Engine Test Site at Edwards, California, conducted four consecutive full-duration F-1 engine test firings and approved the operational readiness of the new
Dr. von Braun assigned operation of the site to Rocketdyne after officially accepting it on behalf of NASA. The MSFC Saturn V test complex, Mississippi Test Operations, observed its stand.
third anniversary. Mississippi Test Operations will conduct final ground firings of the two lower stages of Saturn V. Testing of the other stage, S-IVB, will occur at facilities in California. S-IVB will have been flight-proven in modified form in Saturn IB flights before its use in Saturn V.

A surprising recovery of films from the seventh Saturn I flight took place in November. Almost two months after the flight, two barnacle-encrusted capsules, each containing 100 feet of color motion-picture film in good condition, were found, one on a beach of an island in the Bahamas, the other in San Salvador in Central America. Hurricane weather had thwarted recovery efforts after the flight.196

Other Saturn I activity in November included erection of the SA-9 on the launch pad at Cape 94
Kennedy. The SA-8 vehicle, to fly after SA-9, progressed; post-static checkout of the S-I-8 stage neared completion, instrument unit checkout was under way, and the S-IV-8 stage was acceptance fired. Stages of SA-10, the final vehicle, were manufactured; Chrysler was making minor modifications and repairs in the S-I-10 stage before post-static checkout, Douglas transferred the S-IV-10 stage to the Sacramento facility where it would be acceptance fired, and in Huntsville MSFC was assembling the S-IU-10 components on schedule. Development problems on the Pegasus satellite, payload for remaining Saturn I vehicles, were being solved, and there was considerable test activity on parts of the prototype satellite.

With the first Saturn IB booster complete, Chrysler continued manufacture and assembly of the next three during November. Technicians removed engines from the first booster, S-IB-1, and shipped them to Neosho for LOX dome retrofit. Engines would be reinstalled at Michoud before delivery of the stage to MSFC for static test. At SACTO Douglas employees test fired, for the first time, the auxiliary propulsion system for the
SATURN ILLUSTRATED CHRONOLOGY

Saturn IB second stage, S-IVB. This system consists of six 150-pound thrust engines which provide attitude control after the main engine (J-2) shuts down and the S-IVB stage enters into the coast phase of flight. In Huntsville MSFC finished assembly of a nonflight Saturn IB instrument unit, S-IU-200V. On November 24 a successful S-IVB battleship firing occurred.

NASA provided for construction of Pad B of NASA's Saturn V Complex 39 at Merritt Island, Florida, by an almost $20 million firm-fixed-price contract awarded in November. At MSFC the first Saturn V booster stage, S-IC-T, a nonflight version, was partially assembled; the Center used parts primarily from the Boeing Company. Douglas was checking out the S-IVB dynamics test stage, manufacturing S-IVB flight stages, and conducting propulsion systems tests. On November 24 a successful S-IVB battleship firing took place.

The Saturn V second stage, S-II, activity by North American Aviation included, on November 9, a successful single engine ignition S-II battleship test, hydrostatic tests of the common bulkhead test tank which certified repairs, and buildup of

208. First Saturn V booster, a nonflight version for static tests
209. First short-duration S-IVB battleship firing
the structural test vehicle, S-II-S.

By the end of December Saturn I launch preparations at Cape Kennedy were proceeding on schedule toward the established SA-9 flight date. The S-I-8 stage was ready for shipment but would be stored for a brief period before February shipment to the Cape since SA-9 would fly ahead of SA-8. Fairchild Hiller was fabricating Pegasus B. General Electric Company had finished vibration and vacuum tests on Pegasus A. On December 29 Pegasus A, the first meteoroid detection satellite, arrived at Cape Kennedy from where the SA-9 would boost it into space and orbit of the earth.

Saturn IB’s first flight stage booster, S-IB-1, was in pre-static checkout in December. Chrysler was completing installations in assembled S-IB-2 units and assembling spider beam for S-IB-3. Others began assembling the S-IB-4 tail section. Meanwhile, test booster S-IB-D/F was modified,
reclustered, prepared for shipment, and on December 22 departed New Orleans for Huntsville for dynamic testing. Douglas shipped the first completed S-IVB stage, S-IVB-D, a structural replica of the flight stage, from Huntington Beach on December 8. First and second Saturn IB stages and an Apollo spacecraft were scheduled to be united for complete vehicle tests in MSFC's 200-foot-tall Dynamic Test Stand.

During December Douglas accomplished a series of test firings of the S-IVB battleship stage at SACTO. On December 23 a full-duration (415-second) firing of the battleship occurred.

Contract for a new Saturn V test stand was signed in December. This second S-II test stand at Mississippi Test Operations will cost over $8 million. The U. S. Army Corps of Engineers, Mobile District, construction agent for NASA's Mississippi Test facilities, awarded the contract to Malon Construction Company of Koppers Company, Inc. In Huntsville MSFC prepared for the first single-engine firing of the Saturn V test booster S-IC-T and perfected ground support equipment. MSFC's Manufacturing Engineering Laboratory (ME Lab) manufactured and assembled the LOX bulkhead of structural test stage S-IC-S in less than a month, setting a new record for building a bulkhead.
DECEMBER 1964 - JANUARY 1965

From Michoud Boeing shipped to MSFC a 33-foot-diameter S-IC stage thrust structure for structural testing. Other Boeing work included building the first Saturn V fin constructed away from Marshall Center. North American Aviation-Rocketdyne accomplished Flight Rating Tests (FRT) of the F-1 engine; five of these would power the Saturn V first stage. Saturn V second-stage accomplishments included North American Aviation-S&ID's testing of J-2 engine gimballing on the Electro-Mechanical Mockup at Downey, California; replacement of LOX bulkhead of the S-II-S; a load and pressure test of the S-II stage; and completion of S-II battleship single engine firings. A major milestone during December was North American Aviation-Rocketdyne's completion of Preliminary Flight Rating Tests (PFRT) of the J-2 engine; five of these would power each Saturn V second stage and one would power the third stage.

Two Saturn IB test stages arrived at MSFC on January 4, 1965; the S-IB Dynamic/Facilities
checkout stage, S-IB-D/F, from Chrysler Corporation's Space Division at Michoud and the S-IVB Dynamic stage, S-IVB-D, from Douglas.

On January 7, ME Lab began structural fabrication of S-IU-200S/500S.

On January 13 technicians at KSC attached Pegasus A, encased in its Apollo service module shroud and adapter, to the S-IV-9 stage in preparation for scheduled launch. The following day at Launch Complex 37B technicians mated the Apollo BP-16 Command Module to the Apollo Saturn (AS-9) vehicle.207

At Douglas Aircraft Company's Sacramento Test Center on January 21 there was a successful full-duration static firing for 480 seconds of the Saturn I S-IV-10 stage. On this same date the S-IB stage contractor, Chrysler, began clustering propellant tanks for the S-IB-3 at the Michoud Facility and, at MSFC, ME technicians completed assembly of the S-IU-10 and structural fabrication of S-IU-200D/500D and began component assembly on the latter.208
MSFC completed negotiations with Douglas on January 28 for the remaining eight S-IVB/IB stages and a set of ground support equipment. Another Saturn IB milestone on this date occurred when KSC awarded R. E. Clarson, Inc., a $217,900 contract for Phase II modification of the Launch Complex 34 service structure to support Saturn IB launches. 209

Workmen at Seal Beach, California, on January 31 completed assembly of the S-II-S stage five days ahead of schedule.

MSFC on February 1 completed component assembly of the instrument unit, S-IU-200D/500D, for the Saturn IB and Saturn V dynamic tests. NASA began February of 1965 with several Saturn milestones. On February 19 the space agency amended Chrysler's S-I/S-IB contract (NAS8-4016) to include prelaunch checkout support, an amendment that added about $34,642,878 to the contract cost. 210 Also in the Saturn program, effective this date, MSFC announced the following major revisions in the S-II stage program: cancellation of the dynamic test stage, S-II-D; substitution of the structural test stage, S-II-S, as a dynamic stage; transfer of the all-systems test stage, S-II-T, from Santa Susana to Mississippi Test Operations; assignment of the facilities checkout stage,
S-II-F, directly to KSC; and scheduling of an end to the Electro-Mechanical Mockup test program.211

On February 2 Chrysler at Michoud completed pre-static checkout of the first flight S-IV stage, S-IB-1, and began preparations for shipping it to MSFC for static tests.212 Across the country in the Saturn V program North American Aviation's S&ID began transfer of the S-II-S stage from the vertical assembly building at Seal Beach to the structural test tower, a task completed on February 3.213 On this same date ME technicians prepared the S-IU-8 for shipment to KSC.

Workmen at Seal Beach completed on February 5 the S-II-S stage, first ground test stage in the Saturn S-II stage program.

The Mobile District, U. S. Army Corps of Engineers, awarded a $4.3 million contract February 8 covering construction of the S-II stage Service and Vertical Checkout Building and the Cryogenic

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Cryogenics dock at MTO after completion}
\end{figure}
Barge Service Building at Mississippi Test Operations. On this same date S-IU-200F/500F component assembly began at MSFC. Also technicians completed structural fabrication of S-IU-200S/500S.

Douglas completed final assembly of the S-IVB facilities checkout stage, S-IVB-500F, on February 12 and turned the stage over to NASA at Seal Beach. Workmen then loaded it aboard the NASA barge Orion for transportation to SACTO. At KSC technicians completed the countdown demonstration test for SA-9.

With launch only two days off, MSFC and Fairchild-Hiller Corporation technicians at KSC modified Pegasus A on February 14 so that one frame or logic group of the wind panels could serve as a detector for radiation-induced meteoroids.

On February 16 NASA launched from KSC the Saturn I SA-9 vehicle. It performed excellently during the flight and placed the Apollo boilerplate spacecraft, BP-16, and the first Pegasus satellite into separate orbits. The Pegasus A satel-
SATURN ILLUSTRATED CHRONOLOGY

Satellite deployed its "wings" to a span of 96 feet and exposed 2300 square feet of instrumented surface to gather meteoroid data, sort the information, and transmit it to Earth receiving stations. NASA launched SA-9 instead of SA-8 on this date because SA-9's S-I stage, built in-house, had progressed through manufacture and testing more rapidly than had S-I-8.

The S-IVB-500F arrived at SACTO February 17 and installation began in Beta III test stand. On February 19 MSFC ME Lab began structural fabrication of S-IU-500FS.

Douglas shipped S-IV-8 to KSC from SACTO on February 23. Also on this date Douglas personnel completed post-static checkout and repair of the S-IV-10 stage and removed the stage from Test Stand Beta II at SACTO. The following day Douglas initiated pre-static checkout of the first flight S-IVB stage, S-IVB-201, at the Space Systems Center at Huntington Beach.

On February 28 the first industry-produced Saturn I first stage, S-I-8, arrived at KSC from Michoud.

During February fabrication of major structural subassemblies for S-II-1 had begun at Seal Beach. Also during February NASA modified the H-1 engine research and development contract to include uprating the H-1 from 188,000 pounds thrust (188K) to 200K for Saturn IB application. NASA approved modifications to the Rocketdyne H-1 engine production contract converting it from cost-plus-fixed-fee (CPFF) to cost-plus-incentive-fee (CPIF).

On March 1, 1965, workmen ahead of schedule moved the S-IC-T out of MSFC's ME Lab and on to the static test stand where they erected it in the stand. The following day MSFC shipped the instrument unit for SA-8 (S-IU-8) to KSC while technicians erected the S-I-8 stage on Launch Complex 37B at the Cape.
The S-IB-1 stage left Michoud aboard the barge Palaemon for MSFC on March 6. Eight days later the stage arrived at MSFC. Meanwhile, on March 10, ME Lab technicians completed component assembly and structural modification of S-IU-200S/500S.

On March 15 Chrysler technicians placed the S-IB-1 into a static test stand at the MSFC complex in Huntsville, and began readying the stage for static firing. This same date the S-IU-200S/500S arrived at MSFC's structural test facility.

KSC technicians at Launch Complex 37B on March 17 erected the S-IV-8 stage and the S-IU-8 atop the S-I-8 stage and began a series of systems tests including radio frequency checks, tanking procedures, and simulated flights.

Technicians at Michoud on March 24 installed the S-IC-D thrust structure in the vertical assembly building.

On March 26 NASA and Boeing signed a supplemental agreement incorporating a new Saturn V delivery schedule called Plan VIII.

At MSFC, on March 29, S-IU-500V structural fabrication began. The following day S-IU-500FS component assembly began. NASA on March 31 approved award of the Saturn IB/V instrument unit contract to IBM. This contract (NAS8-1400) was the first major incentive contract to be negotiated in the Saturn IB program.

In March NASA delineated specific management roles for the Saturn IB/Centaur System to MSFC and Lewis Research Center. MSFC received project management for the Saturn IB/Centaur System and Lewis management of the Centaur System.

In the Saturn IB program on April 1 the S-IB-1 performed successfully in its first static firing.
with engine cutoff initiated by the control operator after 35 seconds. Also on April 1 in the IB program NASA authorized Rocketdyne to increase the 200K H-1 engine to 205K to support Saturn IB application to even larger missions.225

On April 7 Major General Samuel C. Phillips, Director, Apollo Program, NASA, forwarded to MSFC an amendment to the FY 65 Research and Development Appropriations. This authorized transfer of $5 million to the Saturn IB Program
The first single-engine S-IC-T firing occurred at MSFC on April 9.

Apollo Spacecraft BP-26 arrived at KSC on April 10 and entered receiving inspection. Also on this date MSFC successfully test fired a single F-1 engine on the stage for 16.73 seconds. Three days later Chrysler test personnel successfully static fired the S-IB-1 stage the second time at MSFC; the test lasted 142 seconds. The next day, April 16, Marshall personnel successfully test fired all five of the S-IC-T stage's F-1 engines. This first
S-IC-T five-engine test occurred two months ahead of schedule and lasted 6.5 seconds. 227

On April 20 workmen loaded the S-IB-1 stage on board the Palaemon for its return trip to Michoud to undergo post-static checkout and modification. 228

Pegasus B, second of the micrometeoroid detection satellites, arrived at KSC on April 21 to be readied for launch.

MSFC on April 22 began negotiating with Chrysler for an equitable adjustment to contract NAS8-4016. This resulted from NASA program redirection and termination of six S-I stages. Negotiations would continue throughout 1965.

On April 24 the S-IB-1 arrived at Michoud from MSFC where it had undergone static tests. On this same date, at Santa Susana, S&ID conducted the first five-engine ignition test of the S-II battleship. 229

MSFC on April 29 completed assembly of the S-IU-200F/500F.

The S-IVB contractor loaded the first flight S-IVB stage aboard the NASA barge Orion on April 30 for shipment to SACTO. Also on April 30, during the final test of S-II-S at Seal Beach, a failure occurred that seriously damaged the stage. 230
S&ID activity during April included installation and checkout of Electro-Mechanical Mockup systems, beginning vertical assembly of S-II-F, and the first test to ultimate load on the S-II-S/D. In April also, NASA modified a Boeing contract to provide engineering services and instrumentation for the Saturn V dynamic test program.

On May 4 the S-IVB battleship stage successfully performed a hot-gimbal, full-duration firing at SACTO to conclude the Saturn IB battleship hot-firing test phase. The following day S-IVB-201 arrived at Courtland, California, aboard the barge Orion. There workmen unloaded it and placed it on the S-IVB transporter for the remainder of its journey to SACTO. The next day, May 6, S-IVB-201 arrived at SACTO, and preparations began immediately for positioning it in the Beta III test stand.

On May 7 at Santa Susana there was a successful 10-second cluster firing of the S-II battleship after two previous unsuccessful attempts.

Douglas on May 10 delivered the tenth and last Saturn I S-IV stage (S-IV-10) to KSC aboard the Pregnant Guppy aircraft.

MSFC submitted the procurement plan for nine additional Saturn V S-IVB stages to the NASA
Office of Manned Space Flight (OMSF) on May 17 for approval.

Final period of countdown for the SA-8 launch started on the afternoon of May 24 and, except for a scheduled 35-minute hold, continued uninterrupted to liftoff. Liftoff occurred the next day, May 25, as SA-8 flew in the ninth successful Saturn I flight. SA-8 placed in orbit Pegasus B. 233

Workmen on May 25 successfully completed vertical assembly of the S-II-T, in progress at Seal Beach since February. On May 26, the first stage S-I-10, for the tenth and last Saturn I launch vehicle left Michoud on the barge Promise for KSC.

During May MSFC and Rocketdyne completed negotiations for conversion of the J-2 contract to an incentive type. 234 Also in May S&ID structural assembly of the S-II-2 flight stage began at Seal Beach. And technicians at SACTO began conversion of the S-IVB battleship from the Saturn IB to the Saturn V configuration.

S-IU-10, final instrument unit for the Saturn I vehicles, arrived at KSC from MSFC on June 1, a day before KSC technicians erected the S-I-10 on Launch Complex 37B.

On June 8 the launch support crew at KSC erected
the S-IV-10 atop the S-I stage on Launch Complex 37B. KSC technicians on June 9 erected the S-IU-10 on the SA-10 vehicle and began connecting umbilicals of the launch support equipment.

CCSD shipped the S-IB-2 stage on June 12 from Michoud to MSFC.

After arriving at Seal Beach from SACTO on the barge Orion, the S-IVB-500F stage on June 13 went aboard the USNS Point Barrow for its trip to KSC via the Panama Canal.

MSFC workmen completed structural assembly of S-IU-500V on June 14.

The S-IB-2 stage arrived at MSFC's Huntsville dock on June 19 from where Chrysler and MSFC personnel moved it to the static test tower in preparation for a series of acceptance firings. The S-IU-200F/500F left MSFC on this date en route to Michoud to await reshipment to KSC. At KSC it would be used in facilities checkout of Launch Complex 34. On June 19 at SACTO test
personnel attempted the first Saturn V development firing of the S-IVB battleship; the test ended after several seconds because of an automatic cutoff. The Apollo BP-9 service module and service module adapter, modified by MSFC to serve as a shroud for the Pegasus C experiment, arrived at KSC on June 21. Meanwhile at KSC, to avoid delay of the SA-10 launch and also delay of planned Launch Complex 37B modification, NASA shifted the launch to July 30, ahead of the Gemini 5 launch.

In a last captive-firing condition test at MSFC S-IC-S on June 21 withstood 140 percent of the design load. The Fairchild-Hiller Corporation shipped the third meteoroid detection satellite, Pegasus C, to KSC on June 22 aboard the Pregnant Guppy aircraft.

After investigating ways to reduce the complexity of the Saturn/Apollo onboard communications and tracking systems, MSFC on June 28 recommended and NASA approved deletion of the MISTRAM transponder and use of the more reliable AZUSA "C." Both were not required for program success. On this date also the S-II stage simulator became the first "space age" hardware to pass through the

239. Launch Complex 34 gantry at KSC
240. Pegasus with partial deployment of wings
241. Opening of locks at MTF
Mississippi Test Operations lock and into the site's seven and one-half mile canal system.

The Point Barrow arrived at KSC on June 29 with the S-IVB-500F. Arriving at KSC on June 29 was the last boilerplate version of the Apollo spacecraft command module. It arrived from MSFC along with the launch escape system.

During June MSFC began contracting negotiations with Rocketdyne for the 22 remaining engines needed for the 12 Saturn IB vehicles. S&ID technicians at Seal Beach began assembly of S-II-3, the third Saturn V flight stage.

A July 1 "third firing" of the Saturn IVB battleship stage (Saturn V configuration) at SACTO resulted in an explosion and fire that damaged wiring and instrumentation.240

On July 2 NASA at KSC awarded a $6,745,000 construction contract to adapt Launch Complex 37 for Saturn IB. Also at KSC, following completion of premating systems checks and panel deployment checks, technicians on July 6 attached Pegasus C to the S-IU-10 instrument unit. They then positioned BP-9 as the shroud for the satellite. A July 6 Saturn V milestone occurred at Seal Beach, California, as workmen began vertical buildup of the S-II-1.241

After a suggestion by NASA Administrator James E. Webb, the name of the Mississippi Test Operations was officially changed to Mississippi Test Facility (MTF).

A faulty signal from the engine pressure switch on July 8 automatically ended a first attempt to static fire S-IB-2 in the S-IB test stand at MSFC. The test, conducted by Chrysler personnel, lasted only three seconds. But the following day the S-IB-2 stage successfully performed a short-duration 35-second captive firing in the stand.242

On July 12 component assembly of the S-IU-500ST started at ME Lab. A 27-second S-II battleship
SATURN ILLUSTRATED CHRONOLOGY

firing occurred at Santa Susana Field Laboratory (SSFL) on July 13; this was the longest firing to date of the S-II program.243

The S-IB-2 stage successfully completed its series of static tests at MSFC with a 2.5-minute full-duration test on July 20.244

In the Saturn V program, on July 20 technicians at SSFL successfully accomplished a 150-second firing of the S-II battleship. The KSC launch crew successfully performed the countdown demonstration test for SA-10 on July 27. Final phase of countdown for the SA-10 launch was under way at 9:25 PM EST on July 29 and continued to liftoff without any technical holds. On July 30 SA-10, in the final flight test of the Saturn I program, performed excellently. The launch vehicle inserted its dual payload of Pegasus C and BP-9 into an orbital trajectory. This SA-10 flight concluded NASA’s Saturn I program.245

243. Saturn SA-10, during countdown demonstration test
244. Launch of SA-10 from pad 37B, KSC
245. Technicians checking Rocketdyne-built J-2 engines on S-II stage
The second Saturn IB booster (S-IB-2) left MSFC's Huntsville port aboard the barge Paalmon on its return trip to Michoud on July 30.

A component malfunction in Pneumatic Console A at SACTO prematurely ended the first attempt to static fire S-IVB-201. But stage propellant loading and the automatic countdown sequence proceeded satisfactorily to the point of cutoff in this July 21 static firing. 246

During July in support of the Saturn IB and V programs Rocketdyne completed the flight rating tests of the 200K J-2 engine at SSFL. Also in July, Rocketdyne initiated a development program to uprate the J-2 engine thrust capability from 200K to 230K. 247

On August 2 MSFC personnel conducted the first successful ignition test of the MSFC S-IVB battleship. It lasted for 2.1 seconds. This first firing of the MSFC S-IVB battleship completed activation of the J-2/S-IVB test stand at MSFC. 248

The first full-duration run of S-IC-T occurred at MSFC on August 5. The firing lasted 143.6 seconds. 249

The S-IVB-201 stage successfully performed a full-duration firing of 452 seconds at SACTO on
SATURN ILLUSTRATED CHRONOLOGY

August 8. The test was computer-controlled throughout, marking the first use of a fully automatic system for performing a complete checkout, propellant loading, and static firing of a vehicle stage.250

On August 9 Chrysler shipped the first Saturn IB flight booster, S-IB-1, to KSC. The stage would be used in launch facilities checkout and then readied for flight.

In the Saturn V program, on August 9 S&ID at SSFL accomplished a full-duration S-II battleship cluster firing; it terminated manually after 385.6 seconds.251 And the structure of the S-IU-200S/500S on August 13 withstood 140 percent load limit at MSFC, proving its structural integrity.252 Meanwhile, Boeing workmen at Michoud began final assembly of the S-IC-4 thrust structure.

The S-IB-1 and S-IU-200F/500F arrived at KSC on August 14 aboard the barge Promise from Michoud. This cargo was the first barged through the new Port Canaveral Locks.
The first two-burn full-duration firing of the S-IVB battleship lasted 170 and 320 seconds, respectively, at SACTO on August 17. 253

At KSC workmen transported the S-IB-1 stage to Launch Complex 34 and erected it on the pad on August 18. MSFC used the stage as a spacer for the S-IVB-F during propellant tankings to verify the facility LOX and liquid hydrogen loading systems. On this same day workmen also completed erection of the S-IVB-500F stage and the S-IU-200F/500F on Launch Complex 34 at KSC and began vehicle checkout of the Saturn IB launch facilities. Also on August 18 Chrysler personnel at Michoud completed pre-static checkout of S-IB-3.

Conclusion of the Saturn V S-IVB battleship test program occurred at SACTO on August 20 with a two-burn test for 170 and 360 seconds. 254 Meanwhile, at MSFC on this date technicians completed S-IU-500V assembly and delivered it to test contractor.

On August 29 MTF operations began with installation of S-II stage simulator into Test Stand A-2 for facility checkout.

The S-IVB-202 stage arrived at SACTO from Huntington Beach on September 1. The following day Douglas technicians installed the stage on the SACTO Beta III test stand and continued stage modification not accomplished at Huntington Beach because of parts shortages and design changes. 255 Then on September 3 Douglas transported the S-IVB-201 to the Courtland dock, loaded it on board the Orion, and shipped it to Richmond, California, where it would be loaded on the ocean freighter Steel Executive for the rest of its journey to KSC. 256

On September 8 workmen at SACTO removed the S-IVB battleship from the Beta I stand and shipped it to Tullahoma, Tennessee, for engine environmental testing.
Hurricane Betsy entered the Michoud area about 8 P.M. on September 9 and left severe roof and building damage at Michoud. It also washed the NASA barge Promise upon the levee, inflicting damage to the barge in the amount of $89,138. The NASA barge Palaemon, with the S-IB-3 stage as cargo, weathered Hurricane Betsy near Baton Rouge, Louisiana, without damage during the first day of its journey from Michoud to MSFC in Huntsville.

