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t*" P REFACE .r

t
This is the final report of the research project "Optimization of Life

Support Systems and Their Systems Reliability (NASAGrant No. NGR 17-001-034)".

The project was initiated on June 1, 1968 and te_inated on _y 31, 1971.

Since a majority of significant results from the project have been pub-

lished, no attempt is made to give an exhaustive account of the project. L
i

_ Instead, a brief summary is provided here and readers are referred to copies

: of papers and reports which are appended for details.
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. SU_,IMARY i

i The identification, an._lysis, and optimization of life support systems

•! and subsystems have been investigated. For each system or subsystem that _"

'; has been considered, the procedur_ involves the establishment of a set of

; system equations (or mathematical model) based on theory and experimental

._ evidences; the a1:._lysis and simulation of the model; the optimization of tile

I operation, control, and reliability; analysis of sensitivity of the system I'based on the model; and, if possible, experimental verification of the thee- _ ;

The work so far has evolved into several distinct activities and the "'

results of these activities have been published extensively. The research

activities include:

-_') (a) modeling of air flow in a confined space - a study in age
I

distribution,

(b) review of several different gas-liquid contactors utilizing :::

centrifugal force,

(c) review of carbon dioxide reduction contactors in space vehicles ._ _/

and other enclosed structures,
n

(d) application of nodern optimal control theory to environmental

control of confined spaces,

(e) optilal control of class of nonlinear diffusional distributed

paraneter systeal,

-- (f) optimization Of system reliability of life support systems and

sub- llylltal,

--,ilk (I) nodelinl, ikulallon and optlnai control of lhe human thermal

SyStAIl.

(h) anal ysi| sad opti_tsstion of the water-vapor electrolysis cell.

These leol_s m |tm_a_llod end presented in this final report.

•' i
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', Air Flow Models in a Confined Space
.... A Study in Age Distribution

MICHAEL S. K. CHEN*
L. T. FAN* :_._

, C.L. HWANG* _
E. S. LEE*

It has been shown that a fairly general model,/or the distribution oJ air In u

confined space can he established based on the concept o[ the age distribution.
The use o.[ such a model in design, data correlation, control, and scale-up
problems is discussed and the experimental determination oj the model is out-
lined. It is indicated that some of the parameters of the model can be estimated
based on a simple entrainment concept. Results of simulation of the model on

' digital computer are presented in detail.
t ill i i i

t INTRODUCTION SPACE AIR DISTRIBUTIONS AND AGE
DISTRIBUTIONS IN A ROOM

_, A PROPER air distribution is essential in air heat-
: ing, ventilating, and air-conditioning systems. Even A qualitative description of various types of space

though a system delivers the required quality and air distributions is presented in reference(I/, it is
• quantity of conditioned air (or oxygen) to a con- bas4:don the results of performance tests of various

/ fined space such as a room or a space craft or an types of the air outlets at the University of Illinois
_ _ _' underground shelter, unsatisfactory conditions [2,3].Differentspaceairdistributionsforthefollow-

_, ._'-, result ifthe air is poorly distributed and improperly ing five groups of outlets are discussed in refer-
- - _ circulated. The mechanism of air flow and distri- ence[I].

._:-. "}_ bution in a confined space is very complicated. (I) Group A. Outlets mounted in or near the
•:_ Although, theoretically speaking, the Navier- ceiling and discharging the air horizontally.

"_%" I Stokes equation can be used to represent air flow (2) Group B. Outlets mounted in or near the
t - .'.. :., and distribution in such a system, it is extremely floor and discharging the air vertically in a
l "--_-_:'__ .__:. difficult, if not impossible, to solve it exactly. Thus, non-spreading jet,
r _ _.-_ .¢.o_:_, engineers are often compelkd to seekapproximate
I _._g_,, _ solutionsbasedon simplified assumptions. (3) Group C. Outlets mounted in or near the
__: floor and discharging the air vertically ins

_:_" _"0-_ __i :: in this paper, the concept of age distributionwill
_._ ,_ be used to study the air distribution in a confined vertical spreadinlgjet,
__ space. This concept has been used successfully in (4) Group D. Outlets mounted in or near the

,'_
_:2 .,,_ the study of mixinl in chemical reacton[4, 5]. A floor and ditcharlinll the air horizontally,

(5)o,,.p ou,,,,, o,.., ,h,
fairly Ieneral flowmodelwhichencompassesseveral

___; specific flow models based on this concept are cdlingand projectingthe prima, air vertically._:" pfopoNd. The use of these models in desiln, data

i_/ correlation, control, and scale.up problems is dis- It has been noted that the space air distributions
crated. Experimental procedures for verifying the aim depend on whether the dtscharlinll air is used

,, proposed models and predk:tinj the variouspars. for heatingor cooling. By examinin| these distri-
_ meter_ in the models are also discuu,=d, butions it hits been shown(I/that we can roulhly

_._ 1--. The me of the concept of age distribution in the divide the air space into the followinll zones.
: study of mixing and flow in it _onflned tlmt'e is (I) The primary air zone. This is the part of the

: especiallyuseful for systemssuch u an under, space from the outlet down to where air
_ Irmmd shelter, t spacecraft, and • wbom.,'ine, velocity bet'omt,s antxoximately 150 Ik/min.

• ' where the purity of air is important. Knowinl the", ._ •_ (2) The total air zoo. This is the spacecorn-
i: ,, ale distribution of the gonmminuted sir, the pritinll the air digharl_ from the primary

: _ ', optimum way to puflfy this sir for undedrsbk cam- air zone and the entrained air from the

" " ":'o-." pomnts may he dmmlned, Funhmnon_, the ira- Ip_end room air motion rune (demil_l
, pube responwstudydigumd in tlda palX_dmukl Ixkav in 4). The dr _dod_ in this mm is

• "_ , he u useful tool for studytn8the dynamicbeluwio_ Mill_ u it b influencedby the primm_ air,
, ': "1 of air in • mdtml m. bat k_ dam I SOh/mia, The tlr tempm_m

: *lmUtmekcSl_mml)e_aml_ I(m_ it pm_Jly within I*F ofthe room tem-

]974004672-0]0
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t

(3) The stagnant zone (or dead space). This is It.B)v [ v, ]__ :: I

the space where the air velocities are usually v I V _

low, 15-20 ft/min. It exchanges mass and heat [ . 1 I _ *" _.
with other zones mainly by natural con- , , v
vection, l I *" I

(4) The general room air motion zone. This is the v, [ #v
part of space in which there is a gentle drift il ,
toward the total air zone (i.e. entrainment).
Air motion in this space is attributed to the ' ;

: recycle stream of total air. ' 1

As an example, let us take the space air distribu- F{s.3. The schematicdlagramofa/tow modtL i_
tion of Group A which is shown schematically in 9

: figure I. The side view is shown in figure 2, where _ il

; A denotes the space of volume ga comprised of the element is different from that of another not only j:
primary air and total air zones and B denotes the because of the circulation of air stream in the room

but because of the internal mixing (due to the tur- i

/-z.. //_ bulence and velocity profile effect, etc.) in each ir * zone. T" -refore, there is an exit age distribution in
out_t--7" v---_._ --. _ "_ / J the leaving air stream. This exit age distribution will

" I _ _ -/- - _ _L_'_ ___J be denoted by E(t ). E(t )dt represents the fraction of
¢ '_ / _-_t-_ the fluid elements in the exit stream having spent

" [ ///x, _ e _,_L,_ thetimehetweenttot+dtintheroom, and ."

IElr)dtI. (t)
-_::',. , ,, Fit.I.Typicalair/lowpatternina room. o .

,: : it should be noted that E(t) is completely deter-
_ _.. minedby the spaceair distribution and the mixing
,:_:__" space of volume V. correspondingto the general characteristicswithin the space,On the other hand O

" _ . room air motion zone. Below zone B is the stagtmnt if we know E(t) from experimental measurements "": "
' zone. This picture can he represented by a flow

model which iibchematically shown in figure 3. in (e.g. by tracer techniques to be discussed later), aflow model characterizing the space air distributionthis flow model, v is the volumetric flow-rate of dis-
• ' can he established, Note that there may he several ..

charged fresh air and intake air under steady-state
condition, pr is the recycle flow rate and Vd is the possible models which may give rise to the mine
volume of the stagnant zone which exchanges mass exit age distribution E(t). However, we can often

choose the beg by knowing the geometrical, fluid- _/'_' -
and heat with V_ by natural convective currents, mechanical, and otberphysicaiandchemicaicharac- f. _:___,
The dotted arrowsbetween V_ and V. indicate re- teristicsofthe system, __circulation streams between these two zone_ To "

Intimately related to the e_t age distribution, _'L _'_" * "' " *r_dmpiify the ditcuuion, these recirculation stmuns E(I), is the Internal age dlstrlb_tkm, I(t), which *** "'_' :*:

will be omitted and Vdwill be taken as zero in the aecount* for thediuributionsoftbeai_es(the lenlPhs __
present tmitment, of time elapseddnce the entrance into the room) of "--=: °"="<°,_:_ii:

Each air fluid ekment upon entering the outlet fluid ,Jr element, at any moment in the room; _..:: ,_

of duct (or jet) will spend tome time in the room lO)dt _t, the friction of air with internal

before Imvtng. It is obviotm that the exit time of one qlehetweentandt+dt.WeeanteeUmt :::%._*
Ill-----.. ..........

----. distdlxztio_ E(t)ud l(0. It hat been thown that[4] ,

i -- eV
_.. - - mm holdl_time. 14)

/ql,. Z _dmt ,i_ ._, mmm b ,, m,,,-i_ ,lW. I_ i
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It has also been shown[4] that the mean exit age leave the system no matter how long it has stayed
defined by in the system. Define

_t ).dr = the probabtlity of a fluid element leaving _. !
, _ tz = _tE(t)dt (5) the system during the time interval .-

is equal to mean holding time ! for the enclosed (t, t+dt)where R is a constant, which is
system, i.e. indepent_entof time t, !

: V P(t) = the probability of a fluid element to be

1 -- t_ -- r (6) found in the system at time t. !

: Note that this relationship has been shown to hold , ] / ;

" only for the enclosed systems. When movement _ I_

into or out of the system can take place in ways

other than by bulk flow (e.g. diffusion boundary), ;;l_
: 1#1.. ".... " i'

These two age distributions, namely, the exit age 1
distribution and the internal age distribution, to- T

• o gusher with their derived properties such as vari-

ances and skewness have been usedsuccessfully in F_. 4. ,4 co_tely stirral tankmodel(CSTM). !

.. characterizing and designing the nonideal flow
; system in process industries it is the purpose of this Then the probability of a fluid element to be found

. • paper to explore their applications to the analysis in the system at time t + dt isequal to the probability
. and design of an air distribution in the enclosed of the fluid element found in the system at time t .-

system, multiplied by the probability of staying in the system
_,_"_"_"._.... ._ In the following sections, we shall first derive durinsthe interval (t, t+dt), i.e. :
r_i __, ,. some useful representations of _ge distributions
[_:_ -_; _ based on the flow models such as those shown in P(/+d/) - (I-_,d/)P(/) (7)

figures I-3. Then the determination or prediction of or

0 thevariousparametersinthemodelswillbe dis- P(I+dI)-P(I) -_P(t). (8)cussed. Experiments which can he used for this
prediction will also be proposed, dt

Equation (8) reduces to
/

DEIUVATION OF EXIT AGE dP(/)
DISTRI_sUTIOHS d--_"" - _tP(t). (9)

In this section, several basic buiIdin8 blocks of The initial condition is clearly '_--,
flow models will he discussed. They will then be _o:
used to obtain ale distributions propmed in P(O)- I. (10) _r_

figu_ ?. The solution of equations (9) and (10) is obtained u _
As digussed earlier, different internal (back) ,:_.,,

mixing conditions exist in different zones of the P(I) - e-*'. (I i)

space air. To characterize such mixing alonl the let T he the random variable reputing the exit
general flow direction, two models, namely, the dis. of eachfluid element. Then the probability of -_,-#-_

persion model and the completely mixed tanks in T < t is equal to the probability of the fluid element
series model[S], are ot_en used. The diq_,mon has I_ the system at time t. This implies, from _
model is characterized by a diffusion type equation equation (I I), that
which is useful mainly to represent flow doter to
the ideal cue of piston flow. The mixed tanks in Prob (Y < t) - I -e -_'. (12)

series model it of_n used when flow diner to the Tbit equation holds for each fluid element at the
other extreme cam of compkqdy mixed (Ixtckmix) exit ofthewttmn. Since the probability of the occur-
flow (i.e. isqp mixinl effect). Tim latter model fence of a certain event is int_x_t_ as the relative
aRpam to dmcribe more ckmdy the mizinl in a frequencyof the eocunun_ of that event, tht
conltnedqwe _nd will be randin this work. probability of T < t is thnply the fraction of fluid

eksmmtsattheexit.withqlefrom0 to;. Equation
0 Tie _d_ :_ trek mokl (CSI'.I/) (12).tlw_om,canIN,wrtttraas

This is _ ia 611m_4. it assumee tlutt eMh
n_t elamm1,1tl_ _ IN,._ _ to __0dt

mm I (13)
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Differentiating equation (13) yields To obtain the exit age distribution for this model. _,_
l

E(t ) = ,;.¢-_' (14) let us define the random time T,, i = I. 2..... n be " _,., i

the exit age of each fluid element at tank i.i= I. I :": iFrom equations (5). (6), and (14). we can _how that 2..... n. Each of this exit random time through : _'
I ! v each tank is independently and identicall_ dis- i_

";"= i- i E V (15) trihutedasgi_enbvequation(16).i.e., _ I

Therefore. theexit age distribution becomes EM)= -e -t;'. i= i.2 .... i: (18) 'o
, ¢ It
: " E(t) = _1e__ ;. (16)

! l there

_ It can be shown through equation (3) that l(t) has i_ = _ . i -- I. 2..... n. (19) _"
the same distribution as E(I). E(I) or I(t) is plotted n

,, [ in figure 3. This distribution function is often called Combining equations (18) and (19) gives

i a decay function and is used in designing a ventila-

tion system[6], n e-'t i
E_t)=_ . i=l.2 .... .. (20) :

i',Y-v The overall exit age distribution can be derived as

_' _ _ follows; i"

, the total exit random time T is

• ,7. T= T,+T2+... +T,. (21)

_ -_. ThedefinedCharacteristiCrespectivelyfUnctiOnasof T_ and that of T are _t

='i_V " I

_:;:. r,_.5._..,,.,,_..o.,el.csr_. *.,(")=_i::e'"c_,_, i

__:_,: = r[e""l (2a _)
i': .,7: The Laplace transform of equation (I) givesthe and

first order transfer function.

I _r('_)= _e'"E(t)dt= E[e''_]
Z(s)= Is+ I' (17) -_

wherethesecondE it,eachequationaboveisthe

which has been used as the transfer function in con- expectation operator.
nection with the automatic control of room tem- " ' .,.
peraturg[7], where the time constant is simply the From equations f20) and (22), it can be shown
mar, holding time I, in actual space air distribution that[S] ,::

such as the one shown in figure I, the transfer _r,(u) ,-=[I-iu(|/n)] -t, i = I, 2..... n
function is not of the first order and the major time ': .... _: :
constm't would be quite different from I. (23) ?;_ _"¢

and tr(u) = Ele _'r]

The n.CSTM inseries model . £[e,,r, _T_+.. ,,r.)]
In case the mixing is lessc_mplete than the one _ ,

CSTM. we can use the n-CSTM in series model with " E[e_'r'] E[e_'r'] ''' E[e_'r"] -''

thefixedtotalvolumetochar_:t_riz_thesystemas - _.n(u)_r,(U).•._r.(u)
_huwn inlIEure6. Volumesmay be differentor

simplyequalfromtanktotankdependingon how sin_ theexpectationof theproductof mutually
the mode of mixing changes along the flow. For independent variables, e"r'. • _,r', e_"r'..... C 'r',
simplicity we mum that the volumes of tanks are is equal to the product of their expectations,

equal in this work. Then the number of tanks used E[©,.r,], .c,[ei.T,] .... E[e,.r.]
represents the delgme of mixing in the flow system.

or

-[ "° J _[_--JL_--Jt z , Subtttitutingequation (23) into equation 04) yields

_v.6.r_,.csr_r_,,m m,_ _,,(u)- [t-t_t/,,)]". (2_)

] 974004672-0] 3
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The density func:tionof +du) is well known[g] and Equation (31) indicates the significance ol"para- ,_
is given by meter n .;nchara_c, izing the 0egree of mixing for

J E(I)--- JnX_ e-'• } (ntli)'-_ ' the system, if we substitute s for ( - iu) in equation "_'_;
ti) (n-l)! (26) (25). we obtain the transfer function for the
• . n-CSTM system

This is the de_rgd exit age distribution of the I

n-cS'rM in seriesmodel. It is moreconvenient to E_s)= [(I/n)s+ I]'" (32)
expc¢_ it in dimensionless form by noting that

Now. if we rake use of this model to charac- ]
I = J E(tJdt = _ IE(t/i) d(t/l) = _ iE(t/l)dO tel_ the mixingboth in zone A and zoneB in the .,

• • • spm:e air distribution describe_ in the preceding

section (see figur_ I, ,_,and 3), wc can obtain th_= ElOJdO age distribution for the whole system. Let T be the0

where randomexit uge of each fluid element of the system.

_-t Then
F_.(0)= iEO) = _' e-" --_-. (27) T = T, + 7",+ + T2M+, (33), (n- I)! "'"

Equation (27) ;s plotted for various valuo of n in where M is a random number repr_enting the re-
ftlg_ 7. For n ==I, equation (26) reduces to cycle pcuses with probability density function pq'.
eqtmtion (16) of the one (_rM modal. As we can When M = re, andre = !, 2, .. , q is the problbil-
9e¢ from figure 7, as n increases, the peak i_ ity of recycle for each pass and is equal to

" ._- _r/(I +/I)r = _/(I +p); while p is the probability
- _q- ,, c_'_ of laving andisequalto I - q = I/(i + _), pq" is the

'__- z-iT .,. _ probability of each fluid element having m recycles

_* " 5, .,2M+I is the time each element has to spend *-

._._:_ _ through zone A and 7",. i = 2, 4 ..... 2M is the
- time through zone B. By ,_ing the method of the

t char._-ri_tic function[8], we obtain

" =o oz 04 o_ o, ,o-,_ ,4
@ = Eq(E[e `'(r'+r.+ ""+T'"") I M]}"

_. _. _ _,er,lm_-- _'_ ._:sr_ = E_ {(E[e'"__)'_+' (E[e"r']) " }k Jem_m_t./.

( I \--(/i_+I)wAI [ \--/_'lil'_

= li--'-'l
and this peak shifts to the right asymtotically to n,_! \ n,/ j

0 = I. This can be drown by differentiating eqmt- = 2._lU[" -m--l"|A_-"_('+ I)['[I--/it _)-'mp¢_tion (26) and then _¢tting the resultsequal to zero. ,-0\ n_/ \
This gives

- = I-_u
0..i-n I (28) • n_/ ..on

[( -or ! - m I

t,m - . (29). p( i - iu [i , tn_])-" "
mg

The above inl'ozm,_tion is useful in evaluating the !-([--lu[lalna]) (!--lu[li_ns])-'"

wdu_s of the _r_ and _11 be _ lat_ or

ltcmt beIh_wn thlt[$] qk_(u)-
m mine: O - I (30) (!-i_ p,/nJ)"-

i (i D-"(i
varia_: • a - -. (31)n , 04)

' *J_.l M] dmmm lira _ s_mmmm d whim ._.
alp [keC/',+T,+ ...+ Tm+,)! _ tlmtM_lmb toal_'

Va ,1- - --_,_.(.) d_m Un,_m_rmd_ & "(1+/I)_ "
• , . ¢
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i

and n,, and nS are the values of the parameters of In the simulation of equation (36), the constraint
the models representing zones A and B respectively, as given by equations (37), (38), and (39) must be

The transfer function of it can be obtained by sub- taken into consideration. Several specific examples _) i ,. _,
stituting s for (- iu) in equation (34). are presented below. ,.

