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A FINITE ELEMENT FOR THERMAL STRESS ANALYSIS
OF SHELLS OF REVOLUTION

By Howard M. Adelman, Harold C. Lester, and James L. Rogers, Jr.
Langley Research Center

SUMMARY

This report describes a new axisymmetric finite element for calculating static
thermal stresses in general orthotropic thin shells of revolution, The element is geo-
metrically exact and the thermal loading conditions allow for variations over the shell
surface as well as through the shell thickness.

The element is utilized in 2 number of sample calculations on a variety of shell
shapes and loading conditions. Among the shells analyzed are two cylinders, a conical
frustum, a truncated hemisphere, and an annular plate. Results from the present method
are compared with either exact solutions which are developed in the report or with results
from other methods based on finite differences. The results predicted by the present
method were found to be in excellent agreement with the exact solutions and the finite-
difference solutions.

INTRODUCTION

The capability to predict reliably the static stress of structural components sub-
jected to thermal loads has become an urgent need for structural designers and analysts.
Of particular interest are aerospace vehicles undergoing aerodynamic heating during
atmospheric entry and aircraft structures heated by impinging jet engine exhaust. In many
instances the aerospace vehicles of interest are thin shells of revolution. Closed-form
analytical solutions to thermal stress problems for this class of structure have been
obtained only for limited geometries and loading conditions (refs. 1 to 3). For more gen-
eral geometries and loadings it is usually necessary to resort to approximate methods
such as finite differences (refs. 4 to 6), numerical integration (ref. 7), or the finite-
element method (ref. 8). Finite-difference methods and numerical integration techniques
have been used with a good deal of success for thermal stress analysis of shells of revo-
lution with a high degree of generality in the thermal loadings.

The finite~element method has developed into the primary analysis tool for complex
structures such as complete aerospace vehicles. Large comprehensive finite-element
programs such as NASTRAN (ref. 8) have a variety of finite elements available to the user
for modeling almost any conceivable configuration. However the elements themselves,
especially the shell of revolution elements, are quite primitive both with regard to their
shape and the generality of thermal loads that can be applied, particularly when compared




with the generality available in the previously mentioned approaches. It appears then that
the finite-element methgd can be made more useful with regard to thermal stress analysis
by introducing new and/or improved elements which have the kind of generality that is
available in the finite-difference and numerical integration approaches., Accordingly, an
improved axisymmetric finite element for thermal stress analysis of shells of revolution
has been developed.

The purpose of the present report is to describe and evaluate the new finite element.
The finite element is geometrically exact, a concept previously utilized for analysis of
free vibrations (refs. 9 and 10) and of temperature distributions in shells of revolution
(ref. 11).

The report contains a description of the mathematical development of governing
matrices for the element and describes a number of sample calculations carried out to
verify the accuracy and versatility of the element. These calculations are performed for
cylinders under two different loading conditions, a conical frustum, a truncated hemisphere,
and an annular plate. Wherever possible analytical solutions (some derived herein) are
used for checking results. There are three appendixes to this report. Appendix A con-
tains a summary of the basic equations governing the finite element; appendix B contains
the derivation of the thermal stress in an annular plate under a quadratically varying
temperature; and appendix C contains a method for obtaining exact modal solutions for
thermal stresses in freely supported cylinders.

SYMBOLS
a inner radius of annular plate (appendix B)
ag ks A1 ko 29 ko coefficients in polynomial displacement function for normal
ki H b
ag ks 34 k» 345 k displacement w
b 3 >
b outer radius of annular plate (appendix B)
b xs bl,k coefficients in polynomial displacement function for meridional
2
b2,k, b3,k displacement u
{ v (n = 0)
Ch=
U (n# 0)
Cll’ C12, C22 membrane stiffnesses
C66 in-plane shear stiffness
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o,k °1,k coefficients in polynomial displacement function for circumfer-
2 ks €3,k ential displacement v

D11’ D12’ D22 flexural stiffnesses

D66 torsional stiffness

El’ E2 Young's modulus for meridional and circumferential directions,
respectively

eqs €9 middle-surface strains in meridional and circumferential
directions, resgpectively

€49 middle-surface shear strain

etl, e;, et12 total strains

{F} thermal force column matrix for complete shell

{Fk} element thermal force column matrix

(£} thermal force column matrix (see eqs. (12) and (13))

{1} modal force column matrix (eq. (29))

G shear modulus

h shell thickness

(1] identity matrix

i=/-1

K number of finite elements used to represent shell

K11’ K12’ K22, K66 stiffnesses representing interaction between in-plane and out-of-

plane strains



M1 My
M, M,, M,
m
N
Ni1» Nia
n
r
(S)
S
T
T., T

1 (o]
[T, ]
T

max
Ty Tg

2

meridional length of shell

thermal moment resultants in meridional and circumferential
directions, respectively

moment resultants in meridional and circumferential directions
and twisting moment, respectively

meridional wave number for freely supported cylinder

order of stiffness matrix and force vector after edge constraints
have been applied

thermal forces in meridional and circumferential directions,
respectively

circumferential wave number

principal radii of curvature of shell

radius of shell measured in plane normal to shell axis
shell stiffness matrix

meridional coordinate

temperature

temperatures at inner and outer fiber of shell, respectively

matrix relating coefficients of assumed displacement shapes to
degrees of freedom on edges of element

maximum value of temperature

stress resultants in meridional and circumferential directions,
respectively




(X]

{y}

1“2

Kl, K2

12

shear stress resultant

total potential energy

meridional component of middle-surface displacement
strain energy

circumferential component of middle-surface displacement
normal component of middle-surface displacement

matrix which describes assumed form of variables appearing in
strain energy

meridional coordinate measured within single element

column matrix containing unknown displacements, rotations, and
derivatives thereof

coordinate in direction normal to shell surface

coefficients of linear thermal expansion in meridional and cir-
cumferential directions, respectively

rotation of shell generator, w' - ——

R
length of kth finite element

circumferential coordinate

changes in curvature in meridional and circumferential direc-
tions, respectively

twist of middle surface

diagonal matrix of eigenvalues of stiffness matrix



K1 H9

€

Subscripts:
k
k+1

Superscript:

eigenvalue of stiffness matrix

*mode parameter for freely supported cylinder, m~ /L
(appendix C)

Poisson's ratio for meridional and circumferential directions,
respectively

column matrix whose elements are displacements and rotations
and their derivatives at ends of kth element

mass density

meridional and circumferential stresses, respectively
shear stress
modal matrix for stiffness matrix

potential energy associated with thermal loading

number of element or number of first edge of element

number of second edge of element

circumferential harmonic number

Primes denote differentiation with respect to s or x; T denotes transpose of

a matrix,

ANALYSIS METHOD

In this section of the report, the governing matrix equations are derived. The

procedure follows very closely the development in reference 9. The strain energy for a

thin orthotropic shell of revolution is derived in terms of the three components of dis-
placement of the shell middle surface and in terms of the shell temperature. A finite-
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element representation of the shell is introduced in which the shell is represented by
congruent slices of the shell and the displacement components are approximated by
polynomials. The potential energy is minimized to obtain the governing matrix equations
which involve two main contributions: the stiffness matrix and the thermal load vector.
The stiffness matrix is identical to that presented in reference 10. The present develop-
ment derives the thermal load vector,

Derivation of Governing Equations

Pertinent geometrical quantities are defined in figure 1. The components of dis-
placement in the meridional, circumferential, and normal directions are denoted by u, v,
and w, respectively. A point in the shell is defined by the meridional, circumferential,
and normal coordinates s, ¢, and z, respectively. The two principal radii of curva-
ture of the shell middle surface are Rl and R2 and the distance from the axis of the
shell to a point on the middle surface is r.