IBM on September 9 delivered to NASA the flight launch vehicle digital computer and launch vehicle
253. Damage at Michoud by Hurricane Betsy
254. NASA barge Promise upon levee after Hurricane Betsy
255. Hurricane Betsy leaves Promise on levee
data adapter (LVDC/LVDA) for the SA-201 vehicle.257

The upper stage testing in the Saturn IB dynamic test program ended at MSFC on September 11. S-IVB battleship at MSFC fired for 400 seconds on September 15, a full-duration test.258 On September 16 the S-IB-3 arrived at MSFC where Chrysler test engineers would static fire the stage in MSFC's S-IB test stand before returning it to Michoud.

The S-IVB-201 arrived at KSC aboard the SS Steel Executive September 19; workmen unloaded the stage and moved it to the special assembly building for receiving inspection.

On September 29 the S-II-S/D ruptured and disintegrated during a structural loading test at Seal Beach. The failure occurred at 144 percent of limit load on the aft skirt. This failure necessitated redirection of the S-II program by substitution of the S-II-T as a dynamic test vehicle.
following static testing at MTF. 259

Workmen at Seal Beach completed manufacture of the S-II-T stage on September 30. Meanwhile, on this date IBM at Huntsville completed fabrication of the S-IU-200S/500S-II. 260

During September NASA added to the Boeing contract (NAS8-5608 Schedule II) $4.5 million to provide services in connection with systems engineering and integration of mechanical GSE.

Workmen at KSC on October 1 mated the S-IVB flight stage for AS-201 (S-IVB-201) to the S-IB-1 stage on Launch Complex 34. 261 Also on October 1 NASA approved a two-year incentive contract with Pratt & Whitney for follow-on RL10 engine research and development effective this date. The contract covered qualification of RL10-A-3-3 (uprated version) for Centaur application and continued flight support. In the Saturn V program on October 1 the S-II-T, S-II all-systems stage, left Seal Beach on the Point Barrow bound for MTF.

On October 6 workmen at Michoud completed assembly of the S-IB-4 stage, and the stage entered pre-static checkout.

The first S-IC-T firing in automatic configuration occurred at MSFC on October 8 for a scheduled
duration of approximately 45 seconds. On October 13 the S-IC-D arrived at MSFC's Saturn V dock after leaving Michoud dock aboard the barge Poseidon on October 6, the Poseidon's first trip. Two days later technicians at MSFC began Saturn V dynamic testing of the S-IU-200D/500D.

The S-II-T, first "live" launch vehicle stage at MTF, arrived October 17 for start of stage all-systems testing. S&ID personnel at MTF placed S-II-T into Test Stand A-2 on October 19. The S-IU-201 arrived at KSC on October 20 aboard the Palaemon; workmen unloaded it and took it to hangar AF for prelaunch checkout. Five days later technicians at KSC erected the S-IU-201 atop the S-IVB-201 stage on Launch Complex 34. That same day, October 25, Apollo Command Module 009, part of the payload for the AS-201 vehicle, arrived at KSC and entered checkout.

Douglas technicians on October 26 completed the S-IVB-202 pre-static firing checkout at SACTO. On this date S-IB-3 successfully performed a 2.5-minute static firing in the S-IB static test stand at MSFC in Huntsville.
On October 28 Rocketdyne delivered to Chrysler at Michoud the first two H-1 engines upgraded from 200K to 205K. Eight of the upgraded engines would add about 40,000 pounds thrust to the S-IB stage and increase the total thrust of the stage to 1,640,000 pounds.265

Difficulties experienced with the stage electric power system at SACTO terminated the first S-IVB-202 acceptance firing attempt on October 29.266 Also on October 29, the S-IVB stage contractor shipped S-IVB-203 to SACTO.

During October construction of the Launch Complex 39 pad A ended at KSC.

NASA on November 1 increased Chrysler's contract NAS8-4016 some $18,909,000 to cover additional systems engineering. In the Saturn V program on this date the Propulsion and Vehicle Engineering (P&VE) Laboratory at MSFC began the first series of S-IU-200S/500S-II tests.

On November 2 the second S-IVB-202 acceptance firing attempt ended at SACTO after 0.41 seconds of mainstage because of a component malfunction in the J-2 engine combustion stability monitoring system.267 SACTO activated Test Stand Beta I on November 3 with installation of S-IVB-203.

The final scheduled test of the S-II common bulkhead test tank (CBTT) ended at Santa Susana on November 6. The CBTT was tested to 1.4 times the limit burst pressure. Completion of these tests, which verified the integrity of the common bulkhead, the liquid hydrogen tank, and the forward skirt, was a major milestone in the S-II stage program.268

On November 8 the Saturn IB stage S-IB-3 arrived at Michoud from Huntsville to undergo post-static checkout and modification. The next day the S-IVB-202 stage performed a long-duration (307 seconds mainstage) acceptance firing at SACTO;
a malfunctioning liquid hydrogen mass sensing unit in the propellant utilization (PU) subsystem prevented completion of the test to full duration. Pre-static checkout of S-IB-4, completed at Michoud on this date, revealed no significant problems.

Workmen at Seal Beach completed all S-II-1 major subassemblies on November 25 with assembly of the aft LOX bulkhead.

There was a November 30 automatic LOX loading test of the S-IB-1 at KSC to verify the automatic LOX loading and replenish systems and the LOX drain systems. The stage withstood a LOX load of 100 percent; during the loading all stage systems functioned normally. On this data Chrysler technicians completed assembly of S-IB-5 and moved it into the checkout station for pre-static checkout.
In November NASA announced that the J-2 engine contract would be amended to add 48 engines. NASA in addition asked Rocketdyne to provide 52 additional J-2 engines for delivery in 1967 and 1968. November also saw the completion at Seal Beach of all engine deliveries for S-II-1 and S-II-2.

On December 1 the S-IVB-202 stage successfully achieved all test objectives during its full-duration (463.8 seconds mainstage) acceptance firing at SACTO. Cutoff occurred automatically when the PU system indicated less than one percent LOX.

MSFC and Boeing on December 3 negotiated a supplemental agreement establishing Schedule III (Saturn V launch operations support) effective December 31, 1965. In the Saturn V program on December 16, the final captive test firing of the S-IC-T in original automatic configuration occurred at MSFC.

The S-IB-4 stage departed Michoud on December 7 aboard the NASA barge Palaemon for the MSFC test site at Huntsville. MSFC workmen on December 14 unloaded the stage from the Palaemon, moved it to the MSFC static test tower,
and completed its installation in the tower. The following day, also in the Saturn IB program, Douglas completed Phase I of the S-IVB-204 pre-static checkout and successfully performed a simulated flight test before beginning preparations for shipping the stage to SACTO.

Qualification testing of the J-2 engine at the 200K level, which began on December 2, ended successfully at SSFL on December 17.\(^{275}\)

Technicians at KSC erected Apollo Spacecraft 009 atop the SA-201 launch vehicle at Launch Complex 34 on December 26. With the addition of the spacecraft the vehicle became the Apollo/Saturn 201 (AS-201).\(^{277}\)

On December 29 MSFC forwarded to NASA Headquarters for approval a supplement providing for conversion of the Boeing S-IC stage contract to cost plus incentive fee; the cost-effective date of this change was July 2.

During December MSFC initiated negotiations with Rocketdyne for a combined J-2 research and development contract NAS7-190 from a CPFF to a CPIF contract. In December preliminary data from the three Pegasus flights indicated that the Saturn Apollo spacecraft structure as designed would be adequate to resist meteoroid penetration.\(^{278}\) Two F-1 turbopump explosions occurred, one at SSFL and one at Edwards.

MSFC announced on January 3, 1966, its negotiation of two nine-month study contracts to determine the feasibility of using an improved J-2 rocket engine in the S-II and S-IVB stages of the Saturn V launch vehicle: (1) a $148,000 contract to North American Aviation, developer of the S-II stage, and (2) a $225,000 modification to an existing contract with Douglas Aircraft Company. MSFC's Propulsion and Vehicle Engineering Laboratory was seeking to simplify the J-2 and give it and the stages it powered more flexibility.\(^{279}\)
On January 4 MSFC announced the awarding of seven new Saturn contracts, five of them to Saturn prime stage contractors for continuation of studies aimed at improving S-IB and Saturn V launch vehicles. North American, Boeing, and Chrysler each received one of the contracts. Douglas received two. The remaining two of the seven contracts were for continuation of engineering studies relating to a manned reusable transport system: (1) a nine-month $237,000 contract to Lockheed Aircraft Corporation to study possibilities of developing a reusable transport system based on presently approved launch and space vehicles and (2) a six-month $51,000 contract to Martin-Marietta Corporation for a comparison study of launch modes for reusable launch vehicles. Both contracts would be under MSFC's direction.274

NASA announced on January 7 the award of a $7,837,500 contract to the Radio Corporation of
269. S-II battleship firing.
Santa Susana
270. S-IC+D erected in S-IC
test stand MSFC
America, Aerospace Systems Division, Van Nuys, California, effective December 1, 1965, for logistic support of Saturn ground computer check-out systems. Under the two-year contract, managed by MSFC, RCA would provide spare parts, logistic management, maintenance support, and report services for the Saturn ground computer checkout systems. On this same date MSFC announced that the Air Force's Arnold Engineering Development Center (AEDC) near Tullahoma, Tennessee, was being expanded for test of a third stage (S-IVB battleship) of NASA's Saturn V launch vehicle.275

A ground-test (battleship) version of S-II, second stage of the Saturn V, was static fired at Santa Susana, for 354 seconds in a successful January 12 test of its engine-gimballing and LOX cutoff systems.

Saturn V milestones on January 13 involved the first stage and instrument unit. The S-IC-D booster went into the Dynamic Test Stand at MSFC on this date, and NASA awarded a $4,183,066 modification to its existing Saturn V instrument unit contract with IBM's Federal Systems Division, Rockville, Maryland. The modification was for manufacturing "redundant switch selectors."

At Michoud on January 14 a Saturn V launch vehicle first stage went aboard the barge Poseidon
for shipment to KSC. On this same date NASA invited aerospace industries to propose definition studies of integrating experiment equipment in spacecraft that could be utilized for manned Apollo Applications missions. Two or more firms would be selected for negotiations of parallel nine-month study contracts.\[260\]

Workmen completed horizontal assembly of the second Saturn V first stage S-IC-2, on January 17, at MSFC's Manufacturing Engineering Laboratory, and the stage was moved to Quality Assurance Laboratory for post-manufacturing checkout. On this date technicians completed vibration testing of General Dynamics' S-IU-500V instrument unit. The unit went from Wyle Laboratories to the Manufacturing Engineering Laboratory for disassembly.\[281\]

Removal of the S-IC-T from the static test tower on January 20 at MSFC concluded the S-IC-T planned test program at Huntsville. MSFC moved the booster to Manufacturing Engineering building for storage and later conversion to the functional configuration of S-IC-4. NASA announced on January 20 that the hydrogen-fueled J-2 rocket engine had successfully completed a series of
qualification tests to demonstrate performance over its design operating range. These qualification tests ended when a single engine operated successfully 30 times for a total firing time of 470 seconds. This accumulated duration was approximately eight times as long as the engine would be required to operate in flight.

A full-duration (2.5-minute) test for the fourth S-IB booster (S-IB-4) occurred at MSFC's East Test Area facility on January 21. Chrysler had conducted an earlier test of the engine, but for only 35 seconds.

Douglas personnel at Huntington Beach ended post-manufacturing checkout of the Saturn V S-IVB-501 third stage on January 28. Structural fabrication and assembly of the S-IU-501 ended at IBM Huntsville on this date. Early in 1966 MSFC formally redesignated the S-II all-systems stage (S-II-T) as the all-systems test/dynamics test stage (S-II-T/D).

MSFC announced on February 2 that two S-IB flight boosters were aboard barges, one en route to the
Michoud Assembly Facility and the other one to the Kennedy Space Center. NASA’s second Saturn IB flight booster S-IB-2 was due to arrive at KSC within a few days aboard the barge Promise. The first S-IB vehicle, AS-201, meanwhile, was awaiting launch at KSC.

Workmen at MTF completed integrated checkout of the GSE for S-II-T/D of February 3. The first S-IB vehicle, AS-201, meanwhile, was awaiting launch at KSC.

Rehearsal countdown at KSC for the S-IB/Apollo mission was delayed 24 hours on February 5 because of “minor problems and resulting crew fatigue.” NASA spokesman said that it was not yet known if the delay would affect the rescheduled February 22 launching. Meanwhile the S-IB stage for AS-202 arrived at KSC via barge where it was unloaded and transported to hanger AF for receiving inspection and installation of three fins.

On February 14 the MSFC Quality and Reliability Assurance Laboratory completed, as scheduled, the checkout of S-IU-500FS, a ground version of the Saturn V instrument unit.

MSFC continued to emphasize testing. It announced on February 15 that the first stage of the Saturn IB launch vehicle prior to its maiden flight had been “time tested” in more than 5000 single-
engine tests. In addition to these single engine tests of the H-1 rocket engines, there had been 72 vehicle tests. Technicians at MSFC successfully test-fired the S-IC-1 on February 17. The firing, lasting 40.7 seconds, met all the main test objectives.

NASA's Saturn S-II facility stage (S-II-F) left Seal Beach, on February 20 for KSC aboard AKD Point Barrow. S-II-F, a nonflight version of the stage, would serve as second stage of the Saturn V facilities checkout vehicle, and would test and verify launch facilities, techniques, handling procedures, and operations. In a space hardware
movement on the following day, the instrument unit for the second S-IB launch vehicle (S-IU-202) arrived at KSC from MSFC aboard the Promise. A booster for this S-IB was already at the KSC launch site.

On February 24 and 25 MSFC technicians continued captive-firing tests of the first stage Saturn V launch vehicle (S-IC-1). MSFC scheduled the February 25 static firing for 125 seconds but had to terminate it after 83.2 seconds when a red-line observer received an incorrect reading from a faulty transducer. However, MSFC scientists determined that in this second static firing in two days all criteria for the second S-IC-1 static firing were met and that no additional static firings were required. 287

After postponement on three consecutive days because of continuing bad weather, NASA on February 26 launched with its Saturn vehicle, SA-201, the Apollo Spacecraft 009 payload from KSC Launch Complex 34. The vehicle performed throughout the powered and coast phases of flight. No major system malfunctions occurred in this unmanned suborbital Apollo flight. In lifting the spacecraft, SA-201's first stage had generated 1.6 million
pounds of thrust. After burning 2 minutes and 26 seconds, propelling the Apollo to 37 miles altitude, the booster's eight H-1 engines, fueled with kerosene and LOX, shut down and the stage separated from the S-IVB. Four seconds later, a 200,000-pound thrust S-IVB (second) stage engine, burning liquid hydrogen and liquid oxygen, ignited. 288

On February 28 at MSFC workmen moved the S-IB-5 into a static test stand in preparation for captive firings.

MSFC shipped the S-IU-500F to KSC on March 1. On this same date assembly of the S-IVB-503 and S-IVB-504 continued at Douglas in Huntington Beach, California, and workmen began factory checkout of the S-IVB-502. 289

NASA signed with the Boeing Company a March 4 supplemental agreement converting the Saturn V first stage (S-IC) contract from a fixed fee to an incentive fee contract. It was the first Saturn stage contract to be converted to an incentive type. At the time of this conversion the Boeing contract was valued at $850,114,303. 280 Also on March 4 the S-II-F stage and its interstage arrived at Port Canaveral, Florida.

On March 10 MSFC shipped a Saturn V instrument unit (S-IU-500FS) aboard the Super Guppy aircraft to Huntington Beach, for testing with an S-IVB stage in a simulated space environment.
The following day the S-IVB-501 stage left Huntington Beach for Sacramento where it would undergo acceptance firing. Meanwhile at KSC workmen erected and mated the S-IVB stage and instrument unit of the AS-202. 281

Douglas Aircraft Corporation successfully conducted a March 18 acceptance test of the fourth flight Saturn S-IVB-204 stage at its Sacramento Test Center. Technicians fired the stage for about 455 seconds. 282

NASA announced March 24 that it would negotiate incentive contracts with two major aerospace firms for the procurement of five additional Saturn V first stages (S-IC) and 33 F-1 rocket engines. NASA would negotiate with the Boeing Company for the stages and with Rocketdyne for the F-1 engines for these stages. The five S-IC stages would cost in excess of $165 million. These contracts were in line with NASA's plan to launch 15 Apollo/Saturn V space vehicles by the end of 1970. 283

Mating of the S-II-F with the S-IC-F stage occurred at KSC, March 28. On the following day workmen mated the S-IVB-500F with the S-II-F, and the day after they erected the S-IU-500F.

On March 30 the S-IVB-500-ST flew from California to MSFC aboard the Super Guppy.
On March 31 there were major Saturn headlines at MSFC. Chrysler Corporation personnel captive fired the S-IB-5 for about 2.5 minutes, the second and longest duration firing for the booster.284
April 1 NASA announced that project management of its first hydrogen-fueled engine, the RL10, was being transferred to Lewis Research Center at Cleveland, Ohio. A cluster of six RL10 engines had powered the Saturn I's S-IV second stage before the conclusion of MSFC's Saturn I program the previous year.

In an April 4 release NASA announced a change in sequence of the S-IB-202 and the S-IB-203 launches. Uprated S-IB-202 was rescheduled to follow the AS-203 mission. The purpose of the sequence change was to provide additional time for checkout of Apollo spacecraft to be flown in the AS-202 mission. AS-203 was a launch vehicle development mission and would not carry an Apollo spacecraft.

NASA announced on April 6 the purchase under a $7,634,742 modification to an existing contract of 22 additional H-1 engines for the S-IB launch vehicle. In addition to the engines the contract with North American Aviation's Rocketdyne Division called for three years of support services, including training, field engineering, and supply support.

The third S-IB booster (S-IB-3) departed Michoud for KSC on April 7. The S-IB stage for AS-203 arrived at KSC via barge Promise where it was
unloaded and moved into hangar AF on April 12. Six days later workmen erected the S-IB stage on Launch Complex 37B. Meanwhile, MSFC loaded the S-IB instrument unit for AS-203 aboard the Super Guppy for flight to KSC. As preparations continued for erecting AS-203, KSC technicians continued propellant tests of the nearby AS-202.

From April 19 to April 21 nine NASA astronauts visited MSFC for briefings on the S-IB-1 launch vehicles to be used in the initial manned Apollo missions. Briefing areas included tours, hardware descriptions, and design philosophy.

MSFC announced on April 21 that NASA had awarded $50,000 60-day fixed-price contracts to Douglas Aircraft Company, McDonnell Aircraft Corporation, and Grumman Aircraft Engineering Corporation to perform definition and preliminary design studies and evaluate a plan to make spent Saturn V S-IVB stage hydrogen tanks habitable for manned space missions up to 30 days in duration. MSFC would manage the contracts.

On April 23 workmen at MTF successfully captive-fired for 15 seconds S-II-T, the Saturn V second stage all-systems test vehicle. This was the first test of a flight-weight S-II stage. The stage, largest and most powerful liquid oxygen-liquid hydrogen stage known, developed one million
pounds of thrust from its five J-2 engines. This test also marked the first operational use of MTF.

MSFC announced on May 6 that the first uprated J-2 rocket engine had arrived at MSFC from Rocketdyne. In uprating the J-2, Rocketdyne had increased the thrust for a new thrust capability of 230,000 pounds. NASA schedules called for use of the higher thrust J-2 in the second stage of the S-IB, beginning with vehicle AS-208 and, in the second and third stages of the Saturn V, beginning with vehicle AS-504. 298

Technicians at SACTO Test Stand Beta 1 completed the S-IVB-501 integrated systems checkout on May 9. 299

Helium-bottle trouble on May 10 resulted in termination of the second S-II-T firing at MTF. The following day, in a second attempt to complete a static firing of the S-II-T, the engine fired about 47 seconds. Premature cutoff occurred because of a gas generator problem.

A 154-second static firing of S-II-T, the all-systems version of Saturn V's second stage, occurred at MTF on May 17. This was a successful test of the nation's most powerful hydrogen-oxygen engine. Technicians made 1100 measurements and gimbaled four of the five engines. These engines in flight would provide stability and control of the stage. 300
On May 19 MSFC announced the following nomenclature changes as recommended by NASA Headquarters Officials, Dr. Seamans, Dr. Mueller, and Mr. Scheer:

"Lunar Excursion Module to be called Lunar Module; the Saturn IB to become 'the Uprated Saturn I.' At first the changes will be noted as 'the Uprated Saturn, the Saturn IB' gradually dropping reference to the Saturn IB as the new name becomes more familiar. This would enable us to continue the string of Saturn I successes. Realistically the Uprated Saturn I is what we have anyway; in general public releases we should begin referring to Saturn stages simply as the first, second, or third stages, and, where helpful, to semi-technical press and in press kits follow with the technical nomenclature, i.e., 'the third stage of the Saturn V (S-IVB),' etc.; future releases and announcement should make use of the new nomenclature."

The first full-duration firing of the S-II flight stage occurred May 20 at MTF when S-II-T test-fired for 354.5 seconds. LOX cutoff sensors initiated cutoff automatically. The firing passed all major test objectives with the exception of the propellant utilization system. This was the fourth static firing of the S-II-T. The stage developed one million pounds of thrust from its five hydrogen-oxygen-powered J-2 engines. 301

"Rollout" of the SA-500F occurred at KSC May 25. The 500,000-pound facility test vehicle, 365 feet long, moved from the Vehicle Assembly Building (VAB) on its 3000-ton diesel-powered steel-link crawler transporter to Pad A to verify launch facilities, train launch crews, and develop test checkout procedures. Also on May 25 technicians at MTF attempted the second full-duration firing of the S-II-T but terminated the firing after 198 seconds as a result of fire on engine No. 5. The fire burned an electrical cable to cause the cutoff. This was the fifth static firing of the S-II-T. 302
On May 26 at Sacramento Beta 1 test stand there was a second successful firing of S-IVB-501. This test of S-IVB-501 consisted of a 151-second mainstage first burn, a 106-minute simulated orbital coast period, and a 301-second mainstage burn after restart.303

NASA announced on May 27 the selection of two firms for negotiations of parallel one-year study contracts for integration of experiments and experiments support equipment in space vehicles and spacecraft involving manned Apollo Applications missions. Estimated value of each contract was approximately $1 million.

A static test version of the Saturn V second stage S-ll-T ruptured during pressure tests at MTF on May 28, and five North American Aviation technicians monitoring the test received minor injuries. The accident occurred when the hydrogen fuel tank of the one-million-pound thrust stage failed under pressure. S-Il-T, which had five hydrogen-oxygen J-2 engines capable of generating one million pounds of thrust, had been tested
May 25 in ground firing but stopped firing after 195 seconds when a hydrogen link leak caused automatic cutoff. At time of the explosion, technicians were trying to determine cause for the hydrogen leak. No hydrogen was in the tank when the explosion occurred. Under the direction of MSFC, a Board of Inquiry headed by Dr. Kurt H. Debus, Director of Kennedy Space Center, convened on the night of May 28. Immediate investigation revealed that the second shift crew, not knowing that the liquid hydrogen pressure sensors and switches had been disconnected, had attempted to pressurize the tank. Believing that a liquid hydrogen vent valve was leaking, the technicians closed the facility by blocking valves. This had caused the vehicle tank to become over-pressurized and burst.

On May 30 the board released its findings after two days of inquiry. The fuel tank of the S-II stage had been pressurized beyond design limits. There was a need for tighter controls over MTF test procedure.

On June 1 the Saturn V third stage (S-IVB-502) flew aboard the Super Guppy aircraft from the Huntington Beach to SACTO for static testing. A 33,000-pound stage, 59 feet long and 21.5 feet in diameter, this was the second Saturn V upper stage to arrive at the Douglas test site.

At Redstone Arsenal MSFC successfully static fired the second S-IC stage (S-IC-2) of the flight Saturn V launch vehicle for 126.3 seconds and recorded 1200 measurements of the stage's performance. The five F-1 engines, four of which were gimbaled during this June 7 test, generated 7.5 million pounds of thrust.

Because Hurricane Alma approached Kennedy Space Center on June 9, it was necessary to interrupt the processing and test activities of SA-500F and move the vehicle back to the VAB. The hurricane threat passed, and two days later the vehicle was again back on Pad A.
SATURN ILLUSTRATED CHRONOLOGY

On June 27 NASA announced the conversion of its contract with Douglas Aircraft Company for development of the Saturn's S-IVB stage to a CPIF agreement. Under the revised contract, the company's fee would be increased or decreased depending upon attainment of the incentive for cost, schedule, and performance. The original contract was a CPFF arrangement. Estimated cost of the total effort under both portions of the contract was about $700 million plus fee. To date about $595 million had been funded.

On June 29 MSFC captive fired both an uprated Saturn I first stage and an F-1 engine at Redstone Arsenal. At MSFC's East Test Area technicians fired for a full duration the sixth flight Saturn booster (S-IB-6). It had previously been tested for 35 seconds on June 22. At the West Test Area MSFC technicians captive fired the F-1 engine on a first run for about 40 seconds. The S-IB, powered by eight Rocketdyne H-1 engines, produced 1.6 million pounds of thrust.

Following the destruction of S-II-T during a test at MTF, NASA extended the S-II battleship program until July of 1967. Also during June there were changes in the launch schedule for the Apollo/Saturn 203 launch. Previously scheduled for June 30, NASA rescheduled it for June 29 because of the scheduled launch of a lunar-anchored interplanetary monitoring platform Explorer. But by June 29 NASA had rescheduled SA-203 launch because of electrical problems, so that it would come no earlier than July 5.

