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FLIGHT-DETERMINED STABILITY AND CONTROL CHARACTERISTICS
OF THE M2-F3 LIFTING BODY VEHICLE

Alex G. Sim
Flight Research Center

SUMMARY

A flight evaluation of the stability and control characteristics of the M2-F3 lift-
ing body research vehicle was made at Mach numbers from 0.4 to 1.55 and angles of
attack from -2° to 16°. Lateral-directional and longitudinal derivatives, reaction con-
trol rocket effectiveness, and longitudinal trim information obtained from flight data
and wind-tunnel predictions are compared. Data showing the effects of power, con-
figuration change, and speed brake are included.

The flight data for the directional stability derivative, Cn , were usually lower

B8
than the results from wind-tunnel tests. Near a Mach number of 0.95, the flight-
determined aileron effectiveness derivative, C1 , was lower than the wind-tunnel
)
a

prediction; otherwise, it was higher than predicted.

Although there was considerable scatter in the longitudinal data, the flight
values of the static stability derivative, Crn , were near the wind-tunnel predic-
¢4
tions at Mach numbers of 0.5, 0.7, 0.8, and 1.3. However, at a Mach number of 1.1,
the flight values were higher than the wind-tunnel results.

Reaction control rocket lateral control effectiveness was adequate for maneuver-
ing as well as for stability augmentation, whereas longitudinal control effectiveness
was adequate only for stability augmentation.

The longitudinal trim flight data indicated generally that more lower flap deflec-
tion was needed to trim at a given angle of attack than was estimated from wind-
tunnel data. Speed-brake deflection induced a nose-down pitching moment, and
power effects generally resulted in a nose-up pitching moment. An unsteady power-
off trim phenomenon in the transonic Mach number range from 0.88 to 0.95 was indi-
cated by the tendency of the vehicle to trim at more than one lower flap deflection for
the same angle of attack.



INTRODUCTION

Lifting bodies are a class of vehicle designed to enter the earth's atmosphere
from orbital speeds and make a horizontal landing. The M-2 shape was one of the

first lifting body shapes to evolve. After a
vehicle (the M2-F1) was flown successfully

lightweight plywood version of the M-2
» @ heavier, aluminum vehicle (the M2-F2)

was built to investigate "in-the-atmosphere" vehicle characteristics at subsonic and
transonic speeds. On the sixteenth M2-F2 flight, lateral-directional handling-
qualities problems were experienced, followed by a gear-up landing which exten-
sively damaged the vehicle and terminated the flight program. Stability and control

derivatives of the M2-F2 vehicle are given i

n reference 1, and the lateral-directional

handling qualities are analyzed in reference 2.

The M2-F2 vehicle was rebuilt and modified by the addition of a third vertical
stabilizer. Extensive wind-tunnel tests and dynamic analysis indicated that this
modification would improve the lateral-directional handling qualities. The modified

M2-F2 vehicle was redesignated the M2-F3.
of the vehicle are shown in figures 1 and 2,

A photograph and three-view drawing
respectively .

During the M2-F3 flight-test program, conducted jointly by the National Aero-
nautics and Space Administration and the U.S. Air Force, stability and control data

were obtained at Mach numbers from 0.4 to

1.55 and angles of attack from -2° to 16°.

These data were used to update the flight simulator for flight planning and pilot

training, revise the analysis of handling qu

alities, verify wind-tunnel predictions,

and document dynamic characteristics . Longitudinal trim information was also ob-

tained from flight data.

In one of the control system studies made with the M2-F3 vehicle, reaction con-
trol rockets were used to control roll or pitch in the atmosphere.

This report presents the stability and control data obtained during the M2-F3
flight program and compares the results with wind-tunnel predictions.

SYMBOLS

Derivatives are presented as standard NASA coefficients of forces and moments,

A right-hand sign convention (shown in fig.

3) is used to determine the direction of

all forces, moments, angular displacements, and velocity.

Physical quantities are given in the Inte

rnational System of Units (SI) and paren-

thetically in U.S. Customary Units. All measurements were taken in U.S. Customary
Units. Conversion factors are included in reference 3.