The stress-strain relations for a linear orthotropic material including effects of
temperature as given in reference 12 are

E E,T
1 ff‘l—‘(etﬁ“zeg)' 1_1 (ag+ pgay) |

M+2 H1+2

E E,T L (1)
9 =E___—2— (eté + ’U“leti) - 1__2__. (a2 + ;,Llal)

F1H2 R

ot

712 = Geyy )

where the subscripts 1 and 2 refer to the meridional and circumferential directions,

respectively, and plEz = M2E1.

The strain energy of the shell modified for a two-dimensional orthotropic material
is conveniently written according to reference 13 as

U= :;.. LJ;L [Erleti + U‘zeg + Ulzetiz - (alcrl + azcrz)TJr dz do ds (2)

It is assumed that lines originally normal to the middle surface remain straight, unex-
tended, and normal after deformation. The total strains then have the following variation
through the shell thickness:



~
e‘i(s,@,z) = el(s,e) + zKl(s,e)

eg(s,e,z)= eq(s,8) + 2k o(s,0) ? (3)
etlz(s,e,z) = e12(s,9) + 2z Klz(s,e) J

Substituting equations (3) into equation (2), rearranging, and discarding a constant involv-
ing the known temperature yield:

U=V-Q (4)
where
_1 [ 2 2 2
V= 3 j (Cllel + 2C12e1e2 + Cgo€g + C66e12 )r dg ds
1 2 2 2
+1Pr(K e1ky + Kigli€g + ©g4) + KooCo4g + Kane o4 o)r do ds (5)
7)) 1181 T Pratti®a T 281 T Baa®ata T Bee12"12/ & 98 1Y
0= J (Ntlel + Mthl + Nt2e2 + Mtzxz)r do ds (6)

In equation (5), V is the strain energy of the shell which is utilized in the development
of the stiffness matrix in references 9 and 10 and presented in this report for complete-
ness. The stiffnesses in equation (5) are needed in a later section of the report and are
given in table 1. The rest of the present development consists of operating on the
thermal potential energy  to obtain the thermal load vector.

In equation (6), the quantities Nt1 and Nt2 are thermal forces and Mtl and
Mt2 are thermal moments which are defined as follows:

T(s,6,2z) dz (7a)

E{(aq+ pgag)
N _J pleg + #pp
z 1 - pqmg




Ey(ay + tyay)
N —j 272" 1V e 60) (7b)
V4

1- e

El(al t po az)

Mtl = J T(s,0,z) z dz (7¢)
A 1- pyrg
Eog(ag + tyoq)
My, = J 2" 2 11 T(s,60,2) z dz (7d)
z 1-nyug

The components of displacement and the temperature are assumed to have the following
separable forms for each harmonic n:

u(s,8) = u(s) cos nd 3
v(s,0) = v(s) sinné

e (8)

w(s,0) = w(s) cos nd

T(s,8,z) = T(s,z) cos nd

The strain displacement relations used are those of Novozhilov as used in reference 9 and

repeated here for completeness:

Middle-surface strains:

- w
e Y A
1
_ 1o r w
€g= — — +— U+ — 9)

r % r R2>




Changes of curvature:

I R
Kl—-w +R—u '—z—u
1 R1
1 azw 1 3v r r'
K2=-___+.___.-_W'+ u
r286 ng & r rRl
K12=—la_“l_' r_'al _].._.ﬁl.i-iV'_
r 36 r2 26 rR18€) Rg

The thermal forces and moments as well as the strains and changes of curvature are

written in separated forms consistent with equations (8)

Ntl = Nt1 cosns |
Nt2 = Nt2 cos néd
Mt1 = Mt1 CoSs né

Mt2 = Mt2 COS né

el = el COS ng

€y = e2 cos né
e12 = e12 sin no
Ky = <1 cos né

K2 = K9 Cos no

19 =/<12 sin né&

10

/

(10)

(11)




where Ntl’ Nt2’ M1, and so forth are functions of s only. Substituting equations (9)

and (10) along with equations (11) into equation (6) yields

1 1 1] 'T
Q= Cn§<w,w,w,u,u,v,v) {f} ds

(12)

where {f} is a 7 X1 column matrix whose elements are given in the following equations:

2 )
£, =X + I N, + B2 M
1R1t1R2t2 = M
fz = -I"Mtz
f3 = ‘thl
= -._r xr
fg=T'Ng - — RyMyy + = Ve
R} 1 >
e : r
fg =Ny + " My
1
_ r
fg= Ngg + — My
2
£, =0
7 v

The integration with respect to ¢ from 0 to 27 has been performed and use was

made of the following results:

2 9 27 (n = 0)

Cn= J cos” ng do =
0 ui (n > 0)
0 (n=0)

27 9
S = j sin® ng de =
0 T (n > 0)

(13)
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The thermal forces Nt1 and Nt2 as well as the thermal moments Mt1 and Mt2

are dependent on the nature of the temperature variation through the shell thickness. (See
eqs. (7).) One important case is that of a linear variation through the thickness. For
later use, the thermal forces and moments will be evaluated for this special case. If the
temperature varies linearly from Ti at the inner face (z = -h/2) to To at the outer

face (z = h/2), then
T(s,z)=_° 1 45 0 1 _ (14)

where T0 and Ti are functions of s. Substituting equation (14) into equations (7) and
integrating through the shell thickness give

-
T0 + Ti TO - Ti
Nij = (aCyy +22Cq9) — (Kyqaq + Kyga9) —
T, + T, T, - T,
Nig = (a1 Cyg + o 9Co9) ——+ (Kypoq + Kygep) —
. (15)
, T, - T, T +T,
My = (2yDyy + agDy9) — " (Ky1%y + Kig29) —
T0 - Ti T0 + Ti
Mig = (21Dyp * 2gDpp) ———+ (Kypy + Kypop) ——
J

These forms for the thermal forces and moments complete the development of the column
matrix {f} in equations (13) for the special case of a linear temperature distribution
through the shell thickness.

The next step in the development is to write @ for a single finite element in order
to be able to arrive at the required thermal load vector for an element. The basis for
these operations is described in references 9 and 10; for completeness, the essential con-
cepts are summarized in appendix A. Combining equations (A2), (A5), and (12) yields
the following form of the thermal potential energy for the kth element:

e = {gk}T {F} (16)
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where {Fk} is the thermal load column matrix for the kth element as given by

ek/2

_ T f T
{F ) = C [T] eg2 X]7 ) dx (17)

Formulation and Solution of Final Equations

As in reference 10, the following conditions of compatibility are imposed at each
element juncture:

'wk+1} ' Wkel
Uk+1 Uk+1
Vkel Vil
Sl b =< Pral b (k < K) (18)
U1 Ukt
Vi1 Vk+1
Pk Bier1
Uktl J o element L /k+1 element

Of the seven conditions of compatibility shown in equation (18), only the first four are
strictly required to assure that the element converges. The last three conditions are
imposed in order to improve the convergence characteristics of the element. Specifically,

these conditions require continuity of strains and change of curvature at element junctures
and evidence of the improved accuracy resulting from this continuity has been presented
in reference 12,

Two final observations are that the last three conditions are not correct for shells
which have a step discontinuity in stiffness at an element juncture and that for problems
in which the theoretical stress distribution has a slope discontinuity, the present element
will display a ""'rounded corner’ at the location of the slope discontinuity.