(i +S[[A/nA]) -'_ Case I. n# = ]$ = 0
E(s) - (i + pl- P(I+ SffA/nA])-"_(I +s[6/nj])-"'"

(35) Equation (36) reduces to
/.. ,0A-

The inverse transform or exit age distribution of E(s') -- _, +s -'-A/ (40) ' i
equation (35) in general has no analytic expression, I :
but we can often simulate it on an analog or a and its inverse transfnrm is equation (27) and is

digital computer if we know the values of para- shown in figure7.
meters/_, n,_, nt, tA and tj. A typical exit age dis-
tribution E(t) for the proposed flow model is shown Case 2. nA = nB = 1

: in figure 8. Equation (36) reduces to

• I +Ojs' (41)
i E(s') = (I +.O)OAO_s'"+(I +_XO.,+G)s'+ 1
; SIMULATION

and the inverse can be obtained analytically as .:_
• • . ' It is often more convenient to write equation (35)
• ca-b __ da-b-m

._° " i in the dimensionless form E(O) _-d e + _ e (42)

' i_:._'_ _ (i +s'[Oa/nA])-"" where
.... , _ [oQ l) t...... (t+p)-#(t+s'[O.,/n.,l)-'_(t+s' n. -'" a =

_,__ (_)

•.._:%_ i where b = 0 "_

(0_+8.)+_/{(eA+os)z-40,,o./(l+O)}
'" "_? O,t = t_/t C =

20_0,

d (O.,+O,)-v'{(OA+O,p-40.J,IO+#)} ,_-.
Note that these five parameters [$,n_, ns, OAand 0_ 20_0s

are not all independent. They must satisfy the Figures 9 and 10 show the simulated results for
equations case 2 with # and 0a as parameters.

v= v_+v.
Case 3. na = 2, n_ = I. _:,

V
t = -- The inverse transform for this case can also ,%,

v obtained analytically. The expression can he found

= V_+ I,'_ in any Laplace transform table. Figures I1 and 12
v v show dimensionless aged distributions for/_ = l>l

g_ gm and 1 with O,t as the parameter. It should be oh-

= (i---_l +_)+_--_._0 _rved from these curves that peaks exist and shift

- (l +P)h+Pl. z¢0 t.---_

I - (I +._._+._,. (31) .

B..aid_ ti, ,. O. andO.m non-nqlativ¢quan- /!\

0 _: (t +Rea :i I 0#) _. ,

0 _ pe, g i. (39) _. o._ ,u__e,_,e_ ./_ _ _w.

m
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away from the ordinate as OA increases. These I_A

i nA '* 2. no'lindicate quite different characteristics from the /_ ._ :

preceding two cases where all curves exhibit a e_._-zO,
similar exponential type of decay as 0 increases. . _. i

z c _ ParameterO,

*_.n,. • f 2 B B 0,.0125
, _ C O, ,0 25

! I_ I

L r
14

e
'_ _'_ IB =OI _ Fig. 12. Dimensionless exit age distribution for nA = 2.--

... _ [B:I 0 --- n, = l, p = I. 0, = 1-20A with 0.. as the parameter.o8 \\\\ I,_:,oo -- -
_._ 1_,_o--- Case4. n, = n, = 2.

06 \_X--..____.__ Figure 13 shows the age distribution with _ as

04 parameter, it can be seen that as/_ increases, the

peak not only shifts toward the origin, but the
02 _----...__...

i . _--.__...,._ second peak starts to take shape. It can be shown
' , _ that such a phenomenon of the existence of two/' 0 05 IC 15 2C 2_

, -,'_ 0 peaks in the age distribution can occur only when

' Fig. 9. Dimensionlessexit age distribution for n.4= n_ = l, both nA and nn are greater than 2.
". " " . O_:: I/2(1+_).0# = I/2_with _asparmneter.
,,..._:_. _oF

II _ n, • n e • I 25'_v:,,,_ "- Potomit_' 4 I*_

_" "" i 0o,ooo__ _..=.__
,o "A o,.oo_ -- _ "4,\ O,,oos-- '

_, O .8,1

o_ c _._ _,_ ..

O!

o 05 _o is 20 25

#
0 02 12 14 Ill

_. I0. DtnwKftcw_ exit _ dlMrtbllti_ for
,, - n, - t, 0-1, O, - I - 20, wtrh #, _. tk¢ @

l_'amctcr. Fir. 13. Dim_mioalcu exit age distrib;uton for
.,,= n. - 2, O- i.[_l(t+_l,o. - K:IR wlt*#

lmqln_ter.

30 A nt "2, %'1

z _ [_ /3 ,o, If n4 and n. go beyond 2, it will be extremely

. _.a #, ._0-,, O,_ diflkult to obtain analytically the inverse transform" _o - of equation (36).

• _ p_,w 0, A numerical solution with the aid of a digital113

- / %. , e,.o.,,,-0.446 computerto simulatetheflowmodelfor (n4+n_)I0

_l _ ":'- ' : l" (B+d)"
o o, o, o, o, ,o ,, ,, ,, ,, _.o _(")='*"-*'_'a+,_,*p_r (a+,?' Ai, r.

_-l, Jl - 0.1, i_- t_(l-.c,,_)a,_t#,et_te .----- (43)
.a,rm_. t+# _(_

¢ II ,
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\ Readond .r,le /

where A = nA ..._no, %,0o, eb,/ ;-- _B,_o,Ah tm/
0,_ I

[ Compute. J :'
[A,e,n.ln¢],. _B= na

co._u*e I ,\
CP| of H{s)] " / a'_

Since the denominator H(s') is a polynomial of s' \ wr_*e/
with order (n A+ ns), H(s') can be represented by _ (forc_eck) ,

I H(s') = (s'-rzXs'-r 2) (s'-r,4+,,) (44) __ Q Ilr " ""

t,

where r,, r2, ..., r..,+,_ are its roots (complex in
general). If these roots are all separated, the inverse _ Ifo,check)

_. transform ofeach root will be

A'A (B+ri)".
er_,

y_(O)--- 1+ p n (r j- rj)

i = 1,2 ..... (n,t+ ns). (45)

Furthermore, for a complex root r_, yt(O) can be

written as v,s

A'_ (a+r,)" es_, \ t._
y_O),=I+p ,_(r,-,_) _ ,,,.,',_,_,.,,.

- -<_,,_ + (cos RiiO+j sin RICO) (46)

, .- _ where RR_ and RI_ are the real part and the

"_S. imaginary part of the complex root ri respectively. Q ,_t.vwr • m *eMs $_r_ _ ¢e_c.km_l_1_
-.,- - '- I co_s....root, o,_.., p_,.omid

;:_¢ '] T_i Theexist age distributi°n is then F/f. 14. Computer flowchart of obtaining exit age dis-

_,_ _(o)= _o) = y_o). (47)

"_' _;_* A computer flow chart for simulating the pro- [_> _"-_--_"'__
posed flow model is shown in figures 14, 15, and 16. l ll:;_sJJJ

E(O) for the case nA .= 10 and n_ = 5, is shown in
figure 17. %_ /

TBACER EXPERIMENTS, IMPULSE _i*:_ "
RESPONSE, AND THE DETERMINATION _.

OF MODEL PARAMETERS *ll_'_.._,

Tracer experiments c_t, k_ " ;j

A small quantity of a gaseous tracer such as H., ._:_.__,

CO, or Freon-12 can he injected impulsively at the t_i
inlet stream and the exit concentration of the tracer /_
ismonitored and recorded continuously at the air I_-_-_i

exit. This impulseresponsecorrespondsto the exit __alge distribution. The foliowinl facto, can he _ __
systematically varied and parametrically studied.

(a) Air (or gas) flow rate v throulh the system, _'
(b) Size and shape (circular or slot etc.) of the

nozzle or air jet, m
(c) Relative position of air discherga end intake c ,c,-_'. V*

of the tyttem,
(d) Internalpressureand temperature at various --

position.imidethev/_tem, |a
(e) Volumeanddimeuiomofthesymm. Nr.l_.r.-mtm_ _ + a,q,,ctw tt_ m-_l_¢t_s ts #ts ts#m,_ tt(s_.

(*"::!,i
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. Air Flow Models in a Confined Space 14l -At the initial stage of the investigation each para- Determination of model parameters from response

i meter should be observed independently by curres

changing only one parameter at a time. However, There are five apparent parameters of the model __ ]
effects of interactions among the various para- described by equation (35) in the preceding section; . "
meters on the exit age distribution must then be the recycle cot_stam ,8, the mean residence times o
studied to find the scale-up factors, t and ts, and the mixing indices nA and nB. These

, parameters can be determined from tracer responses

i [_ _ -----_se, P,=' I to impulse inputs-such as the one shown in figure 8.

/ ,: L ] it is seen that the. time tc between two peaks or twok=l -

, _ valleys v,ould be the mean recirculation time of
. each fluid elem_mtsuch that :_

_l_ Forcomput,ng total volume V I

k,,, internal flow rate = _-v"

Noee that the internal flow rate through zone A is
f

(l+_)v which is different from the internal flow
, No rate through zone B,/_r. Since p is in general much
i

; greater than 1, the overall internal flow rate is taken
:_ //v fo¢ simplicity. _[
r it was found[9] that in a cylindrical vessel havingset

: , ,- o.cupt.x(A_.o ) jet nozzles at the inlet and outlet respectively and
R-CUPLXU+AO) filled with water, when the response curves were• . ce=cM__x(e,o)

_: . CE,C.M_X(_'X_],0,0,) plotted in the dimensionless form, E(O) vs. 0
' • f- " _ CF-CI_LX(co_RI,t).s_L't)) (or t/t), they were remarkably similar to each other

.._. ;,. [ with various flow rates for a given nozzle size.
_*-:-" ";" Ex,t . jlt)= _ c£ CF Theseresults indicate that for a given nozzle dia-

_ _ P' meter, a flow pattern is established, which is

_, ::. Fig. 16. Computer 11awchart of comlmtia_ the invers# essentially independent of flow rates. Hence it also
:_°., :.: .. transformofeachcomplexroot, implies that within the experimental range, the

• ,_._., i_i

_,T'$__C_=I

_ 0 =0 _o0

'°°-A b "°
I

r

_-80 In_ ,.5

l _ ,0 500
_4o !_ .0 500

i i 2°1 o.o,o .:,
_w. ,!;._,._ _c - t_.,ooo

:. , , ,o_ \

"? '" ""'__ E_}'O 119_

' V_j:' _o #,0.1100 / ,_

. , [lgl._g.,_.'" [_,.om_';' _'*,, 40 X

o Ol 02 O'S ;o I,$ _0

•qr. I1. i_mtm/_ _t_ _ ahl_C.m_,k¢ a,,- IO_tl_,mf.
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dimensionless circulation time 0, = tell is in- A o = effective area of the stream at discharge
dependent of flow rate and is only a function of from an open end duct or at a contracted

t nozzle size. It would be very important to see if the section.

same property holds for the air flow system. We He = width of slot. [
can test this b7 plotting tc vs. I/r for various nozzle ,-

K' = proportional constant, approximately 7.diameters as shown in figure 18. if it turns out to be - "
For a given vessel the entrainment distance can

roughly be assumed constant. Equations (38) andNozzle d,ometer dj <d 2 <d3 (39) require that//is inversely proportional to the
nozzle size. Experimental values of I//L found from !

a3a3/,_ the dimensionless circulation time can be plotted ' !I
against nozzle diameter d as shown in figure 19.

to dl i

_ I -
' T

"' _;' d
, "" Fig. 18. Circulationtime versusinverseaf.,ow rate for

_;"",'_ : variousnozzlesize, Fig. 19. lnj;,uenceof nozzlediameteronrecycleconstant, i

-,:_'.'_ ,_." " a straight line for a given nozzle size, then 0¢ = felt A circular jet has been assumed. If it turns out to be
"_:• "_,' is independent of flow rate r. It follows from equa- a straight line, it will justify partially the use of the

"_ "_ ' tion (36)that proposed model. Also from the slope of the hne,

[_?_ one can estimate the actual distance the fluid
_"...j,_ _ tc I

|>_._" Oc= "_= _. (49) elements travel.__,_ Once we have determined the recycle constant _,

L:_S:_'_ Equation (37) is essentially saying that the recycle the other fear parameters can be determined as
a.._,_,_,_g_'L'__ constant/1 can be found from the dimensionless follows.

:']_'_;_;_ circulation time 0_, and is a function of the nozzle The height and the time tnm,of the first peak
in

size only. This then establishes the method for the the response curve arecompletely determined by

determination of the first parameter ,8, the recycle the flow condition through( "_z°neA. Equation (29)

constant, can be written in the dimensionless form as

On the other hand, a good prediction of the
recycle constant _ is possible on the basis of a 0ms '= n,t-1 0,4 (_2)
simple entrainment concept. It has been assum_l \ n,t / _;._
that the rccirculation flow in the room is entirely where

promoted by entrainment in the inlet jet. _ , t_
Equations for the entrainment ofcircularjeta and On,, - i, 0_ = _ .

of jgts from long slots have b_n mathematically ,_ l_ _'_ ":
presented in ref.[I ]. They are ]Equation (26) can also be written in a dimensionless l_

, p - _v m entrainedflow ,, 2 X form for zoneA as
v initial flow g'X/4o I..O\.,*'t ""

(rcuarjm.) (so)
p._v
v inidalflow (S3) -

(ionssloa) 01) ---
Fora sivenam andlast of thetim link wecan

whom ¢ktmntn_#, andm,uniquelyby • tri.band.m'or "' ""
3"- distsn_fromf•m ofoutl_ ,l_ro_'dmu,

t

I
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Having established 0A, 0Bis readily found sine,. 0_. The mean residence times 0A and 0B of zone A
and zone B respectively account for the mean time0,. OA+On. (54)

C each fluid element must spend in zone A and zone B
Note that 0s is uniquely determined from O_and of the system. The mixing indices nA and nB are ,r
0a, and 0¢ is determined lyon equation (49). We useful in understanding the mixing characteristics ][
may reduce the number of parameters from five to in both zones. These informations are directly help-
four. ful in the design, data correlation, and scale-up

The last parameter ne can be found by trial-and- of the system represented by the model• !!
; error until the simulated response of equation (35) For the ventilation problem in a room equa',ion ]_

matches the experimental one. (35) is a more realistic model than the decay func-
tion[6]. The same equation with some modification I:

_ (with enthalpy balance including heat source and
DISCUSSION the location of temperature measuring element) can _i

be used in the closed loop automatic control system
A flow model with four parameters is proposed to of room temperature.

', describe a typical space air distribution in a room. The model p'oposed in this paper is only one of !:
it is indicated that the exit age distributicn E(t) or the many applications of flow models based on the i

E(O) can be determined by using a impulse tracer concept of age distributions. The same approach ;
_, experiment and various parameters of the model, it', can be intelligently employed for the study of other

: turn, can be determined from E(t). It is also shown types of space air distributions.
• that the model can be partially justified on the basis
'., ' " ofa simple entrainment theoryofairjets.

;, "" This model is believed to be useful because the AeknowleCqlemmts--Thiswork was sup?ort.cd ;n part by
• " model par._i_eters are closely related to physical the AirForceOfftceof ScientificReseatca, Ol_c, 9fAero-

___Y"r'_" S_ Research,United StatesAir For,,.¢,underContract•.,-"-._ _: quantities of the system. The recycle constant/_ is"" F44620-68-C-0020,('1hemis Prt.;_:t),andby NASA Grant !
": : _ : the reciprocal ofthe dimensionless circulation time No. 17.001-034. i
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E$ ist 8ezeigtworden, da_tein ziemlich all_meinm Modell for die Luftverteilungin
einem besrenztenRaum auf Grund dot Aulfa.un8 tiber Altenverteilung fettseleBt
werden kann, Die Verwendunlleinm u)lehen Modelh In Entwurf_-, DatenwechNl-
beziehunllen-,Kontroll- uad Bemmunl_problemen wird be_prochenund die exped-
mentale Fe_tlegung eines mlohen Modolis wird umduen. Es wird darauf hingewiesen,

" dan einilioParameterdes Modolls auf Orund einer einfachenStremunpauffmunll
ge_h|tzt werdon k_nnen. Simelatiomergebniu,= des Modolis aufDigitalreohnern
werdon in Einzelheitea darllelellt.

II a _q_d6monu_ qu'un mod_ as_z I_n_ do distribution d'air dam un _pacu
restreint peutttre _tabli sur Is bate du conceptdo lit distributiond'alle, L'utiJisation
d'un tel mod_ en fonetion do ht _on, do lit corr41ationdes donn_. du

@ contr6_ el des_ do Is mira k I _¢,hdle mt di_t_ et la d6terminatton ex.

p6rimmudode mod_ m _ n _t jumqu6q_ mrm_ _ domodd_
peuvent Otroettim_ stirIt barndune mumption d endMImment _tmpl¢, Les r_sultats
do dmulation du mod_ sur ua ordtnateur numddque tom donn6t en _at .,1.

:!i _ ,_ f ,,/_:.
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Various types of contactors utilizing centrifugal force (centrl-

fugal contactors) have been used commercially especially in the chem-

ical industry for production of petro chemlcals, organics, and pharama-

• centlcals, for refining petroleum, and for other purposes. The _entrlfugal

contactors have been known to have characte_istlcs of high efficiency, large

?
gas and liquid through-put, small liquid holdup, and short contact

: time.

_ Cen:rifugal contactors can be classified according to methods

.:_'). of utilizlng the centrifugal force as follows (i):

,._:. i_ Tray type. In this type of contactor, kinetic energy of the gas

from the lower tray is used to impart ceutrifugaZ motion to the liquid

on the upper tray.

ii) Hechanically agitated type. In this tTPe of contactor. _as or

liquid in the contactor is mechanically agitated to increase inter-

facial area by atomizing dispersion of fluid, and to reduce resistance

for mass transfer at the interface by disturbance induced In both

fluid phases. The column or tank with an agitator, and the apparatus

with a rotating part have been invente_ for this propose.

lti) Rotating type. This type of contactor consists of multistase

concentric cylinders fixed tea "rotating shaft. The gas end liquid

in the eontactor are brought into contact cocurrently or cross cur-

rently.

8inca it Is difficult to 8lye a detailed description of all types
i

o£ contactors utlltzln8 centrifugal fores, emphasis will be placed

on the des_ription of the fluid dy_eal aad_e8 transfer aspects

of several specific types such ee the rotattoul current tray,

= sun
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the rotating co,teen,rio column, Piazza type cent@tier, Podoblelnlak ._

i

con,actor, and cet_trifugal con,actor of the rotating type, investigated by r,_ I

the first author. These con,actors are currently employed for industrial "_
!

distillation, absorption, and humidification. It is expected that the L

centrifugal con,actor of the rotating type which consists of all rotating

parts will be applied in the near future to the llfe support of men in

space crafts, air planes, submarines and civil defense shelters, and to

prevention of air pollution because of its compactness and other advantages.

It also appears that it can be used as a blood oxygenator.

I. Tray types

Various tray type systems in wblch mass transfer operations are carried

out have been developed and employed industrially. In a plate column, when

th_ gravitation_l force is the only force affecting phase separation, the

vapor ve_o_ityvand resulting liquid eutrainment in the column may set the

maximum allo.,able vapor velocity and liquid velocity. However, if the centri-

fugal force is used to separate the entrainmentt the capacity of such a tray

may be increased.

In the system _.onstructed by _nuin 8 (2), the column wall is used ax

the outer cylinder of a cyclone, and the contacting of gas and liquid takes

phice on a small perforated tray section which receives liquid from the tray
4

above and vapor frr,m the tray below. The t_o-phase mixture is discharged

tangentially it, to the eettlin B lone. The liquid is forced outward asatnst the

column wall by centrtfutal _orce and flows into the dovnco_r leadin& to the

next lowe_ tray. The vapor en_ the tray above throu&h a conduit located

i
inwardly free the colwm shell. It hat been reported that the through-put

of this trey is la_-&er the thmin o! many order trays (2).

|
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lu co::tra_'tto Hannlng's tray, the Kittel tray (3) and the

rotat_:,.,.]curvenL tray (4,5) are designed so that the flow of the

: _.... ,_ vapor is directed almost hor_zontally across the,..0C_.Z.,.'.;;_,l_ Or

' tra_. ,,_:rf,_cc through the openings.

lh,: Ki_tel tray consists of a pair of upper and lower grids,

t

a:l,! o,acb v"e _.._ divided into six equal basic parts. The openings

$ in t}_c tr;':y are Jn the shape of slots inclined at an angle to the

hor[z,,nta] plane of the grids. Thus _ome of the energy associated

, with the ga._pressure drop is utilized to give centrifugal and cen-

'_*' tripctal t.:otlonto the liquid on the tray. That is, on the upper
-g

_." grid this raotlon is towards the wall of the column an_ on the lower
,,/:,.

gri_!towards the center. Because of the absence of the overflow

_clr ard do,..:nco_erarea, the free cross-sectlonal area of the

Kitt_l tr:syis more than that of the sieve tray. Detailed

re':i_w of this tray has been reported (3).

In th_ following paragraphs, emphasis will be placed on the

descr!ptlon of the performance of the r_tational current tray. The
¢

str, tctur_ of the tray is shown in Figure 1. The shape of holes in the :.._

tray is a half ellipse, and it has a guide inclined at an angle to
%

the surface o_ the tray. As shown in the figure there are two types

of ti_crota:_onal current tray, .the upper guide tray (U.C,T.) and the .'i

_o-':, _.u|J_, tray (D.C,T.). The liquid on the trey is carried alon_ by

,:,,.,..,_,, is brought into intimate contact with the gas. For this reason,

t,'.., t:._y h,:_ ,._any _dvantngos in comparison with other trays,

|:, "_.. ,.:-ut'_s ._ and 3, the pressure drop of gas flow throttgh a tray

._:: .! t:... ![e_t:td holdup on s tray of this type are compared with some

!
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,++_" trays of the counter current type without do_mcomer (4). It can ,+

be concluded that the presaure drop through the D.G.T. is smaller _ I;

! than those through other trays. It is, therefore, expected that _° Jila larger volume of gas can be treated with this type of tray than t ++

with other trays. Furthermore, it is interesting to note that _
F

|,

the behavior of the tray is similar to that of the Ripple tray+ as I

shown in Figure 2. From Figure 3, it is also evident that the liquid
!

holdup on the D.G.T. is smaller than those of other types. This is

probably due to the fact that the falling of liquid through the tray

Is made easy by the down guide.