At Kennedy Space Center technicians on July 2, 1966, erected and mated the AS-202 spacecraft. Three days later the twelfth Saturn vehicle, AS-203, flew from KSC Launch Complex 37B. After one hour, 53 minutes, and 17 seconds of countdown holds, the vehicle lifted off the pad to begin the second unmanned flight of the uprated Saturn I. The vehicle's second stage (S-IVB), instrument unit, and nosecone, weighing 58,500 pounds, com-
prised the heaviest U. S. satellite ever placed in orbit. Primary mission of this July 5 flight was an engineering study of liquid hydrogen fuel behavior during orbit. 308, 309

MSFC technicians installed the S-IC-T stage in the S-IC test stand at Redstone Arsenal on July 7. Tentative plans called for static firings, including fuel and LOX loading tests, 310

On July 8 NASA announced the award of a contract to Federal Electric Corporation (FEC) of International Telephone and Telegraph Corporation for technical support of the Saturn launch vehicle reliability program at MSFC. The cost-plus-award-fee contract would be for one year at an estimated cost of $1.8 million, with a provision for two additional one-year periods. The FEC would perform test program analysis, failure mode and effects analysis, hardware and software failure analysis, and maintainability in human engineering analysis for MSFC's Quality and Reliability Assurance Laboratory. Most of the work would be in Huntsville. 311

Acceptance firing of the S-IVB-502 stage occurred at Sacramento, California, on July 28. The captive firing, conducted by Douglas Aircraft Company, prime contractor, simulated the operation of the propulsion system during the burn portion of the flight. The stage burned 150 seconds, shut down for one and one-half hour simulated coast period, and then reignited and operated 291 seconds. Such performance would be required in lunar missions. A J-2 hydrogen-oxygen engine made by Rocketdyne Division of North American Aviation Company powered the stage. 312

NASA Headquarters unconditionally approved J-2 engine program contract NAS8-19 on July 29. This contract established the provision for production support effort through December 1968, and for delivery of the 155 J-2 engines required for the Apollo program. The contract combined what had been two major J-2 contracts. 313
July 29, technicians at Seal Beach made hydrostatic tests of the S-II-3 stage for SA-503. And at Santa Susana technicians conducted a 40-second mainstage test of the S-II battleship stage. Automatic cutoff initiated from engine number 5, but data revealed that cutoff occurred erroneously.

S-II-1, the first flight S-II stage scheduled for static firing at MTF, left Seal Beach on July 31.

NASA announced on August 1 the signing of a $339 million supplemental agreement with Chrysler Corporation's Space Division which increased the contract value by $14 million and converted the uprated Saturn I first stage production contract from a CPFF to a CPIF contract. The contract, to continue through February 1969, would involve Chrysler's assumption of design responsibility and implementation of a total qualification and reliability testing plan. Under this contract managed by MSFC, Chrysler would manufacture, assemble, and test 12 stages.314

MSFC announced on August 5 the award of a $23.4
306. S-II facilities at Seal Beach

307. Transfer of the S-II-1 from the Point Barrow to the Pearl River at Michoud en route to MTF from Seal Beach
million modification to an existing contract with North American Aviation Space and Information Systems Division for additional work in building and testing the Saturn V launch vehicle's second stage. The contract modification included several engineering changes, many of which were already completed or under way.

NASA decided to change the Sacramento-to-KSC shipping date of the S-IVB-501 from August 2 to August 12. This would meet the KSC required date and allow additional time for closeout of all open work prior to shipment. Stage turnover to NASA came in a ceremony at Sacramento on August 9. On August 11 technicians completed installation of flight vehicle instrumentation and tank purge operations. The stage then went aboard the Super Guppy aircraft and departed Sacramento on August 12, as scheduled, arriving at KSC on August 14, after a one-day delay because of weather. At KSC the stage went into the VAB low bay where receiving inspection began immediately. 315
NASA announced on August 10, 1966, the rescheduling of the Apollo/Uprated Saturn I (AS-202) from August 20 to August 22. During checkout operations technicians had discovered leaks in liquid hydrogen fuel line fittings leading to the three fuel cells in the spacecraft service module. The fuel cells would supply electrical power to the spacecraft during flight. Later, NASA decided to fly the mission with the two remaining fuel cells which were capable of providing sufficient power for the one and one-half hour suborbital flight. AS-202 would fly from Launch Complex 34 at KSC. 316

The fourth Uprated Saturn I (S-IB-4), the first scheduled to launch a manned Apollo spacecraft, departed Michoud for KSC, on August 10.
NASA announced on August 11 that MSFC would begin negotiations with the Chrysler Corporation and Douglas Aircraft Company for procurement of long-lead-time items for additional Uprated Saturn I launch vehicles. Cost of the long-lead-time items was estimated at $5 million to $10 million.

The first flight model (S-II-1) of the Saturn V vehicle's second stage arrived August 13 at MTF completing its 4000-mile voyage from Seal Beach. Workmen immediately moved the stage into the S-II stage service and checkout building for inspection and preparation for static firing.

On August 19 NASA selected McDonnell Aircraft Corporation of St. Louis, Missouri, for negotiations toward a fixed-price contract estimated at $9 million to provide an S-IVB airlock. The airlock would permit astronauts access to the empty hydrogen tank of spent uprated Saturn I second stages.

311

311. S-II-1 arriving at MTF for acceptance testing
A LOX line leading to the Saturn V launch pad at KSC ruptured on August 19, spilling more than 800,000 gallons of LOX. The incident occurred during the first-stage tanking test when the pipeline ruptured, spilling the 800,000 gallons of LOX; vacuum created inside the tank had caused a depression in the tank's 2.5-inch-thick dome.

The S-IU-501 arrived at KSC on August 24. Apollo/Saturn vehicle AS-202, the third vehicle to fly in the Uprated Saturn I series, rose from Launch Complex 34 at Cape Kennedy on August 25. AS-202 was the thirteenth Saturn vehicle in a row to fly successfully through space. This was the second successful flight test of the Apollo spacecraft command and service modules before earth orbital manned missions. The flight proved the Apollo command module ablative heat shield by subjecting it to extended high heat loads during
On August 26 MSFC shipped the first Saturn V flight booster (S-IC-1), scheduled to be launched early in 1967, to the Kennedy Space Center via the barge Poseidon.

NASA announced on August 28 that the August 19 rupture of the 900,000 gallon stainless steel storage tank for the Saturn V booster's LOX would delay the booster's first flight, scheduled for the first quarter of 1967, by at least 45 days. \(^{320}\)

MSFC announced on September 7 that four barges carrying 400,000 gallons of vitally needed liquid oxygen were en route to KSC after being dispatched from the MTF. The shipment, together with 40,000 gallons brought into KSC by truck and rail tank cars, would replenish the liquid oxygen lost on August 19 when a line ruptured below the LOX storage tank serving Saturn V's Launch Complex 39. Schedules called for propellant loading tests to resume September 20, 1966.

The S-IC-1 arrived at KSC on September 11. Chrysler personnel at the Test Laboratory in Huntsville captive fired the seventh Uprated Saturn I flight booster for its full two and one-half minute test on September 13. After this successful test, schedules called for MSFC to return the booster to Michoud for post-static test checks.
Chrysler Corporation built the stage at the New Orleans facility.321

Last of the S-IVB-503 factory checkout tests occurred at Huntington Beach on September 14. The following day at MSFC's P&VE Laboratory in Huntsville technicians completed all test conditions for the S-IU-200S/500S-3 structural test unit. The final test condition for the unit was the application of a 140 percent maximum limit compression load on part of the unit.322

On September 23 the first Saturn V flight booster built at MAF (S-IC-3) departed aboard the barge Poseidon for MSFC to undergo static firing tests. According to plans technicians would later static-fire the boosters at MTF.323

MSFC announced on September 29 that it had awarded three new study contracts totalling $400,000 to investigate the launch vehicle needs and best methods for sending manned spacecraft on planetary flyby trips; North American Aviation, Inc., received $100,000 to study feasibility of modifying the Saturn V second stage, S-II, for use as an orbital ejection stage; Douglas Aircraft Company received $100,000 to study the feasibility of using Saturn V third stage, S-IVB, as part of a planetary vehicle; and TRW Systems, Inc., received $200,000 for study of alternate mission modes for manned Mars and Venus orbital and landing missions.324
After successful completion of post-manufacturing checkout at the Michoud Booster Checkout Facility, the S-IC-3 stage left Michoud on September 23 and arrived at MSFC on October 1. Unloading operations began on October 3, and on that same date workmen erected the stage in the test stand.325

The S-IVB-503 stage went from Los Alamitos to Sacramento via the Super Guppy aircraft on October 11. The stage moved to the Vertical Checkout Laboratory on October 12, and into the test stand on October 14. The SA-500F vehicle arrived at KSC on October 15.

On October 17 MSFC shipped its S-IC all-system test booster, S-IC-T, to MTF for use in checkout of a static test stand and for use in static firings. Workmen loaded the huge booster aboard the barge Poseidon for the 1000-mile river journey. Six days later the S-IC-T reached MTF. Meanwhile on October 25, after leaving Michoud a week earlier, the eighth Uprated Saturn I first stage (S-IB-8) reached the MSFC dock for static firing at MSFC by Chrysler Corporation personnel. Also at MSFC on October 25, NASA awarded the University of Wisconsin a $679,101 contract to develop sensors for a galactic X-ray mapping experiment to be flown on an Uprated Saturn I launch vehicle in 1968. The sensors would explore X-ray sources other than the sun and Crab Nebula.

NASA announced on October 26 the award to North American Aviation of a $37 million contract supplement for launch preparation and checkout of ten Saturn V second stages (S-II). Two days later NASA awarded a $4.5 million contract modification calling for the Boeing Company to assume design and procurement responsibilities for certain structural components and instrumentation of Saturn V first stages built at Michoud. The components, previously provided by the Government, included propellant ducts and valves and pressurization switches and gauges.326

On November 2 KSC workmen stacked the S-IU-
501. The following day technicians at MSFC completed systems checkout of the S-IU-502.327

The S-II-F/D stage arrived at MSFC on November 10.

Technicians at MSFC successfully acceptance-fired the S-IC-3 on November 15 for 121.7 seconds mainstage. This was the last planned firing of the S-IC stage at MSFC. Future firings would be accomplished at the B-2 stand at MTF.328 On November 16 at MSFC technicians successfully static fired the eighth Uprated Saturn I booster for 35 seconds.329

On November 17 NASA announced several Apollo/Saturn manned space flight schedule changes because of launch vehicle and spacecraft development problems. The principal change called for rescheduling a manned earth orbital mission, Apollo/Saturn 205, which was to have followed the first manned Apollo flight, AS-204.330

On November 18 NASA approved F-1 engine contract NAS8-18734 CPIF. This contract provided for 30 F-1 engines needed in the Apollo program and continued production support and GSE through June 1970. These 30 F-1 rocket engines furnished by Rocketdyne Division of North American Aviation would complete the number of engines (106) required by the 15 scheduled Saturn V vehicles, plus spares. The cost would be about $141 million.
The delivery of 30 engines would begin in November, 1967, and continue through October 1968. On November 29 a forward bulkhead of the liquid hydrogen tank for the S-II-3 flight stage suffered damage while the stage was in the horizontal position. The damage occurred at North American Aviation's Seal Beach Plant as workmen were removing a work ladder from the tankage interior. The stage was in position when a 10-foot section of the ladder dropped, striking the forward bulkhead and causing cracks. The fall resulted from a weld failure in the ladder retracting mechanism. NASA anticipated no impact on the S-II-3 delivery date.

Technicians at MSFC on November 30 static fired the eighth Uprated Saturn I booster successfully in its second test for 145 seconds. The first stage performed as expected, developing 1.6 million pounds of thrust.

At MTF on December 1 North American Aviation conducted a successful 384-second captive firing of the first flight hydrogen-fueled engines, developing a total one million pounds of thrust. During the test, number 2 and 4 engine SLAM arms did not drop, resulting in the successful gimballing of engines 1 and 3 only. The test included the recording of about 800 measurements of the stage's...
performance, including propellant tank temperatures, engine temperatures, propellant flow rates, and vibrations.334

Workmen at MSFC completed stacking of the SA-500D vehicle on December 3.

Factory checkout of the S-IVB-504 flight stage ended on December 9 at Huntington Beach.

On December 13 a two-stage Uprated Saturn I launch vehicle was shipped to KSC. NASA would launch the vehicle in 1967 in an unmanned flight of the Apollo spacecraft lunar module. The booster stage, S-IB-6, for the AS-206 left Michoud near New Orleans on this date aboard the barge Palaemon. The Palaemon would deliver its cargo to KSC on December 19. The second stage, S-IVB-6, went aboard the Super Guppy aircraft at Mather Air Force Base. Douglas built the S-IVB stage, at Huntington Beach, California, and tested it at SACTO. Schedules called for the vehicle's instrument unit to fly on December 19 from MSFC to KSC aboard the Super Guppy.335

An all-systems test version of Apollo/Saturn V first stage, S-IC-T, went into the B-2 test stand at the Mississippi Test Facility on December 17. Stage electrical and mechanical hook-up to the test stand began immediately. Static firing would occur in early 1967 to demonstrate the facility checkout system.

MSFC announced on December 20 the award of a $7.2 million contract modification to Chrysler Corporation to begin procurement of long-lead-time items for additional Uprated Saturn first stages (S-IB). Under this agreement to be completed by June 30, 1967, Chrysler would procure the materials, components, and engineering support necessary to maintain its capability to assemble four Uprated Saturn I boosters per year. Chrysler was currently under contract to assemble and test 12 of the 1.6 million-pound first stages at Michoud.337
MSFC announced on December 28 that NASA had signed a $6,383,720 contract modification with the missile and Space Systems Division of Douglas Aircraft Company for long-lead-time items for the upper stages of Uprated Saturn I vehicles. The contract, to be managed by MSFC, was extended through June 1967. The object of the procurement action was to maintain the option of ordering additional S-IVB stages for the Uprated Saturn I in the future, without suffering a delay in certain areas where considerable time might be required for material acquisition and/or manufacturing.

On December 30, 1966, MSFC technicians at the MTF test stand conducted a static firing of the first flight version of the Saturn V second stage, S-II-1. This second test firing, like an earlier firing, lasted more than six minutes. Normal procedure called for the stage to undergo post-static firing inspection or checkout next at the test site before being moved to KSC, but in a change of procedure MSFC began preparations at once to ship the stage to KSC for these checks. Project officials hoped to gain seven or eight days by performing much of the checkout and modification work at KSC. 338

On January 5 MSFC established an S-II Special Task Team to be located at the contractor site in California and at MTF. The organization of such a team became necessary when emergence of technical difficulties resulted in the S-II stage becoming the pacing element in Saturn V development. MSFC gave this team priority to assure solving S-II technical problems so that schedule commitments could be met. The Center named Col. Sam Yarchin, S-II Stage Manager, to head this 18-man team. 339

IBM began S-IU-503 checkout and systems testing on January 10. 340

On January 11 initial post-static checkout of the S-II-1 stage ended at MTF. 341
A successful S-IVB-208 stage acceptance firing occurred at Sacramento on January 12. Main-stage duration was 424.3 seconds, with automatic cutoff initiated because of LOX depletion. All test objectives were achieved. 342

The first flight version of a rocket stage to undergo captive firings at MTF, the S-II-1 stage, left Bay St. Louis, Mississippi, on January 16 en route to KSC, where it would become a part of the first Apollo/Saturn V flight vehicle, scheduled for launch during the second quarter of 1967. 343 On this same date, MSFC announced the award to Sanders Associates, Inc. of a $2,149,548 contract for logistic support of Saturn V operational display systems used to present information on vehicle status during simulated and actual launch preparations. 344

On January 19 the S-IB-9 stage left the CCSD facility at MAF aboard the Palaemon barge on its trip to MSFC in Huntsville for static testing. 345

325. S-IB-7, S-IB-9, S-IB-5, and S-IB-6 in final assembly area, Michoud

DECEMBER 1966 - JANUARY 1967
A Saturn V third stage, S-IVB-503, exploded shortly before it was scheduled to be ignited in a January 20 test at SACTO. The explosion completely destroyed the stage at Test Stand Beta III. Post-accident investigation revealed that one of the eight ambient temperature helium storage spheres located on the engine thrust structure exploded because of weld weakness resulting from use of the wrong weld material.

At MSFC's ME Lab, technicians completed a device to adapt the S-IC Test Stand to receive stages other than the S-IC. This S-IC test stand adapter ring consisted of approximately 90,000 pounds of welded stainless steel approximately 33 feet in diameter and 6 feet in height.

The S-II-1 stage arrived on the dock at KSC on January 21. Already at KSC were the SA-501 flight vehicle sections S-IC-1, S-IVB-501, and S-IU-501. Noteworthy about the arrival of the S-II-1 stage was that it arrived at KSC without having undergone final post-static checkout and modification at MTF, thus eliminating duplicate checkout at MTF and KSC. NASA officials hoped by this action to save NASA seven to eight days in the Apollo Saturn 501 launch vehicle erection schedule in the VAB.
MSFC awarded a $100,000 six-month contract to Bell Aerosystems Company on January 20 for flight testing Bell's "pogo stick" one-man flying vehicle at Langley Research Center's (LaRC's) gravity test facility. The vehicle would be evaluated for possible use in an Apollo lunar surface mission. Following the loss of the S-IVB-503 stage during testing on January 20, NASA officials amended identification numbers of subsequent S-IVB stages.
SATURN ILLUSTRATED CHRONOLOGY

to fill the vacancy created. The S-IVB-504 became the S-IVB-503N, S-IVB-505 became S-IVB-504N, and S-IVB-506 became S-IVB-505N. A replacement stage using an old S-IVB-507 tankage became S-IVB-506, and S-IVB-507 and subsequent stages retained the old identification.350 (The N at the end of the stage identification stands for the word "New," a designation that became necessary after an earlier stage version exploded, necessitating the use of a substitute stage.)

A board to investigate the destruction of S-IVB-503 was organized at the Sacramento Test Center on January 23. Board members included Dr. Kurt Debus, Chairman; Karl Heimburg, MSFC Test Laboratory Director; and T. J. Gordon, Douglas Aircraft representative. On this same date KSC technicians erected the S-IVB-206 stage atop the S-IB-6 stage on LC-37. Stage subsystem checkout began promptly as technicians prepared for the first integrated tests of the Uprated Saturn 206 vehicle.351

The S-IVB-503N stage, a replacement for the destroyed S-IVB-503, arrived at SACTO from DAC's Space Systems Center on January 25, approximately one week later than scheduled because of engine difficulties in the Super Guppy aircraft.352

The ninth Uprated Saturn I booster to be assembled at Michoud arrived at MSFC on January 26 aboard the barge Palaemon. After captive firing at MSFC, S-IB-9 would, according to schedule, return to Michoud for post-firing checkout before shipment to the KSC launch site. On this same date, as part of the post-static checkout, workmen completed liquid hydrogen tank inspection of the S-II-1 stage positioned in the VAB at KSC. At Huntington Beach, workmen completed factory checkout of S-IVB-209 and readied the stage for airlift to SACTO.353

333. Michoud, aerial view with plant in background
The three-man crew for NASA's first manned Apollo space flight (AS-204) died, apparently instantly, when flash fire on January 27 swept their Apollo I spacecraft mated to the Uprated Saturn 204 vehicle. This accident, killing Virgil I. Grissom, Edward H. White II, and Roger B. Chaffee, was the worst in the history of the U. S. space program. It occurred at KSC's LC-34 during the first major rehearsal for the February 21 mission.

JPL issued to industry a January 27 request for proposals on contracts for preliminary design and definition studies of an unmanned Voyager landing capsule. Two identical Voyager spacecraft would be launched by a single Saturn V booster in 1973 and in 1975, according to the proposals. Purpose of the mission to Mars would be to conduct scientific studies of Mars and search for extraterrestrial life. From the industrial proposals, due in March, two to four contractors would be chosen.

Also on January 27 the S-II-2 stage left Seal Beach, California, to pass through the Panama Canal and on to MTF. After its journey lasting 16 days, the S-II would arrive at MTF for two static tests. At SACTO on this historic date, workmen completed installation of the S-IVB-503N stage on the Beta I Test Stand.
In the first statement concerning Apollo flight missions since the AS-204 accident, NASA Associate Administrator for Manned Space Flight, Dr. George E. Mueller, announced on February 3 that NASA would proceed with launching of three unmanned Apollo flights scheduled for 1967: AS-206, AS-501, and AS-502. NASA meanwhile was postponing indefinitely manned Apollo missions pending the outcome of the Apollo 204 Review Board's investigation.355

Also on February 3 NASA signed an incentive contract modification with the Boeing Company for five additional Saturn V first stages. As a result of this modification, Boeing was now under contract to fabricate and assemble 15 of the 7.5 million-pound-thrust boosters, thereby completing the S-IC stage requirements for the previously announced scheduled launching of 15 Saturn V space vehicles in the Apollo manned lunar landing program. The $120 million supplemental agreement awarded by MSFC extended the Boeing contract through June 1970. This modification increased the total estimated value of the Boeing contract to $977 million.356
The S-II-2 stage arrived on dock at MTF on February 11. The S-II-2 stage, part of the second Saturn V vehicle (SA-502) scheduled for launch from KSC late in 1967, was scheduled for testing at MTF late in March. Two days later, Corps of Engineers personnel completed construction of the S-IC B-2 Test Stand at MTF.357

On February 17 the first full-duration test of a cluster of uprated J-2 engines, S-II Battleship Test No. 041, lasted 360 seconds. On this same
date requalification of the SA-204 vehicle following de-erection of the Apollo spacecraft consisted of two tests, the Launch Vehicle (LV) Emergency Detection System test and the LV Systems Plugs-In test; both were accomplished successfully with no problems. At Huntington Beach three days later, after completion of J-2 engine installation, the stage checkout of S-IVB-505 began. The next day, February 21, the S-IVB-502 left SACTO for KSC.358

Erection of the AS-501 stages at KSC began on February 23 and was completed with the stacking of the IU on February 25. Schedules called for the launch vehicle "power on" to begin three days later.359

On February 25 workmen at MTF completed construction of the S-II A-1 Test Stand, and the Corps of Engineers accepted beneficial occupancy with exceptions.360

MSFC personnel static fired the Uprated Saturn I first stage S-IB-9 at Huntsville for approximately 35 seconds on February 27. It had been static-fired for 13.5 seconds on February 24.361

On February 27 the S-II stage prime contractor, NAA, gained beneficial occupancy of three newly
constructed buildings at the contractor's Seal Beach Complex. These buildings were the Station I Subassembly Building, the Multi-purpose Building 81, and the Warehouse and Maintenance Building 86. Meanwhile, overall construction of an eight-story Administrative Office Building No. 80 was progressing on schedule.362

341

Following an extensive systems, subsystems, and total integrated systems checkout of the B-2 Test Stand at MTF on March 3, workmen successfully fired the S-IC Battleship/All Systems state (S-IC-T) for 15 seconds. This S-IC-T test, the first MTF S-IC firing, proved the total compatibility of stage, mechanical support equipment, and S-IC test facilities.363

341

The second Saturn V launch vehicle flight booster, S-IC-2, left MSFC for KSC by barge on March 3. This was the start of a month of travel in the Saturn program, exemplifying the program's far-flung activities. Included in the
March travel in the Saturn program were two Saturn boosters riding side by side on separate barges from New Orleans en route up the Mississippi River to MSFC. On one of the dual barges rode the Saturn V test stage, S-IC-T, after its successful 15-second firing on this March 3 date. The other barge brought the tenth Uprated Saturn booster, S-IB-10, from Michoud to MSFC for static tests. And at KSC the stages of the sixth Uprated Saturn, SA-206, were leaving or preparing to leave LC-37 for return to various sites for storage. The S-IB-9 stage was leaving MSFC by barge. The second stage for SA-206 (S-IVB-206) would make better trip time, leaving two weeks later aboard the Super Guppy aircraft from KSC to Huntington Beach for storage at the DAC plant. Also in March the instrument unit for SA-206 left by aircraft for the IBM plant in Huntsville for storage. These various movements came because SA-206 was to have launched an unmanned lunar module on its first space test, but subsequent scheduling redesignated SA-204 for that mission. SA-206 would remain in storage for use in a subsequent mission.344
On March 7, an erroneous Beckman Digital Data System cutoff at 3.080 seconds ended the first attempt to fire S-IB-9 in a long-duration test. Approximately 2 1/2 hours later, however, technicians at MSFC fired the stage for long duration (145.4 seconds) achieving all test objectives. During the first week in March, NASA also signed an incentive contract with the Boeing Company for Saturn V Systems Engineering and Integration (SE&I) requirements as Schedule II, NAS8-5608, for target costs and target fees of $720.4 million. This requirement extended the SE&I effort through December 1968.

On March 9 DAC airlifted S-IVB-209 from Huntington Beach to SACTO to undergo acceptance firing.366

SA-500D Configuration I testing ended March 11 with a special test to verify the flight control system. The Configuration I test program included roll testing completed January 16, pitch testing completed January 23, yaw testing completed February 15, and longitudinal testing completed February 26.367

After MSFC completed the series of acceptance test firings of S-IB-9 at Huntsville, the stage left Huntsville by barge on March 14. During this same week, the S-IC-2 stage arrived by barge at KSC. Also during this week scientists at Arnold Engineering Development Center (AEDC), Tullahoma, Tennessee, started and restarted a J-2 rocket engine in simulated altitude tests, a significant accomplishment in improving the engine's readiness for restart missions in space. Such tests duplicated the extreme temperatures and other environmental factors of 100,000 feet above earth. Earlier tests at Tullahoma had confirmed the J-2 engine performance for the Uprated Saturn I vehicle.368

A second S-IC-T firing lasted for 60 seconds on March 17. This firing validated the flame-bucket-water-flow pattern of the B-2 Test Stand.
and ended the facilities checkout test series at MTF. Also on March 17 technicians fired the S-II battleship stage for a mainstage duration of 29 seconds.