The total thermal potential energy is obtained by summing the element contributions;
thus, '

K
Q =Z Qp (19)
k=1

where O, is given in equation (16). When the summation indicated in equation (19) is
carried out and use is made of equations (17) and (18), the thermal potential energy may
be written as

0= {17 F) (20)
where
{F} thermal load column matrix of order 7(K + 1)
{y} column matrix containing the unknown displacements, rotations, and deriva-

tives thereof

From reference 9, the strain energy may be written

y3T (8] (21)

<
Il
D | =

where [S] represents the stiffness matrix which is a symmetric positive definite or
positive semidefinite matrix of order 7(K + 1). The formation of the stiffness matrix has
been described in references 9 and 10 and need not be discussed further. The formation
of the thermal force column matrix for the complete shell from the element thermal force
column matrices is accomplished by overlapping the last seven numbers in each column
matrix with the first seven numbers in the adjacent (higher numbered) column matrix.
Finally the column matrix {y} is the union of the column matrices {§k} as defined in
equation (A6).

The equations governing the behavior of the shell before edge constraints are
applied are derived by minimizing the total potential energy. Thus,

sS(V-0)=0 (22)

The minimization in equation (22) is equivalent to the following matrix equation:

S1y = (F) (23)
14




Edge constraints are incorporated by deleting appropriate rows and columns from [S]

and rows from {F}. In table 2, the rows and columns deleted for various edge conditions
are given., It is noted that the degrees of freedom of the edges constitute the first seven
rows of {y} and the last seven rows of {y}. Further, it is only the first four of these

in each group namely w, u, v, and A2 that are involved in the definition of edge con-
straints. Accordingly, as shown in table 2 the only rows and columns that are ever deleted
from the [S] matrix and the {F} matrix are among the first four and 7K +1, 7K + 2,
7K+ 3, and 7K +4 rows and columns.

The stiffness matrix is nonsingular if and only if the edge constraints are sufficient
to prevent all possible rigid body motions of the shell. In this case, equation (23) may be
solved by any of a number of standard methods for solving sets of simultaneous linear
equations. Unfortunately in practical shell problems there are situations wherein the edge
conditions are not sufficient to prevent all rigid body motion and the standard methods are
not applicable. For example a free-free shell under a self-equilibrating set of loads has a
singular stiffness matrix and more importantly (for this paper) so does a shell with an
insufficient set of edge constraints under any applied thermal loading. Equation (23) cannot
be solved for either of these classes of problems without a solution technique which is not
dependent on the nonsingularity of the stiffness matrix. For this reason the solution of
equation (23) is carried out by a method normally used for dynamics problems — that is,
an eigenvector expansion. Let

iy} = (#l{Q) (24)
where [¢#] is the matrix of eigenvectors of the stiffness matrix in which each column is
an eigenvector denoted by {¢} and {q} is the column matrix of modal coordinates.
Thus, {¢} and A satisfy che equation

(S] {¢} = A {e} (25)
The eigenvectors are normalized so that

(61T 61 = m (26)
Then

(1T S] (4] = [A) (27)
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where

[A] = . (28)

| N

Substituting equation (24) into equation (23), premultiplying by [¢]T
equation (27) give

, and making use of

(Al {q} = {f} (29)

where {f}= [qSJT{F} is the generalized force column matrix in which the ith element of
{f} is the component of force that would deform the shell into the shape characterized by
the ith eigenvector of [S]. The solution of equation (29) is as follows

fi/xi (r; #0)
q = i=1,2,... N) (30)
0 (>‘i = 0)

The column matrix {y} is then obtained from equation (24).
Displacement and Stress Recovery
The coefficients of the polynomials representing the displacement field are obtained

from equation (A5). The displacement components u, v, and w are then obtained by
use of the equations:

-
B 2 3 4 5

W30kt A kX A% A3 K Ay X+ ag X
_ 2 3

u= bo,k + bl,kx + bz’kx + b3,kx f (31)
_ 2 3

V= cO,k+ 01,13( + cz’kx + c3,kx )
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The middle-surface strains and changes of curvature are obtained from equations (9) and
(10). The fiber strains are obtained from equations (3) by substituting +h/2 for z and
are as follows:

et1 <s,9,¢.l2]_>= e,(s,0) ig. «1(s,6) W

eg (s,@,ilzl.) = ey(s,6) = % «9(8,6) (32)

-

t h h
612<S,9,:t -2—) = e12(s, 6) + 3 x19(8,6)

/

The plus (+) sign denotes the outer fiber and the minus (-) sign denotes the inner fiber.
The stress resultants T;, Tg9, and Tp9 andthe moments resultants M;, My, and
M12 are defined as follows:

5
h/2 h/2
Tl = J oy dz Ml = J olz dz
-h/2 -h/2
h/2 h/2
T2'=J/02dz M2=J/ ooz dz >~ (33)
-h/2 -h/2
h/2 h/2
Tia= f 719 92 My = f oy92 dz
-h/2 -h/2
S

Substituting equations (1) along with equations (3) into equations (33) and using the definition
in table 1 yields the following expressions:

i
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Ty =Cy1e1 + Crgeg + Kyyxg + Kygrg - Ny

Ty = Cige1 + Cygeg + Kygxy + Kggrg - Ny
T2 = Coe12 + Kg6~12
M; = Dyyxq + Dygrg+ Kyjey + Kygey - My

My = Dygxq + Dogrg + Kygey + Kggeg - My

_1
Mi,=- D

1
5 D66 12 * 5 Dgge12

u(@i,s) = Z u(s) cos no,

n

v(6;,8) = Z v(s) sin ng;

n

w(&i,s) = Z w(s) cos ng,

n

Tl(ei,s) = Z Tl(s) cos ng;
n

T2(§i,s) = Z T2(s) oS n&;
n

le(ei,s) = Z T12(s) sin no,
n

~

(34)

J

The displacements and stress and moment resultants are evaluated for specified values
according to the following formulas:

(i=1,2,...) (352
(i=1,2,... (35b)
(i=1,2,...) (35¢)
(i=1,2,...) (35d)
(i=1,2,...) (35¢)
(i=1,2,... (350




Ml(@i,s) = Z Ml(s) cos né, (i=1,2,...) (359
n

M2(9i,s) = Z M2(s) cos no6; (i=1,2,...) (35h)
n

M, 5(6,8) = Z M, o(s) sin n; i=1,2,... (35
n

The range of summation on n is over the number of circumferential harmonics
considered.

EVALUATION OF THE ELEMENT

In order to verify the validity and versatility of the new element, sample calculations
were performed for a variety of shell geometries and thermal loads. Analytical solutions
were available for some of the models. In the following sections are presented descrip-
tions of the shells, the methods of evaluating numerical results, the finite-element repre-
sentations, and detailed evaluations of the results.

Description of Shells Analyzed

The geometry of the shells analyzed are illustrated in figure 2 along with the cor-
responding temperature loading functions and the shell material properties. For cylin-
ders I and II and the truncated hemisphere, the temperature is constant through the shell
thickness. For the conical frustum and the annular plate, the temperature varies through
the thickness. For all shells except cylinder II, which has freely supported edges, the
edge conditions are clamped-clamped. Also, the temperatures are axisymmetric except
for cylinder II. A brief description of each shell is given as follows:

Cylinder I is a cylindrical shell having a temperature distribution with a discontinu-
ous slope at the midlength of the cylinder (s/L = 1/2). This discontinuity occurs when the
midlength circumference is maintained at a prescribed temperature. The temperature dis-
tribution (derived in refs. 3 and 11) illustrates the behavior of the present finite element
for a stress distribution having a slope discontinuity.

