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PREFACE

This is the final report of the rescarch project "Optimization of Life
Support Systems and Their Systems Reliability (NASA Grant No. NGR 17-001-034)".
The project was initiated on June 1, 1968 and terminated on May 31, 1971.

Since a majority of significant results from the project have beer pub-
lished, no aticmpt is made to give an exhaustive account of the project.
Instead, a brief summary is provided here and readers are referred to copies

of papers and reports which are appended for details.
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The identification, analysis, and optimization of life support systcms
and subsystems have been investigated. For each system or subsystem that
has been considered, the procedurc involves the establishment of a set of
system equations (or mathematical model) based on theory and experimental
evidences; the ar.ulysis and simulation of the model; the optimization of the
operation, control, and reliability; analysis of sensitivity of the system
based on the model; and, if possible, expcrimental verification of the theo-
retical and computational results.

The work so far has evolved into several distinct activities and the
results of these activities have been published extensively. The research
activities include:

(a) modeling of air flow in a confined space - a study in age

distribution,

(b) review of several different gas-liquid contactors utilizing

centrifugal force,

(c) review of carbon dioxide reduction contactors in space vehicles

and other enclosed structures,

(d) application of modern optimal control theory to environmental

control of confined spaces,

(e) optimal control of class‘of nonlinear diffusional distributed

parameter systems,

(f) optimization of system reliability of life support systems and

sub-systems,

(g) modeling, simulation and optimal control of the human thermal

system,

(h) analysis and a{at:lnlution of the water-vapor electrolysis cell.

These \m‘hs m' susmari zed and prosented in this final roport.
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Publication List for NASA Grant No. NGR-17-001-034
OPTIMIZATION OF LIFE SUPPORT SYSTEMS AND
THEIR SYSTEMS RELIABILITY
(June 1, 1968 - May 31, 1971)
(a) Mcdeling of Air Flow in a Confined Space
*1. "Air Flow Models in a Confined Space--A study in Age Distribution,"
by M. S. K. Chen, L. T. Fan, C. L. Hwang, ard E. S. Lee, Interna-
tional Journal of Building Science, vol. 4, pp. 133-144 (1969).
(b) Review of Several Different Gas-Liquid Contactors !Utilizing Centrifugal
Force
*1. "Several Different Gas-Liquid Contactors Utilizing Centrifugal
Force," by T. Takahashi and L. T. Fan, Report No. 10, Institute
for Systems Design and Optimization, Kansas State University,
Manhattan, Kansas (1968).
(c) Review of Carbon Dioxide Reduction Contactors in Space Vehicles and
Other Enclosed Structures
*1. "Carbon Dioxide Reduction Contactors in Space Vehicles and Other
Enclosed Structures,' by T. Takahashi, and L. T. Fan, Report No.
11, Institute for Systems Design and Optimization, Kansas State
Universitv, Manhattan, Kansas (1968).
(d) Application of Modern Optimal Control Theory to Envirommental Control

of Confined Spaces

*1, "Applications of Modern Optimal Control Theory to Environmental
Contro’. of Confined Spaces and Life Support Systems," Part 1.
Modeling and Simulation,' by L. T. Fan, Y. S, liwang, and C. L.
Hwang, International Journal of Building Science, voi. 5, pp. 57-71
(1970).

*2. "Application of Modern Optimal Control Theory to Environmental
Control of Confined Spaces and Life Support Systems, Part 2--
Basic Computational Algorithm of Pontryagin's Maximum Principle
and its Applications," by L. T. Fan, Y. S. Hwang, and C. L. liwang,
Building Science, vol. 5, pp. 81-94 (1970).

*3. "Application of Modern Optimal Control Theory to Environmental
Control of Confined Spaces and Life Support Systems, Part 3.
Optimal Control of Systems in which Stato Variables Have Equality
Constraints at the Final Process Time," by L. T. Fan, Y. S. liwang
and C, L. Hwang, Building Scinece, vol. 5, pp. 125-136 (1970).

*A copy of this paper or report is attached.
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Control of Confined Spaces and Life Support Systems, Part 4.

Control of Systems with Inequality Constraints Imposed on State T e
Variables," by L. T. Fan, Y. S. Hwang and C. L. Hwang, Building

Science, vol. 5, pp. 137-147 (1971).
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b *4. “Application of Modern Optimal Control ‘Theory to Environmental ? t

*5. "Application of Modern Optimal Control Theory to Environmental !
Control of Confined Spaces and Life Support Systems, Part S. 3
Optimality and sensitivity Analysis,'" by L. T. Fan, Y. S. Hwang h
and C. L. Hwang, Building Science, vol. 5, pp. 149-152 (1971).
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*6. '"Application of Modern Optimal Control Theory to Environmental f
Control of Confined Spaces," by L. T. Fan, Y. S. Hwang, and C. L. ¥
liwang, proceedings of the Air Force Office of Scientific Rescarch/ !

Y Lockheed Missiles and Space Company Symposium, ''Thermodynamic and ;

i Thermophysics of Space Flight,' March 23-25, 1970, Palo Alto, ;

Calif. pp. 175-189. s
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? 7. "Optimal Environmental Control of Confined Spaces of Life Support
o Systems with Impulse Heat Disturbance,” by C. L. Hwang, L. T. Fan, :
¢ and M. S. Bhandiwad, submitted for publication, (1970). ? ‘

i,;A‘ 8. "Simultaneous Control of Temperature and Humidity in a Confined
wel Space, Part 1. Mathematical Modeling of the Dynamic Behavior of
" Temperature and Humidity in a Confined Space', by E. Nakanishi,
SO N. C. Pereira, L. T. Fan, and C. L. liwang, paper submitted for

N publication (1971).

9. 'Simultaneous Control of Temperature and Humidity in a Confined
Space, Part 2. Feedback Control Synthesis via Classical Control
Theory'", by E. Nakanishi, N. C. Pereira, L. T. Fan and C. L. liwang,
paper submitted for publication (1971).

10. "Simultaneous Control of Temperature and Humidity in a Confined
Space, Part 3. Feedback Control Synthesis via Optimal Control ;
Theory', by N, C. Pereira, E. Nakanishi, L. T. Fan, and C. L. liwang,
paper submitted for publication (1971).

(e) Optimal Control of Class of Nonlinear Distributed Parameter Systems

*1. "Optimal Startup Control of a Jacketed Tubular Reactor,'" by D. R.
Hahn, L. T. Fan, and C. L. Hwang, 11th Joint Automatic Control
Conference of the American Automatic Control Council, Paper No.
19-A, pp. 451-461 (1970).

*2. "Control! of a Class of Nonlinear Distributed Parameter Systems via
Direct Search on the performance Index," by D. R. llahn, L. T. Fan,
and C. L. livang, presented at IFAC Kyoto Symposium on Systems
Engineering Approach to Computer Control, Kyoto, Japan, August 11-14,
1970, Paper No. 11.4, pp. 170-176.

*3 '"Feedforward-Feedback Control of Distributed Parameter Systems,"
by D. R, llahn, L. T. Fan, and C. L. liwang, International Journal
of Control vol. 13, pp. 363-382.

*4 "Optimal Wall Temperature Control of a Heat Exchanger," by H. S.
Huang, L. T. Fan and C. L. Hwang, Report No. 15, Institute for
Systems Design and Optimization, Kansas State University, Manhattan,
Kansas (196 r
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*5.

"Terminal Control of Linear Distributed Parameter System by Linear
Programming,' by il. S. Huang, L. T. Fan and C. L. Hwang, Report

No. 17, Institute for Systems Design and Optimization, Kansas State
University, Manhattan, Kansas (1969).

"Optimal Startup Control of a Jacketed Tubular Reactor,' by D. R.
Hahn, L. T. Fan and C. L. Hwarg, AIChE Journal (1971, in press).

"Optimal Set-Point Change Control of a Tubular lleat Exchanger,"
by D. R. Hahn, L. T. Fan, and C. L. Hwang, Journal of Institute of
Chinese Chemical Engineevs (1971, in press).

"Optimal Wall Temperature of a Steady Statc Axial Dispersion Tubular
Reactor with a Reversible Reaction,' By D. R. Hahn, L. T. Fan and
C. L. Hwang, British Chemical Engineer (1971, in Press).

(f) Optimization of Systems Reliability

1.

"Ontimization by Integer Programming of Constrained Reliability
Problems with Several Modes of Failure," by F. A, Tillman, IEEE
Transactions on RELIABILITY, R-18, 47-53 (1969). (A69-37069)

"Optimal Reliability of Complex System," by F. A. Tillman, C. L.
Hwang, L. T. Fan and K. C. Lai, Transaction of IEEE on Reliability,
vol. R-19, pp. 95-100 (1970). (R7U-2616]

"Optimization of System Reliability of Life Support Systems by an
Integer Programming," by C. L. hwang, L. T. Fan, S. Kumar, and
F. A. Tillman, AIIE Trans. (1971, in press)

"Optimization of Systems Reliability by the Sequential Unconstrained
Minimization Technique," by C. L. Hwang, K. C. Lai, F. A. Tillman,
and L. T. Fan, submitted for publication, (1970).

(g) Modeling, Simulation and Optimal Control of the Human Thermal System

1.

*2.

*3.

4.

5.

"A Review on Mathematical Models of the Human Thermal System,' by
Engineering, vol. BME-18, pp. 218-234 (1971). (A71-29900

"Steady-State Simulation of the Human Thermal System,"” by L. T.
Fan, F. T. Hsu, and C. L. Hwang, presented at 23rd ACEMB--Washington
Hilton Hotel, Washington, D.C., Nov. 15-19, 1970, Paper No. 6.24.

"Unsteady-State Simulation of the Human Thermal System,' by F. T.
Hsu, L. T. Fan and C. L. Hwang, presented at 23rd ACEMB--Washington
Hilton MYotel, Washington, D.C., Nov. 15-19, 1970, Paper No. 6.25.

"Steady-State Simulations of the Human Thermal System," by F. T.
lisu, L. T. Fan, and C. L. livang, Report No. 23, Institute for
Systems Design and Optimization, Kansrs State University,
Manhattan, Kansas (1970).

"An Integrated Human Thermal System and Its Unsteady-State Simulation,"
by F. T. Hsu, C. L. Hwang, S. A. Konz and L. T. Fan, International
J. of Bio-Medical Engineering (1971, in press).
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: 6. '"Steady-State Optimization of an Integiaced !luman Thermal System", '
% "t by F. T. Hsu, C. L. Hwang, and L. T. Fan, submitted for publication ‘ [

£, (1971). D e
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(h) Analysis and Optimization of the Water-Vapor Flectrolysis Cell 3 i
1. "Weight Optimization of a Water-Vapor Electrolysis Cell", by B. C. Pande, g E
L. T. Fan, L. E. Erickson and C. L. Hwang, (under preparation, 1971). 2 F
;F:¥ 2, 'Modeling of the Absorption Chamber of a Water-Vapor Electrolysis Cecll," % "

A by L. T. Fan, L. E. Erickson, B, C. Pande, L. E. Stamets, and C. L. liwang 4

(under preparation, 1971).

3. Ionic Transport in Water-Vapor Clectrolysis Cell', by L. E. Erickson,
B. C. Pande, L. T. Fan, and C. L. Hwang (under preparation, 1971).

(1) Graduate Students' Thesis and Report
M.S. Thesis and Report

1. "Optimization of Preventative Sampling and Stratified Sampling,"
by T. Janakiraman, M. S. Report (1970).
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2. '"Optimization of System Reliability of Life Support Systems lUsing
an Integer Programming,” by S. Kumar, M. S. Report (1970).

3. "ldentification and Optimization of Management and Environmental
() Systems," by T. W. Choa, M. S. Thesis (1969).

4, "Application of Modern Optimal Control Theory to Environmental
Control of Confined Spaces and Life Support Systems," by Y. S.
Hwang, M. S. Thesis (1970).

5. "Optimization of Complex Systems Reliability in Life Support
Systems by Sequential Unconstrained Minimization Technique,"
by K. C. Lai, M. S. Report (1970).

6. "Application of Modern Control Theory to the Environmental Control
of Confined Spaces,”" by M. A. Bhandiwad, M. S. Report (1970).

7. "Application of the Maximum Principle to the Optimal Control of Lifec
Support Systems, by G. Nadimuthu, M.S. Report (1971).

8. "Optimal Control of Integrated Human Thermal System by Response Surface
Methodology', by H. N. Ozarkar, M.S. Report (1971).

9, '“Analysis and Optimization of the Water-Vapor Eloctrolysis Cell," by
! B. C. Pande, M. S. Thesis (1971).

Ph.D. Thesis

1. "Modeling, Simulation, and Optimal Control of the Human Thermal
('f‘ System," by F. T. Hsu, Ph.D. Thesis (1971).
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Air Flow Models in a Confined Space
A Study in Age Distribution

MICHAEL 8. K. CHEN®*
L. T. FAN*

C. L. HWANG*

E. S. LEE*

It has been shown that a fairly general model for the distribution of air in a
confined space can be established based on the concept of the age distribution.
The use of such a model in design, data correlation. control, and scale-up
problems is discussed and the experimental determination of the model is out-
lined. It is indicated that some of the parameters of the model can be estimated
based on a simple entrainment concept. Results of simulation of the model on
digital computer are presented in detail.

INTRODUCTION

A PROPER air distribution is essential in air heat-
ing, ventilating, and air-conditioning systems. Even
though a system delivers the required quality and
quantity of conditioned air (or oxygen) to a con-
fined space such as a room or a space craft or an
underground shelter, unsatisfactory conditions
result if the air is poorly distributed and improperly
circulated. The mechanism of air flow and distri-
bution in a confined space is very complicated.
Although, theoretically speaking, the Navier-
Stokes equation can be used to represent air flow
and distribution in such a system, it is extremely
difficult, if not impossible, to solve it exactly. Thus,
engineers are often compelied to seek approximate
solutions based on simplified assumptions.

In this paper, the concept of age distribution will
be used to study the air distribution in a confined
space. This concept has been used successfully in
the study of mixing in chemical reactors[4, 5}. A
fairly general flow model which encompasses several
specific flow models based on this concept are
proposed. The use of these models in design, data
correlation, control, and scale-up problems is dis-
cussed. Experimental procedures for verifying the
proposed models and predicting the various para-
meters in the models are also discussed.

The use of the concept of age distribution in the
study of mixing and flow in a confined space is
especially useful for systems such as an under-
ground shelter, a space craft, and a submarine,
where the purity of air is important. Knowing the
age distribution of the contaminated air, the
optimum way to purify this air for undesirable com-
ponents may be determined. Furthermore, the im-
pulse response study discussed in this paper should
be a useful tool for studying the dynamic behavior
of air in a confined space.

Siaw Uniarshy, Masbatin, Baowa, UBA.
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SPACE AIR DISTRIBUTIONS AND AGE
DISTRIBUTIONS IN A ROOM

A qualitative description of various types of space
air distributions is presented in reference[l]. It is
based on the results of performance tests of various
types of the air outlets at the University of Iliinois
[2. 3]. Different space air distributions for the follow-
ing five groups of outlets are discussed in refer-
ence[l].

(1) Group A. Outlets mounted in or near the

ceiling and discharging the air horizontally.

{2) Group B. Outlets mounted in or near the
floor and discharging the air vertically in a
non-spreading jet,

(3) Group C. Outlets mounted in or near the
floor and discharging the air vertically in a
vertical spreading jet,

{4) Group D. Outlets mounted in or near the
floor and discharging the air horizontally,

(5) Group E. Outlets mounted in or near the
ceiling and projecting the primary air vertically.

It has been noted that the space air distributions
also depend on whether the discharging air is used
for heating or cooling. By examining these distri-
butions it has been shown(l] that we can roughly
divide the air space into the following zones.

(1) The primary air zone. This is the part of the
space from the outlet down to where air
velocity becomes anproximately 150 fit/min.

(2) The total air zone. This is the space com-
prising the air discharged from the primary
air zone and the entrained air from the
general room air motion zone (described
below in 4). The air velocity in this 200¢ is
still high as it is influenced by the primary air,
but less than 150 fi/min. The air temperature
is generally within 1°F of the room tem-
perature.
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(3) The stagnant zone (or dead space). This is
the space where the air velocities are usually
low, 15-20 ft/min. It exchanges mass and heat
with other zones mainly by natural con-
vection,

(4) The general room air motion zone. This is the
part of space in which there is a gentle drift
toward the total air zone (i.e. entrainment).
Air motion in this space is attributed to the
recycle stream of total air.

As an example, let us take the space air distribu-
tion of Group A which is shown schematically in
figure 1. The side view is shown in figure 2, where
A denotes the space of volume ¥V, comprised of the
primary air and total air zones and B denotes the

Fresh o . -
outiet a’_’*__’__e__' ~~
i ..
> 3
\ Jome e A A--
// -~ 8 \.4"\
s/
’ ~ o infake
7/ e, -
r'd

Fig. 1. Typical air flow pattern in a room.

space of volume ¥, corresponding to the general
room air motion zone, Below zone B is the stagnant
zone. This picture can be represented by a flow
mode! which {5 schematically shown in figure 3. In
this flow model, v is the volumetric flow-rate of dis-
charged fresh air and intake air under steady-state
condition, Bv is the recycle flow rate and V, is the
volume of the stagnant zone which exchanges mass
and heat with ¥, by natural convective currents.
The dotted arrows between ¥, and ¥, indicate re-
circulation streams between these two zones. To
simplify the discussion, these recirculation streams
will be omitted and ¥, will be taken as zero in the
present treatment.

Each air fluid element upon entering the outlet
of duct (or jet) will spend some time in the room
before leaving. It is obvious that the exit time of one

Fig. 2. Typical air flow pattern in & reom—aide vivw,

v (1eB)v vi (1eB)v
‘ T prem—pe
Bv | |
| i
Vo By
Ve

Fig. 3. The schematic diagram of a flow model.

element is different from that of another not only
because of the circulation of air stream in the room
but because of the internal mixing (due to the tur-
bulence and velocity profile effect, etc.) in each
zone. T' ~refore, there is an exit age distribution in
the leaving air stream. This exit age distribution will
be denoted by E(¢). E(¢)d? represents the fraction of
the fluid elements in the exit stream having spent
the time between ¢ to ¢+ dt in the room, and

IE(:)dt = 1. W

It should be noted that E(¢) is completely deter-
mined by the space air distribution and the mixing
characteristics within the space. On the other hand
if we know E(f) from experimental measurements
(c.g. by tracer techniques to be discussed later), a
flow model characterizing the space air distribution
can be established. Note that there may be several
possible models which may give rise to the same
exit age distribution E(r). However, we can often
choose the best by knowing the geometrical, fluid-
mechanical, and other physical and chemical charac-
teristics of the system.

Intimately related to the exit age distribution,
K1), is the internal age distribution, I(t), which
accounts for the distributions of the ages (the lengths
of time clapsed since the entrance into the room) of
fluid air clements at any moment in the room;
IK(e)dr represents the fraction of air with internal
age between rand 1+ dt. We can see that

3""" -1, @

There is a unique relationship between the two age
distributions E(r)and I(s). It has been shown that(4]
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It has also been shown[4] that the mean exit age
defined by

o

ip = gtE(r)d: %)

is equal to mean holding time 7 for the enclosed
system, i.e.

=1t = ? . 6)
Note that this relationship has been shown to hold
only for the enclosed systems. When movement
into or out of the system can take place in ways
other than by bulk flow (e.g. diffusion boundary),
T #ig.

These two age distributions, namely, the exit age
distribution and the internal age distribution, to-
gether with their derived properties such as vari-
ances and skewness have been used successfully in
characterizing and designing the nonideal flow
system in process industries. It is the purpose of this
paper to explore their applications to the analysis
and design of an air distribution in the enclosed
system.

In the following sections, we shall first derive
some useful representations of age distributions
based on the flow models such as those shown in
figures 1-3. Then the determination or prediction of
the various parameters in the models will be dis-
cussed. Experiments which can be used for this
prediction will also be proposed.

DERIVATION OF EXIT AGE
DISTRISUTIONS

In this section, several basic buiiding blocks of
flow models will be discussed. They will then be
used to obtain age distributions proposed in
figure 2.

As discussed ecarlier, different internal (back)
mixing conditions exist in different zones of the
space air. To characterize such mixing along the
general flow direction, two models, namely, the dis-
persion model and the completely mixed tanks in
series model(S], are often used. The dispersion
model is characterized by a diffusion type equation
which is useful mainly to represent flow closer to
the ideal case of piston flow. The mixed tanks in
series model is often used when flow closer to the
other extreme case of compietely mixed (backmix)
flow (i.e. large mixing effect). The latter model
appears (0 describe more closely the mixing in a
confined space and will be used in this work.

The completely stirred 1ank model (CSTM)

This is shown in figure 4. It assumes that each
fluid element in the system has equal probability to

leave the system no maiter how long it has stayed
in the system. Define
idt = the probability of a fluid element leaving
the system during the time interval
(1, t4dt) where 4 is a constant, which is
independent of time ¢,
P(1) = the probability of a fluid element to be
found in the system at time 1.

o

Fig. 4. A completely stirred tank model (CSTM).

Then the probability of a fluid element to be found
in the system at time ¢+ d/ is equal to the probability
of the fluid element found in the system at time ¢
multiplied by the probability of staying in the system
during the interval (¢, £+ dr), i.e.

P(t+drt) = (1~idr) P(1) U]
or
P(t+dn-P(1)
= = —APO). @®)
Equation (8) reduces to
dP(1)
= " - AP(). )
The initial condition is clearly
PO) = 1. 10)
The solution of equations (9) and (10) is obtained as
P(t) = e~ ¥, (1

Let 7 be the random variable representing the exit
age of each fluid clement. Then the probability of
T < tisequal to the probability of the fluid element
has left the system at time ¢. This implies, from
equation (11), that

Prob(T <) = 1~¢™¥, 12

This equation holds for each fluid element at the
exit of the system. Since the probability of the occur-
rence of a certain event is interpreted as the relative
frequency of the occurrence of that event, the
probability of T < ¢ is simply the fraction of fluid
elements at the exit with age from 0 to ;. Equation
(12), therefore, can be writtcn as

{E(t)dt = j-e~¥, (13)

" b o+
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Differentiating equation (13) yields To obtair: the exit age distribution for this model.

E(t) = se~"". (14) let usc!cﬁne the random'lime T.i=1.2.. oo be

) the exit age of each fluid element at tank /. i = 1.

From equations (5). (6). and (14). we can show that 2..... n. Each of this exit random time through

Gmem=— =, (15)

Therefore. the exit age distribution becoines
1 .
E(t) = i-e"". (16)

It can be shown through equation (3) that /(r) has
the same distribution as E(r). E(1) or I(1) is plotted
in figure 5. This distribution function is often called
a decay function and is used in designing a ventila-
tion system[6). .

!
T

E(1) or KD

Fig. S. Age distributions of a CSTM.

The Laplace transform of equation (1) gives the
first order transfer function.

1

E(s) = Brl’ 17
which has been used as the transfer function in con-
nection with the automatic control of room tem-
perature[7), where the time constant is simply the
mear, holding time . In actual space air distribution
such as the one shown in figure 1, the transfer
function is not of the first order and the major time
constart would be quite different from 7.

The n-CSTM in series model

In case the mixing is less complete than the one
CSTM, we can use the -CSTM in series model with
the fixed total volume to characterize the system as
shuwn in figure 6. Volumes may be different or
simply equal from tank to tank depending on how
the mode of mixing changes along the flow. For
simplicity we assume that the volumes of tanks are
equal in this work. Then the number of tanks used
represents the degree of mixing in the flow system.

AL AL

1 2 "
Fig. 6. The nCSTM in sovies model.

each tank is independently and identically dis-
tributed as given by equation (16). i.e..

E(n) = i—le"i‘. i=i.2 .00 (18)

i
where

Pp= . i=1.2....0. (19
n

Combining equations (18) and (19) gives

E‘(r)=';'e*""'. i=1.2... .n  (20)

The overali exit age distribution can be derived as
follows:

the total exit random time T'is
T=T,4+T+ ... +T, 1)
The characteristic function of 7; and that of T are
defined respectively as
Yrfu) = § e L{nde

= E[e"T) 22)
and
Welw) = | e E()dr = E[e")
where the second E in each equation above is the

expectation operator.

From equations (20) and (22), it can be shown
that18)

Yo = [L=iim)™",  i=12....n
23
and Yp(u) = E[c"T)
= E[eu('r. L PR N +T..)]
= E[e""'] E[c"™]... Ele""]
=Y, ) ¥r, ). .. ¥ ()

since the expectation of the product of mutually
independent variables, ¢/'7:. ¢T3, ¢*Ts, ., o/*Tn,
is equal to the product of their expectations,

ﬂcur.l' E[e"") cees E[e"")

or
Vr(v) = W7 W) (24)

Subetituting equation (23) into equation (24) yields
$rw) = (1= itim)]™" %)
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The density function of ¥, {u) is well known(8)] and
is given by

i (i
oo = (:) (-0’ 26

This is the desired exit age distribution of the

n-CSTM in series model. It is more convenient to
express it in dimensionless form by noting that

| = iE(:)d: = I FE(/T) /i) = i iE(/))d0

- i E040

where

e !

E@)=iEq)=n"¢c - @n
Equation (27) ’s plotted for various valucs of n in
figure 7. For n = 1, equation (26) reduces to
equation (16) of the one CSTM model. As we can
see from figure 7, as n increases, the peak increases

)
'
\
(k-

8 10

- o
od
°
0
0o 02 04 06 O8 10 12 14

8
Fig. 1. mmm&m“oﬂhn-(‘ﬂﬂl
in series

and this peak shifts to the right asymtotically to
@ = 1. This can be shown by differentiating equa-
tion (26) and then setting the results equal to zero.
This gives

n—-1
- — @8)

or

The above infoimation is useful in evaluating the

values of the varameters and will be discussed later.
It can be shown that(5)
mean: § = 1 30)
1
variaoce: 02 = o 31)

*E{.| M) dnmll the conditional m of
ap [Ty 4+ T+ .. +Tnu-|n““ oquals to any
m«ms.(}m m of random

(.

-y @

Equation (31) indicates the significance of para-
meter n in charactaiizing the degree of mixing for
the system. If we substitute s for (—iu) in equation
(25). we obtain the transfer function for the
n-CSTM system
. 1
Es) s+ 1P 32)
Now, if we make use of this model to charac-
terize the mixing both in zone A and zone B in the
space air distribution describe? in the preceding
section (see figures 1, 2, and 3), we can obtain the
age distribution for the whole system. Let T be the
random exit uge of each fluid clement of the system.
Then

T= T|+Tz+-'.+Tz~,, (33)

where M is a random number representing the re-
cycle passes with probability density function pg™.
When M =m,andm = |, 2, .. , q is the probabil-
ity of recycle for each pass and is equal to
Be/(1+ e = B/(1+B); while p is the probability
of leavingand isequal to 1 —¢ = 1/(1 + f). pg™is the
probability of cach fluid clement having m recycles
before leaving the system so that T, i =1, 3,

. » 2M + 1 is the time each element has to spend
throughzone A and T;. i =2, 4,..., 2M is the
time through zone B. By using the method of the
characteristic function(8), we obtain

Vi w) = E{¢’ T+t ..
= E"{ﬂei-ﬂmrﬂ...i»r,.“)' M)}
::E“{(Elc'-l")MQI (E{ehfl])n}

A

=3 (l-m i‘)-.‘(-”)(l—iunl:)‘"'pq'

n,

+Tznu)}

- P —iulin])""4
L —(b =it /n ) (1 = infig/ngD) "

or
Viy) =
(1—iu[t/nJ) "
(L+5)~ Pl — inlty/n gD ™41 ~ iufty/ng]) ~"=
. (34)
where
L7
o=

w,!ml",‘&f‘* ot 1 R

&
%
3
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and n, and n, are the values of the parameters of
the models representing zones A and B respectively.
The transfer function of it can be obtained by sub-
stituting s for (— iu) in equation (34).

(1 +s[io/n 7"

(+B =Bt +slEafn )" (1 +slialngh) ="
(335)

E(s) =

The inverse transform or exit age distribution of
equation (35) in general has no analytic expression,
but we can often simulate it on an analog or a
digital computer if we know the values of para-
meters B, n,, n,, i, and iy A typical exit age dis-
tribution E(¢) for the proposed flow model is shown
in figure 8.

SIMULATION

1t is often more convenient to write equation (35)
in the dimensionless form

E(s) =
(1+510/n )"

(148)=B(1 +5'[0,/n ) 7" (1 +5'([Op/ns) ™™
(36)

where
s’ = si
0‘ = l‘ll
0. = i./l.
Note that these five parameters 8, n,, ny, 0, and 0,

are not all independent. They must satisfy the
equations

V= VA+ V.
4

{=~

v

Va Vo
v /]

= —-’—,‘-‘—-(l+ll)+!-'! B

(1+pw Bv’
= (1+f)t,+Bl,

. or

1 = (14 5)0,+50,. 37

Besides, since B, 0, and 0, are non-negative quan-
tities, the following two natural constraints exist.

0s(1+p0,s1 (38)
0586, 81. (39)

In the simulation of equation (36), the constraint
as given by equations (37), (38), and (39) must be
taken into consideration. Several specific examples
are presented below.

Casel. ng=p=0
Equation (36) reduces to

E(s) = (1 s "4) 40)

4

and its inverse transform is equation (27) and is
shown in figure 7.

Case2. ng=ng=1
Equation (36) reduces to
1+8,s
(14-5)0,0552 +(1 + X0, +65)s' +1

and the inverse can be obtained analytically as

E(s) = @1)

ca-b _, da—be_*

E@®) = ¢ e 42
where
a= !
(1+p)9,
1

b= vh0,0

c= 04+ 0p)+v {(94+9n)2-40.4r9./(l+ﬂ)}
20,0,

d= (0,4+05)=1/{(0,+05)* —40,,0,/(1 + )}
20,0, ’

Figures 9 and 10 show the simulated results for
case 2 with § and 0, as parameters.

Case3. n,=2,ny = 1.

The inverse transform for this case can also '«
obtained analytically. The expression can be found
in any Laplace transform table. Figures 11 and 12
show dimensionless aged distributions for § = 0-1
and 1 with 0, as the parameter. It should be ob-
served from these curves that peaks exist and shift

emf R S

Fip. 8, Exit age distribution of the proposed model,
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away from the ordinate as 0, increases. These o2 g el
indicate quite different characteristics from the I; » '
preceding two cases where all curves exhibit a B.1-28
similar exponential type of decay as 0 increases. ° :
20 Porometer 8,
A 8,2005
1ol n.xn. ! 8 §,:0125
J c 6,=025%
. 213 o 6,=0375
8= ¥
14 ! : '
10 19 20
12} Parometer 3 9
- B:o! Fig. 12. Dimensionless exit age distribution for ny = 2,
® | B:0S5 —— ng =1, B=1, 0 = 1=20, with 0, as the parameter.
w B: 10 — —
08 p:,o 0o---
B500—~ — Cased. n,=ng =2

oe} -

oaf -

o2 -

Ry

) ns ic 15 2 2¢

Fig. 9. Dimensionless exit age distribution forn,=ns =1,
0. = 1/2(1+ B), 05 = 1/2B with B as parameter.

! n, *ng !
B=i
{ 93 "I-ZG;

J Pgrometer

\ g, 10005 ——
| g, 10025 ——
8, 005 ——

84 2025 —-—

o 0% 0 75 20 25

Fig. 10. Dimensionless exit age distribution for
n‘-n,-l, ’-l, 0.-1-204 wll’k&asthe

parameter.
30 ns2, Mol
23 B <01
8 *1001-118,)
2
§ '8 Porometer .‘
w
A 8, 0227

8 §, *04as
- ¢ € 8, 0682

TR 0 \

0O 02 04 06 O8 10 12 4 16 18 20

&.ll.Waﬂmmuhm-l
=l f=01 Oy = 10(1=~1 16 with 0, as the
parameter. -

Figure 13 shows the age distribution with § as
parameter. It can be seen that as B increases, the
peak not only shifts toward the origin, but the
second peak starts to take shape. It can be shown
that such a phenomenon of the existence of two
peaks in the age distribution can occur only when
both n, and n, are greater than 2.

30

25

20

0s

- i ;
o 02 04 06 08 10 12 1|4 16 18 20

8
Fig. 13. Dimensionless exit age distribution  for
Memngm2 0= 114+ On = H1/B) with B as
parameter.

If n, and n, go beyond 2, it will be extremely
difficult to obtain analytically the inverse transform
of equation (36).

A numerical solution with the aid of a digital
computer to simulate the flow model for (n +n9)
up to 36 will be discussed. Equation (36) can be
r.duced to the form

A B+
EG) = T i Arsy - (Brs)y —pa~B"
_ A By
1+ H&)

“43)

o R L
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Read and write

nA Ngy Nyy Ugy Ty,
where A= 7.
4 Compute | K
n A B, Nl ﬂ.! ,
B=—B ‘ -

o,.
Since the denominator H(s’) is a polynomial of s’
with order (n, + ng), H(s') can be represented by
H(s) = (8"~r)s'=r) .. . (s =1, 14,) (44)
where ry, 7y, ..., 1, 4, ar€ its roots (complex in

general). If these roots are all separated, the inverse
transform of each root will be

A (Br)

!
1
i
3

(0) = s
YO =178 “o-n)
Jei
i=1,2,...,(n+ny). (€3] i
Furthermore, for a complex root r;, y{6) can be }
written as .
A" (B4r)"?
yio) = 1+8 (n (r,‘—r,) "
o1 (fog}

{cos RI,B+jsin RI0) (46)
where RR; and RI, are the real part and the

i

i i i POLYRT is on IBM's subroutine for calculating the
imaginary part of the complex root r, respectively. @ ool ::nud ‘ :o ; or'o: ol
The exist age distribution is then Fig. 14. Computer flowchart of obtaining exit age dis-
Ratng tribution E(6).
E@)=y0) = 3} y(0). @n
=
A computer flow chart for simulating the pro- D Ee — Deter e
posed flow model is shown in figures 14, 15, and 16. Jsjsld

E(6) for the case n, = 10 and ny = §, is shown in

figure 17, F——]

ﬁ“‘
TRACER EXPERIMENTS, IMPULSE b
RESPONSE, AND THE DETERMINATION jeu
OF MODEL PARAMETERS !
Compute

Tracer experiments

A small quantity of a gaseous tracer such as H,,
CO; or Freon-12 can be injected impulsively at the
inlet stream and the exit concentration of the tracer
is monitored and recorded continuously at the air
exit. This impulse response corresponds to the exit
age distribution. The following factors can be
systematically varied and parametrically studied.

(a) Air (or gas) flow rate v through the system,
(b) Size and shape (circular or slot etc.) of the

€, =C,+ () o (™ F

nozzle or air jet,
(c) Relative position of air discharge and intake
of the system, F=ir
(d) Internal pressure and temperature at various "; :
positions inside the system, k

(¢) Volume and dimensions of the system.
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At the initial stage of the investigation each para- Determination of model parameters from response )
meter should be observed independently by curres
changing only one parameter at a time. However, There are five apparent parameters of the model i
effects of interactions among the various para- described by egquation (35) in the preceding section; P
meters on the exit age disiribution must then be the recycle constant f, the mean residence times a'
studied to find the scale-up factors. f and #,, and the mixing indices n, and ng. These #
o parameters can be determined from tracer responses I
i to impulse inputs such as the one shown in figure 8. 3
It is seen that the time ¢, between two peaks or two %
v valleys would be the mean recirculation time of 2
each fluid element such that 3
For computing total volume | 4 %
. 1, = =—. (@8) ]
; P'E(;I‘“’ “" internal flow rate  fiv 3
Note that the internal flow rate through zone A4 is {
(14 B which is different from the internal flow f
Y rate through zone B, fiv. Since f is in general much ;
H greater than 1, the overall internal flow rate is taken .
: N P for simplicity.
= . It was found{9} t‘hat in a cylindrical vessFl having i
Q=CMPLX (A%.0 ) jet nozz?es at the inlet and outlet respectively and
ge-gmxng <1)3.)0) filled with water, when the response curves were
CE =CMPLX(E XPIRI, 1,0,) plotted in the dimensionless form, E(6) vs. 0
CF =CMPLX(cos(Rl, 1), 3R, 1) (or #/f), they were remarkably similar to each other
! with various flow rates for a given nozzle size.
Ent_ ~———{yt)=g @F‘ﬁf CE CF These results indicate that for a g_iven nozzle dia-
- ' meter, a flow pattern is established, which is

Fig. 16. Computer flowchart of computing the inverse essentially independent of flow rates. Hence it also

transform of each complex root. implies that within the experimental range, the
360
8:0180
340t £(9)23 2939
320
300 o 10
¢80 mn S
269 —— — —={6,:0500
240 8,+0500
18:0500
2208
P " 10
g 200 80450 o4
5 80 ()] ;I.?.’:GO Ja,.5200
v w 160} - / \ 0° 0 600
140} - / \ .ﬁ' .000
120 / \
. 100} - \
80f - \ 8:0980
6ol 0 \ £6):01192¢
- =0.460 8:0.900 A
. <7 89430
- “”"\’-""" \ R o
20 7 N\ , .
\ ' R ~. _;‘ - , S ﬁ
o 0! 02 25 i0 15 20
(']

Fig. 11, Dimensioniess exis age distrilusion for ny = 10, ny = §,
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dimensionless circulation time 0, = /i is in-
dependent of flow rate and is only a function of
nozzle size. It would be very important to see if the
same property holds for the air flow system. We
can test this b plotting 1, vs. |/ for various nozzle
diameters as shown in figure 18. If it turns out to be

Nozzle diameter d,<d, <d;

ds
d2

|
v

Fig. 18. Circulation time versus inverse af now rate for
various nozzle size.

a straight line for a given nozzle size, then 0, = 1./
is independent of flow rate ¢. It follows from equa-
tion (36) that

8. =

~la

|
5 (49)
Equation (37) is essentially saying that the recycle
constant § can be found from the dimensionless
circulation time 6, and is a function of the nozzle
size only. This then establishes the method for the
determination of the first parameter B, the recycle
consiant.

On the other hand, a good prediction of the
recycle constant § is possible on the basis of a
simple entrainment concept. It has been assumed
that the recirculation flow in the room is entirely
promoted by entrainment in the inlet jet.

Equations for the entrainment of circular jets and
of jets from long siots have been mathematically
presented in ref.[1]. They are
pv  entrained flow 2 X
B =

v initial flow K'v/ Ay
(circular jets)  (50)

Bv - entrained flow - 2 X

B = = iuitial flow \/ (x)\/ (H )
(longslots)  (51)

where

X = distance from faceof outlet, =

A, = effective area of the stream at discharge
from an open end duct or at a contracted
section,

width of slot,
proportional constant, approximately 7.

H,
K/

For a given vessel the entrainment distance can
roughly be assumed constant. Equations (38) and
(39) require that 8 is inversely proportional to the
nozzle size. Experimental values of 1/f. found from
the dimensionless circulation time can be plotted
against nozzile diameter d as shown in figure 19.

-

1/B or 8,

d

Fig. 19. Injluence of nozzle diameter on recycle constant.

A circular jet has been assumed. If it turns out to be
a straight line, it will justify partially the use of the
proposed model. Also from the slope of the line,
one can estimate the actual distance the fluid
clements travel.

Once we have determined the recycle constant §,
the other four parameters can be determined as
follows.

The height and the time ¢, of the first peak in
the response curve are completely determined by
the flow condition through zone 4. Equation (29)
can be written in the dimensionless form as

O = ("" ' ) %, (52)

ny
where
? 1,

- — GA-.'

oﬂll ’ ’ ¢

Equation (26) can also be written in a dimensionless
form for zone 4 as

nd\"!
n,\ B,

Ef0) = 1E() = bin-1) !e°"'4"'-0

3

For a given 0,,,, and height of the firs\ peak we can
determine 8, and n, uniquely by a trial-and-error

procedure,
§ T,

%
%
|
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Having established 8 ,, 0, is readily found sinc ~
()(, = 0A+05' (54)

Note that 0; is uniquely determined from 0, and
0,. and 0, is determined from equation (49). We
may reduce the number of parameters from five to

error until the simulated response of equation (35)

0.. The mean residence times 0, and 0, of zone A
and zone B respectively account for the mean time
each fluid element must spend in zone 4 and zone B
of the system. The mixing indices n, and ng are
useful in understanding the mixing characteristics
in both zones. These informations are directly help-

For the ventilation problem in a room equation

(35) is a more realistic model than the decay func-
tion[6]. The same equation with some modification t

matches the experimental one.

DISCUSSION the location of temperature measuring element) can “

be used in the closed loop automatic control system f
of room temperature,

The model p-oposed in this paper is only one of 3
the many applications of flow models based on the _ 4
concept of age distributions. The same approach

%
P
§ four. ful in the design, data correlation, and scale-up K
' The last parameter 1, can be found by trial-and- of the system represented by the model. :
. (with enthalpy balance including heat source and

A flow model with four parameters is proposed to
describe a typical space air distribution in a room.
It is indicatcd that the exit age distributicn E(r) or
E(0) can be determined by using a impulse tracer

A at

¥ : experiment and various parameters of the model. ir. can be intelligently employed for the study of other : ;
:f | turn, can be determined from E(t).‘ It is also show‘n types of space air distributions.

. that the model can be partially justified on the basis ]
SR . of a simple entrainment theory of air jets. '
;‘ - o N This model is believed to be useful because the Acknowledgements—This work was supported in part by

model paraineters are closely related to physical
RO quantities of the system. The recycle constant f# is
i the reciprocal of the dimensionless circulation time
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Es ist gezeigt worden, dass ein ziemlich aligemeines Modell fiir die Lufiverteilung in
cinem begrenzten Raum auf Grund der Auffassung ilber Altersverteilung festgelegt
werden kann, Die Verwendung eines solchen Modells In Entwurfs-, Datenwechsel-
bezichungen-, Kontroll- und Bemessungs-problemen wird besprochen und die experi-
mentale Festlegung eines solchen Modells wird umrissen. Es wird darauf hingewiesen,
dass cinige Parameter des Modells auf Grund einer einfachen Strdmungsauffassung
geschiitzt werden kdnnen. Simulationsergebnisses des Modells aufDigitalrechnern
werden in Einzelheiten dargelegt.

Il a été démontré qu'un modéle assez général de distribution d'air dans un espace
restreint peut &tre établi sur la base du concept de la distribution d’age. L'utilisation
d’un tel moddle en fonction de la conception, de la corrélation des données, du
contrdle et des de la mise & P'échelle est discutée et la détermination ex-
périmentale du modéle est tracée. Il est indiqué que certaing paramétres de modéle
peuvent &tre estimés sur la base d'une conception d’enchalnement simple. Les résultats
de simulation du modéle sur un ordinateur numérigue sont donnés en déta.l.
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Varlous types of contactors utilizing centrifugal force (centri-
fugal contactors) have been used commercially especially in the chem~
ical industry for production of petro chemicals, organics, and pharama-
centicals, for refining petroleum, and for other purposes. The centrifugal
contactors have been known to have characteristics of high efficiency, large

gas and liquid through-put, small liquid holdup, and short contact 5

time,

Cen:rifugal contactors can be classified according to methods

of utilizing the centrifugal force as follows (1):

i) Tray type. In this type of contactor, kinetic energy of the gas
from the lower tray is used to impart centrifugal motion to the liquid
on the upper tray.
11) Mechanically agitated type. In this type of contactor, gas or
liquid in the contactor is mechanically agitated to increase inter-
facial area by atomizing dispersion of fluid, and to reduce resistance
for mass transfer at the interface by disturbance induced in both
fluid phases. The column or tank with an agitator, and the apparatus
with a rotating part have been invented for this puwrpose.
1{1) Rotating type. This type of contactor consists of multistage
concentric cylinders fixed to a ‘rotating shaft. The gas and liquid
in the contactor are brought into contact cocurrently or cross cur-
rently.

8ince it 1a difficult to give a detailed description of all types
of contactors utilizing centrifugal force, emphasis will be placed
on the description of the fluid dyninicul asad mass transfer aspacts

of mevoral specific types such as the yotational current tray,
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the rotating concentric column, Plazza type contactor, Podobieliniak

contactor, and ceutrifugal contactor of the rotating type, investigated by

[ '
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the first author. These contactors are currently employed for industrial
|

—

distillation, absorption, and humidification. It is expected that the 4 g
centrifugal contactor of the rotating type which consists of all rotating
parts will be applied in the near future to the life support of men in

space crafts, air planes, submarines and civil defense shelters, and to

prevention of air pollution because of its compactness and other advantages. |

T sy

It also appears that it can be used as a blood oxygenator.
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:ia 1. Tray types

o

L Various tray type systems in which mass transfer operations sre carried
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‘:) out have been developed and employed industrially. In a plate column, when

T

the gravitational force is the only force affecting phase separation, the

vapor veiocity and resulting liquid eutrainment in the column may set the
maximum allowable vapor velocity and liquid velocity. However, if the centri-
fugal force is used to separate the entrainment, the capacity of such a tray
may be increased.

In the system constructed by Manning (2), the column wall is used as
the outer cylirder of a cyclone, and the contacting of gas and liquid takes

place on a small perforated tray section which receives liquid from the tray

above and vapor frrm the tray below. The two-phase mixture is discharged

| .
tangontially into the settling zone. The liquid is forced outward against the
colunn wall by centrifugal force and flowclinto the downcomer leading to the

~ uext lower tray. The vapor enters the tray above through a conduit located

’ {awardly from the column shell. It has been reported that the through=-put

of this tray ie larger than those of many other trays (2).
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In contrast to Manning's tray, the Kittel tray (3) and the
rotaticna! current tray (4,5) are designed so that the flow of the
ascewnding gas or vapor is directed almost hofizontally across the
tray rurface through the openings.

The Kittel tray consists of a pair of upper and lower grids,
and cach ¢ae is (divided into six equal basic parts. The openings
in the tray are in the shape of slots inclined at an angle to the
horizontal plane of the grids. Thus some of the energy associated
with the gas pressure drop is utilized to give centrifugal and cen-
tripetal wotion to the liquid on the tray. That is, on the upper
grid this notion is towards the wall of the column anu on the lower
grid tewards thie center. Because of the absence of.the overflow
weir ard downcomer area, the free cross-sectional area of the

Kitt.l tray 1is more than that of the sieve tray. Detailed

reviwe of this tray has heen reported (3).

In the following paragraphs, emphasis will be placed on the
description of the performance of the rotational current tray. The
structure of the tray is shown in Figure 1. The shape of holes in the
tray Is a half ellipse, and it has a guide inclined at an angle to
the surfnce\of the tray. As shown in the figure there are two types
of thc rotational current tray, the upper guide tray (U.G.T.) and the
¢owa pufde tray (D.G.T.). The liquid on the tray is carried along by
st and §s brought into intimate contact with the gas. For this reason,
the tray haz nany advantages in comparison with other trays.

In ¥ivures 2 and 3, the pressure drop of gas flow through a tray

it d the liquid holdup on a tray of this type are compared with some
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trays of the counter current type without douncomer (4). It can S
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be concluded that the pressure drop through the D.G.T, is smaller

o Bty

than those through other trays. It is, therefore, expected that

a larger volume of gas can be treated with this type of tray than ¢

S

with other trays. Furthermore, it is interesting to note that

the behavior of the tray is similar to that of the Ripple tray, as

S« WA

L AN

shown in Figure 2. From Figure 3, it is also evident that the liquid

holdup on the D.G.T. is smaller than those of other types. This is

probably due to the fact that the falling of 1liquid through the tray

L

Is made easy by the down guide.

The residence time of liquid on the tray was measured exper- 3

imentally, and the desorption experiments were carried out by using

TP TR SRR WY Swh e e et
& T
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" the water-oxygen-air system to determine the liquid phase resistance to
the mass transfer (5). The gas absorption experiments were carried oit

by using the water-ammonia-air system to determine the gas phase reisitance
to the mass transfer (5). The results of these experiments have indicated
that the gas flow rate and the residence time of liquid on the tray control
strongly the plate efficiency. The Murphree plate efficiency of this CE
tray for gas absorption based on the liquid phase is compared with G
those of other types of trays as shown in Figure 4. It can be concluded that
the rotational current tray can be opersted at high efficiency up to
large gas flow rate, .

The tray type centrifugal contactors are used for gas cleaning

andd dust eollection in atir pollution control. One particular tray,

y ‘ the Rettel tray, has boen extensively used for air pollution control

fn Europe,

arve
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2., Mechanically agitated types

The rotating ccne column (6, 7), the rotating basket column, the
rotating flat plate column, and the spinning band column (8, 9, 10)
beleriz to this class of distillation columns, each containing & rotating
agitator which disturbs both the gas and liquid phases. The small

laboratory scale columns of these types perform excellently and are effe: ‘ive

R LY I,

for the separation of components from a mixture with a narrow boiling

s L

temperature range, for instance, the separation of isotopes (6), The mech~
anism of flow of both gas and liquid in these systems is not yet well known
and the prediction of the capacity in these systems can not be made accurately.
Therefore, it is difficult to design a commercizl tower of this type.

The rotating concentric tube distilling column (11) is similar to
the rotating cone column, the rotating basket columi, the rotating tlat plate

column, and the spinning band column. The column has the characteristics

of the small 1iquid holdup and the low pressure drop which is asimilar to
that of the wetted wall column, and of the high flow rate. The liquid
contacts with the vapor in the narrow annular space between the stationary
outer cylinder and the rotating inner cylinder. The mass transfer

coefficient increases as the speed of the rotor becomes greater because

the flow of vapor is disturbed by the rotation of the inncr cylinde:. This
can be seen from the results of the investigation by Taylor (12) and

Lewis (13), who studied theoretically and experimentally the mecinanism of
fluid flow in an annular space becween the xotating double cylinder. 1t has

becn theoretically determined that the efficiency of distillation increascs

with the increasc in the degrec of turbulence {n the vapor phase and with the
decrease in the annular space and in the fiow rate through the anaular space

e (J4). Tits fact has aleo been confirmed cxperimentally (15, 16, 17, 18).
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Willingham and coworkers (11) carried out experiments in a column
with a diameter of 9.62 cm and a height of 58.4 cm. The column was

provided with a rctor with a diameter >f 7.44 cm which was operated at

spends in the range of 0 ~ 4,000 R.P.M. The feed in liquid form was

naintainad in the range of 600 ~ 4,700 Cm3/ht. The pressure drop was lower
than those of similar type columns described previously and it increased
vith the revolution speed of the totér and with the flow rate of liquid,
as shown in Figure 5.

If it is assumed that the surface of rotating cylinder is not wetted
and that the rate of reflux which flows down alon% the inner wall of a
stationary cylinder {s independent of the rotation of the cylinder, the

+:quid holdup can be calculated by the following equation (19).

3o uy 1/3
) (1)

w =

where w is the thickness of liquid film, Q is the volume flow rate per wetted

perimeter, My and p, are the viscosity and density of liquid respectively,
and g 4s the acceleration of gravity.

The values of holdup calculated from equation (1) for the rotating con-

centric tube distilling column are shown in Table 1. The number of theorctical

plates decreases with the increase in {low rate and increases with the speecd
of revolution, which is illustrated in Figure 6. A high efficiency is obtained
above the speed of about 2,300 R.P.H.; as shown in Figure 7. The reason nay

be due té6 the fact that the vapor phase becomes highly disturbed above this

critical veloeity.
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In a plate column, the gas bubbles are passed into a liquid holdup

through the submerged openings in the tray to increase the contacting arca

of the gas and liquid. The amount of agitation that can be obtained in

this way is limited essentially by the rate of gas flow.
The tank with an agitator is a more efficient device than the plate

column for agitaticn of the liquid on the tray regardless of the gas throuph-

put. The tank, therefore, may have to be used for the agitation of viscous

liquids or slurries. Since the agitdtion also increases the residence time

of the bubbles in the liquid, the tank may be an efficient device

where absorption is accompanied by a chemical reaction especially a slow

reaction (20),.
It has also been reported that a horizontal cylinder with an agitator

can be used for the absorption operation (21). The agitator consists of several

discs fixed to a rotary shaft placed in the center of a horizontal cylinder.

The structure of the disc is shown in Figure 8. The liquid fed near the end

of the cylinder flows through the discs in the form of sprays, shects, and
droplets by centrifugal action. The gas is sent through the cylinder co-
currently or countercurrently to the liquid. According to the studies by

Ganz and coworkers (22), this absorber is highly efficient, but its performance

and efficiency for industrial scale operation are unknown.

These systems with agitators have been reported in detail (23, 24).

3. Rotating types

Recently centrifugal contactors consisting of all rotating parts have

been developed for mass transfer operations. Many of these contactors have

bevn described in detail (21).
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The Podobielniak centrifugal rectifier used in the distillation
operation belongs to this class of contactors (25). The main part of the
rectifier ig a rotating drum made of a spiral metal sheet. The liquid
fed near the center flows in radial direction by the centrifugal action
as a thin film along the metal sheet. The apparatus can be operated at a
relatively large flow rate without any entrainment which decreases the

distillation efficiency. It has been reported (26) that when a small apparatus

‘with a rotating drum made of a metal Etrip, 1/4 inch in width, 100 feet in

length, and 1/8 inch for distance between coil of spiral, is run at a speed
of 1,200 R.P.M., the approximate feed rate is 12 liter/hr, the liquid
holdup is 30 liter/hr, the pressure drop ranges from 10 to 20 mm lig, and

its efficiency corresponds to that of a 80 plate column.

The rotary surface vapor compression still whoce main part consists of
the conical disc was fabricated in 1952 by Hickman (27). This apparatus has
been further developed for application to sea water distillation (27). The
schematic diagram of the apparatus is s own in Figure 9. Feed water is
supplied to the inside surface of the rotor and vapor 1s condensed on the out-
side surface,  The industrial scale rotary surface vapor compression gtills have beet
in operation for several years. To be able to design this system 1nte1113eﬁt1y,
however, the mechanism of the evaporation and condensation oa a rotating heat

transfer surface must be kncwn.

The penetration theory (28) and the surface renewal theory

(29) predict that the absorption rate on the renewed surface of liquid is
excellent. These theories may be employed generally for the design of con-
tactors by utillzing the centrifugal action, Por example, these theorics can
be applied to the Plaxza types centrifugal absorber, As shown in Figure 10,

the absorber consists of several concentric cylinders fixed to a rctating shafe
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! .coral stationary cylinders. The liquid fed near the center flows

1. periphery of a rotary cylinder by centrifugal action as sprays,
.t;, and droplets, and then collides with tﬁe wall of a stationary

After the impact one part of the flow backmixes with the sprays

Puder,

t.:c other part flows down along the cylinder wall.

On the other hand, one of the authors and his coworkers (30) have

de:iyned a centrifugal contactor of the rotating type whose main part con-

sists of multistage concentric perforated cylinders. The schematic diagram

of the contactor is shown in Figure 11. The liquid fed near the center of

the cylinder is spouted from a small hole drilled through the rotating
cvlinder wall, and gas is sent cross currently to the liquid in an annular
space between the rotating cylinders,

To understand the fluid dynamic and mass transfer aspects of these
rotating type contactors, investigations on the gas absorpt;on by the short

liquid jets (31) and the droplets issued from a capillary (32) in the

pravitational field have been carried out. Furthermore, the fluid flow and

rass transfer in the centrifugal field have also been investipgated (33, 34, .

35, 36, 37).

The distribution of droplets which are broken off from the ligquid jet

issued from a rotating cylinder and a spinning cup has been studied by Walton

and Prewett (39), Adler and Marshall (40), and Hinze and Milborn (41). The'
photographic observation of the flow pattern of liquid jets injected from a
rctating cone cup has indicated that the liquid from such a cup forms a sheot

or film, at the periphery of which the liquid jets are formed and break into
croplets. Furthermore,tainze and coworkers (41) have investigated experimentally

ti: effects of the speed of rotor, the flow rate of liqu’d,and the aogular

3 R o e ¥ 3,
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vi Tacity of the cup on the flow mechanism. Figure 12 shows the distribution

of tle drop diametes as a function of the rotating velocity. These

i R T eI

cxpe slwental results were obtained with a cup having a diameter of 10 cm
operated at the liquid rate of 80 liier/hr. Walton and coworkers (39)
Liav: found that the drop diameter goes through the maximum value whe. the
angular velocity is increased and that the drop diameter is given by the

equation,

VA (2

Py

d =

E|R

wher; d and D are the diameter of the drop and that of the cup, respectively,
w 1s the angular velocity, o is the surface tension of the liquid, and K is a
constant., Although equation (2) agrees with the experimental results of Hiuze
and coworkers (41), it does not contain the effect of the viscosity of
liquid.

Dixon, Russel, and Swallow (42) have investigated the effect of the
density, viscosity, and surface tension of the liquid, Furthermore, they
have carried out a theoretical analysis, by assuming that the different behavior
of the formation of sheets in the different liquid is due to the trajcctory
ot the liquid "low from a feed tube to the periphery of a cup.

As a part of the fundamental studies of fluid dynamics of the centtifugal

contactor of the rotating type (30), the first author defined

theoretically the discharge coefficient in the centrifugal field, neglecting

the cffects of the physical properties of liquids but taking into account the
.uffocta of hole diametor, wall thicknees, cylinder diameter, revolution upead

of the cylinder, and discharge pressure of liquid (33). Eventually, the effects of

viscosity and surface tension of discharged liquids were taken into account

and the equations applicable to the liquids of various viscosities and surface
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©on tensions in the centrifugal field were derived (33). Other studies

B L wia ety o
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on the flow pattern of a round liquid jet in the centrifugal field

th ' are a study of the discharge from a rotating pipe (43), a study of the : g
%{ discharge from an orifice (37), and a study of the atomizing pattern of .

liquids spouted from a cylindrical nozzle (44).

The flow pattern of the liquid jet spouted from a rotating small hole

VOB bt Ui, e s B 8
TR

is very complex. However, it is known that the jet travels due to the

e e

combination of the circumferential vélocity and the radial velocity (37). 7Therefore,
, it is clear that these give rise to the relative velocity against the surrounding !
o gas. As the discharge velocity of liquid is increased, it undergoes transition ;
consecutively through the stages of drops, lamina{ flow, turbulent flow, and spray. i
Figure 13 shows the most typical forms of 1liquid jet spouted from a rotating :
small hole (38). In this figure, (a) is the dripping flow, (¢) and (d) are

the laminar flow, (e) 1s‘the turbulent flow, and (g) is the spray. It can be
seen that these flow patterns in the centrifugal field are similar to those

in the gravitational field. .. .

According to the experimentai results of Tanazawa, Kurabayashi, and

Saito (43), the flow pattern of liquid jet in the gravitational field can be

divided as follows:
Je < 0.1 dripping
Je ¥ 0.1~ 10 laminar flow
Je ¥ 10 ~ 500 turbulent flow

Je > 500 spray

vhere the Jut number of liquid stream, Je, is definéd by

P
Je = (——Bh (3)
8 .
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and d is the diameter of hole, w is the discharge veloeity of liquid, and
pg is the densily of gas.

Furthermore, from the avallable experimental results (35), it can be
scen that the flow pattern of the liquid jet in the centrifugal field must

be defined by the Jet number based on the resultait velocity as mentioned

previously,

The diameter of the liquid jet gradually becomes smaller due to the

e A L

increase in the rotation of speed. figute 14 shows the relation between the
jot length and the ratio of jet and hole diameters, dj/d,when the radius
of cylinder 1s 2.5 cm (37). Frowm the figure, it is obvious that the diameter
of liquid jet decreases as the jet lengthens. The diameter of the jet when
the discharge velocity 18 slow and angular velocity is high becomes remarkably
small immediately after the iiquid is spouted from a hole. Hereafter, the
continuous length of 1liquid jet becomes short although the flow of jet is
laminar, as shown in Figures 13(c) and (d). This phenomenoﬁ can not be
found in the liquid jet spouted from a small hole in the gravitational ficld,
In these rotating type gas-liquid contactors, mass transfer takes place
at the surface of the rotating liquid jets, sheets, droplets, and liquid
film along the inside wall of the cylinder. It is important to know which one
of these controls the mass transfer rate so as to design an apparatus of high
efficiency and to determine the optimum condition for oporation.
When a small scale Piazza absorber with two rotary cylinders as shown
in Plgure 10 was operatad cocurrently, the following results were obtained (45).
The absorption rat. was independent of the intexfacial arca which was pruvided
¥ 1. by the liquid filws along the inside wall of the cylinders when the intevfaclal

= area of tha sprays from the rotating cup was maintained constant. lowever, when
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the interfacial area due to the sprays was reduced to half and that due
to the films was maintained constant, the ;bsorption rate became half
can be scen from the results that the spray from the rotating cup cont
the overall absorption rate.