During the third week in March, two major pieces of Saturn hardware were in transit. On March 18 the S-IB-9 stage arrived at MAF from MSFC to undergo post-static modification. And transportation personnel at Redstone Airport successfully loaded S-IU-502 into the Super Guppy aircraft on March 20 after a delay of four days because of high winds. The aircraft carried its cargo to KSC.

Also on March 20 NASA scheduled use of the AS-204 booster to launch the first Apollo LM on an unmanned flight in the summer of 1967. It was the last booster equipped with full R&D instrumentation. Original plans had been to use the AS-206 booster. Purpose of the first LM mission would be to obtain data on ascent and descent propulsion systems, including a restart; verify LM structure; and evaluate staging.

On March 20 MSFC announced assignment of Karl Heimburg, Director, Test Division, as Acting Director of Test and Evaluation at MTF for an indefinite period. In this assignment Mr. Heimburg would be the principal member of MTF management for test plans and procedures, for operation of test facilities, for overall test safety and success, and for NASA direction of test programs carried out by the on-site contractors. This assignment was not construed as a change in current assignments or the organization structure at MTF even though Mr. Heimburg would have MTF personnel and a small augmentation group of his own selection from the MSFC Laboratory assisting him.

Also on March 20 MSFC awarded Bendix Corporation a $7.4 million cost-plus-award-fee contract for development and production of the ATM pointing control system (PCS). By this contract
Bendix would produce three units by August. The ATM system would permit Apollo astronauts to point a telescope to selected regions of the sun during a period of maximum solar flare activities beginning in late 1968. American Optical Company, under a $740,460 contract, would build a dynamic simulator for use in developing the PCS.\(^{374}\)

Boeing personnel removed the S-IC-T from Test Stand B-2 at MTF on March 24, following post-static checkout, test stand refurbishment, and facilities modification. Preparation began for shipment of the stage to Huntsville.\(^{375}\)

On this same date MSFC Director, Dr. Wernher von Braun, announced NASA's selection of Lee B. James, Manager of the Saturn I/IB Program, to serve as NASA's Deputy Program Director of the Apollo Program, Office of Manned Space Flight. Dr. von Braun also announced appointment of William Teir, Deputy Manager, Saturn I/IB Operations, to replace Mr. James as Saturn I/IB Program Manager, and appointment of William F. LaHatte, Deputy Manager, Saturn I/IB Management, as the new Deputy Manager, Saturn I/IB Program.\(^{376}\)
On March 31, failure of a prevalve to close caused program officials at MTF to scrub the first attempt to static fire the S-II-2 stage. On this same date the S-IC-T traveled from MTF to its destination at MAF aboard the barge Pearl River. After its arrival at Michoud, dockhands transferred the stage aboard the covered barge Poseidon for shipment to MSFC in Huntsville.

Table: Saturn V S-II Stage Test Results

<table>
<thead>
<tr>
<th>Date</th>
<th>Duration</th>
<th>Ignition</th>
<th>Transition</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov 30</td>
<td>Full</td>
<td>Full</td>
<td>109</td>
<td>PREMATURE CUTF05 DIY OVER LIMIT</td>
</tr>
<tr>
<td>Nov 30</td>
<td>Full</td>
<td>Full</td>
<td>109</td>
<td>PREMATURE CUTF05 FALSE SIGNAL</td>
</tr>
<tr>
<td>Dec 20</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Dec 27</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Dec 29</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Dec 30</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Jan 10</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Jan 10</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Feb 2</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Feb 2</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Feb 9</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Feb 9</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Mar 6</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Mar 6</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
<tr>
<td>Mar 9</td>
<td>15</td>
<td>12</td>
<td>10</td>
<td>PREMATURE CUTF05 DI0S FALSE SIGNAL</td>
</tr>
</tbody>
</table>

345. Michoud, aerial view of engineering building and manufacturing area
346. Saturn V second stage (S-II), North American-Rockwell, prime contractor
347a. Testing of S-II Battleship test stage
347b. Test results of S-II Battleship test stage
Battleship testing of the S-II Battleship test stage equipped with five uprated J-2 engines ended with Test 043, a full-duration test of approximately 360 seconds mainstage operation.379

In March NASA gave approval to rebuild the Beta III Test Stand at SACTO, which was severely damaged January 20 when the S-IVB-503 exploded.380

On April 1, the S-IB-10 stage departed Michoud for MSFC onboard the barge Palaemon.381

The S-IB-6 stage departed KSC on April 3 aboard the Promise en route to Michoud for storage. Also on April 3 the Apollo Boilerplate (BP-30) service and command modules arrived at MSFC where they would be modified for use as a backup payload for AS-501 and AS-502 missions.382

The S-IC-4 stage arrived at MTF on April 4 aboard the barge Pearl River. The following day Boeing personnel placed the stage in the MTF S-IC static test stand.383

MTF personnel, on April 6, conducted a successful 368-second firing of the S-II-2 stage.384 At this same time NASA revised designations for Apollo and AA missions as follows: (1) All Apollo missions would be numbered sequentially in the order flown, with the next Apollo mission to be designated Apollo 4, followed by Apollo 5, etc.; (2) AA missions would be designated sequentially as AAP-1, AAP-2, etc. Number designations would not differentiate between manned and unmanned Uprated Saturn I and Saturn V missions.385

The S-IB-6 stage arrived at MAF from KSC on April 7 for storage pending rescheduling of Uprated Saturn I flights.386 Two days later the S-IB-10 stage, shipped by barge from MAF on April 1, arrived at MSFC's Huntsville dock.387
And again on April 9, the S-IC-T stage which left Michoud aboard the Poseidon barge on April 1 arrived at MSFC where it was stored in the ME Laboratory to await use in research and development tests.388

The S-IVB-206 stage, de-erected from LC-37 following reassignment of the LM-1 mission to the AS-204 vehicle, was shipped from KSC on April 13 via the Super Guppy aircraft to SACTO where it would be stored.389

On April 15, technicians at MTF successfully static fired the second flight stage (S-II-2) of the Saturn V space vehicle.390

Also on April 15 MSFC completed award of one-year, cost-plus-incentive award-fee (CPIF) contract extensions totaling more than $57 million for engineering, fabrication, and institutional support services for the Saturn launch vehicle program. Recipients: Sperry Rand Corporation, $12,695,727; Vitro Corporation, $5,344,159;
Brown Engineering Company, $12,350,140; Spaco, Incorporated, $5,971,638; Northrop Corporation, $3,905,000; Hayes International Corporation, $4,969,277; Management Services Incorporated, $5,560,941; Rust Engineering Company, $599,090; and RCA Service Company, $5,749,907.

On April 19, a J-2 engine set a record with the completion of 103 tests lasting a total of 20,094 seconds. This length of testing was longer than for any other large rocket engine produced by the Rocketdyne Division of North American Aviation, Inc. This record-breaking series of tests was conducted on research and development engine J022-1 on test stand Delta 2A at the Santa Susana Field Laboratory between December 9, 1966, and April 19, 1967, with no major hardware changes. The total run duration was more than five times the designated qualification test time, and the number of tests was more than triple the number required for qualification. At the time of this test completion Rocketdyne had delivered 109 J-2 production model engines to MSFC, responsible for technical direction of the engine development.

The S-IC-D stage arrived at MTF from Huntsville on April 23. Workmen at MTF placed the stage in storage pending its use in the early fall.
On April 27, the Saturn upper stage model outfitted as a manned orbital workshop arrived at MSFC aboard the Super Guppy aircraft. Built by Douglas Aircraft at its Space Systems Center, Huntington Beach, California, the mockup depicted the S-IVB stage as it would be used in the Apollo Applications Program. MSFC announced on April 27 that it had asked industry for proposals concerning a study to determine the feasibility of developing large television broadcast satellites to be launched as manned or unmanned Saturn V payloads. Such satellites might be capable of broadcasting directly to home receivers. The study would concern itself primarily with satellite technology.

Also on April 27 MSFC completed a review of three previous Saturn IB improvement studies and confirmed that it would be feasible to increase the payload capability of the Saturn IB by use of solid rocket motor (SRM) strap-ons or by use of SRM's as the first stage booster.
On April 29 the contractor for research and development of S-IVB stages, the Douglas Aircraft Company, merged with McDonnell Aircraft Corporation to form McDonnell Douglas Corporation.

In April NASA awarded CCSD Contract NAS8-21107 in the amount of $113,400 for the purpose of CCSD's continuing for eight months a Saturn IB Improvement Study. Object of the study was to provide more detailed data on a projected Saturn IB system with a 120-inch SRM having 7 1/3 segments. The contractor would also investigate the option of launching the vehicle with four, two, or no SRM's depending on mission requirements. The study would end in December 1967. In still another April contract NASA awarded Contract NAS8-21076 to IBM in the amount of $222,000 to perform a companion and supporting study to CCSD's Saturn IB Improvement Study. IBM's effort lasting seven months would involve definition of astrionics systems required to implement selected vehicle configurations.

Thirteen astronauts attended the Saturn V launch vehicle systems and performance briefing April 27 and 28 at MSFC. Representatives of various MSFC laboratories made presentations to the astronauts. The Astrionics Laboratory presented material on navigation and guidance control. The Aero-Astrodynamics Laboratory presented information on profiles and made presentations on propulsion systems and engine restarts.

Twelve astronauts visited MSFC from May 2 through May 5 and evaluated modifications proposed for converting the S-IVB liquid hydrogen tank into a space station. The astronauts practiced some of the tasks they would perform while orbiting in 10,000 cubic feet of living and working space. Workmen disassembled the mockup, about 60 feet long and 22 feet in diameter, and the astronauts, dressed in space suits, practiced...
putting it back together in much the same manner as if they had to do it in space. Such a converted S-IVB stage would provide space in which the astronauts could live and work for an initial 28 days in space. Then the astronauts would "store" the workshop in space for reuse later for longer periods. Douglas Aircraft assembled the mockup at its Huntington Beach, California, facility and airlifted it to MSFC aboard the Super Guppy aircraft.

Meanwhile, at SACTO technicians successfully acceptance-fired the S-IVB-503N stage for 446.9 seconds. After the successful firing of S-IVB-503N, technicians transferred the stage to the Vertical Checkout Laboratory for post-firing modifications and preparations for checkout. The stage's All-Systems Checkout would come approximately 60 days later.

On May 9 technicians at Huntsville successfully acceptance-fired the S-IB-10 stage a short duration of 35.424 seconds.

NASA, on May 10, awarded Douglas Aircraft a $4,665,000 modification to an existing contract for reliability and verification testing of Saturn S-IVB stage components.

On May 15 MSFC asked Boeing, General Electric, and TRW Systems to submit proposals for parallel contracts for further project definition work in Voyager interplanetary exploration. Proposals would be due May 19. Boeing, General Electric, and TRW Systems had been conducting parallel Voyager project definition study contracts since early 1965 for Jet Propulsion Laboratory, Pasadena, California, and this would be a continuation of that effort.

At MTF on May 16 there was a successful 125-second-duration acceptance firing of the S-IC-4 stage. After an engine alignment optical check, the stage, the first flight S-IC to be tested at
MTF, barges — hurricane precautions

MAY 1967

MTF, Saturn V test complex, looking northwest

MTF, would be returned to MAF for post-static modification and checkout.

The S-II-2 stage, aboard the barge Poseidon, left MTF on May 20 en route to KSC.
Vice-President Hubert Humphrey visited MSFC on Monday afternoon, May 22. After the Vice President spoke to employees and guests in front of Building 4200, his motorcade traveled to Building 4755 where Dr. von Braun described to him several mockups related to the Apollo Applications Program and conducted a tour of space vehicle engineering models and test "hardware." The Vice-President and his party later watched a static firing of an Uprated Saturn I first stage from the East Observation Bunker. The full-duration test lasted 145.6 seconds.

NASA announced on May 24 that the second stage of the first Saturn V launch vehicle would be dismantled at KSC to check for any "hairline" cracks. NASA made this decision after finding similar cracks in an identical stage of the vehicle at the North American Aviation, Seal Beach, California, plant. The space agency did not expect additional checks to delay the first Saturn V flight — an unmanned mission scheduled for mid-August — by "more than a week or so."
The S-II Battleship transition and full-duration testing during the first half of 1967 ended with the seventh test, May 26, 1967. Firings had included a 1.8-second transition test on February 18; the first full-duration test (360 seconds) on February 17; four full-duration tests of 355 or more seconds on March 17, March 31, April 26, and May 26; and another transition test of 50 seconds duration May 12.

During May the highlight of the orbital workshop design progress was the intensive three-day S-IVB orbital workshop design review held at MSFC early in May with more than 200 engineering and management representatives participating. Organizations represented at the preliminary design review included NASA Headquarters, Manned Spacecraft Center, Kennedy Space Center, MSFC, and Douglas Aircraft Company, manufacturer of the S-IVB stage. The review featured an S-IVB mockup built by Douglas and shipped recently to MSFC. Made of non-flight S-IVB hardware, the mockup was outfitted according to the preliminary design of the manned orbital workshop.

June began with considerable movement of Saturn stages. On June 2, technicians at Cape Kennedy de-stacked the SA-501 to check for imperfections in the propellant tanks of the S-II stage. They made X-rays and, after finding twelve imperfections, they instigated repairs by burnishing. On June 6 the S-IC-4 flight stage returned to Michoud aboard the barge Pearl River. Upon its arrival, workers unloaded it and transported the stage to the Stage Test Building for refurbishment and post-static checkout. One day later workmen removed the S-IB-10 stage from the MSFC Static Test Tower and prepared the stage for return shipment to MAF on June 8.

NASA changed the charter on June 8 to reflect the change of the name of the Michoud Operations to Michoud Assembly Facility.
SATURN ILLUSTRATED CHRONOLOGY

On June 13 the S-IB-10 stage arrived at MAF aboard the Palaemon barge from MSFC where it had undergone acceptance tests.417

The Center announced on June 14 that successful F-1 engine tests had reached the 4,000 mark in number of tests. This 4,000th test occurred when an F-1 engine at Edwards Field Laboratory, California, ran 165 seconds at 1,542,000 pounds of thrust. The total of 4,000 firings included 2,035 engine firings and 1,965 thrust chamber injection assembly firings. Rocketdyne Division of North American Aviation, Inc., developed the engine. Engine number 103-1 made the 4,000th run, almost 7 years after the first F-1 firing at Edwards.418

S-IVB-504N arrived at the Sacramento Test Center via the Super Guppy aircraft on June 16.419 Also on June 16 NASA and Boeing signed a $20-million letter contract extending the scope of Boeing's work with NASA to include integration of the Apollo spacecraft's three modules with the Saturn V launch vehicle. Under terms of this contract Boeing would: (1) assist and support NASA and its three manned spaceflight centers — MSC, MSFC, and KSC — in performance of certain technical tasks for Apollo missions AS-501
Technicians at KSC completed erection of the AS-501 spacecraft and electrical mating of AS-501 on June 20, as the payload, Apollo Spacecraft 017, went atop the rocket. This first flight vehicle, known as AS-501, was scheduled for launch in the third quarter of 1967. It would be an unmanned test in which the complete vehicle would be "live." The spacecraft would re-enter following a flight of several thousand miles from earth.421

The S-IVB-209 stage was successfully static-fired for a mainstage duration of 456 seconds on June 20 in the Beta I Test Stand at SACTO. The firing was terminated by LOX depletion cutoff as planned.422
SATURN ILLUSTRATED CHRONOLOGY

On June 21 the Pearl River barge transported the S-IC-5 stage from MAF's Stage Test Building, where it had undergone post-manufacturing checkout and modification, to MTF for additional changes and static tests.423
MSFC announced on June 22 that the Bendix Corporation and the Boeing Company had received contract extensions for further study of lunar surface vehicles. Bendix would receive $149,914 for the extension and Boeing would receive $149,485. The two firms would perform specified design study tasks on the vehicle, called a Local Scientific Survey Module (LSSM). MSFC had awarded the two firms parallel six-month contracts, totaling $350,000 each, on June 29, 1966. These new modifications extended the contract through August 1967.424

The first flight model of the Apollo LM arrived at KSC on June 23 aboard the Pregnant Guppy aircraft. This was the payload for SA-204, then on the pad at LC-37. The lunar module would be in KSC's industrial area for about 45 days before installation atop the launch vehicle.425

Officials at NASA's rocket engine test site at Edwards Air Force Base, California, held brief ceremonies on June 28, marking the delivery of the millionth ton of cryogenic rocket propellants and pressurants. NASA had used the liquid oxygen and liquid nitrogen to test F-1 rocket engines during the past six years. (The first engine test had been in 1961.) Peak testing was in 1965 when as many as 35,300 tons were delivered in a single month.426

NASA announced on June 30 that it had signed a two-month extension of a contract modification with the Chrysler Corporation for procurement of long-lead-time items for additional Uprated Saturn I first stages. The $2.4 million extension, to continue in force through August 31, 1967, enabled Chrysler to continue procuring the materials, components, and engineering support necessary to maintain its capability for assembling four Uprated Saturn I boosters per year. The initial long-lead-time supplemental agreement, valued at $7.2 million, had been awarded in December 1966. At the time of this extension
award, Chrysler was under contract to assemble and test twelve 1.6 million-pound-thrust stages at the MAF in New Orleans.427

MSFC announced also on June 30 the award by NASA of a $14,811,540 fixed-price-incentive-fee contract to North American Aviation for 60 additional H-1 rocket engines for use on first stages of Uprated Saturn I vehicles. This order increased the total number of engines purchased to 322. Delivery would continue through September 1968.428

During June special tests to determine the best way to recover and reuse the Saturn V first stage (S-IC) were being conducted at MSFC. In these tests 1/10 scale models of the S-IC were dropped from altitudes of as much as 156 feet into a 20-foot-deep water tank to simulate descent of the stage through the earth's atmosphere and into the ocean. Purpose of the tests was to study a "soft splash" concept designed to bring back the S-IC with minimal damage. MSFC engineers said a workable recovery method would save "millions of dollars" in future years.429

Four test firings of the S-IVB battleship stage occurred at MSFC in the January to June 1967 period as follows: Test S-IVB-042 on April 21, for 235.8 seconds; Test S-IVB-043 on May 2, for 150 seconds; Test S-IVB-044 on May 18, for 4.7 seconds; and Test S-IVB-045 on June 26, for 199 seconds.430

Records at the end of June indicated that during the first six months of 1967 Rocketdyne conducted 1,838 R&D F-1 engine tests for a total firing time of 149,483 seconds. The tests were performed at Edwards Field Laboratory and at MSFC's West Area F-1 Test Stand. Rocketdyne delivered 11 F-1 production engines to Boeing during the same six-month period: one for the S-IC-7 stage, five for the S-IC-8 stage, three for the S-IC-9 stage, and two as S-IC flight stage spares.431
Records at the end of June also indicated that during the January to June 1967 period Rocketdyne conducted 103 J-2 engine R&D tests at Santa Susana Field Laboratory (SSFL) for a total firing time of 18,904.5 seconds; conducted 66 J-2 engine production tests for a total duration of 10,443 seconds; and continued J-2 engine environmental testing at AEDC, including S-IVB-501 verification tests proving restart capability and S-II-501 verification tests. In this same period NASA accepted 19 J-2 production engines, allocated 17 of these as government furnished equipment to NAA for S-II flight stages and one as an S-II spare, and provided the other engine to DAC as an S-IVB flight stage engine.
MSFC awarded McDonnell Douglas a $496,024 contract on July 1 to study advanced versions of the Saturn S-IVB orbital workshop. Under terms of this contract, the contractor would explore concepts for a follow-on workshop for the Up-rated Saturn I program and several more sophisticated versions of the Saturn V, with initial emphasis on uses of the stage in the AA program.

NASA began the last half of 1967 with Saturn IB stages for SA-205, SA-206, and SA-208 in storage. SA-209 was in various stages of development. For example, post-static checkout of S-IB-9 and also S-IVB-209 was continuing. The S-IVB-209 stage had undergone a successful static firing the previous month, on June 20, as scheduled for a mainstage duration of approximately 456 seconds. S-IU-209 assembly previously scheduled for completion on June 26 was delayed to July 10 because of shortage of assembly supplies, including lack of some distributors. At this same time the later Saturn IB vehicle, SA-210, was under development. S-IB-10 was undergoing post-static modification and repair. S-IVB-210 was in storage at Huntington Beach awaiting availability of Beta 3 Test Stand at SACTO. Fabrication of S-IU-210 had been completed June 21, 1967, and assembly operations were in process.
On July 11 the first and second stages of the second Saturn V booster were mechanically mated at KSC in preparation for the AS-502 unmanned mission to test the Apollo spacecraft's reentry heat shield. The third stage was added on July 13 and instrument unit on July 14.

Saturn transportation personnel found themselves unusually busy in the middle of July. The second stage of the third Saturn V flight vehicle (S-II-3) departed its manufacturing site at Seal Beach, California, on July 12 for a 13-day trip to MTF. The one-million-pound-thrust S-II made the voyage aboard the U.S. Naval Ship Point Barrow which NASA used for transporting the stages from the West Coast. Schedules called for the S-II-3 to reach MTF July 26 where it would be ground-fired by NAA, and later shipped to KSC for mating with the other stages of the Saturn V. Meanwhile, MSFC announced on July 12 that F-1 engines for Saturn V rockets were now being transported from Canoga Park, California, to New Orleans, Louisiana, by highway instead of air. The MSFC announcement stated that the first engine was already en route to New Orleans. Previous shipments of the engines had been made by specially adapted aircraft.
On July 24, MSFC awarded Astro Space Labs., Inc., a $93,136 contract for further development and testing of a remotely controlled device to handle tools, equipment, and men in space. It consisted of links connected by powered hinges, which could be remotely controlled from either end of the device. One end would be connected to the spacecraft, and one would be free. Small versions of the device could be powered by hand pump or batteries; larger versions, by electric motors.437

MSFC announced on July 26 that NASA had awarded a $2.275 million contract to the Boeing Company for procurement of long-lead-time materials for two additional Saturn V flight Boosters. The CPFF contract was the first Saturn V procurement in support of NASA's Apollo Applications program. Boeing, prime contractor for the 7.5 million-pound-thrust first stage (S-IC) of the Saturn V launch vehicle, was manufacturing 12 stages at MAF, for the Apollo manned lunar exploration program. Boeing would begin acquiring such items as propellant ducts, liquid oxygen tunnels, and fuel tank components for the 16th and 17th stages. The contract would expire on January 1, 1968.438
Also on July 26 NASA selected Martin Marietta Corporation to negotiate a 27-month, $98-million CPIF contract for payload integration of experiments and experiment support equipment on AA spacecraft. Tasks would be performed at NASA's three manned spaceflight centers: (1) MSFC work would involve the orbital workshop at ATM; (2) MSC work would involve the meteorological and earth resources payloads, and (3) KSC work would involve the test integration planning and support for launch operations.439

The S-II-3 stage for SA-503 arrived at MTF on July 27, where it would become the first flight S-II to be static fired in the A-1 Test Stand, a third stand to be completed at MTF and the second operational as of that date for testing of S-II stages. Begun in December 1964, the A-1 Test Stand was built by a division of the Koppers Company, Inc., at a cost of more than $8 million. MTF personnel static-fired the first and second flight versions of the S-II in the previously completed A-2 Test Stand December 1 and 30, 1966, and April 6 and 15, 1967. After checkout of the A-1 stand and the S-II-3 stage, schedules called for the rocket to be static-fired for the normal "burntime" of six minutes. During that time the
stage's five rocket engines were expected to develop one million pounds of thrust as they would in space. Schedules called for 12 more stage rockets to be tested at MTF as part of the Apollo Program.440

MSFC and KSC on July 31 signed a formal Memorandum of Agreement concerning "KSC Use of Selected MSFC Personnel." The agreement laid the ground rules for use of MSFC personnel by KSC to (1) support the AS-501 launch scheduled for September 1967, and (2) to support projects of mutual interest and importance to both Centers which would require additional specialized personnel for temporary periods of time.441

The S-IC-T Battleship/All Systems stage fired for 41.74 seconds in Test No. 22 on August 3, the third attempt in two days to complete a 40-second captive firing at MSFC's S-IC Test Complex. The test demonstrated the operational readiness of the test complex, the S-IC-T stage, and the ground support equipment. It also provided training for KSC launch crews and demonstrated the launch integrity of the Saturn V liftoff switch.442

MSFC announced on August 3 the successful completion of a dynamic test program of the Apollo/Saturn V, in effect giving "the green light" for the launch of the first Apollo/Saturn V later in the year as far as dynamics and structures were concerned. Boeing conducted the test program at MSFC under the direction of MSFC engineering personnel, the latter providing test criteria and monitoring of effort. Initial dynamic tests had started with the first stage of the Saturn V. Subsequent tests included the second and third stage, instrument unit, and the Apollo spacecraft. MSFC made several slight modifications to the space vehicle as a result of the dynamic program. These tests included determination of the bending and vibration characteristics of the complete vehicle. Tests were carried out in a 400-foot-high tower in the Center's Test Laboratory.443
On August 7 NASA issued three modifications totaling $30.9 million to the NAA contract for the Saturn V second (S-II) stage. The first modification, valued at $5.5 million, provided for equitable adjustment of second stage changes previously ordered; the second modification, valued at $5.8 million, covered seven changes involving KSC ground support equipment; and the third modification, valued at $19.4 million, was for 12 changes covering alterations of selector switches and insulation of the entire second stage.