Cylinder I is a cylindrical shell with a temperature distribution which is constant
along the length of the shell but varies around the circumference. This temperature dis-
tribution (derived in refs. 3 and 11) results when a generator of the cylinder is maintained
at a constant temperature. This example was chosen to illustrate the application of the

19



finite element to a nonaxisymmetric temperature distribution and also to illustrate an
application where, because of the freely supported edge conditions, the stiffness matrix is
singular,

An orthotropic 30° conical frustum has a temperature distribution which varies
quadratically along the shell length and linearly through the thickness. This distribution
is an approximation to that in the vicinity of the nose of a missile undergoing aerodynamic
heating (ref. 14). This example illustrates the use of the present element for orthotropic
shells, for a nonconstant shell radius, and for an applied thermal bending moment.

A truncated hemisphere having a temperature distribution (derived in ref. 11) cor-
responding to a uniform heat flux over the outer surface of the shell was chosen to illus-
trate a calculation for a shell with a curved generator such that both principal radii of
curvature are nonzero.

An annular plate with a temperature varying linearly through the thickness and
quadratically from the inner radius to the outer radius illustrates the application of the
element when thermal bending moments are applied as the loads and for the limiting case
of an annular plate.

Method of Evaluation

The evaluation of the element was accomplished by using a computer program to
calculate stress and moment resultants and then by comparing the results with other
solutions for the same configurations. Check solutions were obtained from the following
sources:

For cylinder I, an analytical solution was available from reference 3

For cylinder II, a converged modal solution was generated based on the procedure
described in appendix C, and results were obtained for harmonics n =0 to 4

For the orthotropic conical frustum, check results were available from the finite-
difference computer programs of references 5 and 6

For the truncated hemisphere, a solution was available from reference 5

For the annular plate, an analytical solution derived in appendix B was utilized
Detailed comparisons between results with the present method and results from these
sources are presented in a later section.

Finite- Element Representation

The number and spacing of elements in the shell representations are given in table 3.
These representations were arrived at by the following procedure: first, each shell

20




was analyzed with a representation of 10 equally spaced elements and results were com-
pared with the appropriate check solution. If satisfactory agreement was obtained (as

for cylinder II and the annular plate), no refinement was performed. If the results were
not satisfactory, a more refined representation of the shell was made in the vicinity of the
edges of the shells where the steepest gradients in the stress distributions are found. The
refinements were similar to those done in the modal stress study of reference 12. The
final representations used to give the results in the present report are those in table 3.

Evaluation and Discussion

Calculated results from the present finite-element and other analyses are presented
in tables 4 to 8 and in figures 3 to 8. In this section, an evaluation of the performance of
the element for each set of calculations is presented. Before proceeding to discussions
of individual shells, two general observations are made.

(1) For all shells except cylinder II, results are axisymmetric; that is, they corre-
spond to n =0 because of the axisymmetric character of the temperature loads

(2) For all shells except the annular plate, the moment resultants are negligibly
small and are not presented ’

Cylinder I.- Nondimensional meridional and circumferential stress resultants pre-
dicted by the present method for cylinder I are presented along with analytical results
from reference 3 in table 4. The stress resultant distributions are necessarily symmetric
about the midlength of the cylinder as a consequence of the symmetry of the load and the
edge conditions. The analytical solution for this example as given in reference 3 shows a
constant meridional stress resultant Tj, whereas the present finite-element solution
exhibits a slight oscillation about the constant value. The maximum error of 0.6 percent
occurs at the midlength of the cylinder. The comparison for the circumferential stress
resultants T2 also shows close agreement, the largest error being 0.4 percent. In
figure 3, the stress resultants are plotted with the analytical solution being represented by
the solid curves and the present finite-element solution indicated by the circles. It is of
particular interest to observe that the analytical solution for T2 has a cusp — that is, a
discontinuity in the slope at the cylinder midlength as a result of the discontinuity in the
slope of the temperature distribution at that location. Since the displacement field assumed
for the finite element implies continuity in the slope of the stress resultants it might be
expected that the element would have difficulty converging in the vicinity of such a cusp.
However as indicated in figure 3, no such difficulty was found, and although there is a local
rounding of the cusp, this rounding was too negligible to be plotted and had no appreciable
effect on the accuracy of the stress resultant.

Cylinder II.- Circumferential stress resultants T2 for cylinder II for values of n
from 0 to 4 are shown in table 5. In this table, the exact solution vas obtained by the modal
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superposition method described in appendix C. The stress resultants from the present
method are quite close $o the exact solution for all values of n in the calculations.
Further there is only a slight loss of accuracy with increasing values of n. The results
are also shown in figure 4 wherein the present results are indicated by the symbols and

the exact solution shown by the solid curves. Because the resultants are symmetric about
the midlength of the cylinder, results are plotted for only half the shell. It may be observed
from figure 4 that the harmonics of circumferential stress resultants decrease in magni-
tude toward the midlength of the cylinder and the rapidity of the decay appears to increase
with n. A final observation from figure 4 is that all of the harmonics pass through zero

at about s/L = 0,125 for this particular cylinder.

Figure 5 illustrates the results of performing the Fourier summation of the har-
monics by using equations (35) at values of 4 of 00, 45°, and 90° where the angle is meas-
ured from the heated generator. Results in this figure are from the present method only.

The meridional stress resultant T1 was found to be less than 1 percent of the
circumferential resultant for all harmonics. This occurrence may be explained by the
fact that the freely supported edge conditions require Tjp to vanish at each edge, and for
short cylinders such as that used in the present example, T1 never develops a significant
value. For larger cylinders with freely supported edges, Tjp is not small and this point
is discussed further in appendix C.

Orthotropic 30° conical frustum.- The meridional stress resultant T1 for the
orthotropic 30° conical frustum which was computed by the present method and solutions

from the methods of references 5 and 6 are presented in table 6. The agreement between
the present method and reference 6 is excellent with a maximum difference of less than

1 percent which occurs at the smaller edge of the shell. The difference between the
present method and reference 5 is somewhat larger, being about 5 percent at the smaller
edge and about 3 percent at the larger edge. The solutions are plotted in figure 6 where

it can be seen that all three results are in close agreement except in the immediate vicinity
of the edges of the shell.

The circumferential stress resultant was negligibly small away from the edges of
the shell and significant values occurred only within 1 percent of the shell length from
the small edge and 3 percent of the shell length from the large edge. These edge results
are summarized in the following table:

Dimensionless circumferential stress resultant
in a conical shell, T2/EhaTmax
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Location
Present SADAOS SALORS
analysis (ref. 6) (ref. 5)
Smaller end -28.17 -29.44 -28.89
Larger end -12.24 -10.82 -12.27




The results are in fair agreement, with the present solution lower than either reference 5
or 6 at the smaller end but bounded by those results at the larger end. The maximum dif-
ference is about 13 percent with respect to the results of reference 6 at the larger end.
One interesting and unexpected result in this calculation is that even though there is a
temperature gradient through the shell thickness and, consequently, a thermal moment
applied, the moment resultants were substantially zero, This result was obtained by all
three analyses and cannot be rationalized by the authors.