The residence time of liquid on the tray was measured exper-

imentally, and the desorptlon experiments were carried out by using

D
the water-oxygen-air system to determine the liquid phase resistance to

the mass transfer (5). The gas absorption experiments were carried oct

by uslng the water--ammonla-air system to determine the gas phase relsltance

to the mass transfer (5). The results of those experiments have indicated

that the gas flow rate and the residence time of liquid on the tray control
/

strongly the plate efficiency. The Hurphrea plate efficiency of this +_I

++++/
tray for gas absorption based on the liquid phase is _-ompared with _:+....

those of other types of trays as shown in Figure 4. It can be concluded that I +

Lthe rotational current tfsy can be operated at high efficiency up to +_+ +

large gas flow rate. I_+,:

Th_ tray type centrifugal contaotore are used for sam cleaning ++

4rod dust collo¢tlo11 in air pollution control. One particular tray,

++O the Kottot tray, has been exteu£vely used for air pollution control

In Europe.

II
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2. Mechanically agitated tyj!es :_"

:. The rotating ccne column (6, 7), the rotating basket column, the _:

rotativg flat plate column, and the spinning band column (8, 9, I0)

_' be]e_:Z to this class of distillation colu:,_qs,each containing a rotating .:

agitator which disturbs both the gas and liquid phases. The 'small

laboratory scale columns of these types perform excellently and are effe,:ive

for the separation of components from a mixture with a v:Lrrow boiling

temperature range, for instance, the separation of isotopes _6). The mech-

anism of flow of both gas and liquid in these systems is not yet well known

and the prediction of the capacity in these systems can not be mad_ accurately.

Therefore, it is difficult to design a commercial tower of this type.

The rotating concentric tube distilling column (ii) is similar to

the rotating cone column, the rotating basket column, the rotating _lat plate

column, and the spinning band column. The column has the cbaractcrlst_cs

of =he small liquid holdup and the low pressure drop which is slmi.1_r to

that of the wetted wall column, and of the high flow rate. The liquid

contacts with the vapor in the narrow annular ._pacebetween the stationary

outer cylinder and the rotating inner cylinder. The mass transfer

coefficient increases as the speed of the rotor becomes greater because . :

the flow of vapor is disturbed by the rotation of the Inner cylinder. This / "_

can be seen from the results of the inve.stlgatlon by Taylor (12) and ,,o.[_.I'_

Lewls (13), who studied th.oreticaliy and .xp.rimentally the me_nanism of 'r_'.

fluid flow in an annular apace between the _otatln_ double cylinder. It has __i_
been theoretlcally determined that the ef.flciency of distillation increases _

O with the increase in the desreo of ._urbulence in the vapor phase and with the

decrease i,t the annular space and in the fi_ rate throush the annular space
WL

(16). _.Is fact has a.l.so been confirmed experlmentally (15, 16, 17, 18).
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Nillingham and coworkers (11) carried out experiment_ in a col.mn

with a diameter of 9.62 cm and a height of 58.4 cm. The column was

provided with a rctor with a diameter _f 7.44 cm which was operated at
i

speeds in the range of 0 _ 4/000 R.P.M. The feed in liquid form was

,:mintain--d in the range of 600 _ 4,700 cm3/hr. The pressure drop was lower

than those of slmilar type columns described previously and it increased

with the revolution speed of the rotor and with the flow rate of liquld,

. ;

:. -- as shown in Figure 5.

_, '_ If It is assumed that the surface of rotating cyllnder is not vetted

'__ _ and that the race of reflux which flows down along the inner wall of a

stationary eyllnder is independent of the rotation of the cyllnder, the

°_" 0 _£quld holdup can be calculated by the foUo_ing equation (19).

3 0 _ 1/3

w = (-o7) (1)

where w is the thickness of liquid film, Q is the volume flow rate per wetted

perimeter, _£ and p_ are the viscosity and density of liquid respectively,

a_d g is the acceleration of gravity.

The values of holdup calculated from equation (1) for the rotating c_n-

ceutric tube distillinS column are shown in Table 1. The number of theot_ttcal

plates decreases with the increase in flow rate and increases with the speed

of revolution, which is illustrated in ¥isure 6. A high efficiency is obtained

above the speed og about 2,300 R.P.H., 8s shown in FJsure 7. The reason may

be due t6 the fact that the vapor phase becomes hishly disturbed above this

critical velocity.

/

a.
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In a plate column, the gas bubbles are passed into a liquid holdup _

through the submerged openings in the tray to increase the contacting area -i

of the gas and liquid. The amount of agitation that can be obtained In

this way is limited essentially by the rate of gas flow•

Tlle tank with an agitator is a more efficient device than the plate

column for agitation of the liquid on the tray regardless of the gas throu_,h- !!
1

, put. The tank, therefore, may have to be used for the agitation of viscous I_

' l_quids or slurries. Since the agitation also increases the residence time _

_ of the bubbles in the liquid, the tank may be an efficient device

;'_. where absorption is accompanied by a chemical reaction especially a slow

r reaction (20). [,

':¥" "O It has also been reported that a horizontal cylinder with an agitator

_'":"_"I_" ca,, be used for the absorption operation (21). The agitator consists of several

discs fixed to a rotary shaft placed in the center of a horizontal cylinder.

The structure of the disc is shown in Figure 8. The liquid fed near the end

of the cylinder flows through the discs in the form of sprays, sheets, and

d droplets by centrifugal action. The gas is sent through the cylinder co- _.

currently or countercurrently to the liquid. According to the studies by

¢,anz and coworkers (22), this absorber is hIRhly efficient, but its performance

and efficiency for industrial scale operation ara unknown.

These systems with asitatozs have been reported in detail (23, 24).

3. Rotating types

Rece_.tly eentrlfusal eontaetors consisting of all rotatln_ parts have

been _eveloped for _ss transfer operations. Rany of thee eontactora have

l" been descrlbed in detail (21).

' _ _-_

' I
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_. The Podobieln_.ak centrifugal rectifier used in the distillation

operatlon belongs to this class of contactors (25). The main part of the "_

_ rectifier is a rotatlng drum made of a spiral metal sheet. The liquid _

t_ god neac the center flows in radial direction by the centrifugal action

t
_'>'_ as a thin film along the metal sheet. The apparatus can be operated at a

relatively large flow rate without any entrainment which decreases the _
]

distillation efficiency. It has been reported (26) that whr.u a small apparatus

'with a rotating drum made of a metal strip, 1/4 inch in width, I00 feet in
!

length, and 1/8 inch for distance between coil of spiral, is run at a speed

of 1,200 R.P.M., the approximate feed rate is 12 liter/hr, the liquid

holdup is 30 ltter/hr, the pressure drop ranges from 10 to 20 mm llg, and

its efficiency corresponds to that of a 80 plate column.0
The rotary surface vapor compression still who_e main part consists of

the conical disc was fabricated in 1952 by Hlckman (27). This apparatus has

been further developed for application to sea water distillation (27). 1_e

schematic diagram of the apparacus is s:own in Figure 9. Feed water is

supplied to the inside surface of the rotor and vapor Is condensed on the out-

side surface. The industrial scale rotary surface vapor compression stills have bee_

in operation for several years. To be able to design this system intelligently,

however_ the mechanism of the evaporation and condensation on a rotating heat

transfer surface must be known.

The penetration theot_ (28) and _he lurf&_e renewal theory

(29) predict that the absorption rate on the zene_ed surface o{ liqutd is _"_

excellent. These theories my be employed generally for the design of con- _.._

_I tatters by utilising the centrifugal aetl_. For exa_le_ these theories co_

be applied Co the FlaIIa type cantrifuIal absorber. _ shown in Figure 10, --

I the absorber eonsistI Of several e_el_t_e cylinders fixed eo a rctatlnI shsf_ /i_
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,,' ,....eraI stationary cylinders. The liquid fed near the center flows

.::""L_'periphery of a rotary cylinder by centrifugal action as sprays, ._

_.:.._.;,and droplets, and then collides witit the wall of a stationary _ m

#

c..'i::,h.r.After the impact one part of the flow backmixes with the sprays

,,::,i t,,e other part flo,..Js down along the cylinder wall. .

0_ the other hand, one of the authors and his coworkers (30) have I_

: de :i.,ned a centrifugal contactor of the rotating type whose main part con-

"_ sists of multistage concentric perforated cylinders. The schematic diagrvm i_

of tile contactor is sho_m in Figure 11. The liquid fed near the center of

_. " the cylinder is spouted from a small hole drilled through the rotating

_-_'J c2,'lJudcr wall, aud gas is sent cross currently to t:he liquid in an annular" ._

r

"'" _ space between the rotating cylinders. _
I:

_ r "_ ":_ _ TO understand the fluid dynamic and mass transfer aspects of these

rotating type contaetors, investigations on the gas absorption by the short

liquid Jets (31) and the droplets issued from a capillary (32) in the

grfivitatlonal field have been carried out. Furthermore, the fluid flow and

r,ass transfer in the centrifugal field have also been investigated (33, 34, ,

been

35, 36, 37). _,

The distribution of droplets which are broken off front the liquid Jet '£.,.

issued from a rotating cylinder and a spinning cup has been studied by Walton _::_

and Prewett (39)_ Adler and }larshall (40), and Hinze and Illlborn (41). The

photographic observation of the flow pattern of liquid Jets injected from a !:)i_

retatlng cone cup has indicated that the liquid from such s cup forms a sheet _",'_

or film, at the periphery of which the llquld Jets are formed and break into

droplets. Furthermore, Hinse and c_orkers (41) have investigated experiment_lly _

_::'.: effects of the speed of rotor, the flow zate of ltqt,'a_and the angular I

]974004672-03]



v,: ]otity of the cup on the flot¢mechanism. Figure 12 sl_ot,sLhe distribution :_

of tle drop diamete_ as a function of the rotating velocity. 'll_ese

e::pe:lmental results were obtained with a cup having a diameter of I0 cm -_

_' operated at the liquid rate of 80 liler/hr. Walton and coworkers (39) _

|l_av,_.found that the drop diameter goes through the maximum value wha,, the <

an?ular veloclty is increased and that the drop diameter is given by the

t equa tion,

d --K_ (2)

; ' where d and D are the diameter of the drop and that of the cup,respectively,
+ •

,_=... _ is the angular velocity, o is the surface tension of the liquid, and K is a

¢_._"' constant. Although equation (2) agrees with the experimental results of lllnze

"_ and coworkers (41), it does not contain the effect of the viscosity o£

liquid.

Dixon, Russel, and Swallow (42) have investigated the effect of the

density, viscosl_y, and surface tension of the liquid. Furthermore, they

have carried out a theoretical analysis, by assuming that the different behavior

of the formation of sheets in the different liquid is due to the trajectory

of the liquid "low from s feed tube to the periphery of a cup.

As a par_ of the fundamental studies of fluid dynamics of the centriful,at

contactor of the rotating type (30)_ the first author defined

theoretically the discharge ¢oefficSent in the centrifugal field, neglecting

the eft'octs of the physical properties of liquids but takin 8 into account th_

c:#_ects of hole diameter, wall thickn_es_ cylinder dianmtert revolution spe,:d

@ of the cylinder_ and discharge preieure of liquid (33). Bventually, the effects of

viscosity end surface tension of diechatIed ltqutdi wets taken into account

and the equations appllcable _o _he liquids of various viscosities and nurface

I I
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_jfz tcnsions in the centrifugal field were derived (33). Other studies

on the flow pattern of a round liquid Jet in the eentrlfugal field

are a study of the discharge from a rotating pipe (43), a study of the I!

discharge from an orifice (37), and a study of the atomizing pattern of ! !

liquids spouted from a cylindrical nozzle (44). _ _!
i

The flow pattern of the liquid jet spouted from a rotating small hole I
/ i

is very complex. However, it is known that the Jet travels due to the

- comblnation of the circumferential velocity and the radial velocity (37). Therefore, I

_, it is clear that these give rise to the relative velocity against the surrounding ]

i_ gas. As the discharge velocity of liquid is increased, it undergoes transition

,q
-' . consecutively through the stages of drops, laminar flow, turbulent flow, and spray.

".:. Figure 13 shows the most typical forms of liquid Jet spouted from a rotatln_,

'_'/' O small hole (38) In this figure (a) is the dripping flow, (c) and (d) are

the laminar flow, (e) is the turbulent flow, and (g) is the spray. It can be

seen that these flow patterns in the centrifugal field are similar to those

in the gravitational field.

ior
According to the experimental results of Tanazawa, Kurabayashi, and

Salto (43), the _low pattern of liquid Jet In the gravitational field can be

divided as follows :

l Je < O. I dripping

Je _ 0.1 _ lO laminar flow

Je @ 10 _ $00 turbulent fle_

Je > 500 spray

where the Jet number of liquid stream, Je. is defined by:, of

t
dw 2_,. _ 0._

S

| m
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_" and d is the diameter of hole, w is the discharge velocity of liquid, and |

pg {s the density of gas.

Furthermore, from the available experimental results (35), It can be _ [1

i

seen that the flow pattern of the liquid Jet in the centrifugal field must
i

be defined by the Jet number based on the resultm%t velocity as mentioned i I

prevlou:_ly. i_

I
The diameter of the liquid Jet gradually becomes smaller due to the

increase in the rotation of speed. Figure 14 shows the relation between the {

Jet length and the ratio of Jet and hole diameters, dj/d,when the radius

of cylinder is 2.5 cm (37). From the figure, it is obvious that the diameter
i

of liquid Jet decreases as tl_eJet lengthens. The diameter of the Jet when
B

the discharge velocity is slow and angular velocity is high becomes remarkably
O

small immediately after the liquid is spouted from a hole. ||ereafter, the

continuous length of liquid Jet becomes short although the flow of Jet is

laminar, as shown in Figures 13(c) and (d). This phenomenon can not be

found in the liquid Jet spouted from a small hole in the gravitational flcld. ;,[_

In these rotating type gas-liquid contactors, mass transfer takes place _

at the surface of the rotating liquid Jets, sheets, droplets, and liquid _d.....,,,_';_"

film along the inside wall of the cylinder. It is important to know which one }_ _

of these controls the mass transfer rate so as to design an apparatus of high _(_i_,_,,,

efficiency and to determine the optimum condition for op_ration, i;o

When a small scale Piasza absorber with two rotary cylinders as shown

in Figure 10 was operated cocurrently, the gollow_n_ results were obtained (_$).

'llm _bsorptio,_ rat_ was independent o5 the later'facial a_ea _,lch w_s p_uvided

by tho liquid films alon_ the in_lda wall of the cylinders when the least'facial

area of the sp_ay_ _rom the rotating cup wee maintained co,_tent. Ilowever, _en

!
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the interfacCal area due to the sprays was reduced to half and that du_

to the films was maintained constant, the absorpt.ion rate became ha]l #

: can be seen from the results that the,spray from the xotating cup cant

the overall absorption rate.
/

On the other hand, in the rotating type contactor (30), mass trm_._fcr

:, between gas and liquid takes place as a result of contact between g_:;and
¢

t

:, a liquid jet or g,.sand a liquid film along the inside wall of the _y]inder,

, in order to evaluate the rate of mass transfer from rotating liquid jets,

',} , the contact area of gas and liquid per unit volume of a continuous liquid jet

_- T spouted in an annular space from a small rotating hole has been determined

*': "_ theoretically and experimentally (37). Furthermore, the absorption of pure

- ,ly carbon dioxide by a liquid "let issuing from a totaling hole (35) and that by

G
a flowing liquid film along the inside wall of the rotating cylinder (36)

have been studied. It can be concladed from the results that the amount of

mass transfer in_o the liquid film on the wall of the rotating cylinder Js

much less than that into the liquid Jet issuing from a rotating hole. llot,:evc,,',

the absorption efficiency increases as the liquid depth on the' ins'ldcwall

decreases.

The pressure drop under the condition of the cocurrent flow of gas and

liquid in the P_azza absorber is affected by both the rot_tinfi velocity ond

the liquid flow rate. The llquld holdup in this apparatus increases whet, the

speed of revolution is lowered. This increase in the liquid hold-up tends to

obstruct steady flow of gas and consequently increases the pressure drop steeply.

Thi_ l_ the so-called flooding phenomenon. The point of flooding d'cpends on

the flow r_te of liquid but t_ alm_t Independent of the ga_ rate. In the

countereurrent operation of this apparatus, these relatton._ are comp._ex.

Ao mentioned previously, tt £s deslrable to _ake eyXl.nders _s l_rge a._

poeslble for the purpose of Inereasin B efflcleney of absorption. For abe_orl,tion

Ei
I
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J
_. space between cylinders must narrow. However, to increasethe be this tends :_
If- J

the pressure drop. To solve this problem a number of holes is often provided in

the bottom of the rotating cylinder. Even with this improvement, the liquid

throughput in radial direction cannot be maintained smoothly because the "

main part of the absorber consists of the rotary,cylinders and stationary
i

cylinders, which are overlapped. As a result, the cons',mptlonof power is
5
J

enormous, flooding tends to occur and the countercurrent operation becomes

difficult. To avoid these difficultLes Alcock and Millington (46) designed '

; the double rotor contactor. The experimental results (46, 47) indicate that

. the pressure drop for the double rotor type is 1/2 to i/3 of that of the

_. rotor stator type. The double rotor type is more desirable than the rotor

_;i_ _ stator type for the treatment of viscous liquid,. However, the behavior of

'f*'_!_:i 0 liquid flow into the contactor has not yet b_,n investigated. In the centri-
fugal contact_r of _he rotating type (30), the pressure drop is much smaller

then that of the Piazza type becau_,e the gas is sent crosscurrently to the

liquid Jet in an annular space between the rotating cylinders.

Rumford and Rge (47) have investigated experimentally the effects of

the water rate, the gas rate. the concentration of the solute gas, and the

revolution speed and structure of cylinders on the absorption rate in the

Piazza absorber of the double rotor type operated cocurrently. They hive

employed three systems, nmaaly, carbon dioxide-rater, emnonta-vater, and

acetone-water. Table 2 shews the experinencal results obtained at various

flov rates o! _he liquid and 888. If the total volume of the cantrifusal

absorber is V ft 3. and if Gm _ole8 o| 888 flee coeu_rently etch Lm"uole8 of

liquid, the folleein8 equation _gn be obtained fron the Iterial balance (_7).

• •
4, dy. N "(Ca" CpdV (+)

m
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15 ;

where k£a is the liquid phase coefficient on the volume basis, Ce Is the __
concentration of solute in liquid stream which is in equilibrium wlth gas,

C£ is the concentration of solute in the main body of the liquid stream,

and x and y are mole fraction of solute in liquid and gas, respectively, i _'

The number of liquid phase transfer unit, N_, is ! I_I

N - v ._ ._a/L (51
m t*

t

where c is the average molal density'of the liquid. Then, the volume of a I

liquid phase transfer unit, V/I;L, to

v/NL= _/c • kta 16)

This is often denoted as V.T.U._. And alternatively the volume of a gas

0 phase transfer unit, V.T.U. s or V/Ns, defined as

|
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were 807.and 3.5% respectively. Furthermore, Alcock and Milllngton (46) _* "

found the optimum condition from their experimental results obtained by using a 6

cylinder unlt and designed a large scale absorber in which 15 cyllnders were fi_ed

to a rotor, 12 inches in diameter, and have examined it with the monoethanol

a,tine-carbon dioxide systems. The experimental result obtained with both

equipment are compared In Table 3.

The absorption rate of pure carbon dioxide gas by a rotating round

water Jet was measured in an annular space between the rotating cylinder and

a stationary concentric outside cylinder (35). Figure 16 shows an example of

the relation between the gas-llquld contact time. 6. and the Murphree
=

absorption efficiency. _ when the hole Is 0.9 m in diameter, e was evaluated

by the theoretical equation (35. 38). From thls figure It can be seen t,hat the

plot of ENL versus Je leads to a straight llne throq_h, an orlgl.n,, .a,,ndalso

that the pure carbon dioxide gas absorption by a water stream

Issulns from rotating Jet holes conforms to the unsteady-state diffusion :_

theory (28). Furthermore, the g_s absorption rate by a water Jet spouting from -',, ._

rotating small hole was observed to be large Imedlately after the llquld _'_;_ .

was spouted from the hole. Therefore, for practical purposes, It Is desirable ....

to employ a multl-rotor type contactor In order to sake as many Jets of liquid L _._'_as possible.

In addition to the experbsontal sue trsnsfer study montioned praviously,

m,.,chan_su of fluid flow and the mass transport of the I/quid fibs on the in-
e •

_t_e yell of a total;in8 vette4 cylinder vers theozettcslly tnvut.'getud (36),

The effects of various factors such as the 8as and 11qu:Ld velocities, the

depth of liquid layer, the amber o! ravolutloas, and 8as-llqtLtd _ontact timu _ .....

etc. on the nabs transfer race wre enalMd.
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I The centrifugal contactor of the rotating type (30) has been extensively

i" developed in Japan as absorbers, humidifiers, rectifiers, etc. based on the ;

fundamental and applicative studies by the first author and his coworkers _

! (33, 34, 35, 36, 37, 38, /.d_).