MSFC announced on August 10 that NASA had converted the systems integration portion of the Chrysler Corporation's Uprated Saturn I to a cost-plus-incentive-fee agreement. With this $22 million conversion, the total value of the systems integration segment of Chrysler's six-part Uprated Saturn I contract was $35.5 million. Under this arrangement Chrysler's fee was judged according to the quality and timeliness in which Chrysler accomplished its work. Chrysler's major responsibilities also included flight technology, guidance and control, and propulsion systems engineering. Chrysler would also provide systems analysis, and documentation services. In addition Chrysler personnel would perform their assignments at both MSFC and Michoud. The contract would be effective through April 1969.

The S-IVB-505N stage was loaded aboard the Super Guppy aircraft at Huntington Beach on August 17 and transported to SACTO for acceptance testing.

An MSFC August 18 announcement stated that NASA had awarded a $1.4 million contract to the Rocketdyne Division of North American Aviation, Inc., for continued technological investigation of the advanced aerospike rocket engine. In the aerospike engine a doughnut-shaped combustion chamber discharges gases against the surface of
a short center cone. This contrasts with conventional rocket engines in which gases are expanded inside long, bell-shaped nozzles. The concept for the aerospike engine resulted from studies of unconventional engines undertaken by MSFC. Early designs called for the engine to be about eight feet in diameter and four and one-half feet high, about 50 percent shorter than conventional bell nozzle engines. Work on the aerospike engine was at Rocketdyne's Canoga Park, California, plant and at field laboratories. Contract completion date was scheduled for May 31, 1968. The chamber was first tested in May of 1967.

On August 23 indication of "fire" in the J-2 engine caused termination of the S-IVB-504N acceptance firing at 51.23 seconds. Post-test investigation revealed that there had been an inadvertent indication of "fire" caused by improper wiring of fire detection monitor.

On August 25 S-IC-5 underwent a full-duration acceptance firing test at MTF. Despite several problems, the test was considered satisfactory with all major objectives having been achieved. The following day in the Beta I Stand at SACTO the S-IVB-504N stage successfully underwent an acceptance firing of approximately 438 seconds duration.

"Rollout" of AS-501 occurred August 26 at Kennedy Space Center. Representatives from MSFC and other NASA organizations, and newsmen, were present when a huge door of the Vehicle Assembly Building was raised to allow passage of this first flight vehicle. The rocket and its portable launch platform and tower, weighing 12.2 million pounds, crept to the launch mound 3.5 miles away at a top speed of less than 0.5 mile an hour. Workmen secured AS-501 over the flame trench within approximately four hours after it had reached the launch site. Then on August 28 workmen at KSC placed the nine-million-pound mobile service structure around the 363-foot-tall vehicle, providing work platforms and
other access during the seven weeks prior to launch date. On September 18 the NASA procurement officer executed a contract modification (supplemental agreement 813) for five additional S-II flight stages (S-II-11 through S-II-15) to become effective on October 3. Authorization and funding to procure long-lead-time hardware for these stages had been given previously, during the first quarter of 1967. This was a $159,716,477 contract modification for the fabrication of the five Saturn V second stages. Purchase of these five stages completed the S-II requirements for the 15 Saturn V launch vehicles approved for development in the Apollo program. Schedules called for the first of the stages to be delivered to NASA in February 1969. The total value of the S-II stage contract with North American was approximately $1.2 billion. The S-II-3 stage fired for approximately 65 seconds during its first acceptance test, September 19. Primary objectives that were achieved included qualification of the A-1 Test Stand flame bucket and demonstration of the stage, stand, and control room compatibility. Special objectives that were accomplished included evaluation of the slow chill of the LH2 tank, achievement of a 3800-gallon-per-minute maximum LOX fill rate in the fast-fill mode, and verification of the LH2 fast-fill and over-fill sensors. The major S-II stage contractor, North American Aviation, Inc., merged with Rockwell-Standard Corporation on September 22 to form the North American Rockwell (NAR) Corporation. The S-II-3 stage underwent a full-duration (358 seconds) static firing on September 27 with termination automatically initiated by LOX depletion. The firing demonstrated the functional integrity of the stage under static firing conditions and verified that the stage met specified acceptance test requirements.
NASA announced on October 4 that in support of the Saturn V program it was purchasing nine additional S-IVB stages from the McDonnell Douglas Corporation for $146.5 million, fulfilling requirements for currently approved 15 Saturn V and 12 Uprated Saturn I launch vehicles. Delivery would begin in April 1968 and end in May 1970. The purchase brought the total S-IVB contract value for both vehicles to $957,182,093 and the total number of stages purchased to 27. McDonnell Douglas also received a $24 million cost-plus-fixed-fee (CPFF) contract extension for S-IVB launch services at KSC, which increased the total value of the contract to $34 million. Included were stage receipt, checkout, launch, and launch evaluation.454

Also on October 4 NASA informed the Boeing Company that it was terminating procurement of 10 S-IC stages, S-IC-16 through S-IC-25. Boeing had submitted a proposal on July 3 and an adjusted proposal on September 20 covering the necessary supplies and services for fabrication and delivery of the stages.455

NASA announced, also on October 4, that MSFC had used AEDC facilities to investigate preparation of a spent rocket stage for human occupancy in space. The investigation involved dumping 840 gallons of super-cold liquid nitrogen (LN) through a "dead" or inactive J-2 rocket engine. Conducted at a simulated 100,000-foot altitude, this dumping experiment would pave the way for astronauts to move inside an orbiting stage and use tanks as living quarters for a space station.456

A NASA spokesman announced on October 10 that the planned launch of the Saturn V-Apollo 4 vehicle AS-501, scheduled for October 17, would be postponed until early November. Troubles with ground support equipment had stalled the countdown rehearsal. Once rehearsal was finished, engineers would evaluate results and set the date for the unmanned launch.457
The countdown rehearsal for Apollo 4 (AS-501) ended on October 14; final flight preparations were to be completed for scheduled launch in about three weeks. Maj. Gen. Samuel C. Phillips, Apollo Program Director, announced on October 26 that the first flight test of Saturn V, designated Apollo 4, could be scheduled no earlier than November 7. "This is a target date," he said. "We are in a very complex learning process and we are going to take all the time we need on this first launch." Key objective of the flight planned for November 7 would be evaluation of Apollo command module heat shield under conditions encountered on return from the moon mission. The Apollo 4 flight plan would call for Saturn V to place the spacecraft and launch vehicle third stage (S-IVB) into 117-mile circular orbit. After completing two orbits, the third stage would be re-ignited to place spacecraft into orbit with apogee of 10,800 miles. After separation from the third stage, the service module propulsion system would be fired to raise the spacecraft apogee to 11,400 miles.

On November 1 NASA selected Bendix Corporation to negotiate a contract for design, development, qualification, and delivery of long-duration, cryogenic gas storage tanks for the first 56-day manned flight in the AAP. The tanks would be a critical pacing item for long-duration manned flights in AAP. Completion of negotiations would permit an early award if the project were continued by NASA as programmed.

NASA Associate Administrator for Manned Space Flight, Dr. George Mueller, announced on November 4 a revised Apollo mission schedule that called for six flights in 1968 and five in 1969 using the "200-series" (Up-rated Saturn I) and the "500-series" (Saturn V) launch vehicles to test and qualify Command, Service, and Lunar Modules (C&SM and LM). The schedule for 1968 would
include: Apollo/Saturn 204 (AS-204), first unmanned test of LM in earth orbit; AS-502, second unmanned flight test of Saturn V and Apollo C&SM; AS-503, third unmanned test of Saturn V and C&SM; AS-206, second unmanned flight test of LM in earth orbit; AS-205, first manned Apollo flight, a 10-day mission to qualify C&SM for further manned operations; and AS-504, first manned Apollo flight on Saturn V, to provide experience with both C&SM and LM, including crew transfer from C&SM to LM and rendezvous and docking. The schedule for 1969 would include five manned flights (AS-505 through AS-509) with the first four programmed as lunar mission development flights or lunar missions simulations — AS-509 being that flight in which the lunar landing would be made.461
Also on November 4 came the start of the first part of the two-part terminal countdown for the AS-501 launch, a countdown known as the launch vehicle pre-count.462

The second part of the terminal countdown for the AS-501 launch progressed normally through all scheduled holds on November 6.463

NASA reached a critical point in the Apollo Program with the Apollo 4 flight (AS-501) on November 9, an "all-up" launch from LC-39 at KSC. The flight, termed "perfect" based on evaluation of flight data, demonstrated that the spacecraft, heat shield, and lunar rocket met program requirements. S-IC stage LOX depletion sensors signaled S-IC outboard engine cutoff at 150.8 seconds after launch. The second burn, lasting 300 seconds, injected the spacecraft into an orbit with an apogee of 9,301 nautical miles. Spacecraft reentry occurred at 400,000 feet, at a flight path angle of -7.077 degrees with an internal velocity of 36,537 feet per second. The CM landed upright within nine nautical miles of the planned landing point in the Pacific Ocean, 8 hours 37 minutes 8 seconds after launch. The CM was recovered by divers from the carrier USS Bennington 2 hours 14 minutes after splashdown. Post-launch examination revealed that the aft heat shield was heavily charred but that crew-compartment-heat-shield charring was less than expected. The spacecraft windows were undamaged, but moisture existed between the micrometeoroid and heat shield panels of the rendezvous window, and the spacecraft contained approximately two quarts of sea water taken through the relief valve. Apollo 4's flight was the first of two to three missions designed to qualify Saturn V for manned flight, and the first test of the structural integrity and compatibility of launch vehicle and spacecraft. Heat shield design, S-IVB restart, structural/thermal integrity, compatibility of launch vehicle and spacecraft, and ground support had been proven.464
The blastoff of Saturn V at KSC produced one of the loudest noises in history, natural or man-made, according to a November 9 announcement by Columbia University's Lamont Geological Observatory, located at Palisades, New York. Observatory physicist Dr. William Donn labeled U.S. and U.S.S.R. nuclear explosions as the only louder manmade sounds, and the 1883 fall of the Great Siberian Meteorite as the only louder natural sound on record.

The S-II-4 stage, more powerful and somewhat lighter than previous S-II flight stages, arrived at MTF on November 26 from the NAR Corporation, Seal Beach, California. Each J-2 engine of this stage had been upgraded to produce 5,000 more pounds of thrust than had been developed by previous J-2 engines. The lighter weight resulted from the use of thinner propellant tank walls and lighter weight structures.

NASA announced on December 3 that evaluation of the Apollo 4 mission data continued to confirm initial reports that Spacecraft 017 met all flight objectives without problems. Detailed systems
analyses were still in process, but evidence to date indicated that the spacecraft systems operated properly during the November 9 mission and met all specifications.\footnote{468}

On December 5 IBM received a supplement of $1,292,218, bringing the IU contract total to $200,644,441. IBM received the supplement for configuration management of 27 IU's for use on the Uprated Saturn I and Saturn V.\footnote{469}

Erection of the spacecraft atop the SA-502 vehicle occurred in the VAB High Bay 3 at KSC on December 9.\footnote{470}

Approximately 100 representatives of Government and industry attended an Orbital Workshop design meeting at MSFC December 11-14 to discuss structures, mechanical systems, propulsion, instrumentation, communications, crew station, and electrical systems. At this workshop members formulated plans for a five-day Orbital Workshop mockup review to be held in late January 1968 with a McDonnell Douglas Corporation mockup containing the most recent design concepts on display.\footnote{471}

President Lyndon B. Johnson, accompanied by NASA Administrator and Mrs. James E. Webb, other officials from NASA Headquarters, MSFC officials, and Louisiana's Governor John J. McKeithen, toured the Michoud Assembly Facility on December 12. While at MAF the President spoke to some 2,600 spectators, stating: "We Americans are the first to really enter and the first to understand the Twentieth Century. We will never evacuate the frontiers of space to any other Nation. We will be — we must be — the pioneers who lead the way to the stars."\footnote{472}

NASA Administrator James E. Webb and other officials of NASA stopped briefly at MSFC on December 13 on their way back to Washington, D.C., from Michoud. During his stopover Mr. Webb
toured the AAP mockup area and received a briefing, by Dr. von Braun and other MSFC executives, on various aspects of the work.473

The Boeing Company completed an eight-month study on December 17 to define performance growth potential of the Saturn V and to determine alternate uprating methods to meet future missions of the Saturn program.474

Chrysler Corporation personnel at MSFC successfully static-fired the uprated Saturn I booster (S-IB-II) for 35 seconds on December 19. The stage would be shipped to Michoud Assembly Facility for post-firing checkout upon completion of a 145-second, full duration captive firing.475

On December 21 the S-IC-3 stage was loaded onto the barge Poseidon at Michoud for shipment to KSC476 and the S-II-3 stage departed MTF aboard the barge Point Barrow, en route to KSC.477

On December 29 MSFC announced start of negotiations with CCSD for an extension to the S-IB stage contract to cover four additional S-IB flight stages and related services at an estimated cost of $2.5 million. This would bring to 16 the total number of S-IB flight stages to be developed by CCSD for MSFC.478

The S-IVB-503N stage, shipped from SACTO via the Super Guppy aircraft, arrived at KSC on December 30.479

NASA announced on December 31 that in the final six months of 1967 Rocketdyne conducted 100 J-2 engine R&D tests accumulating 14,675 seconds firing time at SSFL and also conducted 35 production engine tests having a total firing duration of 4,449 seconds.480 During this same time Rocketdyne conducted 122 R&D F-1 engine tests at Edwards Field Laboratory (EFL) for an accumulated firing time of 13,254 seconds; and at MSFC's West Area Test Stand it conducted eight F-1 engine R&D tests that totaled 340 seconds of firing.
time. Rocketdyne meanwhile conducted 36 production engine tests at EFL totalling 2,983 seconds firing time and delivered 11 production engines to NASA.481

During December NASA extended for one year the fixed-price contract of Aero Spacelines, Inc., for air cargo services. The $2,725,000 extension brought the total value of the contract to $11,591,633 and provided air transport service for oversized cargo of the Saturn I and Saturn V launch vehicles through November 1968.482

NASA began 1968 with work in process on the AS-502 launch vehicle, preparatory to the launch that would take place in April. Meanwhile, during the first week in January all SA-503 stages were on dock at KSC.483

MSFC announced on January 10 that the Center was entering 1968 with firm plans to support as many as six Apollo/Saturn launches during the year. It also announced plans for supporting the goal of a lunar landing by 1970 with static tests of eight Saturn V stages (five S-II's and three S-IC's) during the year at the MTF. While this would be going on, MAF personnel would be applying the finishing touches to the 12th Up-rated Saturn I booster and forging ahead with the assembly of Saturn V boosters through S-IC-15. Meanwhile, at KSC NASA would attempt to chalk up the 15th consecutive Saturn launch no earlier than January 18 with the flight of the fourth Up-rated Saturn I. A week later, on January 24, the schedule called for the roll-out of the second Apollo/Saturn V to the launch pad. AS-502 would carry several minor modifications that were recommended by MSFC as a result of data provided by the first Apollo/Saturn V, which had flown in November of 1967.

In addition to the previous announcement at the start of 1968, MSFC also noted that other Saturn
vehicles in various phases of preparation included the Apollo/Saturn 206 and another unmanned flight vehicle scheduled to fly after 204 in the Uprated series. S-IB-12, last of the original order, was in final assembly and checkout at Michoud at the start of 1968. Also, S-IVB stages for Uprated Saturn I's 205 through 209 were in storage at the Sacramento Test Facility. S-IVB stages 210 through 212 were in various stages of readiness at Huntington Beach and had not yet been static fired. The Uprated Saturn I instrument units — 205 through 209 — were stored in the IBM plant in Huntsville. Saturn V S-IVB stages 504 and 505 were at Sacramento, where post-static checks were underway. The S-IVB-506 was in post-manufacturing checkout at Sacramento and was awaiting a static test. All others were in manufacturing. The 504IU had been completed at IBM/Huntsville. S-IU-505 was in post-manufacturing checkout and others were being assembled.484

385. S-IC flight stage, Michoud
NASA announced on January 5 that it had exercised the second of three one-year renewal options with the Range Systems Division of Ling-Temco-Vought (LTV) to provide computer services for the major contractors operating at the NASA-Michoud Assembly Facility in New Orleans. The new $2,704,349 extension of LTV's basic cost-plus-award-fee contract was awarded by MSFC for Michoud. The contract, to continue in force until January 8, 1969, would increase the total value of the LTV's contract to $7,641,584. NASA had originally selected the Dallas-based firm on December 1965, to provide computer services at the Michoud installation in New Orleans and at its Computer Operations Office in nearby Slidell, Louisiana.485
An indication of NASA's varied activities in the Saturn Program can be gained by a glance at the Saturn V Weekly Report for January 10 as follows: AS-502 Flight Vehicle (final package) was scheduled for delivery to KSC January 26, 1968; also for the AS-502 flight the final LVDC (flight program tapes) and SLCC (ground tapes) were scheduled for delivery to KSC by February 5, 1968. Status of the AS-503 Flight Vehicle was as follows: all three stages were in the VAB-KSC undergoing inspection and checkout; as for the S-IU-503 for AS-503, adverse weather conditions and mechanical problems with the Super Guppy had delayed the delivery of the IU on-dock KSC from December 29, 1967, to January 4, 1968. Status of the AS-504 Flight Vehicle was: S-IC-4 Stage was in test cell at Boeing-Michoud undergoing mod incorporation; the stage was scheduled on-dock at KSC April 15, 1968; S-II-4 Stage for AS-504 was at test stand at MTF undergoing mod work prior to LOX/LH2 tanking test with captive firing scheduled for January 26, 1968, and then the stage was scheduled on-dock KSC March 31, 1968; the S-IVB-504 stage for AS-504 was in the VCL-SACTO and the stage was scheduled for transfer onto Beta I Test Stand for deferred post-firing checkout after completion of Korotherm rework, after which the stage was scheduled on-dock KSC March 31, 1968; the S-IU-504 Unit for AS-504 was in storage at IBM-Huntsville, scheduled on-dock KSC April 15, 1968. Status of AS-505 Flight Vehicle was: S-IC-5 Stage was in storage at Boeing-Michoud, scheduled on-dock KSC June 29, 1968; S-II-5 Stage for AS-505 was undergoing shakedown inspection preparations at NAA/SD-Seal Beach, prior to on-docking MTF February 9, 1968, and then on-docking KSC June 29, 1968; S-IVB-505 Stage for AS-505 was in storage at VCL-SACTO, scheduled for on-dock KSC June 29, 1968; and S-IU-505 Unit for AS-505 was in component assembly at IBM-Huntsville, scheduled on-dock KSC June 29, 1968.

NASA announced on January 11 that it would negotiate with CCSD, New Orleans, for assembly
and delivery of four additional S-IB stages at a rate of two per year. Earlier, NASA had contracted with Chrysler for production of long-lead-time materials, parts, and components for these stages. Work related to this effort would be performed at New Orleans under direction of MSFC. Chrysler presently was under contract with NASA to furnish 12 Saturn IB flight stages.487

NASA announced also on January 11, 1968, that it would negotiate with McDonnell Douglas, Huntington Beach, California, for assembly and delivery of four additional Uprated Saturn I launch vehicle second (S-IVB) stages at a rate of two per year. The negotiations were expected to result in a contract valued in excess of $48 million. Earlier NASA had contracted with Douglas for production of long-lead-time materials, parts, and components for these stages. Work related to this effort would be performed at Huntington Beach under direction of MSFC.488
On January 16 NASA announced the award to Rocketdyne Division, North American Rockwell Corporation, of a contract valued at $14,796,400 for engineering support services for H-1 engines. The H-1 engines would be used to power the first stage of the Saturn IB launch vehicles. Under this cost-plus-incentive-fee agreement, Rocketdyne would be responsible for engineering support services for engine manufacturing, testing, delivery, application, reliability, and flight performance evaluation. The major portion of the work would be at Rocketdyne's Canoga Park, California, plant. Minor segments would be performed at MAF, where the H-1 engines would be installed on the Saturn IB's first stage, and at the Kennedy Space Center's launch complex. The contract would cover the period July 1967 through June 1971.

NASA announced on January 17 that the Apollo 5 flight, the first test in space of an unmanned lunar module, was being rescheduled for no earlier than Monday, January 22. Reason for the rescheduling was that some launch operations being done for the first time required more time than expected for completion, including the loading of hypergolic propellants aboard the spacecraft. The new schedule would be dependent upon the success of several additional ground tests, including the launch countdown demonstration test, scheduled for completion on January 19.

A mockup of the S-IVB stage to be used as a manned orbital workshop was flown to MSFC on January 17. The full size model arrived from the West Coast aboard the giant Super Guppy aircraft. The mockup would be used later in the month for a crew station design review. NASA plans called for launching the flight orbital workshop as the second stage of the Saturn IB launch vehicle. Once in space, astronauts would convert the stage's large fuel tank into living and working quarters for a 28-day stay. The orbital workshop mockup had recently been modified by McDonnell Douglas, manufacturer of the Saturn.
upper stage for MSFC. This was the mockup's second trip to MSFC. The previous spring engineers had used the model at MSFC in its original configuration for design studies.491

The Saturn IB (AS-204) launch vehicle and the lunar module it orbited on January 22 performed satisfactorily. This Apollo 5 mission began at 4:48 p.m. (CST) January 22 when the Saturn lifted off Launch Complex 37 at Cape Kennedy after ground support equipment caused a delay of three hours 50 minutes. The liftoff came at sundown on a day so clear that both stages were visible to the unaided eye long after stage separation. The S-IB could be seen falling and the S-IVB going on toward orbit when tracking equipment indicated that the second stage was almost 90 miles up and 168 miles downrange. The Saturn hurled the lunar module into space to begin a series of tests of the LM's ascent and descent propulsion systems, the first such test in the vacuum of space.492

MSFC announced on January 30 that an orbital workshop engineering mockup simulating the flight vehicle was being readied for an extensive five-day crew station review February 12-16 at
MSFC. During the review, several astronauts were scheduled to "walk through" many tasks on the ground that would later be done in orbit under zero gravity conditions. These tasks would include experiment installation and operation. Lighting tests were being conducted during the week in the orbital workshop mockup by engineers of the MSFC Propulsion and Vehicle Engineering Laboratory. P&VE was the lead laboratory for the development of the workshop.493

NASA announced on January 30 that shipment of the second Apollo spacecraft lunar module and the fifth Saturn IB rocket to KSC would be postponed pending further evaluation of Apollo 5 mission results. Initial evaluation of the first lunar module flight on January 22–23 had indicated that a second unmanned flight, launched by the Saturn IB, might not be required to qualify the spacecraft for flight with men aboard. Further detailed review of flight data and deliberations by a NASA design certification review board in March would determine the final decision. Meanwhile, the Lunar Module 2 and the Saturn IB rocket stages would be maintained ready for shipment to KSC on three- and 14-day notices, respectively. Refurbishment of LC 37B would proceed for a second unmanned lunar module flight. The Mission Control Center, Houston, and tracking ships Coastal Sentry Quebec and Rose Knot Victor would maintain the operational capability to support another unmanned lunar module flight.494

During January NASA Headquarters affirmed several project name changes. The intermediate Saturn launch vehicle formerly called "Uprated Saturn I" was officially designated IB. The ground-outfitted orbital workshop, sometimes called the "dry workshop," would henceforth be known as the Saturn V Workshop. The workshop to be launched by the Saturn IB, formerly referred to as "Orbital Workshop" and "wet workshop," would be officially named Saturn I Workshop.495
The S-II second stage for the fifth Apollo/Saturn V mission left Seal Beach, California, on February 2 aboard the USNS Point Barrow en route to the MTF, where the stage would undergo static testing before shipment to KSC. Also on board the ship was an F-1 rocket engine. This combination load saved an estimated $6,000 in transportation charges. The F-1 would be unloaded for inspection at MAF, where the stage would be transferred to a barge for the remainder of the trip to MTF.496

MSFC announced on February 6 that 12 scientist-astronauts, appointed to the space program six months earlier, would visit the Center February 12-14. Purpose of the meeting, the first such at MSFC, would be to acquaint the new group with Marshall Center work, including development of the Saturn vehicles. They would also see an engineering mockup of an orbital workshop—a vehicle that would some day house astronauts for extended stays in space. The astronauts who would visit the Center, all of them with doctoral degrees, would be Robert A. Parker, Brian T. O'Leary and Karl G. Henize, astronomers; John A. Llewellyn, chemist; Joseph P. Allen, Philip K. Chapman, and Anthony W. England, physicists; William B. Lenoir, engineer; F. Story Musgrave, physiologist; and William E. Thornton and Donald L. Holmquest, medical doctors.497
The AS-502 transfer to Pad A of Launch Complex 39 occurred on February 6 at KSC. However, the scheduled transfer of the Mobile Service Structure (MSS) to the pad was delayed because of high winds. Reschedule was planned for February 9. No structural or water damage was reported on AS-502 because of movement to the pad.498

Also on February 6 NASA announced the negotiation of an additional one-year contract with the Boeing Company for operation of the Saturn V Development Facility at MSFC. The $5,782,750 incentive contract would continue through September 1968. The original award was made in September 1964. The Saturn V Development Facility, often called the "Saturn V breadboard," would electrically simulate the operation of the Saturn V and its ground and electrical support equipment. Each step at the launch site, through lift-off and flight of each stage, could be computer-simulated at the facility.499

NASA announced on February 7 that it had added a $3,226,374 supplemental clause to the Boeing Company's Saturn V systems engineering and integration contract. The contract extension would be effective through December 1969. Under this contract Boeing would be responsible for providing NASA with Saturn V propulsion systems pre-flight and post-flight performance analysis for the first 10 Saturn V launch vehicles. Boeing would study all of the propulsion systems data recorded during the vehicles' test firings and launches for a complete analysis of Saturn V propulsion systems performance. All work would be conducted at Boeing facilities in Huntsville. This extension brought the systems engineering and integration portion of Boeing's three-part Saturn V contract to a total of $194,845,024. Meanwhile, under separate agreements, Boeing remained responsible for Saturn V booster production at MAF and for launch support services at KSC.500
Transfer of the Mobile Service Structure for AS-502 to the pad, scheduled for February 6 but delayed because of high winds, occurred on February 9.501

The first full-duration captive rocket firing at MTF in 1968 was successfully completed on Saturday, February 10, ushering in the busiest year to date for the rocket testing center. Space engineers and technicians static-fired the fourth flight version of the Apollo/Saturn V second stage (S-II-4) for its full duration of six minutes. The huge liquid-hydrogen-fuel rocket developed an equivalent thrust of more than one million pounds. A North American Rockwell crew conducted the captive firing with the rocket locked in a 200-foot-tall tower. The captive firing was one of a series of special checkouts the stage would go through at the Mississippi proving ground before it would be certified for later flight from KSC in the manned lunar landing program. NASA engineers and scientists would carefully evaluate approximately 1,000 separate measurements taken from the rocket before a flight worthiness certificate would be issued. MTF was scheduled to test-fire, check, and flight-certify eight more Apollo/Saturn space vehicles in 1968 — four of the S-II second stages and four S-IC first stage rockets.502

By the middle of February NASA had announced that the first Americans on the moon would land in one of five three-by-five-mile landing areas selected by NASA's Apollo Site Selection Board. Each of the areas would satisfy criteria in which astronaut safety was the paramount consideration. The first two sites selected by NASA were in the Sea of Tranquility, the third was in the Central Bay, and the fourth and fifth were in the Ocean of Storms. The sites were selected from eight under study from a choice of 30 original sites. Selection of the five permitted scientists and engineers to concentrate on fewer areas in preparing data on the specific sites. The site selection
board studied material obtained by unmanned Lunar Orbiters and soft-landing Surveyor spacecraft. Lunar Orbiter returned high resolution photographs of all the sites and Surveyor provided close-up photos and surface data of the general areas in which they were located. The criteria considered by the board included smoothness of the area, desirability in terms of amount of propellant necessary for the lunar module propulsion systems, lighting as it concerned the best visibility by astronauts, and the general slope of the landing area.