Truncated hemisphere.- Meridional and circumferential stress resultants for the

truncated hemisphere which were computed by the present formulation and those from the
method of reference 5 are presented in table 7. The agreement is generally good. The
only significant differences between the two results occur in the values of the meridional
stress resultant at the edges of the shell. There is a difference of about 5 percent at the
larger diameter (s/L = 0) and about 10 percent at the smaller diameter (s/L = 1). There
is good agreement between the two solutions for the circumferential stress resultant with
a maximum difference of 2 percé'nt which occurs at the larger edge.

The results are shown graphically in figure 7 where the present solution is repre-
sented by the symbols and the results of reference 5 are shown as the solid curves. An
interesting and encouraging aspect of the comparison of results for this case is that, for
the dominant stress resultant Tz, there was excellent agreement and the significant
differences occurred in the smaller stress resultant T1 at a location where it was
substantially zero.

Annular plate.- Meridional and circumferential moment results for the annular
plate from the finite-element calculation are presented in table 8 together with the
analytical solution derived in atpendix B. For the meridional moment resultant compari-
son, the solutions agree to within 0.3 percent except at s/L = 0.2 where the present
method is 1.2 percent lower than the analytical solution., For the circumierential moment

resultant comparison, the solutions agree to within 1 percent except at s/L = 0.2 where
the two-place agreement at the inner edge and four-place agreement at the present solution
is 4 percent lower than the analytical solution,

CONCLUDING REMARKS

A new finite element for thermal stress analysis of orthotropic thin shells of revolu-
tion is described. The element is geometrically exact in that no approximation of the
shell generator is required. Further, provision is made for the applied thermal loads to
vary over the shell surface and through the shell thickness in any mathematically
describable fashion.
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Sample calculations are carried out on a variety of shell models and results from
the present method are compared either with analytical solutions or with numerical results
from independent analyses. Among the shell configurations analyzed are cylinders under
two different thermal loading conditions, a conical frustum, a truncated hemisphere, and
an annular plate. For these calculations the results from the new finite element generally
are in good agreement with the check solutions, The only significant inaccuracies were
observed in some stress resultants near the clamped edges of the conical frustum and the
hemisphere where the stress gradients were particularly severe and consequently where
finite-element analyses usually require significant refinement before convergence is
obtained.

The nature of the finite element is such that continuity of strains and curvatures is
maintained at all points along the shell. Consequently in a shell where there is theoreti-
cally a slope discontinuity or cusp in a stress or moment resultant the results predicted
by the present method will show a slight local smoothiNg of the cusp but this has no
adverse effect on the a@curacy of the results.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., June 30, 1973.
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APPENDIX A

REPRESENTATION OF A SHELL OF REVOLUTION BY GEOMETRICALLY
EXACT FINITE ELEMENTS

The basic assumptions underlying the finite element and a detailed derivation of the
stiffness matrix are given in references 9 and 10. The purpose of this appendix is to
summarize the concepts, conventions, and equations needed in the development of the
thermal load vector for a geometrically exact finite element.

The following notation is used (fig. 9):

K total number of elements used to represent shell
" meridional length of kth finite element
X coordinate in kth element, measured from center of element so that
€ €
-k oxs kX (A1)
2 2

A subscript notation is established in which a subscript k, when used with a quantity

suchas u, v, w, S5, R1 or their derivatives, implies that the quantity is evaluated
€

at the first edge of the element x = - —2-1-( Similarly, a subscript k+1, when used with

such quantities, implies that they are evaluated at the second edge of the element

€
X = Tk In all other uses of the subscript k, for example, for matrices and vectors, it

means that the quantity with the subscript is evaluated for the kth element. The displace-
ment components or derivatives thereof within the kth element are approximated by poly-
nomials as follows (ref. 10):

<u >=X{r) (A2)
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where

ri X » x3 x4 %9 0 0 0 0 0 0 0 07
0 1 2x &2 43 &4 0 0 0 0 0 0 0 0
0 0 2 6x 12x2 20x3 0 0 0 0 0 0 0 0
x]=|o 0 0 0 0 0 1 x 2 x3 o0 0 0 0 (A3)
0 0 0 0 0 0 0 1 2x 32 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 x x2 X3
K 0 0 0 0 0 0 0 0 0 0 1 2x 3x2_
and
017 = 20,1081 1022 1033 10 %4,10% k00,1001, 102 10P3, 1000 kOl 2100 | (AY
b b . b b H b b bl 2 b ? b b

The coefficients of the polynomials are related to the variables at the edges of the element
by the following relation:

() = MHED (A5)

where the matrix [Tk] is given in table 9 and

) . ' . t 1 '
teyt = ka’uk,vk’ B Yoo Vie Pl Wi 1%+ 10 Vi 12 5k+1’“k+1"’k+1'6k+1_‘ 40

The reader will notice that two new quantities have been introduced into {£}. These are
the meridional rotation 3 and its derivative #' (which is identical to the change in
curvature Kl). The reason for the introduction of these quantities in place of w' and
w'' is that in order to perform the necessary superposition of element matrices and vec-
tors, a set of compatibility conditions at element junctures must be formulated and these
conditions are convenient to express and are physically meaningful in terms of 3 and
B' rather than w' and w'". The matter of the form of the compatibility conditions at
the element junctures is discussed further in the main body of this paper.
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APPENDIX B
ANALYTICAL SOLUTION FOR THERMAL STRESSES IN AN
ANNULAR PLATE UNDER PURE BENDING

The governing differential equation for the plate is derived in accordance with the
following assumptions:

(1) The plate is isotropic, thus

G.1= a2=a7
E,=Ey=E | (B1)
Hy = Hg =4

J

(2) The temperature loading is axisymmetric
(3) The in-plane displacement components u and v are neglected

For an annular plate having an inner radius a and an outer radius b, the functions
describing the reference surface are

r=a+s h

r' =1 g (B2)
l_i_ v

Ri "R M7

J

The principle of minimum potential energy is used to obtain the governing equation. The
statement of the principle is

s(V-0)=0 (B3)

Based on assumptions (1), (2), and (3) and equations (B2), equation (B3) may be written

2

b : Mt (w

5 D (W")2 + 2u ww' + A N _._.!:. -“L+ w'lirdr=20 (B4)

r r2 D r
a
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where

Eh3

D-_ =%
12(1 - .2)

and the prime indicates a derivative with respect to r. Carrying out the variations as
indicated in equation (B4) yields the required differential equation

. M'-I‘M"
WIV+EW'”-W_+W'—-._—t t

Z = (B5)
r r2 13 Dr

Letting the right side of equation (B5) be represented by a function M(r) and regrouping
the left side yield

li r_g_ li(rd_w> =M(r) (BG)
r dr dr|r dr dr

A solution to equation (B6) is sought which corresponds to a constant value of M. The
general solution to equation (B6) with M equal to a constant is

Mr4
64

w=A+Br2+cr210gr+dlogr+ (B7)

The changes in curvature and the moment resultants are then calculated by use of equa-
tions (10) and (37), respectively. The boundary conditions are taken to be those of
clamped edges

w(@) =w'(a) =0
(B8)
w(b) =w'(b) =0

Substituting equation (B7) into equations (B8) gives the following equation for determining
the constants:
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— —1 e r 4
1 a2 a2 log a log a AW - %ﬂ
64
Ma3
0 2a a(l+2loga) 1/a B -
16
< 7= ﬁ L (B9)
4
1 P p2logb logh| |c - Mp”
64
Mb3
0 2b b(l+21loghb) 1/b d -0
i 1U) Ue