A stability matrix, P X P

a normal acceleration, g

[l ] [



a longitudinal acceleration, g

X
ay lateral acceleration, g
B control matrix, P X Q
b reference body span, m (ft)
C transformation matrix, P X P
c reference longitudinal length, m (ft)
F force, N (Ib)
G partition of matrix relating the state vector to the observation vector,

R-P)XP

acceleration due to gravity, 9.8 m/sec2 (32.2 ft/secz)

H partition of matrix relating the control vector to the observation vector,

®R-P) XQ
h altitude, m (ft)
I identity matrix
IX rolling moment of inertia, kg—m2 (slug—ftz)
Igos product of inertia, kg—m2 (slug—ftz)
Iy pitching moment of inertia, kg—m2 (slug—ftz)
I yawing moment of inertia, kg-m2 (slug—ftz)
M Mach number
M moment, m-N (ft-1b)
m mass, kg (slugs)
0 null matrix
P number of state variables

rolling rate, rad/sec or deg/sec

Q number of control variables

q pitching rate, rad/sec or deg/sec



= N ™

<2

8sb

dynamic pressure, N/m2 (lb/ft2)
number of observation variables
yawing rate, rad/sec or deg/sec
reference planform area, m2 (ftz)
Laplace transform variable, rad/sec
velocity along X-axis, m/sec (ft/sec)
control vector, Q X 1

velocity, m/sec (ft/sec)

velocity along Z-axis, m/sec (ft/sec)
X-axis

state vector, P X 1

Y-axis

observation vector, R X 1

Z-axis

angle of attack, deg

angle of sideslip, deg

flightpath angle, deg

increment

aileron deflection, Bu ~ 6u , deg
left right

lower-flap deflection, deg

rudder deflection, 5r + Br , deg
left right

average speed-brake deflection, /s -4 - 18_||, deg
2\ Tleft  Tright r

average upper-flap position, %(611 + 5u ), deg
left right



8 0 constant control deflection, rad or deg

p—

21
€= % arc tan (I——%(%—>
Z X

e damping ratio
6 pitching attitude, deg
T time constant, sec
¥ angle of bank, deg
w. undamped natural frequency, rad/sec
Cp lift coefficient, L_—lfz
qS
M
C, rolling-moment coefficient, ——
qSb
MY
C m pitching-moment coefficient, ——
qSc
MZ
C yawing-moment coefficient, ——
n —_—
gSb
FX
C axial-force coefficient, —
X —
qS
FY
C side-force coefficient, —
Y —
qsS
FZ
CZ normal-force coefficient, —
qS

) reaction control rocket chamber pressure, N/ m2 (psia)



Nondimensional derivatives, where
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Subscripts:

: .th
i i component

jth component

ke

X X-axis component
Y Y-axis component
z Z-axis component

A dot over a symbol signifies a derivative with respect to time.
M2-F3 VEHICLE

The M2-F3 vehicle is basically a 13° blunt, half cone with a boat-tailed afterbody
and three vertical fins. Powered flight was achieved by using any combination of
the four chambers of the XLR11 rocket engine. Physical characteristics of the
vehicle are given in table 1. Typical variations of the moments of inertia and center
of gravity with gross weight are presented in table 2.

Midway through the flight program, operational considerations dictated that the
jettison tubes be moved from the base area to just aft of the outboard vertical fins.
The repositioned tubes (fig. 4) are referred to as the outboard fin jettison tubes.

M2-F3 FLIGHT CONTROL SYSTEM

The primary manual control system of the M2-F3 vehicle was an irreversible,
dual, hydraulic system. Pitch control was accomplished by moving the center stick
longitudinally, which positioned the lower flap. Roll control was achieved by moving
the center stick laterally, which differentially positioned the upper flaps. Yaw con-
trol was obtained through the rudder pedals, which deflected one of the two rudder
surfaces on the outboard side of the two outer vertical fins. Outboard bias of both
rudders was used as a speed brake. Coarse longitudinal trim (configuration change)
was achieved by biasing the upper flaps. These control surface locations are shown
in figure 3.

Two vehicle configurations--subsonic and transonic--were used to provide ade-
quate stability at transonic speeds as well as low drag (1ncreased lift-to- drag ratio)
for approach and landing. Average upper-flap positions of -11. 8° and -20° were
used as the subsonic and transonic configurations, respectively. Control surface
deflection limits and maximum rates used in the latter part of the flight program are
given in table 3.



The primary stability augmentation system was a three-axis rate feedback sys-
tem. The feedback gains were adjustable in flight. Additional augmentation was
provided by a rate command augmentation system or reaction control rockets.

The command augmentation system was mechanized in pitch and roll and in-
cluded an angle-of-attack hold. The rate command gains were adjustable in flight.
When the command augmentation system was engaged, the pilot maneuvered the ve-
hicle by means of a side stick on the right side of the cockpit.