_ Some of the special features of gas-liquid contactors utilizing the

centrifugal force are discussed in this report. These contactors have come

into general use only in the last ten years and there is as yet no literature
t

that deals with design features and fundamental studiesp and many problems
¥

are yet to be solved. However, it is expected that these contactors will be
(

i several industrial fields in the future because ofemployed widely by near

_i,_ the generally favorable mass transfer characteristics in the centrifugal field.

_' "_1 Some contactora mentioned in this report allow treatment of a viscous solution,

:_-, .... | and also can be operated without flooding and at a large flow rate. Furthermore,0|
t:_,| they can be employed where pitching and rolling of the systems cannot be

avoided.

t

I I I
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Table i. Holdup i

?

Liquid flow rate Holdup Holdup _i

[ml/hr] Column height N_ber of theoretical _[ml/m] Plate

1,000 12.8 0.10 i,
I

1,500 14.5 0.14

i

2,000 15.9 0.19 1_

2,500 17.2 0.24 -i
t,

:3,000 18.2 0.29 i

3,500 19 • 2 O. 36

4,000 20.1 0.40

l

• ......F

.... wm_e-,.,..........F q_p-_ ............ . .... _ ............ ,. _ .....
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i

Table 2.

Lm Gm HO_ Nog V"T'U'oR' V'T'U'og i

/ 22.2 3.66 0.825 0.00352 0.04 9.4

44.4 3.66 0.825 0.0070'4 0.04 4.68

_ 66.6 3.66 0.825 0.01056 0.04 3.12 6Z CO2 in gas

88.8 3.66 3.850 0.01450 0.039 2.28
111.0 3.66 0.870 0.01850 0.038 1.79

44.4 1.83 0.56 0.0095 0.059 3.48

44.4 2.45 0.56 0.0072 0.059 4.60

44.4 3.06 0.56 0.00575 0.059 5.75 9Z CO2 in gas
44.4 3.66 0.56 0.0048 0.059 6.89

_,

k

I
I ' o

• •

.....I I .........
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Table 3. Comparison of 6 Cylinder and

15 Cylinder Absorbers i
t

6 Cyllnder Absorber 15 Cylinder Absorber
'" ;

Liquid flow Absorbed Pressure Absorbed Pressure

rate k a C02 drop k a C02 drop
[gal/hr] g g

[ib / hr] [In-W.C. ] [Ib/hr] [in-W.C. ]
L .--- . .,. , .. . , ,

20 7,700 13.1 5.5 31,000 17.6 12

30 10,5G0 16.9 5.5 41,000 19.6 14

40 12,700 18.3 5.5 47,300 20.5 16

Concentration of inlet liquid 85% M.E.A. 2.5% C02

Temperature of Inlet liquid 60eC

Gas flow rate 1,200 ft3/hr

CO2 concentration of inlet gas 16Z

Number of revolution 2.300 R.P.H. "_

""

n I ......
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i For a man to survive in any surroundings, he has to maintain

breatblng, drinking, eating, and activities related to waste elimination.

In solving the problem of the life support in space vehicles, the control

of atmo_pheric temperature, humidity, carbon dioxide level, trace contaminant

level, :,rovis_ons for waste elimination, and the supply of oxygen, food and

water must be considered. Life support systems are often categorized

in terms of the extent to which the human waste products are reclaimed,

that is, the degree of ecological closure. The possible degree of closure

ranges from open systems which provide no waste recovery processes, to

partially closed systems which provide recovery processes for water and or

oxygen, and to closed systems which provide food and all other llfe support

needs from the processing of the human wastes (i).

' The removal of carbon dioxide from the enclosed space or cabin atmosphere i_;

one of the important functions of a llfe support system. The concentration

of carbon dioxide in normal air is usLally taken as 0.03% by volume. TheJ

air exhaled by the breath of man contains approximately 4.5% of carbon

dioxide. Therefore, there can be an appreciable build-up of carbon dioxide

in any enclosed space.

i Professes for the removal of carbon dioxide from gas mixtures have

been sufficiently developed in the chemical industry. In aerospace applicatlon,

however, uses of many of the techniques will be restricted severely by

weigh_, power, and volume of the process units and other characteristics of

the processes. In addition, the processes must be operated in the zero

gravitational fleld.
', ,w

Various promising methods for the removal of carbon dioxide in the

_ i,, cabin of space craft have been propose_. In the future, however, many other

1974004672-064
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different methods will probably be proposed for different systems with

different degrees of ecological closure.

The portable life support system, to keep man alive and comfortable

outside the sDace capsule is also needed. Reid and Richardson (2)

reported a new process for the removal of carbon dioxide in the portable

life support system. They have concluded that when ease of handling and

safety are considered, when heats of vaporization are examined, and when

other thermal and physical properties are evaluated, water is still the best

absorbent (2). However, since the solubility of carbon dioxide in water is

very low, a high water flow rate is necessary to increase the removal of

, metabolic carbon dioxide. For these reasons, the use of a Jet momentum pump

for absorption and a centrifugal contactor with turbine blades for desorption
p

i ! ( has been suggested in the process. This appears to be one of the promising

i i methods for carbon dioxide removal in the air and space crafts.

#

i The processes and contactors which can be operated in air and space

crafts are few because they are restricted by the conditions mentioned

previously. Contactors,whlch can be operated in the zero gravitational field and i

which are reviewed in this report, include the packed beds filled with adsorbent I

particles, venturi contactors, and centrifugal contactors. Emphasis will be

placed on the description on one of the centrifugal contactors (3). i

Packed Bed I

The adsorption method has been developed recently because it can easily i

fbe designed for operation under the condition of weightlessness.

The typical system has two beds of molecular sieve connected in parallel. 1

i

While one bed is adsorbing carbon dioxide from the t.xhaust cabin air, the

¢, •%

s

/

,- , _ . - ,._.-: ..........................
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oti_L.r i,, b¢.in_: rc_.,_,neratt,d ,,r d,.,,_rbed. Thu ,Ic:,,_rl,tion ,)I tl_, I,_I i' J! ,t
u._uallv accompli._ll_.d bv at,t,lviu_: lie,it, vacuu';; or a to_p,bin:lti_m ,_t I,oth .{

i
after the bed has been isolat¢.d from. t!;e r¢_:moving procwss (/4).

Detailed reviews an.4 studtt.'s (/+, 5, ()) O11 the use o[ lllolt'c ul,ir ',iwvw

for the removal of carbcn dioxide are available.

The pressure drop _f gas through the bed of the adsorbing particles is

generally not small. Iherefore, if the duration of a space mission is pro-

longed or if the size of the cabin space is increased, the weight and volume

of the bed and the power required to operate it may become excessive.

Venturi Contactor

Venturi contactors were originally developed for the purpose of dust

• _ and mist separation. In one mode of operation the gas to be scrubbed is passed

"_ through a tube where low pressure liquid is injected into the gas stream at

i " L the high velocity throat section of the tube. A high degree of liquid

i _ dispersion is attained when the gas velocity is high. On the other hand,

! the introduction of gas at the throat of the venturl, through which a liquid

! stream flows, results in a mixture of finely dispersed bubbles in the liquid.

1 Both situations give rise to the effective mass transfer in the venturi con-

i ,
i _ tactor (7).

£ii" In general, the venturl contactor has a high capacity and an appreciably
i'!! i';i'-9' low energy requirement for a given amount of solute gas transfer. In addition,

}' it can be dlrectly incorporated into any process without additional equipment.

_i' Therefore, the capital cost of a venturi contactor is low compared to an

tJ4_ . "

_ -: absorption column. For these reasons, venturi contactors can probably be
#

employed advantageously for the purpose of removing carbon dioxide in space

"_"" crafts. However, the published studies on the mass transfer characteristics of

" the venturi contactor are few. One shortcoming of the venturl contactor is that

2 _.

o[ e

Y , ,, (. ,., _ , ....... ._ -., .. ..................

974004872-088



!

4

the pressure drop of fluid through a w'nturl is gL'nerally high becau_,e tile

fluld throughput must be maintained at a high level. J

Centri_u__a_a! Contactor

Recently centrifugal contactor_; consisting of a11 rotating parts in

which mass transfer operations nre _arried out have been developed (8, 18).

These contactors are not influenced by gravitational force and have the

characteristically high _as and liquid throughput, small holdup, short con-

tact time, and high efficiency.

Takahashl (8) has established the design method for a npw centrlfu_al con-

tactor (3) whose main part consists of double or multi-stage concentric

perforated cylinders. The schematic diagram of the contactor is shown

in Figure i. The liquid fed near the center of the rotating cylinder via a

rotating hollow shaft is spouted from many small holes drilled through the

wall of the cylinder into an annular space formed by the double cylinders.
f

: _ The gas is sent cross-currently to the liquid Jet in an annular space. Mass

i transfer between the gas and liquid takes place as a result of the con,'aat

between th_ gas and the liquid Jet or the gas and the liquid film on the in-

side wall of the rotating wetted cylinder.

Some of the fundamental data required for designing this contactor are

_iven in this report.

_. In a multi-stage centrifugal contactor of the cross-flow type, the

discharge velocity of the liquid from a rotati1_g small hole is Influenced

by the dlaaeter and length of a hole, the diameter of the cylinder, ehe

_! pressure of the inlet liquid, the depth of the liquid holdup in the cylinders,

_. and the revolution speed of the rotor (12, 13). For a stable operatlon,

the flow pattern of the liquid Jet and _he discharge coefficient mu3t be

considered first in the designin_ of this contactor.

© :

t
l

..... __ ._ -,--__
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D Flow pattern of the liquid Jet

As the discharge vt!ocitv i_creases, the flow pattern of the liquld

issuing from a rotating nozzle or orifice becomes dripDing flow,

laminar flow, turbulent flow, and spray. This mode of flow pattern change

is the same as that in the gravitationa] field (9, 10). Since gas flows

normally to the rotatiPg liquid Jet, the behavloc of the liquid Jet in the

contactor is _nfluenced not only by the disturbance in the liquid but also

by the friction with alr. The breakup length of the laminar liquid Jet

increases with the discharge velocity. When the viscosity of the liquid

increases, the breakup length becomes loraer and the critical velocity to

f the svrav tends to be higher at the low velocltv. The effect of the

. _, surface tension on the contraction of the liquid Jet may be negliglbl_ when
!

i _ the Weber number exceeds 4 (I0). These results show that the flow pattern

of the liquid depends on the Reynolds number Red, the Jet number Je, and

!i the physical properties of the liquid (II, 16). The Reynolds number based

i on the hole diameter indicates the degree of the turbulence In the fluid.

j I
I The Jet n_mher based on the relative velocity determines the effect of the

resistance of the surrounding gas.

i__jl Discharge coefficient

If the coordinate system rotating at a constant angular veloclty, w,

is used, and If the Coriolls force is omitted, the Bernoulll equation for

_!'!I centrifugal represented by

the fleld is

_, "_ r 2 2

,_'_ _ 1 (v,)2 w R

_ - ---_ + �gz= corot. (I)0

where v* is a relative velocity of fluid with respect to the rotating

I coordlnate_.



I By u._tng the boundary condition,; at I and II In FIRure 2,

B. C. i: r = RI, Pl = PI' v* = 0 (2)

B. C. 2: r = R2, P2 = P2' v* = w

the expression for the discharge velocity w is obtained as follow_:

w= ¢2 A--P-P+ (R22- R21),? (3)P

where the pressure difference &P is given by

_P = P1 - P2 (4)

[ Therefore, the flow rate Q is given by _he following equation in an ideal
t

case.

( ¢ c,/ ,i,>2Q - wf2 = Ccf 2 6__[P+ - m (5)0

where f2 is the cross-sectional area of Jet spouted from a small hole and

f is the cross-sectional area of the hole. Contraction coefficient C in
; c

Equation (5) is defined by the equation

Cc - f2/f (6)

of fluid flow, and the discharge coefficient should be defined by the

following equation (12).

,' ¢2f c,/ ,/o'Q - Cf --+ - ) ; C - Cc • Cv (7)

where C is the discharge coefficient in the centrlfugal fleld and C isv

:" I the ,elocity coefficient.

- ,i__j,,- ""- ='-I,iT,'.... ,.]_.: ....-.........._................
l

1974004672-069



J
t

i
7 i

| , ISolving the Navier-Stokes equation for the motion of fluid in the
i'

concentric double cylinder with the boundar conditions (see Figure 3). I

. i,

B. C. i; r _ rl, co= C°l' P = P! i

(8) il

B. C. 2; r = r2, w = Co2' P = P2 ,i_

the following equations are obtained, i

2 2 !.
:, rI r2

1 [r r22 - col r21) - Wl)] (9)Vo(r) = 2 2 (_2 r (Co2
r2 - rI

; 2 2

r - rI

P(r, z_ = Fl(Z) + 2 p 2 2 [(Co2r22- Col r_)2 2

i (r 2 - r 1)

i! 44
' 2 r rl r2 _1)2(_. , - 2r_ r_ (_2- Wl)(co2 r_- _1 rl) in (w2 - _- -_12)] (10) ;'

i" ( r r 1 ,

where z indicates the axial coordinate in the direction of gas flow. For the I

fluid within the rotating cylinders, the boundary conditions are

_. C. i; rI + O, col O, P = P1 = Ps

(ii) t
B. C. 2; r - r2 - RI, w2 " _' P = P1

!

Thus, the pressure PI at the inner wall of the cylinder becomes (12) !

2 2
R1 o_ "

P1 " Ps + _ p (12)

Consider the c_se in which the outer and inner cylinders rotate with the

constant anguiar velocity _ as shown in Figure 4, and in which a heaw

liqui3 is issued through holes because of the centrifugal pressure due to

the difference in density. For this case the following equations are obtained

by substituting w " wI " m2 into Equations (8) and (9), ""
0

| • , ,

t , '

-- - iim mn i n mn In I I Im • ' -. _ ?('v ,_mmmum_

,a, , p..,.... • ...........
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(r3 = r _ (13) i-

V0 _

2 I
Pcr,z)--Pl(Z)+ _ (r2 - r2!) (14) Ii2

Equation (13) shows that the fluid filling the horizontal cylinder rotating i

with a constant angular velocity _ rotate._ around a horizontal axis as does I!

a solid rod (12, 13).

Assuming that the light liquid phase (or gas phase in case of a gas-llquid I*

system) is continuous, the pressure difference between R0 and R1 in the heavy

liquid phase (or liquid phase in case of a gas-llquld system) is obtained from

Equation (14) as

(R21- R2) 2

P1 - PO = Ph 2 _ (15)

The pressure difference between R0 and R2 in the light liquid phase (or gas

C phase in case of a gas-llquld system) is also similarly obtained as

P2 - PO = Pg 2 _ (16) ,!

[

l

Substituting Equations (15) and (1.61into Equation (71 the following

equation is obtained.

Q = c.f_ (Oh Oh

This equation defines the discharge coefficient for the liquid-liquid system in

the centrifugal field. _,en Oh >> 0_, Equation (17) becomes (14)

,_ which defines the discharge coefficient for the gas-liquid system for the case

in which the liquid film on the Inside wall of the rotating wetted cylinder

Is issued through a hole. t _ .:;

ill ii _. --_j_ - •

!' *..... ' ..... _' ' -'-*' "- _ _-- _f- il i _' ........................

-|
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P'ressure loss

The pressure loss of the gas which flows crosscurrently to the liquid

Jet in an annular space can be computed from the following empirical

equation (15).

3.5 2 1.83 _i/3 N2/3 d3
0B w vAh = 0.i x 10-6 ul

2.5 DO.17 (19)
Ug P£ e g

where De (= Di+l - Di) is the equivalent diameter. This equation indicates

that the vressure loss of the centrifugal contactor is very small.

'_ Mass transfer

i In a centrifugal contactor, mass transfer between gas and liquid takes

ii, ( place as a result of contact between gas and liquid jets and that between gas I

and liquid film on the inside wall of the rotating wetted cylinder. According !
' 1

to the experimental results (16, 17) the extent of the mass transfer into a
!
!

i liquid film on the inside wall of the rotating wetted cylinder is much less i

i 'than that into a liquid Jet issued from rotating holes.

i 'The liquid phase capacity coefficient for the liquid Jet from a rotating

hole was measured experimentally by using a pure carbon dloxlde-water system '_

_[_?,ai DL 1/2 R1 14' a
,_"*'_,,,":1 KLa - 73(_) ( )(-_---) '20)

/ where N' is the revolution speed of the rotor (r.p.s.), DL is dlffuslvlty

in liquid phase, ff is the total pressure, and the power a is given by

_2. t a = 0.72 when d > 1.0 mm

!'" l

!%'

! . .. ""2."" ._ _.L'qla'_' •...... -- J, " " ] : _ : _,._.. ".,r.._-., , • ,,

!
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t _ = 3.93d0"74 when d < 1.0 mr

The contacting time between gas and !iq_id 0 can be determined theoretically

as (Ii)

_i"' 2

Ri(_m2 - I)(--_-) + m 2 - Ri

£ = Ri_ 2 (2!) I_

w{(--j-)+ 1}

where

m = Ri+I/Ri

According to the experimental result of adiabatic humidification in

the contactor, the gas phase capacity coefficient for the liquid Jet from a

_ rotating hole can be expressed as
%

j.
, (NRI+I)0. 5; C kG a - 0.422 x 10-3 n' G0"8 (22) [

' [
where G is the mass flow rate of air, and n' is the number of holes.

' i

Stability conditions for operation

In the design of a centrifugal contactor, the stabilit: .udltlon

for operation must be considered, Since the discharge pressure of the -; i

_ liquid from a hole in the first cylinder cen be fixed arbitrarily as shown

in Figure 5, we shall first analyze an arbitrary stage, say the ith stage.
/

_: Assuming that the pressure drop of gas and that of liquid in the axial

_ direction in an annular space formed by double cylinders is negligible ,.n

,. _ .. comparison with the centrifugal pressure, EQuation (17) gives (15, 17)

Q = CiF i m,/8_R_ - (R'i - dLi) 2 (23)

0
where B is defined as

,,, . _
,,, _ __ ,____m,,___ i _,

! _. . "_' ._. _2_r,'._ _'%-Z-_ _ "-_ _ _ ,,,. ...........

. _ _........... _ :_. __.-: ....._ ...._)'_',,-_.........,-...............................-_ |
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= (oh _ o )IPh (24) ,

!

The thickness of cylinder t is g_ven by (R i - Ri). Therefore, from

Equation (23),

!
aLl + t j Fr t 2 i_= 1- 1- ( ) (2_)

Ri Ci¢

it can be seen from the equation that the liquid depth in the cylimder dLi

depends ollRi and Fri. Fri is the Froude number in centrifugal fiela at

the ith stage defined by

Qi

i Fri = Fi Riw (26)

,. The relation of Equation (25) is shown in Figure 6. I
L

i ; For the design of a multistage centrifugal contactor, the different

cases where

(I) cross sectional area of holes drilled through the ith cylinder

wall, Fi, is constant,

(2) total hole area to cylinder area ratio ai is constant, i

(3) liquid depth in a cylinder dLi is constant,

(4) dLi i3 given,

can be considered.

Furthermore, if the discharge coefficient Ci is constant, the liquid

depth dLi, the total hole area Fi, the discharge velocity of liquid Wl, and

the ratio of hole area to cylinder area ei are different from stage to stage,

as shown in Table I. They are calculated by equations given in Table 2.

The discharge pressure of the liquid from a hole in the first cylinder

can be arbitrarily fixed. Then, it is desirable that the 2nd stage be selected

g
as the starting point for the design of the complete system. For designing the

h

, ........... , .... .. , , , .....

! .,..... -.v i _-_, ,_ _........ mm_--,_: _,_: ...............,,
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D 2nd ._tage, the total hole area F 2 must be determined by Equation (23) to :.

establish the desirable value of the di;;charge velocity w 2 and of liquid

depth dL2, Then, aecordin K to the pr_,determlned conditions for the design,

Fi, Fr i, dLi , and w i are determined from Table 2. Since dLt 0, the

necessary condition for stable operation for the Ith sta_e is obtained

from Fquations (23) and (25) as

_I- R' -2 Fri
_ii < < i (27)( ) ci _

If the value of the Yroude number satisfies the condition given by

Equation (27), the contactor will operate stably.

_ For a stable operation, it can be seen from Equation (25) that the

_ change of the liquid depth is influenced by the discharge velocity of liquid.

IP"
The revolution speed of the contactor is also an important factor. Furthermore, i

; _ it is evident from Figure 6 that dL changes less in the region of the low _ I

Froude number at constant C and R. Therefore, the stability increases as F i

and _ become larger. When the Froude number is too small, however, Equation

(27) is not satisfied. And since the stability depends not only upon the

value of dL but also on the rate of its change, a small value of the Froude

number is not desirable because dL becomes too small.