Return now to the determination of a temperature distribution corresponding to a constant
value of M and set

-M; - rMy
Dr

= M = Constant

then the differential equation for M, may be written as
i(rM{) = -MDr (B].O)
dr

Integrating and discarding the constants of integration give
Mt = -_.r2 (Bll)

Using equation (B11) along with the expression for the thermal moment in terms of tem-
perature (eqs. (15)) gives

il

L}
L]

(V)

- %). (1+ )T, - Ty (B12)
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Thus a temperature distribution corresponding to a constant value of M is one in which
the temperature differenge between the inner and outer fiber of the plate varies quadrati-
cally with r. Letting

T, - T, = fr (B13)
results in
M = ﬁ(_l_;_fﬁ (B14)
and
2
M, = aD(1 +hp«)f8r (B15)
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EXACT MODAL SOLUTIONS FOR THERMAL STRESSES IN

FREELY SUPPORTED CYLINDERS

In this appendix the nonaxisymmetric state of thermal stress in a freely supported
cylindrical shell is determined by a superposition of the free vibration modes. The
potential energy for the shell is expressed in terms of middle-surface displacements and
the temperature distribution in the shell. The temperature is assumed to be constant
through the thickness. The displacement components and temperature distribution are
represented in terms of their circumferential Fourier harmonics and each harmonic of
stress is determined independently of the others in terms of the same harmonic of

temperature.

Symbols

Symbols not previously defined in the main text and/or those unique to this appendix

are defined as follows:

k

K

—

o

117 %120 K130
Koo Koz Ksg

s _{0 (n=0)
n- L (H#O)

T*

summation index, k=1,2, 3 (see egs. (C4))

stiffness matrix, 3 X 3

stiffness coefficients (see eqgs. (C7))

number of meridional half-waves
mass matrix
generalized force

generalized coordinates (see eqs. (C4))

time

kinetic energy
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% mk’ Pamk’ ¥ nmk modal amplitudes (see egs. (C4))

{a} column matrix of modal amplitudes

© nmk natural frequency of nmk vibration mode
Subscript:

n nth circumferential harmonic

General Method

The strain-displacement relations used in this appendix are those of Kraus
(ref. 15, p. 32) and differ from those in the main text (eqs. (10)) only in the K19 term.
The expressions used are

3\
e; =u' - zw"
t 1 3v w 1 3v 1 azw
ezz__+_+z__-__> (c1)
r ¥ r 2 26 2 392
e§2=l£+v'-z<za_“"_.1_v'>
r 290 r 96 r )

The strain energy U is derived in a manner analogous to that of the main text and is
given by

U = Z U, (C2)

where Un is the contribution to the strain energy due to the nth circumferential harmonic
of displacement and temperature and is given by the following equation:
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2
C 2 w
v =2 Cu'2+_—rl v2+_—-n+__.2nvw
n n n nn
2 2 2 2
0 r T r

n nn n
r T r
1-u\ 12 1-u
+Sn< 5 )Vn -( . >nunv;1 rds
L 2 4 3
+C J Dw"2+ v2+--n—-w?‘+2rl \Y
n n n n
0 r r4 r4
2 n n2 1-u\[an2 2 Sn_2 4n
-_ﬁw'ﬁ —V W, +< “> M owd e Ny 2wy || rds
r r 2 r2 r2 r2
L w
-C, J' C(1+p)aT\EJ}1+£vn + __I.l_.]r ds (C3)
0 r r
where
0 (n=0)
Sn=
7 (n;!O)

In equation (C3) the first integral represents the membrane strain energy, the second
integral represents the flexural strain energy, and the third integral represents the
thermal strain energy.

The displacement components un(s), vn(s), and wn(s) are expanded in terms of
the free vibration modes of a cylinder with freely supported edges (ref. 9). This expansion

is as follows:

M 3
mws
un(s)= Z “nmk €% L nmk (C4a)
m=1 k=1
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M 3
. m
Vn(s) = Z Z Ahmk 310 ik 9\ mk (C4b)

m=1 k=1 L
M 3
_ ... M7 8
wn(s) - Z Z Ynmk S L 9 mk (C4c)
m=1 k=1

Here m represents the number of meridional half-waves in the mode shape and M is
the largest value of m in the expansion. The inner summation with index k is used to
account for the fact that corresponding to a given nodal pattern definedby n and m
there are three modes. The relative amplitudes of U, Vi and W in a given mode
are given by &k’ Bnmk’ and Y nmk’ respectively, and the generalized coordinate
associated with a mode is denoted by ke The coordinates Ak 2re calculated by
the principle of minimum potential energy. Substituting equations (C4) into the strain
energy in equation (C3), integrating with respect to s, and minimizing the resulting
expression with respect to each of the unknowns q nmk give the following formula:

Echr n “nmk
1 O_L 5 Pim (_}\m “nmk * T Fnmik * - >
qnmk = — 2 _ 2 — 2 - — —
K11 nmk* %22 nmk * ¥33 "nmk * 2512 % nmk Pnmk * 2K13%nmk” nmk * 2238 1 mic” nmk
(C5)
where
N
A = M7
oy
(C6)
\
L - \
an = J Tn(s) sin A_s ds
O A
and the stiffness coefficients are defined as follows:
_ C Lr 2
K, =" cr2 scl-w 07 (C7a)
11 m
2 2 r2
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_ C Lr
Kyg=-_0 (Cun, [ C1l-u, (C'Tb)
12 2 r ™ 2 r m
C Lr
_. n Cyu
3=~ —'m (CTc)

~ C Lr /.2 2 2
Ry,=_n (Cn” cl-p,2 Do’ pl-p *m (C7d)
22 Ty 2 2 m Ty 2 2
r r r
_ C Lr 3
K .- _n Q N Dn . Dun >\2 N Dn(l - x) ,2 (CTe)
23 T |9 T3 2 m 2 m
r r r r
_ C_Lr 4 2 2
Kgq = I; {C_;JrDAfnJFD’; +2#D_r_1§_ A2 +2D(1-u)£2_ xfn] (CT5)
r r r r

where Pmn is the generalized force for the mode characterized by n and m. The

modal amplitudes & mk? Bnmk’ and Ynmk 2r€ all that now remain to be calculated.

They are computed by a modal analysis described in the next section.

Determination of

A and ¥ nmKk

a
nmk’ nmk’

The relative amplitudes & mk’ Bnm , and Ynmk 2T€ obtained by a normal mode
analysis based on the shapes shown in equation (C4). Making use of these equations, but
noting that for free vibrations the modal coordinates 4 mk instead of being constant
have simple-harmonic time variations, gives:

3 .
1w t
v (s,t) = Z Z B mi St A S € nmk” > (C8)

M 3 i t
. “nmk
wn(s,t) = E E Ynmk S\ *mS © m
m=1 k=1

)
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where @ mk 1S the natural frequency associated with the mode shape characterized by
the triplet n,m,k. The strain energy U and the kinetic energy T* are written as

_ 2w t
@7 (K){De nmk (C9)

c
1]
D =

2 }T

R "
=1 o2 @ T n@e Mok (C10)
5

where

Oankw

{a} = Bnmk&

7/nmk,

and

Werh
2

M] = (1)

with (I] being a 3 X 3 identity matrix. Applying the principle of minimum potential
energy along with equations (C9) and (C10) gives the following modal equation:

R) (@) = w2 (M) (&)
This eigenvalue problem is solved by use of the threshold Jacobi method described in

reference 9.