The four 400-newton- (90-pound-) thrust reaction control rockets were normally
fired in pairs to control roll or pitch. At first the rockets were pulsed manually,
with a simple switch for roll control. Later they were mechanized with either a roll
or a pitch rate feedback and manually controlled through the side stick. The two
rocket geometries used are illustrated in figure 5. Roll control was achieved by
using an outboard-opposite-inboard rocket combination. Wind-tunnel information
indicated that Geometry 1 would minimize the aerodynamic interference contribution
to yawing while providing proverse yaw from the static geometry during a roll man-
euver. On the basis of flight-test results, however, it was decided that better
handling qualities in roll would result if the total yawing moment were eliminated.
Thus Geometry 2 was used in succeeding flights.

INSTRUMENTATION

Data were obtained by means of a 9-bit pulse code modulation telemetry system
and were analyzed by using a ground-based computer.

Angle of attack, angle of sideslip, dynamic pressure, and static pressure were
measured by an instrumented NACA nose boom (ref. 4). Angular positions and
rates were measured by rate gyros, and linear accelerations by conventional accel-
erometers. Control surface positions were determined by control position trans-
mitters.

Corrections were made to the angle-of-attack and angle-of-sideslip data for boom
position, alinement, angular rate, and bending, as well as for upwash (ref. 4). Ve-
locity, altitude, and Mach number were calculated on the basis of corrected dynamic
and static pressures. Angular rates and linear accelerations were not corrected for
instrument location because this error was within the accuracy of the data acquisition
system. The parameters used and the resolution and accuracy of the instrumentation
are presented in table 4.

FLIGHT TESTS

Procedures

Frequent weight and balance measurements were made to verify the location of
the vehicle center of gravity. Moments of inertia were determined experimentally
before the first M2-F3 flight by means of an inertia swing (ref. 5). The inertia esti-
mate was updated analytically whenever the mass distribution changed.



Like other lifting bodies, the M2-F3 vehicle was air-launched from a modified
B-52 airplane at an altitude of approximately 14,000 meters (45,000 feet) and a Mach
number of 0.67. (Air launches of the M2-F2 lifting body are analyzed in reference 6.)
After launch, the pilot flew a preplanned flight profile. The unpowered, or glide,
flights lasted less than 4 minutes and were usually made below a Mach number of 0.7.
For powered flights, the engine was lit immediately after launch, angle of attack was
increased to gain altitude, and the vehicle was pushed over to increase Mach number.
The powered portion of the flight, which usually lasted from 90 seconds to 180 sec-
onds, was made in the transonic configuration (upper flap at -20°). A change to the
subsonic configuration (upper flap at -11.8°) was made when the Mach number de-
creased to about 0.7. The altitude at this time was about 9150 meters (30,000 feet).
Most of the stability and control data were obtained after engine burnout.

In general, maneuvers from which data were obtained were performed at
altitudes above approximately 6100 meters (20,000 feet) to provide the pilot with
enough time to set up for the final approach and landing. The trajectories flown
precluded steady flight conditions. To maintain satisfactory handling qualities, at
least one augmentation system was generally used throughout the flight profile,
particularly above a Mach number of 0.75. However, damper gains were often re-
duced or turned to zero for data maneuvers.

Maneuvers

Because of the limited time available for obtaining flight data and the rapidly
changing flight conditions, there was only one opportunity to perform each maneuver.
Thus maneuvers were practiced on a simulator before each flight. Postflight analysis
of these maneuvers showed that a doublet or pulse, followed by 2 seconds to 5 sec-
onds in which the pilot made no input, was most effective in providing derivative
data when augmentation damper gains were zero or below 0.5 deg/deg/sec. An ex-
ample of this type of maneuver, which has been used often to obtain data from which
derivatives can be extracted, is shown in figure 6. When moderate-to-high damper
gains were used, a pilot-induced continuous control input produced better results.
An example of this type of maneuver is shown in figure 7. In the latter part of the
flight program, the angle-of-attack-hold of the command augmentation system aided
the pilot in holding a constant angle of attack during lateral-directional maneuvers.

The effectiveness of the reaction control rockets was evaluated by manually
pulsing the rockets.

Power-off longitudinal trim information was obtained from planned pushover-

pullup maneuvers as well as during other portions of the flight. No planned maneu-
vers were used to obtain power-on trim data.

METHOD OF ANALYSIS

Derivative Determination

A digital computer program was used to identify either lateral-directional or
longitudinal sets of derivatives from flight data. This computer program, which uses
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a modification of the Newton-Raphson method, is referred to as the Newton-Raphson
program. The program, its theory, and its application are discussed in detail in
references 8 to 10. The sets of equations (model) used to identify the derivatives
for this report are given in appendix A.