On the other hand, in the rotating type contactor (30), mass transfcr
between gas and liquid takes place as a result of contact between gas and
a liquid jet or g¢s and a liquid film along the inside wall of the (ylinder.
in order to cvaluate the rate of mass transfer from rotating liquid jets,
the contact area of gas and liquid per unit voluwe of a continuous liquid jet
spouted in an annular space from a small rotating hole has been determined
theoretically and cxperimentally (37). Furthermore, the absorption of purec
carbon dioxide by a liquid jet 1ssuing from a rotating hole (35) and that Ly
a flowing liquid film along the inside wall of the rotating cylinder (36)
have been studied, It can be concluded from the results that the amount of
mass transfer into the liquid film on the wall of the rotating cylinder s
much less than that into the liquid jet issuing from a rotating holc. However,
the absorption efficiency increases as the liquid depth on the insidc wall
decrcascs.

The pressure drop under the condition of the cocurrent flow of gas and
1iquid in the Piazza absorber is affected by both the rotating velocity and
the liquid flow rate. The liguid holdup in this apparatus increases when the
speed of revolution is lowered. This incr;ase in the liquid hold-up tends to
obstruct steady flow of gas and consequently increases the pressure drop stceply.
Thie 1z the so-called flooding phenomenon. The point of flooding dbpenda on
the flow rate of liquid but is almost independent of the gas rate. In the
countevcurrent operation of this apparatus, these relations are complex,

As mentioned previously, it is desirable to make eylinders as larpe a=

poasible for the purpose of increasing efficiency of absorptfon. For shuorption

T
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the space between cylinders must be narrow. However, this tends to increase

the pressure drop. To solve this problem a number of holes is often provided in
tge bottom of the rotating cylinder. Even with this improvement, the liquid
throughput in radial direction cannot be maintained smoothly because the

main part of the absorber consists of tﬁe rotary cylinders and stationary

cylinders, which are overlapped. As a result, the consmption of power is

enormous, flooding tends to occur and the countercurrent operation becomes

difficult. To avoid these difficulties Alcock and Millington (46) designed

L T I S R N

the double rotor contactor. The experimental results (46, 47) indicate that
the pressure drop for the double rotor type is 1/2 to 1/3 of that of the
rotor stator type. The double rotor type is more desirable than the rotor

stator type for the treatment of visccus liquid.. However, the behavior of

- re e
r;v lz": e

() 1lfquid flow into the contactor has mot yet been investigated. In the centri-
fugal contactcvr of the rotating type (30), the pressure drop is much smaller
than that of the Piazza type hecause the gas is sent crosscurrently to the
liquid jet in an annular space between the rotating cylinders.

Rumford and Rae (47) have investigated experimentally the effects of
the water rate, the gas rate, the concentration of the solute gas, and the
revolution speed and structure of cylinders on the absorption rate in the
Piazza absorber of the double rotor type operated cocurrently. They have
employed three systems, namely, carbon dioxide-wster, ammonia-water, and
acetone-water, Table 2 shows the expsrimental results obtained at various
ilou rates of the liquid and gss. If the total volume of the centrifugal

3

absorber is V ft~, and 1if q. woles of gas flow cocurrently with H..IDICI of

1iquid, the following equation can de cbtained from the material balance (47).

6, dy = L_ dx = k, a(C_ - C)av o )

e,
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where kza is the liquid phase coefficient on the volume basis, Ce is the
coﬁcentration of solute in liquid stream which is in equilibrium with gas,
C2 is the concentration of solute in the main body of the liquid stream,
and x and y are mole fraction of solute in liquid and gas, respectively.

The number of liquid phase tramnsfer unit, Nz, is

Nl mnVee oKla/Lm (5)

vhere ¢ is the average molal density 'of the liquid. Then, the volume of a

l1iquid phase transfer unit, V xz. is
V/Nz = Lm/c . kla (6)

This is often denoted as V.T.U.£. And alternativeiy the volume of a gas

phase transfer unit, V.T.U.s or V/Ns. defined as
.T.U. = H « k 7
V.T.U g vlu8 G /P x (7)

vhere P 1s the total pressure of the system. Then the volume of an overall

liquid phase transfer unit, V.T.U.o‘ is given by

V.T.U.ot - V.'I.U.l + (L‘/G.‘ 'M)(V.T.U.') (8)

where M represents C/H.P., in which H is the Henry's law constant. On the other

hand, the volume of an overall gas phase transfer unit, V.T.U.O‘, is
V‘T'U'Og - v.r.u.. + (0- . HIL.) (v.'r.u.‘) . 9)

As mentioned previously, values of these quantities sre given in Table 2.

Figure 15 shows one example of the effect of the rotating velocity on the

absorption rate. This result vas obtained at the gas rate of 1,100 ttalhr.

The concentration of carbon dioxide in the inlet gas was 17X and the concer -

tration of monosthanol amine and that of carbon dioxide in the inlet solution
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were 80% and 3.5% respectively. Furthermore, Alcock and Millington (46)

-

found the optimum condition from their experimental results obtained by using a 6
cylinder unit and designed a large scale absorber in which 15 cylinders were fixed
to a rotor, 12 inches in diameter, and have examined it with the monoethanol
auine-carbon dioxide systems. The experimental result obtained with both

equipment are compared in Table 3.

5 .
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The absorption rate of pure carbon dioxide gas by a rotating round
water jet was measured in an annular'space between the rotating cylinder and
a stationary concentric outside cylinder (35). Figure 16 shows an example of
the relation between the gas-liquid contact time, 6, and the Murphree * .
absorption efficiency, EHL when the hole 1s 0.9 mm'in diameter. 6 was evaluated
by the theoretical equation (35, 38). From this figure it can be seen that the
plot of Eyg Versus /8 leads to a straight line through an origin, and also
that the pure carbon dioxide gas absorption by a water stream
issuing from rotating jet holes conforms to the unsteady-state diffusion
theory (28). Furthermore, the gas absorptibn rate by a water jet spouting from a .
rotating small hole was observed to be'large immediately after the liquid

was spouted from the hole. Therefore, for practical puipbsen, it is desirable

to employ a multi-rotor type contactor in order to make as many jets of liquid
as possible.

In addition to the experimental mass transfer study mentioned previously,
w.chanisms of fluid flow and the mass tr;noport of the liquid film on the in-

alde wall of a rotating wstted cylinder were theoietically investigated (36).

The effects of various factors such as the gas and 1iquid velocities, the

depth of 1liquid layer, the number of rcvolntténa, and gas-liquid contact time :

etc. on the mass transfer rate were examined.
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The centrifugal contactor of the rotating type (30) has been extensively o
developed in Japan as absorbers, humidifiers, rectifiers, etc. based on the
fundamental and applicative studies by the first author and his coworkers
(33, 34, 35, 36, 37, 38, 4q) .

Some of the special features of gas-liquid contactors utilizing the

centrifugal force are discussed in this report. These contactors have come

into general use only in the last ten years and there is as yet no literature
that deals with design features and fundamental studies, and many problems
are yet to be solved. However, it is expected that these contactors will be

employed widely by several industrial fields in the near future because of

the generally favorable mass transfer characterisg}cs in the centrifugal field.
Some contactors mentioned in this report allow treatment of a viscous solution,
and also can be operated without fl&oding and at a large flow rate. Furthermore,
they can be employed wherevpitching and rolling of the systems cannot be

avoided.
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* 4.4  3.66 0,825  0.00704  0.04  4.68 §
‘; 66.6 3.66 0.825  0.01056 . 0.04 3.12 6% €O, in gas ! |
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Table 3.

Comparison of 6 Cylinder and

15 Cylinder Absorbers

23

6 Cylinder Absorber 15 Cylinder Absorber
Liquid flow Absorbed Pressure Absorbed Pressure
rate k a co drop k a co drop
[gal/hr] 8 2 g 2
& [1b/hr] [in-W.C.] (1b/hr)  [in-W.C.]
20 7,700  13.1 5.5 31,000 17.6 12
30 10,5G0 16.9 5.5 41,000 19.6 14
40 12,700 18.3 3.5 47,300 20.5 16

Concentration of inlet liquid
Temperature of inlet liquid
Gas flow rate

€0, concentration of inlet gas

2
Number of revolution

85% M.E.A. 2.5% CO
60°C
3
1,200 ft~/hr
162

2.300 R.P.M.

ik ok Wt

——



¥

-, ’- "
o SO R

.-

e mmemare s

B

- .

Api} JudLINd-|puoljojos jo aunnus | DBid

(1'9°0) 4oy
epind umog (q)

oL

("L'9°n) Aoy
apind Jaddn (D)

o vopr——



N

RIUCIRERREY-5 TSP

| e e e gz i gl

- Aoay
D ybnosyt down aunssasad ooy jo  uosuocwe) 2614

Pe/un] vwniod jo oo jouoysss-ssosd wo pecoq AHOOiA $09

o3z (031574 coe Ogl COl Cs O
I L T T 0
| (995 /wd) Dpaso0 ajoy |
UO Ppas30q 2}0i MmO} pinbi= N
L o N
{-) p2u0 hou) / nauo ajoH =3y /¢ le
X 1y
= . m
o o w
- R 7]
(wWdo) °‘oOlp 30H = @
- . g 18
(wd) oip samop= °Q

- 6

92 | zro| 200 | 9% kouy apnd umog (T

9% 1 2o 220 | 9 . Kou cpwb saddn 1)

eri] —| — | €9 Aoy aiddiy 1D

80 —| — | €9 fouy egdiy |0

66 | 220 [s80:9g0| C3 Loy M 1O

¥l |esro] est ¢l |paosopiad 3dhy Juasina-saunod| O

i Potvl g | ‘a Koy |

[qwo/6) 403 © ybnosy dasp aunsseud pojoL

g ——



;—."4"&?2' i ¥
LR L+ o et et o e ;T’y ‘ - K
{
3
i
:
KeylAp/Ae| D |W %
10 ;
= Sieve tray
1o |09 | 152 |48 A/ ,
1A 10.20 | 045 |L60 / )/ y
5 A A - ——
Ho Jo.s J}S’

otaticnalecurrent tray

eylguide|AWd D | W |
dowm |07 |o.72) 123 1
upperiol? 10.72| L35 M
| I

s 10 3
Gas velocity based on hole area [cm/sec

Uquid hodup on a tray [o/cm?]

&
]

Fig. 3" Comparison of liquid heldup on
various counfer-curtent frays .




.‘.54’1:‘ F s{‘s‘if "‘ p
B . ...‘Ef_-. . L - -
il,
5100 N "f
&, fer o
s /A::J‘T\
m ’
=5
O
[ g
L1
2
-
(5] —
e,
200
~
A
;’; "_;I"—’o Vh An/ g Tourcr tygs
YLl A 0304 172 UGT
o . 0| o 0900 172 UGT
g | o 270 172 UGT
e - 300 27 Kitt2! troy
2 —~ Q70 25 @ sivaty
o L
o 500 1000

Gas valocity based on holz arca [em/:z]

Fig.4 Comparicen of cbsorption efficiency
bqsed on licuid phasa.




l”/'ﬁ' ’ :
B .

APy,

Ao

gt ,‘..,#, NS e
ERPEE R

SR Te AT e R TR S (PR IR W e

dosp anssad Gbig
[n/1w]) and-ubnony by

o
"
[w/onww) dop ans g

¢




{
.
i
|
1
.
4
. 1)
i i
C3 i
)
¥
L i

' i

R

- > .

- “
hat .
[ m.k

2
,
i
'
H
¥
¢
§
)
F

e ;.}g&wﬁié R

s g e At GRS ot

P s T R il ey T SRR AWt e Sl 48 T St S A RIS SRR AN

3;0)|d poyRIoRy} jo JsqwnN 9°Hi4

y/jw ndybnoxyi pindb
000% 000¢ 0c02 000! o

l
0o
L
4+
,/
4] ¢
Q

O
<

. .‘,A
~ g s Al N Luk e Be oty

. 00l
.

% oz
_ o

Jd)ow duo 2d
8j0jd 03132100y} jO J3qUINN




9}Djd |oOyaJoay}  jo JaquinN 2 Big

‘Wd'¥  uOyNoAl JO Jaquiny
000¢ o000y 000t . OOON OOO_

Jo
o

\@\@\

o

" OOOn

« 0002

“ N/w 0061

ndybnoay  pinbY

]

X900

A - o

&

.
e miEaume e e F aa e Em o wli B

,..
e
-

.f ot

¥ S
MW Juo sd

9j01d 050 jO JIQWNN

8 8 ¢

8




J9|pdunt  jo ainpnus 8 -big

e
-

s
cdewr . s gt € Hom bk A .. )




N AR hroma oy e e - - [ u o

% -
5
%
§
5
#

R RN

AT I
12
o
[~

‘V

)
\

\>_C J
—'('

) lm -
N\

= '

r 4

)

| = e f
¢ _ ~
3 = <l

oy,

e
‘o \*a
,-'

W

)
\

@

vepor-compression  still,

Distillate
Resldue
" A Rotors - E."Rotor Drive Motor 4 Outer Shell
8. Feed Nozzles F. Rotating Sedl K Distiiote Trough
C Rotor Drive Shoff G. Blower L. Oownspout
D. Rotor Shaff Saol K Blower Shoff Seol M Trop
mem
£
l-"ng 9 Diogromatic skefch of Rotory-surfcce




-u,

-

423405GD0 0zzdid JOo yoens Suyowauboiq O *5i4

$0l4no0  so9 “ ,~ ww.m :.M

|
—/

e
3 “ 1S

TR 2o aare s

5L B e Rl

.
- m A u bv
1‘\;\?...7.-.7-‘..-..? lgl.’»!f‘ulr '_n..}




3

-
-

. e
- 0}00ju00  dinbij-spb  |Pbnyiusd  JO UoiHs oiyowosboi@ |1 B _,
« _ (o)
jc|no s So
| . _
o [ — - — : -t S ’ S _
K ' i - } b _
m— ] f - w— g ——
aioy —— _ 8jino o -
HulDIOY — 509 = | m:z....
- st . - :
) ) ) ) pinbIy _
0 —
*m_mmol. - - —.
.,4 - — e a— — l.n.lv/ rfl SR - -
— " | .ﬁ }au| 509
— _ !
58 — 1__ w %
=== o s09

3 .@,

@ﬂm.w.%mp wmw %

m‘\{t

P i




)
40 ¥ T |
2 - 3000 R.P.M.
‘ 30
o\o
20 +
a
2
V

Number - of
o

o !

0 400 800 1200
Drop diameter (micron]

Fig. 12 Distribution of drop diameter.

.- Pat g w L m w om et megw s imepew o s e m e e




R R YRR BT I T e e s i B e = o - =

P R U

jet .

g
rotating liquid

Fig.13 Flow pattern of

o Ty = —

» o—

v Y CF IRy

A Y WA




SARN SN P YL RO N T T, i T T w el i & e o e TR am e o o e

~
Al

>3

2 |
= y
° :
@| . = "
O- m. ng v
E w
S
S 05= T W i
© £3120}2A%3%4,5 001 o o E
4 . = o ooy "
© 20nbuy 2 s H
m Q3 K1120}3A c . m
06 abuoyasiq o o
< @@ i
° 2 g 8
e 9 ...
i
S = i
° o i
Sr g s 23 m
2 3 = 2 :
°l = 93s/ C0G = & m & ;
s § : 20s/wo 05 = o O )
SO Kj100(3A K}100}9A o
@ Jojnbuy eS10yos1Q
o ) 4 - A <
© - ~ ™ < w )
[ws] ¢ yibuay o m.




D e

- ——

PR N N PR IRV S
~

SO NI P A s L e a2 s
SV P :

9000
€000 |
7000 } Liquid flow rate
P
2E o al 7h
S E 6000 | 57 gal /hr
b
m |
8 £
S 5000
> =
-§ o
a 2 4000
© 25 gal/hr
3000
2000 . ,
° 1000 2000 3000

Revolution spoad. R.PM.

Fig. 15 Effect of revolution spzad on
mass transfer.

ittt ey ———— =, . C e
L TE Y e T T




S LS e ST

+

0.20

J
ﬁE
D
(3]
E ©
=
. | E®
TR —
o7 : / .mu .
_ N o . ,
e 18 & €8
2 — 8E
S @)
o) C 8 E
S 103G © s
S b3}
S QO o ZoO
8 oed4B8% S ¢ ..wm
‘O
o - g
c
Q o4q0O 5 s
wlpas
e 2 8 By
Sl (o] O c
L5010 0N e SE
553022 Q
£88) o
o
i L , . o H
Q o
< Q o o 5

[%] ™3  fouzioys uvoudiosgo  oaudiniy

L s s <A i B A B b S il ;
R VL™ it -

' N - -
PSP ST SO R b We W2

. R} . B —— .
Eaa i’ £ TSN i N i

e




k
(c) 1
WIS
) ko) ;
\’4"@
iy
k)
(Yl
‘Y'"_z\
«‘,',5,‘ CARBON DIOXIDE REDUCTION CONTACTORS IN
B, SPACE VEHICLES AND OTHER ENCLOSED STRUCTURES

i “ f? I. Takahashi, L. T. Fan
\ , %S

.

D.O.
.
D‘0.0
OOC
DO
OO
OGS
LK
L
0'0‘0' .0 - .
LI » 0
Y Aele
/ Y\ :.:.o
O
L0 ’
DO
. o4
o’y
o*e’ b
' .
%o

G DeSIgn and Dptimization
KANSAS STATE UNIVERSITY MANHATTAN

S Y, ST M & eyt



B = T

Carbon Dioxide Reduction Contactors in

*
Space Vehicles and Other Enclosed Structures

By

T. Takahashi

L. T. Fan

o e . .
R Aol

o e s AT

. e

January 20, 1969

..M‘.a-,
RS S s (VR TI C $T TE

iy
s
v

> X ARG T - At At W Wl a1 4 ¥

--
W%

$FS
3

A
¥
<, 4

£y

x
Thi<d work was partially supported financially by NASA (Grant
17-001-034) and AFOSR (Grant USAFOSR F44620-68-C-0020).

“ ; e e LS S S P

.
+
{
!
{
{
H
1
1
1
% 5

TETE g S, KPR e &Y TN W



' For a man to survive in any surroundings, he has to maintain
breathing, drinking, eating, and activities related to waste elimination.
In solving the problem of the life support in space vehicles, the control
of atmospheric temperature, humidity, carbon dioxide level, trace contaminant
level, o»rovisions for waste elimination, and the supply of oxvgen, food and
water must be considered. Life support systems are often categorized
in terms of the extent to which the human waste products are reclaimed,
that is, the degree of ecological closure. The possible degree of closure
ranges from open systems which provide no waste recovery processes, to
partially closed systems which provide recovery processes for water and or
oxygen, and to closed systems which provide food and all other life support

. needs from the processing of the human wastes (1l).

§
!
;

The removal of carbon dioxide from the enclosed space or cabin atmosphere is
( one of the important functions of a life support system. The concentration

of carbon dioxide in normal air is ustally taken as 0.03% by volume. The

T el w s

air exhaled by the breath of man contains approximately 4.5% of carbon

' dioxide. Therefore, there can be an appreciable build-up of carbon dioxide
in any enclosed space.
Prnresses for the removal of carbon dioxide from gas mixtures have
been sufficiently developed in the chemical industry. In aerospace application,

however, uses of many of the techniques will be restricted severely by

Egﬁ?ﬁ» q weigli, power, and volume of the process units and other characteristics of
Rk ;~ t.

o ;

éé;iﬁ\ the processes. In addition, the processes must be operated in the zero
R

R

gravitational field.
Various promising methods for the removal of carbon dioxide in the

cabin of space craft have been proposed. In the future, however, many other




different methods will probably be proposed for different systems with
different degrees of ecological closure.

The portable life support system to keep man alive and comfortable
outside the space capsule is also needed. Reid and Richardson (2)
reported a new process for the removal of carbon dioxide in the portable
life support system. They have concluded that when ease of handling and
safety are considered, when heats of vaporization are examined, and when
other thermal and physical properties are evaluated, water is still the best
absorbent (2). However, since the solubility of carbon dioxide in water is
very low, a high water flow rate is necessary to increase the removal of

metabolic carbon dioxide. For thesc reasons, the use of a jet momentum pump

PR
-

for absorption and a centrifugal contactor with turbine blades for desorption
has been suggested in the process. This appears to be one of the promising
methods for carbon dioxide removal in the air and space crafts.

The processes and contactors which can be operated in air and space

!

:
i
%
¥
'
:
1

crafts are few because they are restricted by the conditions mentioned
previously., Contactors,which can be operated in the zero gravitational field and
which are reviewed in this report, include the packed beds filled with adsorbent
particles, venturi contactors, and centrifugal contactors. Emphasis will be
placed on the description on one of the centrifugal contactors (3).
Packed Bed

The adsorption method has been developed recently because it can easily
be designed for operation under the condition of weightlessness.

The typical system has two beds of molecular sieve connected in parallel.

While one bed is adsorbing carbon dioxide from the «xhaust cabin air, the

e
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other i being regenerated or desorbed. The desorption of toc bhod e
usuallv accomplished by applving heat, vacuus or g combination of both
after the bed has been isolated from the venoving process (4).

Detailed reviews and studies (%4, 5, 6) on the use of molecular <icve
for the removal of carbcn dioxide are available.

The pressure drop »f gas through the bed of the adsorbing particles is
generally not small. Therefore, if the duration of a space mission is pro-
longed or if the size of the cabin space is increased, the weight and volume

of the bed and the power required to coperate it may become excessive.

Venturi Contactor

Venturl contactors were originally developed for the purpose of dust
and mist separation. In one mode of operation the gas to be scrubbed is passed
through a tube where low pressure liquid is injected into the gas stream at
tue high velocity throat section of the tube. A high degree of liquid
dispersion 1is attained when the gas velocity is high. On the other hand,
the introduction of gas at the throat of the venturi, through whirch a liquid
stream flows, results in a mixture of finely dispersed bubbles in the liquid.
Both situations give rise to the effective mass transfer in the venturi con-
tactor (7).

In general, the venturi contactor has a high capacity and an appreciably
low energy requirement for a given amount of solute gas transfer. In addition,
it can be directly incorporated into any process without additional equipment.
Therefore, the capital cost of a venturi contactor is low compared to an
absorption column. For these reasons, venturi contactors can probably be
employed advantageously for the purpose of removing carbon dioxide in space
crafts. However, the published studies on the mass transfer characteristics of

the venturi contactor are few. One shortcoming of the venturi contactor is that
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the pressure drop of fluid through a venturi is generally high because the
fluid throughput must be maintained at a high level.

Centritugal Contactor

Recently centrifugal contactors consisting of all rotating parts in
which mass transfer operations nare rarried out have been developed (8, 18).
These contactors are not influenced by gravitational force and have the
characteristically high gas and liquid throughput, small holdup, short con-
tact time, and high efficiency.

Takahashi (8) has established the design method for a new centrifugal con-
tactor (3) whose main part consists of double or multi-stage concentric
perforated cylinders. The schematic diagram of the contactor is shown
in Figure 1. The liquid fed near the center of the rotating cylinder via a
rotating hollow shaft is spouted from many small holes drilled through the
wall of the cylinder into an annular space formed by the double cylinders.

The gas is sent cross-currently to the liquid jet in an annular space. Mass
transfer between the gas and liquid takes place as a result of the con-act
between tha gas and the liquid jet or the gas and the liquid film on the in-
side wall of the rotating wetted cylinder.

Some of the fundamental data required for designing this contactor are ‘
given in this report.

In a multi-stage centrifugal contactor of the cross-flow type, the
discharge velocity of the liquid from a rotating small hole is influenced
by the diameter and length of a hole, the diameter of the cylinder, the
pressure of the inlet iiquid, the depth of the 1liquid holdup in the cylinders,
and the revolution speed of the rotor (12, 13). 'For a stable operation, |
the flow pattern of the liquid jet and the discharge coefficient muat te

considered first in the designing of this contactor.
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Flow pattern of the liquid jet

As the discharge velocity increases, the flow pattern of the liquid
issuing from a rotating nozzle or orifice becomes dripoing flow,
laminar flow, turbulent flow, and sprav. This mode of flow pattern change
is the same as that in the gravitational field (9, 10). Since gas flows
normally to the rotatirg liquid jet, the behavior of the liquid jet in the
contactor is ‘nfluenced not only by the disturbance in the liquid but also
by the friction with air. The breakup length of the laminar liquid jet
increases with the discharge velocity. When the viscosity of the liquid
increases, the breakup length becomes lorzer and the critical velocitv to
the sprav tends to be higher at the low velocitv. The effect of the
surface tension on the contraction of the liquid jet may be negligibl. when
the Weber number exceeds 4 (19). These results show that the flow pattern
of the liquid depends on the Reynolds number Red, the Jet number Je, and
the physical properties of the 1liquid (11, 16). The Reynolds number based
on the hole diameter indicates the degree of the turbulence in the fluid.
The Jet number based on the relative velocity determines the effect of the

resistance of the surrounding gas.

Discharge coefficient
If the coordinate system rotating at a constant angular velocity, w,
is used, and if the Coriolis force is omitted, the Bernoulli equation for
the centrifugal field is represented by )

2
%-(v*)2 -k 2“ + §-+ gZ = const. (1)

R

where v* is a relative velocity of fluid witl respect to the rotating L

coordinates.
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By using the boundary conditions at 1 and IT in Fleure 2,

the expression for the discharge velocity w is obtained as follows:

W= \/2 =+ (R - Ri)u\z (3)
where the pressure difference AP is given by
AP = P

1~ 2 (4)

Therefore, the flow rate Q is given by the following equation in an ideal

case,.

Q = wE, = C £ VE -—-+ (a R, Mu (5)

2

where f2 is the cross-sectional area of jet spouted from a small hole and
f is the cross-sectional area of the hole. Contraction coefficient C 1in
C

Equation (5) is defined by the equation
C. = f,/f (6)
In practice, however, Eauation (5) does not hold because of various losses

of fluid flow, and the discharge coefficient should be defined by the

following equation (12).

~ceV2 &4 )t - R c-c ., )

where C 1is the discharge coefficient in the centrifugal field and Cv is

the .alocity coefficient.
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.' Solving the Navier-Stokes equation for the motion of fluid in the

concentric double cylinder with the boundar conditions (see Figure 3).

B.C.1l: r=r

1’ 1’ 1
(8)
B. C. 2; L=y, 0= wy, p=P2
the following equations are obtained.
r2 r2
1 2 2 172
Vo(r) = 5= [rluy 15 -0y 1)) - = (0 = w))] (9
r, - r
2 1
r2 r2
2 2,2 771
P(r, 2z) = Pl(z) +— ) [(w2 r, - w rl) 3
(r, - r7)
2 1
rd r“
2 2 ve 2 2 xr 1% 2,1 1
BRI T U B Bl S U B T 2 -1 09

fluid within the rotating cylinders, the boundary conditions are
B. C. 1; r

WO et 3y e Amne e .
L P . o d .'( Edd i S - L

1” o, wy; = 0, p= P1 = Ps

11)
B. Cf 2; r= r, = Rl' wy = w, P = Pl

Thus, the pressure P, at the inner wall of the cylinder becomes (12)

2

1

where 2z indicates the axial coordinate in the direction of gas flow. For the

e e Y il ¥

o m———

—————— -

2
Rl w
2 P

P, =P + (12)

Consider the csse in which the outer and inner cylinders rotate with the
constant anguiar velocity u« as sh&wn in Figure 4, and in which a heavv
liquid is issued through holes because of the centrifugal pressure due to
the difference in density. For this case the fcllowing equations are obtained ‘

by substituting w = w) = wy into Equations (8) and (9),

. Y . |
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V(Y = 1w (13)
2
oy pw 2 2

P(r, z) = Pi(2) + 5= (7 - 1)) (14)
Equation (13) shows that the fluid filling the horizontal cylinder rotating
with a constant angular velocity w rotates around a horizontal axis as does
a solid rod (12, 13).

Assuming that the light liquid phase (or gas phase in case of a gas-liquid

system) is continuous, the pressure difference between RO and Rl in the heavy
liquid phase (or liquid phase in case of a gas-liquid system) is obtained from

Equation (14) as 2

2

(R - RJ)

1~ % 2 <
Fr-P =7 ¢ (3

The pressure difference between RO and R2 in the light liquid phase (or gas
phage in case of a gas-liquid system) 1s also similarly obtained as
&2 - &)
0 ~2 0" 2 (16)
2 0 L 2
Substituting Equations (15) and (16) into Equation (7) the following

equation is obtained.

W S Y

2

oy, - 0,)
Q = C.f —LE;L @2 - &) W2 (17)

This equation defines the discharge coefficient for the liquid-liquid svstem in

the centrifugal field. When Py >> Py Equation {17) becomes (14)

Q= c.f.m\/ng - & (18)

which defines the discharge coefficient for the gas-liquid system for the case
in which the liquid film on the inside wall of the rotating wetted cylinder

is issued through a hole,

!
B BTN . NPT SV U S 13 B e e o o
Ve g o
A L VA ‘

TIRAT T T R I A, SRR, e & P

et e . ———— - -



P

. LI VUPUIpEppps

s _’M’ WP GBI et WSS Dhae #3773
o | R
ral .

P e M A s el A - . o~

Pressure loss

The pressure loss of the gas which flows crosscurrently to the liquid
jet in an annular space can be computed from the following empirical
equation (15).

3.5 w2 v1.83 D1/3 N2/3 d3

-6 p& i
Ah = 0.1 x 10 7% 017
Hg P D g

(19)
L e

where De(= D - Di) is the equivalent diameter. This equation indicates

i+l

that the pressure loss of the centrifugal contactor is verv small.

Mass transfer

In a centrifugal contactor, mass transfer between gas and liquid takes
place as a result of contact between gas and liquid jets and that between gas
and liquid film on the inside wall of the rotating wetted cylinder. According
to the experimental results (16, 17) the extent of the mass transfer into a
liquid film on the inside wall of the rotating wetted cylinder is much less
than that into a li{quid jet issued from rotating holes.

The liquid phase capacity coefficient for the liquid jet from a rotating
hole was measured experimentally by using a pure carbon dioxide-water system
(16). The result is expressed as

DL 1/2 1 Rl N ©
Ka = 73(z5) (;Ijiﬁ?(—j;-—Q 120)

where N' is the revolution speed of the rotor (r.p.s.), DL is diffusivity

in iiquid phase, I 18 the total pressure, and the power a is given by

a=0,72 when d> 1.0 mm
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0.74

a = 3,93d when d < 1,0 mr

The contacting, time between gas and liquid 6 can be determined theoretically

as (11)
R.w 2
RJ(mz D) +a? -w
6 = i w i (21)
' Rim 2 -
W{(T) + 1}

where

m = Ra/Ry

According to the experimental result of adiabatic humidification in
the contactor, the gas phase capacity ccefficient for the liquid jet from a

rotating hole can be expressed as

0.5 0.8

3
1410 ©

ké a=0.422 x 10~° n'(NR 22)

where G is the mass flow rate of air, and n' is the number of holes.
Stability conditions for operation
In the design of a centrifugal contactor, the stabilit: adition
for operation must be considered. Since the discharge pressure of the
liquid from a hole in the first cylinder cen be fixed arbitrarily as shown
in Figure 5, we shall first analyze an arbitrary stage, say the ith stage.
Assuming that the pressure drop of gas and that of 1liquid in the a#ial,
direction in an annular space formed by double cylinders is negligible in

compariscn with the centrifugal pressure, Equation (17) gives (15, 17)

Q= CF, w/BYR: - (&) - d (23)

2
Li)

where 8 1is defined as
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B = (oh - DQ)/ph (24)

The thickness of cylinder t is given by (Ri ~ R;). Therefore, from

fquation (Z23),

d + t Jf- Fr, 2
_E}_R____=1_ 1 - (—h (22)

it can be seen from the equation that the liquid depth in the cylirder dLi
depends on Ri and Fri. Fri is the Froude number in centrifugal field at

the ith stage defined by

(26)

The relaticn of Equation (25) is shown in Figure 6.
For the design of a multistage centrifugal contactor, the different

cases where

’

{1) cross sectional area of holes drilled through the ith cylinder

wall, F., is constant,

i’

(2) total hole area to cylinder area ratio e is constant,

i

(3) 1liquid depth in a cylinder d ., 1is constant,

Li

(4) dLi i3 given,
can be considered.

Furthermore, 1f the discharge coefficient C, 1s constant, the liquid

i

depth d the total hole area Fi? the discharge velocity of liquid Vs and

Li’®
the ratio of hole area to cylinder area e, are different from stage to stage,
as shown in Table 1. They are calculated by equations given in Table 2.

The discharge pressure of the liquid from a hole in the first cylinder

can be arbitrariiy fixed. Then, it is desirable that the 2nd stage be selected

as the starting point for the design of the complete system. For designing the
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’ Znd stage, the total hole area F, must be determined by Equation (23) to
establish the desirable value of the discharge velocity v, and of liquid

depth sz. Then, according to the predetermined conditions for the design,

F., Fri, dLi’ and v, are determined from Table 2. Since dLi 0, the

necessary condition for stable operation for the ith stage is obtained
from Kquations (23) and (25) as

Ri 2 Fri
1 - (E—) < <1 (27)
i ci/E

If the value of the Froude number satisfies the condition given by
Equation (27), the contactor will operate stably.

For a stable operation, it can be seen from Equation (25) that the
change of the liquid depth is influenced by the discharge velocity of liquid.
The revolution speed of the contactor is also an important factor.
it is evident from Figure 6 that dL changes less in the region of the low
Froude number at constant C and R. Therefore, the stability increases as F
and w become larger. When the Froude number is too small, however, Equation
(27) 1s not satisfied. And since the stability depends not only upon the
value of dL but also on the rate of its change, a small value of the Froude
number is not desirable because dL becomes too small.

As can be seen from the expression of the Froude number, the liquid
depth in the centrifugal contactor depends on the discharge velocity of 1liquid
and the revolution speed of the contactor. This is an important feature of
the centrifugal contactor. Suppose that a contactor is designed with the
conditiun of the liquid flow rate Q and the revolution spreed N. If its

operating condition is changed to another liquid flow rate ', and another

revolution speed N' at which a statle operation is possible, we obtain from

analogy.

Furtherrore,

2’ = DL
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Table 1

Different cases for design of the multistage

centrifugal contactor

Case L1 F, vy ey
1 decrease constant constant decrease
2 decrease increase decrease constant
3 constant decrease increase decrease
4 given value - —— -
o ——
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Table 2

Equations for desigr cf tiie multistage

centrifugal <ontactor

Sl SV CIRCINE M £ W At

e el

Case 4 Fy/F, Fri/Frg
1 Eq. (25) 1 Ry /Ry
2 Eq. (25) R, /R (R./R,)>
Q- 1/%2 2%
C, \/ 2 dL/Rz
, 3 d, =d, =4d = = 1/(F /F,) (R, /R,)
; * Li L2 L { 'R /R, - d /R, 177272
f \ at constant Ci

N

4 d ; 1s given 1/(F1/F2)(R1/R2)

- —‘ﬂ;'mm\’vmﬁ—p:A R L . opp

LT e .

. .
x5

e, )

-

PR T STV L

. e T

3
. ——

ISRV . ST R i - - ‘i.;,:?;,i..‘:;.._...,...._.,......-_ —



- e

ey e el o o omrn PO
1]
Fr = Fr
or
Q_Q ,
N N (28)

In this case, dL does not change. However, as the discharge velocity of

= Q/F

liquid changes from w

i i

of mass transfer cannot be avoided. his can be seen from Equation (20)
The number of stages and the magnitude of space between cvlinders can be
determined from the operating condition for the mass transfer.

This review leads to the general conclusions that the pressure drop

¢ '
to w, = Q /Fi' the change of the characteristic.

of

gas is small, the throughput of gas and liquid is large, and the mass transfer

L J
rate is efficient in the centrifugal contactor. Furthermore, it can be

easily operated in the zero gravitational field. Therefore, the centrifuyal

contactor may be suitable for gas-liquid contact operation in afr and space

crafts.
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(-]
[cm])

[cm])

[em)

{en?/sec)

(-]

[en’]

[em?)

[em/sec?)

[g dry air/sec)
(em w.c.]
[1/sec]

[g/cm3 sec AH)
(-]

(-]

(r.p.m.]
[dyne/cn’]
[cm’/sec]

{em)

(cn] ;
{cm)
{cm/sec]
[cm/sec)
{r/em sec)

lg/cmjl

Nomenclature
C Discharge coefficient in the centrifugal field
d Diameter of hole
dL Liquid depth in cylinder
D Diameter of cylinder
DL Diffusivity in liquid phase
e Ratio of area of hole to cylinder
f Cross~sectional area of hole
F Total hole area of a cylinder
g Acceleration of gravity
§ * G Mass rate of air
; g Ah Pressure loss
i ' ‘ kLa Liquid phase capacity coefficient
g . kGa Gas phase capacity coefficlent
i n Number of holes in axial direction of cylinder
é n' Total number of holes *n a cylinder
i N Rate of revolution
{ Ps Pressure
i“ﬂ” Q Volumetric rate of liquid flow
féw r Radial distance
R Radius of cylinder
t Thickness of cylinder wall
v Flow rate of gas
w Discharge velocity of liquid
u Viscosity
o Density
A o s et S . . " T T ey
g T
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. g Surface tension
w Angular velocity
dwzp Py 0.45
Je Jet numbers = (--5)(E~)
4
Red Reynolds number based on hole diameter = dwp/u
Fr Froude number in czentrifugal field, = w/Rw
2
We Weber number = dw'p/o
;
H
j
-! (
\
]
% %
§ :
L
;,
s
-‘-—-‘— —" —— *I i I 'I " '.'-Mm- - ‘A ‘k ';\,"I“!n."‘:‘

[dyne/cm]

[rad/sec]

(-]

(-]

(-]

(-]
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investigation of the temperature control of confined spaces such as those in
any building and life support systems by means of the modern control theory.
While much of the material presented in this work is original, the series has
been prepared in sufficiently tutorial style that it can be used as a text for
self-study by practicing air-conditioning engineers. 1t is hoped that this work
will stimulate the applications of and research on the modern optimal control
theory to the environmental control of life support systems in general,
including controls of humidity, purity and noise.
Parts 2-5 wi'l be published in the next three issucs of Building Science.

Theory to Environmental Control of
Confined Spaces and Life Support Systems’
| Part 1 —Modeling and Simulation
P L. T. FANt
¥ Y. S. HWANG#

b C. L. HWANGt

} f This paper is the first of a series of five containing the results of an original

IR
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Several maihematical models of an environmental control system which consists
of a confined space or cabin, a heat exchanger, and a feedback element such as
a thermostat are presented, The performance equations of the system, which :
. s represent the dynamic characteristics of the system proper and of the heat :

¥ T exchanger (the control element of the system) are derived. In the basic model ;
= the flow of air in the confined space is considered to be in the state of complete '
mixing and the disturbance is caused by an impulse heat imput. The performance
equations in wiiich the heat disturbances are of the form such as the step function
and cyclic function which are different from the impulse function are also
derived. Also presented are the performance equations which represent the
dynamic characteristics of flow of air in a confined space or cabin characterizea
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by the two completely stirred tanks-in-series (2 CST’s-in-series) model.
To determine the goodness of the system model a computer simulation is
carried out and the results are compared with the known characteristics of the

system.

THIS series of five articles contains results of the
original investigation on the control of life support
systems or more specifically the temperature
control of life support systems by means of the
modern control theory. A life support system is a
system for creating, maintaining, and controlling
an environment so as to permit personnel to function
efficiently. The control of temperatur. is probably
the most important role of the life support system.
The need for providing an automatic control
system to an air-conditioning system has long been
recognized|® 2]. It is also a well known fact that
use of the automatic control is necessary for the life
support system of a space cabin or submarine or

* This work was supported by the Air Force Office of
Scientific Rescarch, Office of Acrospace Research, United
States Air Force, Under Contract F 44620-68-0020 ‘Themis
g?.jzc;z. and NASA Grant Under Contract NGR-17-

t Institute for systems design and optimization, Kansas
State University, Manhattan, Kansas.

underground shelter[3,4]). It appears that analysis
and synthesis of the control systems for the air-
conditioning and life support systems have so far
been carried out by the classical approach(1-4].

The classical approach to the analysis and
synthesis of an automatic control system is essen-
tially a trial-and-error procedure or a disturbance~
response (or input-output) approach. Extensive use
is made of the transform methods such as th:2
Laplace transform (s-domain), Fourier transform
{w-domain), and z transform (discrete time-
domain). Even though mathematics is extensively
used, the classical approach is essentially un
empirical one{5}.

In recent years, an approach to the analysis and
synthesis of a control system, which is distinctly
different from the classical one, has been developed.
This modern approach is generally called the
modern (optimal) control theory [S-11]. It is based
on the state-space characterization of a system,
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The state-space is the abstract space whose co-
ordinates are the state properties of the system or
the variables which define the characteristics of the
system([5). This approach involves mainly maximiza-
tion or minimization of an objective function (func-
tional) which is a function of state (plant) and
control variables which are in turn functions of time
and 'or distance coordinate. The objective function
is specified, constraints are imposed on the state'and
decision variables, and an optimal control policy is
determined by extremiz'ng the objective function by
means of mathematical techniques such as the
calculus of variations, maximum principle, and
dynamic programming[5, 6). This modern approach
is entirely theoretical in the sense that no trial-and-
erroris involved in *““adjusting the controller™.

There are reasons to believe that the classical
approach suffices in the analyses and syntheses of
the control systems for a majority of air-condition-
ing and life support systems because usually the
requirements are not extremely critical and speci-
fications are not very tight. It is, therefore, justifiable
that most of the control and dynamic investigations
of air-conditioning and life support systems, which
have appeared in the open literature, are based on
the classical approach[12-20]. There is, however, a
certain incentive in applying the modern approach
to analysis and synthesis of automatic environ-
mental control systems in space crafits, submarines,
underground civil defense shelter; and certain
medical facilities. In these systems, very stringent
requirements in the response time, control effort,
and others are imposed. For example, the control
system of a space craft must have an extremely
small response time and furthermore, the amount
of energy required for the control effort must be
very small because of the weight limitation im-
posed on the space craft.

In the present work, the emphases are on the use
of the maximum principle and related variational
techniques[5, 7-11]. Their applications will be illus-
trated by means of concrete numerical examples.
It is said that use of the maximum principle and the
calculus of variations gives rise to a control policy
of an open loop nature|$,21] which is not desirable
for control of a space heating system in which room
temperature variations are to be reduced and
penalized[22]. In reference [22), the dynamic
programming technique is employed. It will be
shown, however, that the maximum principle and
related techniques can be advantageously em-
ployed for the types of systerus and objective
functions considered in this work.

In this series of presentation, only the modeling
and control of deterministic systems are considered.
However, when human and physiological factors
are taken into account as part of a total life support

system, use of the stochastic modeling and control
may be more appropriate than use of the deter-
ministic modeling and control because the system
tends to be more stochastic than deterministic.

It is hoped that this work will stimulate the
applications of and research on the modern
optimal control theory to the environmental
control of life support systems in general, including
controls of humidity, purity and noise.

The first of this series of articles on the applica-
tion of the modern control theory to life support
systems contains the derivation of the mathematical
models of several different s stems and the simula-
tions of their behavior and characteristics. In the
second of the series, the most basic form of Pontry-
agin’s maximum principle, which together with
dynamic programming constitutes the bulk of the
modern control theory, is outlined and its use is
fully demonstrated by means of concrete numerical
examples. In Part 3 of the series, the optimal
control of a system with equality state variable
constraints imposed at the end of the control action
is considered. The fourth of the series deals with
realistic problems of controlling systems with
constraints imposed on the state variable, namely
the temperature in the systems. In the final part of
this series, some aspects of sensitivity analysis are
presented and discussed by fully exploiting the
results obtained in the preceding parts.

While much of the material presented in this
work is original, this series of five articles is pre-
pared in such a manner that it can be used as a
text for self-study by practicing life support
systems engineers or as a text in graduate or ad-
vanced undergraduate courses concerned with life
support systems or air-conditioning.

MODELING

A control system usually consists of three
elements: the feedback element, the control
element, and the system proper{23). The feedback
element in a life support control system or an
environmental control system may be composed of a
thermostat, humidistat and pressure regulator, or
any combination of these, depending on the purpose
of control. The control element may include a heat
exchanger, humidifier, dehumidifier, blower, por-
table air-conditioner, or any combination of these,
depending on the objective of control. For instance,
both the thermostat and heat exchanger are often
used to control the air temperature inside a building.
The system proper may be a confined space, e.g.,
an underground shelter, a space vehicle, & space
suit, a submarine or a building.

The system considered here is shown schemati-
cally in figure 1. The confined space may be a
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typical office located in a multi-siory building or
the cabin of a spaceship. Air or oxygen or a mixture
of oxygen and nitrogen is circulated through the
room or confined space via an air duct by mechani-
cal means, e.g., a blower or fan. Control of air
temperature in the system is accomplished with a
duct system. The thermostat in the system adjusts
the :.osition of the control valve of the heat
excnanger in order to provide the desired tempera-
ture.

The performance equations of the system, which
represent the dynamic characteristics of the system
and system components will be derived.

\\ Thermosiat

Front view

R
Fresh air 1, t.

or oxygen
Top view

Fig. 1. Air-conditioned room.

A. The system proper

The following three main assumptions are made
concerning the system proper:

(i) Room or cabin air is well mixed, or stated in
another way, air temperature within the system is
uniform throughout at any instant in time,

(ii) The thermal capacitance of room walls,
floor, ceiling, and window is neglected, as well as
that of any furniture within th: system.

(iii) Heat loss through the walls and windows is
negligible.

The performance equation of the system proper
can be obtained by using the continuity law or heat
balance. For a room, the law states that the flow
of heat into the system must cither be absorbed
inside the room or leave the room. Referring to
figure 2, we have

%

q.2 Tz‘ 02 Qoo Tcu Oz

Fig. 2. Room heat flow rates.

[heat in] ~[heat out) = [heat accumulation] (i)

[heatin] = q;, +4:2+4ui )

[heat out] = g, +4o. ()

[heat accumulation] = ¢, )
where

gai = heat disturbance in impulse form in

kcal's

q;1 = heat flow into the system proper by cir-
culation air in kcal/s

¢:2 = heat flow into the system proper by fresh
airinkcal/s

go: = heat flow out of the system proper b§'
circulation air in kcal/s

¢o2 = heat flow out of the system proper by
¢ hausted airin kcal/s

q, = rate of heat stored inside the system pro-

per in kcal/s

Whenever the unit system is needed the mks
system is used in this study. Inserting equations
(2), 3) = 1(4)intoequation (1) gives

(¢i +9i2+ 90l — (901 +902] = 4, )

Based on the assumption of perfect mixing, the
ex~ressions forg;,,4;2,qo1,902 and g, are

9 = Q.pCy{ti—1,)

= Q,pC,T; )
92 = 0,pC(t2~1,)

= 0,0C,T, M
Gor = @1pCy(t.—1,)

= 0,\pC,T, ®
Goz = Q2pC,(tc—1)

= QIPC'Tc (9)

9y = V,1pC,(t~1)5(x)
= V,pC,T(a)
Note that here the disturbance is considered to be

an impulse form. This disturbance term will appear
as a forcing function which can be generally
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designated as ¢(x) in the resulting differential
equation. ¢(2) can be written as

P(x) = M(2)
where
M, = VpC,T,

Also note that o(z) has a unit of sec”'. The rate at
which heat energy is stored in the system proper
can be expressed as

dv,
= VipC,—
9 e 4
a7,
=V, : 11
VipCp,— " da (b
where
C, = specific heat of air in kcal kg C

0, = air flow rate by circulation inm? s

Q, = flow rate of fresh airinm?
V, = room volume in m?*
t, = reference temperature in ' C (In genera!

this can be any arbitrarily and suitably
fixed temperature)

t. = room temperature in “C
ty = disturbance temperature in °C

t; = temperature of the circulation air into the
system proper in °C

t, = outside air temperature in °C
T.=(.—1)in°C
T,=(,-t)in°C
T, =(t;~1,)in°C
= (t;—1,)in°C
a = timeins
p = airdensity in kg/m?

The insertion of equations (6) through (11) into
equation (5) yields

dT,
VieCoge ~ T1219Cp+ Q2pCIT.
=0,0C, T+ Q:pC,T,+ V,pC,T(2)

@, Q2. p, C,, V,, and T, are considered as
constants here. The above equation can be simpli-
fied by dividing both sides of the equation by
(@10C,+ 2:0C,) = (2, +Q,)rC,

. dT
da
T mTo-=0 at a=0" (time} (12
immediately before introduction of

the disturbance,i.e time right before
a=0)

-

+T - ",T‘+’2T2+11T‘6(a)

o

(Note that in order to have this inittal condition,
the room temperature, 7,. before introduction of the
disturbance is taken to be the reference temperature,
t,.because 7, =1 —1,.)

or in dimensionless form
dv, riK,x,

— 4y, = —+r,K;+ K00
o T E TR A )'fuzm
Xy=0 at +=0" K
where
_ O
ry=———o
0,+0,
ry, = E =(l=ry
0,+0;
T, KT, (r.—1,)
RY - ==
: Tx 0 T2 ('(0 - ’u)
Tl' K4T.' (’,_’u)
Xy=0 = =0 =—"+
: TIO TZ (’IO—t(l’
Td (rd 'u)
= — =
T, (1,-1)
t = a/t, = dimensionless time
T -1,
K, == - =)
To (ot )
T ty—t
K, =1 ot
Tio (to—1)
t, = time constant of the system properins
Q0
T., = room temperatureata = 0%
To- =room (system proper) temperature at

a=0"

T,o = temperature of the circulation air into the
system proper ata = 0+

Equation (12a) is the performance equation of the
system proper. This performance equation can
appear in another form in which the effect of the
disturbance is taken into account in the initial
condition immediately after the onset of the process
as shown below:

ar, o rik
K,

x;=1 at r=0"*

+"1K‘

This initial condition is true because 7. = ¢, at
t = 0* and therefore,

- (’r-'a) -('d)-'c)

Ut~ Ut =] att=0*

1

=
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Instead of the impulse form, the heat disturbance
may appear in other forms, such as the step, ramp
or c¢yclic functions. The disturbance arises from
various sources, such as sun load, turning on lights,
opening window or door, temperature change in
the incoming air, and heat generated by the
people or animals.

If the temperature of the incoming recycle air,
T, is kept constant, changing air flow rate may also
accomplish the purpose of control. The perfor-
mance equation for such a case can aiso be derived
similarly from equation (5).

Note that if @, =0 orr, =0, ry is unity and
equation (12) becomes

dr,
gy +Te = Tt Tiyd(a) (13)

This equation is applicable to underground shelters,
space crafts and submarines under conditions
where no fresh air enters the systems.

B. The control element

The heat exchanger which is the control element
of the system under consideration can perform its
control function in various ways, for example, by
changing the temperature or flow rate of the heat
transfer medium, or changing both. The perfor-
mance equation of the control element can be
obtained again by employing the continuity law
or heat balance, which can be expressed in equation
form as follows:

{heat in] ~[heat out] = [heat accumulation] (14)
(heat in] = oy + iz
(heat out] = gnmo; +Gmo2
fheat accumulation] = g,

where
gmiy = heat brought into the heat exchanger
by circulation air in kcal/s

qmiz = heat brought into the heat exchanger
by cooling water in kcal/s

gmo; = heat flow vut of the heat exchanger
circulation air in kcal/s

Gwmoz = heat flow out of the heat exchanger
cooling water in kcal/s

Gms = heat stored in the heat exchanger in
keal/s
Inserting these definitions into equation (14) gives
(Guis +9mi2) = @mo1 +qmo2) = Gus  (19)

By assuming perfect mixing of both air and the
heat transfer medium in the heat exchanger,
ignoring the heat loss through the shell and neglec-
ting the thermal capacitance of the heat rxchanger,

the expressions for ¢,i1 . Gmiz+ Gmo1» a0d g, , are
as follows:

Gmiy = lecr‘t(‘- ta)

= 0pC,T. (16}
Gmiz = QuCpult — 1)

= 0.0.Cp.T.. (17)
Gmor = Q1pCy(1;—1,)

= 0.pC,T; (18)
gmoz = QuPCpllur—1,)

= prwcpwrwh (19)

The rote at which heat energy is stored in the heat
exchanger can be exoressed as

ne = V2,
d(’l—'n)
da
V2pC,dT;
dx

VapC,

(20)

where
C,.. = specitic heat of coolant in kcal '’kg'C

pw
0.

t,. = inlet temperature of coolant in °C

flow rate of coolant in m?/s

i

t., = outlet temperature of coolant in °C
¥, = volume of the heat exchanger occupied
byairinm?
p, = density of coolant in kg/m?
Insertion of equations (16) through (20) into
equation (15) gives

(Q lpCpTc + Q\vaC'wTwc) - (Q lpCpTl

dT,
+ prwC’wTwh) = le CP E;‘

or dividing by 0,pC,,
dT _ Qup.cy(rwl_ Twc)

Tz'a;' +T‘-T¢ (21)

lecp
where 7, is the mean resident time of air in (the
time constant with respect to air flow of) the heat
exchanger in seconds and is defined by

1, = V,/0,

Note that 0,0,Cp(Tus—T.c) is the amount of
heat removed from or added to the system which
can be controlied by adjusting cither Q,, when p,,
C,.. and (7,,-T,,) are constant, ot (Tw—T.)
when Q,, p,, and C,,, are kept constant, or both
Q, snd (7',,-T.,) when p,, and C,,, are constunt.
In order to huve a mathematically neat form, a
hypothetical temperature 7, is defined as

Tp - QJ-C'-(T\*" w)/ lecp

Ty
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Inserting this definition into equation (21) yields
dT7,

— +T, =T —-T, 22)
12 d1 i « (
or in dimensionless form
T, dy; XKy ,
X, = —K(K,0+K,) (22a)
T, dr +x, X, oK, 3) (
where
1
K, =—(T, x—Trmi
2 27-2( rm n)
Ky = 1 (T, pax+ T min)
3= 27-2 r max r min

_ Tr_l(rr m.u+Tr min)
jr noax é(Tr max T Tr min)
control variable

I
T,
Equation (22) is the performance equation of the
heat exchanger which is shown schematically in

figure 3. Note that 0 = +1 when T, =T, and
0= ~1whenT, = T, .

K,0+K,

Fig. 3. Schematic diagram of the heat exchanger.

C. The feedback element—thermostat

Here we simply assume that the sensing element
measures the room temperature instantaneously
and that there is no accumulation of heat in the
element, or for simplicity, it will be assumed that
the sensing element is the zero order element with
its time constant, t;, equal to zero. Reference 23
gives a detailed explanation of the response of the
thermostat.

SIMULATION

With the model in hand, a simulation should be
carried out extensively by means of either a digital
or analog computer. The results of simulation
should then be compared to the known characteri-
stics of the system or to experimentally obtained
data. The comparison enables us to determine the
goodness of the model as an approximate repre-
sentation of the system.

For illustration, let us consider a simple system
in which the time constant of the heat exchanger is

negligibly small, i.e., 7, » 0. For this system we
have from equation (22)

T,=T.-T, (23)

This relation can also be obtained by simple
(steady-state) heat balance around the heat
exchanger. Note that T, is positive whenever heat
is removed from the system and negative when
heat is added. Inserting equation (23) into equation
(12) gives

dT,
1, Fj +r T = T+ 1,Td(x) -r\T,

T‘- = T‘.o_. = 0 at a = 0- (24)

Again note that the room temperature before
introduction of the disturbance is taken to be the
reference temperature. As mentioned previously
this set of equations can be rewritten to give

dT,

d; +ryT, = r,T,~r T,

T.=T.o=T, at 2=0"  (24a)

Ty

Steady state Value of T, before Disturbance, T,,_
The steady state value of 7, before disturbance,
T,o-, can be evaluated by inserting

dT,
TC—O,T‘—O, and -d—;—o

into equation (24). This gives rise to

T
TrO-gc':__z" '1#0 (25)
t

Note that the steady state value of 7, which is
denoted by T,, is zero when the outside air tem-
perature, T,, is zero, or when the ratio of the fresh
air to the total air is zero. This solution can also be
obtained by either over-all heat balance arounA the
system or heat balances around the room and the
heat exchanger.

(1) Over-all heat balance around the syszem
(figure 4) ¢

Q »C,T,
Heot
Exchonger
--1(0,+Q, ) oC,T,
Te
Q:4C,T, Q, 2C,T,

Fig. 4. Overall heat balance of the system with t = U,

T -

hanters B
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Q:0C, T, —(@:pC,T.+QpC,T,) =0 Therefore
Therefore, A =T.o—T:+ nt,
T r,T r2
Tpo- = 0Ty _ 1ol (25a) and

0, T
Recall that T, equals zero.

(2) Heat balances around the room and the
heat exchanger

(Qll)cpri+ QZPCpT2) =0

and
leCpTi+ leCpTr =0

Solving for T, , from these equations, we obtain

T
T —T’°-= _T['_:ZF—!
1

The final steady state value of T,, T,
The final steady state value of T,, which is
denoted by T,,, can be obtained by letting

T.=0 and d—T-—O
da

in equation (24). Hence

T,= [t,Tﬁ(zH—rsz]

Initial value of T,
The initial value of T, at ¢ = 0% can be calculated
by the following relation representing the heat
balance between the condition before and that after
the disturbance.
leCthO = leCpTd

or

To=T, (26)

The desired final value of T, is zero. Meanwhile,
the lower bound of T, 7, ..., is set at 0°C. Various
cases with different upper bounds of 7, T, ...
will be simulated.

The solution of T,

Simulation of the desired model can be carried
out when the form of 7, and the numerical values
of the parameters are known, In case 7, is the step
function, i.e., 7, remains constant after « = 0,
equation (24a) can be intcgrated as

70 = exp (= 2) [ 4,7, e (12)

I

_nT o (ne
ra exp(tl )]
where A, is an integration constant. The +alue of
A, can be determined by employing the initial
conditionata = 0*, thatis,

T¢-r‘g at C-o’

T T exp(— r—”) +Tz[l—exp(— z)]
T, T,
'r'_r'["exp(—iﬁ)]-r”eo @n
ra T

Note that we can also solve equation (24) by
means of Laplace transform. Laplace transforma-
tion of equation (24) gives

ral, T, Ty
S(tys+ry)  s(Tys+ry) T s+,

Tr(s) =

Inversion of the above equation gives

T.(x)= T,exp(— —;—) +T2[l—exp(~ C{Z—I)]
1 1
Il exp [ 12
T [l cxp( "!)]

which is identical to equation (27) because T, =
T, as given by equation (26). 2, can be found from
equation (27) by setting 7, = 0.
nT,—r,T,
Teor:=Tory+rT,

o —-—l
f ry

),rz;ﬁo (28)

For r, = 0 or equivalently r, = 1, equation (24)
becomes
dT I max

‘d—a"'Ta"() —r:‘,z—o

Integrating this equation, we have

T,
T.= ~-"2a+T, (27a)

T

%, can be obtained by setting 7, = Oas
Tcotl

a, = —i::,r2=0 (28a)

Numerical examples
It is assumed that the volume of the system

proper (room or cabin), V', is
V, = 3Imxdmx5m
= 60m>
The flow rate of air in the system, Q, is

Q = (cross-sectional area of the .ystem) x (air
velocity in the system)

= (3Imx4m)0-1 m/s)
= 12m3s
and flow rates of circulation air and fresh air are
Q, = 080 = 0:96 m*/s
0; = 020 = 024m*fs

e, r.

|
%
3
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The time constant of the system proper, 7,, is

14 4 60
Other numerical values employed are
T, =10°C
T, =20°C
T, min =0°C
T = ':lT’ SR 2sc

Here two examples with different heat removing
i (or control) capacities of the heat exchanger are

considered. The first example is for the case in
t which the maximum load (heat removing capacity)
of the heat exchanger, T, .., is set equal to 2-5°C.
The second example is for tke case in which the
maximum load of the heat exchanger, T, ...,. is set
to be 30°C.