Effect of Length on Thermal Stresses in a Cylinder
With a Heated Generator

In reference 3 a solution is obtained for the axial stress resultant in a cylinder of
infinite length and used for predicting such a stress in finite cylinders. It was of interest
in connection with the present work to assess the range of cylinder geometry for which the
infinite cylinder solution is applicable to finite cylinders. Thus, a number of calculations
using the exact modal method of appendix B were carried out in which all the shell
dimensions were fixed except the length-to-radius ratio which was varied from 1 to 1000.
The results are shown in figure 10.
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The infinite cylinder solution is denoted by the broken line. It is of course con-
stant., For L/r = 1, the axial stress is 0. For L/r = 10, the curve attains a compres-
sive stress at the center of the cylinder which exceeds the infinite cylinder stress by
about 9 percent. For L/r =100 and 1000, the stress is constant and equal to the infinite
cylinder solution outside a narrow boundary layer adjacent to each edge. At the beginning
of boundary layer, a value of stress is reached which exceeds the infinite-cylinder solution
by about 4 percent. The conclusion from this study is that the infinite-cylinder solution is
a good approximation for the stresses in the interior of a long cylinder (L/r greater than
or equal to about 100) but underestimates the stress near the edges. The infinite cylinder
solution is furthermore found to be completely erroneous for cylinders having L/r less
than 10,
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TABLE 1.- STIFFNESSES OF AN ORTHOTROPIC SHELL
AS USED IN EQUATION (5)

[Subscripts 1 and 2 refer to meridional and
circumferential directions, respectiveli’

Eq M1Eg
c..=[ 1 g4z Cig=| —2 4
11 1 - 12 1 -
Z 8 L) Z H1+9
Ey
c22=f 1____dz C66=JGdz
z S W z
E v B
D.. = 12 Do=( 12 .24
11 I 12 n
z L Hpkg z 17 kg
E
B 2 2 B 2
Dzz-f —1—-———de D66—4Jszz
e b z
E W E
an ! sz K12=2f 12 L4z
z 1- #eg ‘ 1= pyug
E
_ 2 _
K22_J - z dz K66_szdz
z i Eab)

40




1 [ Cx bl .lA1HVB|A1HV>.IA_‘HW
§+3IL ZHML THIL VECT = (0)9 = (0)» = (0)a = (O)n pajxoddns Ajdwris —padurerd
3 gy € bpmyé |A1HVB|A1HW
g+3IL ‘THIL VETT = (0)¢ = (0)m = (0)A = (O)n pojroddns A[esay—padure()
. . . e = Svm = (T)a = (T)A = SW
p+3IL EHL ‘THIL THIL ETT = @a = (0)A = (0)n padurefo—pajroddns Adwig
= (T)4 = (T)A
e+31L ‘T+ML ‘€2t = ASB = (0)A = (o)n polroddns A[9aaj—pajroddns Ajduts
0= ﬁa (T)m = 3 > = (T)n
p+3L ‘gL ‘THNL ‘THIAL BT 0= = (0)A padure[o —pojroddns A[eaaq
= 33' 3\73
g+3IL ‘gL ‘T +ML ‘ST = (0)m = (0)A | poyroddns Ardwis—pajroddns A[e01]
b +3L ‘e+3L ‘THIL ‘THAL VETT 0=(0)d = ava = (0)a = (O)n padurero —padwer)
0= (Da= (1A= (T)n
g+3IL ‘2+3IL ‘T+IL ‘82T 0= ASB = (0)a = (o)n pojaoddns A[durrs —pajroddns Ajdwiig
“ ot = (T4 = (A
gH+3L ‘T+3IL €1 = (0)m = (0)A poajroddns A[osxj—pojaoddns A[oa1g
A 0=(0)d = Sva = (0)A = (O)n aaaj-padwrer)
YL ‘CHSIL ‘ZHSL THIL | 0= (T = (T)a=(T)a=(T)n padwero-9a1g
£2'1 0= (0)m = (0)A = (O)n 99aj—pajroddns Ardwig
g+3IL ‘Z2+L ‘T+IL 0= (T)m = (T)a = (T)n pairoddns Ardwis —aaa
e1 0= (0)m = (0)A goar—poalrxoddns A199xg
g+31L ‘T+3L 0= (T)n = (T)A pojaoddns Ajeoxj—ooaq
SUON SUON 991]-9934
poje[ep SUWN[Od pue SMOY mwcmﬁ%nmmmw«ﬂ:um uonydixosa(g

SILNIVY.LSNOD #3DdH -'¢ HT1dV.L

41




TABLE 3.- FINITE-ELEMENT REPRESENTATIONS OF SHELLS
USED FOR SAMPLE CALCULATIONS

Nondimensional element length, ¢ /L, for —

Cylinder I Cylinder II Conical frustum Hemisphere Annular plate
14 elements 10 elements 19 elements 14 elements 10 elements
0.025 0.1 0.00833 0.02 0.1

.025 .1 .00833 .02 A1
.025 1 .00833 .05 1
.025 .1 .00833 .05 1
050 1 .0166 12 1
.050 A .0166 12 .1
.300 1 .0166 12 .1
.300 | .1666 12 1
.050 1 .1666 A2 .1
.050 1 .1666 A2 1
.025 .1666 .05
.025 .1666 .05
.025 .0166 .02
.025 .0166 .02

.0166

.00833

.00833

.00833

.00833
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TABLE 4.- STRESS RESULTANTS FOR A CLAMPED-CLAMPED

CYLINDER WITH A HEATED MIDLENGTH

T, /EhaT T, /Ehat
s/L Present A;l&%rttiiggl Present Anallytt.ical
solution (ref. 3) solution ?1‘3 e‘;.lg’;
0 -0.548395 -0.548412 -0.137099 -0.137103
1 -.548250 -.548412 -.235410 -.235451
.2 -.545230 -.548412 -.224090 -.22488"1
.3 -.549768 -.548412 -.204163 -.203382
4 -.546987 -.548412 -.244610 -.243848
D -.551681 -.548412 -.396033 -.395210
.6 -.5469817 -.548412 -.244610 -.243848
i -.549768 -.548412 -.204163 -.203382
.8 -.545230 -.548412 -.224090 -.224887
9 -.548250 -.548412 -.235410 -.235451
1.0 -.548395 -.548412 -.137099 -.137103
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TABLE 5.- CIRCUMFERENTIAL STRESS RESULTANTS FOR A FREELY

SUPPORTED CYLINDER WITH A HEATED GENERATOR

T2/Eh aT for —
s/L
n=90 n=1 n=2 n=3 n=4
(a) (a) (a) (@) (a)
0 -0.316899 -0.316912 -0.126781 -0.063403 -0.037307
-311717 -.311717 -.124687 -,062344 -.036674
0.1 -0.024860 -0.025348 -0.010746 -0.005923 -0.004000
-.024696 -.025184 -.010682 -.005891 -.003982
0.2 0.020494 0.030190 0.007665 0.003399 0.001511
.020413 .020108 .007630 .003381 .001499
0.3 0.005148 0.005147 0.002004 0.000846 0.000203
005102 .005099 .001982 .000833 .000194
0.4 -0.000788 -0.000752 -0.000308 -0.000267 -0.000422
-.000792 -.000758 -.000313 -.000272 -.000426
0.5 -0,001020 -0.001007 -0.000435 -0.000349 -0.000484
-.001015 -,001004 -.000437 -.000352 -.000488
0.6 -0.000788 -0.000752 -0.000308 -0.000267 -0.000422
-.000792 -.000758 -.000313 -.000272 -.000426
0.7 0.005148 0.005147 0.002004 0.000846 0.000203
.005102 005099 .001982 .000833 .000194
0.8 0.020494 0.020190 © 0.007665 0.003399 0.001511
.020413 .020108 007630 .003381 .001499
0.9 -0.024860 -0.025348 -0.010746 -0,005923 -0.004000
-.024696 -.025184 -.010682 -.005891 -.003982
1.0 -0.316899 -0.316912 -0.126781 -0.063403 -0.037307
-311717 -311717 -.124687 -.062344 -.036674
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4 Top line — present solution