The Newton-Raphson program is an iterative technique which usually takes from
three to six iterations to converge to a final set of derivatives. Basically, the pro-
gram simultaneously changes all derivatives to minimize the error between computed
and measured time histories. This error is based on the integral of the sum of the
differences squared of each of an ensemble of flight and computed time histories.
The output time histories are assumed to contain noise, but the (control) input time
histories are defined as noise free.

In the lateral-directional mode, the input time histories normally used were the
recorded aileron and rudder deflections. Occasionally, reaction control rocket
chamber pressure was used. The output time histories used were roll rate, yaw rate,
sideslip angle, bank angle, and lateral acceleration. Rolling and yawing angular
acceleration were used when available. In the longitudinal mode, the input time
histories used were lower flap deflection and sometimes reaction control rocket
chamber pressure. The output time histories used were angle of attack, pitch angle,
pitch rate, and normal acceleration. Pitching angular acceleration was sometimes
used.

A frequently used option, called "a priori," allowed the starting set of deriva-
tives to be weighed, which tended to hold derivatives near their starting value if no
information about them was contained in the maneuver. Early in the flight program,
wind-tunnel predictions were used as starting values. However, as different trends
in the data developed, previously obtained flight-determined derivatives were used.
At first and then after every few flights, maneuvers were analyzed without using the
a priori option to insure that the a priori weighing values were not too high.

Effect of stability augmentation.— When augmentation systems are engaged, a
linear dependence can develop between stability and control derivatives; therefore,
the a priori option was used in this study. Furthermore, increasing the damper
gains removes progressively more of the vehicle's transient response, so that the
control system characteristics gradually dominate the output time response. These
effects of the automatic control system may improve handling qualities; however, at
the same time, they make identifying the basic open-loop vehicle extremely difficult.
Unfortunately, stability augmentation was generally used above a Mach number of
0.75. If it is desirable to fly through an area where a vehicle has poor open-loop
characteristics, then it will usually be the area of greatest interest, but unfortunately
also the one requiring the highest damper gains to insure satisfactory handling qual-
ities. With the high damper gains, the resulting lack of transient response necessi-
tated continuous pilot control inputs, because, it was reasoned, more information
would be contained in forced motion than in no motion at all. Control derivatives
extracted were used only if the maneuver contained a pilot input for that control
(i.e., rudder derivatives obtained from aileron maneuver data were not considered
valid) .

Longitudinal derivative considerations.— Both longitudinal and lateral-directional
derivatives were extracted from data obtained when an augmentation system was
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engaged. The longitudinal mode, because of additional problems, was the more
troublesome of the two. An indication of some of the problems experienced in this
mode is evident in the nonlinearity of wind-tunnel pitching-moment curves at tran-
sonic speeds. An example is shown in figure 8 for a Mach number of 0.95. The
nonlinearities in these pitching-moment curves cause the longitudinal static stability
and the lower flap control effectiveness to be sensitive to small changes in angle of
attack and longitudinal trim. The curves also change gignificantly with upper flap
bias; however, in flight the bias was kept between t%— of the wind-tunnel reference
values. All flight-determined longitudinal derivatives were corrected to the wind-
tunnel reference center of gravity of 0.496 of chord (body length).

Longitudinal Trim

Longitudinal trim information was obtained during periods in the flights when the

pitching angular acceleration was less than 3 deg/ sec2 , the pitching rate was less
than *9 deg/sec, and the rate of lower flap movement was subjectively small. Trim
data that met the first two requirements were identified by using a simple digital com-
puter program. Lower flap movement was scanned by hand. Data were categorized
by engine chamber, speed-brake setting, and configuration. All trim data were
corrected to the longitudinal wind-tunnel reference center of gravity (0.496 of chord).
For comparison with wind-tunnel data, the lower flap position data were adjusted
analytically to compensate for the flight upper flap bias being slightly different from
the selected references of -11.8° (subsonic configuration) and -20° (transonic config-
uration).

Dynamic Characteristics

The open-loop dynamic characteristics were determined by fairing flight data for
nine flight conditions. Data were calculated by using a three-degree-of-freedom
digital computer program which solved for the characteristic roots and transfer
function numerators. When flight data were not available, wind-tunnel data were
used. The open-loop characteristics of the vehicle are tabulated in appendix B.

WIND-TUNNEL DATA

Wind-tunnel tests of the M2-F3 vehicle were made at the Ames Research Center.
Although results of the tests have not yet been published, a limited amount of data
for a vehicle with a center fin configuration similar to that of the M2-F3 vehicle is
included in reference 11.