Casel:T, poy = 2:5°C

For this case, we have, from equations (27) and
s ' (28)9

Tx) = 20exp(—_5_0) +,0[,_exp(_r_£_)]

N SRRy s = o en v

1,'-‘

2, I35ty
25’|+10’3
ifry # 0,and

T.(x) = 20-2/20
aj - m

ifr, = 0.

The results of simulation are shown schematically
infigure §.

Um @7) wich
T = 10°Cand Ty = 20°C

m.’o M 4

Case2:T, ., = 30°C

For this case, we have from equations (27) and
(28)

T.=20 exP(-m)Ho[l—cxp(-'-‘—“)]
T T,
-4 x30[l-cxp(— 23’)]
r; Ty

2= :ﬂln(:‘"'” _ —i)l Iry—r,
ry ry+3r, ry \ry+3r,

ifry # 0,and
T, = 20-06c
% = 333 sec.

if 7, =0. The results of simulation are shown
schematically in figure 5.

Similarly, we can carry out the simulation by
employing the dimensionless form of the perfor-
mance equation. The performance equation in
d‘mensionless form can be obtained by combining
:quations (12a) and (22a) and setting :, = Oas

dx
"‘d"'l"""'le ﬂ’zK, +K,¢6(I)—r,K1K10—I,K|K,
(29)
Boundary conditions are

X, =0 at r -0~
X,=0 at 1=T7T

As mentioned previe --i. th:: set of equations can
aiso be written as

dx

-aT‘+-'2x‘=’ h!' (’K:",ﬂ ",K,K;
x‘-l at "’,\.;‘ (29’)
x,=0 a g1

First of all, let us assuwe 0 is a given control
action and is equal to 0, = ). Then equation
(293) can be integrated as follows:

x;(’) - “N-’:')[A3+K‘ u“’:')

_ nkK,K,

rK,K
o) 1KiKs ,,,,(,,,)]
ra
ry%0

Application of the boundary condition, x, = |
atsr = 0",yields

Aa - l—x"" r.K,K; + r,K!K,

r; r;

and

g
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Final time, 7, corresponding to the end of control,
can be obtaired by using the condition

Xy=0 at =T
This yields

_ Lln r K\ K, +r, K\ Ky—r, K,
B ra fz-'rzkl +f|K|K2+r|K|K3 ’

ry # 0 (3')
orr, = 0, equation (29) becomes

dv .

7“7' = K,00(0)~K,K;— KKy
ot inintegrated form

X)) = —K(K;+Kyi+1, rp =0 (30a)
T can be obtained by employing
x;=0 at ¢+=T

This gives
-—
K(K:+K5)'

Two examples which correspond to the problems
solved in dimensional form are considered here.

Casel:T,,,, = 25°C

For this case, we have, from the definitions of
K, and K, and equations (30)and (31),

T r; =0 (31a)

o (T~ Tymid) = 35 (25-0) = 0128

K) . (Trul+Trnln) - 2'13(2’5"'0) = 0128

"o,

x,(t) = exp( —r;t)+0-5{i —exp(—r,t)}

0-125r,
r;

[l —ex“-’zf)l, ry v 0

ey V‘F'TL"’
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X1y = exp{—=ry)+ K[l —exp(—r.¢ 7 - _l_m[oﬁ-lz.ir,—_o-_s_i_;,’ r £ 0
) Q_l_‘ﬁ‘_’}“_cxp(_rzm_ rA Ky | r, F 0-125r, +0-5r, 4 .
s s v = =015+, ry -0
[1—exp(—ryt)} ry # 0 (30) ! ro=0

T =313 2

The results of simulation are shown in figure 6.

Case2:7,,. = 30C

For this case, we have

; }
kz = ‘2—1',;(Trmu"‘r,mm) = 5-0-(30_0) = I'S

| 1.
KJ = 2'_772 (Trmal""'Trmin) = '2-6(-’0"’0) =15

X 1) = exp(=r,N+0-5[1 —exp(—r,1)]

—l'S? [V—exp(—ryn)), r; #0
2

i l’5r|-0'5f2

T=~—In: r,#0
ry O5ry+15r,° 2
x(t)= —-1:5t+1, r;=0
T ‘ 0
= —— ry =
15’ ?
00 )
ol a2 !
\\ : -021,-0“". ;
5:[: tx ”0""0.5"'-. H
N PN
\t’ 1
o RS 0N i
X. ~ ” \” {
\n’oo\..

o4}~ RN i
— “""'olzs \'t‘ e 1
o = keyes RN ;
& ~ ~ H
o 1 1 Sy S :

Fig. 6. Result of simulation of eguation (30) with
Ty = 10°CaniT, = 20°C.

The results of simulation are shown in figure 6
and tabulated in Tabl 1.

Note that the numerical examples are restricted
to the cooling problems for simplicity. However,

Toble |. Simulotion re-ults for impuise heat disturbance.
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the performance equations developed here can be dv Kz,
pe d pe ] +X, = ALNRFH +r,A + K, 0R(1) (35))

applied to the case in which air is heated in the
heat exchanger, i.e., 7, is negative. In other words,
the performance equations can take into account
both heating and cooling uctions of the heat
exchanger.

GENERAL SYSTEM EQUATIONS

In th: preceding section, thc performance
equations have been derived for the cascs in which
the disturbance is of the form of the impulse
function and air in the cabin or room is completely
mixed. However, the procedure for deriving the
performance equations is fairly general and can be
extended to cases in which the disturbances arc of
the form other than the impuwise function and air
in the room or cabin is far from being completely
mixed.

First, lct us consider the case resultin.g from siep
heat disturbance while otl._r conditions remain
unchanged from those considered in the preceding
section. The heat disturbance g,, has the form

Gus = (@1 + Q2)pC, T, Uy(2) (32)

The performance equaivion, for the system proper
can be obtained as

i
Y da

or in dimensionless form

T +T‘. = V,T,+r27'2 + T‘L’o(a) (33)

dr,
dt

A‘,’,X:
K

+r:K| +K|0Uo(')
(33a)

Similarly, for the system with raiap heat distur-
bance, we have

Xy =

do=220) o rpy 9

Vy
dT, T.R(x)
11 .d;" +T,'r,7‘+"373+ ‘t'

(3%)

dr K,
in general, the dimensionfess perf » - 1ce equation
for the system elcinent can be written as

dv R
— 4y, = MLILE
dr K,

where F(t) stands for the functional form of the
heat disturbance which can be impulse function
a(1), unit step function U(1). ramp function R(1)
{or tU(1)), cyclic disturbance or any other Jdistur-
bance. This equation together with equation (22a)
form the complete dimensionless system cquations,
that is,

+r,K, +K,0F1)  (36)

dx rnkx .
TV =T ki Kekn - 06)
7, dx K,

2020 =0 k(K 0+K,)  (22)

t, &t K,
1t is worth noting that the initial condition for T, is
T.=T-=Te=0 at 2 =0 and 0+

and the initial conditioi: for x, is
y=—=-—=1{ at t=0"and 0"

(Note that for the heat disturbance represented by
the unit step or & hgher order function, T, _. the
T, before introduction ol the disturbance is identical
to T4, the T, immediately after introduction of the
disturbance. The value of 7,, or T,, can be zero
if the reference temperature 1, is takento be 1, _, the
room temperatui¢ before introdnction of the distur-
bance as done in the case of the impulse input-
Lowever, this should be avoided because of the
definition of K, (t; — 1)1, -~ 1), which is
employed in developing dimensionless forms of the
systems equations. if 1, = 1,4, K, approaches oo,
which should be avoided). The performance
equations for various types of heat disturtances
are tabulated in Table 2.

Table 2. The performance equation for system elemens,

Type of heat The Jimensionless Initial condition
disturbances performance equations ofT
’Mk’) % +x, = r‘x—xll‘+'3“+‘|ﬂ\'“) 0
4

or or

‘%"4—:. -%xﬂ»r,l’ |
Siep V1) % +xy - :_‘K_K‘_; x34+ 172K+ KiaUy(0) 1
M“‘) % +x; - 5"_"‘!.'|+'.x|* K.ek(t) ]
General F(s) %" X - l'_;_f‘! x34 3K+ K. 0F(0) |
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Applications of Modern Optimal Control Theory 67
PERFORMANCE EQUATIONS FOR dT,,
TWO COMPARTMENTS MODEL T, Hla=nTitnT,

Next, let us consider the case in which air in the
room or cabin is no longer in the state of complete
mixing. Specifically, we shall consider the case in
which flow of air in the room can be characterized
by two completely stirred tanks (or pools or com-
partments)in-series model (2 CST’s-in-series model).

The following assumptions must be added to
t . . already made for the system proper in the
preceding section:

(a) The room is divided into two well mixed
compartments in series. Volume of each pool is
denoted by ¥V, , and V,,, and the temperature in
each pool is denoted by 7., and T,

(b) Backflow of air from the second compart-
ment to the first compartment is negligible.

(c) Disturbances are equally distributed over the
system.

(d) Fresh air comes into the first compartment
at a constant flow rate, while exhaust air is released
from the second compartment at a constant flow
rate. The schematic diagram of the system is shown
in figure 7. The performance equation for each

8@ 21,8

Fig. 1. Schematic expression of a room represented by
the two CST's-in-series model.

pool can be obtained by using the transient heat
balance around each compartment. Thus, for

pool 1,
[heat in] - [heat out] = [heat accumuiation] (37)

or

|4
[Q:7ipCy+ QaT1pCyt 2 TV 110C))

a7,
=(@1+QIT.10C, = VipCy 32 (39)
Dividing this equation by pC(Q, + Q,) yields
dT,

TGy +Ty = rTi+r,T, + —fuTﬁ(ﬂl)

39

or

Ty =Ty at t=0"

<

where 7, is the time constant of pool 1 and is
defined by
Vo

0,+0,

Ty =

Note that
K}i_;lll(Ql Qz _

Vi Vi(Q.+Q)) Ty

Similarly, for pool 2 we hzve

(Q+ 0T pC,+ - zr.é(a)mpcpl

dT,
—(Q1+ Q)T =V pCp— (40)

d

Again dividing this equation by pC,(Q,+Q,)
yields

dT. .
Ti2 g 2 4T, =T, + %TI:TN(G) 41)

T, =0 at a=0"
or

dT.
"nz‘gf +T, =T,

T(.z = T‘.zo at a = 0+

where 1,, is the time constant of pool 2 and is
defined by
Via

Ci+0Q;

For the heat exchanger, we have from equation
22

T12 =

Ty t‘:’T, +T,=T.,-T, 42)

Equations (39), (41) and (42) are the performance
equations of the system. We may rewrite these in
dimensionless form by defining

L KTy o _ T

e R

3

o F
e, P 3

:
i
%
3
P d
%
pres
k57

TAE O e R T - e

rY

L ST

e S
- K.y



gy

BRIt o0 sacoggpon. s

‘. ::'" ‘.3?'1”-’. . e
68 L. T Fan, Y. S. Hwang and C. L. Hwang
Introducing these definitions into equations (39), NOMENCLATURE
(41) and (42), we have as rK,K,
dx .
—d;“' +rXyy = @ Xy +a+agd) ae rKiK,
(43) apy rKyyry /Ky
dx,, . " ay;  riraKyy
ar +riadgy = ay1% s +a230(0) (44) a,, TKy Tarrs
dx, N 0 45) ay;  r2K2/Ky
—= 4rx, = a4Xy3—asV—a
dr ? e ° a3 T,K,3/Tory,
where a,; KKy,
ay, =r KK A, Integration constant
a,; = ryrKy, A, Integration constant
a3 = T,K1[Tarpy ¢,  Specificheat of air in kcal/kg"C
az;, = ri2K Ky, ¢,  Specific heat of coolant in kcal kg°C
ayy = T,K 3Ty, F(r) Functional form of heat disturbance de-
dyy = KK, fincd in equation (36)
as = rK,K, K, FTE
g =T K;K‘ ‘]‘0
—AT. . —
ry = l.’,_ KZ 2T2( r max Tr min)
T11 I
T, KJ E; (Tr max+ Tr min)
Iy ="
Ti2 T
K, =
=L Tio
T2 X T2
The performance equations derived in this T
section can also be used for simulation either on a T
digital or on an analog computer by following the Ky, -T—,-i—
procedure presented in the preceding section. For 2c0
any given forms of the air flow model and heat M,  vype,T,
disturbance, the forms of the dimensional systems H . . )
s ! eat disturbance ra
equations, which essentially represent heat balances 9a keal/. ec te in impulse form in
are fixed; however, these can be transformed into ) .
a variety of dimensionless forms and the forms 9u Heat disturbance rate in step kcal/s
given here are not necessarily the most convenient a Heat flow into the system proper by
ones, circulation air in kcal/s
di2 Heat flow into the system proper by ‘resh
CONCLUSION air in keal/s
Methodology and procedure used in this partcan ~ Imi1 Heat bl:ougl}t into the heat exchanger by
also be employed for constructing and simulating circulation air in keal/s
models for other systems in 'which mass and gz Heat brought into the heat exchanger by
momentum transfer :m:ll chemical reactions are cooling water in kcal/s
involved in addition to heat transfer. The perfor- .
nance equations derived in this part will be em- gwo1 l-!eat ﬂqw out of the heat exchanger with
ployed in the succeeding part of this series to circulation air in keal/s
determine the optimal control policy based on the  g,,, Heat flow out of the heat exchanger by

modern optimal control theory.

cooling water in kcal/s

s~ Sepan 165
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Applications of Modern Optimal Control Theory 69
Heat stored in the heat exchanger in T, Final steady state value of 7,
keal s T, ma. Upperbourdof T,in C
hFat ﬂqw out of thve system proper by T, ... LowerboundofT,in C
circulation air inkcal s lue of
. T, Valueof T,atx = 0-in C
Heat flow out of the system proper by 0 o
fresh air in keal's Twe tloe—t.in'C
Q.+ 0Q,, flow rate of air in the system Tuw  ta—tin'C
properinm?’s T,, Temperature of pooltin C
Air flow rate by circulationairinm? s T,, Temperature of pooi2in C
Flow rate of fresh airinm?® s Uo(t) Step heat disturbance function
Flow rate of coolant in m’;’s v, Volume of room in m?
7,73, the ratio of time constant of system V.,  Volume of pool 1 of two completely stirred
proper to that of heat exchanger tanks in series model in m*
o i J
2, , the fraction of circulation air V2 Volume of heat exchanger in m
0.+ 0, 4 Volume of pool 2 of two completely stirred
12 ¢
. . tanks in series modelin m
9 . the fraction of fresh air
2,1+, T. . )
c xy(1) —T-_-— ,dimensionless room temperature
1 c0
Tt T;
x,(1) —, dimensionless temperature of the
12 . . .
— i0 circulation air
T2 T
. . 1 . .
Ramp heat disturbance function Xy, =, dimensionless temperature of pool 1
10
LT . . ‘
—, dimensionless time T., . .
T, X2 3 dimensionless temperature of pool 2
c20

Reference temperature in °C

Room temperature in °C

Disturbance temperature in “C
Temperature of incoming circulation air
in°C

Inlet temperature of coolant in °C
Outlet temperature of coolant in °C
Outside air temperature in °C

Final time, dim2nsionless

(1.—1,), room temperature in °C
Laplace transform of T (x)

Room temperaturcata = 0* in °C
Temperature of pool 1 in °C
Temperature of pool 1 ata = 0* in °C
Temperature of pool2in °C
Temperature of pool 2ata = 0*
(t,—1,), disturbance temperature in °C

(t,~1,), temperature of the circulation air
into the system, in °C

Temperature of the circulation air into the
systemata = 0* in°C

QubetplTus=Tu) hypothetical tempera-
lecp ture

Greek letters

Ty

Th

12

Ty2

é(a)

Time in sec

Final time in sec

Iupulse heat disturbance function, s~
Air density in kg/m?

Density of coolant in kg/m*

1

T, .. . .
?‘!- , dimensionless disturbance temperature
2

|4 .
—~1— _ time constant of the system proper

0,+Q; ins

| 4 . .
——2_  time constant of pool 1 in's

0,+0Q;

14 .
—2._time constant of heat exchangerin s
1

-—V-'-z—-,timeconstmt of pool 2ins

0:+0:

T, - &(T, moz Tr nln)
Tv max "*(Tr — Tr n!n)

+1 at T, =T,
-1 at T, =7,

Heat disturbance function

. control variable
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Ay olications of Modern Optimal Control Theory

Plusieurs modéles methématiques d'un systéme dc contrdle environnant consistant
d’un espace ou d'une cabine limités, d'un échangeur de chaleur et d’un éiément de
rétroaction tel qu'un ;hermostat, sont présentés, Les équations de performance du
systéeme qui représentent les caractéristiques dynamiques du systéme lui-méme et de
I'échangeur de chaleur (L’él¢ément de controle du systéme) sont dérivés. Dans le
modele fondamental, 1= courant d’air dans l'espace limité est considéré étre dans
I'état de mélange complet et la perturbation est due a une entrée de chaleur par impul-
sion. Les équations de performance, dans lesquelies les perturbations de chascur sont
d’une forme telle que la fonction d’étape et la fonction cyclique qui sont dviférentes
de la fonction d’impulsion, sont également dérivées. On présente égalenient les
équations de performance qui représentent les caractéristiques dynamiques d'un
courant d’air dans un espace ou une cabine limités caractérisés par les deux modéles
de vaisseaux en série complétement agités (2 CST en série).

Alin de deternier la valeur du modéle, on utilise une simulation par ordinateur
et les résultats sont comparés aux caractéristiques connues du systéme.

Mehicre mathematische Modelle eines Umgebungs-Kontrollsystems, das aus einem
begrenzten Raum oder Kabine, cinem Wirmetauscher und einem Riickwirkungs-
element, wie z.B. einem Thermostaten besteht, wurden dargestellt. Die Leistungs-
gleichunpen des Systems, welche die dynamischen Eigenschaften des eigentlichen
Systems und des Warmeaustauschers (dem Kontrollclement des Systems) darstellen,
werden abgeleitet. In dem grundlegenden Modell wird der Luftstrom in dem begrenz-
ten Raum als griindlich gemischt angesehen und die Beursuhigung wird durch
einen zugefiihrten Wirmeimpuls verursacht. Die Leistungsgleic. nngen, in weichen
die Warmestdrungen in der Art wie die Stufenfunktion und zyklische Funktion sind,
welche anders als die Impulsfunktion sind, werden ebenfalls abgeleitet. Es werden
ausserdem die Leistungsgleichungen dargestelilt, welche die dynamischen Eigenschaften
der Luftstrdmung in einem begrenzten Raum oder Kabine wiedergeben, was mit dem
Modell von zwei vollig aufgeriihrten Reihentanks (2 CST's-ir-series) geschildert wird.

Eine Komputer Nachahmung wird durchgefiihrt, um die Giite des Systemmodells
zu ermitteln, und die Ergebnisse werden mit den bekannten Eigenschaften des
Systems verglichen.
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Application of Modern Optimal Control
Theory to Environmental Control of ’
Confined Spaces and Life Support Systems’

Part 2—Basic Computational Algorithm of Pontryagin’s
. Maximum Principle and its Applications

L. T. FAN}
Y. S. HWANGt
C. L. HWANG?

The basic form of Pontryagin’s maximum principle which is a keystone of the
modern oprimal contiol iheory is presented. The principle is applied to the
determination of optimal control policies of several life support or environmental
control systems.

Three concrete examples all of which are concerned with the temperature
control of a life support system consisting of an air-conditioned cabin (the
system proper) subject to an impulse heat disturbance and of a heat exchanger .
(the control element) are considered. The first example treats the case in which i
the time constant of the heat exchanger is negligible. The second example .
considers the case in which the time constant of the heat exchanger is not
ignored. In the third example the optimal policy of the system where the flow
of air in the cabin can be characterized by the two completely stirred tanks-in- ;
series (2 CST’s-in-series) model is studied. In this example, the time constant of B
the heat exchanger is again neglected. Procedures and computational approaches :
employed for obtaining the optimal control policies are given in detail.

.

> Sermape g gy~

INTRODUCTION In this particular article the most basic form of

MATHEMATICAL models of air-conditioned Pontryagin’s maximum principle will be stated and

. ' rooms or cabins or life support systems have been it wnl! then be used fon; determining opt.nmal
RN established in the preceding article[I]. In this and  OPerating policies of the life support or environ-
o mental control systems which were described in

two of the succeeding articles, the various forms of

RO,

R - Pontryagin’s maximum principle[2-8] will be Part 1 of this series1].
introduced and will be used to determine the
optimal control policies for such systems. STATEMENT OF ALGORITHM
Use of the maximum principle almost always ) . .
gives risc to a two-point split boundary value Consider that the dynamic behavior of a con-

problem, the solution of which will be further  trolled system can be represented by a set of
elaborated. Even though this principle leads to differential equations
two-point boundary value problems which are dx,
often difficult to solve, it still provides a practical T Silx (), x50, ..., x(6); 04(0), ..., O],
approach to process systems optimization.
Another difficulty also arises in using the maxi- i=12..,s 1)
mum principle formulation as the basis for com- 1oSI1ST
puting optimal control. The maximum principle =
generally provides only the necessary condition or in vector form
but not the sufficient condition which must be dx
satisfied by the optimal control. e SIx(1),6(1)), tostST (1a)

Schns work whs supporied Ami;mmummﬁ where x(f) is an s-dimensional vector function
States Air Force, Under Contract F 44620-68-0020 (Themis  Tepresenting the state of the process at time ¢

&wﬁ and NASA Grant Under Contract NGR-17- and 6(¢) is an r-dimensional vector function re-
# Institute of systems design and optimization, Kansas presenting the decision at tafnet[z, 3). The functions
State Unive.sity, Manhattan, Kansas, Jii=1,2 .., s are single valued, bounded,

PRECEDING PAGE BLANK NOT FILMED




W o gyl

R AR

.y
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differentiable with respect to the x's with bounded
first partial derivatives, and are continuous in the
0’s on a product region x(), where x and 0 are closed
regions in the s-dimensional x-space and r-dimen-
sional d-space respectively[5]. Note that we are
dealing with the autonomous systems in which the
right-hand side of the performance equation,
equation (1), depends implicitly on time r. The non-
autonomous systems are those in which the right-
hand side of the performance equation, equation
(1), depends explicitly on time ¢.

A typical optimization problem associated with
such a process is to find a piecewise continuous
decision vector function, 6(t) subject to the p-
dimensional constraints

N =0, i=12..,p 2

such that the performance index
S= Y ¢x(T), ¢, = constant (3)
-1

is minimum (or maximum) when the initial condi-
tions

X(to) = X0, i=1,2,..,5 4)

are given. The duration of control. T, is specified
and the final conditions of state variables are
unfixed. This type of problem is often called the
free right-end problem (with fixed T). The decision
vector (or a collection of contro! variables) so
chosen is called an optimal decision vector (or
optimal control variables) and is denoted by 0(t).

The procedure for solving the problem is to
introduce an s-dimensional adjoint vector z(r)and a
Hamiltonian function # which satisfy the following
relation;

s

Hx(), O(1), 2(1)] = le,(t)f,(x(r), 6(1)) &)

dz o s

of,
/) -
a o, i=12..,5s (6)

z ’
j=1 ! 0x;
2(T) = ¢, i=L2,...,5 (0

The set of equations, equations (1), (4), (6) and
(7), constitutes a two-point split boundary value
problem, whose solution depends on 6(¢). The
optimal decision ve:tor 6(f) which makes S an
extremum also make: the Hamiltonian an extremum
foralle,ie., 1y S t < T[2,3,5,6).

A necessary condition for S to be an extremum
with respect to 6(t) is

ik 4 .

3, =0, i=12,..,r (8)
if the optimal decision vector is interior to the set
of admissible decision 6(¢) [the set given by equation
(). If 6(t) is constrained, the optimal decision
vector 8(¢) is deterinined either by solving equation

(8) for &(1) or by =earching the boundary of the szt.
More specificali, the extremum value of Hamil-
tonian is maximum (or minimum) when the control
variables are on the constraint boundary. Further-
more, the extremum value of the Hamiltonian is
constant at every point of time under the optimal
condition. It is worth noting that the final condi-
tions of the adjoint variables. z(T), are often given
as —c, instead of ¢, as shown in equation (7),
in employing the maximum principle of Pontryagin.
The use of such finai conditions of z(r) gives rise to
the condition that the Hamiltonian is maximum
when the objective function is minimized, and
minimum when the objective function is maxi-
mized as stated in the original version of the
maximum principle of Pcntryagin[2,3,6).

If both the initial ana final conditions of state
variables are given, the problem is said to be a
boundary value problem. The basic algorithm
presented except the condition given by equation
(7) is still applicable[3].

If optimization (usuvlly minimization) of time ¢
is involved in the objective function in a problem
with an unfixed duration of control, T, the problem
is then called a time: optimal problem. In this case,
the basic algorithm presented is still applicable
with an additiona! conditicn: that the extremal
value of the Hamilorian is not ¢nly a constant
but also identical to zxro. The simp'est example of
the time optimal <ontyrol probletn is one in which
the performance ir:dex is of ihe form

T
S .= fdr
[\]

Such a problem is oftcn called a minimum time
problem.

EXAMPLES

The basic form of the maximum principle
presented in the preceding section will be applied
to concrete examples. Procedures and computa-
tional approaches employed will be given in detail.

Example 1-—Suppose that the dynamic behavior
of a life support system consisting of an air-
conditioned room or cabin subject to the impulse
heat disturbance and a heat exchanger with
negligibly small time constant (t, — 0), can be
represented by the following equation!] [equation
(29a) in Part 1 of this series]:

dx, .
ar +ryx, = ryK,—r K,K,0-1, K, Ky (9
with
x‘(O)ltl at t-O"’

x‘(T)-o at t=T

e

—
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where T is the unspecified final control time. We
wish to determine 0 so that the response of the
system can return to its desired state in a2 minimum
period of time, that is 10 minimize

r
S= [dt (10)
0
If an additional state variable v, is introduced as
1
xy() = | dr,
[
it follows that
dx
-d’—l =1, x,00)=0 an

The problem is thus transformed into that of
minimizing x (7).

According to equation (5), the Hamiltonian is
Hz(1), x(1), 0(1))

=g, 4, 90
Tt de T dr
= z,[—ryx,+r:K,—r K Ky0—r K, K5l +2,

(12)

The components of the adjoint vector, according to
equation (6), are defined by

dz, CH

F’-'—' -5;:=rzz, (13)

de (/I

d' a 5 y ZZ(T) l ( )
Solutions of equations (13) and (14) are

z,(1) = Axp(ry!) (15)

2,()=1, 05tsT (16)

where A is the integration constant to be determined
later. Inserting equation (16) into equation (12)
yields

t = —rlKlezlo—r12|X|+r2K|Z|—r‘Klez,
+1 17

Therefore the switching function J#*, the portion of
JF which depends on 8, is
-*‘ = —r|K|KzZ|0 (18)

Recall that minimization of the Hamiltonian with
respect to @ corresponds to that of the objective
function. Equation (18), however, indicates that the
minimization of the Hamiltonian with respect to ¢
is equivalent to that of the switching function. Thus,
minimization of the switching function corresponds
to that of the objective function. Equation (18) also
indicates that for the switching function to assume
the minimuin value, 6 must assume its minimum
allowable or its maximum allowable value depen-
ding on the sign of the coefficient of 6.

0=0=1 il —r,K,Kyz; <0 (19
0=0,,=-1 if —r KKy >0

Time optimal contro’ policy of this type is of
bang-bang type {3, 4. 6, 9].

In the case where the coefficient of 0 in equation
(18) vanishes, we have the possibility of singular
control[10]. For singular control, the control
variable takes on values which are intermediate to
sy and 0, - hence the name intermediate control
is also used in place of the singular control[10]. Also
inertialess control will be considered. An inertialess
controller has the ability to shift from 0, to 0,
instantaneously and vice versa.

The maximum principle now requires that the
system equations, equations (9) and (11), be
integrated simuitaneously with the adjoint equation
(13) so that the two-point boundary conditions

x,(0) = 1, (T)=0
x,(0) =0, x3(T) = undetermined
2,(0) = undetermined, :,(T) = undetermined

are satisfied. For this minimum time problem
extremum of the Hamiltonian must vanish at every
point of its response.

In order to bring the initial deviated state
x,(0%) = 1 to the final desired operating state
x,(T) = 0, we intuitively reject the control 0 =
Omin = —1 (which corresponds to the minimum
cooling action). Equation (9) can be integrated
with the conditions

0= O = 1 (20)
and
x,0=1 at r=0* Q1)
as

1
xi(’) = exp(—’zt)"' r— (rZKI"rlKlKZ
2
—r K K31 —expl—r,t])
= expl-ratl+ T(-expl-rat)  (22)
2

where
n=r,K,—rK,K,—r KKy (22a)

The integration constant A in equation (15) can
be determined by using the condition that minimuin
H is zero for all the process time in time optimal
control. At ¢ = 0%, we have from equations (15),
(17}, (20)and (21)

1

*) = —
4 =2,07) n~rs

and

-1
2y() = —

exp(rat) 23)

«2 {,;r .
-
J'-v‘::
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Equation (23) implies that =(¢) will not change sign
since =,(1) — 0 only when ¢ approaches ncgative
infinity, or in other words, control will not shift
from 0., to 0, (or from 0, to 0,,,). Therefore,
this problem is a particular case of bang-bang
control which has the bang part only. The optimal
control policy starts with 7, ,,. and then keeps
operating at the upper bound of T, until the final
desired state is reached. The final control time can
be obtained from equations (17) and (20) together
with the final condition

x(=0 at +r=T

as follows
” = :I(T)[—rz.\'l(T)+n]+l = 0
or solving for z,(T)

z(T) = -1 (24)
n

Also we have, from equation (23),atr =T

(D) = exp(r,T) (25)

n-—-r;

Solving for T from equations (24) and (25) gives

r=1m (""’) (26)

r n

This solution may be verified by inserting it into
equation (22) as

x(T)

= exp(—r,T)+ :’— {1—exp(r,7)}
2

This indicates that the Hamiltonian is kept at zero
at every point of its response in this minimum
time problem. For

ry=08 »r; =02
Ky=05 K, =15
Ky=15 o=2,

we have from equations (22), (23) and (26)

z,() = l_‘j exp(0-21) = 0-769 exp(0-2r) (27)

x,(1) = 6 exp(—0:21)—5$ (28)
T = 08353

and from equation (27)

!
5= =0769 at 1=0

[9%)

1
:,=ﬁ=0-909 at +=T

f
T
T os
x
n 1 ] P
°© 02 o4 06 08 10
t
i
z
@
1 1 L P
o o2 0s 06 08 i
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|
€ os}
~
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0 52 0a 06 08 10
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Fig. 1. Optimal conirol policy and sysiem response of the
one CST model 1, = 0 [Example 1].

Equations (27) and (28) are graphically shown in
figure 1. The state variable x, approaches asympto-
tically to the final state, the control variable 0
remains at unity until the final state is reached, and
the adjoint vector increases asymptotically. The
optimal control can be verified by computing #
at an arbitrary point, say 0-5, of the time co-
ordinate as follows:

1 =05
2,(1) = exp(—0-1)1-3
x,(1) = 6.5 exp(—0-1)-5-§

and
H = Z‘(’x—’z.\"+fzKl-I|K|K3-’|K‘K3]+l
- ""‘:” {-02465 exp(~01)=55)  (29)
+02x0-5-1-2} +1
-0

e e
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This computation shows that the minimum value of
18 zero at every point of this continuous process.

Four cases with different cooling capacities of
the heat exchangers are considered here. T, ..
and 7, . take the followmg values for these tour
cases:

Case 127, ,,,,=30C T,,,=0C

Case 2:7,,,,=20C 7,,.,=0C
Cane3:7, 0, =1W00C T,,.=0C
Cased: 7,0 = SC T,,.,=0C

The numerical solutions for these cases are obtained
from equations (22). (23) and (26). and are tatulated
i Table 1.

Table \. Optimal solutions of the one CST
model together with t; = 0 [Example 1)

Case Twoboundsof KA, KA, Fmaltime7
number  control vanable

JoC 150 150 08353

1 T, mer =
rmin = 0C
2 T =20C 100 100 1:2366
Tomin =0C
3 Trman = 10C 050 050 2-5541
rein = 0 C
4 Town=°C 0-25 025 5493
Tomn=0C

Example 2— Generally, responses of the heat
exchanger as well us the cabin are not always
instantaneous. Suppose that for the system con-
sidered in the first example, the time constant of
the heat exchanger, t,, is not so small as to be
ignored. The performance equations for such a
system have been derived in the first part of this
series of articles {equations (122) and (22a) in [1]}.

dv
——-—d" +x, =a,x,+a, (30)
dx
—5[—2- +rx, = aux,—asl~a, 31

with the initial and the final conditions
x;0*)=1 and x,(0*)=1 at r=0"(32)
x(TYy=0 and xxT)=1 at 1=T (32a)
The decision variable @ is coustrained as
o] =1
where
poe oL
2
a, =r KK,
a, = rK,
ay = Ko
K,y
K,
a, = rK,K,
a, = rK,K,

’ (72 # 0)

Ay =

We wish to determine the contr .able 0 5o that
the state varables may be brought trom the mitial
deviated state [y, = 1w, - foati - 0] to the
final destred state [v, = 0., - 1Jarsr Toma
nummum tme In other words

.I
S= |{dr
o
1s to be minimized.

i an additional state vanable yosintroduced as

) = dr (33
[
itfoffows that
dy,
—2 =], w0y =0 REY
dr )
and
J
x(Ty= fdr =5 (35)
1}

The problem is now transformed into that of
minimizing x,(7) because x,(T)and S are identical.
According to equation (5), the Hamiltonian is

#(z,x,0)
Zodn vy dy
U Tt dr T de

Sll=x +a v+ ar]+ -y tagyy
—asll—ag)+z; (36)

Ii

The adjoint variables are defined by

- "v"
"—id._tl‘= “‘(!;T‘ =:'_a4:2 (37)
1
Iy "-”
% = - ‘:—-: rz,—a,z, (38)
(l".z
d_;f - _%’f-z 0, =) =1 (39)
Xy

From equation (39), the solution of = is
=1, 0" S1sT (40)
Hence, the Hamiltonian can be rewritten as
W o=z (=x,+a,v; va)+z(—rx+ay,
~as0—ag)+1 (41)
and the switching function J¥ *, the portion of ¥
which depends on @, is
H® = —a,::o (4'3)
Inspection of ¥ * shows the basic structure of the
time optimal control policy is of the bang-bang

type as in the first example. The conditions for
which the Hamiltonian be minimum are

0=f,, =1 if -as,<0

0-0“-—1 if -a;l;)o (‘2

14
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These conditions also imply that if the switching
occurs, it will be at

A=y =0 (43)

provided that the controller shifts from 0_,, to
0,,; instantanecusly and inertialessly, or vice versa.

Now, the maximum principle requires that the
system equations and the adjoin' variables
equations (30), (31). (34), (37) and 38), be inte-
grated simultaneously in such a way that the two-
point boundary conditions

00 =1 x () =20
x;01) =1 (D=1
x;(0Y) =0 X3\ T) undetermined

z,4(0%) undetermined  z,(T) undetermined
2,(0*) undetermined  z,(7) undetermined

be satisfied. Meanwhile, the Hamiltonian must
remain at zero at every point of its response under
the optimal condition.

In order to bring the initial deviated state
[x4(0*) = 1, x,(0%) = 1], to the final desired state
[x(T) =0, x(T)= 1], we intuitively start the
control from 0 = 0,,, = | (this corresponds to
the maximum cooling action). Substituting this
condition into equations (30) and (31), and elimina-
ting x, give

2
% +(l+r)‘-%:~' +(r—a,a)x,
+(a,as+a,a,—ray) =0 (44)

The solution of this equation is

Xy = A explA )+ A exp(A)+K, 05151,
(45)

where 4, and A4, are constants and their values will
be determined later. 4, and 4, are roots of the
characteiistic equation

B+ +i+(r—aa) =0
and K is the particular solution and its value is
ra;—aa,—a,a,
r—a,a‘

K=
From equation (30), the solution of x, is

Xy - ;'-‘[(1.+ DA, exp(d 1) +(A1+ DA, expldzf)
+K"‘3] (‘6)

The initial conditiors applied to equations (45) and
(46) give

|
Al - '_—"a|+¢:‘“lz"‘+xlj) (‘7)
"l-)-'/

Az- l"'A.‘K (“)

Suppose that the control switches from 0, = |

to 0,;, = —1 at a certain time (switching time ).

Then x (1) and x,(r) after r, are solved from

equations (30) and (31). The results are

(= D,exspli, -+ Dyeant” K 1 St T
(49)

1
Xa(1) = Py ((V+2,)D, expii )
1

+(i 44Dy exp(2)+ K —a,]
t,St£T (30)
where
_ raz+a|as-a|ao
- I‘—ala‘

K'

and D, and D, are constants, and their values can
be determined by using the continuity of x, and «,
with respect to r. We have from equations (45),
(46), (49) and (50)att = 1,

Xi(8,) = A, expli i)+ Ay exp(d )+ K
= D, exp(4,1,)+ D, exp(4 1)+ K’ (51)
and
x() = ‘-:—' [(1+4 )4, exp(4,t,)
+(14+4,)A4; expidy,)+ K—a,)

1
=7 [(1+4,)D, exp(4,1,)
1
+(14+2,)Ds exp(d )+ K ~a,)  (52)
Solving for D, and D, in terms of A,, A, and 1,
from equations (51) and (52),
Dy = A,—E, exp(—4,1) (53
and
Dz = Az—Ez cxm-l;',) (54)
where
iK'= K)
Ay=4,
1'(K‘-K)
A"’}.I
The value of ¢, and that of T can be determined by

employing the final conditions [equation (32a)] at
t = . Thus, equations (49) and (50) become

D, exp(A, 1)+ Dy exp(d; 1)+ K =0  (59)

(l +l|)D| G‘Nlln"'(l +A;)D; C‘“Azn
+K'-a, =q, (56)

Subtracting equation (55) from equation (56) yields
A‘Dg e‘“l‘r)""-zbz exp().,T) =ga, +¢1 (51)

Solving for D; exp{4,T) from the above equation
and equation (55) gives

D; exp(l,T) = E, (5.)

El-
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Subtracting equation (58) from equation (55) gives 15
D, exp(2,T) = E,4 (39) a
where
. a,+a;+l\"/'.3 B
Ey = ——7—+
Ay =iy
E, = 0t K
/.2 _"/.,

..

We have four unknowns. D,, D,, ¢, and T in four
equations (53), (54), (58) and (59). Solving for ¢,.
we have

E, & _ ( E, %
A —E, exp(—4,1)) Ay—E; exp(—4,t,)
(60)

t, can be solved from this equation by a trial and
error procedure, and D, D, and T can ther. e
obtained from equations (53), (54) and (58). The
same numerical values used in Example | are
employed for ry, r;, K, K;, Kyand 6. An additional
constant K,= —4 appears in this and next Ex-
ample. The solutions for four cases are shownin
Table 2 and figures 2-4.

10

X,
-

-2

2}

-4

e 02 o4 o6 o8 o

Fig. 2. Phase plane plots for different cases of the one
CST model with 1, ¥ O and r = 10 [Example 2].

Figure 2 is the phase plane plot, x, vs. x,, for
different cases with fixed #, of 10, while figure 3
shows that of Case | for different values of ». Both
figures show a common feature that all the trajec-
tories of x;vs. x, show onec swilching point.

t - —e, i e - —
0 02 o4 06 o3 e

X,

Fig. 3. Phasc plune g's1 for Case | of the one CST model
with t; ¥ Oanifferent values of r (Example 2).
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However, the speed of respon e can be observed where
in figure 4. x, decreases asymptotically from ¢ = 0 as, = K; Ky,
to 1 = 0-847, and then approaches linearly to the as = K,K,
final desired state. Response of v, concaves a, = KK,

dowrward trom the initial state to 1+ = 0-], and
then inci=ases linearly to ¢ = 0-847, and finaily
decreases linearly to the end. This figure also shows
the optimal control policy: it operates at 0 = |
from 1 =0 to 1 = 0-847, and then switches to
0 = —1 and keeps operating at ) = —1 until the
final desired conditions are obtained. Additional
results are tabulated in Table 2.

The initial and the final conditions are

Case Toms. Tomnn K, K,

| 3o 0 -5 s

4 s 0 025 028

A comparison of figures 1 and 4 shows that time
lag of the heat exchanger is not too important.

Example 3—Suppose that a life support system
consists of an air-conditioned room and a heat
exchanger as in the preceding two examples.
However, the flow of air in the room can be

X0 = x 40" =1 = 0*
X fT) =3 o(Ty =0 at r=T (63)
where T'is unspecified. We are to minimize
T
S = 3 dr (64)
0
Table 2. Optimal solutions of the one CST model together with vy # 0. [Example 2}.
r 1, Xy Xay T
10 0-847 0074 10-57 1-0770
50 0-838 0014 11-59  0-8875
100 0-837 0-008 11-80 0-8615
200 0826 0004 1192  0-848%
S00 0-835 0002 1197 08397
10 1:266 0-048 710 1-4584
S0 1-25¢ 0-012 7-80 12990
100 1-248 0009 7-88  1-2767
200 1-247 0-008 795 1-2664
500 1-246€ 00002 798  1:25643
19 2600 0-024 378 26331
50 2560 0028 390 2-5860
100 2:5%¢ 0-010 394  2-5654
200 2-555 0-008 396  2-5598
S00 2-554 0-003 399 2-554%
10 5620 0013 1-89 57103
50 S5-501 0-008 193 s-6211
100 $:458 0008 198 $-5010
200 5-494 0-001 1-985 $-497s
500 5493 00009 199 $4938
Introducing an additional state variable
[}
-‘J(“ - ,‘ d'»
(Y
we have
dx
d—” =1, x0) =0 (65)

chat icterized by the two CST's-in-series model.
The performance cquations of such a system have
been derived in the secction entitled *“‘Genersl
Performance Equations” in Part | of this series{1).
Assuming that the heat exchanger has a negligibly
small time constant (t; — 0), the performance
equations are

dxl' ’ ’ ’

a +7 1 Xy = @),843'X,;—0,y,a5'0-0,,a
+uyy (61)

dx

T:" +ryaXy3 = a3Xy, (62)

The problem is thus transformed into that of
minimizing x (7).
Acsording to equation (5), the Hamiltonian is

H(2,x,0) = 2y (=1 X +8,,843°%y,
~a,,a4'0 —a,,a, +a,,)
+2|2(""3.\’,;+0)|X”)+23 (“)

According to the definition of the adjoint variables,
we have

dz o
—3:-"' -b;,—,-'nzu—ﬂzn‘u (67)
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dzy» o N s urEe bz 68) Constants 4 and B in cquations (75) and (76) can be
dr Xy 118a2 71+ rf ( determined by employing the initia} condition,
. equation (63) and Cramer’s rule as follows:
A
e~ eox, W= a,,—r,K ry,+/,
. . 1-K 1
The solution of =, can be obtained from this equa- = PR N
tion as i 1
=1, 01T (69)
. . dy,—ri3—412+4,K
Equation (66) can be rewritten as = -2 '}2 ,;2 f12
21342
H(zx,0) = = ((=r ¥y +aya,,'xy,
. ) and
—a,a5'0—aya,'+a,,) ‘ .
+2ya(— 1% 2 Hayx )4 1 (70) r”T"“ azll"l"(nzK
o . . B = - |
Therefore, the switching function # * is ' PRy !
*11 ~12

'IQ = —a”¢15’:“0 (71)

Inspection of # * shuws that the optimal controller
should be of a bang-bang type. The control action
for this problem, however, is constrained in such a
manner that

o<1 (72)

The conditions for which the Hamiltonian is to be
minimum are

0'—_0".:1 lf —01105'211 <0
0=0,,=-1 if —a,,a52,,>0 (73

In order 10 bring the initial deviated state,
X (0" = x,,(0°)= | at r=0", to the final
desired operating state, x,,(T) = x,(T) = 0, at
t = T, we intuitively employ the control action of
0 =0,,=1 (maximmum cooling action). Sub-
stituting this value of 6 into equations (61) and (62)
and then eliminating x, , , we have

‘3“"‘{‘ +("n+"x:'_—‘d‘ +(ry,ry2
—,48,47'03,)X,3+a,a5'ay +a,,a;,a¢
—a,,d;, =0 (74)

Solution of x, , can be written in the form
Xy =Aexpld D+Bexp(d,,)+K, 0515,
5

where 4,, and 4,, are roos of the characteristic
equation

.2

At (r A+ (ryr12—a,,82,04,) =0
and
_@,,84'a3,+,,83.d¢' 8410,

K ;
Q18429301172

Inserting equation (75) and its derivative to equation
(62) and solving for x, ; yield
1
xpy = =—[(Ay+r )4 exp{dy 1)
a2

+(Ay 247, 2)Bexp(d,at)+r K],
0s1s, (76)

ryatigy—4,K-a,,

Arg—rgz

For 8 = —1, v,,(r) and x,,(r) are solved by
using equations (61) and (62).

| \
X)) = — (A1 +ri )0y exp(iy )

ay,
+(42+r ) Dy exp(l 1) +r K],
L,StsT )
and
Xt} = D, exp(4i, )+ D, exp(i,,t)+K’,
,StsT (78)
wkhere

’ z
K = Q110210 —01,0582, 81292

’
Ay U142 —T147 2

Constants D, and D, can be specified by noting
that x,, and x, , are continuous with respect to t.
We obtain from equations (76) through (78) at
t=t,

x13(1) = Dyexp(d 1)+ D, exp(4,,t)+ K’
= A exp(d, )+ Bexp(i 0 )+ K (79)
and

xy4(t)

1
= .. Ay +ri2)Dy exp(dyt)
n
+(Ag2+7;2)D; exp(d 1) +r, K]

1
= ;‘2“[(}-1 1471204 exp(dy 1)
1
+(A12+712)Bexp(d, 1) +r(2K] (80)

Solving for D, and D, from these equations leads
to

D‘ = A—El exp(-ll“r,) (8‘)
D, = B—E; exp(~4,,) (82

|
é
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where ‘
* E| =L}Z_——(K _I‘Q
412740
E, = M
L1402

We see that D, and D, are functions of ¢, The
value of 7, and that of T .an be obtained by using
the tinai conditions

XMy =x,(Ty=0 at =T
Equations (77) and (78) thus become
Dyexplzy T)+ Dyexp(2,,T)+ K =0 (83)

1 X .
’a—" [(Avi+r1)Dyexp(d T+ (4,41, ,)D,
21

exp(4,2T)+r,K')=0 (84)
Eliminating T from these equations and letting
Ey, = __/_'i’__
Ar27 4
KA,
Ey = /7,
S h~y,
we obtain
E, Az _ E, Ay
A—E exp(—4,,t,) B—E,exp(—7,,t,

(85)

t, can be solved from this equation by a trial and
error procedure. Then D,, D, and T can be
calculated directly from equations (81) through (83).

The solutions of this problem are shown sche-
matically in figures 5-7 and are tabulated in

3

-4 -3 -2 -l o +

Xy
Fig. 5. Phase plane plot for Case 1 of the two CST’s-in-
series model with t; = O and different values of r,,
. [Example 3}.

-

Fig. 6. Phase plane plot for different cases of the two
CST's-in-scries model with 1, =0 and ry, ="
{Example 3).

L Nl 1 b L

02 04 06 N8 1con
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Fig. 7. Optimal control policies and system responses of
Case 1 of the two CST’s-in-series model with t, = 0 and
different values of r, , [Example 3).

Table 3. The solutions are very similar to those of
the preceding cxample. However, one distinct
difference between the response of the dimension-
less room temperature in this problem and that in
the preceding one is that the dimensionless room
temperature can become negative in this problem
while it cannot be below zero in the preceding one.
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Table 3. Optimal solutions of the two CST s-in-series model with v, = 0 [Example 3).
Case Tomee Trmin K: Ky 1y RN Viay IN T ) E
. D o R _ \
12 —00760 07205 0-645 0992 PR
15 —0-2298 04874 0518 1047 1
1 30 0 15 1S 20 —06031 03862 0471 1078
50 --38727 0852  0-598 1-007
100 ~9:4477 00896 0715 04956 i
122 ~0-0596 04538 0975 1275 |
1'5 —0-1703 02984 0775 1225 :
2 20 0 10 10 20 —~04526 (€2552 0715 1245
50 —2-5520 01024 0910 125
100 —6:0425 005105 1060 125
1-2 ~00343 01476 2:015 2215
1’5 —00998 01177 1635 1:958 ;
- 310 0 05 05 20 -—02285 00882 1500 1860 i
’e‘:g“ 50 —1-1295 00353  1-875 2115 '
;f*‘ 1000 -2-6253 0-0171 2-180 2310
’;} 12 —00i69 00192 4520 4625
. ke 15 -00414 0-0223 3780 3940
\ ‘:‘%.. 4 3 0 025 025 20 -0-8831 00167 3460 3640
‘;'E 50 -0-3865 00082 4250 4360
F 100 —08734 0-0059 4780 4-841
’.‘é«
ix
S CONCLUSIONS r
S = [[x,)%dt .
. By now readers shouid be able to realize that the Or
; maximum prmaple has a certain §dvantagg over S = [la+b,(x))dr
} other modern optimal control techniques. It is that ]
¢ it can be used to evaluate the number of switching T o
i\ points of the bang-bang control policy via the S= 6“ (01°d¢ ¥
2 N . switching function and adjoint vectors. Three r }
! examples given in this article take advantage of S = [la+c(0)?])de !
; this rule. Furthermore, the maximum principle 0 i
. A T |
t
f can be applied not. only to the system Wlt.h linear — j[a +b,(x,)? +c(0)dr .
! performance equations but also to those with non- o .
. linear performance equations. Bellman{9] proved T
: o : S= [{by(x)?*+c®)dr
1 theoretically that the number of switching points g O
‘ is cne less than the dimension of the problem for 7
lirear systems. However, this theory cannot be S={10]dr
applied to non-linear systems. o
It is worth noting that other forms of the The objective functions have different physical ’
objective functions can be considered. For example significance[3,4,6}.
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NOMENCLATURE

rK, 'K,

ra K,

Ko

rK,/ K,

rK,K,

rK,K,

riKyry /Ky
ryraKy,y

TiKy 1Ty

ri2K 2Ky

TK, 2/ Taryy

rk, K,,

K4 ’,Kl 2

Integration constant
Irtegration constant
Integration constant
Integration constant

Constants defined in equation (3),
i=12..,5

Specific heat of air in kcal/kg°C
Specific heat of coolant in kcal kg°C
Constant defined in equation (53)
Constant defined in equation (54)
Constant in equation (53)

Constant in equation (54)

Constant in equation (59)

Constant in equation (58)

p-dimensional constraints on decision
vector function 0(t)

0(t), z(r)] Hamiitonian function defined in equa-

tion (5)
The portion of X which depends on 0
ra,—~a;a0s—a,4,
r—a,a,
ra;+a,as—a,ag
r"ala‘

ry

rs

1

T (T, max~ T, i
2T2( r max rmm)

1
272 (Tr max Tr min)

@, +Q,, flow rate of air in the system
properinm?/s

Air flow rate by circulation air in m?/s
Flow rate of fresh airin m3/s

Flow rate of coolant in m?/s

T . .
;—‘ » the ratio of time constant of system
2

proper to that of he «t exchanger

0,
0,+Q;
0,

——=——, the fraction of fresh air

0,+Q;

, the fraction of circulation air

T11

T2

T12

Performance index defined in equa-
tion (3)

a . . .
T dimensionless time
1

Reference temperature in °C

Room temperature in °C
Disturbance temperature in °C
Tempcrature of incoming circulation air
in°C

Initial time

Switching time

Inlet temperature of coolant in °C
Outlet temperature of coolant in °C
Outside air temperature in °C

Final time, dimensionless

(¢.—1,), room temperature in °C
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Room temperatureatz = 07 in 'C T., X )
X1 —<L  dimensionless temperature of
fa O c10
Temperature of pocl 1 in °C pool 1
Temperature of pool 1 ata = 0% in“C T
cl . . .
Temperature of pool 2in °C X2 e dimensionless temperature of
12
Temperature of pool 2ata = 0% poo
(1, 1.), disturbance temperature in °C z(t) adjoint variable defined in equation (6)
(1,—t,), temperature of the circulation
air into the system, in °C Greek letters
Temperature of the circulation air into " Timeins
thesystemata = 0" in°C
0 ToeTo) % Finaltimeins
wPwWCpw\ i = L e :
0.pc, » hypothetical () Impulse heat disturbance function, s ™!
temperature
pe p Air density in kg/m?
Final steady state value of T, ) :
y Pw Density of coolant in kg/m?
Upper bound of T, in °C T
d . . .
. =, d -
Lower bound of T, in °C o T, imensionless disturbance tem
] perature
Valueof T,atx = 0in°C
v, ,
t,.—1,in°C T —————, time constant of ite system
0,+ Q; y
ton—1,in°C properins .
.0 V
Temperature of pool L in °C Ty TN _; ‘Q , time constant of pool 1 in's
Temperature of pool 2in °C l ?
Step heat disturbance function T3 61 , time constant of heat exchangerin s
1
Volume of room inm? v
12 .
T —=— , time con f i
Volume of pool | of two completely 12 0,+0, ime constant of pool 2in's
stirred tanks in series model in m*
3 0 Tr-%(rrmnx'i'rrmin) control
. i , contro
Volume of heat exchangerinm T. max = T o+ T min)
Volume of pool 2 of two completely variable
stirred tanks in series model in m* . +1 at T,=T,,.
s-dimensional state vector defined in -1 at T,=T, 4
equation (1)
()] Optimum value of 6(¢)
Xio i = 1, 2, ..., s, initial value of x at
t=to () Heat disturbance function
. ) n Defined in equation (22a)
£ , dimensionless room temperature
<0 A, Constant in equation (45)
A state variable defined in equation (11) iz Constant in equation (45)
I, .. . . .
T—‘, dimensionless temperature of the 411 Constant in equation (75)
10
circulation air in equation (31) A Constant in equation (75)
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On présente la forme fondamentale du principe du muximum de Pontryagir qui est
la clef de la théorie moderne de contrdle optimal. Le principe est appliqué a l= déter-
mination des polices de controle optimal de plusieurs svstémes de support de vie ou de
contrdle d’entourage.

On considére trois exemples concrets dont tous se rapportent av zontriie de tem-
pérature d'un systéme de support de vie consistant d’une c2bine i1 air conditioné
(le systeme lui-méme) soumis & une perturbation ¢ chieicur par impulsion, et d'un
échangeur de chaleur (I'élément de contrdle). Le premier exemple traite le cas dans
fequel la constante de temps de I'échangeur de chaleur est négligeable. Le second
exemple cons.dére le cas ol la constante de temps de I'échangeur de chaleur n'est pas
ignoré. Dans le troisieme exemple on étudie la police optimale du systéme ou le
courant d’air dans la cabine peut étre caractérisé par les deux modeéles de vaisseaux en
série (2 CST en série) complétement agités. Dans cet exemple, on néglige encore la
constante de temps de I"échangeur de chaleur. On donne de fagon détaillée les pro-
cédés et les techniques par ordinateur employée pour obtenir les polices de contrdle

optimal.

Die grundlegende Form von Pontryagin's Maximum Prinzip ist dargestelit, welches
der Grundstein der modernen Optimalkontrolitheoi«¢ ist. Das Prinzip wird fiir die
Feststellung optimaler Kontrollverfahren fiir verschicdene Lebensunterhaitungsoder
Umgebungskontrollsysteme angewandt.

Drei f.onkrete Beispiele werden ins Auge gefasst, wobei alle sich mit der Tempera-
turkontrolle von Lebensunterhaltungssystemen befassen, die aus einer klimatisierten
Kabine, (dem eigentlichen System) bestehen, die einem Wirmestérungsimpuls
ausgesetzt wird, und aus einem Wirmcaustauscher, (dem Kontrollelement). Das erste
Beispiel behandelt den Fall, in dem die Zeitkonstante des Wirmeaustauschers
unbedeutend ist. Das zweite Beispiel behandelt den Fall, in dem die Zeitkonstante
des Wirmeaustauschers nicht vernachlassigt wird. In dem dritten Beispiel wird das
Optimalverfahren des Systems untersucht, in welchem die Luftstrémung in der
Kabine durch zwei griindlich gemischte Reihentanks (2 CST’s-in-series) im Modell
geschildert wird. In diesem Beispiel wird die Zeitkonstante des Wirmeaustauschers
wieder vernachldssigt. Verfahren und berechenbare Betrach tungen zum Erhalten
optimaler Kontrollverfahren werden mit Einzelheiten gegeben,

ah‘

TECT 1 A, wiglaci A o T e

———

e s v

e n e e ot o o

——



R A i w0+ Vi, Ay s UMt S0 4 MR 4 s ST e

bl Se ‘ . StB_ Ab8
. Sci. Vol. 5. pp. 125 136. Pergar-on Press 1770. Printed in Great Britamn UDC 697
)
Applications of Modern Optimal Control .
Theory to Environmental Control of
Confined Spaces and Life Support Systems™
Part 3—Optimal Control of Systems in which State Variables
1 have Equality Constraints at the Final Process Time
: L. T. FANt
¢ :' Y. S. HWANG +
' f‘f C. L. HWANG t

Fn

. The basic form of Pontryagin's maximum principle is extended to cover optimal
problems with equality constraints imgosed on the final state variables. The
necessary conditions for optimum control policy are developed and are applied
to two concrete examples.

The dynamic behavior of the life support system consisting of an air-conditioned
cabin (the system proper) subject to an impulse heat disturbance and a heat
exchanger (the control element) is again studied. The first example considers
- the optimal controt policy for a system having a heat exchanger with a negligibly

SRR 8
Py
™M
-7
N

H small time constant. The square form of the final condition of the state variable

) is considered as an equality constraint. The second example considers the
- optimal policy of a system where the flow of air in the cabin is characterized .
«: KANENS o by the two completely stirred tanks-in-series (2 CST's-in-series) model. The ;
Joon time constant of the heat exchanger is not neglected, that is, the response of 3

EXPERLAC AR

the heat exchanger is not instantaneous. The squares of the final conditions
of the state variables are again considered as equality constraints.