Mississippi Test Facility began the month of March 1968, with considerable test activity. S-IC-2 arrived at MTF on March 1. It had been assembled nearby at the Michoud Assembly Facility. Upon arrival of the booster at MTF, workmen promptly began preparations for placing it
in a test stand for a static firing in late April. In addition, S-II-4 would be placed in a separate test stand, where it would undergo a newly incorporated cryogenic proof pressure test late in March. This test would call for the LH₂ tank to be filled with cryogenic propellant and pressurized to simulated maximum flight loads. It would be a test designed to assure high reliability of Saturn V second stages and would be scheduled for all proposed manned Saturn V vehicle second stages. Meanwhile, at MTF preparations proceeded for placing a fifth S-II second stage in another test stand at MTF on March 7, where it would undergo similar cryogenic proof pressure tests in April before static testing.

MSFC announced on March 7 the award of an $11.1 million contract extension until February 28, 1969, to Sperry Rand Corporation for engineering support in applied research, testing, and design at MSFC's Astrionics Laboratory.
393. AS-502 mission sequence

Dr. von Braun commented on March 12: "If AS-502 is successful, there will be no need for a third unmanned Saturn V flight." 505

NASA announced on March 12 that Chrysler Corporation had received a contract modification totalling $5,779,884 for ground support and engineering equipment related to the Saturn IB program. The contract, awarded by MSFC, covered services at Huntsville through December 1968. It was a cost-plus-fixed-fee agreement. Chrysler's assignment covered program integration management, test integration and engineering of ground support, operation of the Saturn IB Development (Breadboard) facility, logistics responsibility, and telemetry systems engineering. As a result of this March 12 contract, Chrysler's contract for ground support and engineering equipment now totaled $14,701,868. 506

By the middle of March all three static test stands at the Mississippi Test Facility were filled with Apollo/Saturn V flight stage for the first time. Two of the stands contained second stages for the fourth and fifth Apollo/Saturn V rockets. A third was holding the 7.5 million pound thrust booster that would lift the sixth Apollo/Saturn V off its KSC launch pad. 507
MSFC announced on March 18 that more than 100 engineers and scientists would participate in a two-day Saturn I workshop design review board meeting on the following two days at MSFC. The engineers would discuss results of previous workshop reviews including the original engineering design review in May 1967, a documentation study in December, and a week-long crew station review February 12-16 at MSFC. Meeting participants would represent the Manned Spacecraft Center, Kennedy Space Center, NASA Headquarters, and the McDonnell Douglas Corporation, manufacturer of the Saturn S-IVB stage. A workshop mockup had been used at MSFC for earlier design work. Chairman of the design review board was Leland Belew, manager of Marshall's Saturn/Apollo Applications Office.

On March 19 NASA released the findings of the Investigating Board appointed to examine and report on the June 8, 1967, rupture of a test tank at MSFC in Huntsville which resulted in the deaths of two employees of Brown Engineering Company of Huntsville, a NASA subcontractor. NASA's release said in essence that the rupture of the test tank was apparently caused by pressure which exceeded the tank limits. The tank which ruptured was on loan to MSFC from the McDonnell Douglas Corporation. It was to have been used to test a quick-release manhole cover designed by MSFC for the liquid hydrogen tank of the S-IVB. The board concluded that the tank burst at a pressure between 60 and 67 psig (pounds square inch gauge). The tank had withstood a pressure of 60 psig in a test conducted on May 24, two weeks before the accident. The investigation disclosed a misunderstanding concerning the tank received from McDonnell Douglas. A blueprint supplied by McDonnell Douglas was interpreted as indicating the tank had been designed to withstand 150 psig. In fact, the tank in the form received at MSFC had a design limit of only 50.7 psig.

NASA decided during the third week in March that a second unmanned flight of the lunar module
would not be necessary. The first manned LM flight would be made later in the year, launched by a Saturn V vehicle. The decision to cancel the repeat flight of an unmanned LM followed a detailed evaluation of the first LM flight, flown January 22 atop a Saturn IB launch vehicle. Data from a comprehensive examination of the LM's structural and ground test results were also thoroughly analyzed.510

Workmen at MTF conducted a cryogenic proof test of the S-II-4 stage on March 23. The purpose of the test was to certify the integrity of the S-II stage's LH₂ tank. Evaluation of early data indicated that the test was successful. The stage was put through this important pressure test by a team from NAR, manufacturer of the stage for MSFC. Engineers filled the stage with about 273,000 gallons of super-cold liquid hydrogen (at -423°F.) and pressurized the tank five percent above the expected maximum flight pressure. Preliminary readings indicated that the liquid hydrogen tank pressure during the test was 36.18 psig. Instrument calibration checks were conducted to verify the results of the test. Liquid nitrogen was used in the liquid oxygen tank. The
tank was filled to approximately 80 percent of capacity with 65,000 gallons of nitrogen and pressurized to normal flight pressure. This was the first cryogenic proof test conducted in the S-II program. All S-II stages scheduled to be used on manned launch vehicles would undergo the cryogenic proof test at MTF to further certify the structural capability of the stage. The S-II-4 stage was the first of the so-called lightweight stages, being about 3,000 pounds lighter than the first three.511

The schedule for launch of the AS-502 vehicle slipped 13 days during March, primarily because of a problem with the A7-64 propellant disconnect. Two days of slippage were attributed to problems with the S-II-2 stage.512

On March 28 MSFC decided that "it would be in the best interest" of the space program to transfer S-IC and S-IB stage procurement responsibilities from the Michoud Assembly Facility to Huntsville.513

The countdown demonstration test for AS-502 (Apollo 6), scheduled to be launched April 4, was completed March 31.514

By the end of March, 11 S-IVB stages had been delivered to Kennedy Space Center/MSFC (Dynamics stage, S-IVB-500F Facility Checkout Stage, S-IVB-500-ST MSFC stage simulator, S-IVB-201 through S-IVB-204, S-IVB-206, and S-IVB-501 through S-IVB-503N).

MSFC began April 1, 1968, with announcement of the following contract awards: $2.1-million contract modification to RCA for continued support of RCA 110A computers for use in checkout and launch of Saturn IB and Saturn V launch vehicles, bringing total contract value to $12.7 million; and $1.8-million follow-on contract to Sanders Associates, Inc., to provide logistics and engineering support to Saturn V operational display systems at MSFC, bringing total value of the contract to $3.9 million.515
On April 3 MSFC awarded IBM's Space Guidance Center a $1.3 million contract for spare parts and logistic support of instrument units that guided Saturn IB and Saturn V launch vehicles.

NASA successfully launched Apollo 6 (AS-502) from KSC's Complex 39A at 7:00 a.m. (EST) on a mission to qualify the Saturn V launch vehicle for future manned space flights. Primary objectives were to demonstrate structural and thermal integrity and compatibility of launch vehicle and spacecraft; confirm launch loads and dynamic characteristics; demonstrate S-II/S-IC and S-IVB/S-II stage separations; verify operation of propulsion (including S-IVB restart), guidance and control (optimum injection), and electrical systems; evaluate performance of Emergency Detection System (EDS) in closed-loop configuration; and demonstrate mission support facilities and operations required for launch, mission conduct, and CM recovery.

The launch vehicle second-stage performance was near nominal, but two of the five second-stage J-2 engines shut down prematurely, causing the remaining second- and third-stage engines to burn longer than planned. As a result, the spacecraft and third stage entered elliptical parking orbit with 223.1-mile (395.1-kilometer) apogee, 107-mile (172.1-kilometer) perigee. When the third stage failed to re-ignite on command after two orbits as planned, NASA switched to an alternate mission, firing the Service Propulsion System (SPS) to place the spacecraft into trajectory with a 13,823-mile (22,225.4-kilometer) apogee. Since insufficient propellant remained after the extended burn, a second SPS burn was not attempted and the CM reentered at 22,376 miles per hour, just under the planned 25,000-mile-per-hour rate. The spacecraft splashed down 50 miles off target in the Pacific Ocean 9 hours 50 minutes after launch and was recovered in good condition by the U.S.S. Okinawa. Preliminary assessment indicated that four of the five objectives were attained, even though the launch vehicle performance of the S-IVB restart and guidance control (optimum injection) were not fully successful.
During the second week in April MSFC completed a report containing preliminary results of the Apollo 6 flight. Although the basic source of the difficulties had not yet been determined, scientists and engineers speculated that wires carrying cutoff commands to the malfunctioning engines were interchanged. The first stage had performed as planned and stage thrust was near that predicted during the first portion of flight. The second stage had performed satisfactorily through the first-stage boost, second-stage ignition, and early portion of second-stage powered flight. First indications of anomaly were the decreasing temperatures on the main oxidizer valve and its control line on the fifth engine and steady decrease in second engine’s yaw actuator pressure. The third stage performed satisfactorily through the first burn and orbital coast. Although engine and stage prestart conditions had appeared normal, the engine receiving the start signal and the valves opening properly, the engine did not restart. Initial data suggested that a leak in one of the two propellant lines to the engine’s augmented igniter may have caused insufficient or inadequately mixed propellant for the proper start condition. Investigations were continuing on longitudinal oscillation of the vehicle. Guidance and other instrumentation functions, telemetry performance, and onboard TV camera operation were satisfactory. An intensive evaluation of ground systems support during the AS-502 launch indicated no major problem areas, although many areas reported nominal launch damage, typical for such a blast-off. Considerable damage, and not typical, involved both Mobile Launchers (ML) elevators in the Apollo Emergency Ingress/Egress System (PAD & ML). The damage occurred at ignition and/or during liftoff.

A technical review of Saturn launch vehicles, attended by about 140 scientists, engineers, and administrators, was held at MSFC April 20-21. The participants investigated the status and flight schedule of Saturn launch vehicles.
The S-IU-205 Unit was loaded aboard the Super Guppy at MSFC on the morning of April 10; however, weather conditions delayed the departure of the Super Guppy from MSFC for KSC until the following morning. The Unit arrived at KSC on April 11, and offloading of the stage from the Super Guppy was completed that same morning.523

By the middle of April SA-205 had been erected at the launch facility at KSC. Also, by the middle of April the AS-503 Launch Vehicle was stacked in the VAB at Kennedy Space Center.524

Michoud personnel gave an April 22 S-IC program briefing at Michoud to newly appointed Deputy Administrator for NASA, Dr. Thomas O. Paine, along with Dr. von Braun, General O'Connell, and other NASA representatives.525

The 11th Saturn IB booster (S-IB-11) was successfully fired by Chrysler on April 23 at MSFC's Test Laboratory. The 1.6 million-pound-thrust booster was test-fired for a planned 145 seconds. The booster would be returned to the Michoud Assembly Facility the following month for a post-static check. Meanwhile, another booster (S-IB-12) was en route to MSFC by barge for static firing at MSFC.526

NASA announced on April 27 that the AS-503 launch vehicle would be manned and that the launch would be scheduled for the fall. The manned flight would occur in the fourth quarter of 1968. Two previous flights of the Saturn V had been unmanned. But on the basis of data thus far obtained from the second unmanned flight, on April 4, NASA decided to plan and work toward a manned flight with the third Saturn V vehicle. "However, we will retain the option of flying another unmanned mission if further analysis and ground testing indicate that it is the best course," said Maj. Gen. Samuel C. Phillips, Apollo program director. Before NASA made its decision, NASA and industry engineers worked virtually around the clock to determine the causes, effects, and
solutions of several problems experienced in the April 4 flight. These included: premature shutdown of two J-2 engines in the second stage (S-II) of the Saturn V; failure of the third stage J-2 engine to re-ignite in orbit; a longitudinal oscillation or "pogo effect" caused by synchronous vibration of the five F-1 engines in the first stage; and an indication that some material fell away from the area of the spacecraft/lunar module adapter. Information developed by the time of the NASA April 27 announcement indicated that the early shutdown of the two second stage engines began with the failure of a small fuel line in the Number 2 engine ignition system. "We are confident that we know the cause, effects, and solutions involving the J-2 engine failure and the launch vehicle longitudinal vibration problems," said Gen. Phillips. "Analysis and ground testing will continue to achieve an even more complete understanding of all aspects of Saturn V performance and operation.""27
On April 29 NASA awarded a $25.8-million, one-year, cost-plus-fee contract to Bendix Field Engineering Corporation for continued maintenance and operation of the major portion of NASA's Manned Space Flight Network, including 11 facilities of the 14-station unified 8-band network for Apollo. The contract extended the original two-year agreement. 528
ACKNOWLEDGMENTS

Various personnel have contributed generously to the preparation of this chronology. In the past eleven years, first one organization and then another has had a variety of responsibility for its preparation. Therefore, seekers of more detailed information may well appreciate the names of people who have contributed to various versions. At MSFC Mr. Robert Sampson of Research and Development Operations and Mr. Harold Price of Industrial Operations were pioneers in preparing the chronology's early versions. Later Mrs. Evelyn Falkowski, Mrs. Rowene Dunlap, Miss Ruth Jarrell, Mrs. Lois Ford, Mrs. Betty Davis, and Mr. Leo L. Jones, all of Management Services Office, Historical Office, have helped much in either writing, editing, or researching for the document. Of help throughout has been Mr. Bill Ziak of the Scientific and Technical Information Division, Management Services Office. For other assistance, including layout, we are also indebted to personnel of RCA, support contractor for Management Services Office. These people most closely identified with the project are Miss Teresita Sellers, Mrs. Kay Parrish, Mrs. Pat Vidler, Mr. Dan Wise, and Mr. Fagan Thompson. Of unusual assistance in preparing the 1968 edition has been Mrs. Ann Henley, editor at RCA. Much credit for the Index, that appears for the first time in this 1968 edition, must go to Mrs. Henley and also to MSFC summer student, Miss Rosemary Zarsous, who spent much of the summer of 1970 working on it.
APPENDIX A. SATURN MISSIONS

SATURN I LAUNCH VEHICLE

INSTRUMENT UNIT
S-I STAGE
S-II-IV INTERSTAGE
S-IV STAGE
APOLLO SPACECRAFT & LAUNCH ESCAPE SYSTEM

MISSIONS
- LARGE BOOSTER TECHNOLOGY
- CLUSTERED ENGINES PROPULSION SYSTEM
- LIQUID HYDROGEN PROPULSION S-IVB
- STRUCTURES, GUIDANCE AND INSTRUMENTATION TECHNOLOGY
- LARGE SCIENTIFIC SATELLITE PAYLOADS (20,000 LBS)
- APOLLO SPACECRAFT DEVELOPMENT
- ORBITAL FLIGHT TEST OF APOLLO SPACECRAFT

PROPOSED MISSIONS
- APOLLO SPACECRAFT DEVELOPMENT
 - ORBITAL QUALIFICATION OF COMPLETE SPACECRAFT
 - LEM QUALIFICATION
 - RE-ENTRY AND RECOVERY
- APOLLO SPACECRAFT ORBITAL MANEUVERS
- APOLLO CREW TRAINING IN LEM
 - Rendezvous and Docking
- ADVANCE LARGE BOOSTER TECHNOLOGY IN SUPPORT OF SATURN V
- DEVELOPMENT AND TESTING OF LH2
 - EISS STAGES/VEHICLES FOR SATURN V
- LARGE SCIENTIFIC SATELLITE PAYLOADS
 - UP TO 40,000 LBS

SATURN V LAUNCH VEHICLE

CHARACTERISTICS
- TOTAL LENGTH: 367 FEET
- WEIGHT AT ODE: 6,400,000 LBS
- FIRST STAGE APPOX: 785,000 LBS
- SECOND STAGE: 740,000 LBS
- THIRD STAGE: 100,000 LBS
- FOURTH STAGE: 40,000 LBS
- FIFTH STAGE: 10,000 LBS
- TOTAL PAYLOAD: 229,000 LBS
- APOLLO SPACECRAFT: 115,000 LBS
- EARTH ESCAPE
- APOLLO MANNED LUNAR
 - LANDING
- CIRCUMLUNAR FLIGHT
- LUNAR LOGISTICS
- PLANETARY PROBES
- EARTH ORBITAL
- MANNED SPACE STATIONS
- MULTI-MISSION LUNAR-MADE
- SCIENTIFIC SATELLITES
- EQUATORIAL ORBITS
- SYNCHRONOUS ORBITS
- POLAR ORBITS
APPENDIX B. SATURN CHARACTERISTICS

SATURN I LAUNCH VEHICLE

CHARACTERISTICS

LAUNCH VEHICLE

LENGTH 124 FT
WEIGHT AT LIFTOFF 600,000 LBS
PAYLOAD CAPACITY 77,000 LBS

STAGES

S-I
SIZE 18.7 X 90 FT
THRUST 1,500,000 LBS
ENGINES 8 H-1
PROPELLANT LOX & LH2

S-IV
SIZE 21.5 X 90 FT
THRUST 1,500,000 LBS
ENGINES 8 H-1
PROPELLANT LOX & LH2
INSTRUMENT UNIT
SIZE 12.2 X 3.2 FT
GUIDANCE SYSTEM INERTIAL
TOTAL LENGTH INCLUDING SPACECRAFT & 1ST STAGE 3.0 FT

SATURN IB LAUNCH VEHICLE

CHARACTERISTICS

LAUNCH VEHICLE

LENGTH VEHICLE 142 FT
LENGTH VEHICLE SPACECRAFT 224 FT
WEIGHT AT LIFTOFF 1,597,000 LBS
EARTH ORBIT PAYLOAD APPROXIMATE 40,000 LBS

STAGES

FIRST S-IC
SIZE 21.5 X 80 FT
ENGINE 8 H-1
THRUST 2,000,000 LBS
PROPELLANT LOX & LH2

SECOND S-IVB
SIZE 22 X 39 FT
ENGINE 8 H-1
THRUST 1,150,000 LBS
PROPELLANT LOX & LH2
INSTRUMENT UNIT
SIZE 12.2 X 3.2 FT
GUIDANCE SYSTEM INERTIAL

SATURN V LAUNCH VEHICLE

CHARACTERISTICS

LAUNCH VEHICLE

LENGTH VEHICLE 281 FT
LENGTH VEHICLE SPACECRAFT 363 FT
WEIGHT AT LIFTOFF 6,900,000 LBS
PAYLOAD CAPABILITY APPROXIMATE 100,000 LBS
EARTH ORBIT TRAJECTORY 287,000 LBS

STAGES

FIRST S-IC
SIZE 23 X 38.5 FT
ENGINES 8 H-1
THRUST 5,000,000 LBS
PROPELLANTS LOX & LH2

SECOND S-II
SIZE 15.5 X 19 FT
ENGINES 7 H-1
THRUST 1,150,000 LBS
PROPPELLANTS LOX & LH2
INSTRUMENT UNIT
SIZE 12.2 X 3.2 FT
GUIDANCE SYSTEM INERTIAL

THIRD S-IVC
SIZE 21 X 20 FT
ENGINES 8 H-1
THRUST 1,150,000 LBS
PROPELLANTS LOX & LH2
INSTRUMENT UNIT
SIZE 12.2 X 3.2 FT
GUIDANCE SYSTEM INERTIAL

230
APPENDIX D. LAUNCH SUMMARY

SATURN I LAUNCH SUMMARY

RESEARCH AND DEVELOPMENT FLIGHTS

<table>
<thead>
<tr>
<th>Flight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-1</td>
<td>LAUNCHED JULY 7, 1965</td>
</tr>
<tr>
<td>SA-2</td>
<td>LAUNCHED APRIL 28, 1966</td>
</tr>
<tr>
<td>SA-3</td>
<td>LAUNCHED NOVEMBER 21, 1966</td>
</tr>
<tr>
<td>SA-4</td>
<td>LAUNCHED MARCH 30, 1967</td>
</tr>
<tr>
<td>SA-5</td>
<td>FIRST MERCURY-APOLLO FLIGHT</td>
</tr>
<tr>
<td>SA-6</td>
<td>LAUNCHED MAY 24, 1967</td>
</tr>
</tbody>
</table>

OPERATIONAL FLIGHTS

<table>
<thead>
<tr>
<th>Flight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA-7</td>
<td>LAUNCHED JULY 25, 1966</td>
</tr>
<tr>
<td>SA-8</td>
<td>LAUNCHED AUGUST 25, 1966</td>
</tr>
<tr>
<td>SA-9</td>
<td>LAUNCHED OCTOBER 15, 1966</td>
</tr>
<tr>
<td>SA-10</td>
<td>ORBITED SATELLITE 2, JUNE 20, 1967</td>
</tr>
<tr>
<td>SB</td>
<td>ORBITED SATELLITE 3, SEPTEMBER 20, 1966</td>
</tr>
</tbody>
</table>

SATURN IB LAUNCH SUMMARY

<table>
<thead>
<tr>
<th>Flight</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS-201</td>
<td>LAUNCHED FEBRUARY 26, 1966</td>
</tr>
<tr>
<td>AS-203</td>
<td>LAUNCHED JULY 5, 1966</td>
</tr>
<tr>
<td>AS-202</td>
<td>LAUNCHED AUGUST 25, 1966</td>
</tr>
<tr>
<td>AS-204</td>
<td>LAUNCHED JANUARY 23, 1968</td>
</tr>
</tbody>
</table>

AS-201
1. SHORT LOB LAUNCH VEHICLE AND CSM DEVELOPMENT
2. ORBITAL LIQUID HYDROGEN EXPERIMENT

AS-203
1. ORBITAL LIQUID HYDROGEN EXPERIMENT

AS-202
1. LONG LOB LAUNCH VEHICLE AND CSM DEVELOPMENT

AS-204
1. APOLLO S
 1. ORBITAL LUNAR MODULE DEVELOPMENT
APPENDIX E: SEQUENCY FOR SATURN V MANNED LUNAR VOYAGE
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Apollo Applications program</td>
</tr>
<tr>
<td>AAP</td>
<td>Apollo Applications Program</td>
</tr>
<tr>
<td>ABMA</td>
<td>Army Ballistic Missile Agency</td>
</tr>
<tr>
<td>AEC</td>
<td>Atomic Energy Commission</td>
</tr>
<tr>
<td>AEDC</td>
<td>Arnold Engineering Development Center</td>
</tr>
<tr>
<td>AEROJET</td>
<td>Aerojet General Corporation</td>
</tr>
<tr>
<td>AF</td>
<td>Air Force</td>
</tr>
<tr>
<td>All-Systems Vehicle</td>
<td>Non-flight stage used to checkout flight-worthiness of systems</td>
</tr>
<tr>
<td>AIAA</td>
<td>American Institute of Astronautics and Aeronautics</td>
</tr>
<tr>
<td>ANIR</td>
<td>Atlantic Missile Range</td>
</tr>
<tr>
<td>AOMC</td>
<td>Army Ordnance Missile Command</td>
</tr>
<tr>
<td>Apollo</td>
<td>Project designation for manned lunar landing, also spacecraft for manned lunar landing</td>
</tr>
<tr>
<td>AS</td>
<td>Apollo/Saturn (Specific payload and vehicle with a number as AS-203)</td>
</tr>
<tr>
<td>ATM</td>
<td>Apollo Telescope Mount</td>
</tr>
<tr>
<td>BP</td>
<td>Boilerplate</td>
</tr>
</tbody>
</table>