For this study, damping derivatives were estimated from trends of theoretical and
flight results for earlier vehicle configurations (refs. 1 and 2). All other derivatives
and trim data referred to as wind-tunnel data are based on the unpublished M2-F3
data. The wind-tunnel lateral-directional derivatives were obtained from data for
the available boattail angles (upper flap and lower flap settings) at wind-tunnel-
predicted longitudinal trim conditions. Thus the boattail angles obtained from the

12



wind-tunnel tests are not necessarily the same as those used in flight.
PRESENTATION OF DATA

The flight conditions, in terms of Mach number and angle of attack, at which
derivatives were obtained are presented in figure 9(a) for the lateral-directional
derivatives and in figure 9(b) for the longitudinal derivatives. The lateral-
directional derivatives are presented as a function of angle of attack for wind-tunnel
Mach numbers of 0.5, 0.7, 0.8, 0.9, 0.95, 1.1, and 1.3 in figures 10 to 16. The
corresponding longitudinal derivatives for Mach numbers near 0.5, 0.7, 0.8, 1.1,
and 1.3 are presented in figures 17(a) to 17(e). For Mach numbers from 0.86 to
1.08, longitudinal derivatives are presented in figures 18 (a) to 18(c) as a function
of Mach number for angles of attack of 3.6°, 5.1°, 7.2°, 10.5°, and 12.4°, except for
the pitch-damping derivative, Cm , which was estimated only as a function of Mach

q
number. Flight derivatives were also determined for Mach numbers and angles of
attack beyond those shown in the figures. The values of all the derivatives obtained
are presented in table 5.

Control-effectiveness data for the reaction control rockets are presented in the
form of changes in moment coefficients due to the pulsing of one or two rockets.
Data obtained during rolling maneuvers are presented in figures 19 and 20. Data
obtained in pitching maneuvers are shown in figures 21(a) and 21(b).

Longitudinal trim data for the subsonic configuration are presented as a function
of angle of attack for Mach numbers of 0.5 and 0.7 in figures 22(a) and 22(b). Data
for the transonic configuration are presented in figures 23 and 24 for Mach numbers
of 0.5, 0.7, 0.8, 1.1, and 1.3. Trim data are presented as a function of Mach num-
ber, over the Mach range from 0.88 to 1.04, in figures 25(a) to 25(c).

DISCUSSION

Lateral-Directional Derivatives
Figures 10 to 16 show that the effective dihedral derivative, C1 , and the
B
yawing-moment coefficient due to aileron deflection, Cn , are generally in agree-

8
a

ment with the wind-tunnel predictions, whereas the directional stability derivative,
Cn , is usually lower than predicted, especially at subsonic speeds and high angles
B
of attack. At transonic Mach numbers the agreement between wind-tunnel and flight
values of Cn is better. The side force derivative, Cy , and the roll-damping
B B

derivative, C1 , are also generally lower than predicted from wind-tunnel tests.

p
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The rolling-moment coefficients due to rudder deflection and yawing rate,
C and C, , the yawing-moment coefficient due to rolling rate, C, , and

1
61‘ r p

the side force coefficients due to aileron and rudder deflection, CY and CY ,
Ba 51-
are difficult to identify as indicated by the amount of scatter in the flight data. How-
ever, the data do indicate specific trends, and the derivatives are well defined at sub-
sonic Mach numbers. The yaw-damping derivative, Cn , is usually well defined,
r

although the values are slightly different from the preflight estimates.

Except for the comparison at a Mach number of 0.95 (fig. 14(b)), flight values of
the aileron effectiveness derivative, Cl , were higher than the wind-tunnel results.
6

a

However, near Mach 0.95 at low angles of attack, changes in Cl were found to

8
a

significantly affect the handling qualities. In the flight program this Mach region
was extremely troublesome. More than once, vehicle disturbances occurred that
were followed by an oscillation sustained by damper augmentation. It was deter-

mined that a large reduction in C1 coupled with certain combinations of roll and

0
a

yaw gains could produce an unstable closed-loop vehicle. Lower values of C1

5
a

were determined from flight data; however, only one data point (fig. 14(b))-- at a
Mach number of 0.936 and an angle of attack of 5.06°--yielded high quality results.
This point, as well as others of less than acceptable quality, showed that the flight
vehicle followed the wind-tunnel curve based on longitudinally untrimmed data at
the flight upper flap bias setting. This is supported by the data in figure 25(a)
which show that the vehicle was seldom in longitudinal trim when these data were
obtained. Without the angle-of-attack-hold of the command augmentation system, it
was difficult for the pilot to hold a steady angle of attack in this region either with
the power on or off. This difficulty, coupled with the problem of not knowing the
true Mach number in flight at Mach numbers near 0.95, made it difficult to perform
maneuvers at these flight conditions.