B AP 18 AN M T % e s e s agrm——— o op

3
b
INTRODUCTION NECESSARY CONDITIONS FOR i
The basic form of Pontryagin’s maximum prin- OPTIMALITY FOR TIME OPTIMAL '
ciple, has been introduced in the preceding part[1]. PROBLEMS WITH EQUALITY
Here we shall extend the basic form to cover the CONSTRAINTS IMPOSED ON THE FINAL
optimal time problem with equality constraints STATE VARIABLES -i
imposed on the final state variables. i ) ) ) )
Kopp[2,3) adjoined the equality constraints to ‘Agam let us consider the differential equations ;
the objective function via Lagrange multipliers of the following form
and then solved the problem by a trial and error d x,
procedure. Denn and Aris[4] treated the problem = filx (1), xo(0), ... 2 (0):
by the Green’s function approach. We shall first
obtain the necessary conditions for optimum by 0,(1),0,(1),....00), i=12..,5 (D

adjoining the equality constraints to the objective

. . . r , with the initial conditions given by
function via Lagrange multipliers and taking a

- -y~ LY

weak variation of the resulting expression[5]. The Xlto) = X0, 1 =14 )
necessary conditions thus obtained will be applicd Suppose that we wish to determine the control
to two concrete examples. vector §(t) so as to minimize (or maximize)
- T
§= x(1), (1))d¢ 3
* This work was supported by the Air Force Office of ,‘! Fixto), (1)) 3

Scientific Research, Office of Acrospace Research, United ) . . .
States Air Force, Under Contract F 44620-68-0020 (Themis subject to the g-dimensional constraint on state

Project), and NASA Grant Under Contract NGR-17-001- variables at the unspecified {:rminal time, T, as
034. shown below.
+ Institute for Systems Design and Optimization, Kansas .
State University, Manhattan, Kansas. gix] =0, i=1,2..,49 C)]
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where initial time r, is then fixed and T is the
unspecified control terminal time. Here the ob-
jective function, equation (3), is different from the
form used in Part 2 of this ser es{l]. However, we
can transform equation (3) into the form used in
Part 2 by introducing an additional state variable

X, 1 such that
Xy (1) = [ FIx(r), 0(r)de (5
It follows that
dx
;%W = FLx(1). 0(r)] (6)
= Js+ |[.\'(f), 0(,)]
Nosaltg) =0 (7
and hence the objective function now bzcomes
S = '\-.\+ I(T) (8)
or
s+l
S=3Y cx(T (9)
i=1

which is in the standard form used in Part 2 with

c;=0, i=12..5s
Covy =1

Suppose that the equality constraints, g,[x(T)]=0,
and the performance equations, equations (1) and
(6), are adjoined to the objective function via
Lagrange multipliers, r; and z;.

s+l
= z cix(T)+ i: r;gi{x(M)
- =1

Tt dx;
+ f }: Six@), 0] - de (10)
to i=1

We can then define the Hamiltonian

s+1
K, 00), ()] = ;zm[x(r). a0l ()

and substitute this relation into equation (10) to
obtain

s+1 q T
= e+ Y valeDl+ | ‘.;r[x(;),

s+ 1
o), z(D]- Y 2(8) %} dr (12)
i=1 t

The first variation of S’, 4S’, which is defined as
58 = S'[x, 0,2, T)-S'[%, 0,3 T)
may be obtained by letting
x(t) = R(D+x(1), i=12..,5+1
0(t) = BD+60(0), i=1,2,...,r
T =T+6T (13)
()= 3)+8z(1), i=1,2,..,5+],

and then inserting these relations into equation (12)
and carrying out the Taylor series expansion about
the optimal state, %, 0, Z, and T. Retaining only the
linear terms of the resulting equation and then
dropping the bar notation give

38’ = ,sr{,;r[.\-(r). oT), =(T)]+ i r; i%
A= "

sil Ay s

dy (T
+Z ——Z(T)‘“}

+ Z()\‘(T)I '4 r '—‘—-,(T)+( }

sl

g
o[22 e .
+.;°"[a:, d']}d: (14)

We must zet this first variation equation at zero to
obtain the necessary conditions for a minimum.
The resulting equations which determine the optimal
control and state vectors are as follows:

dz; r 4
e 0
dr] t L0y

s+ 1
H[x(),00),2(0)] = Y 2V [x(), 0(1)) (15
=1
oH dx;
Ei-= + —d-;- fix(n. 0], i = 1,2,. +1
(16)
ﬂ/. e s4 1
A N iy s+
X, t  f=iox,?
(17)
a‘[ s+ 1 (1/"
-0 = ! . j =
20, 0 1-130121 i=12,....r (18)

These represent the (2s+2) differential equations
for the two-point split boundary value problems.
The condition; at the initial time are given in
equations (2) and (7), whereas those at the final
time are

.,

Z,(T) zlja (T) +C‘, i= l,2,3,...,s+l
(19)
and
KT, OT), 2(T)+ 2 =7l
s+ 1 s+1
+ ic,a"‘ zz.(r)d“m 0 (20)

i=]

Equation (19) provides (s+1) conditions with ¢
Lagrange multipliers to be determined. Equation
(4) provides g equations which can be used for
climination of the Lagrange multipliers, and

* Derivation of equation (14) is given in the Appendix.
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equation (20) provides one additional equation
which ¢rn be used for determination of the un-
specified terminal time.

It is worth noting that when the constraints
£Ix(T)} = 0 are not imposed on the final state
variables, the necessary conditiors derived here
reduce to those derived for the basic problems
presented in the preceding article[1]. In other words,
equations (19) and (20) reduce to

z(T) = ¢, t19a)
# [X(T), (T), =(T)] = 0 (20a)

The set formed by these equations and equations
(15) through (18) is identical to that formed by
equations (5) through (8) .n the preceding article.
Equation (20a) is correct because the minimum (or
maximum) value of the Hamiltenian is identical to
zero at every point of time 7 for the time optimal
problems.

The final condition, x(7), which is fixed in the
fixed right-end problems can be considered as the
simplest case of g,{x(T)] = 0

EXAMPLES

Here the necessary conditions developed in the
preceding section will be applied to the following
examples.

Example 1—Let us reconsider Example 1 of the
preceding article[1]. The statement of the problem
remains the same. Now the square form of the
final condition of the state variable can bhe con-
sidered as an equality constraint on the state
variables at the control terminal time, i.c.,

gi[x(M) = 'Hxl(T)]z =0 2D

We now wish to show that at the optimal condition
the two necessary conditions at the control terminal
time, equations (i19) and (20), are satisfied. Em-
ploying equations (19) and (20), we have

ox (T
,m “

Al (N)?
0x5(T)

() = 1,x,(T) =v,x,(T)+¢; (22)

2AT) = dvy ———= =0, (23)

dx‘(T)

H (T, AT ), A7)+, x(T)

+[c, d.;';.n‘“'z dx;(TT)]

_ dX|(T) dxz(T)
[z,(?’) dT dr ]

= JH[XT), AT), 2(T))
=0 (29)

+2,(T)

Since
c, =0

¢, = 1

equations (22) and (23) becoie
2(T)y = v, x(T)
"z(T) =1

Equations (24), (221) and (23a) assure us that this
type of problem can be solved by making use of
the necessary conditions presented in the preceding
section as well as those presented in Pari 2 of this
series[1].

Example 2-—As mentioned in Examnle 2 of
Part 2[1), the response of the heat exchanger as
well as that of the cabin or room is not always
instantaneous. In Example 3 of the preceding
article, we considered the system con.isting of a
room or cabin with the flow of air characterized by
the two CSTs-in-series model and a heat exchanger
whose time constant is negligibly small. Here we
consider a slightly different system in which the
response of the heat exchanger is not instantaneous.
The perfornance equations are {see equations (43)
through (45) in reference 6].

(224)
(23a)

dxy,
—=HrXyy = A Xy+dy 25

dr

dx, .,
— Xy = AgX (26}
d’ 12412 21%11

%ﬁpnz = UgyXy 3 ~asl—a, (27)

with the initial and final conditions

x“(0+)=,\'|2(0+)=x2(0*)= 1 at ’=0+
T =X M =0, x(7) =1 at 1= T
(28)

where T is unspecified. The control variable, 0,

is constrained as
j0) =1 (29)

We wish io determine a piecewise continuous
control variable @ so that the response of the
system can return to its desired state in a minimum
period of time, that is,

§={d (30)

1]
is minimized.
We shall first make use of the basic form of the

maximum principle presented in Part 2 of this
series to solve the problem. Let

x,(1) -=;[d:

-
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or
dx,
— =1, X3(0) =0 3l
T x,3(0) 30
Hence we have
S = xy(7)
# =z [=rivtax;+ag,]

+zpl=riaxatay vy

+ [y tag,x —add—agl+ o,

(32)
d:
'ﬁ—""n:n“"u:lz (33)
d:
—di‘i =ry2270425 (34)
d:
B—:» =rz,—a.,2;, (35)
dz,
H — =0, (=1 36
: — A7) (36)
It follows from equation (36) that
=1, 05+ T (37

Equation (32) can then be rewritten as

[

H o=z [-r X tanxtaggl+zal-roxg,
X +ol=-rxy+agx—as0—a.l+1
(38)
Therefore,
H* = —agz,0 (39)

An optimal contiol corresponding to this case
should be of the bang-bang type. Thus the con-
ditions for optimal control (minimum .#'*) are

= =1, if —a4;>0
0=+1 if —asz,<0
In order to bring the initial deviated state,
X110) =x,,000=x,000=1 at =0
to the final desired state,
(DN =x,(N=0,x,"=1 at ¢t=1T,

we shall first apply the control 0 = 1. In other
words, we have @ = 1 in the interval 0 S 1 S ¢1,,.
Substitution of 8 = 1 into equations (25) through
(31) and subsequent elimination of x,, and x,
from the resulting expressions give rise to

d’x, 2 dle 2
-d—'j—+(r+r,.+r,,)-a,-+(r,,r,,+rr,,

dX|z
+"’u)T+("u"|z—anauan)xuz

= rdy 30y 038,831~ 3,143,486 (40)

The solution of x , has the form

Xy2 = Aexp(A,1)+ Bexp(it)+ Cexpl/ 1)+ K,
011, (41)

where 4, B and C are constants and 4,. /, and Z,
are roots of the characteristic equation

PR rdr A A r ey y)n
Hrryryp—a,a,,443) =0 (42)
ana Kis a constant and its value equals to

, ra 05, —ds0y,dy,—d,,d3,4
K= 2 119 1 ©(43)

gy —a,,a;3,4,;

Inseruing equation (41) and its first and second
derivatives to equations (25) through (27) and then
solving for x, , and x, lead to

| B ) .
Xy, = - [(A,+r DA expli )+ (A +7,)
21

Bexp(iyt)+(4y+r,)Cexplist)+ry,K],

0s151, (44)
and
X, = CAAT 4y + 1000
ay1dy,
+ry P expli )+ BlAS+(ry +r1 3%
+ryary 2] explay) + ClA3+(ry +712)4,
+ryry)explist)+ry ry K-a, 205,
0.1y, (495)
Let
A, =4y,
Ay = Ay+ry,
Ay =23+r,,
Ay = B+ry +ri i +rygry,
Ag = B+ +r A +r

Ag = B+(r +r )y +ryyry;
A, =ay,-r ;K

Ay = 1-K

Ao = a,a3,+a,205, -1 712K

Theu equations (41), (44) and (45) can be rewritten
as

X = a—i—l [A,4 exp(d 1)+ A, B exp(4,!)

+A3CCKP(;~3')+’|2K]' 0 S ! é 'll

(46)
Xi3= A4 exp(d,1) + Bexp(4,1) + C expld; 1) + K,
035131, 47
X; = [A‘A exp(l,l)*-A,Bexp(lzl)

ay,ay,

(
L
Y
%
» m?§3
‘v’
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+AhCexp(i.3t)+r, |r|zK-a|zaz|],
0grs,, 148)

Values of 4, B and C can be determined by ecm-
ploying the initial conditions

X107 = x, (0% = x5(0%) =1 at r=0*
Hence. equations (46) through (48) become
AA+A,;B+A4,C = A4,
A+B+C = Agq
AgA+AB+AC = A,

Solving for A, B and C by using Cramer’s rule. we
have

10

where

Avo = AjAg+ AA4+ A-A— A A —A,A,
—AA,

Ay = AgA-+ Ay g+ AsAdAg— AgA, ~ A4 Ay
—AyA,

Ay = A AAg+ AA- + A3A — A | Ag— A A,
—A3A. A4,

Ay = AjAg+ A AgA F A3 A — A | AAy— A A,
— A4,

Sirilarly, fors,, < r < 1,5, we have

0= ~1

1l

]
o (4,4 exp(4,)+ A, B exp(i,t)
21

4‘A3C’CX“}.3')+',2K’]~ ’,| § f § '32

(49)

Nyy = A expli, )+ B exp(i )+ C exp(ist) + K,

LWStsi, (50)
and
X; = [A,A exp(i, 1)+ AsB exp(4;t)

1482,

+A,C exp(Ay)+ry 1K' =a,,a,,).

LWS13Y1, (s1)
where

K= ra, 383, +058,,8;,~a,,83,4

rryyry3—01183,84;
and A’, B’ and €' are unknown constants.

Fort,; §t § T,wehave

=1

I

1 . , .
Ny - [A,A" exp(~,t)+ A,B" exp(/,t)

21

+A;C" explit)+r 1K), t,;, St T(52)

Ny = A exp(i )+ B exp(4 1)+ C7 exp(/3)+ K,

W StsT (53)

l N
Ny = - [A4A” expld 1)+ A B exp(iyt)
A1z,

+AC expliyty+ry rysh—a,ay,)
t,StsT (84}

where A", B and C"" are unknown constants,

We know that x,,, x,,. and x, are continuous
functions of 1. Therefore, t', B, C’and A”, B, C”
can be determined by using the continuity of x,,.
X iand x, withrespect to tatt = ¢, and r = ¢,,.
Thus

H . R
Ny = ‘—,—- [A,A exp(i 1))+ A B exp(4,t,,)
21

+A,C exp{ist, ) +r,,K]

1 .
= a——[A,A’ expli t,;) + Ay B exp(s,t,,)
21

+A;C expidzty) +r, K] (55)
Xya(ty) = A expli, 1)+ Bexp(d,t, )
+Cexp{iyt, )+ K
= A" exp(/, 1)+ B exp(4,1,,)
+C explist, )+ K’ (56)

and

i .
Nalty,) = ‘;::[444 exp(é 1)+ AsBexp(4,t,,)

+ A Cexplizty)+ry v K—u.,a,,)

= [A‘AI ex“l|',|)
a,,a;,
+ A B exp(i3t,)+ A expliyty,)
+ryr2K' —ay,a;,) t0)

Solving for 4', B’ and C’ in terms of ¢,, from
equations (55) through (57) gives

(*8)

B - (59)

C === (60)
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where
A=A A+ A; A+ Ay~ A Ag— A4,
— A A expls . 1,y) explit, ) expllylyy)
(ApA s+ A1A o+ A3AA .~ AA
~AAgA, 5= A3A, o )exp(iat,y) expllat,y)
Ayg = (A AA + AA g+ A A o~ A AL
~AgA 4 — A A A D expli ) expliat,,)
= (A A+ A AA s+ A Ag— A AA |

I

Alﬁ

2
L&
|

— A4, —AsA ) expli ) expls,t,,)
Ay = ay,8,,01,,)~r K
Ays = x,00,)—-K'
Ay = ap a3 X (0 )+aga;, —r,r K

Similarly. A, B” and C” can be determined by

A = — (61)
Ay

. Az

B' = —
A, (62)
A,

C'=-= (63)
Ay

where

Are = (A Ag+ ArA + AyAy— A Ag— AyA,
- AyA ) exp(i,t,,) explat,;) explist, ;)

Ays = (AeAy  + A A3+ A3AsA - A4,
—AsAA ;= A3A ) exp(d,t, ;) explise,,)

Ao = (A1 ApA 2+ Ady + A3A - A Ay,
—AgAy —A3A4A;3)) expll 1) explist,,)

Ay = (A A3+ A1A A3+ AAy  — A\ AsAy,
—AyA 3~ A4y, expld ) exp(dyt, ;)

Ay =ay,%,(t))-r, K

Ay = x0(0)-K

Ayy = a,,03,X3(0,,) +a,8;,—7, 7K

We can find +,,, 1,; and T from equations (52)

through (54) and the final conditions

X T) = X, (T) =0, x,(T) = latr =T
Thus
A A7 expld\T)+ A,B” expld;T)+ A;C” expia,T)

+'|2K =0 ‘“)
A" exp(d,T)+B" exp(4,T) + C' exp(AsT)+ K = 0
(65)

AgA” expl2 TY+ AB” exp(2,T)+ A C expl(2,T)
+rorK—aa;,—a,a;, =0 (66)

In principle, we can solve for 7 ¢, and 7, from
the above equatinns by a trial and error procedure,
However, 7., and ¢, appear implicitly in these
equations, which increase the difficulty of solving
the problem. To circumvent this difficulty, we shall
continue to solve this problem by considering the
square form of the final conditions of the state
variables as equality constraints and by employing
the additional necessary conditions developed in
this articie.

The equality constraints on the final state
variables are

g.¥D] = 4x (T)~0)* = Yx, (T)? = 0 (67)
2N = 3x, AT)=0)* = M, AT))? = 0 (68)
&) = 4xyM-1? =0 (69)

Therefore, equations (19) and (20) for this problem
are

il

M = v )1 X ((Mey (70)
30 UAT) = vy x (T + e, (7
A7) = vy T~ +¢y (72)
M) = ¢, (73)
dv, (T
#[x(T),l)(T).:(T)]+{r,..\',,(T) Yol
dT
dx, (T dyy(7)
+0y,x0,(T) ‘;; +"z[-\'z(T""”“_§7."}

dx, (T) Ay, o(T)  dyy(T)
+[¢'| dT +¢) a7 +(_\ a7

dx,m] _ [:“(T)d.\', (D)

T Tyr aT

. dv,(T) - dvyT)

+2,:(T) aT +:2,(T) ar
dx,(T)

+5M = ]-o

Ry substituting equations (70) through (73) into
the above equation, it can be shown that

X (X(T), (T), «(T)) = 0 (74)

Since the objective function, equation (30), has
been transformed into the following form

S = o x (T4, ) (T +e3x 1 T+ coxs(T), (75
c,mcymcym0,¢0m= 1,
equations (70) through (73) become

23 (T) = vy ,x, (T (76)
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AT = v o) (17 in this example, its value is very smal' Thus, the
. . N initial trial control pattern is assumed to be the
2AT) = vy = (78) optimal control solution given in Exampizs 3 of the
) =1 (79) preceding part[1]. that iy

and from equations (32) and (74). we have

# [ A(T) kT 2T

= {)
= 2o =ry o (T e 8 a(Thay )
+2 AT =1y 38 #T) 4wy ¥, (7))
2T~ rx T+ uy 3, AT)~a KT)
TR (80)
Determinaiiny oi the terminal control time, 7,

from the abeve eguation in conjunction with the
performance equations, equation for the adjoint
variables, and constriunts is very difficult, iff not
uipossible. However, T may be obtained by using
the gridient procsiwe with the penalty function
approach. THis penah, function can be written as

S ={erx (T 4020, T+ X f(Th+04x4(T))
+4enly, 1”')"2*“’!2{"12(7.)]2
+0,lvy(T)- 1) (81

and the terminal control time, 7, can be determined
hy the condition

ds” dx, (1) dv, ;')
ar b4ey,0, (7 :j‘T +1r4,8(T) :;T
+,[vy(T)=1) df‘m =0 (82)

Notethate, = ¢; = ¢y = 0,¢y = 1, and

dvy(T)

ar =

In other words, the terminal control time is chosen
so that the penalty function, equation (1), is at a
minimum with respect to this terminal time. It is
possible, however, that the terminal time deter-
mined by equation (82) may not be the time which
minimizes the penalty function. If there is any
question concerning this assumption, we may
evamine the sign of the second derivative of S
with respect to 7 when the first derivative of S”
with respect to T is zero, or we may carry out an
exhaustive scarch or random scarch around this
point to assure that it is indeed a minimum point.
Since the control policy is of the bang-bang type
shown in equation (39) and the performanc
equations are lincar, the number of switching
points is one less than the dimensions of the system
as mentioned previously[],8). Even though the
time constant of the heat exchanger is not neglected

=1 0<1<0468
= —1 0468 <1 < (-100
=1 11100 < ¢

where the switching times, 7., and 7,. are (-468
and 1-100 respectively.

With this mitial trial control pattern the state
variables x,,, ~,, and x, can be obtained from
equations (46), (47) and (48) for ) < r < 1,,. from
equations (49), (50) and (51) for r,, Srgt,.and
from equations (52), (53) and (54) forr,, St £ T,
where the terminal contro!l time, T, is unknown,
This unknown terminal control time is then
determined from equation (82).

The switching times, ¢,, and 1,,, and the terminal
control time, T, can be determined by simultane-
ously minimizing the penalty function, S, given by
¢guanion (81) and satistving the condition given by
equation (82). This can be accomplished by em-
ploying a variety of techniques, for example as the
sequential simplen pattern search[9] or the Hooke
and Jeeves pattern search[10).

By use of the final time and value of x(¢), we can
solve the adjoint equations, equations (33) through
(35). backwards from 710 0 with the final conditions
given by equations (7v) through (78).

Let
1, =T—1t (83)
Then
dt, = —dv
Equations (33) through (35) become
d:
“#”""“nzz:"’n:n (84)
d:
-a;‘:%=4:‘3:,-f,3:” (85)
d:
ai=an:“—"23 (86)

Eliminating =, , aad 2, , from these equaiions, we
have
d)

+(r+r,,+r,,)d
o

dl

+(rry,4ry,rys

+rry)) =2 4rry 0y —ay,a5,0,,)2; = 0

ds,
Solution of z, has the form

23 = Dexp(i, )+ E expl{d )+ Fexp(ist,) (87)
wherc D, E and F are unknown constants. Inserting
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132 L. T Fan, Y. S. Hwang and C. I.. Hwang
equation (87) to equations (84) through (86) and e l&_,
solvingforz,, and =, ,, we have "B,
1 .
20y = — (D, ) expls 1) b= B
ayy B0
+ E( s+ rYexpls o))+ Fliy + ryexpliyy)] where
(88)
and B,,=8,B.,+8,B,+B,B,~B,B,-B.B,-B,B,
l Bli = 858-,+BthBq+BJBM_B"B~—B;il”
Iy = CD[A3 +(r4r 20, +rry Jexpligt,)
12 @ {23 +( 120 nlexplé e, —B,B.8B,
+E[I4(r+r, )i+ r, explighy) B,, = B,By+B.,B-+8,8,6,—~B,B,8,— B,B-
+ R+ (r 4, Diy+rr )i expliyg))  (R9) - B,B,
Let B,, = B,B,B,+B,B. +-B,B-—-B,B,-B,B,B,
B, =i.,+r —3,8-,
B2 = tatr B, = ay,r,,x,,(0)
83 = /‘._\*‘f
.3 . B, = a,,a;,r,,;%,,0)
By = iy4(r+r )iy +rry,
Bq = "2[-“2‘0)— []

By = i3 +(r+r iy+rry,

By = i3 (r+r, )iy +rr,
Equations (87) through (89) become

] . . .
Iall) = a (DB, exp(s,1,)+ EBjexpl/ i)

+ FBy explist,)) (V)
} . . X
(1) = —— [DBgexpii 1)+ EBexpls,t,)
a4y,
+ FB,, exp(4,1,)] )

22(1y) = Dexplay 1)+ Eexpli iy + Fexpli gty
(92)

At 1 =T, 1, =0, equations (76) through (78)

become

210(0) = v,x,,(0) (93)
212(0) = ryx,,(0) 94)
2,(0) = r,[x,;(0)- 1) 95

Also at 1, = 0 equations (90) through (92) become
DB, +EB;+FBy = a,,2,,(0) (96)
DB, +EBy+FB, = a,,a,,2,,(0) ({2)]
D+ E+F = 25(0) (93)

Solving for D, E and F from these equations, we
have

all
D=z
3!0

The condition H = 0 as given by equation (80)
is verified by substituting the values of stote
variables obtained at the terminal control time,
X () x, oT). and x (T), and the adjoint veriables
at the terr:nal control time, =, (7). z,5(7). and
=,(T), into the equation.

The optimal control pattern determined is shown
in figure la. The optimal resuit is such that the first
switching time 1, is 0.487, the second switching time
t,; is 1.085, and terminal contro! time T is 1.096.
The value of terminal control time is 0.018 longer
than that of the case in which the response of the
heat exchanger is negligibly small (Example ) of
Part 2[1]). In actual practice, the difference can be
neglected. In general, the response of the heat
cexchanger is  almost instantaneous. especially
when the time constant of the heat exchanger is
much smaller than that of the system proper.

The optimal response of x,, is also givea in
figure 1a and the corresponding responses of x,,;
and x, are given in figure 1b. Values of the system
parameters employed in obtaining the numencal
results correspond 1o those of Case 1 given in
Part 2 of this series.

CONCLUSION

The reader should realize that the fixed right-end
problem can also be soived by considering the
problem as one with equality constraints on the
final state variables and then employing the
necessary conditions derived in this article.
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Fig. la. Opumal control policy and optimal response of rig. 1b. Optimal responses of x,, and x, for Case | of
x11 for Case | of the two CST s-in-series model with the two CST s-in-series model with t, = Dandr,, = 2
2 #0.ryy =2andr =10, andr = 10.
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APPENDIX x{t) = X(D+6x(), i=12, .., 541
Derivation of equation (14) from equation (12) €)= d(H+801), i=1,2, ..,r
The objective function, §', is of the vorm given by T = T'44T,
equation (12), i.e.
z{(t) = Z(Oh+oz(t), i=1,2,..,5+1,

s41 q

s = ';c,x,(T) +an| vigdx(T)]

d.scarding the terms higher than the first order,
and dropping the bar notations, we have

T ,] ) 3+1 dx'
: , (1), 2(D)]— -
i '5{ O A0 01 220 }d: 58 =¥ o] sxry+ ZLD 6T]
A1) i or
Carrying out the Taylor series expansion of the g [x(T)] og[x(T)]
above equation about £, 8, Zand T, defining + ,}::,v’ ox(T) ox(T)+ oT or
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T (s V4 A = Integration constant
+j{z—-0\+21—-00 & I
t b a A, = Constants in equations (45) through
11 I CH s 1 0\ (66)
+ ) -— (S_ -)1— oz —-
Z ‘ .Zl[‘ dr B = Integration constant
dv dz; dy, dix B = Constants 1n equations (90) through
- — +: JRY ! . ’
+‘(d1)+(d: dr 7' de? ){:I 92)
(A2) ¢ = Constants defined in equation (9),
Since Pi=1.2.....5+1
}_’1 Srdr = 55_{ dist = # | ST C = Integration constant
at o 1 D = Integration constant in equation (87)
1 /dz; dx; d?x Td/{ dx; . . : .
bl Rk ordt = [ —| =, =) ordr E = Integration constant in equation (87
!n(dz dr+‘d2)'dt {dr(‘dr) & quation (87)
rd d F = [ntegration constant in equation (87)
= 'I d—t<:i "—l)d"" gi{x(T)] = a g-dimensional constraints defined in
equation (4)
dx; .
= (:s—,) T(’T H (),
and o(1), =(1)] = Hamiltonian function defined in equa-
tion(11)
‘T [dy
) :,-r)(—t> dt b i = The portion of .# which depends on ¢/
- 11a
1T g h¢ = A constant defined in equation (43)
= “-E “idr (ox,)dr K = A constant defined in equation (51a)
s+l T dz T2
= Z;0. - §ox,-=9 s K = —
izll:( 0% . '_E X; dr ’] 1 T.o
i 1
equation (A.2) becomes, after rearrangement, K, _ Z_F_(Tr ca=Tomi)
2
a8’ = 5T{ #[x(T), i(T), 2(T)}+ Z z, (7T 1
KS = if“ (Tr mn+Trmin)
st 6-": s+t +(T) d.\’,(T) 2
tahor T A Tar K P!
s41 4] ¢ TlO
+ ) ox v; ———z(T)+¢;
S S e D+ } K. = T,
T
T (sl oX  dz S . Ot le0
ox;| — + — 00, —
+f! {i:l X’[ér‘ + dl] .;; f 50, K _ Tz
12 =
T
s+ 1 oN d. 2c0
+ -t (A.3) .
i 0z; dt Q = Q,+Q,, flow rate of air in the system
i3
This is cquation (14). proper in m/s
0, = Air flow rate by circulation air in m?/s
NOMENCLATURE 0, = Flow rate of fresh air in m3/s
as = rK,K, 0. = Flow rate of coolant in m?3/s
de = rK,K‘ tl
ay = r Ky irii/Ke r = -t-z-,the ratio of time constant of system
a,, = r,r;K,, proper to that of heat exchanger
a3 = ry:K2/Kqy _0
r = the fraction of circulation air
daa = rK/Ky; ! Q +0,’
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Applicctions of Madern Oprimal Centrel Theery P3s
), . . T, o = Upperbound of T.in
rs . .the fracuon of fresh air " PP ’
Q 0 o = Lowerbound of T €
r . L r ., S Nalueof T,aty O €
ti -
Toi o
T, =1, ~t,m C
L
2 = t - Tnh = r\\’l—,u”] C
12
. . R T = Temperature of pool 1T'im (
Ay = Performance index defined m equa- H empe eolpo
tion(9) T, = [umperature of pool2m ¢
12 p p
s = A modified performance mdex defined r, = A Lagrange multipher in equation (10)
i ation (10 . .
in equation (10) (. = Volume of room mm?
S = A modified performance index detined , - . .,
ation (81) by = Volume of pool 1 of two compiceiy
n equatio .
i equatu stirred tanks in series model inm*
z , .
P = -7 _dimensionless time I, = Volume of heat exchanger in m'*
T
) b = Volume of pool 2 of two completely
L = Reference temperaturen € stirred tanks in series modetin m?
Iy = T—1. dimensionless time used in equa- (1) = s-dimensional state vector defined
tions (84) thrceugh (86 equation (1)
L = Room teriperaturein C vty = v, = 1020 0 s mitad value of
I = Disturbance teraperature in C vatr =g
1, = Temperature of incoming circulation T, .
‘ C A = —%  dimensionless room temperature
arrmn T.o
o = Initialtime T
o ) Na(1) = — , dimensionless temperature of the
1, = Switching times. i = 1.2 T,
: circulation air i equation (27)
I = [nlet temperature of coolantin C ! <4 (
P T, . .
Ion = Qutlet temperature of coolantin C Yoy = _T._‘ , dimenstonless temperature of
. . . <10
Is = Outside air temperature in C pool 1
T = Final time, dimeastonless T
2 . .
. .o X, = = S s te ature
T = (1,~1,), room temperature in 'C \ T dimensionless temperature of
T = Room temperatureatz = 0* in °C pool 2
T, = Temperature of pool 1 in 'C () = adjoint variable defined in equations
. (10)and (17)
T.,, = Temperature of pooilatx = 0%in C
T, = Temperawure of pool 21n ’C
T.,o = Temperature of pool2atx = 0* Greeh letters
T, = (1,—1,). disturbance temperature in °C x = Timeins
T, = (t,—t,), temperature of the circulation % = Finaltimeins
L e
air into the system, in “C 3(2) = Impulse heat disturbance function,
. . . -1
T, = Temperature of the circulation air into sec
— + .0 . . .
thesystemata = 07 in °C p = Air density in kg/m?
r _ 2l (Tn—T.,0) hypothetical Pw = Density of coolant in kg/m?
- »
' Qlﬂ"p T
temperature , dimensioniess disturbance tem-

o
Ay
I

Final steady state value of 7,

—_ } L] . .
R A —og

. so1d et
- e e i
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Vl . - Tr— JI( Tr max t 7_r mnn,
T, = ———— , time constant of the system 0 = , control vari-
Ql + QZ 7-r max E(Tr max T Tr mu‘)
properins able
2 , .
T, = ' timeconstantof pool [ ins (+1 at T,=T,,,
0,+0, = ’
v =l at T,=T, .,
T, = —%_ ume constant of heat exchanger ]
1 o(t) = Optimum value of 0(z}
ins
v . , /. = Roots of equation (42
T2 = —22— time constant of pool2ins ! 4 142)
0,+0;

La forme fondamentale du principe du maximum de Pontryagin est élargie pour
) couvrir les problémes optimaux avec contraintes d'égalité imposées sur les variables de
' ‘ I'état final. Les conditions nécessaires pour une police de contrdle optimum sont
' déveioppées et appliguées a deux exemples concrets.

Le comportement dynamique du systéme de support de vie qui consiste en une
cabine 4 air conditionné (le systéme lui-méme) soumis & une perturbation de chalcur
par impuision et un échangeur de chaleur (I'élément de controle) est encore étudié.
Le premier exemple considére la police de controle optimal pour un systéme ayant un
échangeur de chaleur avec une constante de temps négligeablement petite. La forme
carrée de la condition finale de la variable d'état est considérée comme une contrainte
d’égalité. Le second exemple considére la police optimale d’un systéme ot le courant
d’air dans la cabine est caractérisé par le modeéle des deux vaisseaux en série (2 CST en
série) complétement agités. La constante de temps de I'échangeur de chaleur n’est pas
négligé, c'est-a-dire que la réponse de 1'échangeur de chaleur n'est pas instantanée.
Les carrés des conditions finales des variables sont encore considérés comme con-
traintes d'égalité.

Die grundlegende Form von Pontryagin's Maximum Prinzip wird erweitert, um
. Optimalprobleme mit Gleichheitsbeschrinkungen zu umfassen, welche den Verin-
. derlichen des Endzustandes auferlegt waren. Die notwendigen Bedingungen fiir
Optimum Kontrollverfahren werden entwickelt und bei zwei konkreten Beispielen
angewandt.

Das dynamische Verhalten des Lebensunterhaltungssystems wird untersucht,
welches aus einer klimatisierten Kabine (dem eigentlichen System) in Abhingigkeit
von einer Wiirmeimpulsstorung und einem Wirmeaustauscher (dem Kontrollelement)
besieht. Das erste Beispiel untersucht das Optimalkontroilverfahren fiir ein System,
velches einen Wirmeaustauscher mit unbedeutend kleiner Zeitkonstante hat. Die
Quadratform der Endbedingung der Zustandsverdnderlichen wird als eine Gleich-
heitsbeschrinkung angesehen. Dus zweite Beispiel untersucht das Optimalverfahren
eines Systems, in dem der Luftstrom in der Kabine durch zwei véilig durchgeriihrte
Rcihentanks (2 CST's-in-series) im Modell dargestellt wird. Die Zeitkonstante des
Wirmeaustauschers wird nicht vernachlissigt, d.h. die Reaktion des Wirmeaustaus-
chers ist nicht unverziiglich. Die Quadrate der Endbedingungen der Zustandsverin-
derlichen werden wieder als Gleichheitsbeschrinkungen dargestellt.
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Applications of Modern Optimal Control
Theory to Environmental Control of
Confined Spaces and Life Support Systems’

,  Part 4—Control of Systems with Inequality Constraints
| Imposed on State Variables

a R

L. T. FANt
Y. S. HWANGt
C. L. HWANGt

P

o Rt o Ko BT
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The necessary conditions for optimum of a dynamic system whose state variables
are constrained by certain inequality conditions are derived by applying a
variational technique. The conditions are employed to determine the optimal
policy for the room or cabin temperature control of a life support system.
The system consisting of an air-conditioned cabin subject to an inpulse heat
disturbance and a heat exchanger acting as a control element is again studied.
The flow of air in the cabin is characterized by the two completely stirred
¥ - tanks-in-series (2 CST's-in-series) model. A c.nstraint is imposed on the room
o EX.... temperature which has to be higher than a certain value for some physical or
* biological reasons.
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INTRODUCTION

THE BASIC form of Pontryagin's maximum prin-
ciple has been introduced in Part 2 of this series[1]
and the optimal control of the systems in which
incquality constraints are imposed on the state
variables at the end of control action has been con-
sidered in I-art 3{2]. In this part, we shall consider
the necessary conditions for optimum for a
dynamic system whose state variables are con-
strained by a certain inequality condition or con-
ditions. Chang[3], Berkovitz{4] and Gamkrelidze
[5] dealt with the fundamental aspects of the
problem, and both the theoretical and computa-
tional aspects were treated ta papers by Dreyfus(6],
Denham(7] and Denhewm and Bryson(8]. Despite
these and other efforis[9-12), tne optimal control
of a system with state variable wonstraints does not
appear to be well undersiood. Here we shall first
state the problem and the necessary conditions for
optimum, and finally apply the conditions to the
temperature control confined spaces and life
support systems{13].

* This work was supported by the Air Force Office of
Scientific Research, Office of Aerospace Reseurch, United
States Air Force, Under Contract F 44620-68-0020 (Themis
Project), and NASA Grant Under Contract NGR-17-
001-034. '

+ Institute for Systemns Design and Optimization, Kansas
State University, Manhattan, Kansas.
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A DYNAMIC SYSTEM WITH STATE
VARIABLE CONSTRAINT

Again let 1s consider a continuous process, the
dynamic behavior of which can be represented by
the following set of differential equations.

dx,
"' = £l a0, . oL X0 0,(0), 0,5(0). . . .

ar
00 i=1.2.. .5 )

or in vector form

dx
ar - {Ix(), (1] (1a)

where x(1) i3 an s-dimensional state vector and (1)
is an r-dimensional control vector. Now, we wish to
find a piecewise continuous control vector 6(7) in
the set © such that the function of the final state

S = ‘; cix(T). ¢; = constant 2)

takes on its minimum (or maximum) value, subject
to the condition that x(r) stays within a specified
region of the state space given by the inequalities

gl[x(')' 0(')] 5 0- i= l. 29 Ry ) (3)

The duration of control, 7, is specified. Functions
Ji» S and g, are assumed to possess continuous
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138 L.T. Fan. Y. S. Hwang and C. L. Hwang

derivatives to at least the second order[3. 12]. In
addition to these, the state vector must satisfy
certain initial or final conditions or both.

NECESSARY CONDITION FOR OPTIMUM

The basic form of Pontryagin's maximum prin-
ciple for systems without state variable constraint
is given in Part 2 of this series{1]. It states that the
Hamiltonian ¥ and the adjoint variables are
defined by

K = i AOFx(), 6] 4
dz; _ ()ﬁ{ _ s . %
FT ax; = '; 20 >
i=1,2.....: Y (5)
)y =c¢H i=12 ..., § (6)

and the necessary condition for the objective func-
tion S to be an extremum with respect to @ is

I 4

o 0. i=12.... r Q)
or

# = extremum on the boundary of the con-

straint (on decision variables) and the extremum
value of the Hamiltonian is constant at every point
of time under the optimal condition.

For systems with equality constraints g;[x(T)]
=0,j=1,2,...,q, imposed on the final state
variables, the necessary condition for the objective
function to be extremum remains the same excspt
that equation (6) becomes

(= i=1012...,5 (8

7 w‘m+ i

It also gives rise to the following additional con-
dition at the control terminal time.

s 6x
#[x(T), KT), 2(D)}+ Z Flt Z 37 =
j=1
3 dx(7
-y an=D o )
t=1
Equations (8) and (9) were derived in the preceding
part of this series[2).

For the system with one primary state variable
and with one inequality constraint imposed on the
state variable, the condition that the Hamiltonian is
constant under the optimal condition remains the
same. However, it has been explicitly indicated[14)
that by employing the chain rule, the condition
given by equation (5) must be rewritten as

dz; onx df, df, do

TR P S PRk Rl (10)

because, the state variable and the control variable
are related through the constraint on the constraint
boundary. Here we wish to prove that the Hamil-
tonian is also constant along the constraint boun-
daries under the optimal condition for a system
with two primary state variables represcnted by

dx, .
ar = filxy. X2, 0,.0,] are
dx
=7 = falxi x2.0,,0) (12)
and with the objective function of the form
T
S = { Flx,, x,.0,.0,]dt (13)
0
subject to the inequality constraints
gilxy, X2, 0,,0,] 20 (14)
8alxy. x2.0,,0,] 20 (15)
16 =<1 (16)

Introducing an additional state variable, x;, such
that

!
X3(t) = I F[.\'l. X, 01, 02]d‘
0
it follows that

dx
= = Pl xa, 64,0 (17)
and
x(T)=8§ (19)
or

3
S=Y cx{T)
=1 ! (20)
cl=02=0, (‘3=|

Thus, the problem is transformed into that of

minimizing x 5(T).
According to equation (4), the Hamiitonian is
H = 2,fi+z:f1+2,f5 @n

and the adjoint vector is defined by

do _ o _ T o on o 0,
6x, 0x, 0x, 00,dx,

R I
08, dx, 6x, av,ax,

30, (3x, aozax‘

_z. [ PE, 9F oxy  OF 00,

3 6xl 6x;6x| 00, 6x,

L, n
20, ox, (22)

i
!
|
i
|
i
!
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o, 00,

} afy ¢éd ¢
0y 0xy a0, éx, oxy

of, 00,

+.».___+% a0,\ [ ¢F
c0, ox, 0O, ix, (P.\', *

F 0

] Dy
(l?_ X,
xy Oxy
OF éx,

ox, fx,

i . OF 00\ of,
by —n (=
20, 2x, T a0, ox, J“Lf2 oy,

¢fy Oxy éf, 60, 9,
2t v, h
dxy 0x, 00, 0x, (0, éx,

dp _ 0¥ _ __ |, Thdxy 900,
dr 5.\‘1 - (7.\'2 (’.\’l (7.\‘2 (101 (7»\'2
of 0] oty , ofyéx,
a0, ix, 0x;  Cxydx,
20320, 220,
80, 0x, 0, 0x,
v N ¢F dx, N éF 00,
—..Z — — —— —— eea—
lox, ox,dx, 0, éx,
JéF ¢,
— 23
* 20, 0,\'2] 23)
d 0N
a0 M= (24)
H X3

of, 0x,
0x, 0x,
iF (‘3\"

8x, x4

af, ¢0,
30, ox,
cF ({)
oxy LAl Ox,

of; 00,
30, ox,

Wa\_ . (&
TE\ax,

( oF
x,

Note that equations (22) and (23) are different from
that defined by equation (5), because the state
variables and the control variables are related
through the equality constraints, equations (14) or
{15). For this reason, differentiation of the Hamil-
tonian with respect to x; must be carried out by
employing the chain rule of differentiation. Also
note that equations (22) and (23) reduce to equation
{5) when the state variable x(¢) is interior to the set
of constraints, equations (15) and (16). The solution
of equation (24} is

=1 0sS1<T (25)

Thus. equation (21) can be rewritten as
¥ =z,f1+z,/,+F (26)
The derivation of the above equation with respect
tot1s
% = af;+f‘;j:}l+f2 "E"“‘Zl [’(%’i%qt“
LY. 90, ¢ oy ]

To0, or ex,f 6—,/2

‘7f2‘701 0f2‘702+0f2
(70, o 00, dr dx,

+ & fz] Q2n

fi

6x 2

Inserting equations (22) and (23) into equation (27)

gives

gzggg of, 00, 9,00, af,f
dt  dr 20, ot 00, ot ax. !

Qf: 0f, 00, 0f,00, afz
f’] [ao, o 30, o1 Tox, !

Z (2, o
+ j’]+f‘[ z‘(ax,+ax,6x,

¢F M,
el arvelces (28)
0, Cx,

Since x,. x,. ¢, and 0, are functions of r only. we
can write the following equation.

a4,
& de
(’02 d02
ct dr

Inserting these equations into equation (28) gives

ax _ OF . OF OF 40, OF do,
dr ox, ox,” 50, dr 26, dr
St
-z, gg—?a—gf— ,%)f—:-% (29)
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Note that we have used the relation

dF aF _0F  OF d0, oF do,

LAY ALt 30
a-w e e w T,

When the extremal solution is on the constraint
boundary, 0(r) is determined in terms of the state
variables and the independent variable ¢+ by the
relation shown in equation (14). The corresponding
neighboring solution must satisfy

‘g,

dg, —7—0- 4o, + ‘e, d02+Td +‘— dx,

=0

or solving for do,
i junidl |
LAY

do, g, d0, 0g, g, Og,
—=————d—f+—=1
dt a0, dt ' ox, (x, (0

@an

Inserting equation (31) into equation (29) leads to
d¥

—_— = 32

ar (32)

or X is also constant along constraint g, = 0.*
Similarly we can prove J is constant along con-
straintg, = 0.

This proof can probably be extended to the
general cases. For a system whose dynamic be-
havior can be represented by equation (1), the
necessary condition for the objective function,
equation (2), to be extremum on the boundary sub-
ject to the constraints, equation (3), is that the
Hamiltonian remains constant on the constraint
boundary, or

d¥
— = 33
dr 0 3
and the adjoint variables are of the form
dz; oN d < ox
ar = Tox, E, zf[ & 6\:, ox,
! &f; 00
2 i=1,2,....5
k=100, (7.\"]

(34)

The condition W#(T)= 0 must hold when the
control terminal time T is left free.

EXAMPLE

Example 3 in Part 2 of this series[t] is recon-
sidered here. In the example, the dimensionlcss
room temperature assumes negative values during
part of the control period. Very often, however, the

* Proof of this statement is given in the Appendix.

room temperature has to be higher than a certan
value for some physical or biological reasons. This
requirement becomes the constraint of the problem.
The performance equations are

dx
d|l+"1|‘1r""11‘142 XNyp—dy,asl
~d;,a,' +a;, (3%
dx
d;z+’12-"|2 = dyyXy, (36)
x00=1 at r=0
11(0) } 37)
X1200=1 at r=0
X, (T)=0 at 1=T
(38)

x,,(T)=0 at ¢t=T

where T is unspecified. The control variable and
the state variable are constrained as

0] =1 (39a)
X, zm (39b)

We wish to find a piecewise continuous control
variable 0 such that the system can be brought back
from the initial deviated state, equation (37), to the
final desired state, equation (38), in the minimum
period of time. In other words. the objective func-
tion given by

S=fdr (40)

0

is minimized. Note that a constraint is not imposed
on x,, because it is known from Example 3 of
Part 2[l] that x,, does not cool down to the
negative dimensionless temperature.

During a period 1n which the inequality con-
straint,

Xy > m,

is satisfied, the solution obtained in Example 3 of
Part 2 is still applicable. TlLu» during such a period
we have [see equatious (75) tizrough (78] in Ref. 1]:

1
Xy = ;‘1“ [(Ay 1 +ri)Aexp(dy 1) +(Ay,+7,,)
1

Bexp(A,,0)+r,K]), 0t <51, (41)
X, = Aexp(dy )+ Bexp(4,,1)+K,
0strs1, (W)

|
Xy = ;; (A1 47Dy exp(d D+ (Aya+7y,)

Dyexp(dy)+r K], 1,518 T (43)
Xy2 = Dyexp(dy 1)+ D, exp(A, 1)+ K’,
luStsST (44)
where

:,‘_-—, AR 0, i G+

!
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a,,asty, +a,,d,,d,—0,,0,,

K= -
A1 Qy203, T T2
’ ’
K = Gy ,0,0,+d,,d5a;,+a,,4,,
AyyQa2Qy, =T 0y >
dy, —ry3—412+40K
A= N ;
SR
f|2+;.1'—;.||K—azl
B = - -
Ay T %2
%
= —{r) +ry3)
2 .
+3 [ry 4700+ 7 ~ay,a,,a43)]
2
‘s

= —{ry, +1y,)

=\ [(’11+’|2)2‘4(’1l’lz‘anauaul)]
2

and where D, and D, are unknowns: whose values
will be determined iater. 1, is the arrival time when
the state variable x,, reaches the boundary where
Xy, = m. ty is the time when x,, departs from
the boundary.

Since x,, = m on the boundary, equations (35)
and (36) become

mry, = a,,au'.\’,z—a, la‘;()-—a,‘a‘é*l"alz (45)

dx
'_‘j2+r|z.\‘|2 ='"02| (46)

or solving for x, ,, we have

ma,,

Xy = +Cexp(~ryyt), t, St 1,47

Fy2

The corresponding # and x, , are

1 . .
0 = ~—— [a,,a4;%,,—a,1@g+a,y—mr,].
1148s
1, St1S 1, (48)
xll =m., 'l‘ g t g '.‘ (49)

where C is an unknown, the vaiue of which can be
determined by inserting x,, = m into equation
(41) and solving fo~ t,,. Then 7,, may be substituted
into equation (42) to solve for C. Thus

Ny = A cxp(i,,!,,)*-ﬂexp(lu!,,)-kk. t = ’_‘.

from equation (47)
ma
Xyp = -;—’-'+Cexp(—r,,r..). 1=1,
12

Solving for C from these two equations. we obtain

C = exp(r, Z’W)I:A exp(/y,1,,)+ Bexp(4,t,)

_f'_'gﬂ+K:| (50)

ri2

Because of the continuity of x,, and x,, with
respecttor, we haveatt = 1,

X tg) = m

L .
=—[(Ay;+712) D, exp(d) 1)
sy

+(A12+r D explly o)+, K]
from equations (43) and (49). and

may,,

Xty = + Cexp(~r,,t,)

¥
= D, expliy 1)+ D;expliy )+ K
from equations (44) and (47). Solving for D, and

D, from these equations leads to the following
expressions.

D, =

i —K'+'1:‘:—z—'+(‘exp(—r,zr,,,) exp(4y ay) 1
V= ry K+ may, (Aya+rs)expldy ty) 1
L expldy ty) expli,aty)

| (Ay+ry)expld, ity (A4 expldyaty)

=r,K'—=may,+{(i,,+r,,)

12
(Ar2—Ayy) explay ty)

Q—K'+Tﬂ-'+Cexp[-r,zt,,])
r 5

and
Dz =
—r K +may, +(4,,+r,,)

(+K’—'—’:£ﬂ—Cexp[—r,,r,,])

12 - / (52)
(A4 ) expldg oty

We now can see that D, and D, are functions of
t,s. Their values and that of T can be obtained by
making use of the final conditions of equations (43)
and (44)at? = T. Thus

)
;“'[(ln‘*"‘: UD, expld T+ (4,3 +1,2)
21
DI exﬂ}.|zr)+r‘2K‘] = 0 (53)

D, exp(d,,T;+ D, exp(d, ;) +K' = 0 (34)

Solving for D, exp(4,,T) from equation (54) and
then inserting it into equation (53) yields

¢
3
i
H
H
3
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- (Ar2=4y1) expl4y,T)
Inserting equation (55) into equation (54) and
solving D, gives

Y ¢
B (2= Ay exp(dT)

D, (56)

Equating equation (51) to equation (56), and
equation (52) to equation (55). we obtain

D, =
—r 3K —may 44 3+7,3)

ma
(_K'+.———2-‘ +Cexpl-r, 2’\41)

T2
(Zya—=2y ) expliy T)
42K’
T Gaz—ri) €xplagT)
and
D, =

—r K +may + (4 +ry)

ma
(K"‘ “—Cexp[“’lz"d])
Iy,

(Ay2=2Ay ) expld, ly)
(A12=A ) expld ;. T)

respectively. Eliminating the common factor
(4,,—4,,)in these equations gives

22K explay 1g,) == expl4, ,T){r,,K’ -may,

) , ma
+[/.|,+r,,][ -K+—2
ry2

+Cexp(—r,,t,,):|} (57
A K expld ) = exp(i.,,T{(—r”K’+ma,,
+a.l+r,,)( 1921

-Cexm-r.:"‘))] (58)

t, and T can be solved from equations (57) and
(58) by a trial and error procedure. Then D, and
D, can be obtained directly from equations (51)
and (52) by substituting the valve of ¢, into the
equation.

The solutions of the problem are tabulated in
Table | and are shown schematically in Figure 1.
The optimal control policy is of the bang-bang type

s ; - " - .o
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;K Tuble V. Minimum values of the objective function (durarion
D, 1 (55) of control) for Case 1 of the two CST s-in-series model with

T2 = 0 and rarious values m in the inequality constraint

X2 m
s=T
ryy m= ~-02 m= —04 Noconstraint on 1,
12 0992 0992 0992
1-5 1 051 1-047 1-047
20 1-233 1-103 1-078
50 2-483 1998 1-007
10-0 3-457 2-862 0-956
" X 2-02
—_——X 2-04
oo = = = X no comtraint
x
o] P g
T A -
05 I > L

Fig. 1. Optimal conmtrol policies and system responses for
Case | of the two CST's-in-series model with 1, = 0 and
ri: = 2 and with a constraint on the state variable.

as shown in Exampie 3 of Part 2 of this series[1].
However, because of the existence of inequality
constraint on the state variable x,,, the optimal
control policy 6 iakes some intermediate value
other than | or — 1 during part of the operation.

Table 2. Simulation of Case | of the two CST’s-in-series
model withty = 0,r,, = 2and x,, g —02

Control Variable 6

1< by hg <1<l ta<t<ityt,<t<T T
1-0 -1-0 10 -1-0 No solution
10 -1-0 08 -1-0 No solutivn
1-0 -10 06 -1-0 No solution
10 -08 10 -10 2:538
1-0 -08 08 ~10 2-363
1-0 -08 06 -1-0 2:249
1-0 -06 1-0 -10 1-435
10 -06 08 -10 1:388
10 -06 06 -10 1-336
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Stmulation ot this problem wah 2 and
Vg 0 2 has been Carnred out estensively by the
phase plane approach and resiedts of the simulation

ire tabufated o Tabie 2 and are also <hown

1

graphicallv m Frevre 20 Those resuits contang that

the solutions i Table Tare trubhy optimag

|
|
|

Somdation of Cave Vof the two OS] s<inserios mode !
with oo 0 ry, Yoand N 02
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CONCLUSIONS

1t should be evident that the necessary conditions
for optimum for processes with inequahty con-
straints tmposed on the state variabies remaimn the
same as those for processes without state variable
constraints. One exception, however, 1s that the
adjoint  variables  possess the form shown in
cquation (34) instead ot equanion (53 on the con-
stramnt boundary.

Another fact which should also be pointed out s
that Pontrvagin’s maximurs principle which can
handle constraints on state variables 1s probably a
more useful form of the calculus of vaniations than
the Bolza ferm which cannot treat constraints14]

NOMENCLATURE
s K,R,
a, ANy
dyy Ry 'Ky
ay; ik,
axyy  rok Ky,
dy rh, Ky,
a2 Ky/Ky»

A Integration constant
Integration constant
. Constants defined in equation (2), i = |1,
9
2.....8

{

U,
Q.
() »

ry

U™

,wh

Teo
Tes
Tuc

Speaiic beat of airm heal Re €

Specie beat ol conlant m ke ke

U nhnown constane i equation o33 and
(+h

U nknown condat o entans (43 g
3h

[he sequaliny constiams o+ F ]

Doy, 200} Flanubtoman funciion achned
cquation (4

A constant i et ations t+ Dy throueh (440

\ Constant i gtations Ay throneh il

by e L
1
3/1} -
I.‘
.
I
Iy
/.
I

A lower bound dimensionless temperatine o
Vi

O+ s o rate of air an the susten
properinm’ s

Air flow rate by circulation wrin '

Flow rate of fresh airmm ' s

. i
ffow rate of coofantin m '

Q, e N .
—='— _the fraction of circulation e
0, +Q:
), . .
(' “—  the fraction of fresh wir
¢, +Q,
Ty
Ty
T2
y2

Performance index detined in equation ()

S ) .
-— . dimensioniess time
T

Switching time when the state variable
reaches the boundary where v, = m

Switching time when v, departs from the
boundary

Inlet temperature of coolant in °C

Outlet temperature of coolant in *C

Final time, dimensionless

Room temperature in °C

Room tempersture ata = 0* in °C

Temperature of pool 1 in “C

Temperaturcof pant lata = 0% in ' C

T W
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T.,  Temperature of poo!2in C Nty Yio.-d = 1.2, s tmitial value ol v at
T,,, Temperature of pool2atx = 0* =1
ctrirhanc T
T Disturbance temperat%lre n _C o N <L dimensionless temperature -t pool |
T, Temperature of the circulation air into the Tovo
systemin C 1., d ionless t r 12
. . . E —_ . 'S tem [
T,,  Temperature of the circulation air into the e T 50 imensioniess emperaiire of poo
e — + 2
systematz = 0" in C zi{t)  adjoint variable defined 1n equation (5)
Qw’,w('pwl Twh - Twr) .
T, : . hypothetical tempera- ,
Q.pc, 1ure Greek letters
T, wac Upper bound of 7, in C p.  Densityof coolant in kg/m*
T+ mn Lower bound of 7, in C Yy time constant of the systen r
. T .time cons system pro
T, ValueofT,atx=0in C ' 0,40, FriempropeT
T.. fte~t,in C v
Tws tun—t,in C T, '—1—%'6— . time constant of pool | in s
T,, Temperature of pool 1 in C o :
T,, Temperature of pool 2in C T, ) . time constant of heat exchanger in «
L A Lagrange multiplier in equations (8) und ¥
Ll vV
©) . .y Ty, L2 time constant of pool 2in s
¥,  Volumeof roominm 2.+Q;
, V., Volume of pool | ot two completcly stirred ) T, = M7, s+ T, un) I variabl
) ; g P .control variable
: ' tanks in series model in m T o= 3T o+ Ty min)
{ 1, Volume of heat exchanger in m*
) +latT, =T, ..
: Vy,  Volume of pool 2 of two completely stirred latT. =T
i tanks in series model in m* _ T
b A1) s-dimensional state vector defined in equa- 411 Constant in equation (d1)
! tion (1) 4,3 Constant in equation (42)
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Derivation of equation (32) from equation (28}
Equation (28) has the form
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) ; Les conditions nécessaires pour 'optimum d’un systéme dynamique dont les variables
é k d’état sont contraintes par certaines conditions d'inégalité, sont obtenues par I'applica-
. tion d'une technique de variation. Les conditions sont utilisées pour déterminer la
i 4 police optimale du controle de température de la piéce ou cabine d’un systéme de
L 5 support de vie. On étudie encore le systéme consistant d'une cabine 2 air conditionné
i . i soumis 4 une perturbation de chaleur par impulsion et d’un échangeur de chaleu:
i * Ty agissant comme €lément de controle. Le courant d’air dans la cabine est caractérisé par
H - le modéle des deux vaisseaux en série (2 CST en série) complétement agités. Une

e

contrainte est impos¢e sur la température environnante qui doit étre plus d’une
certaine valeur pour certaines raisons physiques ou biologiques.

Die notwendigen Bedingungen fiir Optimum eines dynamischen Systems, dessen
Zustandsveriinderliche durch bestimmte Ungleichheitsbedingungen begrenzt sind,
werden unter Verwendung einer Variationstechnik abgeleitet. Es werden die Bedin-
gungen verwandt, um das Optimalverfahren fiir die Raum- oder Kabinentempera-
turkontrolle eines Lebensunterhaltungssystems festzulegen. Das System wird wieder
untersucht, welches aus einer klimatisierten Kabine besteht, die eincm Wirmes
torungsimpuls und einem Wirmeaustauscher ausgesetzt wird, welcher als Kontroll-
element dient. Der Luftstrom in der Kabine wird durch zwei vollig durchgeriihrte
Reihentanks (2 CST’s-in-series) im Modell dargestelit. Eine Einschrinkung ist der
Raumtemperatur auferlegt, die aus einigen physikalischen oder biologischen Griinden
grosser als ein bestimmmter Wert sein muss.
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Applications of Modern Optimal Control
Theory to Environmental Control of
Confined Spaces and Life Support Systems’

Part—3 Optimality and Sensitivity Analysis

L.T. FANt
Y. S. HWANGH+
C. L. HWANGY
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The sensitivities of a cabin with temperature control which has been considered
in the first four parts of this series are examined. These include the sensitivities
to (1) parameter variation, (2) change in dimensions of mathematical models
and (3) change in constraints on state variables are examined.

The system is not sensitive to the variation of the parameter (the recycle
ratio of air) when the magnitude of the variation is small. The effect, however, -
is noticeable when the variation is large. The effect of the change of the para-
meter (the ratio of the time constants of the system proper to that of the heat
exchanger) is very small. The effect of variation of the parameter (the volume
fraction of the first pool in the two CST’s-in-series model) on the optimal
conditions is substantial,

There is a small but not negligible effect of the dimensional change in the -
system equations, which is caused by neglecting the time constant of the heat
exchanger. The complexity of the model describing the system component has a
definite effect on the predicted performance of the system. The effect is apparent
for the particular models considered here, which are the one CST madei and
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the two CST’s-in-series-model.