As can be seen from the expression of the Froude number, the liquid

depth in the centrifugal contactor depends on the discharge velocity of liquid

and the revolution speed of the contactor. _Is is an important feature of

the centrifugal contactor. Suppose that a contactor is designed with the

conditlun of the liquid flow rate Q and the revolution sveed N. If its

operating condition is changed to another liquid flow rate 0', and another

revolution speed N' at which a sta_le operation is possible, we obtain from

analogy.

......... I F-,_,_4_.',,. i," ,.... . .... , .'-., _. .

!
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Table 1

Different cases for design of the multistage

centrifugal contactor

Case dLi Fi w i ei

1 decrease constant constant decrease

2 decrease increase decrease cons tant

: 3 cons rant decrease increase decrease
¢

1!

i " _" ' 4 given value ......... _ ,i

i i o." ',
I I

" IIII .....
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Table 2
F

Equations for deslgr, cf ti:emultistage

centrlfugal contactor

Case dL[ FIIF 2 Fri/Fr2

I Eq. (25) i R2/Ri

2

2 Eq. (25) RI/R2 (R2/RI)

C2 J'2- dL/R 2

. , 3 dLi = dL2 = dL _ V'2"Ri/R'2 --- _LL/R'2 1/(Ft/F2) (Ri/R2)

: at constant Ci
k

i. { ......

i " ,. c2R/_ - (R'2 dL2)2
' 2 i/(FI/F2 )(RI/R2)

4 dLi :l.s given C_ (R_ dLi) 2

I.

1

)

F
t

i.

.
r..

T'. . ,. ......." ' ' ' ...t',,WVa _.,%__ . . .... . _ . _ .............
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D ' i
Fr = Fr

or

N = _2_)

In this case, d L does not change, tlowever, as the discharl:e velocity of
q !

liquid changes from w i = Q/F i to w i = Q /Fi, the chanae of the characteri._ti,..

of mass transfer cannot be avoided. This can be seen from Equation (20).

The number of stages and the magnitude of space between cylinders can be

determined from the operating condition for the mass transfer.

This review leads to the general conclusions that the pressure drop ol

gas is small, the throughput of gas and liquid Is large, and the mass transf_,r

a

rate is efficient in the centrifugal contactor. Furthermore, it can be

i ( easily operated in the zero gravitational field. Therefore, the centrifugal

i contactor may be suitable for gas-llquld contact operation in air and spac 4,

crafts.

I
t

; ,:_
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D
Nomenclature

C Discharge coefficient in the centrifugal field [-]

d Diameter of hole [cm]

dL Liquid depth in cylinder [cm]

D Diameter of cylinder [cm]

DL Diffusivity in liquid phase [cm2/sec]

e Ratio of area of hole to cylinder [-]

f Cross-sectlonal area of hole [cm 2]

F Total hole area of a cylinder [cm 2]

g Acceleration of gravity [cm/sec 2]

_ G Mass rate of air [g dry air/sec]

' Ah Pressure loss [cm w.c.]i

J " (" kLa Liquid phase capacity coefficient [i/sec]

i I, kG a Gas phase capacity coefficient [g/cm 3 sec AH]

, n Number of holes in axial direction of cylinder [-1

n' Total number of holes _n a cylinder [-]
t

N Rate of revolution It.p.m.]
I
I P, P Pressure [dyne/cm 2]

_ Q Volumetric rate of llquld flow [cm3/sec]

'_ r Radial distance [cm]

_,
_*_" R Radius of cylinder [cm]_ ,, I_ ,

_
_4,-" t Thickness of cylinder wall [cm]

, v Flow rate of gas [cm/sec]
, J,

w Discharge velocity of liquid [cm/sec]

P Viscosity [_Ic,n secJ

|
0 Density [Rlcm3 ]

i

............ " ..... u _l .... ;" '. ,-'me_,,;r"_-_ _- --_ - _................. 1
I
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17

i

I O Surface tension [dyne/cm]

Angular veloclty {rad/sec}

dw2p O.L5

Je Jet numbers-(--o--_)(_) {_]
g

Red Reynolds number based on hole diameter = dw0/_ [-]

Fr Froude number In _entrlfugal field, = w/Rm [-]

We Weber number = dw2p/o [_]

,

i {
i

I

I

i

©

i
I+ .......... ................

+_ w+- . =.g,
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Fig. 4 Concentricdoublecylinder with oonstontangular

_ velocity.
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- Applications of Modern Optimal Control "
Theory to Environmental Control of, li

Confined Spaces and Life Support Systems*
Part l Modeling and Simulation i'

'_ L.T. FANt ri

Y. S. HWANG'_ 1'

,_ , This paper is the first of a series of fi_e containing the results of an original
' investigation of the temperature control of confined spaces such as those in

any building and life support systems by means of the modern control theory.
While much of the material presented in this work is original, the series has

" been prepared in sufficiently tutorml style that it can be used as a text for
self-study by practicing air-conditioning engineers. It is hoped that this work

;... ... ,,. _ will stimulate the applications of and research on the modern optimal control
" theory to the environmental control of life support systems in general,

'. including control_ of humidity, purity and noise.

i _ Parts 2-5 wiq be published in the next three issues of Building Science.

' Several mathemc, tical models of an environmental control system which consists
of a confined space or cabin, a heat exchanger, and a feedback element such as !'

_ [..:, .': a thermostat are presented. The performance equations of the system, which !

_'" E;:i'-..' .,_ represent the dynamic characteristics of the system proper and of the heat , i
,,_ exchanger (the control element of the system) are derived. In the basic model

i theflow of air in the confined space is considered to be in the state of complete ,mixing and the disturbance is caused by an impulse heat imput. The performance

I ' equations in wi,ich the heat disturbances are of the form such as the step function ,• and cyclic function which are different from the impulse function are also
derived. Also presented are the performance equations which represent the
dynamic characteristics of flow of air in a confined space or cabin characteri:ea i
by the two completely stirred tanks.in-series (2 CST's-in-series) model.

To determine the goodness oJ the system model a computer simulation is
carried out and the results are compared with the known characteristics of the
system.

II I II i i II L

THIS series of five articles contains results of the underground shelter[3,4]. It appears that analysis . ._
original investigation on the control of life support and synthesis of the control systems for the air- _:,
systems or more specifically the temperature conditioning and life support systems have so far _", ',
control of life support systems by means of the been carried out by the classical approach[l-4]. _"

"' 9-

modern control theory. A life support system is a The classical approach to the analysis and _,

system for creating, maintaining, and controlling synthesis of an automatic control system is essen- _, .
an environment so as to permit personnel to function tinily a trial-and-error procedure or a disturbance- " .-_
efficiently. The control of temperatur_ is probably response (or input-output) approach. Extensive use :_-.
the most important role ofthe life support system, is made of the transform methods such as th_ "*

The need for providit_g an automatic control Laplace transform (s-domain), Fourier transform "!/i""
system to an air-conditioning system has lonli been (o._-domain), and z transform (dL_rete time-
remgnized[! .2]. It is also a well known fact that domain). Even though mathematics is extensively
use of the automatic control is nece_u'y for the life used, the ci_sical approach is essentially an
support system of a space cabin or submarine or empirical one[S],

In recent years, an approach to the analDis and " q_._:

* Thk work was supportedby the Air Foe_ Ofl_ of synthesis of a control system, which is distinctly .:.. ;_:
$eientif_ Research,Officeof AerospaceR.etms_, United ../_,stat_ AirFot_,u_te_ Coatrm V ,utlO-4_t-lle_,'Thumb different from the classical one, hu been developed.
lh'ojeet),and NASA Gnmt Under Conmtot NGR-I?- This modern approach is generally called the ,._.._...._'
0ol-o34. modem (optim.d) control theory [$-I I]. It is bated _r_'i_.f l_tttute for _,_temt dmtln and optimimtloa,_m,_s ' _ "
StamUniv_dty, Maalmttta,Kuta_ ml the statHl_tee clmraeteriation of a system. .' _;_ •

,r
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The state-space is the abstract space whose co- system, use of the stochastic modeling and control I
ordinates are the state properties of the system or may be more appropriate than use of the deter- ., !
the variable_ which define the characteristics of the ministic modeling and control because the system
system[5]. This approach involves mainly maximiza- tends to be more stochastic than deterministic.
tionor minimization of an objecti_e function(func- It is hoped that this work will stimulate the
tional) which i_ a function of state (plant) and applications of and research on the modern
control variables which areinturn functionsoftime optimal control theory to the environmental
and'or distance coordinate. The objective function control of life support systems in general, including
is specified, constraints are imposed on the state'and controls of humidity, purity and noise.
decision variables, and an optimal control policy is The first of this series of articles on the applica-
determined by extremiz'ng the objective function by tion of the modern control theory to life support

: means of mathematical techniques such as the systems containsthederivation of the mathematical

_. calculus of variations, maximum principle, and models of several different s:,_tems and the simula-
dynamic programming[5, 6]. This modern approach tions of their behavior and characteristics. In the

, is entirely theoretical in the sense that no trial-and- second of the series, the most basic form of Pontry-
error isinvolvedin"adjustingthecontroller", agin's maximum principle, which together with

There are reasons to believe that the classical dynamic programming constitutes the bulk of the

approach suffices in the analyses and syntheses of modern control theory, is outlined and its use is
L

the control systems for a majority of air-condition- fully demonstrated by means of concrete numerical

ing and life support systems because usually the examples. In Part 3 of the series, the optimal
: _ requirements are not extremely critical and speci- control of a system with equality state variable

! fications are not very tight. It is, therefore, justifiable constraints imposed at the end of the control action

i i that most of the control and dynamic investigations is considered. The fourth of the series deals withof air-conditioning and life support systems, which realistic problems of controlling systems with

i __ have appeared in the open literature, are based on constraints imposed on the state variable, namely 1,_ . the classical approach[12-20]. There is, however, a the temperature in the systems, in the final part of

" l certain incentive in applying the modern approach this series, some aspects of sensitivity analysis are _,,
to analysis and synthesis of automatic environ- presented and discussed by fully exploiting the

I.i _ mental control systems in space crafts, submarines, results obtained in the preceding parts.
underground civil defense shelter_ and certain While much of the material presented in this

! medical facilities. In these systems, very stringent work is original, this series of five articles is pre-

| requirements in the response time, control effort, pared in such a manner that it can be used as a

|i '_ andsystemOthersaarespaceimp°sed"FOrmusteXample,antheextremelyCOntrolsystemsteXtfor self-study by practicing life support

i _" of craft have engineers or as a text in graduate or ad-
small response time and furthermore, the amount vanced undergraduate courses concerned with life

• of energy required for the control effort must be support systems or air-conditioning.

, very small because of the weight limitation im-

posed on the space craft. MODELING
in the present work, the emphases are on the use

of the maximum principle and related variational A control system usually consists of three
techniques[5, 7-11]. Their applications will be illus- elements: the feedback element, the control
trated by means of concrete numerical examples, element, and the system proper[23]. The feedback
it is said that use of the maximum principle and the element in a life support control system or an
calculus of variations gives rise to a control policy environmental control system may be composed of a ,
of an open loop nature[5,21] which is not desirable thermostat, humidistat and pressure regulator, or
for control of a space heating system in which room any combination of these, depending on the purpose
temperature variations are to be reduced and ofcontrol. The control element may include a heat ,
penalized[22], in reference [22], the dynamic exchanger, humidifier, dehumidifier, blower, per-
programming technique is employed, it will be table air-conditioner, or any combination of these,
shown, however, that the maximum principle and depending on the objective ofcontrol. For instance,
related techniques can be advantageously era- both th: thermostat and heat exchanger are often -_,
ployed for the types of syster, ts and objective used to control the air temperature inside a building. dl"
functions considered in this work. The system proper may be a confined space, e.g., q[

In this series of ,_resentation, only the modeling an underground shelter, a space _,ehicle, _ space
and control of deterministic systems are considered, suit, a submarine or a building.
However, when human and physiological factors The system considered here is shown sehemati-
are taken into account as part of a total life support tally in figure 1. The confined space may be a

m i
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typical office located in a muiti-s_ory building or %
• the cabin of a spaceship. Air or oxygen or a mixture | _ [

of oxygen and nitrogen is circulated through the / _ -- " r:. room or confined space via au air duct by mechani- | |

_.. cal means, e.g., a blower or fat,. Control of air o ._] v L_. o_ I
temperature in the system is accomplished with a T. ------__ T_ ----- T: [

duct system. The thermostat |n the system adjust_ q" L '' F _OI ": the ,.osition of the control valve of the heat i

exchanger in order to provide ;.he desired tempera- l_i I_r i'

ture.

The performance equations of the system, which q_. Tz, 02 qo:,T_. 0z
"" represent the dynamic characteristics of the system Fig.2. Roomheatflow rates. [

• and system components will be derived. I

_i;, ]__/ [heat in]- [heat out] = [heat accumulation] (')

), [heat in] -=-qtl +q_2+q4i (,2)

, :_.). [heat out] = qol +qo2 (3)

[heat accumulation] = q_ (4)

/, : qd_ = heat disturbance in impulse form in _:
kcal s :_

q_t = heat flow into the system proper by cir- !:..
F,on__ culation air in kcal/s

qt2 = heat flow into the system proper by fresh

_' r'_.,] air in kcal/sr _'_" " I H_t qo _ = heat flow out of the system proper by .I
_xc_. circulation air in kcal/s

)_ qo2 = heat flow out of the system proper by

t_ t hausted air in kcal/s
q, = rate of heat stored inside the system pro-

"ltl/ I_F per in kcal/s
r,em ,i, ,_ ): Whenever the unit system is needed the mks
o, oR_,m system is used in this study. Inserting equations

_'opview (2), (3) :, .l (4) into equation (I) gives

FiR.I. Air.conditionedroom. [q_t +ql2+qai]-[qot +qo2] = qs (,5)

Based on the assumption of perfect mixing, the
A. The system proper ex-,re_sions for q, _, q, _, qo t, qo, and q_,are

The following three main assumptions are made
concerning the system proper: q _t "_ Q _pC_(t_- t,)

O) Room or cabin air is well mixed, or stated in = Q_pCvT _ (6)

another way, air temperature within the system is q_z = Q_pC_(t_-to)

uniform throughout at any instant in time. ,, Q_pC_T_ (7)
(ii) The thermal capacitance of room walls,

floor, ceiling, mtd window is neglected, as well as qo_ = Q_pC_(G-G)
that of any furniture within the system. I= Q tpC_T¢ (8)

(iii) Heat loss through the walls and windows is qo, "* QapC_t,-t,)

negligible. = QapC_T, (9)

The performance equation of tl_ system proper q_ - V_pC_(t_- t,)6(ot)

can be obtained by using the continuity law or heat . VtpC_T_(_ ) •,_._balance. For a room, the law states that the flow

of heat into the system must either be absorbed Note that here the disturbance is considered to be

inside the room or leave the room. Referring to an impulse form. This disturbance term will appear
fillure 2, we have as a forcing function which can be _nerally

ii
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designated as ok(x) in the resulting differential (Note that in order to have this initial condition. :' i
equation. 4(:<)can be written as the room tempera:ure, t,. before introduction of the "

ck(._)= Mi6(_) disturbance is taken to be the reference temperature.
t,,, because T, = t, - t,,.) I!_t_,here r

Mi = VtpCpTa or in dimensionless form !,

AI,;o note that 6(:0 has a unit of sec t. The rate at dv_ r_K_.v, " 1.
which heat energy is stored in the system proper d--;-+.v_ - K_ "+r"Kl+K_a3(t) 1(12}a i
can be expressed as .v_ =0 at t = 0- ,

V J dr, where
q, = ,_C_ i

o, irt = -Q| +Q2dg
--- V,pC, d---_" (II) Q.,

_ where r2 - Qt+Q2 - (I-r I)
C, = specific heat ofair in kcal kg C 7", KiT, (t,-t,,}

, Q1 = air flow rate by circulati°ninm'_ s .v, - T,o T2 (t,o-t,,)
Q, = flow rate of fresh air in m 3

L T i K4T i (t,- t.)
; Vt = roomvolumeinm 3 .v, - T_o T, - (t,o-t,,)

t= = reference temperature in 'C (In genera! Ta (to- t,)
i this can be any arbitrarily and suitably ¢r = -
; i fixed temperature) T2 (t2 - t,,)

i i t_ = room temperature in 'C t = _'r t = dimensionless time _ I; i
: td = disturbance temperature in _'C T2 (tz- G) _ "

gt .... :
ti = temperature of the circulation air into the /'co it,o- to) _

system proper in QC

T2 (t2 -- tu) i

t2 = outside air temperature in °C K4 = T_-'_= (t_0- G)

• ' .. T,=(t_-t.)in°C r t = time constantofthe systemproper in s
_' " Tl = (tj- t.) in °C

_r" V,
, T_ = (t_- t,) in °C"" O,-, (2_

Td = (t_- t,) in °C T¢o = room temperature at • = 0 +
= time in s

,, p = air density in kg/m _ To_ = room (system proper) temperature at• , 0t=0-

The insertion of equations (6) through (I !) into Tm = temperature of the circulation air into tht
equation (5) yields system proper at a = 0 +

dT¢ Equation (12a) is the performance equation of the .
VtpCo _ -b[QtpC,+ Q,pC,]T_ system proper. This performance equation can

=.Q tpC_T_+ Q_pCvTz + VtpC_T..6(a) appear in another form in which the effect of thedisturbance is taken into account in the initial

O,, 0a, P, C,, Vt, and T_ arc considered as conditionimmediatelyafter the onsetof the process
constants here. The above equation can be simpli- as shown below:

" fled by dividing both sides of the equation by dx t rtKtx _

(QtpC_+ Q_pC_) = (Qt + Qz)pCp d'-'[+ x t " _ + raKt

dT¢ =.1 at 1=0 +

This initial condition is true because t, - t,e at | "_-,,;,

T, - To- - 0 at a - 0- (time (12) t - 0+ and therefoR, [ . £_)_'"
immediately before introduction of i/"

(re-h) (t,o-_,) .=0+"the disturbance, i.e time right before xt - _ - _ - 1 at t
= 0) (t,o- t.) (t,o- t.) _,'*:_'r_,

i

1974004672-091



Applications of Modern Optimal Control Theory _,1

Instead ofthe impulse form. the heat disturbance the expressions for q,._,, q.,_. q.,o_, and q.,,,_ are
may appear in other forms, such as the step, ramp as follows:

or cyclic functions. The disturbance arises from q,._, = QipCrtt,._t_ )
: various sources, such as sun load, turning on lights,

opening window or door, temperature change in = Q_pCpT_ (16)

' the incoming air, and heat generated by the q_2 = Qwp..Cp,,(tw,-tJ

•.. people or animals. = ()..p,_Cp..T.,, I 17)
If the temperature of the incoming recycle air,

,. T_, is kept constant, changing air flow rate may also q.,o _ = Q _pCp(t_- t.)