As noted previously, midway through the flight envelope expansion, the vehicle
geometry was changed slightly just aft of the rudders (fig. 4). Figures 10 to 16 show
that although rudder control effectiveness may have been changed as a result of this
geometry change, the effect on vehicle dynamics was negligible.

Longitudinal Derivatives

The flight data from which the longitudinal derivatives were obtained generally
had an unusually large amount of scatter. The scatter was attributed to the nonlinear
trends of the longitudinal characteristics with angle of attack (fig. 8), the large trim
changes with Mach number (fig. 25), the inability to maintain constant flight condi-
tions with a boost-glide vehicle of this type, and the high stability augmentation

14



gains needed to provide acceptable handling qualities. However, despite the scatter,
some trends are evident.

The flight values of the longitudinal static stability derivative, Crn , Were near
04
the wind-tunnel values at Mach numbers of 0.5, 0.7, 0.8, and 1.3 (figs. 17(a),
17(b), 17(e), and 17(e)). At Mach 1.1, the flight values were higher than the wind-
tunnel values (fig. 17(d)). In the transonic speed region, the trend of the flight-
determined Cm is as nonlinear as that of the wind-tunnel data (fig. 18(a)).
a
Transonic nonlinearities are also evident in the variations of the lower flap effec-
tiveness derivative, Cm (fig. 18(b)), and the pitch-damping derivative, Cm
6 q
1

(fig. 18(c)), with Mach number and are somewhat supported by the fluctuations of
the trim curves in figure 25(a). At subsonic speeds the flight-determined values of

Crn correlate well with the wind-tunnel values. At other Mach numbers, Cm

81 51

was not well defined. -

The flight values of Cm , although not well defined, are of about the same mag-

q
nitude as the preflight estimates. Except in the transonic speed region, Cm gen-
erally decreases with increasing angle of attack. q

Effectiveness of the Reaction Control Rockets

The effectiveness of the reaction control rockets was determined from flight data
as part of a study of the usefulness of the rockets for terminal area maneuvering and
stability augmentation.

Figure 19 compares flight and wind-tunnel results for rocket Geometry 1 when a
combination of an outboard and an opposite inboard rocket was used. The flight
roll control effectiveness data agree reasonably well with the predictions, but the
accompanying incremental yawing-moment coefficient data are higher. The resulting
lateral control effectiveness was adequate for maneuvering as well as for stability
augmentation. Agreement between flight results and wind-tunnel predictions was
reasonably good.

Figures 20(a) and 20(b) show the results of operating either an outboard or an
inboard reaction control rocket. These data have considerable scatter because of
the small vehicle motions produced by just one rocket. The resulting motions in
pitch were too small to analyze.

The pitch control effectiveness using either both inboard or both outboard
rockets is shown in figures 21(a) and 21(b). The resulting control effectiveness
was adequate to provide stability augmentation over most of the flight envelope but
was not of enough magnitude to maneuver the vehicle adequately.
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Longitudinal Trim

The flight trim data indicate, in general, that more lower flap deflection was
needed to obtain a given angle of attack than predicted by data from power-off wind-
tunnel tests (figs. 22 to 24). This difference increases with increasing angle of
attack. No attempt was made to predict power-on trim from wind-tunnel data. As
shown in figures 22(a) and 22(b), opening the speed brake induced a nose-down
trend. This trend was predicted by wind-tunnel data but is not shown. Fig-
ure 22(b) shows that with a speed-brake setting of 27°, an instability occurs at low
angles of attack, as indicated by the positive slope of the trim curve (which implies
a positive or unstable Cm ). As a result of this instability, speed-brake deflec-

a
tions were limited to 20°. The general effect of power is shown in figures 24 and 25
to be a nose-up trim increment, even though the thrust line was above the vehicle
center of gravity.

Figures 25(a) to 25(c) define the in-flight vehicle trim characteristics for
various power levels. In figure 25(a) the solid lines indicate the trim curves that
were normally obtained from flight data. However, about 20 percent of the time, the
curves shown by the dashed lines were obtained. These curves show that the ve-
hicle can be trimmed at more than one lower flap deflection for the same angle of
attack, thus indicating that an unsteady power-off trim phenomenon occurs in the
transonic Mach number range from 0.88 to 0.95 at higher angles of attack. In this
same Mach number range at lower angles of attack, no trim data were obtained even
though many flights were made through this region.