INTRODUCTION

THE PRECEDING parts of this series are con-
cerned with the thermal modeling and simulation
of confined spaces and ife support systemsl)
and the optimal control of such systems[2-4].
Examination of the optimal results[2-4) naturally
leads us to consider the deviation of a system from
its nominal or optimal behavior. Such deviation of
the system behavior is caused by deviation from
their nominal performance characteristics of sys-
tem components or other factors of the systems,
which are often characterized by parameters of the
system model. This is the essence of sensitivity
analysis.

Tomovic[5] and Takamatsu{6] discussed the role
of sensitivity analysis in engincering problems.
T he_w,' indicated that there are several areas of

i

* This work was supported by the Air Force Office of
Scientific Rescarch, Office of Aerospace Research, United
States Air Force, Under Contract F 44620-68-0020 (Themis
Project), and NASA Grant Under Contract NGR-17-
001-134.

1 Institute for systems design and optimization, Kansas
State University, Manhaitan, Kansas.
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sensitivity analysis. While knowledge of the sens-
itivity of the performance of a system as predicted
by its model to parameter variation is important,
there are other aspects of sensitivity analysis which
are important for a particular problem or system.
These are (1) sensitivity to change in dimensions of
the mathematical model representing the system,
(2) sensitivity to transition from the continuous
model to the discrete model in describing the
system, (3) sensitivity to the influence of various
functional blocks (system components) which
comprise a system, and (4) sensitivity to change in
constraints. Tomovic[7] discussed the contributions
sensitivity analysis can make in analyzing the
stability of a process. Demski[8) discussed the
broad applications of sensitivity analysis in en-
gineering and management sciences. Books by
Pagurek[9] and Sage[l0] arc suggested refercnces
for sensitivity analysis of control systems.

Here we shall make use cf the results presented
in the first four parts of this series[1-4] to demon-
strate the sensitivity to (1) parameter variation,
(2) change in dimensions of mathematical models
and (3) change in constraints.
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SENSITIVITIES TO PARAMETER
VARIATION AND CHANGE IN DIMENSION
OF MATHEMATICAL MODEL

In the literature pertaining to optimal control
almost all the intensive studies in the field of sen-
sitivity are related to the evaluation of the sensitivity
of performance of a system, as characterized by its
model, with respect to small parameter varia-
tions[5]. The specific values of the parameters used
for design and control will differ to some extent
from the actual values. Therefore, it is of practical
importance to the process designer to know how
sensitive the process designed by him is to these
parameter uncertainties which may be due to, for
example, the environmental and aging effects, the
choice of a mathematical model both for the con-
trolled system and the controller, and the measure-
ments. Suppose that the value estimated for a
parameter differs by 10 per cent from the true value.
Does deviation of this magnitude significantly
affect the optimal design of the process? The
sensitivity analysis used to attempt to obtain
quantitative answers to this question is thus an
integral part for the compizte optimal design of a
process.

Table 1 and figures S and 6 in Part 1[1] show the
effect of variation of the parameter r, (the recycle
ratio of air) on the optimal conditions. [t can be
seen that the system is not sensitive to the variation
of this parameter when the magnitude of the varia-
tion is small. The effect, however, is noticeable
when the variation is large. Table 2 and figures 3
and 4 in Part 2{2] indicate the effect of the change
of the parametcr r (the ratio of the time constants
of the system proper, cabin or room, to that of the
heat exchanger). This effect is very small. Table 3
and figures S and 7 in Part 2(2] show the effect of
variation of the parameter r,, (the volume fraction
of the first pool) on the optimal conditions. This
effect is substantial. To illustrate this aspect of the
sensitivity analysis, the dimensionless room tem-
peratures as a function of the dimensionless w.me
under the optimal conditions presented in the
previous articles of this series are summarized in
figure 1. Curves 1 and 2 represent the change of
the dimensionless room temperature as a function
of time for the system with one CST room or cabin.
Curve 1 is for the system with the heat exchanger
having a negligibly small time constant (t; = 0,
t, = 50s). Curve 2 is for the system containing a
heat exchanger with small but not negligible time
constant (t, = 5s, t; = 50 s). Comparison of
Curves 1 and 2 indicates that there is definitely a
small but not negligible effect of the dimensional

change of the system equation which is caused by
neglecting the time constant of the heat exchanger.
A similar conclusion can be obtained by comparing
Curve 3 and Curve 4, which are for the systems
represented by the two CST's-in-series model.
Comparison of the group of curves, Curves 1 and 2,
with the group, Curves 3 and 4, shows that the
complexity of the model describing the system
component (room or cabin) has a definite effect on
the predicted performance of the system. It can be
seen that such effect is substantial for the particular
models considered here, which are the one CST
model and the two CST s-in-series model.

Line No Remork
i X, with 7,20
2 X, wth 7,=0
3 3 (X, # X0} with T, 20
4

X #X,Jwth v, 0

D5k

-Qy

Fig. 1. The sensitivity 10 change in dimensions of the
mathematical model.

THE SENSITIVITY TO CHANGE
IN CONSTRAINTS

The system sensitivity to changes in constraints
imposed on the system, more specially, imposed on
the state variable (temperature) of the system is
discussed here.

For this purpose, results presented in Part 4 of
this series[4] are summarized in figure 2. Note that
the systems considered are all represented by the
two CST's-in-series model (with equal size tank).

Since the constraint is imposed on x,, (dimen-
sionless temperature of the first compartment ot
the model), naturally the effect of the change of
constraint on this state variable cannot be neglected.
However, the effect on the dimensionless tempera-
ture of the second compartment, which is also the
exit temperature of air from the room or cabin, is
negligibly small. The effect of the change in the
constraint on control policy is also very appreciable
as indicated by the plot of 0 vs. ¢ in the same figure.
These observations are valid for the particular
model considered and for the particular values of
the model parameters employed here.
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T, #0
2 - - = 1,20
~ — - — 1,=20c¢d x }-04

Fig. 2. The sensitivity 1o shift of the constraints of the
mathematical model,

CONCLUSIONS

It should be evident that thorough consideration
must be given to numerous aspects of the system in
order to achieve a meaningful sensitivity analysis.
The following must be considered in order to
obtain the desired information.

1. Sensitivity to parameter variation.

2. Sensitivity to change in dimensions of the
mathematical models.

3. Sensitivity to change in constraints.

4. Sensitivity to transition between continuous
and discrete models.

5. Sensitivity to the influence of the functional
blocks of a system. Items 1, 2 and 3 have been
considered in this paper; items 4 and 5 will be
briefly discussed below.

In certain cases, an alternative may exist in
representing the model either by a continuous
model or a discrete model. If the predicted behavior
of the system is very sensitive to a particular type
of the model, use of an appropriate model becomes
important.

Complex systems generally consist of several
functional blocks, stages or units. Complex chain
reactions may follow alternative reaction paths and
produce different intermediate reactants. The sen-
sitivity of the entire system or process to variation

in the types of functional blocks which are con-
tained in the system and to the relative locations of
the functional blocks is called the structural
sensitivity[5].

In this sequence of five short articles, we have
mainly resorted to Pontryagin’s maximum principle
and variational techniques to determine optimal
temperature control policies of several fairly simple
but typical life support systems. It is obvious that
the maximum principle and variational techniques
do not constitute the entirety of the modern control
theory nor are the systems with temperature con-
trol the only type of life support systems. There are
many facets to the modern control theory and there
exists a wide variety of life support systems. For
example, dynamic programming, originated by
Bellman{11-13}], has been and is being employed
widely in solving optimal control problems. Its
techniques and applications constitute a significant
portion of the modern control theory. In life sup-
port systems humidity control and pressure con-
trol must often be provided besides temperature
control and some life support systems are comprised
of partially open spaces. It cannot be denied,
however, that the maximum principle and varia-
tional techniques are major tools of the modern
control theory[10,14,15] and that the temperatare
control system is the most vital component of
practically every life support system. We believe
that singling out particular but important techniques
and applying them to fairly simple but significant
~xamples faci itate presentation and understanding
by readers of the basic aspects of the modern
control theory and its applications to the control
of life support systems.

It is well known that a majority of air condi-
tioning systems and temperature contro lers for
life support systems works on the on-off or bang-
bang principle. It appears, therefore, that the
modern optimal control theory is very much suited
for such systems. Admittedly, application of the
modern control theory to the control of tempera-
ture in a small residential dwell'ng is the kind of
luxury no one can afford or need in the forseeable
future. There exist, however, many situations in
which the duration of control and/or energy re-
quired for control must be critically adjusted. Such
situations frequently can be found in applications
of life support systems in space, underwater, and
biomedical processes, and uses of the modern
control theory in such applications deserve serous
consideration.
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On e¢xamine les sensibilités d'une cabine avec contrdle de température qui a ét¢
considérée dans les premiéres quatre parties de cette série. Elles comprennent les
sensibilités (1) aux variations de paramétres (2) au changement de dimensions de
modéles mathématiqucs et {?) au changement de contraintes sur les variables d'état.

Le systéme n’est pas sensible a la variation du paramétre (le rapport de recyclage
d’air) lorsqus la granduer de la variation est petite. L'effet est cependant important
lorsque la variation est grande. L'effet du changement du paramétre (le rapport des
constantes de temps du systéme lui-méme a celui de "échangeur de chaleur) est trés
petit. L’effet de la variation du paramétre (la fraction de volume du premier bassin
dans le modéle des deux CST en série) sur les conditions optimales est sustantiel.

Il existe un effet petit mais non négligeable du changement dimensionnel dans les
équations du systeme, qui est da a la constante de temps de I'échangeur de chaleur
étant négligée. La complexité du modéle décrivant le composant du systéme a un
effet distinct sur la performance prévue du systéme. L’cffet est apparent pour les
modeles particuliers considérés ici qui sont le modéle a4 un CST et le modéle a deux
CST en série.

Die Empfindlichkeit ciner Kabine mit Temperaturkontrolle, welche in den ersten
vier Teilen dieser Serie ins Auge gefasst wurde, wird untersucht. Man schliesst ein
Empfindlichkeit gegen (1) Parameterinderung, (2) Anderung in Dimensionen mathe-
matischer Modelle und (3) Anderung in Begrenzung der Zustandsverinderlichen.

Das System ist nicht gegen Anderung des Parameters (Luftkreislaufverhdltnis)
empfindlich, wenn der Grad der Anderung klein ist. Die Wirkung ist jedoch merkbar,
wenn die Anderung gross ist. Die Wirkung der Anderung des Parameters, (das
Verhiltnis der Zeitkonstante des eigentlichen Systems zu der des Wirmeaustauschers)
ist sehr klein. Die Wirkung der Parameterdnderung (der Raumbruchicil des ersien
Behilters in dem zwei CST’s-in-series Modell) auf die Optimalbedingungen ist
betréchtlich,

Es crgibt sich eine kleine, aber nicht unbedeutende Wirkung der Dimensions-
dnderung in den Systemgleichungen, die durch Vernachlissigung der Zeitkonstante des
Wirmeauvstauschers verursacht wird. Die Komplexitit des Modells, das die System-
komponente beschreibt, hat eine bestimmte Wirkung auf die vorausgesagte Leistung
des Systems. Die Wirkung ist offensichtlich bei den hier darges n besonderen
Modellen, welche das eine CST Modell und das zwei CST’s-in-series Modell sind.
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APPLICATION OF MODERN OPTIMAL CONTROL THEORY TO
ENVIRONMENTA'. CONTROL OF CONFINED SPACES
AND L.FE SUPPORT SYSTEMS*

L. T. Fan, Y. S. Hwang, and C. L. Hwang
Institute for Systems Design and Optimization
Kansas State University, Manhattan, Kansas 66502

Abstract

Mathematical model of an environmental control system which consists of a con-
fined space or cabin, a heat exchanger, and a feedback element such as a thermo-
stat are presented. The performance equations of the system, which represent
the dynamic characteristics of the air-conditioned cabin (the system proper) and
, the heat exchanger (the control element of the system), are derived. In the

: basic model the flow of alr in the confined space is considered to be in the

1 state of complete mixing and the disturbance is caused by an impulse heat input.
] The flow of air in the confined space or cabin characterized by the two com-
pletely stirred tanks-in-series (a CST's-in-series) model is also considered.

1 Pontryagin's maximum principle, which is a keystone of thc modern optimal con-

{ trol theory, is applied to the determination of optimal control policies of the
temperature control of the life support systems.

~

1, INTRODUCTION cabin or submarine or underground aheltcr.(3' 4

{ This paper contains results of the original in- It appears that analysis and synthesis of the

control systems for the air-conditioning and life

< n,”m.--,.mqu-q« e o e ar
- F1 < Y - .

b vestigation on the environmental control of con-
fined spaces of life support systems or more support systems have '°(§'r2b°§“ z;rrled out by
1 specifically the temperature control of life the classical approach.™™* °* ™
support systems by means of the modern control The classical approach to the analysis and
theory. A life support system is a system for synthesis of an automatic control system is
creating, maintaining, and controlling an environ- essentially a trial-and-error procedure or a dis-
9 ment so as to permit personnel to function turbance response (or input-output) approach.
¢ efficiently. The control of temperature is Extensive use is made of the transform methods
i probably the most important role of the life such as the Laplace transform (s-domain), Fourier
support system. transform (w-domain), and s transform (discrete

The need for providing an automatic control time-domain). Even though mathematics is exten-

system to an air-conditicning system has long sively used, the classical approach ia essen-

d.('lO

(5)
been recognise tially an empirical one,

L It is also a well known

fact that use of the sutomatic control is nec- In recent years, an approach to the analysis and

essary for the life support system of a space synthesis of a control system, vhich {ie distinctly
*This work was supported by the Air Porce Office of Scientific Research, Office

. of Aerospace Research, United States Air Force, Under Contract Pé4620-68-0020
0 (Themis Project), and NASA Grant under Contract NGR-17-001-034.
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different from the classical one, has been devel-
oped. This modern approach is generally called

the modern (optimal) control theory.(s‘ 6, 7, 8,

9, 1€, 11 It 1s based on the sfate-space charac-
terization of a system. The state-space is the
abstract space whose coordinates are ti.e state
properties of the system or the variables which
define the characteristics of the system.(s)
This approach involves mainly maximization or
minimization of an objective function (functional)
which is a function of state (plant) and control
variables which are in turn functions of time
and/or distance coordinate, The objective
function is specified, constraints are imposed on
the state and decision variables, and an optimal
control policy is determined by extremizing the
objective function by means of mathematical tech-
niques such as the calculus of variations, maxi-
mum principle, and dynamic prograuning.(s’ 6)
This modern approach is entirely theofetical in
the sense that no trial-and-error is involved in

"adjusting the controller".

There are reasons to believe that the classical
approach suffices in the analyses and syntheses
of the control systems for a majority of air-
conditioning and life support systems because
usually the requirements are not extremely crit~
ical and specifications are not very tight. It
is, therefore, justifiable that most of the con-
trol and dynamic investigations of afr-
conditioning and life support systems, which have
appeared in the open literature, are based on the

classical npproach.(lz- 200 qhere

is, however, a
certain incentive in applying the modern approach
to analysis and synthesis of automatic environ-
mental control systems in space crafts, sub-
marines, underground civil defense shelters and
certain medical facilities. In these systems,
very stringent requirements in the response time,
control effort, and others are imposed. For
example, the control system of a space craft must
have an extramely small response time and further-
more, the amount of energy required for the con-
trol effort must be very small because of the
veight limitation impossd on the space craft.
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In the present work, the emphases are on the use
of the maximum principle and related variational

techniques.(s' 7, 8.9, 10, 11) Their appli-
cations will be illustrated by means ot concrete

numerical examples,

The examples are concerned with the temperature
control of a life support system consisting of an
air~conditioned cabin subject to an impulse heat
disturbance and of a heat exchanger. The optimal
policies of the system where the flow of air in
the cabin can be characterized by the one com-
pletely stirred tank model and by the two com-
pletely stirred tanks-in-series (2 CST's-in-
series) model are studied.

2. PERFORMANCE EQUATIONS *OR ONE

COMPARTMENT MODEL

A control system usually consists of three
elements: the feedback element, the control
element, and the system proper.(23) The feedback
element in a life support control system or an
environmental control system may be composed of a
thermostat, humidistat and pressure regulator, or
any combination of these, depending on the
purpose of control. The control element may in-
clude a heat exchanger, humjdifier, dehumidifier,
blower, portable air-conditioner, or any combi-
nation of these, depending on the objective of
control. For instance, both the thermostat and
heat exchanger are often used to control the air
temperature inside a building. The system
proper may be a confined space, e.g., an under-
ground shelter, a space vehicle, a space suit, a

submarine or a building.

The system considered here is shown schematically
in Fig. 1. The confined space may be a typical
office located in a multi-story building or the
cabin of a spaceship. Air or oxygen or a

mixture of oxygen and nitrogen is circulated
through the room or confined space via an air
duct by mechanical means, e.g., a blower or fan.
Control of air temperature in the system is
accomplished with a duct system. The thermostat
in the system adjusts the position of the control

valve of the heat exchanger in order to provide
the desired temparature.

T = TR N SO SR
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The performance equations of the svstem, which
represent the dvnamic caaracteristics of the

svstem and svstem components will be derived,
A. The Svstem Proper

The following three main assumptions are made con-

cerning the svstem proper:

(1) Room or cabin air is well mixed, or
stated in another wav, air temperature
within the svstem is uniform throushout

at anv instant in time.

(2) The thermal capacitance of room walls,
floor, ceiling, and window {s neglecteq,
~s well as that of anv furniture within

the system.

(3) Heat loss through the walls and wincows

is negligibie,

The performance equation nf the svstem prorer can
be obtained by using the continuitv law or heat
balance. Assuming that the heat disturbance is

an impulse form, the cabin verformance equaticn

becomes
T £9+T er T 4+r, T,+1, T, §(a)
1 da c 174 272 '1°7d
(1)
Tc =0 at a=0

where Tc is the room temperature, T ,, the tem~

v
perature of the circulation air 1nti the system
proper, 12. outside air temperature, Td' dis-
turbance temperature, 11, time constant of the
system proper, Tpe the fraction of circulation
air, Ty the fraction of fresh air, a, the time,

and 6(a), impulse heat disturbance function,

In dimensionless form equation (1) becomes

dx r. K. x
1 17172
—_dt +11-————K 4 .2K1+K106(t)
4 (2)

X - 0 at t=0

B. The Control Elemeunt

The heat exchanger which is the control element

of the system under consideration can perform its
control function in various ways, for example, by
changing the temperature or flow rate of the heat

\7

B e T

transfor medium, or caanging »oth. The per-
formance equation of the control element can be
obtained again by emploving the continuity law or
heat balance, which can be expressed in equation

form as follows:

T dTi+T -T _prwcpw('rwh-'ruc) (3)
2 da i c 0.0C
1""p
where 1, is the time constant of the heat

2

exchanger. Note that Q o C (T

w w pw wh
amount of heat removed from or added to the

- T ) is the
we

system which can be controlled by adjusting either
Qw when 0y pr, and (Twh - Twc) are constant, or
(Ruh - Twc) when Ow, £y and pr are kept con~
stant, or both Qw and (Twh -~ Twc) when A and C

pw
are constant. In order to have a mathematically
neat form, a hvpothetical temperature Tr is

defined

T, = Qw:wcpw(Twh - Twc)/olpcp )

Inserting this definition into equation (3) vields

a1,
Pd T - T %)

or in dimensionless form
dx x.,K

2
— X -
dt 2 Ky

1

~N

|

4
- KA(KZB + K3) (6)

-

1
C. The Feedback Llement - Thermostat

Here we simply assume that the sensing element
measures the room temperature instantaneously and
that there is no acrumulation of heat in the
element, or for simplicity, it will be assumed
that the sensing element is the zero order element
with its time constant, Ty equal to zero. Ref-
erence 23 gives a detailed explanation of the
response of the thermostat,

3. PERFORMANCE EQUATIONS FOR TWO

COMPARTMENTS MODEL

Next, let ue consider the case in vhich air in the
room or cabin is no longer in the state of com-
plete mixing. Specifically, we shall consider the
case in which flow of atr in the room can be
characterized by two completely stirred tanks (or
pools or compartments) (2 CST's)-in-series model.
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. The following assumptions must be addoed to those dyll “
already made for the system proper in the pre- dt Tty ;"11x1§ RS () 9
ceding section:
d.\lZ
. (
a) The room is divided into two well mixed ac Pttty Y o
compartmants in series. Volume of each ds
"2
K % = -4 - )
pool is denoted by V11 and V12’ and the 3t TR, =% )" dg ag 1)
temperature in each pool is denoted by
T and T 4, OPTIMAL CONTKROL OF ONE COMPARTMENT MuDEL
cl c2’

b) Backflow of air from the second com- Suppose that the dvnamic behavior of a life

partment to the first compartment is support svstem consisting of an air-conditiened

negligible. room or cabin subject to the impulse heat dis-

: turbence and a heat exchanger with newligiblv
' . dis

c) Disturbances are equally distributed over small time constant (_2 .0). Then the svsten
the system.

. ‘ performance equation in dimensionless form can be
d) Fresh air comes into the first compartment obtained bv combining equations (2) and (6) and
; at a constant flow rate, while exhaust air letting U -0.
: [ is released from the second compartment at dx
: ' . :
§ i a constant flow rate. va€-+r2xl= rzKl- rlklkz‘ -r1k1k3 (12) N
E 4 The schematic diagram of the system is shown in with
i ‘ Fig. 2. The performance equation for each pool .
? . f can be obtained by using the transient heat xl(o) =1 at t=0
! i (; balance around each compartment. Thus, for pool 1, xl(T) =0 at t=T
\ ' we have
: dT . where T is the unspecified final control time.
j 11 "da 4Tc1 rlTi-Pr2T2+ T 11 Tdé(q) (7) We 'izh to determine ¢ so that the response of
% the svstem can return to its desired state in a
{ T, =0 at a = minimum period of time, that is, to minimize
T
or S = [ dt (13)
datr 0
T <l + T, =¢, T, + 1, T
‘ 11 da cl 1 22 1f an additional state variable L) is introduced
= ot
th" Tcl - Tclo at t=0 as
. t
L3 Similarly, for pool 2 we have xp(t) = o de,
¢
P dT T
y . c2 L2 it follows that
12 T tTe2"Tat T, 12 T4 (8
dx2
Jo— 3 4
T, =0 at a=0 qc = 1 %@ =0 (14)
The problem is thus transformed into that of min-
or a7 imizing xz(T).
c2
"12 da + TcZ - Tcl According to Pontryagin's maximum prtnclplc."‘ 8
+ . the Hamiltonian is
Tcz TcZO at as 0

or in dimensionless form
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dlz(t), %), (1))
e
%1 Tt

= zl[-r2x1+r2K1-rlKlen'rlK1K3]+22 (15)

The components of the adjoint vector are defined

by

dz R

1 i
Ty - "‘g = l‘zz1 .16)
dz

2 IH
E I L N A an

Solutions of equations (16) and (17) are
Tyt

z,(t) = Ae (18)
z,(t) = 1, 0<t=<T 19)

where A is the integration constant to be deter=~
mined later. Inserting equation (19) into
equation (15) yields

Hs —rlKlKZzlt* -r221x1+ z'zl(lz1 - rlK1K3zl+ 1

(20)
Therefore, the switching function, H*, the
portion of H which depends on ¢, {s
H* = -r.K K, z,° (21)

1717271

Note that minimization of the Hamiltonian with
respect to - corresponds to that of the objective
function, Equation (21), however, indicates that
the minimization of the Hamiltonian with respect
to ¢ is equivalent to that of the switching
function. Thus, minimization of the switching
function corresponds to that of the objective
function, Equation (21) also indicates that for
the switching function to assume the minimum value,
8 must assume its minfwum allowable or its maximum
allowable value depending on the sign of the co-
efficient of ¢,

CAL enlx =1 if -rIKlexl <0

(22)

G = 9m1“ - -1 {f -rIKlKS;l >0

Time optimal control poiicy of this type is of

bang-bang tvpo.(J‘ 4 6, 9
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[n the case where the coefficient of * in
equation (21) vanishes, we have the possibility

(10)

of singular control. For singular control,
the control variat le takes on values which are
intermediate to * and & ; hence the name
max min
intermediate control is also used in place of the
singular control.(lo) Also inertialess control
will be considered. An inertialess controller
has the abilitv to shift from 8 to ¢ in~
max min
stantaneously and vice versa.
The maximum principle now requires that the
system equations, equations (12) and (14), be
integrated simultaneously with the adjoint
equation (16) so that the two-point boundary con-
ditions

xl(O) =1, xl(T) =0

x2(0) =0, xz(T) = yndetermined

zl(O) = undetermined, zl(T) = undetermined

are satisfied. For this minimum time problem
extremum of the Hamiltonian must vanish at every

point of its response.(7' 8

In order to bring the initial deviated state
x1(0+) = 1 to the final desired operating state
xl(T) = 0, we intuitivelv relect the control

n o= em = -1 (which corresponds to the minimum

in
cooling action). Equation (12) can be integrated

with the conditions

6 = 8 =1 (23)
max
and
+
xl(O) =1 at t=0 (24)
as
2 PLI -r,t
xl(t) e +t—2(r2K1-rll(le-rlKlKJ)(l- e )
-r.t -r,t
e 240 1-e ¥ (25)
r
2
wvhere
n ek - '1‘1“2 - r1K113 (26)

The integration constant A in equation (18) can
be determined by uiing the condition that minimum

P

.o

. deres
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< H is zero for all the process time in tine ortimal ib's andicates that the hamiltonian is kert at

+
control, At t = 0, we have fron equitions (1%
(20), (23) and (<4)

_1__
- rZ

A= zl(O+) -

and

zl(t) e 5 e N

Equation (27, implies that z(t) will not change
sign since zl(t) + 0 only when t approaches nega-
tive infinity, or in other words, ccntrol will

A -
not shift from nax ©° emm (or from to

min
Therefore, this problem is a particular case of

bl bang~bang control which has the bang part onlv,

The optimal control policy starts with T and

r max
then keeps operating at the upper bound of Tt

The
finei control time can be obtained from equations

(20) and (33) together with the final condition

until the final desired state is reached.

xl(T) =0 at t=T

as follows

- ———— gy .

He zl(T)(-rle(T) +n]l+1m=90

or solving for zl(T)

-1
zl(T) - ry (28)
Also we have, from equation (27), at t = T
r,T
1(m = —d_ 2 (29)
n-r,

Solving for T from equations (28) and (29) gives

n-¢
Te ;% tn(—3) (30)

This solution mav be verified by inserting it into
equation (25) as

‘1\1)
-r, T r. T
- e LI iL {l-e 2 }
2
n-r
= exp(-r, ;1- tn( 2))
: LY B WP
,A’ + N (1-expl-r, r, tn(— 1)}

=0

maxl

180

Zero b oevere point o Lts response 1o this ~ing-
“q ti~e proble~. For
r u. 8 1, = 0.2
bl = 0.5 kz = 1.%
F3 = 1.5 3 =2,
w. have fron equations (22), (J7) ang (30)
o YO
2 (0 - 1%3 AR TR AR (1)
SO 6.5¢70 ¢t 5y (30)
T = 0.83513
aud ‘rom eguation (3!)
i
z, = oy U.769 at t 0
2, = . = 0.909 at t =T
17 1.1 : “ ,
o
3
Equations (31) and (32) are granhically shown in %
Fig. 3. The state variable Xy approaches asvmp- F
,{;
totically to the final state, the control vari- !
able  remains at unitv unti! the final stat. 1s k
5
]

reached, and the adicint vector increases asvmp-
totically, The optiral control (an be verified
bv computing H at an arbitrarv point, sav 0.5, of

the time cocrdinate as follows:

t = 0.5
z,(t) = 01y
x (0 = 6,570 s
and
He zl(t)[-rle* rzkl- thXKZ- rlKIKJl + 1l
01 ol
'1—3 [-0.2(6.5% °"~-5.5)+0.2x0.5-1.,21+1
)

Thie computation shows that the minimum value of
H is zero at everv point of this continuous pro-

cess.

Four cases vwith different cooling capacities of
the heat exchangers are considered here. Tr max

and Tr take the following values for these

min
four cases:
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Case 13 T = 30°C T = 0°C
r max r min

Case 2: T = 20°C T . = 0°C
r max r min

Case 3- T = 10°C T = 0°C
r max r min

Case 4: T = 5°C T = N°*C
r mux r min

The numerical solutions for these cases are
obtained from equations (25), (27) and (30), and
are tabulated in Table 1,

5. OPTIMAL CONTROL OF TWO COMPARTMENTS MODEL

Let us again consider a life support svstem con-
sisting of an air-conditioned room and a heat

exchanger as in the preceding example, However,

suppose that the flow of air in the room can be
characterized by the two CST's-in-series model.
Again assuming that the heat exchanger has a
neg'ivibly small time constant (12 - 0), the
system performance equations, equations (9), (10),

and (11), become

dxll

dc Tty

1] L]
a a, +a

= a,.3,.'x 1% "% 12 (33)

112452 -2

12

dx12

“de Y f12*12 T a*n (34)

The initial and the final conditions are

00 = x (0" « 1 at t=o
(35)
xll(T) s xlz(T) =0 at t=T
where T i3 unspecified. We are to minimize
S ’T d
s | t
0 (36)
Introducing an additional state variable
t
'J(t) - of de,
ve have
de
rrike 1, 13(0) -0 (37)

The problem is thus transformed into that of min-
imizing x,(T).

Then, the Hariltonian s

H(z, x, *)

1
1% 77 1%t

(38)

'
=z T X A X8

- +
T tanxPt Yy
According to the delinition of the adjoint vari-

ables, we have

dz
11 s H
T A VL S PTES ¥ (3%)
dz
12 HH v .
g " T, T Tt fu T Tifn (49
dz
3 IH
Ty - - ~ 0, ZJ(T) -1 (41)
3
™ie solution of z3 can be obtained from equation
(41) as
z,(t) = 1, 0<t<T (62}

Equation (38) can be rewritten as

H(z, %, @)
1 L] L]
=2 (T X Y A58 ¥ T 3% T A% YA
MU P LI PR LU (43

Therefore, the switching function H* is

H « - a (44)

n* o°
Inspection of H* shows that the optimal controller
should be of s bang-bang type. The control action
for this problem, however, is constrained in such

s manner that
lel <1 (45)

The conditions for which the Hamiltonian is to be

minimum are

86 =8 =1 if 0

1]
max 418 %) ¢
(46)
0

8 =8 = -1 if

1]
min s
In order to bring the initial deviated statse,
xll(o*) - 112(0*) =]l atte=0% tothe final
desired operating state, xll(T) - 112(1) = 0, at

t =T, we intuitively employ the control action
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of o= = 1 smaximum cooling action). Sub-

mdx

stituting this value of © intc equations (33) and

(34) and then eliminating xll' we have

d xl, dxl2
coe A (r, 4T ) —= 4 (T

7 1t T2 ae 11512 " 211242 2210%12

Y a5 3y Y818 Appe "0 (4D

Solutfon of X, can te written in the form

A t A t
X, " Ac Hoiage Mok, 0ce et (48)

where 31 and A12

equation

are roots of the characteristic

2 - (.
BTGP TP R SL UV I A
and

\J L
Jlutsta T itate T %'n

K a "o, -1
11%2 *21" 1112

Inserting equation (48) and its derivative to
equation (34) and solving for X1 yield
n

A, .t Agat

1 1 12
--.z((xu+ ru)Ae +(x12+r12)l¢ +r12K].

0 <t < t' (49)

Constants A ard B in equaticns (48) and (49} can
be determined by employing the initial condition,
cquation (35) and Cramer's rule as follows:

v 2t
fed 1o 1
2% 2%
1 1
e VU v Matier Y AN ¥
‘n Tt
and
|f2* 2y %y - Tk
1 1-K
} I
M1t M

R Ve PR PIPS -

Tt uk ey

117 12

For o = -1, xll(t) and xlz(t) are solved by using

equations (33) and (34).

nt

, .
"11“"% SR PRASPILIL

12t
+ (O, +r, . )D, e + rlﬁK'], (5Q)

12 712772

and

il
xlz(t) -Dle +Dze

where
L] t
¢ - on®21% 7 %01fs a1 T f12%
¥ -
%1% T Tuf
Constants D, and D, can be specified by noting

1 4

11 and X2

t. We obtain from equations (49) through (51)

that x are continuous with respect to

at t =t
s

d .t ) t
11 8 127s (] .
xlz(ts) - Dle + Dze + K t

LI 4 A .t
ahe B g 128, (52)

and

xll(tl)

PP EYIEN

t

1 11t
e (G * 1p,)0e

)

* Oy *1)p)0ge

£
3
i
!
§
k|

t
’
+ tlzK )

) . 4
1 11's
* o [y # rplae

21
A

t
™ 127s

+ () + rlzK] (53)

12° 12

Solving for Dl and Dz from these equations leads
to

l)l * A - !1. (54)

Dz -0 - lzc (5%) "

B A - O ]
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’ where 6. CONCLUDING REMARKS -
£ XlZ(K' - K By now readers should be able to realize that the
1A, -y maximum principle has a certain advantage over
(K X) other modern optimal control techniques. It {is
A K' -
52 = .%l~__7___ that it can be used to evaluate the number of
11 12 switching points of the bang-bang control policy
We see that D, and D, are functions of t,. The via the switching function and adjoint vectors.
value of £ and that of T can be obtained by Two examples given in this article take advantage
using the final conditions of this rule. Furthermore, the maximum principle
can be applied not only to the system with linear
X, (T) = x, (T) =0 at t =T
. 11 12 performance equations but also to those with non-
(24)
. Equations (50) and (51) thus become linear performance equations. Bellman proved
’ theoretically that the number of switching points
X,,T Aq,T
: Dje 1, DZe 1z° K' =0 (56) is one less than the dimension of the problem for
linear systems. However, this theory cannot be
1 AT applied to non-linear systems. -
— [(A,, + r ., )D e
a 11 12°71
21 It is worth noting that other forms of the
A,,T
+ (A12+ rlz)Dze 12 4_ruK.]_ 0 57) objective functions can be considered. For
example
Eliminating T from these equations and letting T 2
§= 7 [x1] dt
A, K' 0
E. = 11 T
3 A, =) 2
12 11 -
S 0! {a + bl(xl) ldt
K"
12 T
EI")‘ - S'f[elzdt
11 12 0

£
[
Q
o
[ad
[
[=S
=
(2]
]

T 2
OI {a + c(8)7)dt

S W TS

E A E \
4 12 k) 11 T
(e P2 (58) s  [a+b(xp?+ c(@?)ae
1178 1278 0
A-E,e B—E,e
¢ : T 2 2
S= J iby(x)” + (o) Jdt
tg can be solved from this zquacion by a trial 0
and err rocedure. Then D,, D, and T can be T
n or p u en D,, D, a s« s |oldc ,
calculated directly from equations (54) through 0
56).
(36) The objective functions have different physical
The solutions of this problem are shown sche- signific.nce,(s' 9)

matically in Figs. 4, 5 and 6 and are tabulated SN
‘n Table 2. The solutions are very similar to

those of the preceding example. However, one
distinct difference between the response of the
dimensionless room temperature in this problem
and that in the preceding one is that the
dimensionless room temperature can become nega-
tive in this problem while it can not be bealow

gero in the preceding one.
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Table 1. Optimal solutions of the one CST model
together with 1, =0

5.0 | ~3.8727 | 0.1852 | 0.598 | 1.007
10.0 | -9.4477 | 0.0896 | 0.715]0.956
1.2 | ~-0.0596 | 0.4538 ) 0.975 ) 1.27%
1.5 | -0.1703 | 0.2984 | 0.775 1.22,
2 20 0 1.0 1.0 2.0 | ~0.4526 | 0.2552 | 0,715 1.245
5.0 | ~2.5520 | 0.1024 | 0.910| 1.25
10.0 | ~6.0425 | 0.05105] 1.0501.725 |
1.2 | -0.0343 | 0.1476 | 2.015] 2.215
1.5 | ~0.0998 | 0.1177 | 1.635] 1.955
3 10 0 0.5 0.5 2.0 | -0.2285 | 0.9882 | 1.500 | 1.860
5.0 | -1.1295 | 0.0353 | 1,875) 2.115
10.0 | -2.6253 | 0.0171 | 2.180] 2.310
1.2 | -0.0169 | 0.0192 | 4.520] 4.625
1.5 | -0.0414 | 0.0223 | 3.780 ] 3.940
4 5 0 0.25 0.25 2.0 | -0.8831 | 0.0167 | 3.460 | 3.640
5.0 | -0.3865 | 0.0082 | 4.250 | 4.360
10.0 | -0.8734 | 0.0059 | 4.780 | 4.841 !

N —
Case Number Two Bounds of K2 K3 Final Time T
Control Variable
1 T = 30°C 1.50 1.50 0.8353
r max
Tr min 0%¢C
2 T = 20°C 1.00 1.00 1.2566
. r max
N Tr min 0"¢
' 3 T = 10°C 0.50 .50 2.5541
r max
v Tr min = 0°C
ﬁ 4 Tr max - 5°C 0.25 .25 5.493
i - 0°
2 N Tr min 0°¢
3
H Table 2. Optimal solutions of the two CST's-in-series
3 model with T, = 0
% Case Tr max Tr min KZ ) K3 11 *11s *12s ts T
# 1.2 | -0.0760 | 0.7205 | 0.645 ] 0.992
¥
N g 1.5 |} -0.2298 | 0.4874 | 0.518 | 1.047
{( 1 30 0 1.5 1.5 2.0 | -0.6031 | 0.3862 | 0,471 ]1.078
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. NOMENCLATURE T, <
K2 = T
a, = r Kl/Kb 2¢0
8, = T K1 Q = Q) + Qp, flow rate of air in the system
proper in mJ/sec
a; = K1° i
Ql = Alr flow rate by circulation air in
a, = r Kb/Kl m3/sec
a, = r K2 K.,. Q2 =- Flow rate of fresh air in m3/sec '
a, = r K3 Ka % =  Flow rate of coolant in m3/sec
£ = 4 T §
an %1 t‘11“(6 r - 2 , the ratio of time constant of }
' a - r r. K T2 system proper to that of heat
N 12 17271 exchanger
a = I K./T,r Q
: 13 d 111772 711 r - —1 , the fraction of circulation air
\ a = r, K./K 1 4+
. ¥ 21 12 "12° 11
- Q
B 823 Tg l(12/1.2 12 r, = Q—%é— , the fraction of fresh air
. 17 %2
: 3, * K[k .
. § a,, = K, /K r - L
g ? 42 4" 712 11 LE%1
4 N by
H g{ A = Integration constant 1, - ’
¢ k4 T - —_— !
v H A, = [Integration constant 12 "12 i
N 13 '
; . H ( Az = Integration constant S = Performance index '
*
; B = Integration constant t - -:— , dimensionless time
H 1
' i c = Specific heat of air in Kcal/Kg °C
; P t, = Reference temperature in °c
’ ¢ = Specific heat of coolant in Kcal/Kg °C
3 W L. - Room temperature in °C
H[x(t), o(t), z(t)] = Hamiltonian function
ty " Disturbance temperature in °C
H* = The portion of H which depends on 9
H fa. - a.a. - a.a g, - Temperature of incoming circulation air
. K = 2" %1% " %1% in °C
r - a.a
i 14 t, * Initial time
ra, + a,a, - a.8
' 2 175 176
K T4, t, = Switching time
Tz t = Inlet temperature of coolant in °C
U Y "
c0 th " Outlet temperature of coolant in °C
1 .
Kz ﬁ; ('l‘r max " Tr nin) t, = Outside air temperature in “C
1 T = Final time, dimensionless
K - (T +T )
3 iT_Z T max r min Tc = (tc - t.). room temperature in °C
T
K, = =% =  Room temperature at a = 0% in °C
4 Tm c0
T, T,; = Temperature of pool 1 in *c
K -
1n T1e0 T.o = Temperature of pool 1 at a = o* in °C
187
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c2
Te20
Ty =
T, -
Tio =
T =
r
Trf =
T -
Tr max
Tr min =
TrO "
-
we
Tuh =
T, =
Up(t) =
v, =
Yiu "
v, =
Vi2 =
xl(t) -
x,(t) =
*u -~
*12 *
'1(') =
S

_ v
e oot
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Temperature of pool 2 in °C

Temperature of pool 2 at « = Ot

(td - ta), disturbance temperature in °C a

(t, - t ), temperature of the cir-

i
in °C

Temperature of the circulation air into 0

the system at o = Ot in °C

p.c (T . -T )
Qw WQ BY CWh wq_’ hypothetical
1? P temperature

Final steady state value of ‘1'r
Upper hound of Tr in °C
Lower bound of Tr in °C

Value of Tr at a = 0 in °C

o
twc tc in °C

L]
twh - ta in °C

(t2 - ta)’ outside air temperature

Step heat disturbance function

Volume of room in m3

Volume of pool 1 of two completely
stirred tanks in series model in m
Volume of heat exchanger in m3
Volume of pool 2 of two completely
stirred tanks in series model in m3
T
=&
TcO

culation air into the system,

B(t)

¢(a)

11

12

, dimensionless room temperature

T
iFL" dimensionless .emperature of the

10  circulation air

T
=<1 » dimensionless temperature of
cl0 pool l

Tc2

s dimensionless temperature of
c20 pool 2

Adjoint variable

it mmgtey | T T

T e g gt

. e e A W

GRLLK LETTERS
= Time in sec.
= Final time in sec.
= Impulse heat disturbance function, secxl
= Air density in Kg/m3

= Density of coolant in Kg/m3

T
= ;g , dimensionless disturbance tem-
‘2 perature
v
1 .
*  —~——— | time constant of the system
Q, +0Q
1 ‘2 proper in sec.
Y11
= ———— | time corstant of pool 1 in sec.
Q, +0
1 2
\
= ag , time constant of heat exchanger in
1 sec.
. V12
T+ time constant of pool 2 in sec.
1 2
T -3 +T )
r 2' r max r min

= , control

1
r max-'i(Tr max‘iTr min) variable

+1 at T =T
r Y max

-1 at T_=T
r r min

Optimum value of a(t)

Heat disturbance function
= Defined in equation (26)
- Constant in eque on (48)

= Constant in equa:‘'~n (48)
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ABSTRACT

The optimal startup policy of a jacketed tubular
reactor, in which a first-order, reversible, exothermic
reaction takes place, i{s presented. A distributed
maximum principle is presented for determining weak
necessary conditions for optimality of a diffusional
distributed parameter system. A numerical technique is
developed for practical implementation of the distrib-
uted maximum principle. This involves the sequential
solution of the state and adjoint equations, in con-
junction with a functional gradient technique for
ireratively improving the control function.

INTRODUCTION

This paper presents an optimal policy for startup
of a jacketed tubular reactor in which a first-order,
reversible, exothermic reaction is taking place. The
optimal control policy is determined by using a dis-
tributed maximum principle. The control or decision
variable is the wall temperature of the reactor, which
is manipulated to minimize a given performance index.
Computational results are obtained for a case with and
without a constraint on the maximum reaction temp-
erature,

The mathematical model for the jacketed tubular
reactor is 8 continuous distributed parameter flow
system, vhich gives rise to a set of coupled non-
linear one~dimensional second-order parabolic partial
differential equations. A distributed maximum prin-
ciple used by the previous workers, for example Denn,
et. al. (1]}, is extended to a general system of non-
linear diffusion equations, with two-point boundary
conditions consisting of linear relationships between
L dependent variables and their axial gradients. A
set of necessary conditions for optimality is obtained
for a fairly general performance index.

In general, equations of the type treated cannot
be solved by analytic methods and even numerical tech-
niques for coupled, highly nonlinear axial diffusion
equations are not generally available. Therefore, an
iterative computational technique involving a gradient
in functional space is presented, which enables the
numerical implementation of the distributed maximum
principle. It is shown that the technique is capable
of accomodating inequality constraints on atate vari-
ables by the addition of an appropriate penslty func-
tion to the performance index.

A DISTRIBUTED MAXIMUM PRINCIPLE

A distributed maximum principle is )resented for
deternining wesk necessary conditions for optimelity

for a class of distributed systems. Due to the com-
plexity of partial differential equations, a completely
general maximum principle, as exists for lumped para-
meter systems (2, 3) has not been found. However, suf-
ficient generality has been retained that the results
apply to a wide variety of systems of interest in pro-
cess control.
System Description

Attention will be focused on systems which may be
described by a general nonlinear vector partial dif-
ferential equation of the form

u (x, t) = flulx, t), u (x, t).'gxx(x. t),

a(x, t), x, t) )

where u is an s-dimensional state vector defined on a
norsilized one-dimensional spatial domain x from x = 0
to x = 1 and over a fixed time interval t = O to t = ¢
The control vector 8 is considered to be distributed iﬁ
space and time and is r-dimensional. An independent
variable appearing as a subscript denotes partial dif-
ferentiation with respect to that variable.

Equation (1) 1s augmented by the following set of
initial and boundary conditions:

Ci(g) =0 atte0, 1w, ... ,s (2)
Om(\_l-\gx)'o at x =0, me=1l, . ..,p 3)
wn(g. !x) w0 atx=1,n®1, ..., q= 25-p (4)

It is assumed that no boundary forcing is present (L.e.,
control action does not appear in the boundary con-
dittons).
Variational Equations
Consider now small changes &8 in the control vec-

tor §. The resulting incremental responses Su, in the
state variables u, must satisfy the following linear
perturbation différential equations:

o, =t Tourf] Gy el & +£7 s ()

" -xX 10
t u u |- 2

i{e1, ...,8
where the above notation denotes the following:

i

att zft 9 "
M U Ju
A2 Ae “xx
g, «f l,e, =f 2 |. ¢ - < |
i i i
H iy Uy 3ty Sxx 3y
u )] [T
8 L
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The variational initial and boundary conditions are

{1 6!-0 att =0, {=1, ..., 8 (6)
]
»T 6u+oT fu m0atx=0,m=1 )]
- u ® Ux ’ s ¢ e o s P
u u
- -x

b a4yl 6u =Oacxel,n=1, ...,

' q= (28 - p) (8)
All partial derivatives are evaluated on the nominal

trajectory.
Equation (5) can be written in the form of a lin~
earized vector partial differential equation

- €
6\_.!t g‘_’ Su + Eu-‘ ch + :_:“ 6\_1’“ + f_g 88 ®
where
2_!_ ?.f_" azl afl
Bul Du. aul au“
£ = : : S I
q- . . ﬂl - .
of of hE 4 of
. 2 8 s
“1 au' _3“1 au.
; t 3!1 3!1 fl.
3u **t 20
1 s
XX xX
g" . : £ = .
-xx | 3f of =9 [af
8 8 = | s
aul R ) 3
')
xX xX

Necessary Conditions For Optimality

It is desired to determine the control functiom @
vhich yields & minimum for the following generalized
objective functional:

1 y tf 1
s o! (u(x, t‘), x)dx + of °I G(u(x, t),

8(x, t), x, t) dx dt (10)

In order to obtain necesssry conditicas for op-
timality, it is required to find a relationship which
expressas variations of the objective functional, 48,
in terms of control perturbations, 86. Taking first
variations on the objective functional, Equation (10),
gives

1 t ]
88~ /7Ty dx + 18 7 1cf sus
0 ¢ = ety T o o TwoS
c"u_] ax dt a1)
vhere =
ar 26 36
' h.ll qu 301
’! - : N c! - E » c! - ;
ar Y 3g
an. In. ? r

Consider now adjoining the variational system
equation, Equation (9), as an equality constraint with
the variational objective functional, Equation (11).
This yielda

te )
Tén._ndx +IfI(GT6u+G6‘r&g

1
S = f F
o U tt, o 0 uw ~

- zT[6u -~f bu ~f 8u ~f 6u_  -f 66))dx dt
- -t .‘-“ Py -Ex -X —‘,'! -XX -g -
(12)

where g(x, t) '8 an s-dimensional adjoint vector.
The following identity is now introduced:

T T T

(z Su + z dgt (13)

Sude = 2

Substitution of Equation (13) into Equation (12) yielda

1 }
6= [ F.T fudx + 78 PeTeu+c,T s
L LT ) o v -
T T T T
“((z" bw), -z bu-z £ Su-z £ Oy
- -xX
T T
-z f_u ngx—z ge §6]}dx dt (14)
-XX -

A portion of the second integrand of Equation (14)
1s now integrated with respect to x from x = 0 to x = 1
by parts so that each term in the integrand involves
either the variaticn 8u or 66. This gives
LI §
o = & £,)

x=0 -u_‘x

Ilsz su dx-[zrf Su
[ s 4, T X

du dx (15)
e T T 1
oLy SpdxtlEf de (2 £, Dy g
1 1
+ ol (z gu‘u) o Sudx (16)

Another term in the second integral of Equation (14) s
integrated with respect to t, ylelding

t

t
J € (f aw), de = (27 84l 5 an

After some manipulation and noting that du(x, 0) = 0,
the following result is obtained:

U S | e 1}, T, T

- - + G + 32

6s = f (r! 2] dudx at, RN { o *2

T

QQIGQ'P[!:T-O-_:_ -(zti )+ (=

f_! - = ’x

t
T £1.,.T
+G "oyl de ¢+ f [[! t, -G

T 1
+2 . & de as)

-x
An equivalent result was obtained by Denn, et. al. 1)
using a Green's functiom approach.

In otder to eliminate terms not depending explic-
1tly on 88 from the second integrand of Equation (18),
1t is stipulated that each component of the adjoint
vector 3 satisfy the following partial differential
equationt

«-sfg + T

2
i, 4

T
L ) _-(
-ll"!

)ou =G v

fa, Oxe

x
t.l.nuc.. (1’)

: L
1
)
-
3]
xi

Y
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The boundary conditions for Equation (19) are speci-
fied such that

g, -G
-x

T
£,
-3K

1

x=0

Su
-x
XX

=0
(20)
This is sccomplished by choosing the adjoint boundary

conditions such that the coefficients of the unknown
endpoint variation &y and ng vanish.

T
)] du+z 52

At this point, the system boundary conditiors,
Equations (3) and (4), are assumed to be linear and
have the more explicit form

01(1_1, l_.‘)-o-ui: a, u1+b1 at x =0,
i=1, ..., 8 (21)
- + -
#l(\_x, |_|x)'0 “‘lx < u,~+d‘l at x = ],
i=1, ..., 8 (22)
The corresponding boundary variational equations
becoms
6\1‘:4-.1 aut-o at x=0, {i=1, ..., 8 (23)
t$t|1x4-c1 Gut-o at x=1, 1i=1, ..., s (24)
The unknown endpoint variations Su, in Equation

(18) can now be written in terms of the respective
unknown variations Sy. To set the coefficients of the
Sug equal to zero, the adjoint variables z; are
required to satisfy the following 2s conditions at
x=0 and x=1;

=0 at x=0,
xx

T
)x- s,z f

1=1, ... 8 (23)

s f =0 at x=1},
ixx

i = 1. eeey 8 (26)

The specification of the sdjoint vector is -~om~
plated by stipulating the transversality conditions

.‘-'U at twt 1.1. eeey 8 (27)

N ¢

Thia causes the first integral in Equatiocn (8) to
venish and it follows that §8 can now be expressed
explicitly in terms of the control perturbation, 80:

% 1t 7t
e st S leTegl gt e (2

It 1o convenient to define a Hemiltonisa function

'(!t !‘o '_l“' !o B X t)

“G(g & % O+3x, OF £l v, 80 8 % 0

(29)

so that Equation (28) becomes
1

68 =» f /

0 0

“'l'

8 (30)

89 dx dt

vhere

It follows by reasoning similar to that of Katz
(4) who achieved a similar result for a more general
and abstract class of problems, that the best choice of
control action § which minimizes the objective
functional S {3 that which makes
1
/ Hdx (31)
0
stationary over the interval 0 < t < tg with respect
to components of 8 lying interior to the admissible
control region and a minimum for those lying on the
boundary. For control components interior to the
region, this means
1
ol !lgd.x =0 (32)
Esgentially this 18 an infinite dimensional, or
functional equivaleut of Pontryagin's maximum principle
(2, 3) for finite dimensional (lumped) systema.

Summary

The distributed maximwva principle derived herein
may now be summarized as follows., Given s systea of
partial differential equsations

u‘(‘. t)

u _(x, t), 8(x, t), x, t)

- S(‘_‘(xi t)p !x(‘. t)b Iex 39

subject to initial and boundary coanditions

(=0 st te0, {=1, ...,8

(34)
¢,(u, u)w0wuy, +a, u,+d, at x=0, i=1, ...,8
1*=’ =x l‘ 171 i (3%)

vy, u)=0eu, +c u +d, at xe=l, 121, ...,8

e Lt B3
it 1s desired to obtain the control vector &(x, t)
vhich minimizes the objective fumctional

1
8~ Tlux ¢y, N
t! 1

+ °! o! G(u(x, t), o(x, t), x, t)dx d¢ (37)

for fixed ¢t .

The solution to the optimizatiocn problea involves
the simultaseocus solution of Rquat! = (3)) with a set
of adjoiat partial differential equations

: 4 T T
g, w- +(3 ¢ ) -( Y (38)
1, 2 !n‘ u % 8 !'-‘l. = ey
3 XX
‘ - l' seep [ ]
vhich satisfy the boundary conditions
'.% - - -




Equivalently, the problem can be formulated in
terms of a Hamiltonian function defined as follows:
HaGe g (42)

The state and adjoint equations are equivalent, then,
to the Hamiltonian canonical partial differentisl
equations

&P a scalar which is specified to limit the magnitude
of the perturbations.

Equation (45) is introduced into Equation (30)
in terms of an undeterminad Lagrange multiplier X as
follows:

L

1
85 t o @, -268T Wee dx derasm?  (46)

“‘t- “'t-t" iel, coonm (43) In order to attain the wmaximum rate of change of S
vith respect to 8, the integrand of Equation (46) is
, ¢ g =-H, *(B“ IS LR N L T (44) maximized by differentiating with respect to 68 and
t i 1' i“ equating the result to zero. This yields the

The weak necessary conditions are that the

following expression:

’ epatial integral of the Hamiltonian is made stationary !'1 H
: with respect to choices of cumponents of 6 which iie L -—2—1——‘2 (47)

N WAy N W W e @ e A A Gyt e A g
S v
ot v

interior to the admissible control u;lon and a mini-

’ sum with respect to components on the boundary. Substitution of Equation (47) into Equation (45) gives
4 te
: The results can readily be extended to systems 1 1 -1 2,1/2
’; which include boundary forcing and free initial state Ney (ol ol He ¥ "e dx de / (4P)7] (48)
i (1). Extensions could also be made to accomodate N -
; wlti~dimensional spatial coordinates and higher- Using the above expression in Equation (47), the
; C“‘“ spatisl derivatives variation, 48, can now be written
t -1
] The solution of tha two-point boundary value s+ W Hy (49)
system of partial differential equations coupled with < = 1 1 4 2 1/2
the satixfaction of the necessary conditions presents l I U P | Il dx de/(8P)°)
a forn'uible computational problem. However, an o =2

spprosimate numerical mathod involving a gradient in
function space is introduced in the next section to
greatly facilitate the obtaining of numerical results,

A COMPUTATIONAL APPROACH POR DETERMINING OPTIMALITY

Developed in this section is a computational
schemse for obtaining numerical results {rom the dis-
tributed maximus principle presented. The method is
iterstive in nature, involving repuated numerical ia-
tegration of the performance and adjoint equations,
combined vith the use of s functional yradient
technique to improve the comtrol vector.

A Punctionsl Gradient Technique

A relationship of the type of Equation (30) can
bs thought of in terms of a gradient in function space.
ln this case, Mg may be taken to bs gradient l. in the
function space of ¢, The vaximum rete of decresse of
the functionsal S 1R the space of @ vill be in che
divection Hp. This relatiomship provides the besis

where the -lnus sign 1is nud for the case where the
objective functional, S, is to be miaimized.

For the case where @ =8(t) only, the weighted
setric, §P, is defined as
A SR
(sr) -ol 49 W 88 dt (50)
Introducing Equation (50) into Equation (30) by means
of the undetermined Lagrange multiplier, A, yields

¢ 2
LI 8,760 dx-208T W seler+asm?  (31)
Differentisting of the integrand of Equation (51) with
respact to §0 and letting the result equal to sero so

e to obntn tho maximum rate of changs: of 45 yields

s . ;ilir"L‘: (s2)

and substitution of the above expression into Equation
(50) gives

Y A ~
T T T
2 f, (2 £, ) -e 2z f =0 at x=0, It is desirable to insure that perturbations in
1‘ 1:3 1:: the control vector, ¢8, are small enough that lineari-
. {m] e (9 zation leading to Equation (9) s valid. To
$oone accomplish this, a technique originated by Bryson and -
T - (a7 - Denham (8) and extended to the infinite dimensional
£, (g, Demerf, =0 et xel case by Seinfeld (5) is utilized. Let
x xx XX ty )
1e1, ..., s 40 (6?)2-01 o 887 W g ax e (45)
1
snd the transversality conditions be a positive definite quadratic form with W=W(x, t)
:‘-ru at  tet,, i=1, ..., 8 (41) s matrix of suitably chosen weighting functions and
1

[
.. i i I Wlw B T

1/2
for a computational scheme by which the cbjective ¢ 1 ¢ -1, 1 2
functionsl § can de minimized vith respect to choices a 'ﬂol lo’ u "‘! (ol '0 dx]de/(60)")
of 0. N [¢3))
Several s have ared recently (1, S, 6) Thus upon substituting the shove equation iato
Quﬁ have nmd unu;'::uniml teZMtq.u; to Squation (52), the variation, §9, bicomes

iafinite dimensional systewe in function spacs. The rl 0"1 dx
1des of & gradient ia function space seems to have et T g * 175
been originated by Coursnt snd Wildart (7). = ( [‘! ( ! ..' ‘x]\l lﬂl .! dx)de/(4?)*)

(34)
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The computational scheme for obtaining the optimal
control policy via the necessary conditions of the dis-

tributed saxinum principle and the functionsl gradtent
technique can now be summar{zed as fnllows:

1. An inicial control policy 8(x, t) is assumed,

2. Using the assumed policy in the systea
equacions these are solved forward in time
from t =0 to t~ty and the transient
solutions retained.

3. The performance functional S is evaluated
using the values of the stat: variables con-
puted in 2,

4. Using final values of the state varisbles to
cozpute the final conditions on the adjoint
variables and inserting computed values of
the state varfiables where required in the
sdjoint equations, these are solved backwards
in tize from t=ts to t=0 and the transient
solutions retained.

S. An improved control policy is calculated
using the gradient technique with values of
the adjoint variables computed in 4.

6. Steps 2 through 5 are repeated iteratively
until the objective functic il converges to
within a specified tolerance.

A flow diagram for the method i{s shown in
Figure 1,

Provision for State Variable Constraints

The development of the necessary conditions for
optimality and the accompanying functional gradient
technique thus far have not taken into account the
presence of inequality constraints involving state
varisbles. In cases where such constraints are isposed
won the system, it is required to wodify the nec-
asrary conditions for an extremal solution so that coo-
straint violatims do not oeccur, or sre at least
redured to an allowable tolerance.

Consider the following general inequality com-
straint

Cly, 9) <O (33)

vhere C may or may not involve the control ¢ explic-
icly.

A convenient method for handling such constraints
is the penalty function spproach. This involves the
addition of an extra term or terws to the performance
functional to incorporate the constraint. These terms
have zero value until a ccustraint is violated aad
ispose & penalty vhen violations occur. By iteratively
decreasing the magnitude of the penalty, the
trajectories may be forced to comverge to the com~
straint boundsries. This amounts to solving s sequence
of unconstrained optimization problems with penalined
performance functionals, each time decreasing the
ssount of pemalty until coustraint convergemce 1is
attained.

OPTIMAL STARTUP COMTROL OF A JACKETED
TUSULAR REACTOR COMSTRAINT ON
MAXIMUM REACTION TRMPERATURE

The computational schems developed in the pre-
ceding saction will be epplied to control of a twbuler,
continuous {lov chemical resctor im vhich sa exotheraic
veaction is taking place. It is assumed that the
veaction s fiset-order and reversible (A 2 B), Simece

the reaction rate is temperature-dependent, it e
that the yield can be controiled by varying the
reaction temperature. In this example, the reaction
temperature and thus yield sre controlled by manip-
ulation of the reactor wall temperiture.