/._ accomplish the purpose of control. The perfor- = Q_pCpT_ (18)
mance equation for such a case can also be derived

similarly from equation (5). qmoz = Q_PwCp.(t_,h- to)
_'- Note that if Q2 = 0 or r 2 = 0, r I is unity and = Qwp_C#wTwn (19)

;f_ equation (12)becomes The r_,te at which heat energy is stored in the heat
, _ dT¢ exchanger can be exnressed as

_'. rt -_ +To = T_+T_t6(u) (13)
dq

, _' This equation is applicable to underground _helters, q_, = V_pC_ d--_

I space crafts and submarines under conditionswhere no fresh air enters the systems. = V2pCp d(t_- to)d_t

: B. The controlelement = V2pC_ dT_

i The heat exchanger which is the control element d--_- (20)
of the system under consideration can perform its where

i control function in various ways, for example, by C_w = specific heat ofcoolant in kcal/kg'C. ] .. changing the temperature or flow rate of the heat Qw = flow rate ofcoolant in ma/s
_ transfer medium, or changing both. The perfor-

i | mance equation of the control element can be t_ = inlet temperatureofcoolant in °C
] obtained again by employing the continuity law t_ = outlet temperature ofcoolant in °CI •\. _ or heat balance, which can be expressed in equation V_ = volume of the heat exchanger occupied

i form as follows: by air in m s[heat in] - [heat out] = [heat accumulation] (14) pw = density of coolant in kg/m 3

I "" [heat in]- q._t+q=_ Insertion of equations (t6) through (20) into
• [heat out] ffi q. o n+ q.o, equation (I 5) gives

[heat accumulation] ffi q,,. (Q tpC_T¢ + Q_p.C_T.¢)- (Q tpC_T_
dr,

where + Qwp.C_.T._) :=V_pC_ -_
q._t = heat brought into the heat exchanger

by circulation air in kcal/s or dividing by Q t pC_,

q,., = heat brought into the heat exchanger dT, Q,,p¢C_,,(Tw_-T,,¢) (21)
by cooling water in kcal/s __ -_ + T_ = T, Q _pC,

q,,o_ = heat flow out of the heat exchanger where _, is the mean resident time of air in (the
circulation air in kcal/s time constant with respect to air flow of) the heat

q.o2 = heat flow out of the heat exchanger exchanger in seconds and is defined by

cooling water in kcal/s _ = v_/o.

q,u " heat stored in the heat exchanger in Note that Q,,p_,C_(T_-T_,) is the amount of
kcal/s heat removed from or added to the system which

Inserting these definitions into equation (14) gives can be controlled by adjusting either O_,when p,,,
C_, and (T_-T_) are constant, or (T_-T_) _.,

, o, '_ (q.,t + qma)-(q.ot + q.oa) - qm (15) when Q., p., and Cm, m kept constant, or both '

By assuming perfect mixing of both air and the O,, and (T,,a-Tw) when Pw_ C_, are constant.

heat transfer medium in the heat _dumpr. In ocdef to ha,re a mathematically neat form. a

ignoring the heat Io_ throullh the _ell Md _ hyl_thetl_ tennperatureT, isdefined as _-
tin$ the thermal eai_it_a_ of the _ _IclIIN_. 7', - O_o.C_(T._- T.,)[ O tpCp
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Inserting this definition into equation (21) yields negligibly small, i.e., z2 _ 0. For this system we
have from equation (22) •dT,

Zz d--_ +T_ = T-T, (22) T, = To-T, (23)

or indimensionlessform This relation can also be obtained by simple

r2d.% .vIK._ (steady-state) heat balance around the heat
+x2 = _ -K4(K20+K3) (22a) exchanger. Note that 7", is positive whenever heat

z_ dt K_ is removed from the system and negative when 1

where heat is added. Inserting equation (23) into equation II

K2 = _22 (T, _.,.- 7; .,,.) (I 2)givesdT_
l xl-_ +r,Tc = r2T2+¢lTd_(_)-riT, 7

K, = _ (T, ,_._,+ T, ,;,) [i
• To= T_o_=0 at • =0- (24)

7",- ',(r, .,_ + 7",,.i.)
0 =. t T_ Again note that the room temperature before :..... -2( .... + T. m,.) ,: :

introduction of the disturbance is taken to be the
= control variable reference temperature. As mentioned previously

: T, = K,O+K3 this set of equations can be rewritten togive ._
! " dr,
i Equation (22) is the perfo-mance equation of the tl _ +rzT_ = rzT2-rIT" _

i + heat exchanger which is shown schematically in = 0 + :._ figure 3. Note that 0 --- +1 when 7",= 7",m=,and T_ = T_o Td at • = (24a) ,_

, I 0;= - I when T, = T, mi,"

i Stead)' state Value of T, before Disturbance, T,o- ,
l

T._..LO. The steady state value of 7", before disturbance, :

| J1t-7 T,o-, can be evaluated by inserting ,_

, T_ v2 1", T_=0. Td=0, and _--=0• 0, -...__..[ _ O,

, LI, into equation:(24).This givesriseto

T,_.IO, 7",o- r=T,= _, r= #=0 (25)
_' i Fir. 3. Schematicdiagramof theheatexchanger, r t

k

!

] Note that the steady state value of T, which is ,
" " ! C. The feedback element-thermostat denoted by 7",ois zero when the outside air tem-

t

•i Here we simply assume that the sensing element perature, T z, is zero, or when the ratio of the fresh _measures the room temperature instantaneously air to the total air is zero. This solution can also be

and that there is no accumulation of heat in the obtained by either over-all heat balance around the
element, or for simplicity, it will be assumed that system or heat balances around the room and the
the sensing element is the zero order element with heat exchanger.
its time constant, %, equal to zero, Reference 23

gives a detailed explanation of the response of the (I) Over-all heat balance around the system .
thermostat. (figure 4) :

SIMULATION t %

I

carried out extensively by means of either a digital

or analog computer. The results of simulation ,.,-t0A+0= I#C,T,
should then be compared to the known characteri. "r. '.,-
stiesof the systemor to experimentally obtained _""
data. The comparison enables us to determine the

, I _!ii_' -_,?:_
goodness of the model as an approximate repre., "I_, ,_r-" ': _"_

sentation of the system. I_'...
For illustration, let us consider a simple system OtpC,t= O=#C,T, ,_ ,

in which the time constant of the heat exchan_r is Rt. 4. om.n_ trot haa_-e #'t/_,_,,_ _,ut _ - o.
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Q 2pCpTz - (Q ,.I,CpT, + Q ipCpT,) = 0 Therefore

Thcrefore, A t = 7",o - T. + r IT, .,
r2

"_' T,o- - Q2T2 _ r2T2 (25a) and

:_, Q, r, (r2_l [ (r,m_l_#:' Recall that T_equals zero. T,.(:O T,-oexp - _ + T2 I - exp -

_,. (2) Heat balances around the room and the r;_T,r ( r2_)]
I-exp --- .r2 #0 (27)

_.: heatexchanger r2 L rl

_" (Q,pCpTi+Q2pCpT:) = 0 Note that we can also solve equation (24) by ti,J_ '

_:_.. and means of Laplace transform. Laplace transforma-

"'_ Q IpCpT i+ Q,pCpT, = 0 tion of equation (24) gives t

r:_T_, r,T, zir, j i'
Solving for T,o from theseequations, weobtain T_(s) = s(zls+r2---_) s(zls+r2) +r r2T2 _ Is �r2

; 7",-- 7",o.-- -T_ = ---
r_ Inversion of the above equation gives

/ \ r / v1

TheJinalsteadystate ralue of T,, T,/ T,(x)= T_exp_- r2---_}+T2Ll-expt- rJ--_||
The final steady state value of T,, which is .,.r-/_-_--t'/ r t/1

denoted by T,/, canbeobtained byletting _ [,',|,_exp__ r2_}l
J r2 L \ r, lJ

dT,.

i T_ = 0 and _ ffi 0 which is identical to equation (27) because T_o = _/in equation (24). Hence T_ as given by ¢quatiop (26). _j can be found from i_
: equation (27) by setting 7",.= 0.

( ,,r,-,,r,i tr'r_(=)+rzT=] ---" IntT, o_-_-T-_.-_--_,,T,l,. ,. , , . r2 _ 0 (28)

i Initial ralue of T_ 0 + For r_ = 0 or equivale_qly r_ = !, equation (24)
The initial value of T¢ at t = can be calculated becomes

•_, by the following relation representing the heat dT_ T, ,,,
balance between the condition before and that after -- = T,_',)- ----, rz = 0
the disturbance, d_ t,

V_pC_T_o = V_pC_T_ Integrating this equation, we have
or 7", ,_,

T¢ = - _ • + 7; o (27a)
T.o =' T. (26) T,

The desired final value of T_ is zero. Meanwhile, _/can be obtained by setting T¢ = 0 as
the lower bound of T,, T, =_,, is set at 0°C. Various

TcoTI

cases with different upper bounds of 7",, T, m,,, _.t = T'T_,,,' rz = 0 (28a)will be simulated.

The solution of Tc Numerical examples
Simulation of the desired model can be carried It is assumed that the volume of the system

out when the form of T, and the numerical values proper (room:or cabin), V,, is

of the parameters are known. In case T, is the step V_ - 3m x 4m x 5m

function, i.e., T, remains constant after _ = 0, .60m _
equation (24a) can be integrated as

The flow rate ofair in thesystem,Q, is

(- C,.+,...,T,(=) = exp _/ \ _/ Q = (crOSHectionni area of the ,ystem)x (air
velocity in the system)

- "T' exp (-_zu)] - (3mx4mX@l m/s)
rz - 1"2m_Is

where A _ is an integration constant. The ,alue of
A _ can be determined by employing the initial and.flow'ratm ofcireuhtion air and fresh air are
condition at z -- 0+, that ilk _ t "0-11_ -- 0-96 mS/s

T, = T,o at = - 0+ _z = _2g - 0.24m_Is

i I
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The time constant of the system proper, z 1, is Case 2: T, ,,,, = 30"C :.

_'1 =--=--=-VI 60 50 s For this case, we have from equations (27) and "
_l = Q Qt+Qz !.2 (28)

Other numericai values employed are Tc = 20exp - +!0 I-exp _11.1 i
T z = iO_C

_r_ x30 l-exp ---
T_ = 20°C r2 _j/j

7" "," = O°C -_'._._Lin/3r, _ r2'_ = 50 in (3,,-,,' _

r,o-'2r'- o.2xlo = 2.5_C _/= ,, _,2+3,1/ - r--: V,+3r,]
rl 0.8 ifr 2 #: O,and i

Here two examples with different heat removing T¢ = 20-0.6a[

, (or control) capacities of the heat exchanger are
considered. The first example is for tl)e case in % = 33.3 so:.

which the maximum load (heat removing c_pacity) if r z = 0. The results of simulation are shown
of the heat exchanger, T, _,, is set equal to 2-Y_C. schematically in figure 5.

The second example is for t_.e case in which the Similarly, we can carry out the simulation by

i maximum load of the heat exchanger, 7",,.,, is set employing the dimensionless form of the perfor- " '. _ i -_
to b¢30°C, mance equation. The performance equation in '

j d_mensionless Iorm can be obtained
by combining

Case I : T, ,M, = 2"5_C :quations(12a)and(22a)andsetting¢, Oas! II

i For this case, we have, from equations (27) and dx_
; (28), --_+r_xi ,=r2K ! +!( t¢6(t)-rlKiK20- rtK|K 3 _. _,

[ ('-)] ,// r2aS - -_" Boundary conditions are :_To(a) : 20 exp t---_) + !0 I -exp

: x_ =0 at t-0-2.srlr / r2a\'l

- .,,-0,,,. I
so, F2.s,,-10r2"l As mentioned previ_ ..,." _h:: set of equations can

""- T,'" + ,,,owrit,enas
dxl ,

ifr 2 # O,and T,(a) ,,20-a120 "_ +" 2xl "_" '_';" , _K:r.n .rjKjl()i
:5_._ .] x_-I at t=l' _' (2%)

__. _'_" ifr_ - O.

Fint of all. let us assu,,. 0 is a given control
The rgsults of simulation are shown schenutticaily action and is equal to Ore, - I. Then equation
in figure 5. (2%) canbeintelFsted ss follows:

... zo_4_ Xt(t) - ¢xp(-raO [A a4-g, exp(r,t)

_ st t - 0", yields (:

F/c.S.._m# _" maJma q( qm_a (;if) ¢d_ r, ra :,.
_ ' T_ - JO'C_-]O'C. sad
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.,,(,_=_x_-.o V-e_rt-_-',', F_125_,-0"_.1" " 7 = ---In .- - "
r, -"LO.125r,+O-:_r,j ' r2 :_ 0 i

rtKtK2[1-cxp(-r2t_] rthIK'_ * 1-0.1. Jt+ I, r 2 0r2 r2 _"i(l) = _" _

I t'
[I-exp(.-r,t)], rz # 0 1301 T - 0"125' r e = 0 t'

Final time, T. corresponding to the end of control,
. :_ car, be obtaired by using the condition The results of,;imulation are shown in figure 6. i

_ xt=O at t=T Casc2:T,,,_, =30+C

_ This yields For this case, we have i'.#" ,,r_

/: I I

/in ( rtKtK2+rtKtK'-r2Kt _ Kz = _(T,,,,-T,,,,) = _--_130-0)= 1.5
T=

- r2 \r2-r2Kt _'rlKtK,+r,KtK._]' " i

r2 #0 131) Kj = I /
_ (r,m,.+r,,o,,) = _.,.,(30+0) = 1.5

:_ For r, = O,equation (29)becomes
xt(t) = exp(-r2t_+0"5[I-exp(-r2t)]

, d.rt
d-"]"= Ktob_I)-KtK2- KzK_

- 1"5r_ [I -exp(-r2t)], r 2 # 0

" or in integrated form r2

J x,tt) = -Kt(Kz+K3)t+ 1, rz = 0 (30a) T = -/In 1"5rt-O'5r2
r2 0.5rz+l.Sr j , r2 #: 0

i Tcan be obtained by employing xt(t) = - 1.5t + I, r2 = 0
xj =O at t= T

I

•+ Thisgives T - !.5' r 2 _ 0
I

T,-
Kt(Kz+K3 ), r 2 = 0 (31a) +

,'1 , DO '_. _r_'_T2 Xt''O III f_"l-_, Two examples which correspond to the problems

solved in dimensional form are considered here. o. ] "__
--. o. I -:Case1: T,.._ ,, 2"5°C x,
• _. o, I ...... :S**_-.._

-*. ",. For this case, we have, from the definitions of I_ K_'.a__'O__Zs"_,_ C_ !

" K_ andK_ andequations130_and(3 I), o, l- - _'t''_'s __._.-, -,

"..,. 01: - " ,o
• _-_ Kz - _ (T, ... - T, .,J - (2"5-01 -. 0°!25 ,

_*t,-'.,,.',. Fft. 6. Resttlt of atmdattm of mmtk_ 001 wi#k

K,. _ (r...+r..,.) - _o(2.s+o)- 0-m r, - ,,_c_r, - _c.
The rezults of simulation are shown in fipre

X t(/) -, ¢Xi:g--rio + 0"_i --exp(- rat) | lind tlibulated in Tlibk I.

0"125rt Note that the numerical examples are restricted
- _[I-exp(-rzt) 1,rz ¢. 0

rz to the ¢oolin8 problems for simplicity. How_,
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the performance equations developed here can be d,T I r jKt.x:

applied to the case in which air is heated in the d--[ +.xl - k'_ +r2A-_K_R(I) (35a)
heat exchanger, i.e., 7", is negative. In other words,

In general, the dimensmnle_._ perf,.,, _ce equation
the performance equations can take into account

for the system element can be written a,, .,
both heating and cooling _ctions of the heat

exchanger, dx t + .,: r _K t._,"z
d--7 ' = K---'--_+r,K,+K,oF_t) (36)

GENERAL SYSTEM EQUATIONS where F(t) stands for the functional form of the

In t,% preceding .section, th._ performance heat disturbance which can be impulse function

equations have been derived for the case.., m which ,_(t), unit step function U(t). ramF functiotl R(I)

the disturbance is of the form of the impulse [or tU(t)], cyclic disturbance or any other Jis_ur-

function and air in the cabin or room is completely bance. This equation together with equahon (22a)
mixed. However, the procedure for deriving the form the complete dimensionless system equations.
performance equations is fairly general and can be that is,
extended to cases in which the disturbances are of

the form other than the impmse fupction and air dx_ r_K_.v 2

f in the room or cabin is far from being completely d-'7 +x. = K----_ +rzK' _-KtaF(t) (36)

mixed. _2 d-_'2 K+x j
----- -_-._ .... K4(KzO_Kj) (22a)

First, let us consider the case resultinil from s_.ep r_ d! " K t
' heat disturbance while ot'._r conditions remain

unchanged from those considered in the preceding It i.sworth noting that the initial condition fl_r T, i'_

section. The heat disturbance qd, has the form T, = T¢o- = T,_ = 0 at :r = O- and 0 +

' q_, = (Qt + Q,)PCI, T_Uo(_) (32) and the initial condition: for -_t is

i 1 The performance equation, for the system proper T,o- T,o
; can be obtaincd as x t ..... i at t =0- andO _

' 7,o 7",0

[ _t dT_ +T_ = r_T_+r_T_+T, Uo(_) (33) (Note that for the heat disturbance represented by

I" the unit step or a h_i_her order function, To_. the
d_

or in dimensionless form 7', before introduction of the disturbance is identical '.

i dx....2 ,£trtx _ to 7",o, the T,. immediately aRcr introduction of the -

., dt +x_ K_ +rtKt +K(aUo(t) disturbance. The value of 7",o or T,o can be zero ;if the reference temperature t, is taken to be 1,o-, the '-

', • • (33a) room t-.mperatu_e before introduction of the distur-

Similarly, for the system with ramp heat distur, bance a_ done in the case or the impulse input"
-- bance, we have however, this _hould _e a_oided because of the

" " Oi+Qz)" definition of KIo (t_- I,)/(t¢o .-t,), which is

l q_, - . pC_T R(_ (34) employed in developinB dimens;onless forms of the i

y! • ,
systems equations. If t, - t,o, KI i_N_rollche's _.

dT_ _ ±. _ ± T_R(_) ,_¢_ which should be avoided) The pefformanc¢m ft. t-r._. 2 -r -- t_'-'l . . . "
:_ _l'_" +T, zt eqtmtlOnS lor various types of heat disturL_nccs

:_+:'_,- and are tabulated in Table 2.

a_.,_,J,P-e:.:_-_'.,,,++-' di.t_ perfucmN_ _lustio_ oi'T

Imp.keza_t) _ +x, - --_:.+r_X,+g,a.:(O 0

: Z"'C"+" *. -' dg r_g_

..+:...'+.....:.,:.+:.+...++-. _ +,,,- -_.-.,, +,,,r. t

UO) _ +x, - _ x,+r,g,+g,eUW) I

ll,ampJl(,) d+ +xl ,, g, x_+_g,_ g+ _ ) I

+._+++._ _ ,,_
•_+_++_+..,. Olalrldlr(t) dt +xj .. "_; x,_+r,_g++gteF(t) I .,

I mill. I

r,l

]974004672-097



" Applications of Modern Opthnal Control Theory 67

" PERFORMANCE EQUATIONS FOR dT,.
_", TWO COMPARTMENTS MODEL tit _ +T,'l = rlTi+r2T2• b

Next, let us consider the case in which air in the Tc I = 7",.1o at t = 0- _

'_i room or cabin is no longer in the state of completemixing. Specifically. we shall consider the case in where _ is the time constant of pool I and is
- which flow of air in the room can be characterized defined by

'_:" by two completely stirred tanks (or pools or com- I,, ;

partmentsjin-series model (2 CST's-in-series model), r i I = Q i + Q.,
,.'r I'he following assumptions must be added to
¢_ t .e already made for the system proper in the Notethat

preceding section: VIi Vi i/(Qi + 02) _;I

(a) The room is divided into two well mixed V, - V_,;(QI+Q_) r_ )

i compartments in series. Volume of each pool is
denoted by V__ and V 12, and the temperature in Similarly, for pool 2 we he.re '_:
each pool isdenoted by Tel and T_z. V2

• | (b) Backflow of air from the second compart- [(Qt +Q2)TclpC,+ -_7 Td_(_t)I/'I2PC'] "_
" _ ment to the first compartment is negligible. ?:_

t (c) Disturbances are equally distributed over the dT_2system. -(Qt + Q2)rCpT_,_ = Vi lpC_ -_ (40) _

[ -5'
(d) Fresh air comes into the first compartment '__

at a constant flow rate, while exhaust air is released Again dividing this equation by pC_(Qt + Q2) ,:
from the second compartment at a constant flow yields

rate. The schematic diagram of the system is shown dT,.2 _'t 2

[_ in figure 7. The performance equation for each _12 _ + T_z _ T_t + _rl z i :T_(_) (41)
V_ VTz

"_-T. 8(e) -- T_ (e) Tc, 0 at a O-v, - =

I '_ Ii....... ; 'L dT_2

| V,, I-_ Vtz T:Z T¢2 = TCzo at = = 0 +

r where _l_ is the time constant of pool 2 and isdefined by

Qz, Tz Oe, Tcz V! 2

FiR. 7. Schematic expression of a room represented by Tt2 ---- QI "l'Q2
the two CSl"s-in.sertes model.

For the heat exchanger, we have from equauon

pool can be obtained by using the transient heat (22)
balance around each compartment. Thus, for dT_
pool !, xz _ + rl = T_z- T, (42)

[heat in]--[heat out] = [heat accumulation] (37) Equations (39), (41) and (42) are the performance
or equations of the system. We may rewrite these in

Vt t dimensionless form by defining '

[QtTipCe+ Q'TzpC'+ "_t T_$(=)VttpC_] T¢, Xt tT¢t T,

dT,_ x_ - Tc_o 1"= , Kit
-(Q, + Q,)T, ,pC, = I:, ,pC, _ (38) Tt,o ;_..