CONCLUDING REMARKS

A flight investigation of the stability and control characteristics of the M2-F3
lifting body vehicle was made at Mach numbers from 0.4 to 1.55. The flight data
were compared with predictions based on wind-tunnel results.

Noticeable differences were observed between some flight and wind-tunnel lateral-
directional results. The flight-determined values of the directional stability deriva-
tive, Cn » were usually lower than the values predicted from wind-tunnel tests,

B
especially at subsonic speeds and high angles of attack. Near Mach 0.95 and at low
angles of attack, the flight values of the aileron effectiveness derivative, C1 ,
Ba
followed data based on longitudinally untrimmed wind-tunnel data, which were lower
than those for trimmed conditions.

Although the longitudinal data had considerable scatter, flight values of the
static stability derivative, Cm » were in fair agreement with wind-tunnel predic-
x
tions at Mach numbers of 0.5, 0.7, 0.8, and 1.3. At a Mach number of 1.1, the flight
values were higher than the wind-tunnel results.
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The effectiveness of the reaction control rockets was determined from flight
data. Lateral control effectiveness was adequate for maneuvering as well as for
stability augmentation; whereas longitudinal control effectiveness was adequate
only for stability augmentation. The agreement was reasonably good between the
flight results and the wind-tunnel predictions for lateral-directional control effec-
tiveness using the combination of an outboard and an opposite inboard rocket.

The longitudinal trim flight data indicated, in general, that more lower flap
deflection was needed to trim at a specified angle of attack than estimated from wind-
tunnel data. Speed-brake deflection induced a nose-down pitching moment, whereas
power effects generally resulted in a nose-up pitching moment. An unsteady power-
off trim phenomenon in the Mach number range from 0.88 to 0.95 was indicated by
the tendency of the vehicle to trim at more than one lower flap deflection for the
same angle of attack.

Flight Research Center,
National Aeronautics and Space Administration,
Edwards, Calif., October 17, 1973.
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APPENDIX A

EQUATIONS OF MOTION MECHANIZED IN THE NEWTON-RAPHSON

DIGITAL COMPUTER PROGRAM
The following state equations were used in the basic model for this study:
Cx = Ax + Bu
¥ =[g)x + [§u

where x, %X, u,and y aretime varying.

For the lateral-directional mechanization,

[ p
—_ e r
P 8, ;
r )
x = u=|* y=|v¢
; 5 _
P
'4 1
a
e y—
Lp Lr Lﬁ 0
N N N 0
r
A = P B
Yp -cos (a) * Yﬁ g/V cos () *
1* tan(9)* 0 0
L ]

*Normally held fixed.
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APPENDIX A - Continued

L L, *
ar 61
N N, *
6r 61
Y Y, *
ar 81
0 0
IXZ
__I___ 0
X
1 0
0 1
0 0
Lr LB
Nr Nﬁ
0 Yﬁ
L L
ar 61
N N
61‘ 61
Y Y
51' 61

*Normally held fixed.
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APPENDIX A - Continued

For the longitudinal mechanization:

—
q
— o
q] “51
v
@ )
X = E = 1 X = 6
- v 80
o q
_ ] —1 — a
_"n_|
*
Mq Ma Mu 0
*
Zq* ZOl Zu* Ze
A =
* *
Xq* Xa* Xv XB
1* 0 0 0
M M, * M 0
61 81 60
Zg Zg * Zg g/V
B = 1 1 0
X ¥ X * X ¥ 0
81 61 80
0 0 0 0

*Normally held fixed.
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APPENDIX A - Concluded

M M
a u
Za Zu
Xo Xy i
M M
61 6
Y/ Z
61 60
X X
61 50
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APPENDIX B

OPEN-LOOP DYNAMIC CHARACTERISTICS

The open-loop dynamic characteristics of the M2-F3 vehicle, in-
cluding flight conditions and mass parameters, are presented in the
following tables.
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TABLE 1.—- PHYSICAL CHARACTERISTICS OF M2-F3 VEHICLE

Body - 9 9
Planform area, m~ (ft™):
Actual
Reference (S) . . .
Longitudinal length, m (ft):
Reference (c¢) . .
Span, m (ft):
Actual
Reference (b) .
Leading-edge sweep, deg
Lower flap -

Area, m2 (ft2)

Span, m (ft) .

Chord, m (ft) . . . .

Design hinge moment, m-N (in-1b)
Upper flaps, two —

Area, each, m2 (ftz)

Span, each, m (ft)

Chord, m (ft) . . . . .