The mathematical model for the system is based
upon the following assumptions:

1. System parameters are uniform and constant
with respect to time.
2. Wall temperature is a function of time ouly.

Axisl heat and mass dispersion and mixing
are significant inside the reactor,.

4. Concentration, temperature and velocity of
the stream are constant with respect to
radial distance.

A mass balance taken over a differentisl element
along the reactor yields for component A:

2

dc F r X3
A A A 56
31"’-9‘2 via th (s6)

where, for the case of a first-order, reversible A T B
teaction, the rate of production of A, R,, is given
by the Arrhenius expression

Ry=-lkje. - kyopl
- -(kmcxp(-zlll‘r):n- kzo exp(-!zll‘l')e'l

A heat balance on the differential sectivn of
the reactor yields

k 2
T __eft 3°T AT (-aM) . 2h .. ?
W'Cp CIPYL v n"Cp > ™ et (r-1 7

1t 1s assumed that the manner of mixing is such
that the effective aass and thermal diffusivities are
equal, 11.‘0..
D+ —E—'—} 1D
| J
The boundary conditions for this problea ate
those first suggested by Danckwerts (9)

¥c, (0, 1)
A3, 0, v-cf) e te0 (58)
¥, (L, v)
A -
T -0 at tel .(39)
lﬂ%{-ﬂ- - -.‘F('r(o. 1) -r'] at Lt =0 (60)

These boundary conditions are based on the consider-
ation that mass and energy are neither created sor
destroyed {n the {nfinitesimal ragiom L = 0" to 1«0

Equations (36) and (57) ave put in dissnsicaless
form by defining the folloviag quanities:

Nean residense time trgol/v by
Axial Peclet nswmber LR ) ]
Dimessivaless tims tte vh',
Dinensionless axial distsnce ELYY A
—_— T

[ 7 A SN VY

S

o~ —————- - -~ o



Dimensionless concentration of A tug e CAI(CA’ c')

Dimensionless reaction temperature ® uy- ‘l'/'l‘r

) Dimeneionless wall temperature 10w ‘l'"/‘l't
Other parameters :
dH(c,+¢c))
(N ™ -1 .
Q.vr— . K cppl’ hr °, '1 Ellu'r. P? lzlnr

Thus the system equ tions become
“1 Ozu du

x
3u2 1 Oznz u,
RO I PR A Ul L M S R L
x
vhere
¢ -hmup(-rlluz)ul- kzootp(-l’zluz) (1 '"1)
The dimensionless boundary conditions sre
3»1(0. t) ¢
M - !lul(o. t) - “11 at x= 0 (64)
' au,(1, ©)
N T 0 at x =] (65)
: : 3“2(09 t) f
: ; N TI !(02(0. t) -ull at x=0 (6€)
i E au,(1, 1)
?S' —S— =0 st x=1 (67)
R The followirg numerical values are assumed:
t C #=5 v,=.05 hr, Q= <200, k=30 me7), ko 2.5
% x 10% brd, k0 19982107 nrh, p =503,

Py=10.06, T 1000 °R, ui=.9, uf~.6

PRSI

Initially the concentration and temperature pro-
filas are sssumed to be comnstant throughout the length
of the reactor and at the values of the inlet con-
ditions, 1.e.,

!l(l. 0) = u: at te0 168)
u(x, 0) = u; at te0 (69)

1t 1s presupposed that & steady state operating
point has been determined vhich 1is optimal with respect
t0 some performance criterion (e.g., maximum yield).
The startup policy, in tum, is to be determined such
thet by controlling the sddition or removal of hest,
the process is drivea from the initial state toward
the final steady state in some optimsl fashion. J¢ {s
desived tv minisize the spatial integral of the
veighted sun of the squared concentration snd tem-
persture deviations from the desired steady state pro-
files, vy (x) and vy, (x), integrated over s tramvieat
startup p‘tto‘ of u!od leagth. The performance
functional ssy thus be vrittes

¢ 2 2
s °I °! Mu,(x. t) - ‘x“"”

()

“n vand v are suitably choses comstent veighting co-
efficients. The manipulated varishle 1s the dimen-
siealsrs: wvall temperstuce, ¢, vhich 1is comsidered to
be & lunction of time emnly and 1lie vithia the range

+ vingtx, © - .,‘cxn’) @ it

ko e,

fom

e-iu < 60 s oll (1)
The Hamiltonian, as defined by Equation (42), is

l-u(ul(x. t) - uld(x))2+ v[uz(x. t) - uzd(x)}2

1
+z2. (< u “u, -1 _¢(u,, u,)]
1'8 1:: lx 1 2

1
*:2[.— u, ~u, - erQ(ul, uz)— hr(u2- 8))] (2
xx x
With reference to Equation (19), the adjoint

partial differentisl equations corresponding to
Equations (62) and (63) respectively are

1
Sl e W TR AL T “2)‘1*°'z‘u1‘“r Uz
- 2"("1(" t) - uld(x)] (73)
1
3, =-22, ~2,+1 4 (u,uds
2: [] 2:: 2. 1 4 u2 1 72’71

+ Qv e (v, u)+K 2,

- 2v(u2(x, t) - v, (x)} (74)
d
vhere
9
0“1- T:;-klooxp(-l’l/uz)+ kzocup(-PZ/uz) (75)
? }
‘" ﬁ’;‘ =7 [Pykygexp(-P/uj)uy
Y2
- szzocxp(-leuz) (1- “l)l (76)

Since the boundary conditicis given by Equations
(64) through (67) correszund to the general forms, -

Equations (21) and (I2), the adjoint boundary com- ,
ditions correspond to Equations (2%) and (i6), F
vespectively. Thus
s 0. t) =0 st x=0, i=1, 2 (2))
x

?.“(1. t)+ ‘1‘1“' t)=0 at x=1, {=], 2 (78)

" The final conditions on the sdjoint varisbles
corresponding to Equation (27) are

s (x, t') -0 at tet, 1= 1, 2 (79)

The soiution of Equations (62) and (63) forward
in time from t=0 to t=ty is accomplished by the use
of quasilinearization (10, 11) tcpether with an
implicit difference scheme. The details of the com-
putational method are presented in (12).

To apply the qussil ' nesrization technique, the
wonlinesr terme ¢(v), u2) in equations (62) and (63)
are first linsarized by mesns of a first-order Taylor

om” expended sbout the (k-1)-th iterative solution
. es follows:

KUK SR .::-n (o - ),

(x=-1) , (k)
+9¢ | -
6w '3
Substitution of Equation (80) iate Lquatioms (62) sed

(63) yields the follewing linsarized recurresce
velationship:
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ik) 1 ik) uik) _1t(’(k-1)+"('k—l)(uik) _uiit-l))

t x
(k-1) , (¥) (k-1),,

0“2 (u2 -y, )] (81)

u;lt) "E;l' ugk) _ u;k) _Q‘r“(k‘ 1) (k-l)( (k) (k-l))
t xXx X

D Dy 0

2

(82)

The solution of Equations (81) and (82) is
greatly simpliried by "decoupling” the component

equations. This ‘s done in the i-th equation by
setting
(® _ (k-1 -
v ug sy J=1
S e (83
0 141

Then Equations (81) and (82) become

ugk) ; gk) “ik) _Tr[’(k-l)_'.“(‘:-l)( (k) (k-l))]
t
(84)
W1 ;k) o9 e oD 4 (k D (G0 _ g1y,
t !
- Kt lu“‘) 6] (85)
(k-1)

This {=s vali 1 for as convergence is attaiuned,
approac s u The equations are still hzlifitly
c;gpﬁd as ¢\k-1) contains the solutions u

wyoo

Equations (84) and (85) are most conveniently
solved by finite difference methods., However, for
parabolic equations care must be taken in applying
explicit difference approximations that stability is
ensured. In order to circumvent this stability
problem, the implicit schewe due to Crank and Nicolson
(13) 1s considered here. This method introduces more
complexity into the difference model but guarantees
stability for any increment of time, thus reducing the
number of time increments required.

In applying the Crank-Nicolson method the spatial
axis is discretized into M increments «f equal length
4x 80 that Ax=1/M. Time discretization is effected
by solving the difference equations st equal time in-
crepents At, The solution u(m,n) denotes the value of
the dependent variable at the spatial locstion (m-1)Ax
and at time (n-l)at.

The partial iise derivatives are approximated by
taking forward differences between the (n-1)-th and
n-th time steps, {.s.,

U X 'Al—t {u(m, 0) = u(m, n-1)] (86)

For spatial discretization, implicit difference
operators are constructed for the fi{rst and second
spatial partial derivatives by taking central dif-
ferunces, averaged over the (n-1)-th and n-th time
lt.’.. i.e,y

Yex X -";- [u(e+l, n) -2u(m, n) +u(e-1, n)
+ u(etl, n-1) - 2u(s, n-1) +u(a-l, a-1)]
(

457

atrw o vrmenean we —

u %% {u(m+l, n) - u(e-1, n)

x
+ u(o+l, n-1) -u(me-1, o-1)] (88)

The above difference opeutors have a discretization
error on the order of (8x)2. The dependent variable u
is also averaged over the (n—l)—th and n-th time
steps:

u ."\;-% {u(a, n)+ u(m, n-1)] (89)

The difference approximations for the first deci-

vative terms occuring in the boundary conditions at
xe0 and x= 1 are taken to be three-point forward and
backward differences respectively:

w| A F (a3, 0)+4u(2, ) - 3u, ) (90)
x=0

u !2" [3u(M+l, n) - 4u(M, n) +u(M-1, n)] (91)
x=1

Substitution of the above difference operators foto
the recurrence relations, Equations (84) and (85), and
the boundary conaitions, give rise to the set of
linearized difference equations for the k-th iteration
(k-1) d (k)
(8, (2, m) 5z My T2, D

M k
* 165 Ay 00 0

Alul(l, n-1) D1

V2, ayuy(2, =1
2puf

(k-1) 1
- Clul(3, n~1) _El (2, n) BT Al

Asu

) 1“‘-‘(.—1. 0 +8,* D, nyu, P, »

+ ® (w+1l, n)

1y

l(k-l) (m,

= -Aju,(s-1, n-1) ~D n) u;(m, o-1) (92)

- clul(-ﬂ. n-1) - !1“-1) (n, a)
mae3, ..., M1

(a,-3 c, jul(k) -1, 0)
+ 13, %V, e e e, ®a, o

- - A 041, -1 - p, * D g, a)u, (4, a-1)
- cl“l(ml’ n-1) - Bl(k-n (M, n)

(k-1) M
L AERCLAS TF S

M )
B M2l e W
--Au(l, n-x)-nz““”(z. Duy(2, 0-l)

280
(k-1) 2
~c2uz(3. n-1) -lz (2, ) - FITY ] A,
Azuz(k) (w1, n) + lz“'” (m, n) uz(k) (m, n) (93)

u, ® (2, n)

+ [cz-

+ Cgu, ) (ue1, u
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itk iied [

. -- Azuz(--l, n-1) - Dz(k-n (m, n) uz(-. n-1) ;
¥ -
;_. ' -Czuz(li-l. n-1) -Ez(k 1)(-. n) i
a3, ..., M-1 '\
1 (k)
[Az— 3 Czl u, (M-1, n) \‘
+ 8, Vo, 4300, 0, w \
= -Ayu,(M-1, n-1) - Dz(k°1) (M, n)u,(M, n-1) j
(k-1) ’/
- Cu, (M1, B-1) -, (M, n) S
where
w.u
Al. A2- 'ﬁ %
2
: nl(k'l) (=, 0) =~ % tl”lll(k D, m-L -ﬁ
{ 2
) (k-1) I § (k-1) 21 . N
4 By momm- g, T R K e
M
R e
2
Dl(bn (m, 0) =~ % ‘r'ul(k-l) (v, n) ‘H_a"’AL:
4
; 2
; (k-1) 1 (k-1) 1 M.l
X D, (m, u)--iQt ‘% (m, n)-f K‘r-_8_+ﬁ
c nl(k'l)(-. n) =~ tt[.(k-l)(_. n)

0, V@, » '“1(H)(" 0]

v e B e 41
v

!2“'1) (m, n)=- Qtrlo(k'l) (m, n)
- “2(k-1)(_. e

. D, ) ]4Kr 8

e L Ll e, T AN

The endpoint values are determined from the following
boundary equations

“l(k)(lo II) - - zB+ m (k)(sp n)
M (k) 8 f
tHmem Y B WtmpTHY 00

ul(k)(lﬂ-l. n)-% o, m- 3 ul(k) (M-1, n) (95)

w,®a, 0-- ;—-‘1— w, ™, 0

. 2 4

(®)
2, W+t ul (96)

zu:m Y2
0, W1, wed o, ® o, 0-30,®01, 0 o1
Similarly the backwards solution of equations
(73) and (74) from t=tg to t=0 is accomplished by
solving the following sets of implicit difference
equations from n=N ton=1:

P medan,®a

* (c3-§ A,]zz“"(s. n)

438

=-A zl(l nt+l) - D (2 ntl) z (2 ml)

—Cyzy (3, D) + 53(“’1’ 2, 0 ‘

Aszl(k) (m-1, n) + 53("' n) zl(k) (m, n)

+c.2.®

4% (mtl, n)

--A z (I-l. n+l) - D (m. o+l) 2z (m, ntl) (98)

-Cozy (@41, 1) +E, (k-1) (@, n)
a=3, ..., M-1 ]

. S

(k)
Ay- g+ Calyy ML w) :

M

+ By, 0+ 5

03121(”(!4. n) \
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1 M 1
D,(n. n) =- 3 eroultm. n) -t

w
~N

5
M

’ Dy(m, n) = - % Q‘r’uz(m' n) '% K'r-_ﬂ-*'flf
Ej(k-l)(n. n)-Qr‘_Qul(m. n)zz(k'l)(., n)

- Zu[ul(x. t)-—u1 (x)]
d

B‘(k'l) (ﬂ. (k'l)

n) = rrouz(n. n)z; (m, n)
= fuy(x, t) ~u, (x)]
d

The endpoint values for the adjoint variables are
determined, using the following boundary equations:

zl(k)(l. n)=- % 2, (3, n)+ ("’(2 n)  (100)

zl(k)(m-l, n) = 28".:13}1 zl(k)(H. n)
s 1,0 01, W) (101)
" £, we-1,006 044,00, 0
f 1% ) (wr1, n)-ie—"}ﬁ 2, 4, )
: s 5, (-1, 0) (103)
i c Upon obtaining the adjoint solutions, an improved
control function 6(t) may be obtained using Equation

(54) and the Hamiltonian defined in Equation (72).
The resulting change in control, 46(t), is

1
OI Kt _z,(x, t)dx

te 1/2
l0 [ J’ Kt :2(x, t)dx] dt)

56(t) @m-q (104)

wvhere a can be considered as a perturbation coefficient
representing step length. Using Simpson’s integration
scheme, values of z,(m, n), a=1, ..., Mtl, n= 1,

+asy N4#1, obtained Ey backwards solution of the sdjoint
equations, may be used in Equation (92) to compute
66(n), nel, ..., N. The new control function 6(n),
n=l, ..., N is then found from the relation

8(0) | oy = 8(0) |5y + 80(n) (105)

W‘u—ya-u- A < N W ek A A A -y W g
7 ae 1
el S 2 N Lt

old

Computation was performed using a time increment

of .02 residence time and & spatial increment of .05

dimensionless distance unit. The limits on the com-

trol were assumed to be 0 ., =.670 and Oy, = .530

dimsensionless temperature unit. The performance index
S vas evaluated using a terminal time of one residence
time and the weighting coefficients u and v were each
uken to be unity. The desired steady state profiles.
1,(x) and u 4(X)» were chosen to correspond to a cor-

81 value o 0 = .6 dimensionless temperature unit,

- M,

With regard to the selection of the initial
spproximation, it should be noted that the steady
state value ¢f the control must be known and used in
the initial assumed trajectory at the terminal time

This is because the algoritha is incapable of
oguung the control at tecminal time, as seer from
Equation (104) and the transversality conditions,

Equation (79). Thus for convenience, the initial con-
trol trajectory approximation was taken to be

0(t) = .6 dimensionless temperature unit, the steady
state value,

Figure 2 shows the optimal control trajectory
obtained after 30 iterations, using a perturbation co-
efficient of a = .1, This value, determined Ly triul
and error, provided a reasonable rate of convergence
of the performance index to a minimum without
oscillations. The policy is seen to approach a bang-
bang trajectory with maximum wall temperature applied
to the system infitially. At about .20 residence time
a switch to minimum wall temperature occurs, followed
by a singular approach to the steady state value
starting at about .44 residence time.

The resulting transient concentration and tem—-
perature profiles, uj(x, t) and uj{x, t), obtained
using the optimal startup policy are shown in Figures
3 and 4, respectively with time 18 a parameter. Shown
in dashed lines for comparison are the transient pro-
fi’es resulting from using steadv state control. The
value of the performance index obtaired for the
optimally controlled case was .046557 compared to
.050435 with steady state control.

Since the optimal control policy so closely
resembled bang-bang control, a purely bang-bang policy
was considered. This consisted of starting with maxi-
mum effort, switching to minimum effort and finally
switching to the steady state control level. These
two switch points were approximated from the optimal
trajectory to be .20 and .50 residence times
respectively. The state equations were solved using
the bang-bang policy and the performance index,
Equation (70), was computed, yielding a value of
.046555. Thus *he performance index remained
essentially unchanged using the bang-bang approximation
and, because of its simplicity to inmplement, a bang-
bang policy would probably be preferred for this
application.

Constraint on Maximum Reaction Temperature

Suppose it i{s desired to determine the optimal
startup control trajectory which minimizes the
performance criterion, Equation (70), while at the
same time holding the maximum reaction temperature at
or helow a specified upper limit. This inequality
constraint can be written

uz(x. t) - v, <0 (106)
Rax
The constrairt is introduced into the performance

index as a peanalty by means of a weighting coefficient
o as follows:

e 1 2
s-ol’ ol ("(“1(" t)—uld(l)l
-o-v[uz(x. t) - \lz‘l(x)]2

2 -
+olu2(t. t) -y, )| h[uz(x. t) -u, 1}dx d¢
nax nax (107)

vhere h{up(x, t) -U2gax]) 18 the Heavyside unft step
function. Thus a penalty is not {invoked until a con-
straint is violated. The weighting coefficient ¢ 1is
iacreased iteratively, stopping the iteration whem the
maximum temperature has converged to within a specified
tolerance of the conatraint boundary.
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State variable constraints such as this require
a corresponding modifics*ion of the adjoint equations
since an additional term involving a state variable is
’ introduced into the performance index. Thus the
adjoiut equations, Equations (7)) and (74), become

1
g, 8= =g -2, +1_¢. (u,, u)z
1!: 8 ln lx ruy 1* %275

+ Qtroul(ul. “2) z, -2n(u1(x. t) -uld(x)] (108)

-2, +1 ¢ (u,, u)z
¢ xx 2x ru, 1" "2°%1

+ m'r‘uz("r uz) "K’rhz - 2v{u2(x. t) - uzd(x)l

- 20[uy(x, t) -u, 1i(uz(x. t) -y, ] (109

max ax
Figure 5 shows the optimal control policy for the

case of an upper constraint on maximum reaction tem-

perature, uj = .700 dimensionless temperature unit.

v The switch psﬂn‘t from maximum to minimum wall tem~

. perature occurs earlier than for the case of an uncon~
strained state, thus reducing the arount of temperature
overshoot. The following table lists the penalty
weights o and the corresponding waximum temperatures

v -

§ that resulted after each ascent:
4 Maximum
. o reaction
4 temperature
f (Unconstrained) . 7165
{ C 1 7147
; 10 .7093
i 102 7048
103 .7014
104 . 7005
} The iteration was stopped for o = 104 as the
3 resulting maximum temperature was considered in close

enough proximity to the constraint boundary. Each
time the value of o was increased, it was found
necessary to adjust the perturbation coefficient a
downward in order to prevent oscillations and in-
stability of the performance index.

Exit temperature trajectories for optimal control,
with and vithout a state variable constraint, and for
steady state control, are shown in Figure 6.

CONCLUSIONS

An optimal startup policy of a jacketed tubular
resctor in which a first-order, reversible, exothermic
reaction takes place is determined. A distributed
maximum principle is presented for determining weak
necessary conditions for optimality of diffusional
distributed parameter systems,

i ™ e —
1o v——
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Optimizecion of the two-point boundary value
system of sccond order, non-linear, parabolic partial
differential equations presents a formidable com-
putational problem. An approximate numerical method
which i{s iterative in nature, involving repeated
numerical integration of the performance and adjoint
equecions, combined with the use of a functional
grudient technique to improve the control vector is
jatroduced to overcome computational difficulties.

A convenient method for handling inequality con-
straints involving state variables 18 also presented.
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CONTROL OF A CLAS5 OF NONLINEAR DISTRIBUTED PARAMETLR SYSTEMS
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e ABSTRACT

The synthesis of optimal controls is treated
for a relatively wide class of mixed, continuous
flow processes, %his class is comprised of
systems, the dynamics of which can be described
by nonlinear, cne-dimensional axial diffusion
models with two-point boundary values. An over-
all direct search technique is considered which
is applicable to nonlinear distributed systems
with control saturation constraints. This
method, iterative in nature, entails a scanning
of an overall performance index for different
trial control levels at increments of time,
t‘ yielding a piecewise-constant control policy.
State variable inequality constraints are
handled by the penalty function method. The
technique is applied to .ne tubular reactor
startup problem and the i1esulting control policy
is shown to closely approximate that obtained
using a distributed maximum principle. A sub-
optimal non-iterative direct search technique 1is
also developed. This involves the evaluation of
an instantaneous performance measure at the end
of each time step for trial control values over
the admissible range. This technique, applied
to the tubular reactor startup problem, is shown
to yield results similar to those of the other
two approaches, namely, the distributed maximum
principle and the overall direct search tech-
nique.
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INTRODUCTION

In the field of industiial process control, in-
creasing attention is heing focused upon the
study of systems from the distributed parameter
point of view.

Perhaps the first work devoted to optimization
of distributed parameter systems was undertaken

' F44620-68-0020 (Themis Project).

by Butkovskii and Lerner. {1 2) These papers
considered mainly a class of first-order partial
differential equations, which through a coordi-
nate transfor' .tion, could be treated with
Pontryagin's maximum principle.(3- 4) A
thorough review of the literature on the optimi-
zation of distributed parameter systems is given
in(5), Most of the literature has dealt with
linear distributed parameter sysvems. Relatively

few papers have appeared thus far which report
successful computational results for nonlinear

distributed systems. However, with the advent
of larger and more rapid computing systems
coupled with more sophisticated numerical
analys .3 techniques, str:des are now being made
in this area.(6» 7, 8, 9) Most of the workers
in this field have employed variational tech-
niques and have obtained various forms of maxi-
mum principles.

As an alternate method involving less com-~
putational complexity than the maximum principle,
an overall direct search technique will be pre-
sented in this work., This approach is applicable
to systems with saturation constraints on the
control variable and entails a scanning of the
performance index at increments of time for dJdif-
ferent trial control levels. The method is
iterative and considers an assessrient of per-
formance based upon the entire period of
operation, A simplified non-itcrative direct
search technique will also be considered in this
work. This method involves the evaluation of an
instantaneous performance measure at each time
step for different control levels and thus yields
a suboptimal policy. Provision for state vari-
able inequality constraints wi.l be considered
for both direct search techniques.

The implementation of the direct search tech-
niques is accomplished by utilizing quasi-

*+This study was supported in part by NASA Grant No. NGR-17-001-034, and by the Air Force Office of
Scientific Research, Office of Aerospace Research, United States Air Force, Under Contract
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linearization, decoupling of the equations and
the application of an implicit difference tech-
nique for obtaining the transient solutions to
the system of nonlincar partial dif ferential
equations,

Optimal control of a startup of a jacketed tub-
ular reactor in which a first-order, reversible,
exothermic reaction is assumed to take place is
considered, Tt is determined how the wall
temperature shouid best be manipulated to mini-
mize a given performance index. Computational
results are obtained for cases with and without
a constraint on maximum reaction temperature.

SYSTEM DESCRIPTION

Suppose that a system is described by a general
nonlinear vector partial differential equation

Et(xl t)=£{l_](x, t)u ‘_lx(xvt)l Exx(xyt)’ e(t)]
(1)

where u is an s-dimensional state vector defined
on a normalized one-dimensional spatial domsin

x from x=0 to x=1 and over a fixed time interval
t=0 to t=tgf. The control variable @ is con-
sidered to be distributed in time only and is
one-dimensional, with maximum and minimum limits
specified. An independent variable appearing as

a subscript denotes partial differentiation with
respect to that variable.

Inftial and boundary conditions are
f_i(\_x)=0 at t=0, 4=1, ..., s (2)
Om(g.gx)= 0 at x=0, wm=1, ..., p 3)
wn(g.gx)' 0 at x=1, n=1, ..., q=2s-p (4)

It is assumed that no boundary forcing is
present.

It is desired to determine the control function
0 which yields a minimum for the following
generaliz.d objective functional:

1
S -OJ F[g(x,tf)]dx

tt
1
t o 0/ Glu(x,t), 8(t)])dx dr (5)

OVERALL DIRECT SEARCH

The method of optimization based on the distri-
buted maximum principle(3) ¢s computationally
complex and time consuming. The method to be
discussed here stems from a similar direct
search technique described by Lapidus and
Luus(10) for nonlinear lumped parameter systems
with saturation constraints on the control vari-
ables, A modified version has been employed by
Seinfeld and Lapidus(8) to treat systems with

171

distributed parameters, although somewhat dif-
ferent from the approach taken here.

Description of the Method

A number of control levels by, 3=1, ..., J are
selected, which are equally spaced over the
range of admissibility and include the upper and
lower limits. The time axis is discretizing
from t =0 to t =ty into N segments of length
t¢/N and assuming a piece-wise-constant initial
control policy 0%0)(n), n=1, ..., N.

Holding each 8(0)(n), n=2, ..., N fixed, the
system state equations are solved from t=0 to
t=te, replacing 8t0) (1), in turn, by each €;.
After each solution of the state equations, the
overall performance index S is computed. If
either extreme control level, i.e., 0] or 61,
minimizes S, that level replaces the original
8(0)(1). If the performance index i{s minimized
for a control level interior to the range of
admissibility, interpolation is performed by
fitting a three-point Lagrangian polynomial
through the minimum point and each point
immediately adjacent. The minimum value of the
polynomial is then computed and the corresponding
controi level is taken to replace v(0)(1).

Toue procedure is repeated for each time incre-
rent n = 2, ..., N. whereupon each crigiral
assumed control has been improved. This ends

the first overall fteration. Since at each time
step, the assumed control level would be retained
if no improvement could be realized with anotheor
level, the perfo-mance index must decrease
monotonically.

The improved control policy then becomes 8(1) (n),
n=1, ..., N and is used as the starting point
for the second overall iteration. This fter-
ative sequence is repeated until negligible
further improvement is realized in the per-
formance index.

A computer flow diagram for the ovrcall direct
search scheme is ghown in Figure 1.

Provision for State Variable Constraints. The
overall direct search method is very easily
extended to account for inequality constriinrs
on state variables. Thexe constraints may
appear in the form

C(Eo 8) < 0 (6)

As in the maximum principle approach(s), a con-
venient means for handling constraints of this
type is the penalty function method. This con-
sists of adding additional terms to the inte-
grand of the performance index which have zero
value until a constraint is violated and
imposing a penalty after a violstion occurs.
Thus the state trajectories can be forced to the
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constraint boundary by fteratively manipulating
the amount of penalty to be imposed.

SIMPLIFIED DIRECT SEARCH

Both the maximum principle approach(s) and the
overall direct search technique are relatively
time consuming. This limits the usefulness of
these procedures to off-line use in pre-
calculating the open-loop system control policy
and the resulting trajectory over the transient
period of interest.

However, the response of a real process may dif-
fer significantly from that anticipated by the
model because of model inaccuracies, changing
parameters, load disturbances, etc., and it may
become desirable to redetermine the control
action periodically, using current inferms:jon
about the state of the system. [t thus becomes
vssential to have a simpler optimization scheme
which takes into account the current state and
uses this information to compute on-line an
appropriate updated control policy, perhaps in
conjunction with an adaptive scheme in which the
model itself is also updated.

An optimizing scheme called an "optimum
predictor-controller”" has been developed by
Grethlein and Lapidus(1l) for lumped nonlinear
systems with bounded controls. The approach
taken was to sample the state at discrete values
of time, and vsing this data as the initial con-
ditions, to calculate over one sampling period,
the response for several levels of control with-
fn the allowable range. The optimal control was
determined by evaluating the performance cri-
terion for each control level and selecting that
level which yielded the least value of the cri-
terion,

A similar approach is taken in this work for the
determination of the control policy for a dis-
tributed system whose dynamic behavior may be
described by a system of nonlinear partial dif-
ferential equations in which there is only one
control variable, a function of time only.

The feasibilicy of the method for on-line com-
puter control would be contingent upon the
sampling, computation and actuation times being
short in comparison to the dynamics of the pro-
cess under control. However, many distributed
processes are characterized by long time con-
stants and exhibit sluggish behavior, possible
making on-line computer control atcractive,

Description of the Method. The proposed simpli-
fied direct search method, instead of assessing
system performance over the whole period of
operation, evaluates ti.2 effect of control
action over a relatively small interval of time.
Thus the technique must be considered suboptimal
with respect to an overall performance index of
the type of Equation (5). A measure of per-
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tormance may take into consideration a time in-~
tegral criterion i, Hlving the response of the
state vartables over the small interval, or
simply an 1nstantsneous measure involving the
state profiles at the end of the interval. The
latter approach is considered herein., lhus a
performance index could be considered in the
sense of the integrand of the time integral of
Equation (5) evaluated at a discrete point {..
time.

Using the instantaneous state profiles as the
initial conditions at each time t = (n-1)At,
n=1 ..., N, a numerical integration scheme
is employed to predict the system response at
t = nAt for a number of pre~selected control
levels, each held constant for the duration of
the time period. These control levels are
equally spaced over the admissilble region and
include the upper and lower limits.

The performance index is evaluated at t = nAt

for each value of the control and a direct seardh
made to find the minimum value of the index. The
determination of the optimal control level for
the period i{s the same as described for the
overall direct search. If the index is minimiZzed
for the upper or lower limit, that level is taken
to be the optimal control level for the time
period; otherwise an interior value is determined
by interpolation. A computer flow diagram for
this simplified procedure is shown in Figure 2,

Provision for State Variable Constraints. The
simplified direct search technique can be
extended to provid- for state variable inequality
constraints of the form of Equation (6). However,
instead of a penalty function approach, a direct
method will be considered.

Upon computing the orcimal control 8(n) for the
time period t = (n~1%4C to t =nAt and the cor-
responding state trajectories, a test is per-
formed to detect violations of the inequality of
Equation (6). If a violation appears eminernt,
another contvol level is selected which tends to
force the state trajectory away from the con-
straint boundary.

The ability to prevent constraint violations
depends on the capacity of the control system to
avoid the constraint boundary once it is
approached. It may be necessary to consider two
time intervals; (1) the period over which the
responses are computed, say, (At)], and (2) the
interval over which the resulting control action
is actually carried out, say, (At)j;, where

(at)] > (At);. This would give the control system
more advance warning of an impending constraint
violation and thus prevent oversuoot (or under-
shoot) of the constraint., This feature will be
seen in the simplified direct search example.
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OPTIMAL STARTUP CONTROL OF A JACKETED TUBULAR
REACTOR

The Mathematical Model. Consider a tubular,
continuous flow chemical recactor in whicn an
exothermic reaction is taking place. The
reaction considered is first-crder and reversible
(A B). In this example, the reaction tem-
perature and thus yield are controll’ed by mani-
pulation of the reactor wall temperature.

The mathematical model for the system is based
on the assumptions that system parameters are
uniform and constant with respect to time, wall
temperature i{s a function of time only, axial
heat and mass dispersion and mixing are sigrifi-
cant inside the reactor, and concentration, tem-
perature and velocity of the stream are constant
with respect to radial distance.

A differential mass balance yields

2
a3c 3¢ 3¢
A _ A A
. D azz v R +-RA (7)

where, for the case of a first-order, reversible
A 2 B reaction, the rate of production of A, Ry,
is given by the Arrhenius expression

R, = -[klo exp(—l‘JI/R'l')cA-k20 exp(-EzlkT)cB]

A differential heat balance ylelds
o1 _Ket( 221 ar, (-W) 2h
—-v —+ R, - == (T-T.) (8)
édt C i C A Cor w’
p P ar o° o°
It is assumed that the manner of mixing is such
that the effective mass and thermal diffusivities
are equal, i.e,, Dy =keff/Cpp =D. The boundary
conditions are(12)
3c,(0,1)
A v f
Y ) [cA(O.r)—cA] at =0 (9)

acA(L. 1)
—T—-o at t=L (10)

MO o¥ (10,1 -1F)  ar 2e0 an

ﬂ%"—) -0 at =L (12)

In dimensionless form the system equations,
equationg (7) and (8) become

1
u, ==y -u, ~1_6(u,,u,) (13)
lt ] lxx lx r 172
)]
u, == u, =-u, -Qr_¢(u,,u,)-Kr_(u,-8) (14)
2taz“ Zx r 12 r 2
where
‘(“1'“2)

'klo exp(-Plluz)ul-kzo Oxp(-l’z/uz)(l'ul) (13)

vhire 1, ®L/v hr is mean residence tim:, 8= vL/D,

axial Peclet number, t=1/1 , dimensionless time,
x= 2/L, dimensionless axial distance, u] = c,/
(cp+cp), dimensionless concentration of A,

up =T/Ty, dimensionless reaction temperaturc,and
0 =T,/T,y, dimensionless wall temperature. Uther
parameters are Q =AH(c,+ cy)/CopTy, K=2h/Cpir
hr-l, P)=E]/RTy, and vp = Ezlkgr. The dimen-ion-
less boundary conditions are

ulx(O.t)- e[ul(O.t)- ui] 2v x=0 (16)

vy (1,t) =0 at x=1 (17)
X

uzx(O,t)- 8lu,(0,¢) - u§] at x=0 (18)

u, (1,e)=0 at x=1 (19)
x

The concentration and temperature profiles are
assumed to be initially constant throughout the
length Of the reactor and at the values of the
inlet conditions, i.e.,

ul(x,o)-u{ at  t=0, (20)
uz(x,O)-ug at  t=0 (21)

It is presupposed that a steady-state operating
point denoted by the subscript d has been
determined which is optimal with respect to some
performance criterion (e.g., maximum yield). The
startup policy, in turn, is o be determined such
that, by controlling the addition or removal of
heat, the process is driven from the initial
state toward the final steady state in some
optimal fashion. In this example, the objective
function to minimize is
L 1 2
S= f I ulu (x,t) ~u, (3))
0 0 1 ld

+ v[uz(x,t)- u, (::)lz}dx dt (22)
d

where u and v are suitably chosen constant
weighting coefficients. The manipulated variable
is the dimen-ionless wall temperature, 6, which
is considered to be a function of time onlv and
lie within the range

8 ., <8(t) <6 (23)

min max

The following nurerical values are assumed:

B=5, rt = .05hr, Q= -200, x-som‘l.

- 5 he-l - 7 4=l
klO 2.51 %107 hr=4, k20 1,995x 107 hr™7,

' - . f.
Pl- 5.03, P2-10.06. T‘_ 1000°R, v, .9,
u;- .6.

The kinetic data for the reaction are due to
Fan.(4

The transient solution of Equatfons (13) and (14)
forward in time from t =0 to t=tg is
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ace o s td by the use of qUAsilinoarizaliun(l3)
teovtue with an implicit lifference scheme.,

The details ¢f the computational method are pre-
cented an ref. 5,

Optical tontrol Laing overall Dizect Search, The
time a<is was discretized 1nto fifty increments
of .02 reaidence time and the spatial increment
wis .09 dime sionless distance unit. The time
inirement over which a control level would be
held ronstant was also taken to be .02 residence
time. Initially, the assu. ¢d centrol policy was
considered constant with respect to time and at
the value corresponding tc that required to
=aintain the desired steady stave profiles; i.e.,
+(0)(n) =.600, n=1, vesy 50, Cogputation was
performed for five levels of control equally
spa.ed over the admissible raage, {.e., .530,
.5% ., .600, .635 and .670 dimensionless tem-~
periture units.

Fipure 3 shows the resul:iing optimal control
policy obtained after three overall iteratiouns.
Actually, after only two iterations, nepligi. le
irprovement of the per{ormance index was
ontained. Also indicated on Figure 3 is the
resulting optimal control policy obtained by the
distyeuted maximum principle.(5) <Comparison of
these results shows marked similarity of the con-
trol policy to that obtained using the distrib-
uted maximum princivle, The resulting value of
the performance inaex was .046555, almost iden-~
tical to the maximum principle result.

Constraint on Maximum Reaction Temperature. To
demonstrate the technique for dealing with state
variable inequality constraints, an upper con-
straint of up, . = .700 was placed on the
dimensionless reaction terperature. The penalty
weighting coefficient was taken to beo= 10“,
which, as in the case of the distributed maximum
principle was adequate to force convergence of
the temperature trajectory to the constraint
boundary,

The resalting control policy for the temperature-
constrained case is shown in Figure 4. Again,
comparison of this result with the result
obtained by tne distributed maximum principle(s)
shows much similarity. For the cvonstrained case,
the overall direct search method was found to be
quite sensitive to the inftial assumed control
policy. However, the initial assumption of a
bang-bang policy approximating the maximum prin-
ciple result yielded rapid convergence.

Suboptimal Startup Control Using Simplified
Direct Search. The total time period t =0 ¢to
t=2ty is divided into N equal intervals of

length At, Instead of evaluating the performance
over the entire time period, the performance is
appraised at the end of each interval, the con-
trol being held cons:ant over the interval. The
pertormance index for the n-th time increment,
a=1, ..., N, is taken to be the integrand of the

. L] - -y - "y B v ke -
Sttt iy e Sl RN . . .. oy
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time integral of Fquation (22) evaluated at time
t = nAt.

1
S =0f (u(ul(X.ln

+1

2
n ) - uld(x)l

) -y, a1 1dx (2%)

+ viu, la,t
2 d

n+l

Again fifty time increments of Lt = .02 residence
time weve used. The distance increment was .05
dimensionless length unit. The performance
index, Equation (24), was computed at the end of
each time interval again for five control levels

The resulting control policy is shown in Figure
5. Comparison with the results of the maximum
principle and the overall direct search, {llu-
strates great similarity. Although the per-
formance was assessed over only one time inter-
val at a time, without regard for the entire
period of operation, the resuiting transient
concentration and temperature profiles were uied
to compute the overall performance index,
Equation (22). The resulting value was .046555,
essentifally the same as those values obtafined
using the two previous approaches.

Constraint on Maximum "«action Temperature.
A2ain an upper constraint of upy = . 700 was
placed on the dimensionless reac®jon temperagure.
After computing each optimal contr.l value and
the c¢orresponding state trajectorieg, a test was
made for constraint violations., When the test
was made at the end of one time increment, cor-
responding to the intended time of application
of the computed value, the control system had
inadequate capacity to prevent overshoot of the
constraint, even upon switching to the minimum
level. A maximum dimensionless reaction tem-
perature of .7096 was obtained, compared to
.7175 without the constraint. Extending the
check over two time increments, and switching to
minimum control upon the detection of a vio-
lation, a maximum reaction temperature of .7007
resulted, which was considered within reasonable
tolerance of the constraint boundary. The
resulting control trajectory is shown in Figure
6. For more severe constraints, a check for
violations might be required for several time
intervals in advance, or perhaps a value lower
than the actual constraint could be used in the
test.

CONCLUSION

Two direct search techniques, each i{nvolving the
scanning of a performance index for differeat
trial control levels. were consicred. These
techniques have application to nonlinear dis-
tributed syrtems {n which control saturation con-
straints are specified. The overall direct
scarch technique considers an assessment of per-
formance based on the entire period of operation
and is iterative, The other method, a siwplified
non-iterative search procedure, yields a
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plecewise-constant suboptimal policy based on an
instantaneous performance measure evaluated at
the end of each time increment.

The tubular reactor startup problem was studied
by using the overall direct search technique.

The resulting optimal control policy closely
ressembled that obtained using a distributed
maximum principle and the value of the per-
formance index was almost identical. The overall
direct search technique was somewhat less complex
to program than the maximum principle, however,
it was actually more time consuming because many
compiete solutions of the state equations--one
for each trial control level at each time step--
were required for each cverall iteration. The
ability of the method to handle state variable
constraints was demonstrated by imposing a maxi-
mum reaction temperature constraint.

The simplified direct search technique was
employed to determine a subcptimal startup con-
trol policy for the tubular recactor, the
objective being to minimize the integrand of the
time integral of the overall objective functional
at the end of each time interval. The resulting
control policy closely approximated those
obtained by a waximum principle approach and the
overall direct search method and yielded an
slwost identical value for the performance index
based on the whole period of operation. The
method was also shown to he capahle of dealing
wvith state variable inequality constraints as
demonstrated by treating the constraint on maxi-
sum reaction temperature.
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Because of the massiveness of the computation fi.-
volved with a maximum principle and the overall
direct search technique, it is limited to off-
line use in computing optimal open-loop control
and state trajectories based upon the anticipated
transicent behavior of the process over the time
span of interest. Also both the distributed maix-
imum principle and overall direct search tech-
nique can be used as a standard of comparison for
evaluating less complicated suboptimal approaches
such as the simplified direct search technique
which has on-line control possibilities.
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Feedforward-feedback control of distributed ... .
parameter systems? EXrr
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Regulatory control of distributed systems subjected to load disturbances ix conmdered
by using feedforward and state measure control configurations, Dynamic compen-
sation of the feedforward mignal in accomplished with ¢ lead-lag function, the time
constants of which are determmed by means of a numerical search technique,
Compensation of the state measure signal is provided hy the distributed nature of the
process atself. Exit temperature regulation of a tubular heat exchanger acted upon
by velocity and inlet tempersture disturbances i« considered as an application for
fredforward control. Conmiderably better performance s obtained with the a idition
of dynamic compensation to the ferdforward signal. Ntate measure control 1w applied
to the exchanger for » feed temperature upset and the effects of sensor location on
outler performance are investigated. An optimal sensor location s determined which
minimizes the integral-square error at the outlet,

1. Introduction

Two types of control applicable to regulation of linear systems, or systeins
which can be linearized about an operating point, are to be examined in this
work. One is feedforward control and the other is state measure control.
Both approaches use system measurements to provide corrective control
action to compensate for disturbance inputs. The former implies that dis-
turbances are sensed at the inlet before they can affect the process and the
latter involves the measurement of the disturbance response at some point
within the system. A numerical search procedure will be applied to the
synthesis of optimal compensation for the feedforward signal. For state
measure control, the effect of sensor i .-tion on the dynamic system response
will be investigated.

The methods are employed to cbtain a desired control of a tubular heat
exchanger by manipulating the steam temporature in a surrounding jacket.
If the wall capacitance of the tubular heat exchanger is significant, it is necessary
to perform an energy balance on the wall, resulting in an additional equation
coupled with the energy equation for the process. Optimal control of a change
in set-point will be considered for the tubular heat exchan, -r, using dynamically
compensated feedforward control, the manipulated variable ' .sing the jacket
steam temperature. Regulatory cuntrol will be evaluated with the exchanger
acted upon by load disturbances, both for feedforward control with opmmlly

t Commumcaud by Profo-or L. T l"an. Thu ltudy was -upponed in part by NABA
Grant No. NGR-17-001-034, and by the Air Foroe Office of Scientific Ressarch, Office of
i\,ompwe Research, United States Air Force, under Contract ¥44620-68-0020 (Themis

roject).

3 Present address: The Bendix Corporation, Kanses City, Missouri.
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364 D. R. Hahn et al.

designed dynamic compensation and state measure control with the transducer
optimally loeated.

Some attention has been given to the practical aspects of instrumentation
and state feedforward feedback control of distributed procesces. Watts (1965)
used a frequency domain approach to ind optimal feedforward thermocouple
ioeations in a plug-How heat exchanger with distributed heating. Parseval's
theorem was employed to obtain the mean-square output error due to input
forcing with known speetral density. Using proportional  ontrol only. he was
able to find interior spatizl locations which made the mean-square error
stationary. Licht (1906) also considered a similar problem for a counter-current
plug-flow heat exchanger and used @ con’ugate gradient minimization scheme
to find sensor loeations which minimized the output mean-square error. Given
a number of probes at pre-spe cified focations, he was also able to find optimal
weights to be given each probe.

McCann (1963) has considered a vime domain approach for finding optimal
probe locations and optimal weighting for multiple probes for a heat exchanger
with axial diffusion. Thix involved a search on an analogue computer with the
original system equation representc by a set of simultaneous ordinary
differential equations.

2. Regulatory control of distributed systems

The techniques presented in this paper are appiicable to compensation for
load changes which upset the syvstem response from its desired steady-state
operating point. These disturbances may be initially localized and propagate
through the system such as a feed temperature upset, or may occur simul-
taneously at all points as in the case of a low velocity fluctuation.

In many distributed processes, although control must be extend-d over the
entire spatial domain. the performance of the system is appras.t at a single
point, usually the exit. For eaample, the performance index of a tubular
reactor may be a function of the exit concentration of one of the reactants-—-or
it may be desired to regulate the outlet temperature of a tubular heat exchanger
about a given set-point. The discussion herein pertains to such systems. It is
also assumed that control action, although distributed in its effect, is initiated
by a single, lumped input.

Conventional feedback cortrol systems are sometimes inadequate for
regulatory control of distributed processes. For exampie, consider a process
in which it is desired to regulate the quality of the output stream. A localized
load disturbance may enter the process at the inlet, but the feedback trans
ducer will not sense the upset untii the disturbance response propagates
through the system and begins to occur at the exit. Then, as control action is
applied to offset the disturbance, dead time and lag in control response create
a poor transient exit tesponse and make it difticult to regulate the exit stream
effectively.

However, if it is possible to sense { he disturbance at the inlet (or its response
upstream from the exit), then this i:iformation nay be utilized to initiate
control action in advance of the arrival of the disturbance response at the ex's.
In this way, the coutrol response ca:: be made to match the disturbance
response more closely, resulting in better control of the ouij.at quality.
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Fecdforward—feedbuck control of distributed parameter systems 363

3. Feedforward control
Consider the feedforward control schematic for a distributed process shown
in fig. 1. A vector of disturbance mputs is sensed at the inlet to the process
and fed forward to a control computer. The computer also has. as an input,
the set-point signal.
Fig. 1
Set - point

6 fforwordl  + _ + Feedback ]
controller | '( )' ~ Tcontroner [* Q-o-
Actuator |

Mantpulated !

varicble |

| Process
Load Controlled
disturbgnces variable

(a) Fegdforward control

Set - point
_________________ -
State + t
+ Feedback
measure | -1controller[* ~\)%*
controller -
M':ulsubr'cd |Actuator 1
variabdle
Lvariable j Manipulated |
variable i
——{ Process [t
Load Controlled
disturbances variable

(b) State measure control

Feedforward and state measure control configurations for
tubular heat exchanger.

In designing a feedforward control system, the usual approach is to consider
the steady-state and transient aspects of the response separately (Shinskey
1968). Accordingly, the function of the feedforward computer is first to caleu-
late the value of the manipulated variable necessary to produce zero steady-state
error under the influence of the disturbance. Then, dynamic compensation of
the control signal is effected so that the transient deviation dies out in some
optimal manner. Dynamic compensation is necessary because of dynamic
imbalances between disturbance and control responses.

One method for dy:amic compensation of the control signal, where dead
time in the disturbance response is not appreciable, is a simple lead-lag function
(Shinskey 1968). The output, 8(t), is:

o) = 8,1+ 72— xp(~ 1) )
L ™
where 6, is the steady-state value of the manipulated variable and 7, and 7, are
the lead and lag time cunstants, reapectively.
In cases where dead time is a factor in the disturbance response, the lead-
lag signal can be effectively combined +.ith pure time delay. The control output,
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delayed by an amount t,, can be written:

0,,’1+:r—’!:T"e ——tm, t—t,)>0.
Bt —1,) = \ -, xp{—{( i)/"'h], (t—ty)

0. (t—t;)<0.

(2)

Optimal design of the lead-lag compensation involves determining the lead
and lag time constants such that the controlled system response is optimal
with respect to some performance index. A procedure is developed here for
performing a parameter search to determine the optimal time constants using
the method of conjugate gradients due to Fletcher and Reeves (1964). A flow
diagram for the overall search is shown in fig. 2.

Although gradients of the performance index with respect to the parameters
to be searched are required, difference approximations can be used where
analytic expressions are rot available. For systems under consideration here,
it is necessary to compute the full solutions to the system partial differential
equations each time the performance index is evaluated or a gradient
computed.

Constraints on the parameters or on the manipulated variable can be
accommodated by the use of appropriate penalty functions in the performance
index which penalize excessive excursions from the reference values.

4. State measure control

Instead of sensing the disturbance at the inlet as in feedforward control,
consider now the measurement of the disturbance response within the system
and using this information to provide corrective control. A complete appraisal
of the disturbed state would entail measuring the entire profile, However, it
has been shown (Licht 1966, McCann 1963), that good regulation can be
provided by basing the state assessment on just a few points or even a single
point along the spatial axis. Herein, state measure control is considered in
terms of a single state measurement at some point within the system.

The state measure control scheme presented here is shown schematically in
fig. 1. As noted by McCann (1963), state measure control is both feedforward
and feedback. It is feedforward in that the disturbance response is measured
ahead of the regulation point and this information used as an input to the
controller. It is feedback in the sense that the effect of control action can be
sensed at the measure point.

State measure control appears most useful in cases for which the exit
response to a disturbance is slow in comparison to the response due to control
action. By proper location of the probe, it is possible to utilize the distributed
nature of the system for dynamic compensation so that the cont.oller may
consist of no more than a proportional mode.

As in the case of feedforward control, the steady-state portion of the
response is considered senarately from the transient. This consists of computing
the steady-state proportional gain, which, multiplied by the steady-state value
of the suppressed state deviation profile at the measure poiut, restores the exit
state to zero steady-state error under the effect of the disturbance.
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5. Provision for feedback

Both feedforward and state measure control are open-loop with respect to
the controlled variable. i.e. the actual error at the exit regulation point is not
used to provide corrective control action. For this reason the accuracies of the
svstems are susceptible to changing parameters, model inaccuracy. maccuracy
of load measurements, errors in computing components, ete. This indicates a
need for a feedback signal to eliminate steady-state offset.

The feedback controller would include the integral mode to provide the
long-term accuracy required but would not be expected to contribute signifi-
cantly to the rapid initial correction. For this reason, in the examples presented,
the feedback portion has been omitted from the transient computation.

6. Examples
6.1. Outlet tem perature regulation of a tubular heat exchanger using feedforward
control

To illustrate feedforward regulatory contro® theory. consider the problem
of regulating the outlet temperature of a single-pass shell-and-tube heat
exchanger. The control objective is to maintain the tube-side outlet tempera-
‘ure at a fixed set-point with the system subjected to load disturba~ces. These
load disturbances are assumed to be fluctuations in the feed temperature and
the mean flow velocity. The manipulated variable is taken to be the steam
temperature in the shell, which is assumed to be a function of time only.

6.1.1. The mathematical model

The mathematical model of the tubular heat exchanger with axial diffusion
is derived. A simple single-pass shell-and-tube heat exchanger is considered.
A liquid stream enters the tube of the exchanger and is heated by convection
from the inner wall. Heat is supylied to the tube by means of condensing
steam in the jacket.

In deriving the mathematical model, the following assumptions are invoked:

(1) System parameters are uniform and constant with respect to tine.

(2) Axial heat diffusion and mixing are significant for the tube-side stream.

(3) Steam temperature 18 a function of time only.

(4) Tube-side temperature and velocity are constant with respect to radial

distance.

(5) Heat capacity of the tube is finite.

(6) Tube temperature is constant with respect to radial position.

(7) Axial heat conduction in the tube is negligible.

(8) Outer shell effects can be neglected.

An energy balance taken over a differential section dl of the tube-side of the
exchanger yields:

on T T, huR —
E—D~éﬁ——v-§l—+mz(Tw 7;)’ (3)

while taking an energy balance on a section of wall of length dl gives:
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The system is subject to the following boundary conditions:

“Io.7) _ v

. _13[7;(0,1)—7;/] at =0, (5)
% P (®)
el

Equations (3) and (4) are non-dimensionalized by introducing the following
quantities:

Mean residence time: 7, = L/vsec.
Axial Peclet number: g = vL/D,
Dimensionless time: = 7/7,.
Dimensionless axial distance: & =11,

Dimensionless liquid temperature: w«, = 7)/T,.

Dimensionless wall temperature: u,=17,./T,,
Dimensionless steam temperature: 6 = T,/T,,

L

Other parameters: B

-1
gee 1,
T1 Cpt pd,

1 = Zl'"!_[)' -gee-1
Ta1 C)m- P A4 w

pd
L Al sec~l.

Tog pr Py A w

The system equations thus become:

ou, 18w, ou 7,
"B *@‘—5;4'7—1(“2—“1), (7)
ouy T, T,
A Ta (6~ uy) +"'_21 (uy — uy). (8)
The dimensionless boundary conditions are:
w = B[u,(0,¢)—u,/] at x=0, (9)
ouy(l,t) _
———5;————0 at x=1. (10)

The numerical values for the exchanger used in this study are assumed
to be:

B = 101
7, = 3 sec,

T, = 3-69 sec,

Tq1 = 2:65 soc,

74y = 1:05 sec,

T, = 1000 °R,

u,! = 0:5630,
0 = 0-795.
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The time constants for the system were determined experimentally by Cohen
and Johnson (1956).

6.1.2. Perturbation equations

Consider the following perturbation variables defined as deviations from a
steady-state operating point:

]

Ay(x ) = wyfx, t)--uy (x),
tg(r,t) = wy(x, t) — uy (1),
a(t) = 6t -6,
W) = u/() —wy ).
B(t) = v{t) —v,.
If the following parameters are taken to be constant, i.e.
Ty = L/vs‘
B=rv.LID,
eqn~. (7)-(10) can be written:

uy 1 uy, v ouy
gt e D (Y 11
it Bt v, ér +‘r (g = 1), (1)

‘u, T, T,
o rg— = (uy— 12
it Ty @ u2)+721 (1= ta). )
aul(O (0.4) —B [ 0,8)—u/] at x=0, (13)
%(_l_,l_)=0 at x=1. (14)
(x

The steady-state profiles u, (x) and u,(x) corresponding to the operating
point must satisfy the following equations:

1 d? d

B ) =0, 19
1

’*(0—‘2)'*‘ ‘(“1, uy,) =0, (16)

with the boundary conditions:

dul,(o) Bl 0) “1] at ©=0, (17)
‘l'i(;.iﬂﬂ at =1 (18)

Subtracting eqn. (15) from eqn. (11) and eqn. (17) from eqn. (13) yields:

ody 1, (v ou, du) 7,
a B ot —(v ox dx)+;—m'_d‘)’ (19)

P B[ L w00 - w0~ (L - ) (20)

]
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Thus with the introduction of a velocity perturbation, non-linearities are
introduced. These non-linear terms may be lincarized in a first-order Taylor
series about the operating point, i.e. '

v fuy _du, ’,d"1.+,""f1

Uy 21
v, ix  dr v, dr i’ (21)
v ¥ .
S uy(0,8) 2wy (0)+ . uy (0) +7,(0,1), (22)
vlf vﬂ ¢
v ¥ .
S ruy )+ S+ (23)
vll vﬂ

Using the above approximations and subtracting eqn. (16) from eqn. (12) and
eqn. (18) from eqn. (14), the following system of linearized dimensionless
perturbation equations results:

. 1, W Te. o t du

“l,=Bulu—“l,‘*"?i(uz—ul)—i‘d;', (24)
=[50~ )+ 7" (dy~ ), (25)

T2 T2

subject to the boundary conditions:

,(0,8) = BL,(0,) ~ /1 +B8 - (1, (0)—w/] at x=0, (26)

8
4, (1,t)=0 at z=1, (27)

Here, the disturbance inputs are i,/(t) and 6( ), the feed temperature and velocity
fluctuations, respectively.

The steady-state behaviour of the system is described by the following
ordinary differential equation:

dd, db 6, d
=Bl YO ) B T = 0, (28)
subject to the boundary conditions:
dit, (0 6
P00 g1y 0) 4,148 00 -w)] st =0, (29
d“é;fl) =0 at z=1, (30)

where
=T ™
T Tt Ty
Equation (28) is now reduced to state space form by letting:

di
ty, = Yy 'jd‘i' =Y

To obtain the steady-state control variable 8, which provides zero steady-state
exit error under the influence of the disturbances, a new state variable is

%, ) .
d N - . T .. T e -y
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introduced, i.e.
ax =Y3
The complete systern of equations is thus:
dy, _ ’
=y (31)
d v, du
= By, + By~ Bhys+ 8.1 (32)
8
dys
’d'x' - 0’ (33)
with the boundary conditions:
b,
Y2(0) = ﬁ[.’/l(o)_“l./]‘*’ﬂn‘ [u,,(0) —ux,’] at x=0, (34)
Y1) =0 atr=1, (35)
y(1)=0 atr=1 (36)

Using computed values of du, (r)/dx, eqns. (31)-(33) may be solved using
Runge-Kutta integration and superposition as outlined in Hahn (1969),
yielding the appropriate steady-state control value, §,, and the suppressed
deviation profile #,(x). Temperature deviation profiles are shown in fig. 3 for
a feed temperature upset of 4, = 1 and a velocity change of 4/v, = 0-1.

I"&ead Initial_protiles, u (m),
uy(m), msi,-., Me3

Assume values for
parameters Ta. b

Using conjugate gradient tech- Solve system POE'’s
nique , calculate  optimal forword in time from
|porameters T4, Th such t=0 to t=ty, gvaluate

that the performance Index peformance index S
S Is minimized ond wute gQradients

) With respect to 2 , -
Write opt!" ‘'« parameters

Ta s b corresponding control
tunction @(n), n=1,* -+ N

and exit temperoture troject-
ory uM+1,n), nmi, N+

Flow diagram for conjugate gradisnt method of finding
optimal lead—lag parameters.

The performance criterion to be minimized is taken to be the integral-square
error of the fluid temperature deviations at the exit. This can be written:

8= [ 1a,0,npa. 37)

o« .- A
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The solution of the transient perturbation equations given by eqns. (24) and
(25) are solved forward in time ¢ = 0 to ¢ = ¢, by decoupling them and iteratively
applying the implicit difference method.

Fig. 3
10,
Feed temperature disturbance
sl
o ) P S U g K
~
Yy
—v5
Velocity disturbance
~10}
“15L
| — A e A o ‘ e A A 4 J
] 2 4 B 6 7 -] ‘9 10
X

Steady-state deviation temperature profiles for feed temperature
and velocity disturbances.

Equations (24) and (25) are most conveniently solved by finite-difference
methods. However, for parabolic equations care must be taken in applying
explicit difference approximations that stability is ensured. In order to circum-
vent this stability problem, the implicit scheme due to Crank and Nicolson
(Forsythe and Wasow 1965) is considered here. This method introduces more
complexity into the difference model but guarantees stability for any increment
of time, thus reducing the number of time increments required.

In applying the Crank—~Nicolson methoa the spat:al axis is discretized into M
increments of equal length Ax so that Ar = 1/M. Time discretization is effected
by solving the difference equations at equal time increments At. The solution
u(m,n) denotes the value of the dependent variable at the spatial location
(m—1)Ax and at time (n— 1) At.

'The partial time derivatives are approximated by taking forward differences
between the (n— 1)th and nth time steps, i.e.