T_= Xt :T,, r z _"'

DividingthisequationbypC_(Qt+Qa)yields xta = T_:-'_" T= , Kt: - T,,.o ""

dT, t
fit _ +Tel " rtTl+rzTl+ tt''At- ITch(=) TI K4TI _-

(39

T_t-O at =-0 t-_
or _ t
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Introducing these definitions into equations (39), NOMENCLATURE ,,

(41) and (42), we have as rK2K4 ""

dxzl
dt +rtl'Vtl = altx2+al2+ala_(t) a6 rKaK*

(43) all rlKl lrl l/K*

dxt2 at2 rsrzKtt
-- +rl2Ai2 = a21xt,+a23_(t ) (44)

dt a13 TaKI t/rzrtl

dx 2 a2l rl2Kt2/Ktt

d---t +rx2 = a,2Xtz-asO-a6 (45) a23 TdKl 2/T2r t 2

where a42 rK*/Kt 2

_ = rtK t,, al | it'! t/K, d t Integration constant

), _ at 2 --- rt tr2Kt t .4, Integration constant

• _ at3 = TdKt t/T2rt t cp Specific heat of air in kcal/kg°C

a2 t = rt 2Ks 2/Ks t cow Specific heat of coolant in kcal/kg°C

• a23 = TdKt2/T2rt2 F(t) Functional form of heat disturbance de-
' finedin equation (36)
: a4, = rK4/Kt 2

as -- rK2Ka Kt T___24

: T¢o
t a6 = rK_K,

1

[ : _, K, _ (r,...-r,=,Jrll ------

_'11 l

_sz T2
g' T,-:

% T2
The performance equations derived in this K_ Tt_o

sectioncan also be used for simulationeither on a T2
digital or on an analog computer by following the Kt 2 --
procedure presentedin the precedingsection. For Tz,o
any given forms of the air flow model and heat Ml vtpcpT_
disturbance,the forms of the dimensional systems
equations,whichessentiallyrepresentheat balances qa Heat disturbance rate in impulse form in
art"fixed; however,these can be transformed into kcal/, ec
a variety of dimensionless forms and the forms q,_ Heat disturbancerate in step kcal/s -

givenhereare not necessarilythe most convenient q_t Heat flow into the system proper by
ones. circulationairin kcal/s

qla Heat flow into the system proper by Crash ,_.
CONCLUSION airinkcaI/s

Methodology andprocedureusedin this pan can q.,t Heat brought into the heat exchangerby

also be employed for constructingand simulating circulationairin kcal/s 1l! _
model-_ for other systems in which mass and q.t, Heat brought into the heat exchanger by
momentum transfer and chemical reactions art cooling waterinkcalls
involved in addition to heat transfer.The perfor- q _ Q i_':_
mance equations derived in this part will be am- q.,os Heat flow out of the heat exchangerwith
ployed in the succeeding put of this tetiu to c/rculationalrinkcal/s
determinethe optimalcontrol policy bated on the q,,ez Heat flow out of the heat exchanger by
modernoptimalcontroltheory, coolingwaterinkcal/s

|
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4

q_,, Heat stored in the heat exchanger in T,f Flnal steady state value ofT, -

kcal's Tr m_'_ Upperbourd ofT.in C .,-

q0J heat flow out of the system proper by T,,._. Lower bound of T. in Ccirculation air in kcal's

q02 Heat flow out of the system proper by 7",0 ValueofT, at _ = 0-in C
fresh air in kcal's T_,_ t_,c-- t_ in _C

Q Q1+Q2, flow rate of air in the system Tw, t_,h-t_in'C
proper in m3,'s T, _ Temperature of pool I in C

Qt Air flow rate by circulation air in m3 s TI2 Temperatureofpool2in C

Q, Flow rate of fresh air in m3 s Uo(t) Step heat disturbance function

Qw Flow rate of coolant in ma/s Vt Volume of room in m_

r : _ :2, the ratio of time constant of _ystem V, t Volume of pool I of two completely stirred
proper to that ofheat exchanger tanks in series model in ma

Q t , the fraction of circulation air V 2 Volume of heat exchanger in m "_
rl Q i + Q2 vt 2 Volume of pool 2 of two completely stirred

Q2 tanks in series model in ma

r2 Q t + Q2 ' the fraction of fresh air r_

zt xt(t) _¢o 'dimensi°nless room temperature
rll

Tit ri

Tz x,(t) _o' dimensionless temperature of ther t2 _ circulation air
'[12 "

: T,t

] _ R(t) Ramp heat disturbance function x t, T-_'_t_ ' dimensionless temperature of pool I* 0(
., t _, dimensionless time T_2

Tt x t, _, dimensionless temperature of pool 2

t, Reference temperature in °C T¢2°

t_ Room temperature in °C

t_ Disturbance temperature in °C Greek letter,,

h Temperature of incoming circulation air _t Time insec
in °C _j, t=inaitime in sec

r.,
t_. Inlet temperature of coolant in °C ¢9(_t) latpulse heat disturbance function, s-

t.. Outlet temperature ofcoolant in °C p Air density in kg/m _ -

t2 Outside air temperature in _C Pw Density ofcoolant in kg/m a

T Final time, dimensionless Td f_"
o _, dimensionless disturbance temperature _._T_ (t_- t.). room temperature in °C T, !

T,(s) Laplace transform of T_(0t) Vt '.'_i_;
t _, time constant of the system proper ' ,)_{ _ r "_k

T_o Room temperature at _t = 0 + in °C Q t+ Q, in s ,;*/_.:_

T_t Temperatureofpool ! in°C gtt .timeconstantofpool I ins -_, ....'tit .
T,t o Temperature of pool l ata - 0 + in°C Qt+Q2 : , .

T,2 Temperature of pool 2 in °C V2 time constant of heat exchanger in s _.
T,,o Temperature of pool 2 at 0t - 0 �taQ-'?

Td (td-- t,), disturbance temperature in °C Vt a
tt_ . time constant of pool 2 in s _- ?_

T_ (h- t.), temperature of the circulation air Qt + Q_ ' "T,-i(T, ., +T,.,.) ..... '" _:__into the syttem, in °C 0 _ . _ , controt varlaole :'__"_"
_r,...-HT, ... +T, ...)

T_0 Temperature of the circulation air into the _,. _-_;_....

systemat''O'in°C h_thetiealtemlmra- 1+I at T,-T,__ ,_,__
7". ' _tac_ ' turf _a) Hut ditturban_ function _ _'_,_©_'_
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A,,"9lications of Modern Optimal Control Theory 71 ;1

Plusieurs modules methematique_ d'un s)_t_me dc contr61e environnant conslstant i°_ d'un espace ou d'une cabine limit,s, d'un _changcur de chaleur et d'uq _idment de ,_
retroaction tel qu'un _hermostat, sont pr6_ent6s. Les 6quations de performance du l

_. syst6me qui repr6sentent les caract6ristiques dynamiques du syst6me lui-mfime et de
_;, I'_changeur de chaleur (L'6Kment de contr61e du syst_me) sont d_riv6s. Dans le .1
, mod61e fondamental, I,, courant d'air dans I'espace limit6 est considdr6 ¢:tr¢ dans

.:.,," 1"6tatde m61ange complet et la perturbation est due/_ une entree de chaleur p:_r mlpui- ]sinn. /es 6quations de 13erformance, darts lesquelles les perturbations de chad:cursont
'-_"... d'une forme telle que la foncuon d'_tape et la fonction cyclique qui sont d,ff6rentes i
,_ de la lbnction d'impulsion, sont dgalement d_riv_es. On pr_sente _galement les

6quations de performance qui repr6sentent les caract6ristiques dynamiques d'un

_i courant d'air dans un espace ou une cabine limit6s caract_ris6s par les deux modules.., de vaisseaux en s6rie compl_tement agit6s (2 CST en s6rie).

; ._, Afin dc ddtelmlner la "val,,;urdu mod(:le, on utilise une simulation par ordinatetw

_r,_- et les r_sultats sont compar6s aux caract6ristiques connues du syst_me.

Meht_re mathematische Modelle eines Umgebungs-Kontrollsystems, das aus einem
begrenzten Raum oder Kabine, einem W/irmetauscher und einem Riickwirkungs-
element, wie z.B. einem Thermostaten besteht, wurden dargestellt. Die Leistungs-
gleichut_L_.n des Systems, welche die dynamischen Eigenschaften des eigentlichen
Systems und des W_.rmeaustauschers (dem Kontrollelcment des Systems) darstellen,

i werden abgeleitet, In dem grundlegenden Modell wird der Luftstrom in dem begrenz-ten Raum als grfindlich gemischt angesehen und die Beut,,',ahigung wird dutch
einen zugef_hrten Wiirmeimpuls verursacht, Die Leistungsgleic ,mgen, in welchen
die W/irmestiSrungen in der Art wie die Stufenfunktion und zyklische Funktion sind,
welehe anders als die Impulsfunktion sind, werden ebenfalls abgeleitet. Es werden

i" _ der Luftstr6mung in einem begrenzten Raum oder Kabine wiedergeben, was mit dem
• ausserdem die Leistungsgleiehungen dargesteilt, welche die dynamischen Eigenschaften ,

Modell yon zwei v611igaufgerfihrten Reihentanks (2 CST's-ir-series) geschildert wird.

Eine Komputer Nachahmung wird durchgefiihrt, um die Giite des Systemmodeils .;
zu ermitteln, und die Ergebnisse werden mit den bekannten Eigenschaften des
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Application of Modern Optimal Control ,:,
Theory to Environmental Control of -

? Confined Spaces and Life Support Systems"
Part 2--Basic Computational Algorithm of Pontryagin's

_ i • Maximum Principle and its Applications
_ L.X. FANt
_"_ Y.S. HWANGt

_ C.L. HWANGt
The basic form of Pontryagin's maximum principle which is a keystone of the

_i optimal theory is presented. The principle i_ applied to themodern ('ofllt o[

! j. determination ofoptimalcontrolpolicies of several life support or emqronmental
; control systems.

_, Three concrete examples all of which are concerned with the temperature ,

control of a life support system consisting of an air-conditioned cabin (the
, system proper) subject to an impulse heat disturbance and of a heat exchanger

" (the control element) are considered. Thefirst example treats the case in which
the time constant of the heat exchanger is negligible. The second example _ .

_ considers the case in which the time constant of the heat exchanger is not
ignored. In the third example the optimal policy of the system where the flow

[i of air in the cabin can be characterized by the two completely stirred tanks-in- ._series (2 CST's-in-series) model is studied. In this example, the time constant of
g the heat exchanger is again neglected. Procedures and computationalapproaches

employed for obtaining the optimal control policies are given in detail.

s : INTRODUCTION in this particular article the most basic form of

i MATHEMATICAL models of air-conditioned Pontryagin's maximum principle will be stated and !

" it will then be used for determining optimal,/ rooms or cabins or life support systems have been operating policies of the life support or environ- 1
• ,, , estabKshed in the preceding article[I]. In this and

two of the succeeding articles, the various forms of mental control systems which were described in
Pontryagin's maximum principle[2-8] will be Part lofthisseries[l].
introduced and will Ix" used to determine the

optimal control policies for such systems. STATEMENT OF ALGORITHM
Use of the maximum principle almost always

giver rise to a two-point split boundary value Consider that the dynamic behavior of a con-
lxoblem, the solution of which will be further trolled system can be represented by a set of
elaborated. Even though this principle leads to differential equations

two-point boundary value problems which are dx_ .. A[xt(t),x,(t) ..... x,(t); 0t(t),..., O,(t)],often difficult to solve, it still provides a practical d-';"

i approach to process systems optimization.Another difficulty also arises in using the maxi. i = 1, 2.... , s (!)
mum principle formulation as the basis for com- to__t_T

" puting optimal control. The maximum principle
generally provides only the necessary condition or in vector form

but not the sufficient condition which must be dx

satisfled by the optimal control, d'-_=/[x(t),O(t)], to :g t _ T (In) '

• This workwas supportedby the Air ForceOfl_ of where x(t) is an s-dimensional vector function_'ientilk:Reusrch,Officeof A_ gewarch,United

StatesAirForce,UnderContractF44620-6g-00_(Themit representing the state of the process at ttme t _,
Project),and NASA Grant Under ContragtNGR-17- and #(t) is an r-dimensional vector function re-
001-034. presenting the decision at time t[2, 3]. The functiom ..... 'f Instituteof systemsdeliln and ol_imiattion, Kan_ _:_i
fPtateUni_._tity,ManhatUm,Kllll_ ft, I- 1, 2, .,., s, are single valued, bounded, :.-..
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differennable with respect to the x's with bounded (8) for t_t) or _" _earching the boundary of the szt.
first partial derivatives, and are continuous in the More specifical;., the extremum value of Hamil-
0's on a product region x0, where x and 0 are closed toni_n is maximum (or minimum) when the control , ,
regions in the s-dimensional x-space and r-dimen- variables are on the constraint boundary. Further-
_ional 0-space respectively[5]. Note that we are more, the extremum value of the Hamiltoman is "
dealing with the autonomous systems in which the constant at every point of time under the optimal
right-hand side of the perfoimance equation, condition. It is worth noting that the final condi-
equation (I), depends implicitly on time t. The non- tions of the adjol,lt variables. -_(T), are often given

autonomous systems a,e those in which the right- as -c, instead of c, as shown in equation (7}, ,
hand side of the performance equation, equation in employing the maximum principle of Pontryagin. 0
( I ), depends explicitly on time t. The use of such final conditions of :_(t) gives rise to

A typical optimization problem associated with the condition that the Hamiltonian is maximum
such a process is to find a piecewise continuous when the objective function is minimized, and
decision vector function, O(t) subject to the p- minimum when the objective function is maxi-
dimensional constraints mized as stated in the original version of the

h,[O(t)] < O, i = !, 2, ..., p (2) maximum principle of Pcntryagin[2,3,6].
If both the initial aria final conditions of state

such that the performance index variables are given, the problem is said to be a
boundary value problem. The basic algorithm

S = _ cix,(T), c, = constant (3) presented except the condition given by equationt- I

(7) is still applicable[3].
; is minimum (or maximum) when the initial condi- if optimization (usuully minimization) of time t

tions is involved in the objective function in a problem
'. xi(t o) = x m, i = I, 2..... s (4) with an unfixed dura:ion ofcontrol, T, the problem
' is then called a time optimal problem. In this case,

are given. The duration of control. T, is specified the basic algorithn presented is still applicableand the final conditions of state variables are
with an additiona! conditien *.hat the extremal

I unfixed. This type of problem is often called the value of the Hamihor.lan is not ¢,nly a constant
free right-end problem (with fixed T). The decision

but also identical to z_ro. The s;mplest example of
vector (or a collection of control variables) so

the time optimal ,.'ontvol problem is one in which
chosen is called an optimal decision vector (or theperformanceir;dexisofthefo..'m
optimal control variables) and is denoted by O(t).

The procedure for solving the problem is to r
S._ [dtintroduce an s-dimensional adjoint vector z(t)and a 0

' ' ... Hamiltonian function _t_which satisfy the following
relation; Such a problem is oft_,n called a minimum time

problem.

,Jr'Ix(t), O(t), z(t)] - _ zt(t)ft[x(t), 0(t)] (5)
i= I EXAMPLES

'I._.' | d'"t.... d"-_l=-2"zj" ' i=1'2 ..... s (6) The basic form of the maximum principle
_=, ax_ presented in the preceding section will be applied

_1 Y_:'" z_(T) = ct. i = 1, 2..... s (7) to concrete examples. Procedures and computa-
_am "_ • tionai approaches employed will be given in detail.

_:"___ The set of equations, equations (!), (4), (6) and k_

_!_i (7), constitutes a two-point split boundary value Example l--Suppose that the dynamic behaviorproblem, whose solution depends on O(t). The of a life support system consisting of an air- _.

optimal decision ve:tor 0(t) which makes S an conditioned room or cabin subject to the impulse
• "i_ extremum also make, theHamiitoniananextremum heat disturbance and a heat exchanger with _,

for allt, i.e.,to fit _: T[2,3,5,6]. negligibly small time constant (%--, 0), can be
_,'_:', A necessary condition for S to be an extremum represented by the following equation[i] [equation

_,;,_._::,r_ _ with respect to O(t) is (29a) in Part I of this series]: '

dt +r,xt = r,Kt-r_K_K',O-'_tKiK3 (9)

if the optimal decision vector is interior to the set with ["
, of admissible decision O(t)[the set given by equation

.__ (?.)]. if 0(t) is constrained, the optimal decision xt(0) - 1 at t = 0 + i

vector 0(t) is determined either by solving equation xt(T) = 0 at t = T I " " '
: t

I
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where T is the unspecified final control time. We 0 = 0m_, = I if -r,K,K,:, < 0 (19)

wish to determine 0 so that the response of the 0 = 0m,, = --1 if -r_KtK2zt > 0
system can return to its desired state in a minimum
period of time, that is to minimize Time optimal contro' policy of this type is of

T bang-bang type [3, 4, 6, 9]. "
S = S dt (10) In the case where the coefficient of 0 in equation

o (18) vanishes, we have the possibility of singular
Ifan additional state variable.r 2 is introduced as control[10]. For singular control, the control

i: variable takes on values which are intermediate to.x'2(t) = , dt, 0,,,, and _tmln; hence the name intermediate control
o is also used in place ofthe singular control[10]. Also

it follows that inertialess control will be considered. An inertialess

dx2 controller has the ability to shift from 0,,,_ to Or,,,

/ dt I, x2(0) = 0 (11)= instantaneously and vice versa.
_" The maximum principle now requires that the
_' The problem is thus transformed into that of system equations, equations (9) and (IlL be
: minimizing x2(T), integrated simultaneously with the adjoint equation

According to equation (5), the Hamiltonian is (I 3) so that the two-point boundary conditions

i ..,_[z(/), x(t), 0(1)] xt(0) = I, xt(T ) = 0dx_ dx2 x2(0) = 0, x,(T) = undetermined

= z) _ +z2 d'-'7 :3(0) = undetermined, z_(T) = undetermined

= zt[-rzxt+rzKt-r,KtK20-rtKtK_]+z2 are satisfied. For this minimum time problem
_- (12) extremum of the Hamiltonian must vanish at every

The components of the adjoint vector, according to point of its response.
equation (6), are defined by In order to bring the initial deviated state

xj(0+) = 1 to the final desired operating state
dzt _..-,_' xt(T ) = 0, we intuitively reject the control 0 =

", _ d-"7-- -8x"'7 = r2zz (13) 0=i, = -I (which corresponds to the minimum

_ " dz2 8.,*" cooling action). Equation (9) can be integrated
....... O, z2(T) = I (14) with the conditions
dt dx 2

0=0=,= ! (20)
",' Solutions of equations (I 3) and (! 4) are

and

zt(t) = A_xp(rzt) (15) xt(0) = ! at t = 0 + (21)

z,(t)= 1, 0< t< T (16) as

where A is the integration constant to be determined x t(t) = exp(- r2t) + I (r2Kt _ r i Kt K2later. Inserting equation (16) into equation (12)

'... yields -rtKtK3)l - exp[- r,t])
_,. _ _ =, -rtKtK2ztO-rzztx t+rlKtzt-rtKtK3zt
_**"""" + I 07) = exp[-r2t]+ _ (1 -exp[-r,t]) (22)

r2
Therefore the switching function ._*, the portion of where

• _ whichdependsonO,is _1= r2Kt-rtKtK,-rtKtK_ (22a)
•W_* = -rtKtK2ztO (18)

The integration constant A in equation (15) canRecall that minimization o1"the Hamiltonian with

" respect to 0 corresixmds to that of the objective be determined by using the condition that minimum
H is zero for all the process time in time optimal

function. Equation (! 8), however, indicates _hatthe control. At t ,= 0 +, we have from equations (15),
minimization of the Hamiitonian with respect to 0
is equivalent to that of the switching function. Thus, (17), (20) and (2 !)

minimization of the switching function corresponds A = z j(O+) = -___.1
to that of the objective function. Equation (I 8) also it-r2

indicates that for the switching function to uqume and _:

the minimum value, 0 must assume its minimum

__ allowable or its maximum allowable value depen- -1 exp(r2t)(23) ! _I:''_*I

ding on the sign of the coefficient of 0. zt(t) = _- r---_

:fL" [
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Equation (23) implies that =(t) will not change sign and from equation (27)

since zl(t)--, 0 only when t approaches negative !
infinity, or in other words, control will not shift :1 = -- = 0.769 at t = 0 . ,
from 0me,to 0m,. (or from Omi,to 0.... ). Therefore, 1.3

J

this problem is a particular case of bang-bang . _ __1 = 0.909 at t _ T
control which has the bang part only. The optimal - t - l.!
control policy starts with 7", m,, and then keeps
operating at the upper bound of 7",until the final
desired state is reached. The final control time can

be obtained from equations 117) and (20) together _

with the final conCition _ o_
xl(T)=O at t = T

t_ I t. , t
as follows o 02 o4 oe oe ,6-

•_ = :l(T)[-r,xl(T)+ff]+l -- 0 t

or solving for: l(T)
r _]

:I(T) = _ (24)
q

' Also we have, from equation (23), at t = T

-i
' :l(r) - exp(r2T) (25) 1 I i '=

! q-r_ o_ 04 o6 oe Ic
?

i Solving for Tfrom equations (24) and (25) gives!

T = -- In 126)
r2 "_

This solution may be verified by inserting it into = o _
equation (22)as ,,z

i xdT) , j , L ,_-
",t o o2 o4 o6 oo ,o

= exp(_r2T) + L {!-exp(rzT) } ' ;
r 2 Fig. I. Optimal rontrolpolio' andsystem response of the

one CST model r= = 0 [Erample II.