Battleship Stage

Non-flight stage replica for engine tests
<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Bug"</td>
<td>Lunar excursion module, landing unit of the Apollo Spacecraft</td>
</tr>
<tr>
<td>C & SM</td>
<td>Command and Service Modules</td>
</tr>
<tr>
<td>C-1</td>
<td>Saturn C-1, early nomenclature for Saturn I</td>
</tr>
<tr>
<td>C-3</td>
<td>Saturn C-3, Saturn configuration considered but not used</td>
</tr>
<tr>
<td>C-5</td>
<td>Saturn C-5, configuration adopted for lunar landing Apollo flights (renamed Saturn V in February 1963)</td>
</tr>
<tr>
<td>C-IB</td>
<td>Saturn C-IB, vehicle selected in 1962 for manned earth orbital flights with full Apollo spacecraft (renamed Saturn IB)</td>
</tr>
<tr>
<td>Cape Canaveral</td>
<td>Launch site, name changed to Kennedy Space Center in 1963.</td>
</tr>
<tr>
<td>CCSD</td>
<td>Chrysler Corporation Space Division</td>
</tr>
<tr>
<td>CBTT</td>
<td>Common bulkhead test tank</td>
</tr>
<tr>
<td>Chance-Vought</td>
<td>Saturn tank manufacturer, Dallas, Texas</td>
</tr>
<tr>
<td>Centaur</td>
<td>Vehicle for support of unmanned moon probes and other missions</td>
</tr>
<tr>
<td>CM</td>
<td>Command Module</td>
</tr>
<tr>
<td>Compromise</td>
<td>Later changed to Promise - barge transporter for Saturn boosters</td>
</tr>
<tr>
<td>CPFF</td>
<td>Cost-plus-fixed-fee contract</td>
</tr>
<tr>
<td>CPIF</td>
<td>Cost-plus-incentive-fee contract</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DAC</td>
<td>Douglas Aircraft Corporation</td>
</tr>
<tr>
<td>DOD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>Downey</td>
<td>S&ID S-II stage component fabrication and testing facility location</td>
</tr>
<tr>
<td>Douglas</td>
<td>Douglas Aircraft Corporation</td>
</tr>
<tr>
<td>Dyna Soar</td>
<td>Air Force spacecraft for earth orbital flight featuring "glider re-entry"</td>
</tr>
<tr>
<td>DX rating</td>
<td>Highest national priority</td>
</tr>
<tr>
<td>EDS</td>
<td>Emergency Detection System</td>
</tr>
<tr>
<td>EFL</td>
<td>Edwards Field Laboratory</td>
</tr>
<tr>
<td>ESE</td>
<td>Electrical Support Equipment</td>
</tr>
<tr>
<td>EST</td>
<td>Eastern Standard Time</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Agency</td>
</tr>
<tr>
<td>Fairchild Stratos</td>
<td>Meteoroid satellite contractor</td>
</tr>
<tr>
<td>F-1 Engine</td>
<td>Saturn V booster (S-IC stage) engine</td>
</tr>
<tr>
<td>FRT</td>
<td>Flight Rating Tests</td>
</tr>
<tr>
<td>GSE</td>
<td>Ground Support Equipment</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>H-1 Engine</td>
<td>Saturn I booster (S-I stage) engine</td>
</tr>
<tr>
<td>High Water Project</td>
<td>SA-2 and SA-3 flight experiment in which water from the Dummy second stage was released into the ionosphere.</td>
</tr>
<tr>
<td>Huntington Beach</td>
<td>DAC S-IVB assembly facility in California</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machine Corporation</td>
</tr>
<tr>
<td>IO</td>
<td>MSFC Industrial Operation organization</td>
</tr>
<tr>
<td>IU</td>
<td>Instrument Unit</td>
</tr>
<tr>
<td>J</td>
<td>Liquid hydrogen engine for S-IVB and S-II stages</td>
</tr>
<tr>
<td>JPL</td>
<td>Jet Propulsion Laboratory</td>
</tr>
<tr>
<td>K</td>
<td>Thousands of pounds of thrust</td>
</tr>
<tr>
<td>KSC</td>
<td>Kennedy Space Center, was Cape Canaveral until November 28, 1963.</td>
</tr>
<tr>
<td>Kiwi-B</td>
<td>Nuclear reactor</td>
</tr>
<tr>
<td>LaRC</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>LC</td>
<td>Launch Complex</td>
</tr>
<tr>
<td>LH₂</td>
<td>Liquid hydrogen</td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>LM</td>
<td>Lunar Module</td>
</tr>
<tr>
<td>LN</td>
<td>Liquid Nitrogen</td>
</tr>
<tr>
<td>LOC</td>
<td>Launch Operations Center</td>
</tr>
<tr>
<td>LOX</td>
<td>Liquid Oxygen</td>
</tr>
<tr>
<td>Lockheed</td>
<td>Lockheed Aircraft Company</td>
</tr>
<tr>
<td>LR-115</td>
<td>First Liquid hydrogen type engine (Pratt & Whitney), early designation of RL 10-A3 engine.</td>
</tr>
<tr>
<td>LR-119</td>
<td>Proposed uprated LR-115 engine (project was cancelled)</td>
</tr>
<tr>
<td>LSSM</td>
<td>Local Scientific Survey Module</td>
</tr>
<tr>
<td>LTV</td>
<td>Ling-Temco-Vought</td>
</tr>
<tr>
<td>LV</td>
<td>Launch Vehicle</td>
</tr>
<tr>
<td>LVDC</td>
<td>Launch Vehicle Digital Computer</td>
</tr>
</tbody>
</table>

M

MAF: Michoud Assembly Facility (formerly Michoud Operations)

Martin: Martin Company

ME: MSFC's Manufacturing Engineering Laboratory
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Name / Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michoud</td>
<td>NASA's Michoud Operations</td>
</tr>
<tr>
<td>Minneapolis-Honeywell</td>
<td>Minneapolis-Honeywell Incorporated name changed to Honeywell Incorporated</td>
</tr>
<tr>
<td>ML</td>
<td>Mobile Launcher</td>
</tr>
<tr>
<td>MSC</td>
<td>Manned Spacecraft Center</td>
</tr>
<tr>
<td>MSFC</td>
<td>George C. Marshall Space Flight Center</td>
</tr>
<tr>
<td>MSS</td>
<td>Mobile Service Structure</td>
</tr>
<tr>
<td>MSTS</td>
<td>Military Sea Transport Service</td>
</tr>
<tr>
<td>MTF</td>
<td>Mississippi Test Facility (at one time MTO) in Hancock County, Mississippi</td>
</tr>
<tr>
<td>N</td>
<td>North American Aviation, Inc.</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NERVA</td>
<td>Nuclear engine for RIFT stage</td>
</tr>
<tr>
<td>NOVA</td>
<td>Moon direct flight vehicle deferred in favor of Saturn V</td>
</tr>
<tr>
<td>P</td>
<td>Propulsion and Vehicle Engineering Laboratory at MSFC</td>
</tr>
<tr>
<td>PCS</td>
<td>Pointing control system</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pegasus</td>
<td>Meteoroid detection satellite</td>
</tr>
<tr>
<td>PFRT</td>
<td>Preliminary Flight Rating Test</td>
</tr>
<tr>
<td>P&W</td>
<td>Pratt & Whitney Company</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RCA</td>
<td>Radio Corporation of America</td>
</tr>
<tr>
<td>Rocketdyne</td>
<td>Division of North American Aviation</td>
</tr>
<tr>
<td>RIFT</td>
<td>Reactor-in-flight test stage (nuclear power)</td>
</tr>
<tr>
<td>RP-1</td>
<td>A kerosene-type fuel</td>
</tr>
<tr>
<td>RL10-A3</td>
<td>Reactor-in-flight test stage (nuclear power)</td>
</tr>
<tr>
<td>S&ID</td>
<td>Space and Information Systems Division of North American Aviation</td>
</tr>
<tr>
<td>SA</td>
<td>Saturn (with number signifies a specific vehicle as SA-501) that does not have the Apollo command module attached.</td>
</tr>
<tr>
<td>S-I</td>
<td>Saturn I originally Saturn C-1 first stage</td>
</tr>
<tr>
<td>S-II</td>
<td>Saturn V second stage</td>
</tr>
<tr>
<td>S-IVB</td>
<td>Saturn V third stage</td>
</tr>
<tr>
<td>S-IC</td>
<td>Saturn V first stage</td>
</tr>
<tr>
<td>S-IV</td>
<td>Saturn I second stage</td>
</tr>
<tr>
<td>SACTO</td>
<td>Douglas Aircraft's Sacramento Test Facility</td>
</tr>
<tr>
<td>Santa Susana</td>
<td>Test Site for S-II and S-IVB stage and J-2 engine</td>
</tr>
<tr>
<td>Santa Monica</td>
<td>Douglas Aircraft's fabrication facility at Santa Monica, California</td>
</tr>
<tr>
<td>Saturn I</td>
<td>A two-stage vehicle, with eight H-1 engines propelling first stage and six RL-10 engines propelling second stage</td>
</tr>
<tr>
<td>Saturn IB</td>
<td>A two-stage vehicle with eight H-1 engines propelling first stage and a single J-2 engine propelling second stage</td>
</tr>
<tr>
<td>Saturn V</td>
<td>A three stage vehicle, with five F-1 engines propelling first stage, five J-2 engines propelling second stage, and a single J-2 engine propelling third stage</td>
</tr>
<tr>
<td>Seal Beach</td>
<td>North American Aviation Assembly plant at Seal Beach, California</td>
</tr>
<tr>
<td>SLCC</td>
<td>Saturn Launch Control Computer</td>
</tr>
<tr>
<td>Slidell</td>
<td>A computer center that serves Michoud in Slidell, La.</td>
</tr>
<tr>
<td>SM</td>
<td>Service Module</td>
</tr>
<tr>
<td>SPS</td>
<td>Service Propulsion System</td>
</tr>
<tr>
<td>SRM</td>
<td>Solid Rocket Motor</td>
</tr>
<tr>
<td>SSFL</td>
<td>Santa Susana Field Laboratory</td>
</tr>
<tr>
<td>SSO</td>
<td>Saturn Systems Office</td>
</tr>
<tr>
<td>Sverdrup Parcell Company</td>
<td>Mississippi Test Facility design contractor</td>
</tr>
</tbody>
</table>
U
Uprated Saturn
Nomenclature used for S-IB for a short period of time.

V
VAB
Vertical Assembly Building

VCL
Vehicle Checkout Laboratory
REFERENCES

18. MSFC SSO, Saturn QPR, Jan. - Mar. 61, p. 32 and 66.

19. MSFC SSO, C-1 Development Plan, p. 139.

20. MSFC SSO, Saturn QPR, Jan. - Mar. 61, p. 42.

22. MSFC SSO, Saturn QPR, Apr. - June 61, p. 25.

23. MFSC SSO, Saturn QPR, Apr. - June 61, p. 25.

25. MSFC SSO, Saturn QPR, Apr. - June 61, p. 63.

28. MSFC SSO, Saturn QPR, July - Sept. 61, p. 11.
32. MSFC SSO, *Saturn QPR, July - Sept. 61*, p. 49.
37. Interview with Joe M. Jones, PIO, MSFC, Feb. 8, 1962.

47. MSFC SSO, Saturn QPR, Jan. - Mar. 62, p. 27.

62. MSFC Test Div., Test Division MPR, July 12-Aug. 12, 1962, p. 1

64. MSFC Test Div., Test Division MPR, July 12-Aug. 12, 1962, p. 12.

84. S. F. Morea, MSFC, P&VE Division, interviewed Mar. 28, 1963.

107. MSFC Test Div., Test Division MPR, Apr. 12 - May 12, 1963, pp. 4-5; May 12 - June 12, 1963, p. 5.

120. MSFC Test Lab., Test MPR, July 12 - Aug. 12, 1963, p. 2.

156. MSFC Engine Project Office, MPR, F-1, H-1, J-2, and RL10 Engines, Feb. 1964, p. 3.

167. MSFC Executive Staff, Managerial Data Center, Management Information, Volume IX, Sept. 1964, p. 2.

171. MSFC Engine Project Office, Engine QPR, April - June 1964, p. 32.

225. IBM Space Systems Center, Saturn I U Program Plan, Apr. 5, 1966, pp. 1.1 - 1.2

231. NAA S&ID, S-II Stage MPR, Apr. 1965, p. 36.

239. MSFC P&VE Lab., *MPR*, June 1 - 30, 1963, p. 49.

265. Systems Static Test Branch, CCSD, Saturn S-IB Stage Final Static Test Report, Stage S-IB-3, pp. 3-5.

276

Minutes of Combined Staff and Board Meeting, March 12, 1968.

INDEX

A-1 engine, 47, 57
A-3 engine, 57
AA. See Apollo Applications.
ABMA. See Army Ballistic Missile Agency.
Advanced Research Projects Agency (ARPA), 2-7
Advanced Saturn, 29
AEC. See Atomic Energy Commission.
AEDC. See Arnold Engineering Development Center.
Aero Spacelines, Inc., 203
Aerojet General Corporation, 34
Aetron Division, 32
Aerospike engine, 193
AKD Point Barrow. See USNS Point Barrow.
Aldrin, Edwin E., 200
Allen, Joseph P., 212
"All-up" testing, 67
American Optical Company, 171
AMR. See Atlantic Missile Range.
Anders, William A., 200
AOMC. See Army Ordnance Missile Command.
Apollo 204 Review Board, 164
Apollo Applications, 130, 142
AAP-1, 173
AAP-2, 173
Apollo Telescope Mount (ATM), 170, 171
contracts
negotiations, 197
Saturn V procurement, 190
mockups, 180, 201, 202
nomenclature, 173
payload integration, 191
S-II tests at MTF, 191
S-IVB stage mockup, 176, 209
S-IVB Orbital Workshop, 176-178, 181, 188, 201, 209, 218
Apollo program, 13, 31, 106, 145, 155
astronauts, 150, 200, 212
flight scheduling. See Saturn IB and Saturn V.
manned lunar exploration program, 190
manned lunar landing program, 164
missions, 23, 81, 89, 132, 134, 139, 164, 170, 173, 183, 197, 198
nomenclature changes, 173
Apollo/Saturn IB vehicle
AS-204, 163, 170, 174, 198, 210
accident, 163, 164
first LEM mission, 170
flight schedule, 203, 204
launch of LEM on unmanned flight, 170
launch with LM, 210
Lunar Module 1 mission, 174
AS-205, 198, 218, 219
first manned Apollo flight, 198
AS-206, 164, 170, 174, 198, 203, 204
first LEM mission (original plans), 170
flight schedule, 164, 203, 204
second LM mission, 198
Apollo/Saturn V vehicle, 136, 157
AS-501, 164, 192, 194, 196, 197
countdown, 199
critical point, 199
errection at KSC, 166
flight, critical point, 119
flight schedule, 164, 183, 192
Memorandum of Agreement, 192
"Rollout," 194
AS-501 through AS-515, 203
assembly, 203, 204
contract extension, 182, 183
AS-502, 197, 198, 203, 207, 213, 214, 220, 221
comment on success, Dr. von Braun, 217
countdown demonstration test, 220
delivery schedule, 207
errection at KSC, 201
evaluation of ground systems support, 222
flight schedule, 164, 198, 220
launch from LC-39A, 221
test reentry heat shield, 189
transfer to Pad A, 213, 214
work progression, 203
AS-503, 198, 223
delivery of instrument unit, 207
flight schedule, 223, 224
test of command and service modules, 198
vertical assembly, 223
AS-504, 198, 200
crew, 200
flight schedule, 198
status of stage progression, 207
storage, 207
AS-505, 198
crew, 200
status of stage progression, 207
AS-505 through AS-509, 198
flight schedule, 198

Apollo spacecraft, 25, 31, 39, 40, 58, 89, 92, 98, 126, 135, 138, 149, 151, 157, 181, 182, 183, 189, 192, 200, 201, 211
Apollo spacecraft 009, 134
Apollo 1, 163
Apollo 4, 173, 196, 197, 199
Apollo 5, 173, 209-211
Apollo 6, 220-222
Boilerplate spacecraft, 58, 61, 89, 100, 103, 107, 112, 113, 114
BP-16, 100, 103
BP-9, 112, 113, 114
BP-26, 107
Command Module (CM), 17, 31, 40, 51, 76, 77, 81, 89, 100, 113, 122, 125, 151, 183, 197-200, 221
Lunar Module (LM), 40, 51, 141, 157, 168, 170, 183, 197, 198, 200, 209, 211, 218, 224
Lunar Module 1, 174
Lunar Module 2, 211
Service Module (SM), 51, 89, 92, 93, 100, 108, 112, 149, 151, 197, 198, 200
Armstrong, Neil A., 200
Army Ballistic Missile Agency (ABMA), 1, 2, 4, 5, 6, 9
Army Ordnance Missile Command (AOMC), 3, 4, 5, 6
Arnold Engineering Development Center (AEDC), 13, 129, 169, 187, 196
ARPA. See Advanced Research Projects Agency.
Astronauts (see also by name), 171, 177, 178, 196, 200, 209, 212, 214
Astro Space Labs., Inc., 190
Atlantic Missile Range (AMR), 3, 4, 43
Atlas, 4, 5
Atlas Centaur vehicle, 5
ATM. See Apollo Applications, Apollo Telescope Mount.
Atomic Energy Commision (AEC)
NASA Space Nuclear Propulsion Office, 31
AZUSA "C", 112

283
B-377 aircraft, 58
Bahamas, 94
Baton Rouge, Louisiana, 118
Bay St. Louis, Mississippi, 159
Bean, Alan L., 200
Bell Aerosystems Company, 161
"pogo stick," 161
Bendix Corporation, 92, 170, 185, 197
Bendix Field Engineering Corporation, 225
Birmingham, Alabama, 80
Boeing Company, 24, 33, 35, 42, 47, 50, 53-55, 67, 70, 71, 77, 80, 96, 99,
105, 109, 116, 121, 125, 127, 135, 136, 154, 164, 169, 171, 173, 178,
182, 185, 186, 190, 192, 196, 207, 213
Booster Evaluation Committee of the Office of the Secretary of Defense, 5
Borman, Frank, 200
Brown Engineering Company, 175, 218
Canoga Park, California, 4, 78, 91, 189, 194, 209
Cape Canaveral (see also Cape Kennedy), 3, 4, 5, 6, 12, 14, 18, 20, 21, 22,
25, 26, 27, 28, 30, 34, 35, 36, 37, 43, 48, 49, 50, 55, 61, 63, 64, 65,
68, 71
Cape Kennedy (see also Cape Canaveral and Kennedy Space Center), 74, 77,
78, 81, 82, 89, 92, 94, 95, 97, 104, 151, 181, 210
Carr, Gerald P., 200
CCSD. See Chrysler Corporation Space Division.
Centaur engine, 138
 First-generation LR-115, 14
 Second-generation LR-119, 14
Centaur vehicle, 5, 17, 20, 24, 105, 106, 107, 121
Chaffee, Roger B., 163
Chance-Vought, 31
Chapman, Philip K., 212
Chrysler Corporation Space Division (CCSD), 23, 30-32, 42, 46, 48, 53, 58,
62, 67, 68, 70, 71, 74, 75, 77, 78, 83, 86, 87, 90, 92, 93, 95, 97, 100-
102, 105, 107, 108, 111, 113, 116, 117, 120, 123, 124, 127, 131, 137,
146, 150, 152-154, 157, 159, 177, 185, 186, 193, 202, 207, 208, 217
Clarson, R. E., Inc., 101
Cleveland, Ohio, 138
CM. See Apollo spacecraft, Command Module.
Coastal Sentry Quebec, 211
Collins, Michael, 200
Compromise, 22, 26, 27, 33
Conrad, Charles Jr., 200
Consteel-Ets-Hokin, 34
Contracts. See contractor firm names.
Convair Astronautics, 13, 14, 20
Corps of Engineers. See U. S. Army Corps of Engineers.
Courtland, California, 108, 109, 117

DAC. See Douglas Aircraft Company.
Dallas, Texas, 31
Debus, Kurt, 143, 162
Director of Defense Research and Engineering, 5
Donn, William, 200
Douglas Aircraft Company (DAC) (see also McDonnell Douglas Corporation),
10, 18, 20, 21, 25, 34, 35, 38, 42, 44, 47-50, 55-57, 61, 63, 65, 67,
68, 70-72, 74, 77-79, 81, 83, 86-92, 95, 96, 98, 100, 101, 104, 117,
125, 126, 131, 135, 136, 139, 143-145, 150, 153, 157, 158, 162, 168,
169, 177
Downey, California, 54, 80, 91, 99
DX (national priority rating), 8, 37
Dyna Soar, 5, 12, 14

E-1 engines, 1
East Pearl River, 60
Edwards Air Force Base, 27, 74, 185
Edwards, California, 92, 94, 126
Edwards Field Laboratory (EFL), 182, 186, 202
EFL. See Edwards Field Laboratory.
Eisenhower, Dwight D. (President), 12, 13
England, Anthony W., 212

F-1 engines, 4, 24, 25, 27, 33, 36, 38, 39, 49, 50, 51, 54, 63, 67, 71, 72,
74, 85, 88, 90, 91, 92, 94, 99, 107, 126, 136, 143, 144, 155, 156, 182,
185, 186, 189, 202, 212, 224
West Area Test Stand, 186, 202
FAA. See Federal Aviation Agency.
Fairchild Hiller Corporation, 89, 92, 97, 103, 108, 112
FEC. See Federal Electric Corporation.
Federal Aviation Agency (FAA), 58
Federal Electric Corporation (FEC), 145
Flight Readiness Test (FRT). See Apollo/Saturn, Uprated Saturn IB, and
Saturn V vehicles.
Gemini 5, 112
General Dynamics/Astronautics, 25, 130
General Electric Company, 13, 80, 97, 178
George C. Marshall Space Flight Center (MSFC), (see also Huntsville, Alabama), 10, 12-14, 16-36, 38-50, 53-68, 70, 71, 73-82, 84, 86, 90, 92, 93, 95, 96, 98-118, 120-123, 125-127, 129-141, 143-146, 150, 152-162, 166-178, 180-182, 185, 186, 188-194, 196, 201, 202, 208-213, 216-221, 223
MSFC/KSC Memorandum of Agreement, 192
West Area Test Stand, 202
Glennan, T. Keith, 12, 13
Gordon, Richard F., 200
Gordon, T. J., 162
Great Siberian Meteorite, 200
Grissom, Virgil I., 163
Ground Support Equipment (GSE). See KSC, Uprated Saturn I and Saturn V.
Grumman Aircraft Engineering Corporation, 139
H-1 engines, 3, 4, 6, 7, 14, 16, 25, 42, 68, 83, 86, 104, 106, 123, 133, 135, 138, 144, 166, 209
H-1 engine (H-1001), 5
H7-17, 155
Hagerstown, Maryland, 97
Haise, Fred W. Jr., 200
Hayes International Corporation, 175
Heimburg, Karl, 162, 170
Henize, Karl G., 212
Holmquest, Donald L., 212
Houston, Texas, 211
Humphrey, Hubert, 180
Huntington Beach, California, 76, 104, 131, 135, 136, 153, 157, 166, 169, 176, 178, 188, 208
Huntington Beach Assembly Facility, 49, 57, 58, 70, 78, 83, 87, 98, 117
Huntsville, Alabama, (see also George C. Marshall Space Flight Center), 8, 13, 18, 22, 25, 32, 43, 46, 49, 66, 73, 75, 77, 79, 88, 95, 111, 115, 121, 122, 123, 125, 130, 145, 159, 166, 168, 169, 171, 172, 173, 175, 178, 204, 207, 217, 218
Hurricanes
Alma, 143
Betsy, 118, 119
Gladys, 89

286
IBM. See International Business Machines Corporation.
International Business Machines Corporation, 76, 78, 89, 105, 118, 121, 129, 131, 168, 177, 201, 204, 207, 221
International Telephone and Telegraph Corporation, 145
IU. See Saturn IB and Saturn V Instrument Unit.