W zKli[u(m, n)—u(m,n-1)]. (38)

For spatial discretization, implicit difference operators are constructed for the
first and second spatial partial derivatives by taking central differences,
averaged over the (n — 1)th and nth time steps, i.e.

U, *(M?2)[u(m+1,n)—2u(m,n)+ u(m~1,n)
+um+1l,n—-1)-2umn—1)+uim—1,..-1)], (39)
u, x(M/4)[u(m+1,n)—u(m—1,n)+um+ L, n—-1)~um—1,n-1)]. (40)
The above difference operators have a discretization error on the order of (Ax)?
(Forsythe and Wasow 1965). The solution of eqns. (24) and (25) is greatly

simplified by ‘decoupling’ the component equations. This is done in the ith
equation at the kth iterative solution by setting:

u‘(k) —_ u‘(k—l)’ j = i,

0, j#t. (41

) — k-1 =
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The dependent variable u is also averaged over the (n — 1)th and nth time steps:
u x du(m,n) + u(m,n—1)]. (42)

The difference approximations for the first derivative terms oceurring in

the boundary conditions at x = 0 and x = 1 are taken to be three-point forward
and backward differences, respectively :

], o 2 (M[2)[ - (3, n) + (2. n) - 3d(1, m)], (43)
d,, 1 2 (M2) [3A(M + 1, n) — 4d(H, n) +4(M -1, n)). (44)

By substitution of the above difference op.erators given by eqns. (38)-(14)

into eqns. (24)-(27). the following sets of difference equations for the Ath
iteration are obtained:

1M i M 7
N TRLTD — . (k)
[Bx+2ﬁ+3M Al]ul (2,n)+ lCl 2,3+3MA1J #,%(3, n)
= —dyiy(Ln=1)=Dydy(2.n 1) = Cyr, 3, n— 1, - E,%-D(2, n)

~s 5 a0 =T 00 -1)],
Ayt ®(m —1,n)— By diy(m, n) + C, &, (m + 1, n)
=—Ayiym—1,n=1)=D di(mn—1)=Cyid(m+1,n- 1)
—-E\%VYmn) m=3,...,M~1,
' [Ay = §C) &0 — 1, m) + [By +4C,1 4,91, m)
= —Ayiy (M~ 1,n=1) =Dy (M,n—1)=Cydy(M+1,n~1)
— E,%-0(M n), )

)

D
r4

(45)

4% (m, n) =I; [—D,z‘i,(m,n— n-Tr @ %*-D(m,n) =" O(n - l)]
2 ™ Tag

m = l,...,]"ﬂ'l, (46)
where
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The end-point values, #,(1,n) and #,(M +1,n), are determined respectively
from the following boundary equations:

M 4M
7, k) = — - TRLIR 7, k(D
w4, (1, n) 2ﬁ+3Mu‘ )(3’")+2ﬁ+3M“1 (2, n)
28 [., . #n) ;
+2B'+'32l'1[u‘ (n) = v, (@, (0)=w,)], (47)
4, (M +1,n) = §d4,%(M,n)— 34, (M -1, n). (48)

In performing the computations, time and spatial increment sizes used were
0-05 residence time and 0-05 dimensionless distance unit respectively. Terminal
time {, was taken to be 3 residence times.

Fig. 4
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QOutlet temperature responses to a step feed temperature upset for
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Fig. 5
pr laverted response
s to control action
-4 b
0,
<N 3 Response to
disturbance
.2 b
9 F
o A 'y e A —r i 'y il i A A e A —
6 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
t

Comparison of open-loop disturbance and control outlet tempx rature
responses for a step feed temperature disturbance.

6.1.3. Feed temperature disturbance

Consider a unit step upset in feed temperature, i.e. 4,/ = 1. The uncon-
trolled disturbance responses at the exit are shown in fig. 4 for several effective
diffusion coefficients. A comparison of the uncontrolled disturbance response
with the corresponding step control response required for zero steady-state
error is shown in fig. 5 for 8 = 10. As seen in fig. 6, with uncompensated
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feedforward control, an increase in feed temperature results in an initial
decrease in exit temperature due to the relatively faster response to control
action,

Thus compensation is ¢ licated which provides for less energy to be
delivered to the system duri g the initial transient than that required for zero
steady-state error under the effect of the upset,

Fig. 8
o] —\— —————————————
-1
A
U1(1) \//
-2
1
)
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Q —
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”
(-]
-1
-15
i ' 'y b A k. ' - L 1 L L A 5. — 4
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
t

Uncompensated controlled cutlet temperature response to
a step feed temperature disturbance.

Due to the relatively slow exit response to the disturbance, it was necessary
to incorporate a pure time delay in the control. The design procedure was to
fix the delay at some increment of time, jAt,j = 0,1, ..., and for this delay
compute the optimal time constants, r, and r,, using the method of conjugate
gradients, In difference form, the control is thus:

X e ]

—1=-120
" ™ , (n=1-3)20,

A(n - j) = (49)

0, (m-1-5)<0,

where §, represents the s+-.iy-state control necessary to completely cancel the
disturbance at the exit.

The control yielding the lowest value of the performance index was deter-
mined, using a tinie delay of 0-15 residence time and lead and lag time constants
of 0-0246 and 0-0937, respectively. The optimal control trajectory and corre-
sponding exit response are shown in fig. 7. The ISE for the optimally com-
pensated response was 0-00102 compared to 0-01552 for the uncompensated
case.

6.1.4. Velocsty disturbance
For a velocity disturbance, the situation is different 1 igure 8 shows the
uncontrolled exit response to a step velocity disturbuice, 6/v, = 0-1, and the
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corresponding step control response required to completely climinate steady-
state error. In this case the disturbance response leads the contro! response.
The controlled hut uncompensated exit response is shown in fig. 9.

Fig. 7
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t
Outlet temperature response to a step feed temperature disturbance
uxsing optimal feedforward lead- lag control with delay.
Fig. 8
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Comparison of open-loop dist + »  and control outlet
<omperature responses for a »ie g * cloc.ty disturbance.

It is thus uexrable to provide dynamic compensation to the controller to
enable the delivery of more energy tc the system during the transient than
required for zero steady-state output error vnder the intluence of the distur-

; bance.
To limit the magnitude of the control deviations, the performance index is

modified to include a weighted penalty on excursions from the steady-state
value, i.e.

s = [lta.0m+vid0 - O (80)
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o 2 4 8 8 10 12 14 16 18 20 22 24 26 28 30
t

Uncompensated controlled outlet temperature response to
a step veloeity disturbance.

In this case, the difference representation of the lead-lag compensated
feedforward signal is:

O(n)=0,’1+"'"’”nxp[—‘"""N]'. (51)
T» » ’
Using the coningrte gradient technique, optimal lead-lag time constants

were computed for several amounts of control weighting. The results are as
follows:

Y S8 Te s

Uncompensated 0-70214 1-0000 1:0000

o1 046461 0-6686 0-6119
0-01 0-15216 0-37468 0-2571
0-001 0-03239 0-3357 0-1999

Figure 10 shows the optimal control trajectory and corresponding ¢xit
response for y = 9-001,

6.2. Outlet temperat.are regulation of a tubular heat exchanger using state measure
control

Consider again the problem of outlei temperature regulation for the tubular
heat exchanger, this time by means of state measure control. The load distur-
baiice is assumod to be a unit step increase in feed temperature. It is proposed
to offset the disturbance effect by placing a sensor at some axial position within
the process and using only the proportional mode with the gain adjust: tor
zero steady-statc offsct at the outlet, 'nder the influence of the disturbance.

The s pressed steady-state deviation profile u, (z) and the corresponding
steady-state control 0, are determined by solving eqns. (31}-(35) with ¢ = 0 and
4,/ = 1. Uncv these are known, the proportional gain G, for any measure
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Fig. 10
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Outlet temperature response to s . elocity disturbanee using
optimal feedforward lead lay control (y = 0-001).

point x, can be computed from the relation:

)

= ]
m - 'ﬁ"(.t,“).
A plot of ihe resultant gain as a function of sensor location is shown in fig. 11,
In order to apprair~ the dynamic performance of the exchanger under state
measure control, a closed-loop digital simulation may be accomplished using
the system difference representation, eqns. (45)-(48). Since the control is
proportional to the instantaneous value of the rtate variable at the measure
point, i.e.

17 (52)

) = G idy(x,.1), (53)
the difference form at the ath time step for the kth iteration may be written:
0% (n) = G, i, %~ (m", n), (54)

where m’ is the spatial node corresponding to the measure nwoint r,. The
iteration is repeated at each time step until convergence is attained.

Computation was performed over 3 residence times using time and spatial
increments of 0-05 residence time and 0-05 dimensionless distance unit, respec-
tively. Upon computing the transient exit respons» at each spatial node, the
exit integral-square error was computed using Simpson’s integration. To
penalize high gains obtained for larger »,, a penalty terin was added to the
performance index, i.e.

S = | 180,00+ ibe - by ar. (55)

Figure 12 shows the resulting value of the performance index as a function of
the sensor location, wi.n and without the penalty.
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Figure 12 shows the control trajectories obtained from the simulation study
for several sensor locations. The corresponding exit responses are shown in
Figure 14.

In Figure 14 the top response indicates that the transducer is too close to
the inlet. The control action is premature, causing an excessive undershoot
of the set-point before the disturbance response starts to occur.

Fig. 13
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State measure control trajectories for a step feed temperature upset.

Fig. 14
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Effect of sensor location on the outlet response to a step feed temperature
upeet using state measure control.

The bottom. response shows the effect of having the transducer too far down

stream. The nntrol response is too slow, resulting in excessive overshoot, due
to the disturbance response. Also, with the transducer close to the exit, the
proportion: i gaiz: becomes high and cycling or instability may ensue.
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The best response, in the sense of minimum integral-square error (with
control penalty), is shown in the middle. The probe is located such that there
is initially a small undershoot due to control action, followed by a small over-
shoot as the disturbance response arrives at the exit.

7. Conclusions

Two control schemes were investigated for regulating the exit state of a
linear distributed system or one exhibiting linear behaviour about £n operating
profile. These were feedforward control in which a disturbance measurement
was fed forward to a controller to indicate corrective action and state measure
control in which the disturbance responuse was measured at a point within the
system and used to generate a corrective signal. In practice, each would be
used to provide rapid initial disturbance correction, but used in conjunction
with a small amount of integral feedback from the regulation point to eliminate
steady-state offset. Optimization for the feedforward scheme presented con-
sisted of determining optimal values for lead and lag time constants whereas
for state measure control, optimization involved the determination of an
optimal measure point.

A computerized design procedure was demonstrated for determining optimal
dynamic compensation for the feedforward signal. The method of conjugate
gradients was used to compute optimal lead-and-lag-time time constants to
minimize an index of performance. For the heat exchanger example presented
compensation for a feed temperature disturbance required a time delay, in
addition to the lead-lag compensation, to be inserted in the feedforward loop.
For a velocity disturbance, it was necessary to impose a penalty on control
effort in the performance index to constiain in the control to a physically
realizable level.

A clnged-loop (with respect to the measure point) digital simulation tech-
nique was devised for simulating the response of a tubular heat exchanger to a
step increase in feed temperature, using state measure control. The scheme was
an implicit one in which the transient state at a given spatial point was multi-
plied by a proportional gain to determine the value of the manipulated variable
in the state equations. A one-dimensional search was performed to find the
best measure point in the sense of minimizing the exit integral-square error.
Using the resulting optimal measure point, state measure control provided
somewhat better performance than compensated feedforward control for the
same disturbance.

For distributed system regulation, state measure control has the advantage
that the distributed nature of the process itself is utilized to provide dynamic
compensation for the control signal and hence a simple proportional controller
may suffice for this portion of the control. On the other hand, the specification
of the proportional gaix requires the knowledge of the nature of the disturbance.
If multiple disturbances are likely to be present, it may be impossible to predict
the exit error based on a single-point state measurement. In such situations it
would seem advisable to use a feedforward configuration, thus isolating the
disturbance inputs. Feedforward control would also be indicated in situations
where the response to control action is slower than the disturbance response.
Under these circumstances, the lag created by basing control action on the
disturbance response would only degrade the performance.
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OPTIMAL WALL TEMPERATURE CONTROL OF A HEAT EXCHANGER*

Harng-sen Huang, L. T. Fan, C. L. Hwang
Institute for Systems Design and Optimization
Kansas State University

ABSTRACT -

An optimal wall temperature control of a single-duct heat exchanger
is studied. The wall temperature which is the control variable is assumed
to be uniform in space but a function of time. The system considered is ‘%
a distributed parameter system where the fluid temperature is a function ‘
of time and a spatial coordinate. The contreci is to force optimally
the temperature profile of the fluid from the initial state to a new
desired steady temperature profile in a finite time. Two different
performance indexes are considered. One is the integral of the absolute
deviation of the system temperature profile at any moment from the new
desired steady state profile and the other is the integral of the square
of deviation of the system temperature profile at any moment from the new
desired steady state profile. Both are to be minimized. Optimal solutions
are obtained by two methods, namely, linear programming and a variational

technique.
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INTRODUCTION

A heat exchanger is often an important element in a variety of
engineering systems including the life support system in space vehicles.
It is used to absorb the heat generated by the adsorption bed for CO2
removal, the metabolic heat of the human body, the heat generated in air
conditioning units, and others.

In this study, optimal control of a single tube heat exchanger with
a capability of controlling its wall temperature as a function of time is
considered. However, temperature of the fluid in the heat exchanger is a
function of both time and a spatial coordinate, In other words the heat
exchanger considered in this work is a distributed parameter system which
is usually described by a partial differential equation or a set of such
equations with time and one or more spatial coordinates as independent
variablegs. A dynamic lumped system, on the other hand, is usually
modeled by a set of ordinary differential equations which involve time
as the only independent variable, Basically, all physical systems possess
the spatial distribution of dependent variables, but often the variables
are uniform in space or they may be considered to be independent of space
without excessive loss of information. Under such circumstances a system
is said to be lumped. However, for many heat exchangers, a lumped
approximation is inadequate and it is necessary to take into account
lp.till variationt of the variables to provide sufficient detail regarding
system behavior.

Specifically, the problem in this work is to find a certsin pattern
of the wall temperature variation with respect to time so that the fluid

temperature will be changed from one steady state profile to the nearest
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possible vicinity of a new steady state profile in a finite time.
Usually the wall temperature can not exceed a certain temperature con-
straint that is imposed on the control variable.

Yang [6] solved the transient response of fluid temperature in a
single tube heat exchanger subject to wall temperature variation. Koppel
et al. [2, 3] studied the optimal control of similar systems. The con-
straint that was imposed to the system is of the integral type instead
of control saturation. They approached the problem based on the conjecture
that the control variable is related to the system temperature by a certain
relationship. Sakawa (4] was perhaps the first to use linear programming
for obtaining the optimal control policy of the distributed parameter
system. Huang and Yang [1] used this technique to solve a heat exchanger
problem with internal wall heat generation as the control variable. Both
wall and fluid transient temperature distributions depend on the internal
heat generation,

In the present study both iinear programming and a variational tech-~

nique are employed. The variational technique employed here is similar

to that used by Koppel [2, 3], but an analytical control function is
obtained without Koppel's conjecture.

System Equations. The system considered imn this work is shown in

Fig. 1. It consists of a duct through which a coolant flows steadily. Its
temperature distribution is changed from an initial state to a final desired
state. The following assumptions are made [7]).

a) The wvall temperature may vary with time but uniform along the

x-axis.
b) The fluid temperature and velocity are uniform along the radial

direction.
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c¢) Axial heat conduction is negligible in fluid. This is a
: reasonable assumption when the Peclet number exceeds 100.
;% d) The heat-transfer coefficient is constant along the x-axis and
: time. This assumption is experimentally verified to be
reasonable [6].
‘ e) The fluid is incompressible and all fluid properties are constant.
g‘ f) The flow channel has constant cross-sectional area.
:?ﬁ g) The temperature of the fluid entering the duct is constant,
N g‘ With these assumptions, the energy balance gives rise to the following ?
; %&a differential equation for the fluid [2, 7]. é
o B :
p A A&x cp at'upACPyx..’_Ax. -upAcpyx.+hPAx G-V

P NPT gy ¢ v e w

Tias
-4

where y and Y,, are the transient fluid temperature and wall temperature,
respectively, p is the coolant density, Cp is the coolant specific heat,

P 1is the wetted perimeter of the tube, A is the flow cross-sectional area,

h is the heat transfer coefficient between the wall and the coolant, Ax' is
the differential distance along axial direction, and t is time. The initial

and boundary conditions are
Y0, x') = v, (2)
v(1, 0) = v, | (3)
By introducing the new dimensionless variables
T= (v =v9lyg
6= (v, = vo)/vg

x=x'/L, 0<xc<l

te 1t u/l

hPL
o A cP u

|
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~nd letting

) Ax + 0, ’

the system equations, Equations (1) through (3), can be transformed

1; to
" %%+-g-:—-x(e-r) (4)
T, x) =0 (4a)
T(t, 0) = 0 (4b) |

The analytical solution of equation (4) subject to the boundary conditions
was obtained by Yang [7].
Performing the Laplace transformatiun on equation (4) subject to the

initial condition given by equation (4a), one obtains

- dT - =
8T+-a-’—‘-|((6-'r) (5)

Integrating this equation subject to the transformed boundary condition of

equation (4b)
T(s, 0) = 0

leads to

Fo, x) » = (1 - @

Xx -sx
oK e

)8 (6)

The inverse Laplace transformation of equation (6) gives two solutions in

two domains of real time

x>t, T(t, x) =K 0:° ¥ g0rac Q)
t -
x<t, T(t, %)=k of K (Dg(erar - re™ oft * o K206 0)ag

.xofa*“*’ ™ oR(e0)

t
0(f)dg - K o! e(g)dg

ox 8 KD

e(c)dg (8)
t-x




¢
VA
-+
LerTorngne s rdew. @ ifated TYBYIOUuSIY Le TTCRAuEm s TO T
he  ommergrurs Crof e TTOmM ozers Tliiad ifare. 0. s o,
N o3 e tendivoan ozl TemGeralars IWOT e, ‘_" o or oimta ime
mtoe vatmlsing s 31Ven Jeriamanca naex. The mmsuiat=a cart-

4 @ 3 “akAn " e e Mol TEMUeraruara. T, 1L W3 2 TapueToan It

ERC T IR Y, PRt

Tas 1e3; sad 18w ITeAMV 3CACS CT_ULJ ampericar: IcIcila. :x %, . am

ya shrataed 3 3.01ag The fa..awtag 3Taadv 1Cac2 mIlarmosal aquacum

2 A “he nundavy taaglzian L, 2

1~ -
i ‘
7,'-’ ‘p) - ‘A\
»

3/e, = J’i’ ooty

Whatr e %4 fe tha desired final wall temperature. The sclutioca of the abdove

sqnation 18

-Kkx

Tal0) = 8,(1 - ¢ ) (9)

Two performance indices are to be minimized. One is the

integral of the absolute deviation of the system temperature from the
desired nevw steady temperature profile T d(x) at the final time, tt' which

in glven by

1
- | T(tqs %) - Ty(x)|dx (10

and the other is the integral of the square of deviation of the ayatem

%) temperature from ‘l"(n) at the final r‘me, which is given by

1
o (Tt 0 - Ty0) o (108)




vy e

X AT T~ T
Tk

-y

€I ) P W L g
I T 5 A el et ot .

X et o

o W o

It is worth recalling that the flow through the system is of the
slug ilow or plug flow type. Therefore, if the final time is greater
than the mean residence time, i.e., if tf 2 1, the control maintained
at 6, for 0 < t < tes will lead to the final system temperature profile
T(tf, x) which is exactly equal to Td(x) [compare equations (8) and (9)],
and this in turn will always give rise to the minimum attainable
performance index of zero. Therefore, the only case o1 practical interest
ig the case with te less than one residence time, 1i.e. tge < 1.

While the two performance indexes given by equations (10) and (10a)
are quantitatively different, qualitatively both represeat the
same entity, namely the integrated deviation of the systems temperature

profile from the desired temperature profile.

APPROXIMATE SOLUTION BY LINEAR PROGRAMMING

Since the integrand of the objective function given by equation (10)
is linear in the state variable, the well-developed linear programming
approach can be used to obtain an approximate solution. In order to
utilize the linear programming approach, equation (10) is linearized in

a step-vise manner by means of Simpson's rule of integration as follows:

1
Ss= ol | T(tgy %) = Ty(x)|dx

X 130 ¢1|T(tf. '1)~- Td(x1)| (11)
vhere
x, =1, tor1e0,1,2 ..,
CRENE 7
°1'°3""'°.-1";"
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Equation (11) contains the summation of all linear terms and thus
the linear programming approach can be utilized (1, 4]. Since the dimensionless
inlet coolant temperature is always zero, the first term of the sumation in
equation (11) can be droped. In other words, the index of summation, i starts
from one instéad of zero.

Let
IT(tf, xi) - Td(xi)| ey + epi' 1=1,2, ..., m 1l

where e’ epi, i=1,2, ..., m are non negative variables which satisty

the following relationship.

%

S ?, and t
i‘, .
1 ‘: €y " 0 and T(tf. xi) - Td(xi) = - ey, if T(tf. x,) - Td(xi) <0

I

\

R e, =0 and T(tg, xg) - Talxy) = e if T(ty, x,) = Tylx,) > 0 (14)

€1 " %51 =0 1if T(tf. 81) - Td(ul) -0

1-1’ 2. ceey W

By introducing these new variables, equation (11) can be expressed as

5 °1"u. + .pl) (15)

Equations (7) and (8) at the final time can be approximated by dividing

the total transient time, tf. into n segments and assuming tnat the 0 is

constant in each subinterval. Thus

a
‘r(tf. :‘) o L A

) goy M3 % for 1=1,2,...,n (16)




where

- 6, = 0(t) for t, , <t<t
'_!; j j_‘ - - j’

tj = j tf/n for 3 =0,1, ....n,

and A1 are constants.

]
The ljnear programming model which will yield the optimal policy e

the system can now be formulated.

Minimize
m
1
121 cile  + epi) (15)
subject to
T(tf, xi) - Td(xi) = epi -e i=1,2, oo, m an
ej:emax J=1,25 «eehp m (18)
i=1,2, ..., m

1’ %10 8y 20 1=1,2, ...,n 19

where emax 1s the maximum allowable wall temperature. N

From equations (7), (8), (9),and (16) through (19), it can be seen
that the problem can be stated as follows:

Minimize . g

m oo
L + ,
q=1 ci(eai ’pi) .

subject to

M e ey
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Allel + ... + Alnen - epl + e.q - Td(xl)
Ay8y + «oe ¥ Ay 0 e te, = T (x,)
Am1°1 + ... + Amnen -epm + em " Td(xm)
el = emax
9n = emm
esi, epi, ej >0 for all i, j.

This is a standard linear programming problem which can be solved by the
linear programming simplex method {4 ]. An IBM subroutine in Mathematical
Programming System/360 (360A-C0-14X), Linear and Separable Programming, is

used for the computation.

SOLUTION BY A VARIATIONAL TECHNIQUE

Because the performance index given by equation (1l0a) is of the quadratic
type, the linear programming approach can not be used for its minimization.
“hile the quadratic programming can be employed to obtain an approximate
solution, it appears that use of the variational technique is more appropriate
because of the possibility of obtaining an exact or analytic solution.

The systems equations considered here are equations (4), (4a), (4b),
and (10a).

Consider now a small change 86 in the control variable 6. The resulting
incremental response 8T in the state variable T of equation (4) must satisfy

the following '.inear perturbation differential equation.

FEPULL AL ¢ -k I S W s e
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9T oT
8 3t Gax + K(8¢ - 6T) . (20)

The variational initial and boundary conditions are

8T(0, x) = O at t =20 (21)

6T(t, 0) = 0 at x =0 (22)

Now the control function 6 which gives rise to the minimm of the
performance index given by equation (10a) must be detexrmined. In order to
obtain necessary conditions for optimality, a relationship must be found which
expresses the variation of the performance index, §S, in terms of the control
perturbation, 66.

The increment of the performance index, equation (10a), due to the

system temperature variation is

6s = f 2{(T(t, x) = T (x))6T]| _ ~dx (23)
£

By adjoining the variational system equation, equation (20), to the vari-
ational performance index, equation (23), one obtains

tf

1
55 = f 2{(T~ 'rd)c'r]| dx - f 0 z[6 —-+6 - K60 +K6T]dt dx (24)

t'tf 0

where z(t, x) is the adjoint variable.

Because of the identities of

2 (267) = -- 6T + 26 g: (23)

2 (287) -—-6'1‘-0-:6-:-:-. (26)

rubstitution of equations (25) and (26) into equation (24) yields
t
4

1
f 2((T - ’a”"”mt - (£ () + L (e

- GE + 32 - Kn)et - Kzéo)dt dx (21

s

W NGB

-

3

T TR
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The first term in the second integral of equation (27) is now integrated
with respect to t fromt = 0 to t = tf, and the second term with respect
to x fromx ~ 0 to x = 1, so that each term in the integrand involves either

the variation 6T or 48. These give

FE D Gasmyde = (asT) T (28)
at ’ t=0

/M2 (2smax = (zom) (29)

o x=0

After some manipulation and noting that 6T(0, x) = 0 and 6T(t, 0) = O,

the following result is obtained.

1 te
6s = Jol@r-2m, - z)mlt_tf dx = 7 [26T),, dt
1 t
+ 7 £ [(25 +22 Kz)6T + Kz86]dt dx (30)

0 0 at ax

To ‘ekiminate terms not depending explicitly on 86 from the integrand of
the third integral of equation (30), it is stipulated that the adjoint

variable satigsfies the differential equation,

9z 3z .
5t + ™ Kz =0 (31)

This is accomplished by choosing the adjoint boundary conditions such
that the coefficients of unknown endpoint variation 4T vanish. For the
coefficient of 4T in the second integral of equation (30) to be zero,

one has
z(t, 1) =0 (32)

For the coefficient .of ST in the first integral of equation (30) to be zero,

one has

e — e w——— e
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z(tf, Xx) = 2T(tf, x) - 2Td(x) (33)
The resulting variational performance index, equation (27), can now be ;
written as
1 %
§8§ = [ [ Kz(t, x)66 dt dx (34)
0O 0
Assuming that for the adjoint variable z(t, x) is piece-wise continuous,
equation (34) can be rearranged by interchanging the order of integration K
as follows:
te 1
s =K f [/ zdx]é6 dt (35)
0 0
The analytical solution for the adjoint variable is obtained along '
the characteristic line along which the following general relation exists. §
3
dz _ 7:de Dz dx g
ds 3t ds 3x ds ?
4
where 8 is the length along the characteristic line. Comparing equation E
(31) with this relation yields %
dt
ds L, {
dx
b :
de . )
as ~ 2 ;

Integrating these equations, one obtains

t-to"‘.

X = xo - 8, (36)
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where tO’ xo, and zo are values of t, x, and z respectively at the
starting point. The argument of the boundary condition given by

equation (32) is represented by line segment CD in Fig. 2. The argument
of equation (33) is split into two regions because T(tf, x) has two dif-
ferent expressions from equations (7) and (8). Line segment AB represents

the argument of equations (33) and (8), i.e., for x < t Line segment

f.
BC represents the argument of eauations (33) and (7), i.e., for x > te
Now consider point Q in Fig. 2 which is inside the line segment BC.

At this point, to - tf. Let
t = tf -8 (37)
X ®=x,-8 (38)

Then, eliminating s from these two equations, one obtains

Xg=x+t, -t (39)

Rearranging equation (37) yields

s-tf—t (40)

The slope of the characteristic line QP, (t - tf)/(x - xo), can be obtained
from equations (37) and (38), and is aqual to 1. The same is true for the
characteristic lines BO and 53, which divide the argument of adjoint
variable into three regions, i.e., regions I, II, and III. Region I is
determined from the boundary condition at AB, region 11 is determined

from the boundary condition at BC, and region III is determined from the
boundary condition at ©D. Substituting equations (7) and (9) into equation

(33), the boundary condition at Q becomes

14
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tg K(p-t,) ~-Kx

- £ (]
zo(tf, xo) K OI 3(p)e dp - Zed[l -e

] (41)
Then along the characteristic line 6?, the solution for the adjoint
variable can be obtained by substituting equation (39) into equation (41),

and equations (40) and (41) into equation (36). This yields

K(t-t

) te K(p~t,) -K(x+t
z(t, x) = e

{2k of 8(p)e dp - 29d[1 - e

"t)

£ 1}, (42)

f

for

l+tct-1¢ x>t

>
£~
Since Q 1s an arbitrary point in the line segment BC, equation (42) is the
solution for the entire domain of region II. At any arbitrary time, region

II is inside the line segment FG in Fig. 2, {.e., t <x <1 =~ tf + t.

In the same manner, the solution for region I, i.e., x < t of EF, can be
obtained by substituting equations (8) and (9) into equation (33), and by
noting that x is changed to X because it is on the boundary point where

te tf, X = x5 The resulting equation igs then substituted into equation

(36). Finally, replacing s in equation (36) by equation (40), one obtains

-t)

K(t-t,) t K(p-t,) -K(x+t
£ £ £ 1} 43)

z(t, x) = e {2 /I o6(p)e dp -20.[1-e
t-x d

f

for

0<x<t.

v

“ince the boundary condition for region III is zero, it can be seen
from equation (36) that

z(t, x) = 0 (46)
for
l>x>1+¢t-¢,.
- 4
Numerical Procedure Based on the Gradient Technique in Function

Space. Because tha control variable is constrained, and equation (1) is

linear in the control variable, 6, it is impossible to let the gradient of

oyt

e

L e 0]
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the Hamiltonian with respect to § be zero. The control variable will be
of the bang-bang type unless singular control occurs. However, the
iterative procedure by the gradient technique can be employed to obtain
the optimal control policy even in the singular control case. In fact,

a part of the control policy obtained in this work is singular. For a
lumped-parameter system, the perturbed performance index i{s obtained for
continuous control processes by the gradient in function space method [5].

The resulting expression 1is

tf
§S =
of

Qr

l

H
o (60)dt

(- >4

where H is the Hamiltonian. If one wishes to minimize the performance index,
the gradient 3H/30 is calculated and 66 is determined such that its direction
is opposite to the gradient, i.e.,

oH
§d = - ¢ 20

where o is a positive constant. Analogous to this, the perturbed index
given by equation (35) {is
tf 1
8 «K s [/ =zdx])Sedt
0 0

and thus the control variation may be given by

1
0= ~ ﬂof 2dx) (45)

Integration of the adjoint variable along x, which appears in this
equation, can be accomplished by integrating equation (43) from x = 0 to
x = t, integrating equation (42) fromx =t tox =1+ ¢t - tgs and

integrating equation (44) from x = 1 +te- tgtox = 1. This yields

5. W
vile e "

,§
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K(t-tf) t te K(p-t.) -K(x+t -t)
[ zdx = 2e {s 1 [ Ko(pe dp - Bd(l-e ) Jdx k
0 0 t-x :
. §
& ;
£ t-tetl tg K(p-t,) -K(x+t-t) |
5 ) + (K s o(p)e do - 8,(1 -e )1dx} |
b t 0 * ’
; (46) ';
Interchanging the order of integration and performing the integration with
respect to x yield
1 K(t-tf)
. 0; z(t, x)dx = 2e o(t) (47)
1 where
L te K(p-t,) ¢ K(p-t)
L ¢(t) = (1-te+t) of 8(p)e d-K of 8(p)e (t- p)do .
a3 4
€ : N
& K(t-t,) :
; 1, -K f n
~8y{1 -t ety [e -e ]} (48) 7]

PRSI

In computing the optimal solutionm, the following iterative procedure has

‘ been employed:

P s o B

(1) Assume a control pattern 6(t) = Oo(t).

(2) Compute the fluid temperature T(t, x) from equations (7) and (8).

(3) Compute the adjoint variable z(t, x) from equations (42), (43),
and (44).

1
(4) Compute the integration of the adjoint variable of 2dx from

equations (47) and (48).
1 t
() Let 80 = -a/ sdx. Equation (35) will be &5 = - Ko f £ (s0)2ae
0
which is always decreasing.
(6) Change the control variable such that ercviocd(t) - eold(t) + 86,
and rcpeat the whole procedure from step (2). If °r¢v1ood(t)

excueds its upper bound 0 somevhere between t = a and t = b,
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PRECEDING PAGT PTANT AT FTTAMED

1 2
S = Of [T(tf, x) - Td(x)] dx
2 1
- 7T -T,)1%Ax ¢ S [T.(r) - .0 Ax (49)
0 d d e, LE 4

Note that the first integral of the right-hand side is zero.
To find Tl(tf) which minimizes the performance index S, the gradient

of S with respect to T1 has to be zero.

ds 1
=2 [ (1 -Tpdx =0 (50)

aT "t

Since T1 is uniform for te <x < 1, this gives

1 o, a
T. & ——o ™
1 1- tf tf d
6 -Kt
d 1 -K f
1 - tf n- tf + K (e - e )] (51)

Substituting Tl into equation (49), the minimum performance index will be

1 -Kxy 12
min § = . / ['1‘1 - ed(l -e 1° dx

£

)

1 2 ~Kx . .2 =2Kx
= [ (T, - 08,)° + 20.(T, - 8,)e X 4 0% & )dx
te 17 % a''1 - % d
2, -Kt

X £
- (T -8g)(e" -e )

2
- (Tl - Od) -t

2
) %x -2Kt

--2-%(0“ -e D

(52)
While the case with the quadratic performance index as given by

equation (10a) is the main concern of this section, the above argument is

equally valid for the performance index given by equation (10). There

19
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always exists a point, x = 3 in the region tf < x < 1, where the fluid
temperature, Tl(tf), will change from Tl(tf) > Td(x) for x < x, to
Tl(tf) < Td(x) for x > X) e Then the performance index becomes
; 1
: S = OI |T(tf, x) - ledx
P
? tf xl 1
% = 5Ty - Tylax 4 s (T, =T dx + [ (Ty - T,)dx (53)
g 0 tf L |
¢ i
f %; In order to minimize S, its partial derivative with respect to X, and Tl

must be zero. Taking partial derivative of S with respect to T1 and letting

it be zero yield

3S
'a—,rI-(xl-tf)-(l-xl) 0

This result implies that
X, = a+ tf)/2 (54)

Taking partial derivative of equation (53) with respect to Xy and

equating the resulting expression to zero yield

2s
- T Talp) - [TGxy) - Tyl =0
orxr
—xxl

Tl - Td(xl) - Od(l -e )

Substitution of equation (54) into this equation yields

-K(1+ tf)lz
Tl - edll -8 ] (55)

Combination of equations (9) and (55) shows that

- “K(1+t,)/2
T (e . o £ (56)

1" T
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)
? The minimum performance index of equation (53) becomes
(1+tf)/2 ~K(1+t,.)/2 1 -K(1+t_)/2
-Kx £ f ~Kx
S= J 6,(e - e dx + L 0 - d
, g at O Gaepsh %al ¢l
:
% - - -
A e [_1_ . Ke, 1, l((1+tf)/2] Y [_l+tf - ee K(1+tf)/2
% d'K K 4" 2 £
K 14t, -K(1+t.)/2 @ -K(1+t,)/2
i -
b +ed[1— 2f]e £ +—§[ex-e £ ]
0 -Kt -K(1l+t,)/2
d , =K f
- -E- [e +-e £ - 2e ] , (57)
In the unconstrained case, the optimal control is infinite at t = 0+
v 1 (j and this is immediately followed by the desired final steady state control,
6 = ed. The optimal control with constraints on control may be analogous

to this control for the unconstrained case. Therefore, it is assumed that
the control is on the upper constraint boundary initially and then move to
the inner part of the control domain. Provided this assumption is correct,
one is required to locate the switching time, t = tl’ at which the control
is moved from the upper bound to the inner part of the control domain, and find
the control policy after this switching time, i.e. for t > tye

For the control to be optimal, the variation of the performance index,
equation (35), must be identically zero. For the period t < t when the

optimal control is 8= Ounx’ two possibilities exist. One possibility is
1
/] sdx = 0
0
s0 that the control variation 80, ss given by equation (43), is zero. The

othar 1is
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1
Of zdx < 0

so that the control variation, §6, has to be positive. However, since
the control is already at the upper boundary, and the contrcl is con-
strained, §6 has to be zero. In this case, the variaition of performance
index, equation (35), is zero again.

For the portion of the optimal control not on the control boundary,

only the first case can happen, i.e.,
1
[/ zdx = 0,
0

For the period t > £ therefore, §6 must be zero at the optimal control.
From equations (45) and (47), one obtains

¢(t) =0 for t> t1s (58)

to satisfy

! d 0
OI zdx = 0,

The integral cquatio?. equation (583, where ¢(t) is expressed by equation
(48), can be solved by twice differentiating it with respect to t. Note
that the intervals of integrations in the right-hand s'.de of equation (48)
are from p = O top = tt for the first term, and fromp = 0 top = t for
the second term. The interval of the fitag integration will be divided into
two intervals ranging from p = 0O top = tl and from p = t top = tf. The
interval of the second integration will also be divided into two intervals
ranging fromp = O top = tl and p » tl top s t.

Yor the period of t < t,, the optimal control is §(e) = 0 o Substi-
tuting this value into equation (38) and differentiating the resulting

equation twice with respect to tims, t, one obtains

o(e) = 040 for t> ¢,

hanen B RN B L
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$(t) 1ts O at t = t, for the optimal cuntrol., Therefore, by
substituting the optimal control policy [6(t) = emax for t < tys
a(t) = ed for t > tll into equation (58), replacing t by s and inte-

gcating the resulting equation, one obtains

] -8, K(t,-t,) ] 8 -Kt
max d 1 °f 1 o 4 K _ _max £, .1
X e (1-K+t1 tf) 7 © X e (tf 1+K)

K
(59)

This equation can be solved for t by iteration. For the unconst.ained

case, where em‘x +> o tl is zero.

A NUMERICAL EXAMPLE
Numerical values of the parameters of the system, the final

dimensionless time t, = e u/L, the dimensionless heat exchanger coefficient

I R R

K, the deaired wall temperature, ed. and the maximum allowable wall

4
"
15

temperature, Caax® 9T taken as follows:

t - o.s

4
K=1.0

Qd - 0.5

0 = 4.0
nax

The performance index given by equation (10a) will be denc:ed by sl.

10...

1
sy =) TG w - rdlz dx,

and the performance index given by equation (10) be denoted by 8y, ..,

1
82 = 9, Ir(tf' ') - r‘l“o
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Approximate Optimal Solution by Linear Programming. As stated

previously, this approach is applicable to the case with the objective
function 82. Figure 3 shows the approximate optimal control pattern
obtained by the linear programming method. This pattern is not strictly
of the bang-bang type. Sakawa [4] and Huang and Yang [1] obtained

similar results by using the linear programming method to solve a distri-
buted parameter system. In this work, since the control is assumed to be
a constant inside each time subinterval, the resulting pattern is discrete,
which is in contrast to the continuous nature of the results obtained by
Sakawa [4] and Huang and Yang [1].

Figure 4 shows the corresponding temperature distribution. This
approximation was made by subdividing the tube into 20 segments. The time
increment employed here is At = 0.01, {i.e., 50 subinterval in time axis for
tf = 0.5. Since the integration in the performance index formula is approxi-
mated by Simpson's rule, the points in Fig. 4 of x = .4, .45, .5 are connected

by a smooth curve. 82 corresponding to this approximate optimal solution

is 0.01576.

Variational Technique. As stated previously thi, technique is mainly
applied to the case with Sl. However, for the corresponding unconstrained
problems, both cases of S1 and S2 can be solved analytically with equal
ease. The values of 51 and sz are calculated from equations (57) and (52),
respectively. The resulting final optimal system temperature profiles are
given in Figures 5 and 6 . In these figures, the solid lines in
the region of x < 0.5 and the dash lines in the region of x > 0.5 are the

desired temperature distributions given by equation (9).
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In Figure 5 for the case of minimizing Sl’ the optimal temperature
distribution is T(tf, x) = Td(x) for x < 0.5 and T(tf, X) = T, = 0.26135
for x > 0.5 which 1s obtained by equation (51). These are plotted by solid
lines in Figure 5. The minimum S1 as given by equation (52) has the value
of 0.0005909. The value of 82 corresponding to the temperature distribution
given in Figure 5 1is 0.0148641.

In Figure 6 for the case of minimizing SZ’ the optimal temperature
distribution is T(tf, X) = Td(x) for x < 0.5 and T(tf, X) = Tl = (0.2638
for x > 0.5 which 1s obtained by equation (55). These are plotted by
solid lines in Figure 6. The minimum S2 as given by equation (57) has the
value of 0.0148385. The value of 82 obtained by the linear programming 1is
0.01576 as stated in the preceding sub-section, This result is anticipated
because it is greater than the unconstrained optimal value. The temperature
distribution in Figure 5 corresponds to the S2 value of 0.0148641. This
value is greater than the present S2 value of 0.0148385 corresponding to
the temperature profile of Figure 6. This result is anticipated because
the temperature distribution in Figure 5 corresponds to the minimum S1 which
is 0.0005909. The S1 value in Figure 6 is 0.0229 which is greater than this
value.

Figure 7 shows the exact optimal control trajectory which minimizes

Sl. The switching time of control, ty» 1s obtained from equation (59) as

t - 0.02914392.

Figure 8 shows the temperature distribution at various transient time,

Figure 9 shows the corresponding transient distribution of the adjoint variable.

The dash 1line in Fig, 8 is the desired final temperature distribution, Td'
and is obtained from equation (9). The solid lines are the temperature

distribution at various time along the optimal control trajectory. These
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lines are obtained by substituting the optimal control policy of Fig. 7

L into equations (7) for x > t and into equation (8) for x < t.
The lines in Fig. 9 are the distribution of the adjoint variable,

z(t, x), at various time along the optimal control trajectory. These lines
are obtained by substituting the optimal control policy in Fig. 7 into
equation (43) for x < t, into equation (42) for t < x <1+t -t and
into equation (44) for 1 > x > 1+t - tee Each equation
represents a continuous line with continuous derivative. Equation (43)

represents the curves with positive derivatives. Equation (42) represents

3
n
i
L
.
X
>

the curves with negative derivatives and is continuously connected to the
lines of equation (43) at x = t. Equation (44) represents the curves on
the x axis and ~onnected to the curves of equation (42) by dash lines. S1
has the value of 0.000631104, While the same control pattern produces
S2 = 0,0158354, the Sy value from the linear programming part is 0.01576.

Figure 10 shows the variation of Ofl zdx with respect to time, subject
to the control obtained in Fig. 7. For t < tl’ it has a negative value, but
the corresponding control lies on the upper limit; for t 2t it is zero.
This result conforms with the previcus analysis, i.e., ofl 2dx < 0 for
t<t), and ofl zdx = 0 for t > t,.

Figure 11 shows the approximate optimal control policy obtained by

the numerical iterative procedure based on the gradient technique. The
reason it .eviates from the exact optimal pattern as obtained by the
analytical method is that the exact control pattern switches at t = ,029143,
which can not be realized by using time increment of At = 0.0l by the
present numerical iteration method. The value of $ is 0.000658405. For the
control pattern of 6 = 4.0, 1.e.,, maximum allowable value, for t < 0.03

and 0 = Od = 0.5, for t > 0,03, the corresponding S, has a value of 0.000660493,

1
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while the S1 corresponding to the exact optimal control as obtained by
the analytical method is 0.000631. The deviation of the temperature
and the adjoint variable distribution between the analytical method and
the numerical iterative method are negligibly small. These plots are

neglected.

CONCLUDING REMARKS

In this work, practical aspects in computation and solution of the
optimal control problem of a first order distributed parameter system,
more specificélly a heat exchanger, has been emphasized.

First it has been shown that linear programming can be advantageously
employed to obtain an approximate optimal control policy for the case with
an integral objective function, the integrand of which is linear in the state

variable.

b
3
4
£

Both analytical and numerical procedures based on the variational
technique have been successfully employed to determine the optimal solution
for the case with an integral objective function, the integrand of which is
quadratic in the state variable.

In connection with this variational approach, it has been shown that
solutica of the corresponding unconstrained problem which is less complicated

than the original constrained problem, is indeed useful and beneficial in

evaluating various approaches to be taken in solving the original constrained

problem.

ACKNOWLEDGEMENT
The first author is indebted to Professor Wen-Jei Yang, University
of Michigan, for suggestions and encouragement. Assistance givez by Mr.

F. T. Hsu is also acknowledged.

R L e o ST " % DY et

—— ———



28

References:

o {1] Huang, H. S., and Yang, W. J., "Minimum Time Control of Heat Exchangers
Having Internal Heat Sources," Presented at IFAC Symposium on Multi-
variable Control Systems, Duesseldorf, Germany (1968).

[2) Koppel, L. B., Shih, Y. P., and Coughanowr, D. R., "Optimal feedback
control of a class of distributed-parameter systems with space-
independent controls,'" I&EC Fundamentals, Vol. 7, pp. 286-~295 (1968).

,g* {3] Koppeli, L. B., and Shih, Y. P., "Optimal Control of a Class of
- Distributed-Parameter Systems with Distributed Contrels," I&EC Funda-
mentals Vol. 7, pp. 414-422 (1968).

[4) Sakawa, Y., "Solution of an Optimal Control Problem in a Distributed-
Parameter System," IEEE Trans. on Automatic Control, Vol. AC-9,
pp. 420-426 (1964).

[5] Sage, A. P., Optimum Systemg Control, Prentice Hall, Englewood Cliffs,
N. J., 1968, pp. 395-397.

[6] Yang, W. J., "Dynamic response of heat exchangers with sinusoidal time
dependent internal heat generation,” Ph. D. Thesis, Dept. of Mechanical
Engg., Univ. of Mich., April, 1960; Also J. of Heat Transfer, Tr. ASME,
Series C, Vol. 83, pp. 321-328 (1961).

[7) Yang, W. J., "Dynamic Response of Heat Exchangers to the Disturbance
of Wall Temperature,"” ASME Paper No. 62-WA-27 (1962).




nom
Tl

1 e 7SSO« e -
‘]
NOMENCLATURE: ;
L« 2 ’!:
A = flow cross-sectional area, ft {
Aij = dimensionless constant
¢y = dimensionless constant !
BTU ;
' CP specific heat, m
% esi = dimensionless variable defined by equation (14)
epi = dimensionless variable defined by equation (14) %
H = Hamiltonian function <
h = heat transfer coefficient between tube wall and the coolant, »J%;{*
{te hr
i = dimensionless integer
K = dimensionless constant, hPL
P Cp Au ('
L = heat exchanger length, ft |
m = dimensionless integer, total number of heat exchanger segments i
n = dimensionless integer, total number of subintervals for tf
P = wetted perimeter, ft
S, Sl’ 82 = performance indices, dimensionless
8 = Laplace transformation variable, dimensionless; distance along the

characteristic line, dimensionless
t = dimensionless time; tl’ switching time; tf, final time

T = coolant dimensionless temperature; T, Laplace transformed temperature;
Td’ desired coolant temperature

u = coolant velocity, ft/hr
x = heat exchanger axial distance, dimensionless

z = aqjoint variasble, dimensionless

Subscripts

I { =« summation along x-axis

3 = gummation along time axis
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m = total number of increment along x
n =  total number of increment along t
Greek letters
a = dimensionless positive constant
Y = coolant temperature, °F
Yo = constant, °F
Y, = wall temperature, °F

p = density, %E% ; integration variable
t
T = time, hr

8 =  dimensionless wall temperature; 6,, desired wall temperature;
6, Laplace transformed wall temperature; emax’ maximum wall temperature

o(t) dimensionless, defined by equation (48)

§ =  variational operator, dimensionless
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Literature on the optimal terminal control of lincar distributed
sarameter systems vy ineans of the linear programming technique is
. reviewed.
Some suggestions are made which may facilitate computational
aspects of the problem. A brief account of the theory of linear pro-

gramming is also given.
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The main purpose of this report is to review critically and
exhaustively literature on the use of linear programming for the optimal
terminal control of the linear distributed parameter system. Because
of the availability of well developed standard computer subroutines
{for example, IBM subroutine, Mathematical Programming System/360
(360A-C0-14X), Linear and Separable Programming], linear programming can
be a very powerful technique, if we can convert a problem to a standard
linear programming problem. Zadeh and Whalen [1] appear to be the first
to use the linear programming method for solving various lumped optimal
control problems of the lumped system. Sakawa [2] is probably the first
one to apply this approach to the linear distributed parameter system.

This paper is divided into three sections. In the first section
linear programming is briefly explained. The second section shows how a
protlem of optimizing the linear distributed differential system with a
linear performance index can be reduced to a standard linear programming
problem. In this section a method for optimizing such a system is proposed,
which is based on Lesser and Lapidus's [3) approach for solving the time-
optimal control problem of a lumped system by linear programming. Their
approach may be adopted for the more complex linear distributed parameter
systems. Several practical examples of the linear optimally distributed

parameters systems are reviewed in the third section.
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THEORY OF LINEAR PROGRAMMING
Corsider the general system described by the following linear
equations.

aux1 + a12x2 + ... + alnx - b1

---------------- (1)

&

_.
R

where the x's are the unknowns, the a's and b’'s are the given constants

and n > m. The problem of optimizing the system is to find the x's which

satisfy the condition

A ]
3
b
Y
M
p

¢ x, 2 0, j=1,2, ...y m, (2)

and minimize the objective function

T AR B L IR s gyt

z=cx + c, X, + ...+ C X (3)

where the c's are constants. These x's are called the optimal solution of

the system.

To obtain the solution by analytical means is very difficult 4if not
impossible. However, the problem may be solved numerically by linear programming.
One of the most commonly used techniques ¢ linear programming is the so-called sim-
plex method developed by Danisi; [4). It is an iterative procedure for determining

the optimal extreme point and may be explained in the following manner.

The Gauss-Jordon reduction method is applied to equations (1) and (3).

The firat step of this mathod is to divide the first expression of equation

’ (1) by a4 The next step is to eliminate terms containing X from the —_—

DR Y N 2 v

remaining m~1 expressions. This is accomplished by subtracting each one of

s B W v



LR SR S N s o

" - ~x i b R~

the other expression from the first expression after a simple manipulation.

The second expression is then divided by the constant which normalizes f
the coefficient ~f X,- Following the same procedure as that for the X “
terms, terms containing x, are eliminated from all the other expressions.
Repeating these procedures to all the m expressions and eliminating all the ?
X i=1, ..., m from equation (3), we obtain
+al X ..+ + a, =b!
170w *1 T T T T
1] ]
x, + 82,m+1 X 41 + ... + aZ,n X = b2
------------------ (4)
x_+a' x + + a' =b'
m m,m+l “mt+l o m,n n m
' ! = -
cm+1 xm+1 + ...+ cCc x 2 zo, ;
] 1 t %;
where aij’ bi’ and cj are the modified values of aij' Dy» and cj, respectively ¥
and 2, is a constant. ’3
¥

One of the many possible solutions of equation (4) may be expressed as Py

xi - b;.. fot 1 - 1. 2' N Y lll.
(3)

=0, for { =wotl, ..., n. .
vhere Xy i=1, 2, ..., m, are called the basic variables, and this set is

called a basis. The value of the performance function is f
z =z (6)

A basis which satisfies equation (2) is said to be feasidble. For the basis to

be feasible, it is required that b, > 0, for 1 = 1, 2, ..., m. Now, from the

3

the adjacent extreme point for which the current value of the performance

sign of ¢, J = wm+l, ..., n, in equation (4), one can determine the basis for
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functicn tends to decrease, that is, the value of the performance function

3

into the basis. Let this nonbasic variable be defined as c;, where m+l < s < n,

may be reduced by shifting one of the nonbasic variables with negative ¢

By shifting the xs's column to the right hand side, equation (4) may

now be rewritten as

] t ] ]
X +al‘m+1xm+1+...+0+...+al’nx -bl_al,sxs
] ' ' []
X YA e Xt YOty X mby - X
L LILLLLIILLIo- (n
+a + +0+ +a =b' '
x am,m+1 X+l .o am,n X n am's xg .
] ] L}
cm+lxm+l+’ +0+ ...+ cnxn-z-zo-cx %

3
#
-
?
ay
E:
Z
.
ki
%

Since Xg is the only nonbasic variable allowed to deviate from zero,
the basic variables and performance function are x.-dependent,

]

xi-bi- .i" Xs, 1. 1’ 2’ evey ‘. (8)

z =z, + c; X, 9)

Here, the ai s <0 be any finite value. From the condition X 2 0, x, must,
’

in accordance with equation (8), satisfy the condition

]
bi - .1,| Xg 2 0,
or
]
x < —b'!_ 1f a >0 (10)
L H ’ 1,8 *

By designating integer i, which yields the minimum vaiue of b;/a;_ g for
]

‘1.! > 0,as r wve can vrits

b b,

3 i
al_ " o ore = omax x (11) ,
ns ai’.>0 ) -

i

=

o
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The ratio b;/a;s is the maximum Xgo which would reduce x. to zero. This
implies that the performance finction may be reduced by replacing X, by Xg

as a new basic variable. As a result, the new basis effectively accomplishes
a jump from the original extreme point to an adjacent one with a sub-

sequent decrease in the value of 7. In order to replace x. by xg in equation

(4), the Gauss-Jordon reduction is applied to equation (4) to form another

new cannonical form.

f:;f
L ' s TS ‘% -
N * 00 + L N ] + !
L X + al,r x + al,m+1 X+l + 0+ ‘l,n X, " b1
e e e e
! ' ‘& T TS
N " + s + + o s e + é
N T,y T ar.m+1 mt1 0 ar,n xn l'r
. *Z5 U (12)
g
{ X + & + + + + ' "
| & mr r *n ‘m,m+1 Xmbl © o0 ¢+ .. %,0 % © bm
je
. & e "> " INEY
+ *' L Y + + s + - -
H cr X Cm+1 xn+1 0 9 * "% % cs br

This procedure is repeated until all coefficients of the performance
function become positive. In the meantime, 2z cannot be reduced by the in-
crease in the nonbasic variables. Therefore, the solution is the optimal

basic solution.

The principal disadvantage of the simplex method is that, in the process
of numerical reduction, many numbers have to be computed and recorded. These may
not all be used in the succeeding computational steps or may be used only in
an indirect way. However, the process is made necessary because it is not
known a priod vhich numbers are needed and which are superfluous.
In order to eliminate this complexity, a revised simplex method has been
3 developed [4]. Instead of computing all the coefficients ui. pioh2 ..,

j = mtl, ..., n, the revisad simplex method needs to compute the ai o
»
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i=1,2, ..., m only. A linear programming subroutine based on the revised
simplex method is available [for example, Mathematical Programming System/360
(360A-C0-14X), Linear and Separable Programming). Since this revised

method is basically identical in principle with the original simplex

method, the decailed procedure of the revised simplex method is omitted.

OPTIMIZATION OF DISTRIBUTED PARAMETER PROBLEM

1. Integral Representation of State Equations.

Sakawa {2] {s prnbably the first one to apply linear programming to the

solution of linear distributed parameter problems. This sectio: generally

follows his approach.

The state equation of a linear distributed parameter system generally

‘ can be represented by the partial differential equation
Lo, 0 2+ 00 0 E s 4bix, 1) (

B TIRE T CAM b T A g
-

The state equation together with its boundary conditions may often be repre-

sented by the integral equation

, ‘ﬁwmw AN, o o

2(x, t) = oft glx, 1] u(A)dr + h(x, t) (14)

Suppose that a measure of the deviation from the desired state at the

final time given by

L . .
S= of | 2(x, t5) - 354(x)|dx (13%)

is defined ss the performance criterion or index of the system. Optimization
(minimization) of the system as represented by equations (13) through (15) can %

’ be accomplished by the linear programming approach.
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Appruximating the continuous control function u(t) by a number of

discrete constants,

- < < 16
u, u(t) for by Ststy (16a)
1 1 16b
tj-'-n—- for § =1, 2, ..., n, ( )
equation (14) at the final time can be rewritten as [5)
te
z(x, tf) = 0! g(x, %) u(r)drx + h(x, tf)
. n t
= I i g(x, }) u, dx + h(x, tf)
=1 t3-1 ]
n tj
= I u I ° g(x, A)dr + h(x, tf) (17)
3=1 Ity

Sakawa [2] originally used Simpson’'s rule to integrate approximately equation

(14), i.e.,

n
z(x, tx) ¥ jEO g(x, tj) u(tj) dj + h(x, tg)
vhere
t
f
d0 " dn "
4
d. s d_ = e d --—:f-
1 A u-1 3n
th

dz-db-...-d“,-—g
When the integrand in equation (14) is continuous, this approximation gives rise
to a sufficieatly accurate solution, However, in the case of a discontinuous
inregrand, the accuracy of this approximation will be very poor. Use of

equation (17) does not give rise to such a difficulty even if u(t) is discon-

tinuous [S).
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The performance index given by equation (15) can now be approximated by

Simpson's rule as

L
S = Of Iz(x, tf) - zd(x)ldx

m
v e lalxg, ) -z y(x)] (18)
i=0
where
Li
Tl for i=0,1,2, ..., m
1) m 3m’
€17 €3 m-1 3m
and
€ = ¢ ot m-2 3m

z(xi, t.) in equation (18) can be evaluated from equation (17).

Z(xi. tf) = jgl uj tj_lftj s(xi, A)dr + h(xi. :f)
n
- jil Ay Yy + hix;, te),
10,1, 2, ..., n (19)
Let
|2(x,y tp) = 2,(x))] - ey t e 1=0,1, ..., m (20)

vwhere e .pi' {=0,1, ..., m;, are non-negative variables which satisfy

the following relationships.

z(xi. tf) - 'd(xi) - 'pi - e {=0,1, ..., m, (21)
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) )
and “ 9
epi = 0, z(xi, tf) - zd(xi) = - e ; u’
I/ i
1f [2(x;, to) - z4(x)] <0 / ’
> (22) n
, ey = 0, z(xi, tf) - zd(xi) = epi \ |
; \
; if [z(xi, tf) - zd(xi)]. >0
b 1=0,1 m /
:f‘ y 1y o0y R
7,: By introducing these new variables, equation (18) .an be expressed as .
| m ;
: S = ‘Z <:i(eSi + e i) (23)
| 1=0
f,; The linear programming model whidili will yield the optimal policy of
; ‘ the system can now be stated as follows:
v
; Minimize
' m
i S= I c,(e, +e )
§ {=0 i pi si
‘ subject to
z(xi, tf) - zd(xi) - epi - ey i=0,1, ..., m
uj hd umax
i = 0’ 1. ssey m
epi’ €g1’ uj-io’ Co j=1,2, ... n
where Youx is the maximal allowable control value. The inequality rzlation
uj < “nax
‘ can be removed by introducing a set of new variables .uj such that

———
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e . >0, j=1, 2, ..., n

By substituting z(xi, tf) from equation (19) into the above formulation, the
problem can be restated as follows:

Minimize
m

S= [ c,(e,6 +e
=0 i 7pi si

subject to

zd(xo) - h(xo, tf)

A01u1 + ...+ AOnun - epO + esO

At * e P At T et gy T 2g(xy) - Rxg, tp)

Aqup ¥ oeee # Amnu“ -epm + en ™ zd(xm) - h(xm, tf) ;
1 te 1 " Ynax ;

i TR TR S

u + e sy
n un max

j.lg 2’ ....I’l

a1’ epi' euj

3

This is a standard linear programming problem which can be colved by the
simplex or the revised siwmplex method.

2. Discrete Time Representation of State Equations.

The integral representation of the differential system, equation (13),
can be converted to the linear programming form without much difficulty.
However, only a simple system with simple boundary conditions is amenable

to the integral representation. It is, therefore, more advantageous to
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convert the partial differential equation of a complex system to a
differential difference equation instead of an integral equation.

Very often a distributed diffusional process of the process industries
can be represented by a model containing completely stirred tanks connected
in sequence. For such processes, an equivalence can be established between
a mathematical model given by the differential difference representation
and a physical model of the stirred tanks in sequence.