Design hinge moment, each, m-N (in-1b)
Vertical stabilizers, two —

Area, each, m2 (ftz) . .
Height, trailing edge, m (ft)
Chord, m (ft):
Root
Tip . .
Leading-edge sweep, deg
Center fln -

Area, m (ft ) .
Height, trailing edge, m (ft)
Chord, m (ft):
Root, at horizontal reference plane
Tip . .
Leading-edge sweep, deg
Rudders, two -

Area, each, m2 (ftz)

Span, each, m (ft)

Chord, m (ft) . . . . . .

Design hinge moment, each, m-N (in-1b)
Center of gravity, reference —

Decimal fraction of chord

28

14.49 (156.0)
14.86 (160.0)

6.77 (22.2)

2.93 (9.63)
3.03 (9.95)
77

1.42 (15.25)
1.65 (5.42)
0.86 (2.81)
7570 (67,000)

0.85 (9.20)
1.26 (4.21)
0.68 (2.23)
3390 (30,000)

1.50 (16.10)
1.16 (3.79)

2.24 (7.36)
0.79 (2.58)
62.3

1.12 (12.02)
1.26 (4.13)

1.59 (56.21)
0.30 (1.00)
58

0.49 (5.27)
1.28 (4.20)
0.38 (1.25)
2600 (23,000)

0.496
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TABLE 4.- PARAMETER RESOLUTION AND ACCURACY

Parameter Resolution Accuracy
3, hN/m? b/t 0.670 (1.40) 1.57 (3.29)
5a’ deg 0.111 0.675
5., deg 0.097 0.380
5., hN/m® (/%) 1.08 - - - -
61, deg 0.0851 0.462
Bu, deg 0.111 0.675
6sb’ deg 0.0594 0.462
p, deg/sec 0.157 0.830
r, deg/sec 0.050 0.550
B, deg 0.040 0.220
¢, deg 0.380 2.48
. 2
p. deg/sec 0.829 - - - -
r, deg/sec2 0.380 - - - -
ay’ g 0.00539 0.0164
q, deg/sec 0.168 0.550
a, deg 0.0607 0.43
8, deg 0.187 1.24
. 2
q, deg/sec 0.349 - - - -
a. g 0.0174 0.0328
a. g 0.00870 0.082
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TABLE 5.- DERIVATIVES OBTAINED FROM FLIGHT DATA

(a) Lateral-directional derivatives

. B c . .
. ng ' 15 STCE S - A
M jo deg g 2 T & 1 -1 5
deg'l deg_l deg‘l deg_l deg i rad rad rad rad
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TABLE 5 - Concluded

(b) Longitudinal derivatives
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Figure 1. M2-F3 vehicle in flight.
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Figure 2. Three-view drawing of the M2-F3 vehicle.
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Figure 3.

Sign convention and control surface location.
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Figure 10. Comparison of lateral-directional derivatives obtained from
flight data with wind-tunnel predictions for a Mach number of 0.5.
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Figure 18. Concluded.
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Figure 19. Comparison of flight and wind-tunnel incremental moment coeffi-
cients due to reaction control rocket operation. Outboard and opposite in-
board rocket. Sign convention based on right outboard/left inboard rockets.
Data normalized to two 400-N- (90-1b-) thrust rockets. Geometry 1.
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(a) Outboard rocket. Sign convention based on right outboard rocket.

Figure 20. Incremental moment coefficients due to outboard and inboard
reaction control rocket operation. Data normalized to one 400-N- (90-1b-)
thrust rocket. Geometry 1.

81



7, hNim? (bietd)
o 69.9 (144)
o0t — o 87.6(183)
Ac, o o
o]
[a]
0 |
004 —
0
AC,
o a
o
0 1 1 N
Y 5 6
M

(b) Inboard rocket.

82

Sign convention based on left inboard rocket.

Figure 20. Concluded.
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Figure 21. Incremental moment coefficient due to either both outboard or both
inboard reaction control rocket operation. Data normalized to two 400-N-
(90-1b-) thrust rockets. Geometry 2.
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Figure 22. Longitudinal trim as a function of angle of attack including speed-
brake effects for Mach numbers of 0.5 and 0.7. Su =-11.8°.
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Figure 22. Concluded.
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Figure 23. Longitudinal trim as a function of angle of attack with power off for
a Mach number of 0.5. 8 = -20% & . =0°.
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Figure 24. Longitudinal trim as a function of angle of attack including power
effects for Mach numbers of 0.7, 0.8, 1.1, and 1.3. 8 = -20°.
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Figure 24. Continued.
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Figure 24. Continued.
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(a) Power off.

Figure 25. Flight longitudinal trim as a function of Mach number. 8u
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Figure 25. Continued.
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Figure 25. Concluded.
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