Bottom line — analytical solution (appendix C)




TABLE 6.- MERIDIONAL STRESS RESULTANT FOR A

CLAMPED ORTHOTROPIC CONE

T, /Elh I
s/L
Present SADAOS SALORS
solution (ref. 6) (ref. 5)
0 67.9152 68.5935 71.52
1 34.8894 34.9249 34.90
2 23.1281 23.2835 23.26
.3 17.5112 17.4625 17.45
4 13.9475 13.9699 13.96
5 11.6352 11.6416 11.63
.6 9.98591 9.97855 9.969
N 8.72492 8.73126 8.727
.8 7.76298 7.76115 7.757
9 6.98650 6.98525 6.981
1.0 6.496217 6.49742 6.680
TABLE 17.- STRESS RESULTANTS IN A CLAMPED
TRUNCATED HEMISPHERE
Tl/EhaTmax T2/EhaTmax
s/L
Present SALORS Present SALORS
solution (ref. 5) solution (ref. 5)
0 -0.04843 -0.05115 -0.5145 -0.5155
1 -.05076 -.04968 -.1583 -.1571
2 -.05077 -.05065 06259 .06220
3 -.05339 -.05445 07233 .07230
4 -.05813 -.05895 06007 .06046
.5 -.06430 -.06485 .06168 ,06225
.6 -.07224 -.07325 07493 .07550
J -.08469 -.08630 11291 1129
.8 -.10697 -.1065 .12873 1272
9 -.12065 -.1185 -.22234 -.2239
1.0 -.03444 -.03821 -1.0103 -1.012
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TABLE 8.- MOMENT RESULTANTS FOR A CLAMPED ANNULAR PLATE

M;/EbdaT My /En3aT
s/L Prosent Analytical Present Analytical
solution solution solution solution
(appendix C) (appendix C)
0 1.80057 1.80055 2.62350 2.62350
1 3.11838 3.16188 3.39046 3.53529
2 4,28310 4,33328 4,20909 4.37560
.3 5.33251 5.37015 5.06365 5.18880
4 6.29431 6.31184 5.94524 6.00328
D 7.18740 7.18419 6.84879 6.83769
.6 8.02591 8.00600 7.77156 7.70467
J 8.82060 8.79099 8.71221 8.61293
8 9,57974 9.54944 9.67016 9.56858
9 10.3098 10.2892 10.6454 10.5760
1.0 11.0161 11.0163 11.6381 11.6382
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(a) Coordinate system and displacement component directions.

(b) Detail of shell wall.

Figure 1.- Geometry of a shell of revolution.
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E = 10 GPa r=10m

h @=1x10°/K Lax1.0m
sinh (s/L)
Ls sinh (1/2) (0ss/L<1/2)
T =T. =
1 I ° ! sinh (1-s/L)

sinh (1/2) (1/2 ss/L s1)

(a) Cylinder with heated midlength ~ clamped edges (cylinder I).

h h=1lem L=10m a=1><10'6/K
r=10m E =10 GPa p=03
f T = T.= ) T cosnd
i 1 o 173
LS - tanh 7 (n = 0)
l T= 2 5 tanh 7 (n>0)

T(1 +n°)

(b) Cylinder with heated generator — freely supported edges (cylinder II).

h=0,0625 cm T, = 1500 - 1000 (s/L)-+ 500 (s/L)2
B = 30° T, = 500
L=120cm

py = 0,25
r 1

min = 60 cm o = 0.20
E;=50GPa 4 26.67x106/k
Ey = 40 GPa a, =6.08 x 10-6/K

(c) Conical frustum — clamped edges.

-6
h=1cm a=1x10""/K
‘\

hy L L=1,0m p=0,3

8 ax10m R = 0,540 m
E = 10 GPa
- T = Ty= 1+ 0.6587 log | L+ S (S/L) |, ooq (5/1)
——-l 1- sin (s/L)

(d) Truncated hemisphere — clamped edges.

a=1.0m @=1x10"3/K
%
@ ‘Lh b=2.0m L:rz-rl
T h=1cm n=0.3
—— E = 100 GPa T,- T, = 2000 (1 + s/L)>

(e) Annular plate — clamped edges.

Figure 2.~ Models used for sample calculations.
All temperatures are in K.
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Meridional resultant, T;/EhaT

b
l

1
1=
I
=

T = Constant

1
w

Circumferential resultant, TZ/EhaT

-1 O Present solution
—— Exact solution (ref, 3)

Dimensionless stress resultants, Tl/EhaT and T2/EhaT

| | | | J

0 .2 4 .6 .8 1.0
s/L

Figure 3.- Stress resultants in cylinder with prescribed midlength
temperature. Both edges clamped; cylinder I.
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IR
Tte

T = Constant

Present solution

Dimensionless circumferential stress resultant, TZ/EhaT

O n=0,1
O n=2
-.2 & n=3
A n=4
Exact solution (appendix C) |
_,3< |
) 1
-4 i I I | J
0 1 .2 3 4 5

s/L

Figure 4.- Circumferential stress resultant in cylinder with heated generator.
Both edges clamped.

51



52

- ‘
P

(53] 0 ‘
\ |
(4]

E

g

I

= “e

~

)]

n

© .4
7] T = Constant

=4 - 4

g 0, deg

by —(O—0

‘g — 45

8 -6 ——90

'©

n

wn

[+)}

=

2

‘g -.8

Q

E

A

-1.0 -
| i ] | | ]
0 1 .2 3 4 5

s/L

Figure 5.- Circumferential stress resultant as a function of circumferential

angle for cylinder heated along a generator,
present method.

Both edges freely supported;
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Figure 6.- Meridional stress resultant in orthotropic 300 conical frustum.

Both edges clamped

—0— Présent solution
~—{J~— SADAOS (ref. 6)
-~~~ SALORS (ref, 5)

| I
.4

.6 8 1.0
s/L

Both edges clamped; T, = 1500 - 1000(s/L) + 500(s/L)2; T; = 500.
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Dimensionless moment resultants

12.5

10.0 |- b

7.5

Meridional resultant,
3
Ml/Eh a (To- Ti)max

@) Present solution
——— Exact solution

5.0

Circumferential resultant,
3
M2/Eh a (To—Ti)max

2.5
a Present solution
——-—= Exact solution
i | |
0 2 4 .6 .8 1.0

s/(b-a)

Figure 8.- Moment resultants in annular plate. Both edges clamped;

To=Tj = 2000(1 + %) B
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Figure 9.- Typical idealization of shell of revolution
showing geometrically exact finite elements.
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Figure 10.- Effect of length on dimensionless axial stress resultant for freely
supported cylinder with heated generator.
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