By subdividing the system by m+l segments, with the two half-sized
segments at both ends, and lumping all the properties within each segment,
the partial differential equation, equation (13), can be approximated by

. m
zi(t) = 350 aij(t) zj(t) + bi(t) u(t), i=0,1, ..., m (24)
where

zi(t) = z(x1. t)

Lesser and Lapidus [3] used the linear programming method to solve a
time optimal problem of a lumped system represented by this set of differential
equations. They converted a continuous control function involved in the
system into a discrete-time function for approximation. We shall propose
a scheme in which their approach is applied to the terminal control of the
linear distributed parameter system. Approximating the continuous control

function u(t) by a number of discrete constants, control functions, we have

ug = u(t) tp <ty
it
tj- n j-o.'l’ c-ogn

The coefficient matrix [a1 (t)] and [bi(t)] can be approximated by

3
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b oLy (o) +b,Ct, DY, k=1,2 n (25)
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Substituting the above relation into equation (24) yields

2, (1) Tak .z + b: s =0, 1, ..y m (26)

DR LERR

This is a set of linear differential equations with constant coefficients,

and the solution is

At

Z(e) = exp(A* 86) Z(t, ) + S exp(As) ds - B . u (2D)

= =k k .k k
where Z and B are column vectors of [zo, Zys vees zm] and [bo. bl’ eees bm].
respectively.

Let
k k
6: = exp(Kj At) = exp[at I Kj]
J=i+l J=i+1
=k
Gk"l k‘l) 2, oou.n (28)
- At -k =k
Pk = Of exp(A” s)ds - B _J/

By substituting these definitions imto equation (27), the following set of

equations is obtained

E(tl) - 5(1, . i(to) + ?1 -y
- -2 =1 = - -
z(:z) = exp(A” At) [G0 Z(to) + Pl ull + ?2u2
-2 - -2 - -2 -
= Go Z(to) + G1 . Plu1 + G2 . quz
k
- -k = -k =
Z = G . Z I . .
(tk) 0 (to) + go Gj Pj “j
n n n F
- - - . 4 . . 2

vl

oy fokiddi v s Tl At

]
4
¥
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Replacing the matrix notation by its components yields

% a0 n N
1 I; n
N hrfge ttones G0

where

&) = lg’]) ana F = (p])

toaNeenl,

The performance index, equation (15), is replaced by equation (18). This

time discrete problem is then reduced to the same form as that given in the

preceding subsection on the integral representation. Equation (30) is

LTI ARA M e ap  woagr—p. < . oy L

The rest of the procedure for applying linear

LG MAREE R S

equivalent to equation (19).

programming is the same as in the preceding section.
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EXAMPLES OF DISTKIBUTED PARAMETER SYSTEM

A. Heat Conduction System

Sakawa [2] applied the linear programming method to the solution of
a practical example of optimization of the linear distributed parameter
system. The process considered by him is a one-sided heating of a metal slab

in a furnace and is described by the diffusion equation [see Fig. 1]

2
37q(x, t) _ 3q(x, t)
2 T at (3D
ax

where q(x, t) is the temperature distribution in the metal slab which depends
on the space coordinate x(0 < x < 1) and time t(0 < t < T). The initial and

boundary conditions are given by
q(x, 0) = 0 (32)

3q(x, t)

X = a{q(0, ) - v(t)} (33)

x=0

3q(x, t)

P =0 (34)

x=]1

where a is the heat transfer coefficient and v(t) is the furnace
gas temperature. It is assumed that the gas temperature, v(t), has a first-

order phase lag from the fuel flow, u(t), i.e.,
y 2L 4 v(e) = u(e) (35)

where v is the furnace time constant. The performance index is defined as
the absolute deviation from the desired temperature profile at the final

time T

1
Ss= of | q*(x) - q(x, T)|dx (36)

vhere q*(x) is the desired temperature profile.
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This set of system equations is transformed into the integral repre-
sentation by the Laplace transform. The resulting equation is
t
q(x, t) = of g(x, t-1) u(t)dr
q(x, t)
2
K% cos k(1-x) k't ,2 7 cos (1 - x)B, Tt
cos k ~ k sin k i=1 (k2 - 82)(-‘.!" + lﬂ) cos B
a i a 2 i
By (37)

where k = 1//y.

Equation (37) is equivalent to equation (1l4) and equation (36) is
equivalent to equation (15). The procedure for solving this problem by
linear programming has been given in the preceding section. A typical optimal
control policy obtained by Sakawa [2] is shown in Fig. 2.

B. Single Heat Exchanger Without Wall Heat Capacity

Hvang, Fan and Hwang [5] determined the optimal control of a simple
plug flow tubular heat exchanger by using the linear programming approach.
A graphical representation of the system considered by them is similar to

that shown in Fig. 3. The process is described by the equation

2M(x, £) 4 M) o go(e) - T(x, 0] (38)

where T(x, t) is the fluid temperature distribution inside the heat exchanger
and is dependent on the space coordinate x(0 < x < 1) and time t(0 < t < T),
6(t) is the tube wall temperature which is uniform along the space coordinate
and 1s treated as a control variable, and K is a constant heat transfer

coefficient.
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The initial und boundary conditions are given by

T(x, 0) = 0 (39)

T(J, t) =0 (40)

The performance index is defined as the absolute deviation from the desired

temperature profile at the final time tf.

1
x S = of I T4(x) ~ T(x, tf)ldx (41)

L

where Td(x) is the desired temperature profile.

This differential system is solved by the Laplace transform. The

resulting integral representation is

T(x, t) = K oft e K(8o(e)de, >t
(42)

~

t -
T, B =K S e K(t-8o(erae, x <t
-X

SRR ot -~ St T R WP RlT T e T
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-

Equation (42) is equivalent to equation (14), and equation (41) is equivalent

to equation (15). A typical result obtained by Huang et al. [5] is shown

in Fig. 4.

C. Tubular Heat Exchanger with Internal Heat Generation

Huang and Yang [6, 7] solved an optimal control problem associated with

a tubular heat exchanger with internal heat generation by the linear programming
approach ([see Fig. 3]. The syatem consists of a circular tube of length L
through which a fluid flowl'ot;ndily. Heat is generated in the tube wall.

The process is described by the following equations.

13 t
w—— T =« § ¢+
Kwut pcpwl"

» 1 AT, 9T (3
KGetewdme-T ~
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where 6(x, t) and T(x, t) are the wall and fluid temperature, respectively,
¢(t) is the rate of heat generation in the unit volume of tube wall and

is treated as the control variable, p is the density, cp is the specific
heat, K is the ratio of surface conductance to heat capacity, t is the time,
u is the fluid velocity, and x is the axial distance measured from the inlet.
The physical properties of the tube wall are distinguished from those of the

fluid by the subscript w. The initial and boundary conditions are
T, t, ¢) =0
T(x, 0, ¢) =0 (44)
6(x, 0, ¢) =0

The performance index is defined as the absolute deviation from the desired

temperature profile at the final time tf, i.e.

T(x, tgy ¢) 0(x, tcy ¢) .
£ ' f 8™ (x) X
T*(X) I + I [1 - e*(x) ] T*(X) I }d(i') (65)

1
s= /{1~
0

where T*(x) and 9*(x) are the desired fluid and wall temperature distribution,
respectively.

The solution of the system equation, equation (43), which satisfies
appropriate initial and boundary conditions may be obtained by using the
Laplace transform. On applying the Laplace transform with respect to t,
the partial differential oquitiéu are reduced to two ordinary differential
equations of variable x. The general solutions of the ordinary differential
equations are then fitted to the boundary conditions, and the final solutions

are obtained by the application of the inverse transformation as follows:
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. T(x, t, ¢) c
T*(x)
M+1 ;
- — K(t-£)
Lt M M ) 2 acke)
(M+1) X o
u
Sk
t
- ; e Y 7 r(ke* - KE) L169] d(Kg)
M xx 0 ¢
¢ u
2
b
t o 8(x, t, ¢)
8% (x)
t M+1
- —— K(t-§)
1 Kt 1 1 M $(&)
; (1 + —a-)
i B |
1 et e Y S AR - KO) $8 4(xe)
- M(1 + =) 0
i u
é where
;
: - X
M=x
w
( In equation (46), ¢ is a constant rate of internal heat generation per unit

volume; 8 = O when 1 + t“_>_0; 8 = ]1 vhen %'3_ 1and t* = t-% . Furthermore

x
and A can be written as

M+1 K\
X -G Kg - K\) -
WO = Wte e o112 [ By a0

gt X
Kg -G (Ke - K) - 37
AGT) = n—i; ;S - M e ™M 1502 [ %"(“”

Io {s the Bessel function of first-kind, geroth-order, and { = et - .

Equation (46) is approximately the same as equation (14). The difference

" is that equation (46) consists of two integral equations while equation (14)

?t
.é_
-
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contains only one. Equation (45) is approximately the same as equation
(15). Two absolute value functions are inside the integration sign of
equation (45). Each absolute function should be defined separately as
in equation (20). Figure 5 shows a typical control policy obtained by
Huang and Yang (6, 7].
y SUMMARY
¢ ? Although linear programming is a powerful technique for determining
the optimal terminal control of the linear distributed parameter system,
literature on this subject is fairly meager. Sakawa [2] appears to be the
first one to apply the linear programming method to the terminal control
of the linear distributed parameter system. He used Simpson's rule to
transform the integral solution into a linear combination of control functions

‘ vhich were evaluated at equally spaced sample points. For the case of a

e B (RIS AR T

highly discontinuous control function, e.g., bang-bang type, this approxi-

- AR PSR s Ay ¢ o
=

mation may give rise to a serious error. Use of an approximation which

employs a piecewise constant control function may be able to circumvent this

difficuley.

Lesser and Lapidus [3] solved a time optimal control problem of a high

dimensional lumped parimeter system by linear programming. It appears that
this scheme can be modified for solving the optimal terminal control prodblem

of complex linear distributed systems.
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FAN ¢f al.: MATHEMATICAL MODILLS OF THE HUMAN THERMAL SYSTEM

[35] discretizes the temperature profile of the element
and considers the variation of physical parameters, but
the regional variations are not included in the model.

Although the physiological thermal regulation has
been recognized for some time as an important factor
in the human thermal system, the mathematical de-
seription of this phenomenon is still not satisfactory.
The madel developed by Crosbie et al. [11] uses the
geometry of an infinite slab rather than a scries of con-
centric cvlinders, and builds in the function of physio-
logical thermal regulation by allowing the effective
thermal conductivity, metabolic rate, and rate of
vaporization to vary as a function of the weighted mean
temperature of the body. The model, however, does not
include the effect of reginnal variations in heat genera-
tion rates and blood flow rates.

A physiological thermal regulator has been developed
by Stolwijk and Hardy [27]). The model, however, does
not consider the countercurrent heat exchange between
large arteries and veins. A mathematical model of
physiological thermoregulation developed recently by
Stolwijk and Cunningham [26] can consider high met-
abolic rates. Future human thermal models probably
should include both regional variations of the physio-
logical parameters and physiological thermoregulation
of cach element.

The slab geometry was also utilized by Buchberg and
Harrah [6] in establishing the relationship between the
temperature of coolant in tubes and the mean skin
temperature. Their model, however, does not consider
the heat transfer by the blood circulation, regional varia-
tions in heat generation rates, and blood flow rates.

To utilize physiological information available in open
literature [t1]-[5], [10], [12], [13], [16]), [19], [24]
and to combine Wissler's model [31] with Stolwijk and
Hardy's [27] model of the physiological thermoregula-
tion, it is very desirable to provide an improved model
for the human thermal system. Such a model should
consider the effects of regional variation of physiological
parameters and the physiological thermoregulation of
each element. This new model would adopt Buchberg
and Harrah's [6] conduction cooling to investigate the
responses of the human thermal system to an external
control device such as the space suit. The primary pur-
pose of the external thermal regulation device is to keep
the human body in thermal comfort [21], [22] by satis-
fying the requirement of thermoneutrality.

NOMENCLATURE

A Body surface area.

A’ Effective area of the exchanger.

A. Effective area of the body creating convec-
tion losses.

A. Effective area of the body creating evapora-
tion losses.
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Effective radiation area.

Factors which cigh the contributions to the
rate of change of body heat content by the
increment of the rectal temperature and by
the increment of the skin temperature re-
spectively [in (10)].

Radius of the ith element.

Rate of heat exchange with the environment
by convection.

Thermal capacitance of the core of the
extremities.

Thermal capacitance of the skin of the
extremities.

Thermal capacitance of the core of the head.
Thermal capacitance of the skin of the head.
Specific heat.

Thermal capacitance of the core of the
torso.

Thermal capacitance of the muscles of the
torso.

Thermal capacitance of the skin of the torso.
Rate of change of body l.2at content.
Diameter of the cylinder.

Rate of heat exchange with the environment
by evaporation.

Evaporative heat loss.

Respiratory water vapor loss of the core of
the torso.

Respiratory heat loss assigned to the core of
the head.

Exercise (kcal/m?/h).

Wetted fraction of the surface.

Effective contact area factor, dimensionless.
Effective heat loss assigned to the core of
the head.

Heat transfer coefficient for direct transfer
betwecen the large arteries and veins.
Effective heat transfer coefficient at the
surface of the ith element.

Heat transfer coefficient for convection.
Hezt transfer coefficient for evaporation.
Heat transfer coefficient for radiation.

Heat transfer coefficient (skin to air) also
known as surface conductance.
Proportionality constant of heat transfer
between the arteries and tissue per unit
volume.

Rate of heat transfer from blood to tissue.
Rate of tissue heat generation by metabolic
reactions.

Proportionality constant of heat transfer - -.
tween the veins and tissue per unit volume.
Thermal conductivity.

Universal radiation constant=4.92X10-%
cal/m%/h.

Coefficient, heat exchange by convection.
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Mass transfer coefticient for passive diffusion
of water through the epidermis.

Thermal conductance between the core of
the extremities and the skin of the extremi-
ties.

Coeflicient of heat exchange by evaporation.
Evaporation conductance in (20).

Thermal conductivity of the fluid.

Thermal conductivity in functional pe-
riphery zone (Btu/h-ft °F).

Thermal conductance between the core and
skin of the head.

Mass transfer coefficient for convection.

1.1 X107 cal/(cm-s°C) =0.4 kcal/m/h/°C.
Coefficient of heat exchange by radiation.
Approximate radiation conductance con-
stant.

Thermal conductivity of the tube.

Thermal conductance between the muscle
and the core of the torso.

Thermal conductance between the muscle
and the skin of the torso.

Length of the ith element.

Length of tube, ft,

Metabolic rate.

Metalwlic rate per unit volume.

Basal metabolism.

Mass of the blood contained in the arterial
pool of the ith element.

Basal metabolism in the skin of the extremi-
ties.

Basal metabolism assigned to the core of the
torso.

Basal metabolism of the muscle of the torso.
Basal metabolism heat production assigned
to the core of the head.

Basal metabolic rate of the skin of the head.
Mass of the blood contained in the venous
pool of the ith element.

Mass flow rate (lb/h).

Sweat loss (kg/m).

Slope of the curve which represents the
relationship between T, and T,.

Rate of change of partial pressure of water
with temperature T'.

Volumetric blood flow rate (m*/h).

Product of the mass flow rate and the specific
heat for blood entering the arterial pool of
the ith element from the adjacent mth ele-
ment.

Internal heat generation per unit volume in
functional periphery zone (Btu/h-ft%).
The rate of heat loss through the respiratory
system.

Product of the mass flow rate and the spe-
cific heat for venous blood flowing into the
venous pool of the ith element from the
adjacent nth element.
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Heat flux (Btu/h).

Heat loss by convection.

Product of the mass flow rate and specitie heat
of Dloaod entering the capillary beds per unit
volume.

Product of the mass low rate and specilu
heat for arterial blood flowing into the capil
laries,

Product of the mass flow rite and apeciic
heat for venous blood flowing into the pul-
monary capillaries.

Heat loss by evaporation.

Heat loss by radiation.

Rate at which heat is transferred from ve-
nous blood in the thorax to air in the respiar-
tory system.

Total heat loss from the body (kcal/h).
Rate of heat exchange with environment by
radiation.

Heat loss due to radiation and convection
effect per unit volume.

Relative humidity of the ambient air

Radial distance from axis of «ylinder

Lastent heist lor evaporation (keal/ky).
Condoction shagwe faetor, dimensionless
Tissue temperature.

Temperature of middle layer.

Temperature of core layer.

Temperature of blood in artery.
Temperature of the arterial blood entering
the capillary bed.

Temperature of the blood entering the arte-
rial pool from the mth element.
Temperature at the axis.

Average body temperature.

Temperature of the centrai blood compart-
ment.

Effective environmental temperature.
Temperature of the core of the extremities.
New equilibrium skin temperature defined
in (12).

Temperature of the skin of the extremities.
Arterial blood temperature at the heart.
Temperature of the core of the head.
Temperature of the head skin.

Venous blood temperature flowing into heart
from ith element.

Inlet coolant temperature.

Initial skin temperature.

Internal temperature (core temperature).
Increment of the rectal temperature.

Mean skin temperature.

Increment of the skin temperature.

Mean radiation ahsolute temperature of the
body surface in (13).

Mean contact surface temperature °1,

Skin temperature at time £,

Temperature of blood in vein,
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AN,
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AN,
AX,

ys

QEC

aHc

ans
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Qg
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arc
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A,

Venous blood temperature in the uth cle-
ment,

Mean radiant temperature of surroundings.
Mean vadiant absolute temperature of the
stinrounding wall,

Coverall heat transter cocthoient.

Kate of heat exchange by respiration,
Volunmetrie blood flow vate in the capillary
b

\elecity of the fluid which approaches the
aviinder (cm/s).

Heat loss due to evaporation per unit area,
Via=7 kcal/m?/h.

Heat loss due to evaporation per unit vol-
ume,

Partial pressure of moisture in the air
(=percent RHX 1P at T,).

Partial pressure of water at temperature 7.
Velocity of surrounding air (cm/s).

Velocity of surrounding air (ft/min).

Body weight.

Distance from the surface of skin,

Distance from the center of the tube to the
end of the contact surface of the tulw,

| bsis ke o core bayer,

Uhicknens of muttaee liver,

bAN,+AX).

$AX 1 1+AX,).

Sum of the thickness of the skin zone and
the functional periphery zone.
Countercurrent factor of the core of the ex-
tremities.

Dimensionless fraction accounting for the
effect of countercurrent heat exchange of the
core of the head.

Factor for countercurrent heat exchange of

the skin of the head.

Thermal conductivity coefficient of propor-
tional control for (AT»>0)=0.147/°C in
(30).

Thermal conductivity coefficient of propor-

tional control for (AT »<0)=0.066/°C in
(31).

Metabolic rate coefficient of proportional
control; AT <0.

Countercurrent factor of the core of the
torso (63).

Countercurrent factor of the muscles of the
torso (64).

Countercurrent factor of the skin of the
torso (6S).

Evaporation coefficient of proportional con-
trol = 11 keal/m3/h/°C; AT5>0.
Latent heat of water at T,

Evaporation coefficient of fourth power pro--

portional control 53 kcal/m?/h/°C; AT»>0.
Denasity of blood.
Density (kg/mf). &
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¥ Thermal conductivity coefficient of rate
control (s/°(~3.5 8/°C).
dpx Increase in evaporation coefficient due to
violent exercisc.
# Viscosity of the fluid.
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Steady-State Simulation of the Human Thermal System

LIANG-TSENG FAN, FU-TONG HSU and CHING-LAI HWANG

Institute for Systems Design and Optimization
Kansas State University
Manhattan, Kansas 66502

Steady-state simulations of the human
thermal system with and without an external ther-
mai regulation device are cariied out. The
mathematical model of the human thermal system
without the external thermal regulation device 1is
essentially the model by Wissler. The model with
the regulation device is obtained by modifying
Wissler's model. The thermal regulation device
1s controlled in suth a way that the requirements
of the thermoneutrality of the human body under
the specific environmental condition and specific
body activity are satisfied. The effects of
localized control of the external thermal regu-
lation device on the totality of the human ther~
nal system are examined. The results indicate
that the thermoneutrality of the human body can
be attained through the partial cooling or
warmning of the body.

The geometry on which the human thermal
system is based consists of a number of cylin-
drical elements representing the head, torso,
arms, and legs. In each element, the large
arteries and veins are approximated by an
arterial pool and a venous pool. The heat trans-
fer from the tissue to the surface of the skin
and the heat transfer by bulk flow of blood
between adjacent elements are taken into account.
Axial thermal gridient in every element is
neglected. A model based on this descrijtion of
the human thermal system is simulated on a digi-
tal computer under a variety of external con-
ditions.

The external thermal regulation device con-
sisting of a network of tubes which are held in
contact with the surface of the skin is for
removing metabolic heat generated in the body.
The operating or control variables of the exter-
nal thermal regulation device are the inlet
coolant temperature and its flow rate. A model
of the integrated system is {r mulated by in-
corporating the mathematical model of the exter-
nal thermal regulation device into the mathe-
matical model of the human thermal system.

Steady-state computer simulations of the
integrated system are carried out and the tem-
perature distributions of the human body are
determined for a variety of the inlet coolant
temperatures and coolant flow rate rombinations.
The effects of localized cooling or warming of
head as well as head and torso for various body
metabolic rates are also examined. The vari-
ations of physiological parameters, such as the
local blood flow rate and local metabolic rate,
in the muscle layer and skin layer are con-
sidered. In addition, the regional variations
in the blood flow rate, metabolic rate, and rate
of vaporization are considered.

134 ACEMB - WASHINGTON NILTON HOTEL, RASHRIGTON, D. C. o NOVEMBER 15-19, 190

M A

(#) >

6.24

Biomechanics
P.M., Monday
16 November

In carrying out the simulations on a digital
computer, the finite difference techniques are
used to approximate the models which consist of
partial differential equations. Two typical
simulation results of the model with the regu-
lation device are shown in Figures 1 and 2.
Figure 1 shows the temperature profiles in
various elements of a human body under the spe-
cific condition in which the head is being cooled
by a hood with specified coolant temperature of
40.0°F and flow rate of 250 1lbs/hr while the
other elements are exposed to the effective
environmental temperature of 107.6°F (42.0°C).
The results indicate that proper cooling of the
head will adequately control the temperature at
other parts of the body. Figure 2 shows the
offect of the liquid coolant temperature on
cooling of the human body which wears a cooling
hood and jacket while arms and legs are insulated
from their hostile environment. The results in-
dicate that a comfortable brain temperature of
98.0°F (36.7°C) can be achieved bv a number of
combinations between the liquid coolant tem-
perature and its flow rate.

Acknowledgement. This work has been
supported in part by NASA (Grant No. NGR-17-001-
034) and AFOSR (Grant USAFOSR F44620-68-C-0020).
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Fig. 1. Steady-state temperature profiles of

the human body with cooling hood
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Fig. 2. The effect of coolant temperature on
the cooling of human body with hood and

scket. (Mdtsbolic rate = 3000 BTU/HR)
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Unsteady-state simuldations of the human
thermal system with ard without an external ther-
mal regulation device are carried out. The math-
ematical model of the human thermal system
without the exter :al thermal regulation device is
essentjally the mydel by Wissler. The model with
the regulation devsi:e is obtained by modifying
Wissler's model. The thermal regulation device
is controlled in such a way that the requirements
of the thermoneutrality of the human body at any
moment during the transient period are satisfied.
The effects of localized control of the external
thermal regulation device on the totality of the
human therma] system are examined. The results
indicate that the thermoneutrality of the human
body can be atta‘ned through the partial cooling
or warming of the body.

The geometry on which the human thermal
system 18 based cunsists of a number of cylin-
drical elements representing the head, torso,
arms, and legs. In each element, the large
arteries and veins are approximated by an
arterial pool and a venous pool. The heat trans-
fer from the tissue to the surface of the skin
and the heat transfer by bulk fiow of blood
between adjacent elements are taken into account.
Axial thermal gradient in every element is
neglected. An unsteady-state model based on this
description of the human thermal system is simu-
lated on a digital compute: under a variety of
external conditions.

The external thermal regulation device con-
sisting of a network of tubes which are held in
contact with the surface of the skin is for re-
moving metabolic heat generated in the body.

The operating or control variables of the exter~
nal thermal regulation device are the inlet
coolant temperature and its flow rate. An
unsteady-state model of the integrated system is
formulated by incorporating the mathematical
model of the external thermal regulation device
into the mathematical model of the human thermal
system.

Unsteady-state computer simulations of the
integrated system are carried out and the tem-
perature distributions of the human body at any
given time are determined for a variety of the
inlet coolant temperatures and coolant flow rate
combinations. The effects of localized cooling
or warming of head as well as head and torso for
various body metabolic rates are alsc examined.
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Unsteady-State Simulation of the Human Thermal System

FU-TONG HSU, LIANG-TSENG FAN and CHING-LAI HWANG

Institute for Systems Design and Optimization
Kansas State University
Manhattan, Kansas 66502

In carrying out the simulations on a digital
computer, the finite difference techniques are
used to appcoximate the models which consis® of
partial differential equations. Two typical
simulation results of the wmodel with the regu-
lation device are shown in Figures 1 and 2.
Figure 1 shows the change of core temperatures of
various elements during two hours simulation time
A human subject in this simulation is exposed to
an effective environmental temperature of
107.6°F. (42.0°C) except head which 1is belng
cooled by a hood with coolant temperature of
60.0°F. and flow rate of 250 lbs/Hr. The results
indicate that the human subject will reach 1ta
uncomfortable state within one and a half hours
because the core temperature (rectal temperature)
of torso will increase more than 2.0°F. ‘1lhese
results are compared favorably with the experi-
mental data. Figure 2 shows the temperature
profiles of torso at various simulation time. A
human subject in this simulation wears a cooling
hood and jacket while arms and legs are insulated
from their hostile environment. The results in-
dicate that if the constant thermal comfort is
to be maintained, the operatirg variables have
to be controlled properly.

Acknowledgement. This work has been
supported in part by NASA (Grant No. NGR~17-001-
034) and AFOSR (Grant USAFOSR F44620-68-C-0020).
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The variations of physiological parameters, such 1 ST
as the local blood flow rate and local metabolic Pl S
rate, in the muscle layer and skin layer are con- - ]
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ABSTRACT

A mathematical model of the 2uman thermal system under steady staie
conditions is formulated by using six cylindrical elenents representing
longitudinal segments of the head, torso, arms, and legs to approximate
the human body. The model allows the use of different physiological
parameters such zs local rate of metabolic heat generation and local blood
flow rate in "arious locations of an element. The regional variations of
the physiological parameters are also taken into consideration.

A set of ordinary differential equations representing the thermal
behavior of all elements are approximated by a set of algebraic equations
which resulted from the application of the exnlicit forward finite difference
method. Specifically twenty-eight linear algzebraic simultaneous equations
are obtained by using five grid points in the spacial ccordinate of each

element. The model :: ... {imulated for a number of steady state environmentil

conditions.
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1. INTRODUCTION

Due to the difficulties of predicting the human thermal responses of
persons who are ofcen exposed to the hostile environment of industrial and
mining plants such as chemical, atomic and metal plants and coal mines, and
of persons who are involved in underwater or space exploration, a need
exists for a mathematical model which will provide a method for predicting
the human thermal responses t.ader a variety of environmental conditions.

A need also exists for a m:thematical model which will provide a method for
estimating the physiological parameters such as the local blood flow rate
and the local rate cf heat generation by metabolic reactions wl.ich are often
difficult to obtain by direct exnerimeintal measurement Although many

early models were develrned for the purpose of describing the physiological
phenomenon, the quantit: ive descrription of the intracosporeal transport

of heat by circulaicing blood, which has been recognized for sometime as an
important factor in thermal physiology, is still unsatisfactory [9,16].

The purpose of this report is to present a mathematical model of the
human thermal system and results of simulation of its thermal responses to
a specific environmental condition under steady state conditions. The model
describes quantitatively the physiological phenowmenncn of heat transfer inside
the human body and heat transfer between the human body and its environment.
The model is capabie of predicting the temperature distriiLution in the
various elements of the body. The simulation of the mathematical model can
be advantageous employed to verify the goodness of the model. It also
enables ore o replicate the experiments, tc study control scheme, and to

investigate the system sensitivity and stability. [15,19]
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Pennes {12} (1948) has demonstrated the utility of a mathematical model

by comparing measured and computed temperature profiles in the human forearn.

- gt & e

Although the discre ancies of the temperature profiles in the vicinity of
large arteries and veins are sizable, his model has been considered as a

rore satisfactory description of the human body than the '"core and shell”

s manms e s mn e

concept which has often been used by early researchers. The models developed

by Eichna, Ashe, Bean, and Shelly [3] (1945) and by Machle and Hatch [11]

71947) are based on the concept of '"core and shell" in which the rectal

temperature and mean skin temperature are used as measures of the core and
s shell temperatures, respectively. These models fail in many cases because
the amount of build-in information is relatively small and the effects of
T : peripneral circulation is not considered explicitly. .
; . f(: Wyndham and Atkins' model [20] (1960) approximates the structure of
; the human body by a series of conceniric cylinders. The effects of periph- i |
eral circulation are considered implicitly by allowing the effective thermal 3
conductivity to vary as a function of temperature but the regional variations

of physiological parameters are not considered. The model by Crosbie, Hardy,

PRI g s e aPn e e

and Fessenden _2] (1961) uses the concept of infinite slab rather than a
cylinder. Many important physiological responses to thermal stress are

considered in their model by allowing the effective thermal conductivity,

w0 .
T

metabolic rate and rate of vaporization to vary as the mean temperature of
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the body varies. However, the effect of regional variations in heat generation
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rates and blood flow rates are excluded.

‘1$
G 2

v The earliest model developed by Wissler [17] (1961) is an extension of

Pennes' work [12] (1948). The steady-state temperature distribution in the

human body can be obtained [17] when the environmental conditions, the dis-
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tribution of metabolic heat generation, the distribution of blood flow, and
the size of the bodv are specified. One of Wissler's models [18] (1963),
which is a modification of W.ndham and Atkins' model, can be used to obtain
the transient-state temperature distribution of the human body. A review
of the mathematical models of the human thermal systems has been presented
{41 (1970).

The mathemitical model presented in this report is based on one of
Wissler's models [19] (1964). The present model considers the local
variations of the effective thermal ccnductivity, metabolic rate, and rate
of vaporization. The regional variations of physioclogical parameters are
also taken into account.

The formulation of the mathematical model and the finite difference
approximation of the system equations of the model are presented in con-
siderable detail in this repurt. The results of steady state simulation
of an experiment in which a hypothetical human subject is exposed to a
specified environmental conditicn are also included. The environmental
condition specified is that a nude human body is exposed to an effective
environmental temperature of 107.6°F (42.0°C.) except the head which is

exposed to a lower effective envircnmental temperature of 77.0°F. (25.0°C).
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" FORMULATTON OF THE MATHEMATICAL MODEL

A mathematical model which represents the steady-state condition of
the human therrnal svstem is formulated in this section. The model is based
on one of Wissler's models [19] (1964) whicnh is for the unsteady-state con-

diticns. The present model differs slightlv from that of Wissler's in the

expression of thermal energy balance equations of the torso. The present mode)

assumes the existence of an arterial pool and a venous pool in the torso and
~onsiders the heat exchange of the torso with adjacent elements only through
the pools. Wissler's model considers the heat exchange of the torso with

adjacent elements throtgh pulmonary capillaries.

2.1 Description and Mathematical Expression

The mathematical model of the human thermal system focrmulated in this
report considers the following important factors: (1) local generation of
heat by metabolic reactions, (2) conduction of heat due to thermal gradients,
(3) convection of heat by circulating blood, (4) the geometry of the human
body, (5) the existence of an insulating layer of fat and skin, (6) counter-
current heat exchange between adjacent large arteries and veins, (7) sweating,
and (8) the condition of the enviroament, including its temperature, wind
velocity, and relat, se humidity.

The geometry of the human body on which the system equations are based
is shown in Fig. 1. It consists of a number of cylindrical elements
representing arms, legs, torso, and head. Each element, consisting of tissue,
fat and skin, has a vascular system which can be divided into three sub-

systems representing the arteries, the veins, and the capillaries,

s ammt et e~

I 2 G A SPEIRYR. S &y

e



oA ! a4

i g AN PP S T S . S,

e e EE G T TR N

5
e 0 or vich is generated in an element by metabolic reactions is
stn: ement, carried avav by circulating blood to other elements
(r to the surface where it is generally transfered to the environment.
Lf *»e environmental temperature is higher than the skin temperature, the

direction of heat flow is reversed. Based on the first law of thermodynamics

thie phenomenon can be expressed mathematically as the differential heat

b.lance equation for the ith element as follows:

I d dTi
- = -4 + + T ., -T
% r dr (Ki r dr) hmi Qei ( ai i)
. |
4 + - T - T
) 3 hai (Tai Ti) M hvi ( vi i) (D) ,
rg‘ !
3
3oy =0 '
N ’
1§ C
é where %
P Ti(r) = temperature of the tissue, bune, fat, or skin 3
% at a distance r from the aris of the ith ele- 3
% ' ment, :
i ’ Ki(r) = thermal conductivity of tissue, bone, fat, or
I ;" skin,
t; hmi = metabolic heat generation per unit volume,
B 9 = product of the mass flow rate and specific heat
-9 of blood entering the capillary beds per unit
volume,
hai = proportionality constant of heat transfer between
the arteries and tissue per unit volume,
hvi = proportionality constant of heat transfer between

ai

the veins and tissue per unit volume,

= temperature of the arterial blood,

-
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T . = temperature of the venous blood
vi

The terms on the left-hand side ¢f equation (1) represent the net rate of

heat conduction into the unit volume, the rate of heat generation by
metabolic reactiins in the wit volume, the net rate at which heat is carried
into the unit volume by the bulk flow of blood, the rate at which heat is
trarsfered inte the unit volume from arterial blood, and the rate -t which
heat is transfered into the unit volume from venous blood.

The longit ay!iinal effect of heat conduction is neglected in equation (1).
Pennes [12] (1948) has shown that the longitudinal heat conduction is
negligible in srms. This is probably also true in legs because their shape
is similar to that of the arms, but it might not be true in the head and
torso. Hence the future human thermal model probably should include the
effect of long tudinal heat conduction in the head and torso.

An assumption that the temperature of blood leaving the capillary beds
is equal to the temperature of the neighboring tissue is also made. This
assumption is acceptable because the capillary has very small diameter
which ranges ‘rom 10y to 20u [17]. Such a condition does not prevail in
the large arteries and veins., Therefore, it is necessary to assume that
the rate of lLeat transfer from the blood in the larger vessels to the
neighboring tissue is proportional to the temperature difference between
the blood and tissue. The proportionality constant is expressed by hai
for the arteries and hvi for the veins in the ith element,

It is «nown that the human blood temperature in the various locations
of the body are different [6, 8, 10]. Therefore, two additional equations
which represent the overall thermal energy balances in arteries and veins

are required. Tn deriving such equations it is assumed that the blood in
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the Jarge arteries and veins o' *.av ith element hes uniform temperatures
T , and T . respectively as showr in Fig. 2. The resulting equations are
ai vi -
4
( (" - Y + 2:L, S g T - T | dr
2ai ¢ am 111 L1 0 "aj ( L dl) r
+H (T . -T ) (2)
avi V1 al
=0
4
T - T + 2nL S .+ h T. - T .) rdr
Qvi ( vi) i 0 (qu Vl) ( i vx)
+ 1 T .- T . 3
1avi ( ai v1) (3)
=0
where
Qai = product of the mass flow rate and s, ecific heat for
blood entering the large arteries of the ith element
from the mth element,
Tam(t)= temperature of the blood entering the large arteries of the
ith element from the mth element,
Li = length of the ith element,
a; = radius of the ith element
Havi = proportionality constant of direct heat transfer
betwecen large arteries and veins,
Qvi = product of the mass flow rate and specific
heat for venous blood entering the large
veins of the ith element from the nth element,
Tvn(t)= tempervature of the blood entering the large

veins of the ith element from the nth element.
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The terms on the left-hand :ide of equation (2) represent, in order the
rate at which heat is carried 1nte the large arteries in the ith element
bv the bulk {low of blood from the ad acent element, the rate at which
heat is transferred into the blood in thie large arteries of the element
from neighboring tissue, and the rate at which heat is transferred directly
from the large veins to the _arge arteries,

Equation (3) which is tor the venous blood contains the cc ~respondiug
terms. The only difference between equations (2) and (3) appears in the

second term. This difference appears as an additional expression

in the second term of equation (3). This expression corresponds to the

rate at which heat is carried into the large veins in the ith element from
the capillary bed by flowing blood. The integral appears in equations (2)
and (3) because the tissue temperature, Ti(r), is a function of r. The rate
of blood flowing into an element is assumed to be equal to the rate of

blood flowing out of the element.

2.2 Boundary Conditions

The boundary condition which represents the heat transfer from the
suriace of the skin to its environment takes the following form.
1 (4)

- T —— = -
K BTy (ay) - Ty
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whe re
Hi = heat transfer ccefficient at the surface of the
ith element (sve Appendix A)
T = effective environmental temperature at the surface
ei
of the ith element
Equation (&) states that at the surfa~e of the skin the local rate of
heat conduction to the surface through the tissue is erqual to the rate
of heat transfer from the surface to the environmen=<.
Due to the axial symmetry of each element the following condition
also exists
dT
= =0 (5)
dr

i
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3. FINITE DIFFERENCEL APPROXTMAT IO OF THL MODE -’
The finite-difference technique which is emploved in this section
enables one to consider the variaiion of physiological properties at various
positions of the body. According to this technique the independent variables
are discretized. More specifically, each of the cylindrical elements is
divided into a series of concentric cylinders and appropriate vilues are
assigned to the physiological parameters of each element. Une of the advan-
tages of the finite difference technique is that one can use a smaller
segment of the radial distance near the surface of the element where the
temperature profile has steeper gradient and a larger segment can be
used in an inner core where the temperature profile is nearly flat.
3.1 Finite Difference Scheme
The explicit forward finite difference technique is employed to approximate
equation (1). [1, 5] The general expression of the forward finite diff:rence
technique can be written as
¥
dT(x) - T(x+Ax) = T(x) .
dx Ax
Each term in equation (1) can be integrated from r = rj - (AE_/Z) to ;
r = rj + (AQ+/2) where A% represents the space increment to the left of
rj and A%, represents the space increment to the right of rj.
s34
+ ——
T 7 dT, 5
L, ) +
be_ I d(ki r 35 ) A% /o hpy rdr
r - c——— - ——
it 3 T2
r, + AQ+
-5 r
., a7 1
‘ h_  rdr + AL +h - y -
mi+ - F Magg ¥ DTy = T b (T = T rdr
r r, - 5
N j 2
e
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-+ AQ+
rj 5
+ f [(qCH + h11+)(la -+ LI o, - 11)]rdr
r,
J
=0
The tinite difference approximation of the equation becomes
I T, .. ~-T, . AR ..o~ T,
. (r. + +) r1(414-1) TLI _x (r. - - —) Tl_] T1(1—1)
R 2 Y i- 2 AR
+ -
AR Al AL A2+
—_— - —— + — -+ —
e Mg 7 e )
A _ v
Pl s g e+ DT = ) by (g = 1)
AR A‘)L+
+ R (rj + 4 )[(qci+ + ha1+)(Ta - Tij) + hvi+ (r i Tij)]}
=0 (6)

where Tij represents the tissue temperature of the ith element at the jth
radial point. The quantity with the negative subscript (~) represents the

physiological parameters at the left of r, whereas the positive subscript (+)

3

represents the same properties at the right of r

3
Let
AS_ AL_
A= Gy =7
AR AL
+ +
A2=—'§“(1’j+T)
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Ay = Ki+ (T]
i = K (
V4 hi- \rj
¢ = . +
\5 q(:l-

A6 = ¢ + h

ci+

ai-

ai+

iien equation (6) can be written by

j

T, . - T,
A3 x 1(J+1? :

+

- A4

T., - T,,.
ij i(j-1)
A€

X

+ (Al x h .+ AZ X hooo b+ TALIAS(T - Tij) +ho._
+ AZ[A6(Tai - Tij) + hvi+(TVi - Tij)]}
=0
Equation (7) can be rearranged as
T -1y [%%f] + 1yl %%: - %%: - AL x AS xh - A2 x A6

-A2 x h

+ Tvi [Al x hvi

= -[Al x hmi- + A2 x h

A}
mi+!

vied ¥ Tigeny |

A3
A2+] + Tai[Az x A6 + Al x AS5)

.+ A2 x hvi+]

(Tvi

- T

L3

)]

(7)

(8)

po—
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. ' whiich can be further simpriticd to .
\ T + Y i AT, AL VT = C 9
X1'5 Yigi-1 ij Y i T i(j+1) Ay; ai ij i ij (9)
where
Ad
Xi| &
yooe oA A cAS - Al xh . - A2 x A6 - A2 x h__
i] Y g vi- vi+
J + —
. A3
A
. L Uy

P A= Al x A5 + A2 x A6
s 3 H
- w
y . ‘ - i = 123 + y .
; : ;( \’L] Al x i- A2 x hVi+ .
o ~
P
i Cij = -Al x hm'— - A2 X hn'1+

It is worth mentioning that Xi V.., and Cij are all functions

3 Tig iy Ay Vi

of the physiological parameters and mesh size. The metabolic heat generations,

hmi and h | are considered only at certain iayers of the jody. Assumptions
= m

i+’

have been made that heat generation by metabolic reactions in the layer of fat

ind skin is zero and that basal metabolism occurs only at the core layer.
Any additional heat generated by metabolic reactions due to body exercise is
considered to occur in the muscle layers.

At the boundary where r = Ty the incegration of equation (1) from

r = rj - (A2_/2) to r = r can be approximated by

J
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Mt (IJ)[dr]r=r' }‘i—(r;l o) ST
to Vi
4o g b T = T b (T - Ty
= 0 (19)
The boundary condition given in sruation (4) is employed to evaluate the
value of [K (ﬂ)] at r = r, in equation (10). This yields
i+ ‘dr J )
T - T
e I O LY
(r) MUy = Tl = KOy o) AL
/\2_ z‘Q_
- - T3¢ _ ‘ .o
+ 2 (rJ 4 )[({ci— M hai—) (Tai TiJ) * hvi-“vi i
=0
or
T - T
. iJ~ iQ-1)
(rJ) Hi[TiJ Tei] Bl x AQ_ + BZ[B3(Tai TiJ)
Ty~ Typd
=0 (11)
where
AL_
Bl = Ky (r; -3~
AL_ AL_
B2 = = (ry =7
L NER NS

e Al -2, L -



Equation (11) can be rearranged as

Bl B1
Ty g-ny faed * Taglry By B2 x B3 - B2 x h_,_]

+Tai[Bz x B3] + Tvi[Bz X hvi-]

-t Hi T.g 12)

It should be noted that the value of metabolic heat generation, hmi’
is assumed to be zero in equations (10) through (12). This is due to the
assumption that the layers of fat and skin do not generate heat by metabolic
reactions.

Equation (12) can be simplified as
A, T c (13)

X3 Tya-1y) ¥ YauTag * A0Tas ¥ VasTes T Cus

where
Bl
X0 " ae_
Y,, = ~-r  H, - BL_ B2 x B3 - B2 xh
iJ J L A vi-
AiJ = B2 x B3 o
V =B2xh
J . vi~-
Cyg = Ty By Ty -
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Similarly, the finite difference approximation for equation (1) at the

center of each cylindrical element can be obtained by integrating equation

A!L+
(1) fromr=0tor=-—2—.

A, T,. - T A%, AR AL, AR
+, 42 i1 + ¢ + T
Kie (0 iz, * T ) Pt ) Haggy g
(Tag = Typ) + hyyy (T - Ty
=0
or
Tip = Ty
c1 x—-—-—AT:—+ C2xhy, +C2[C3(T, - T, ) +h (T 6 -T.)]
=0 (14)
where A2.+
Cl= K1+(—2—)
AL, AL
+ O+
==
c3 = eis + ha1+
Equation (14) can be rearranged as follows:
L - Cl
Tn[ At+ C2 xC3~-C2 x hv£+] + T12[A£+]
+ 'r.i[cz x €3] + t“[cz xh,.l
=-C2xh, \ | (15)

Mﬁaﬁw €




17

Further simplification of equation (15) yields

Yol v 20T Y AT Y Vv T G (16)

where
Yil = - %%: - C2xC3~-C2x hv1+
2y ¢ %:
Ail = C2 x C3
Vig = G2 xhyy,
C11 = -C2 x hmd+

The coefficients X L and CiJ in equation (13) and the

130 Yag0 Agpr Y
11° %110 40 Y 1
of the physiological parameters and mesh size.

in equation (16) are also functions

coefficients Y and ci

By using Simpson's rule [14] to carry out the integration, equation (2)

becomes
(‘1)2 J \j
Qai(Tal - Tni) - 2'L1 h':l Tgi J -—§--+ 21rl.1 hai jil c1j Tij tj
+ H‘M (Tyg = Toy)
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or
2 I
Qai(Tam B Tai) - "Lihai Tai (ai) + Z"Li hai jzl Cij Tij rj
+ l‘Iawi (Tvi - Tai) (17)
=0
where
' ' r
C. =(C = —23
i1 iJ  3(J-1)
] v 1 ] 4 riJ
o = = = TR et —
©2% %4 " 0 7 G-y T IGD (18)
J t t 2 r
C _ =g iJ

137 C%s = = Ci-2 = 30D

In order to use a smaller mesh size for the special coordinate around
the outer layers where the gradient of the temperature is steeper than that

in the inner part of the cylinder, equation (18) is modified slightly and

t

1]
The radius of the cylinder is divided into three equally spaced intervals.

the following values of C,, are used in the computer program.

The outer third is then divided into two halves. The grid points are

designated as T1r Tps r3, r“, and rs.

'
The values of Cij can be given as follows:
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’ ' 4 34
Cia =3 G
' 1,24
Ci5=3 @

Substituting the valves of Cij into equation (17), one obtains

Q. (T ~T ) _ 2 15
ai "am ai "LihaiTai (ai) + Zﬂ‘ihai {[3 (3 )] Tilrl

a, a. a
+ [% GO Ty,r, + [’% G +'l:i (31” T35

6 21 s B2
@ Ty * i @ Tygrgd HH (o)

B o

1 2 4 24
2l (G Py + 3 P Ty,

1 iy, 1 2 4 2
*EGE) 3@ Nyt 5 T,

2

-H T

aA
+ ['13 () rsTysh + [-Q-mLibh,, (@) H 1T,

+ nzwi'rvi + QaiTam
=0

This equstion can be simplified as

*rg

5 r‘,‘l. ,
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%
A + b}
‘ : : PipTon * PigTyo ¥ PiaTia * PiaTin * PisTis * Aj6Tas
L -
i + ViﬁTvi * Ei6‘am
i =0 (19)
where
a
; - 1l .1
% f Py = 214h, 5 Iy
. a
: - 4 L
; Pyp = 2115 Iy
] ﬁ a s
' 1 TS B
§ Pyg = 21l 5 I 3 ()T
4
i
. _ 4 3
Pip = 27Lingy 5 @),
a
1%
Pys = 2mlih 5 @) Irg

Equation (3) can be similarly approxinated as

2
(ai)
Quy (T Tyy) = 27Ly (@ b)) —5— Ty
J
' -
+ Zw_.i(qci‘-hvi) z Cij Tij rj + Havi(Tai Tvi)

1=1

(20;
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g
; " a
. i 14
: ¥ ¢1°3G3)
1
" a,
{ R
‘ 23 G
] 4
H
: a a
s D s SO G |
! Ci3=3 G*3 @)
¢ " a
] L
i €y =3 @
.
L " a
1l
{':‘ W‘ { CiS 3 (6 )
h“%‘ ~* t! O
- "
N ! Substituting the values of Cij into equation (20) and rearranging the
terms, one obtains
a,
2Ly aggthyg) (15 G ) 0Ty + B GO nT,

H smuhboautinguiigieohisutpelot Suvmgippit

i N Ry | e
*IEE) 3@l @ ATy,

+[ } +

3 (6 )] rS 15 “aviTai

+ [-Q ~"L,(q 4 +h ) (ay ) ~H T, +Q, T,

]
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o ?T; This equation can be simplified as =-
b
; &
i QTyy + QT ¥ QaTis ¥ QuTas + QsTys * Ar7Tas - k
"’r ,}fg L
' +E T %
=0 (21)
{ where
! Q. =21l (q +h 0k GDIr
. i1 194"y’ 53 3700
| 4 31
g - Qp = 2y (aythyy) 13 (3In
F
f‘. -
E:.’"‘ ]
!‘:\’, Qi3 2"1‘ (q 1 Vi) [3 (3 ) + = (6 )]1'
10

2L (qci vi)[3 (?1_”!.4

!
2L, (g + vi)[3 ) 1rs

17 = Havi

<
[ ]

17 " ~Qy - "Ly th) (ay )2 - Bavi

17 = Q

The system equations, equations (1), (2), and (3), for the ith
element can now be replaced by a set of linear algebraic simultaneous equations

represented by equations (9), (13), (16), (19), and (21). In summary,
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X Ty + YiaTia ¥ 234755 + ATag Y V44T = €

147°vi i4

XsTiy * YysTis * Apslay + VisTys = Cis

P Ty + BTy # PyaTya ¥ Py Ty + BygTys + AyeToy *+ VigTut ™ “Ey6Tam
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3.2 Linear Algebraic Simultaneous Equations

The number of difference equations obtained from the technique employed
in this work depends on the number of grid point used to discretize the
independent variable. A set of simultaneous linear algebraic equations
included in equation (22) are obtained by using five grid points to dis-
cretize the radial distance of the i:h element. With seven simultaneous
linear algebraic equations representing the thermal characteristics of each
element, the total of twenty-eight simultaneous linear algebraic equations
are required to recpresent the human thermal system. The synthesized system
equations for the entire system are illustrated in Table 1.

The fi{rst set of linear algebraic equations in the upper left hand
corner represents the thermal characteristics of the head. The second,
third, and fourth sets of linear algebraic equations from the upper left
hand corner represent the thermal characteristics of the torso, arm, and leg,
respectively. The interdependence between elements is represented by the
terms gcattered around the blocks of terms. The coefficient of these inter-
connecting terms are the function of blood flow rate between the adjacent
elements,

Since the coefficients ¢f all the terms appearing in Table 1 are functions
of the physiological parameters and mesi size, the local and regional
variations of the physiological parameters can be conveniently 2xamined.

The temperature distribution in each element for a given environmental
condition can also be determined by solving these twenty-eight simultaneous

linear algebraic equations.
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The method of solving these equations is by elisination using the

. <
S e & Sl o -

largest pivotal divisor {/]}. Each stage oi elimination c-nsists of

interchanging rows when necessary to avoid division by zero or small elements. ’

§
The computer program for thi: method is conveniently provided by the IBM :
System/360 Tclentitic Subroutine Package under the subrouting name SIMQ. )
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4. SIMULATION OF THE MATHEMATICAL MODEL a3 |
3ol
L

To test the validity of the mathematical modei of the human thermal

system, a number of simulations have been carried out and the results are .|

"

described in this section. An experiment with a human subject is carried

out in an environment in which the torso, arms, and legs are exposed to an

effective environmental temperature of 107.6°F (42.0°C) whereas the head is

exposed to a cooler temperature of 77.0°F (25.0°C). This particular environment

is selected in order to lay the ground work for future studies on the effects

e T sl s Rk R3ein < RO M s 1 3.

of localized cooling (or warming) on the entire human thermal system. The

R e R A

following types of simulations have been carried out and they are listed in

w:‘

the increasing order of complexity.
(1) The blood flow rate between the adjacent elements and the local heat

generation by metabolic reactions are assumed to be zero in the system. The

assumption implies that a human body is disjointed into six independent elements,

namely, the head, torsn, two arms, and two legs.

(2) The disjointed .ndependent elements are connected by blood

circulation between adjacent elements. The local rates of heat generation

by metabolic reactions are, however, neglected. ¥

(3) The elements are all connected by blood circulation between

adjacent elements. Each element is generating heat by metabolic reactions.

These particular types of simulations are selected because one can obtain

results which can be verified fairly easily.

' The purpose of the subsection is to present the results of simulations

and employ them to test the validity of the model. Table 2 summerizes the

numerical values of physical dimension of the human body and its physiological

parameters.
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Figure 3 presents the results of the first type of simulation stated
previously. 1t shows the temperature profiles of various elements under
steady-state condition. The metabolic rates in various elzments and blood
flow rates between adjacent elements are assumed to be zero. The results
indicate that the temperature profile of the arms, legs, and torso are
nearly straight around 107.6°F (42.0°C) which is assumed to be the effective
environmental temperature of these elements. The temperature profile for
the head is also nearly straight around its effective environmental temperature
which is assumed to be 77.0°F (25.0°C). The slight deviation of temperature
profile from its effective environmental temperature is caused by the errors
due to the finite difference approximatjion and Simpson's rule cof integration.
The results also show that the model works properly when the metabolic rates
of all the elements and the blood flow rates between adjacent elements are
assumed to be zero.

The purpose of the second type of simulation in which the blood circulation
between the adjacent element3 is considered while the metabolic heat generation
in all the elements is neglected is to investigate the interdependence among
the elements. The cooler effective environmental temperature of t“e head is
expected to affect the temperature profile of other elements where the effective
environmental temperatures are higher than that of the head. The temperature
profiles are also expected to fall within the two bounds: the upper limit of
107.6°F (42.0°C) and the lower limit of 77.0°F (25.0°C}. Figure 4 presents
the results of this second simulation. It shows the temperature profiles of

all elements. Because of the direct comnection by blood circulation between the
torso and head, arms, and legs, the temperature profiles among them show only

a slight difference of about 1°F in temperature at the inner core. This
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slight difference is caused by tne assumption that both the arterial blood
pool and venous blood pool have a uniform temperature throughout a given

element. A difference of about 7°F can be seen, however, between the temperature

R ]

at the surface of the head and those of the other elements.

The main reason that the temperature profiles are lower than 137.6°F
(42.0°C) which is the effective environmental temperature of the torso, arms,
and legs is that the effective environmental temperature of the head is 77.0°F
(25.0°C). This lower effective environmental temperature is intendec to cool
the hlood temperature inside the head. The venous blood flowing out of the
head, in turn, cools off the blood temperature of the torso, arms, and legs.

~o- Because the amount of blood distributed to each element is assumed to be

IR ‘
£,

T

1Y %‘
>

approximately 20% in the head, 60 in the torso, 82 in the arms and 12% in

PR g nd, ¥
A K

the legs, the steady-state temperatures obtained which are around 105.8°F
{{1.0°C) can be reasonably expected.

Some of the most significant temperature profiles of all the elements
are shown in Figure 5. It presents the resuits of the third type of simulation.
Blood circulation between the adjacent elements and metabolic heat generation
ir. each element are permitted. The results indicate that the effect of the
lower effective environmental temperature on the head is overcomed by its
high rate of heat generatiun by metabolic reactions. The same reasoning
can accourit for the higher temperature proﬁle of the head than that of the
arms. The temperature profile of the arms is slightly lower than that of
the legs even though the same metabolic rate is assigned. This is due to the
fact that the arm has & smaller volume than the leg and is easily affected by

i. effective environmental temperature. The results also indicate that the
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simulated environment is not adequate for a person to stay indefinitely

o el s PR sCITORN

because the steady state core temperatures of the elements of the body are

around 112.0°F.

B e N
-

Figure 6 presents the results of a parametric study of the temperature

at various locations of the body. The core and skin temperatures of the

i
H
i

The results indicate that the temperatures

N mdmrag 4

head and torso are presented.

P

increase almost linearly as the metabolism increases. i
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5. DISCUSSION AND CONCLUDING REMARKS

Tl -

gl e

As mentioned in the previous section, the model presented in this

. i
awmw@ﬁﬁﬁ””"”ﬁﬁ‘ﬂ‘vf.y
L o
L Y

A
————

PR

report is a modified steady-state version of Wissler's unsteady-state model . ‘

et 1yt

[19] (1964). The main difference between these two models is in the expres-

S

sions of '¢2t conduction of the torso and energy balance equations of the

arterial blood and venous blood in the torso. Wissler [19] (1964) used

Ly B PR Y e

Crank-Nicholson's implicit finite difference technique to approximate the

T T R

unsteadv-state system aquations and employed the Gausian elimination method
to solve a set of interrelated linear algebraic equations for each clement.

The model discussed in this report uses the explicit forward finite difference

technique to approximate the steady-state system equations and employs the
elimination method by using the largest pivotal division to solve the
simultaneous linear algebraic equation for the entire system which considers
the interdependence of all the elements.

The technique illustrated in this report also gives rise to great
flexibility in using different values of local physiological parameters. But
because of limited information concerning the different rates of heat generation
by metabolic reaction in various locaticne of an element, a uniform rate is
assumed to each element. The variation of local blcod flow rates, however, has

implicitly been taken into consideration by assigning different values of

thermal conductivities in different layers of the element.

One of the important results of this simulation is that one can visualize
the effects of localized cooling (or warming) on the therma® system of the
human body. The investigation of these effects will provide valuable information

as to the feasibility of creating a local microenvironment for those persons

who are often exposed to the histile environment. This study will also be useful

for devicing ways to protect persons involved in space exploration or uﬂderwatec
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activities and to prolong the working period of workers in hostile environments

such as steel mills or mines.
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Fig.2. Vascular system of ith element.
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APPELDIX A

Anr o w0

Heat transfer ccefficient from the human skin to its enviromment is

contributed by four factors; namely, conduction, convection, radiation,

-,

and evaporation. Tne magnitude of the effectivc heat transfer coefficicnt

depends very much on the physical propzrties of the surrounding nedius,

LR LRSI

the motion of the medium, the relative humidity cof the mcdium, and the
~etness of the surface of the skin. Hence, the effective heat transfer

coefficient , H, can be expressed by

ot gt R T PEIRTL R 32 P o

H=H +H +H (A-1)
(o | ¢ e

X 35 SRR o bR

- where

heat transfer coefficient for convection

=4
]

H = heat transfer coefficient for radiation

“e heat transfer coefficient for evaporation

The heat transfer coefficient for conduction is neglected because

of its small magnitude. The heat transier coefficient for convection
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can be predicted using the following equation

HD Cu
- 0.26(229)0'6 ( P f)0.3 (A=2)
K He Ke

where
D = diameter of the cylinder
l(f = thermal conductivity of the medium
V = velocity with which the fluid approaches the cylinder
p = fluid density
ue = viscosity of the fluid

Cp = gpecific heat of the fluid
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Equation (A-2) is applicable only if the fluid approaches to a sirgle
cylinder in the direction wnich is perpendicular to the axis of the
cylinder. The heat transfer ~oefficient is proportional to the 0.6 power
of the velocity and inversely proportional to the 0.4 powei of the diameter.

For a cylinder that is 8 cm in diameter

H o=1.8 x 102 06 5 cal (A-3)
[od 0,
cm X seC X “

where V is measuirecd in centimeters per second. For a cylinder that is

26 cm in diameter the correspouding equation is

5,0.6 cal
V

cm” x sec x °C

H, = 0.95x 10~ (A-4)

Equations (A-3) and (A-4) are used to approximate the values of Hc for the
arms, lege, torso, and head.

The value of Hr increases from 0.000145 cal/cm2 x sec x °C to 0.0001663
cal/cm2 x sec x °C as the temperature changes from 10°C to 40°C. It is
nearly constant. Hence, the complex geometry of the human body and the
wide variety of the area for radiant transfer as the posture of the individ-
ual varies will not effect the value of Hr significantly,

The heat transfer coefficient for evaporation in the absence of
sweating is approximated as follows

4 cal

cm” x sec x °C

H = 0.16 x 10
e

This approximation is used in this report because in the future study

of human subject under control the sweating will be minimized.
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