155 J-2 engines, 145
J022-1 engine, 175
James, Lee B., 171
Jet Propulsion Laboratory (JPL), 65, 163, 178
Johnson, Lyndon B., 44, 201
JPL. See Jet Propulsion Laboratory.
Juno II, 7
Juno V, 3
Jupiter C, 7
Jupiter missile, 2, 3, 5, 7, 39, 47, 58
Jupiter program, 3

Kennedy, John F., 44
Launch Complex 34 (LC-34), 3, 4, 5, 6, 12, 16, 22, 29, 34, 35, 43, 47, 49, 50, 55, 78, 101, 111, 112, 117, 121, 122, 126, 134, 149, 151, 163
Launch Complex 37 (LC-37), 27, 28, 36, 37, 78, 113, 162, 168, 174, 185, 210
Launch Complex 37 Pad A-2 (LC-37-A-2), 28
Launch Complex 37 Pad B (LC-37-B), 28, 49, 50, 55, 56, 61, 66, 68, 100, 104, 105, 110, 111, 112, 114, 139, 144, 211
Launch Complex 39 (LC-39), 40, 41, 47, 49, 53, 63, 70, 78, 152, 199
Launch Complex 39 Pad A (LC-39-A), 123, 221
Launch Complex 39 Pad B (LC-39-B), 96
Kiwi-B, 32
Koppers Company, Inc., 98, 191
KSC. See Kennedy Space Center.
LaHatte, William F., 171
Lamont Geological Observatory, 200
Langley Research Center (LaRC), 23, 161
LaRC. See Langley Research Center.
Launch Operations Center, 47
LC, Launch Complex. See KSC.
LEM. See Apollo spacecraft, Lunar Excursion Module.
Lenoir, William B., 212
Lewis Research Center, 65, 105, 138
Ling-Temco-Vought, 206
Llewellyn, John A., 212
LM. See Apollo spacecraft, Lunar Module.
Local Scientific Survey Module (LSSM), 185
Lockheed Aircraft Corporation, 25, 127
Lockheed Missiles and Space Company. See Lockheed Aircraft Corporation.
Long Beach, California, 88
Los Alamitos, 154
Los Angeles, California, 25
Lovell, James A., 200
LR-115 engine, 10, 14, 16
LR-119 engine, 10, 14, 16, 17
LSSM. See Local Scientific Survey Module.
LVDC/LVDA, 120

M-1, 34
MAF. See Michoud Assembly Facility.
Malon Construction Company, 98
Management Services, Inc., 175
Manned Spacecraft Center (MSC), 31, 65, 76, 81, 82, 181, 182, 191, 218
Mars, 163
Marshall, George C. (General), 12
Marshall, Mrs. George C., 13
Martin Company. See Martin Marietta Corporation.
Martin Marietta Corporation, 13, 20, 25, 127, 191
Mason-Rust Company, 33
Mather Air Force Base, 157
Mattingly, Thomas F. II, 200
McDivitt, James A., 200
McDonnell Aircraft Corporation, 139, 150
McDonnell Douglas Corporation (see also Douglas Aircraft Company and McDonnell Aircraft Corporation), 162, 168, 176-178, 181, 188, 196, 201, 208, 209, 218

288
McKeithen, John J., 201
Mercury Redstone, 7
Merritt Island, Florida, 47, 96
Michoud Ordnance Plant. See Michoud Assembly Facility.
Michoud Test Operations (MTO). See Michoud Assembly Facility.
Micrometeoroid satellite, 53, 108
Military Sea Transport Service (MSTS), 72
Minneapolis-Honeywell, 24
Mississippi River, 36, 168
Mississippi Test Facility (MTF), 29, 34, 36, 45, 60, 98, 112, 113, 116, 117, 121, 122, 132, 139, 140-142, 144, 146, 147, 150, 152-160, 163, 165-167, 170-175, 178, 179, 184, 189, 191, 194, 200, 203, 207, 212, 214-217, 220
A-1 Test Stand, 166, 191, 195
A-2 Test Stand, 116, 117, 122, 191
A-3 Test Stand, 122
B-2 Test Stand, 155, 165, 167, 169, 171
Mississippi Test Operations (MTO), 34, 35, 36, 45, 53, 55, 61, 62, 63, 70, 73, 78, 80, 82, 89, 93, 94, 101, 102, 103, 113
MISTRAM transponder, 112
Mitchell, Edgar D., 200
Mobile, Alabama, 89
MSC. See Manned Spacecraft Center.
MSFC. See George C. Marshall Space Flight Center.
MSTS. See Military Sea Transport Service.
MTF. See Mississippi Test Facility.
MTO. See Mississippi Test Operations.
Mueller, George E., 141, 164, 197
Musgrave, F. Story, 212

NAA. See North American Aviation.
NAR. See North American Rockwell Corporation.
NAS8-19, 145
NASA. See National Aeronautics and Space Administration.
National Aeronautics and Space Council, 4
National Vehicle Program, 4
Navy, 44
Nerva, 32
New Orleans, Louisiana, 28, 29, 33, 36, 42, 47, 53, 98, 153, 168, 186, 189, 206, 207
El Toro Facility, 54, 66
Space and Information Systems Division (S&ID), (see also North American Rockwell Corporation), 35, 44, 46, 49, 54, 55, 58, 66, 67, 71, 74, 76, 80, 91, 99, 102, 108-110, 113, 116, 122, 148
North American Rockwell Corporation (NAR), (see also North American Aviation), 200, 209, 214, 219
Northrop Corporation, 175
Nova, 5, 22-24, 29, 34, 36

Ocean of Storms, 214
Office of Manned Space Flight (OMSF), 110
O'Connor, Edwin (General), 223
O'Leary, Brian T., 212
OMSF. See Office of Manned Space Flight.
Orbital Workshop (see also Apollo Applications, S-IVB Orbital Workshop), 176-178, 181, 188, 201, 209-211
Orion (barge), 103, 108, 109, 111, 117
Ostrander, Don (Major General), 23, 25

Pacific Ocean, 199
Pad A, 141, 143, 213
Palaemon (barge), 14, 16, 18, 21, 26, 61, 105, 108, 115, 118, 122, 125, 157, 159, 162, 173, 181
Palisades, New York, 200
Panama Canal, 111, 163
Parker, Robert A., 212
Pasadena, California, 178
Pearl River (barge), 147, 172, 173, 182, 184
Pegasus, 89, 92, 93, 95, 97, 100, 101, 103, 108, 110, 112, 113, 114, 126
 Pegasus A, 97, 100, 103
 Pegasus B, 97, 108, 110
 Pegasus C, 112, 113, 114
Pensacola, Florida, 21
Phillips, Samuel C. (Major General), 106, 197, 223, 224
Plan V, 46
"pogo effect," 224
"pogo stick," 161
Point Barrow (barge). See USNS Point Barrow.
Port Canaveral, Florida, 135
Port Canaveral Locks, 116
Poseidon (barge), 122, 129, 152-154, 172, 174, 179
Pratt & Whitney, 10, 16, 20, 30, 39, 121
Pregnant Guppy (aircraft), 58, 61, 65, 109, 112, 185
Project High Water, 37, 48
President Kennedy. See Kennedy, John F.
President Johnson. See Johnson, Lyndon B.
Promise (barge), 33, 47, 63, 110, 116, 118, 119, 132, 134, 138
RCA. See Radio Corporation of America.
Radio Corporation of America (RCA), 78, 127, 129, 175, 220
RCA Service Company. See Radio Corporation of America.
Redstone missile, 2, 7, 39
Redstone program, 3
Richmond, California, 117
RIFT (reactor-in-flight test), 25, 32
Rocketdyne. See North American Aviation, Rocketdyne Division.
Rockville, Maryland, 129
Rogallo paraglider, 14
Rose Knot Victor, 211
RP-1, 4
RP-1 tank, 5
Rust Engineering Company, 175
Ryan Aeronautical Company, 14
S&ID. See North American Aviation, Space and Information Systems Division.
S-IB-D/F, 87, 92, 93, 97, 100
S-IU-5, 63
S-IU-8, 83, 102, 104, 105
S-IU-9, 75, 77, 85, 86
S-IU-10, 95, 100, 110, 111, 113
S-IVB-D, 98, 100
S-IVB-F, 117
S-IVB Orbital Workshop (program), (see also Apollo Applications)
 contract
 advanced versions, 188
 conversion of liquid hydrogen tank into a space station, 177, 178
 design review, 181, 218
 mockup, 209, 210, 218
 quick-release manhole cover, 218
S-IVB stage (see also Saturn I, Saturn IB, and Saturn V), 36, 38, 47, 49, 55, 57, 58, 62, 68, 93, 108, 109, 115, 117, 135, 136, 139, 144, 150
SA-11 (Saturn I, S-I-5 flight qualification test), 53
SAT-01, 9
SAT-02, 9
Sacramento Test Center. See Sacramento Test Facility.
 Beta Complex, 55, 62
 Beta I Test Stand, 61, 62, 117, 123, 139, 140, 142, 163, 194, 207
 Beta II Test Stand, 54, 56, 57, 104
 Beta III Test Stand, 62, 104, 109, 117, 122, 160, 173, 188
SACTO. See Sacramento Test Facility.
San Salvador, 94
Sanders Associates, 159, 220
Santa Monica, California, 47, 49, 56, 61, 63, 86
Santa Susana, California, 36, 69, 74, 78, 101, 108, 109, 123, 128, 129, 146
Santa Susana Field Laboratory (SSFL), 46, 88, 114-116, 126, 175, 187, 202
 Delta 2A Test Stand, 175
Santa Susana Test Facility. See Santa Susana Field Laboratory.
Saturn B, 4
Saturn Booster (proposed configuration), 2, 5
Saturn C vehicle (concept), 4
Saturn C-1 vehicle. See Saturn I.
Saturn C-2 vehicle (concept), 7, 14, 16, 17, 19, 22
 S-II stage, 18
Saturn C-3 vehicle (concept), 22, 24
 C-3/Apollo (configuration), 23
Saturn C-5 vehicle. See Saturn V.
Saturn C-IB. See Saturn IB.
Saturn I vehicle, 7, 8, 10, 12-14, 18, 19, 22, 31, 35, 37, 39-41, 43, 46, 47, 49-51, 53, 55, 60, 64-68, 71-77, 81, 82, 84-87, 89, 90, 92-95, 97, 100, 103, 104, 109, 110, 114, 138, 144, 146, 150
188K engine, 46
Block I, 19, 55
Block II, 19, 47, 49, 55
Contracts
 S-I/S-IB, 101
 S-3D, 3
S-I stage, 7, 8, 14, 16, 18, 19, 21, 22, 26, 28, 29, 30, 32, 50, 53, 66, 71, 104, 105, 108, 111
 S-I-5, 53-55, 63, 71
 SA-11 flight qualification test, 53
 S-I-6, 56, 59
 S-I-7, 67
 S-I-8, 58, 66, 68, 71, 76, 77, 83, 95, 97, 104, 105
 S-I-9, 60, 65, 75
 S-I-10, 48, 75, 86, 92, 93, 95, 110
 S-I-D5, 55, 61
S-IV stage, 7, 8, 10, 12, 15-18, 20-22, 24, 26, 27, 31, 32, 34-36, 43, 47, 49, 50-52, 55-58, 61, 65, 72, 77, 82, 86, 87, 89, 93, 102, 105, 109, 138
 RL10 engine, 30, 121, 138
 RL10-A-1 engine, 17, 47
 RL10-A-3 engine, 20, 39, 47, 50, 52, 57
 RL10-A-3-3 engine, 121
 S-IV-5, 56, 61, 63-66, 68
 S-IV-6, 61, 65, 67, 68, 74, 81
 S-IV-7, 68, 75, 77
 S-IV-8, 86, 95, 104, 105
 S-IV-9, 88, 89, 100
 S-IV-10, 67, 95, 100, 104, 109, 111
S-IVB stage, 44
SA-1 vehicle, 10-14, 16, 18-20, 24, 26, 29, 30, 37, 110
 SA-01 flight qualification test, 18
SA-2 vehicle, 13, 19, 26, 29, 33-35, 37, 48
SA-3 vehicle, 19, 26, 31, 35-36, 43, 48
SA-4 vehicle, 34, 38, 39, 45, 49, 50, 55
 SA-04 flight qualification test, 29
SA-5 vehicle, 39, 47, 55, 66, 68, 71-73, 81
 SA-05 flight qualification test, 29
SA-6 vehicle, 45, 63, 67, 68, 70, 76, 77, 81, 82
SA-7, 67, 82, 86, 88
SA-8, 53, 74, 75, 77, 83, 84, 95, 97, 104, 110
SA-9, 53, 74, 75, 77, 84, 89, 92, 94, 95, 97, 100, 103, 104
SA-10, 10, 75, 77, 84, 95, 111, 112, 114
SA-D1, 23
SA-D5, 47, 49, 54
SA-T, 9
SA-T1, 13, 14, 16, 23
SA-T2, 16, 23-26
SA-T3, 31, 35
SA-T4, 40
SA-T4.5, 40, 46
ST-124 guidance system, 82, 83
Saturn IB program (also Uprated Saturn I)
nomenclature changes, 173, 197, 198
AS-9, 100
AS-201, 121, 122, 126, 132, 134
AS-202, 132, 136, 138, 139, 144, 149, 151
AS-203, 138, 139, 144
AS-204, 155
AS-205, 155
AS-206, 157
AS-208, 140
Contracts (see also stage contracts)
S-I/S-IB, 101
S-IVB, 101
modification for ground support and engineering equipment, 217
modification for support of RCA 110A computers, 220
flight scheduling, 173, 200
Improvement Studies, 177
Instrument Unit
contract supplement, 201
J-2 engine, 115
S-IU-200D/500D (See also Saturn V), 100, 101, 122
S-IU-200F/500F (See also Saturn V), 103, 108, 111, 116, 117
S-IU-200S/500S (See also Saturn V), 100, 103, 105, 116, 120, 153
S-IU-200S/500S-II (See also Saturn V), 121, 123
S-IU-200S/500S-III (See also Saturn V), 153
S-IU-200V, 90, 96
S-IU-201, 122
S-IU-202, 134
S-IU-205
 shipped to KSC, 223
S-IU-205 through S-IU-209
 storage, 203, 204
S-IU-209
 assembly, 188
S-IU-210
 fabrication and assembly operations, 188
S-IB stage, 62, 67, 70, 81, 90, 99, 100, 106, 113, 120, 122, 123, 127,
 131, 132, 134, 137-140, 144, 157
contract
 conversion to CPIF agreement, 193
 engineering support services, 209
 extension, 185, 203
 negotiations, 207, 208
 order to NAA for H-1 rocket engines, 186
 procurement responsibilities, 220
S-IB-1, 74, 78, 83, 86, 92, 93, 95, 97, 102, 105-108, 116, 117, 121,
 124, 139
S-IB-2, 76, 86, 92, 93, 97, 111, 113-115, 132
S-IB-3, 97, 100, 117, 118, 120, 122, 123, 138
S-IB-4, 97, 121, 124, 125, 131, 149
S-IB-5, 124, 135, 137
S-IB-6, 144, 157
 arrival at Michoud, 173
S-IB-8, 154
S-IB-9
 acceptance test firings, 169
 long-duration test, 169
 post-firing checkout, 162
 post-static checkout, 188
 shipped to MSFC, 159
 static firing, 166
S-IB-10
 acceptance firing, 178
 arrival at Michoud, 182
 arrival at MSFC, 173
 post-static modification, 188
 shipped to MSFC, 168
 static firing, 180
S-IB-11
 firing, 223
S-IB-12
 assembly and checkout, 204
 shipped to MSFC, 223
S-IB-202, 138
S-IB-203, 138
S-IVB stage, 43, 51, 65, 67, 70, 71, 74, 76, 78, 79, 81-83, 87, 90, 92,
 96, 98, 100, 101, 104, 106, 109, 110, 115, 117, 120, 121, 123, 126,
 135, 136, 144, 157, 158
contract
 negotiations, 207
 procurement, 196
S-IB-201 through S-IB-204
 delivery to KSC/MSFC, 220
S-IVB-202, 117, 122, 123, 125
S-IVB-203, 123
S-IVB-204, 126, 136
S-IVB-205 through S-IB-209
 storage, 204
S-IVB-206, 157
 de-erected from LC-37, 174
 delivery to KSC/MSFC, 220
 erected on LC-37, 162
 storage, 168
S-IVB-208
 acceptance firing, 159
S-IVB-209
 airlifted to SACTO, 169
 pre-static checkout, 162
 static firing, 188
S-IVB-210
 storage, 188
S-IVB-210 through S-IVB-212
 at Huntington Beach, 204
SA-201 vehicle, 78, 120, 126, 134
SA-203 vehicle, 144
SA-204 (see also Apollo/Saturn IB, AS-204)
 flight schedule, 203, 204
 test of lunar module, 168, 185
SA-205 (see also Apollo/Saturn IB, AS-205)
erected at KSC, 223
shipment to KSC, 211
storage, 188
SA-206 (see also Apollo/Saturn IB, AS-206)
 checkout, 162
 first LM mission (original plans), 168
 storage, 188
 storage of instrument unit, 168
SA-208
 storage, 188
SA-209
 stages of development, 188
SA-210
 development, 188
SA-211
 static firing, 202
SA-212
 flight schedule, 204
 storage, 204
Saturn I/IB Operations, 171
Saturn V program
 nomenclatures changes. See Apollo Program.
Saturn V vehicle, 31, 34, 35, 37, 39-42, 44, 46-48, 50, 51, 53, 59, 60, 64-
 67, 70, 71, 73-82, 84, 85, 87, 88, 90-94, 96-99, 101, 102, 105, 107,
 109, 110, 112-117, 121-123, 125-127, 129-136, 139-141, 143, 148, 150-
 155, 157, 158
AS-504, 140
contract
 operation of development "Breadboard" Facility, 213
 modification for support of RCA 110A computers, 220
 stage procurement, 164, 182, 183, 190, 213
 transportation, 203
F-1 engines
 first flight, 199, 200
 flight schedule, 180, 200
Instrument Unit (IU)
 contract supplement, 201
S-IU-200D/500D (see also Saturn IB), 100, 101, 122
S-IU-200F/500F (see also Saturn IB), 103, 108, 111, 116, 117
S-IU-200S/500S (see also Saturn IB), 100, 103, 105, 116, 120, 153
S-IU-200S/500S-II (see also Saturn IB), 121, 123
S-IU-200S/500S-III (see also Saturn IB), 153
S-IU-500F, 135, 136
S-IU-500FS, 104, 105, 132, 135
S-IU-500 ST, 113
S-IU-500V, 105, 111, 117, 130
S-IU-501, 131, 151, 154-155
 vertical assembly, 160
S-IU-502, 155
 transported to KSC, 170
S-IU-503
 checkout and systems testing, 158
 delivery, 207
S-IU-504
 completion, 204
 storage, 207
S-IU-505
 assembly, 207
 post-manufacturing checkout, 204
Integration, 182, 183
Liftoff switch, 192
S-IC stage, 30, 33, 35, 36, 39, 43, 45-48, 50, 51, 53-55, 58, 60-63,
 65-67, 69-71, 74, 76, 77, 80, 84, 85, 89, 94, 99, 107, 115, 126-129,
 134-136, 143, 154, 155
B-2 Test Stand, 165
Battleship/All Systems stage (see also S-IC-T), 165, 166, 192
contract
 Boeing, prime contractor, 190
 procurement, 164, 196, 220
checkout, 214
LOX depletion sensors, 199
"pogo effect," 224
program briefing, 223
recovery and reuse, 186
S-IC-1, 130, 133, 134, 152, 160
S-IC-2, 130, 143
 arrival at KSC, 169
 transported to KSC, 167
S-IC-3, 153, 154, 155
S-IC-4, 116, 130
 acceptance firing test, 178
 arrival at Michoud, 181
 arrival at MTF, 173
S-IC-5
 acceptance firing test, 194
 storage, 207
 transported to MTF, 184
S-IC-7
 F-1 engine, 186
S-IC-8
 F-1 engine, 186
S-IC-9
 F-1 engine, 186
S-IC-16 through S-IC-25
 procurement, 196
 static tests, 203
 static test stand, 173
 Test Complex, 192
 test stand adapter, 160
S-IC-D (dynamic test stage), 105, 122, 128, 129
 arrival at MTF, 175
S-IC-F, 136
S-IC-S (fuel tank), 98, 99, 112
S-IC-T (Battleship/All Systems stage), 65, 96, 98, 104, 107, 108,
 115, 121, 125, 130, 145, 154, 157
 firing, 165, 166, 169, 192
 removal from B-2 Test Stand, 171
 transported to MAF, 172
 transported to MSFC, 169, 174
S-II stage, 14, 16, 17, 20, 22, 28, 30, 36, 39, 44-46, 51, 52, 54, 55,
 58, 62, 66, 67, 69, 71, 72, 74, 76, 80, 82, 84, 88, 91, 94, 96, 98,
 99, 101, 102, 108-110, 112-114, 116, 117, 120, 121, 123, 126, 128,
 129, 131, 133, 139-141, 143, 144, 146, 147, 153, 154
 battleship stage, 169, 173
 transition and full duration testing, 181
 Battleship Test No. 041, 165
 checkout, 214
contract
 modification, 193, 195
 North American Rockwell, 166, 167
J-2 engine, 187, 224
propellant tanks, 181
S-II-1, 104, 113, 124, 125, 146, 147, 150, 155, 158
 arrival at KSC, 160
 dismantled at KSC, check for "hairline" cracks, 180
static firing, 191
transported to KSC, 159
verification tests, 187
vertical assembly at KSC, 162

S-II-2, 110, 125
arrival at MTF, 165
departure Seal Beach, 163
mated to S-IC-2, 189
schedule slippage, 220
static firing, 172-175
transported to KSC, 179
vertical assembly at KSC, 189

S-II-3, 113, 146, 156
acceptance firing, 195
arrival at MTF, 191
checkout, 191
departure Seal Beach, 189
static firing, 195

S-II-4
departure Seal Beach to MTF, 212
shakedown inspection, 207
test stand, MTF, 217

S-II-5
cryogenic proof pressure test, 216
departure Seal Beach to MTF, 212
shakedown inspection, 207
test stand, MTF, 217

S-II-6
test stand, MTF, 217
S-II-11 through S-II-25
contract modification, 195

Stage Manager, 158
static test, 203
S-II-A2, 122
S-II-D, 101
S-II-F/D, 155
S-II-F, 102, 109, 133, 135, 136, 155
S-II-S, 97, 99-102, 108
S-II-S/D, 109, 120
S-II-T, 101, 110, 120, 121, 122, 131, 139, 140, 141, 142, 144
S-II-T/D, 131, 132, 143

300
S-IVB stage, 34, 42, 48, 51, 82, 88, 89, 92, 94, 96, 103, 109, 110, 112, 126, 129, 135, 136, 139, 141, 153
battleship stage, 186
contract
 negotiations, 208
 procurement, 196, 208
delivery, 220
J-2 engine, 115, 187
restart, 199, 221
S-IVB-500F (Facility Checkout Stage), 103, 104, 111, 113, 117, 136
delivery, 220
S-IVB-500-ST, 136
delivery, 220
S-IVB-501, 92, 131, 136, 140, 142, 148
circular orbit, 197
verification tests, 187
vertical assembly at KSC, 160
S-IVB-502, 135, 143, 145, 146
departure SACTO to KSC, 166
S-IVB-503, 135, 153, 154
 Beta I Test Stand, 163
destruction, 160, 162, 173
 nomenclature changes, 162
S-IVB-503N
 acceptance firing, 178
 nomenclature change, 161, 162
S-IVB-504, 135, 157
 nomenclature change, 162
 post-static checkout, 204
S-IVB-504N
 acceptance firing, 194
 arrival at SACTO, 182
 nomenclature change, 162
S-IVB-505
 checkout, 166
 nomenclature change, 162
 post-static checkout, 204
 storage, 207
S-IVB-505N
nomenclature change, 162
S-IVB-506
nomenclature change, 162
post-manufacturing checkout, 204
SA-500D (Dynamic Test Vehicle), 157
 Configuration I testing, 169
SA-500F, 141, 143, 154
SA-501, 155
 erection at KSC, 183
 vertical assembly, 160, 181
SA-502
 erection at KSC, 189, 201
 flight schedule, 164
SA-503, 146
 arrival at MTF, 191
 on dock at KSC, 203
Static test stands, 217
Systems and performance briefing, 177
Systems Engineering and Integration requirements, 162
Television broadcast satellites, 176
Saturn-Dyna Soar, 5
Saturn program, 9, 10, 64, 101
Saturn System Study, 4, 6
Saturn Vehicle Evaluation Committee (the Silverstein Committee), 7, 10
Schweickart, Russel L., 200
Scott, David R., 200
Seal Beach, California, 36, 44, 51, 52, 66, 71, 76, 80, 84, 101-104, 108, 110,
 111, 113, 120, 121, 124, 125, 133, 146, 147, 150, 163, 180, 189, 200,
 207, 212
Sea of Tranquility, 214
Seamans, Robert C., 34, 141
Silverstein Committee (Saturn Vehicle Evaluation Committee), 7, 10
Slidell Computer Facility, 36, 54
Slidell, Louisiana, 41, 42, 54, 206
SM. See Apollo Service Module.
Smith Builder, 47
Space Task Group, 25
Space Technology Laboratories, Inc., 25
Spaco, Incorporated, 175
Sperry Rand Corporation, 174, 216
SSFL. See Santa Susana Field Laboratory.
Steel Executive, 117, 120
St. Louis, Missouri, 150
Sullivan, Long, and Hagerty of Birmingham, Alabama, 80
Surveyor, 215
Sverdrup Parcell Company, 35

Tennessee River, 6, 21, 26, 37
Thor missile, 3
Thor-Jupiter engine, 2, 3
Thornton, William E., 212
Teir, William, 171
Titan, 4, 5
Titan C, 5
TRW Systems, Inc., 153, 178
Tullahoma, Tennessee, 13, 117, 118, 129, 169

Uprated Saturn I. See Saturn IB.
U. S. Army Corps of Engineers, 28, 48, 53, 60, 62, 63, 89, 98, 102, 166
USNS Point Barrow, 72, 111, 113, 121, 133, 147, 189, 212
USS Bennington, 199
USS Okinawa, 221

Van Nuys, California, 129
Vice-President Humphrey. See Humphrey, Hubert.
Vice-President Johnson. See Johnson, Lyndon B.
Vitro Corporation, 174
von Braun, Dr. Wernher, 1, 12, 22, 25, 64, 93, 171, 180, 202, 217, 223
Voyager, 163, 178

Washington, D. C., 81
Webb, James E., 23, 25, 113, 201
Webb, Mrs. James E., 201
West Area F-1 Test Stand, 186, 202
Wheeler Dam, 21, 26, 33, 37
White, Edward H. II, 163
Witchita, Kansas, 50, 55
Wisconsin, University of, 154
Worden, Alfred M., 200
Wyle Laboratories, 130

Yarchin, Colonel Sam, 158