,[ '= ¢X --r- _ In

" r= Equations (27) and (28) are graphically shown in

r_{ [ lln(___)]} figure 1. The state variable x, approache_ asympto-

_i_:_ + l-exp -."z r'_ tically to the final state, the control variable 0

remains at unity until the final state is reached, and
= 0 the adjoint vector increases asymptotically. The

. ._ optimal control can be verified by computing o_':_ This indicates that the Hamiltonian is kept at zero
• _,,- at an arbitrary point, say 0.5, of the time co-' . " at every point of its response in this minimum I ,_
_:_ "., time problem. For ordinate as follows:

.__- ! t-O,5_.i r2 =0"8 r 2=0.2

_,:.'I zl(t) ==exp(-O.l)i.3 '
, x,= 0.5x, = 1.5

'_,_-"_...."' x,(t)= 6.5 exp(-O.I)-5.5

?::: ,, and

_:,_ | we have from equations (22), (23) and (26).... _. _t_ = z,(t)[-r,xt +rzK_-t tKtK:-rIKtK_]+ I

: " " exp(O.I){-o.zl6.sexp(-o.l)-S.Sl (29) ,", :, ' z,(t) - _ exp(0"20 - 0.769 exp(O.2t) (27)

xt(t) - 6"5 exp(-O.2t)- 5'5 (28) +0,2 x 0.5- i.2} + 1

_/"l T - 0'8353 -0
• * 4
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This computat..m shows lha! the mimmum value ol We v_l,,h to dctcrmmc the contr. ,able 0 ,,o thai

._ is zero at every point ol'thp, contmuou,, proccs,,, the ,,late _arlable,, m,t_, bc brough! lrom the mHml

['our cases v.ith different coohng capacitle_ of de_lated ',tale [_ = l. v, -- I. at , - (t _] to the

the heat exchangers are cons,dered here. T ...... final dcslrcd ,tale [_ = O. _, i] at t T. in ,_ -,
and 7",m,n l:.|kC the f,_lh_mg _Mue,, for these four mmmlum tmac In other word., .,

elL%C% : I

('a',e 1"7; .... = 30 C T, ...... = 0(" S = )'dr
o

Ca,,e 2: 7,.,,.,, = 20 (" 7-, ...... = 0 (" I,, to be minimi/ed.
('a_c3:T, ..... = 10C 7; .... = OC

ifan ;.IddlllOltZlJ ',talc _.arl;.tb[e _.._ i,, introduced ,in
Ca,,e4: T,m,, = 5 C I_m,, :-- 0 C

t

The numerical solutmns for these cases are obtained _.d t ) :- f dt. {33)
from equat,ons (22L (231 and 1261. and are tabulated d
in Table I. It t\_llo_ _ that

• TaMe t. Optimal _olutton_of the one ('ST d.x"3
imMelto_ether witht_ = O[Evample I] ---- = I, _.dIV ) =- 0 (341

_ .... dt
*_ Case Two bounds of K: K_ l-realtime I

t _. number control _artable and /
%, _ ..........

r._ ! T, ,,., = ._ (' 1.5o 1.50 0.8353 .',-3IT) = ._dt = S (35)
t _ 7",,m, = 0 C

,' 2 T,,,, = 20(" 100 1.00 1.2566 The problem is now tran,,formed it|to thltt of
il- 7",m_,= 0 C
_" 3 T,,.., = ,0 C 0.50 0.50 2.5541 mimmizing x3(T)because x_(T)and S are identical.
,. 7",,.,. = 0 (" According to equatmn 151, the Hamiltonian i,, '

4 T, ,,,,, = '_C 0'25 0"25 5 493

i _' T,... = 0 C "(.', .,, 0,' " dx, d.__, d_'._

Example 2- Generall_, responses of the heat = z, dt +:"-d-t +:_ d---_
#_ exchanger as well as the cabin are not always

" .; instantaneous. Suppose that for the system con- = :_[-.x-_+a_v:+a,]+z_[-rx,+a_v_

sidereal in the first example, the time constant of -ad?-a,,]+=3 (36)

the heat exchanger, _,, is not so small as to be The adjoint variablcg are defined b)
ignored. The performance equations for such a

." system have been derived in the first part of this d:, _'.,'¢..... :_- a.,:., (37)

_ries of articles {equations (12a) and (22a1 in [I]}. dt gx

dx _ dz: ( ,"/

d'---t+.v_ = avvz+a, (30) 4-'-t = - ga', rz,-a:_ (38)

dxz d:s __g'_ = 0, :_(T)= l (39)
d-"-_+r.v_ = a_.v)-a_O-ao (31) d--_= g'x_

,-,-., with the initial and the final conditions From equation 139), the solution of:_ is
,_, x_(0 +) = I and x_(0 +) = I at t =0 �02)
-_ ,. :s(t)= I, 0 + _ t <_-T (40)

' _'_, i. x)(T) = 0 and x_(T) = I at t = T (32a) Hence, the Hamiltonian can be rewritten as
_ i_ The decision variable 0 is co_,strained as

.. ...?. [ ._v_- :t(-x_+at_-a_l+z_(-ra-,+a_x t_ l0 I _ I -asO-a_)+l (41)
_.r,. where!

.:_,. _ t t and the switching function _¢'*, the portion of ,h"
which depends on O,isT2

,_:.'_' ,- l a_ = rtKt/K_ ,Y[* = -aszzO (41a)

¢ "_';,. -- I! a, r_Ki,-×-:_ ,. . = Inspection of ._* shows the basic structure of the

: _.;_:. . as = Kto time optimal controlpolicyis of the banll-ban$
rK4 type as in the first example. The ¢onditiom for

a, : K-"_" which the H_miltoninn be minimum are '_;"
as,,rK_K_ O_O_.= I if -asz_<O

a,=rK_K, 0..0_---1 if -asz_>O (42 , -._,
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These conditions also imply that if the switching Suppose that the control switches from 0mj, = I
occurs, it will be at to 0m_. = - i at a certain time (switching time t,).

' a_=2 = 0 (43) Then .x-i(t) and xz(t) after t, are solved from
equations (30) and (3 I). The results are

provided that the controller shifts from 0,,_, to .,
0mt, instantaneouslyandinertialessly, or vice ver,_a, x.(t) = D t exp().lt)+ D,"cxr_" ," ' K', t, < t <. T

Now, the maximum principle requires that the (49)

system equations and the adjoin' variables x,(t)=l[(l+;.I)Dnexp,;.,t)
equations (30), (31). (34). (37) and 138), be inte- at
grated simultaneously in such a way that the two- +(; +).,)Dz exp()._t)+K'-a2]
point boundary conditions t, < t < T (50)

.v_(0+) = i .x'l(T) = 0 where

.x'2(0+) = I .v2(T)= I K' = raz+aias-ata°

xj(O +) = 0 .v_{T) undetermined r- a ha+
and Dj and D2 are constants, and their values can

=t(0 +) undetermined =;(T) undetermined be determined by using the continuity ofx, and %

=2(0+) undetermined ,.'2(T)undetermined with respect to t. We have from equations (45),
' (46), (49) and (50) at t = t,

be satisfied. Meanwhile, the Hamiltonian must

remain at zero at every point of its response under x n(t,) = A t ex_;. it,) + A 2 exp(_.2t,) + K

the optimal condition. = D _ exp(/., t,) + D _ exp(), zt,) + K' (5 I)
In order to bring the initial deviated state

i [x_(0 0�=I, x2(0 �4�---I], to the final desired state and
[xu(T) = O, x:(T)---I], _e intuitively start the x2(t,) = l[(l+).l)A, exp_ its)

i , control from 0 = 0,,_,-- I (this corresponds to aj
; the maximum cooling action). Substituting this +(! +/.z)A2 exp_Ad,)+K-a2]

i condition into equations (30) and (31), and elimina- I

i ringx 2give = _ [(I +Aj)DI exp().jt,)" d'xo dx, "_
J _ +(l+r)--_t +(r-a,a,)xt +(l+).z)Dzexp(A2t,)+K'-az] (52)
i Solving for Dj and Da in terms of An, A2 and t,

+(a,as+atao-ro2) = 0 (44) from equations (51) and (52),
" The solution of this equation is, DI "=An-Et exp(-_.tt=) (53)

xn ==A t©xp(,[tt)+A 2 exp(_.zt)+K, 0 _ t _ tj and
,_ (45)

D2 = A,.-Ez exp(-).d,) (54)
where,4 t and Az are constantsandtheir valueswill
be determined later. ).t and ).z are roots of the where

,_z(K'-K)
. characte_ istic equation Et -

',' 3.'+(! +r),L +(r-ata,) - 0 '_t -'_z

_.!_ £. and K is the particular solution and its value is Ez - _dK'-K)

. ._ • roz-atas-ata_'_'" K -, The value of/, and that of Tcan bedetermined by //

._ . r_ata,
• _,:_ employing the final conditions [equation (32a)] at

" __ From equation (30), the solution ofxz is t - :'. Thus, equations (49) and (50) become

_+.+;,, I o, exp(,_,T)+O_exp(_n+x' - o (s5)xz " -- [(_ n+ I)A t exP(3tt)+('_z + I)Az exp(_[zt)
'+*_ , '-+ ._ at (I +_n)O, exp(ZtT)+(I +Jz)Dz exp(_zT)
,_,

+K-az] (46) + K'-az " a_ (56) '

,.._-+":,++_+,_ The initial conditions applied to equations (45) and Subtragtinl equation (53) from equation (56) yields
++_++:_,+ ++ (46)give ).IDI exp(_.IT)+AzD z expQ,zY) - Ol+OZ (5"/)

[ . I Solvinl for Pz exp(,tzT) from the above equal;on ":

a, - -- ;_,,+,,_-,z+-n+x,h) (4_ (_

'* AI " I-An-K (48) Oz exP(_zT) " £, (511)
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[

Subtracting equation (58) from equation (55) gives +5 ]

f I +D,ex_:.,r)= E3 (591 ,, /,.
where ••

a) +a2 + K').2 _3
E3 = ., _+

2) -22 ,9 l+
J

at+a2+k, iK' u
= i

E+ 3.,-2, ,o '.
We have four unknowns. D,. D2, t, and/'in four

equations (53), (54), (58) and (59). Solving for t,. 9

we have x. i

At-E, expI-2,t,)] "+ Az-E, exp(-3.,t,)] !
++ (60)

+._ t, can be solved from this equation by a trial and ,"o/

:++ error procedure, and D,, D, and T can the). L,e

t _. obtained from equations (53), (54) and (58). The
, same numerical values used in Example ! are

employed for ri, r2, K,, K 2, Ks and o. An additional
t

constant K+=-4 appears in this and next Ex-
ample. The solutions for four cases are shown in ,

Table 2 and figures 2-4. • _s_.. + ., _.
_ 0 O_ 04 06 08 +_
_+ ,o

i i , - JO FiR. 3. Phase plane g,t_tfor Case I ,]'the one CST model
withr_ _ 0awi+ifferentvaluesoft[Example,21.

i +-
i .+ _ Co$¢'/

l _ 6"tO

s x i "q'__ --5---'"°°

x _

I -

0 O_ ' 4 0+, ._J I0

-,o o, o. o. o. ,o /
m

s++',_.'+'+".I x,

I

Film 2 is the _ plane plot, xa vs. x:, fog -, , ._, t _ ,_
_2 ' 4 <.(, "_+I teJ _+,+

diff_ cues with_ ,,of I0, while _pne :) tshows that of CaN I fordifferentvalutaof _'.Both
Rr.4. o_t_ ¢mm__k_ _t ,rim, mm,m ¢'

_qgug_ show a common featm that Jdl the trajeo-
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However, the speed of re_pon e can b¢ ob_rved where
in fit ure 4..v, decrease_ asymptotically from t = 0 a4,' = K4 g l 2

to t = 0.847, and then approaches linearly to the a_' = K:K4 ""

final desired state. Response of x2 conca:,cs a_'= K3K , ,
dowrwaro from :he initial state to t = 0.1, and
then inet:a_s linearly to t = 0.847, and finally The initial and the final conditions are

decre'._seslinear b to the end. This figure also shows x: 1(0+) = .x',,(0 +) = I at , = 0the optimal control policy: it operates at 0 = I

xl=(T) -: xl.,(T) = 0 at t = T (63)
from t = 0 to t = 0.847, and then switches to

0 = -I and keeps operating at 0 = -I until the where Tis unspecified. We are to minimizc
final desired conditions are obtained. Additional r

s -- d, (64)result_ are tabulated in Table 2. 0

Table 2. Optima�solutions of the one CST model together with T2 # O. [Example 2].
Ill II

Case T,... T,,.:_ K2 Kj r t, xs, x,, T

r I0 0"847 0"074 10"57 1'0770
50 0"838 0"014 11"59 0'8875

I ._) 0 1"5 1"5 I00 0"837 0"008 11'80 0'8615
i 200 0"8_6 0.004 11"92 0-8485

500 0"835 0.002 11'97 0.8397

I0 1.266 0"048 7-10 1'4584 6
50 1-256 0"012 7.80 1.2990

2 20 0 1.0 1.0 100 1-248 0.009 7.88 1.2767

, 200 1"247 0.005 7.95 i.2664

i , 500 1.246 0.0002 7.98 1,256J3! I0 2.600 0.024 3.78 2.6331

i : 50 2.560 0.025 3.q0 2.5860

r ; 3 I0 0 0,5 0.5 100 2"556 0.010 3.94 2._654
. .. 200 2.335 0.008 3.96 2.5598
,_ 500 2.554 0.003 3.99 2.5545

I0 5"620 0.013 1,89 5"7103
' 50 5"501 0"008 1"93 5"6211

1 4 5 0 0 25 0"25 100 5"4_8 0"005 1"98 5"5010
I 200 5"494 0.001 1'985 5"4971
' 500 $'493 0-0009 1.99 5'4935

A comparison of figures I and 4 shows that time Introducing an addttional state variable
lag of the heat exchanger is not too important.

xj¢'_ - [ dl.
Example 3--Suppose that a life support system i;

consists of an air-conditioned room and a heat we hav¢

exchanger a_ in the preceding two examples, dx_
However, the flow of air in the room can be _ ,_ I. x3(0) -. O (65)

chin eterized by the two CST's-in-Rries model, dt

The performance equations of such a system have The problem is thus translormed into that of
been derived in the _-tion entitled "Gent_i minimizin|x_(T).
Performance Equations" in Part I of this g_rieql]. AccoMinl to equation O), the Hamiltonian is •

A_mminl that the heat exchanger has a nqililibly .xqz, x,O_ m ztt(--rltxll+alta4a'xtl
_':, small time constant (Ta --*0), the perfommnce
'; equations are -at ins '0 -at an**+at 1)

+f 12(--It i l.gt 2 +a? IX I t) + f:l (66)
d'gl! +rttxt ma t |as'O--otta t'

d--_ i lll4,l*X I ],-- at Accordin| to the definition of the adjoint variab_.

+at= (61) wehave (
dxj: d:jl ¢_J¢'

d"_- +rllxil " ¢ltxtt (62) d-'T"" - ¢_xl""_ " rtt:ti-a_ittl (67)

t _ ..,('

41
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, dz12 ?.,'_ , Constants A and B in equations (75) and (76)can be
dt _x_: -a_ ta4z -_ _+r_ :.,z (68) determined by employing the initial condition,

dz.a ?._" equation (63) and Cramer's rule as follows: _ ._

_,_ dt - dxj =0" :3(T)= 1 lazl_rtzK rlz+At 2 ,

_"_ I liK I

_ The solution of.-._can be obtained from this equa- A =
tion as r_z _' r_2+2'2

./ l
:_(t)= !, 0 <- t < T (6q)

'_'. azt_ct2_212+,:l zK
_ Equation (66)can be rewritten as =

211-2t2
'_" .,'g(z, x, 0) = :l l(-rl i-v, ! +at la,_z':,'iz':: andt

-a_tas'O-a_ao +at 2)

z_:¢='_ +:_z(-_ jzxtz+az_x_)-F I (70) B = 'rl 2+'_'111 az_-r_zKI-K i[
Therefore. the switchingfunction ._* is 2 __-). _:

, _! .)g* = -attah'zttO (71) rt2+2t_-)._K-a2_

7_"_ Inspection of.,'r *shows that the optimal controller = )-__-). _2• " should be of a bang-bang type. The control action
for this problem, however, is constrained in such a For 0 -- - !, _'__(t) and ._'_e(t) are solved by
manner that using equations (61) and (62).

101 -< 1 (72) __1 [(2t_+r_2)E, t exp(2_tt )
The conditions for which the Hamiltonian is to be x t _(t) = a:

,. minimum are + (2 _2+ r__)D, exp(: t 2t)+ r __K'],
[ 0=0m. = i if -a_ta_'zt_ <0 t_< t < T (77)

i 0= 0.,i. = -I if -a_as'ztt >0 (73) and
k. _.._ in order to bring the initial deviated state, x_:(t) = Dt exp(i._tt)+D2exp(2_2t)+K',
: _...... " " xt,(O*_,=xt:(O')= I at t=0 the final t_<t< T (78) .

!_ i l dc_ired operating state, xtt(T)-x,_(T)=O, at where

t ,,, l_',we intuitivelyemploy the control action of

0 = 0,_, = I (maximum cooling action). Sub- K' = at _a,ta6'-a, lah'a2t--a_za2_•": stitutingthis valueof 0 into equations(61) and (62) a_ t/21a42'- r ,_rt2 !

and theneliminatingx t _, wehave Constants D, and D_ can be specified by noting
- dZ-xt 2 dxt2 that xt _and x_ 2areconti_uous with respect to t. i

d----t-T- +(r_+r_,l--_t +(r,,r_: We obtain from equations (76) through (78) at
--alta42'azt)xlz+attas'a2t-l-atlazta e' I = ts
--at za2 t = 0 (7d)

Xt z(t_) = D t expO, ttts)+ D2 exp(21 zts)+K'

Solutionofx t 2 can be writtenin theform
= A exp(2_tt_)+Bexp(2_zt,)+K (79)xta = Aexl_2ttt)+Bexp(2_2t)+K, 0 __t __ t,

(75) and

where/._ and ;t_2 are roo:s of the characteristic x t t(t,)

equation 1
))+(rt_+rt_);,+(rttrta-atta_ta,t,' ) _, 0 = _[(2tt+rtz)D_ exp().t tt,)

and _(2tt_+r_2)D _ exp(At:t,)+r_2K' ]
a I laSta2 I -,I-a I lal 1_16 t -al 2a2 IK= I

a21

Inserting equation(75)and itsderivativeto equation + (2 t_+ r t 2)B exp(2t ,t,) + r t 2K] (80)
(62) andsolvingforxt _yield

Solving for D_ and D: from these equations leads _..,/

="_"SL-"[(';-tt +rta)A eXl_).ttt) tOx! I
all

+(Ata+rts)Bexp(At,t)+rt_K] ' Dt = A-E_ exp(-2_ _t,) (81)
0 -< t _ t, (76) D, _ B-E2 exp(-2t_t,) (82)
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where

/"12(K' -" K) ,_ltl_____ t

_' E I _ ,

412--2_1

)-I t(K'-K) ¢ "
/'_2 -- •

value of t., and that of T .,in be obtained b}' using . /

the lanai _.onditions × o ._[ ,
/.v z_(T)=.v_2(I')=0 at t = T |

Equations (77) and (78) thus become / '

lDl exp(211T)+ D.. exp(212T)+ K' = 0 (83)

I [(211 +r12)D I exp(211T)+(212+rtz)D 2
a21 0

'_ exp(;, t 2TI+r12K'] = 0 (84) "_ o

Eliminating T from these equations and letting Fig.6. Phase plane plot ]'or different cases of the two

)-I I K' CST's-in-series model with z2 = 0 and rl_ = 2
, Ea _ . . [Example 3].

A|2_/.I I

K',;.I 2

: /'II--LI2

i . we obtain -- ,.-2

! A-El exp(-,;.i its)} \B-E_exp(-2t2tU (85) "_"_" _'_-" "-" _ _ _'=_

t, can be solved from this equation by a trial and '

,i error procedure. Then D j, D2 and T can be --,i_'o_ _ "_o, _'o6_ _ o8_ _ ,o' ,,_'- t

• :. calculated directly from equations (81) through (83). ___ .... ti " The solutions of this problem are shown sche- __ _----_-.._.......

_. matically in figures 5-7 and are tabulated in o_1- _-_ "'-,. _

,_, _, 0 C_' 04 06 OO I0 i,

"' " I-F--] i
I' ' i

012 04 O_ O0 IC II

Fig. 7. Optimal control policies and system responses of ¢ .

_ Case ! of the two CST's-in-series model wtth _a = 0 and

, "L.,_ : d_erent values ofrt t [Example 3].

Table 3. The solutions are very similar to those of

,:.._,:,-.,_, the preceding example. However, one distinct

difference between the response of the dimension-

_i -4 -_ -2 -_ o ,_ I_._ room temperature in this problem and that in C -

_:: ' x,
-..._. .-., the preceding one is that the dimensionless room

Fig. 5, Phase plane plot for Case 1 ol the two CST's.Im temperature can become negative in this problem%: aeries model with _ ,, 0 and di_erent values of rtt
--,=:. , [Examole 31. while it cannot be below zero in the preceding one.

, i
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Talde3. Optimal _olulion_of tlw two CST'_-in-wrie_mode/with r ,_= 0 [Evample31.

Case T,m, , Trrn_. K2 K_ rll x'll, x't.,, t, T ,

.............................. i

1.2 -0.0760 0"7205 0.645 0.992 .,
: I 5 -0.22U8 0-4874 0 518 I 047

1 30 0 1.5 1.5 2.0 -0.6031 0.3862 0471 1.078 [50 --3-8727 01852 0.598 1.007 /

10.0 -9.4477 0.0896 0.715 0.956 ]I
/

I-2 -0-0596 0 4538 0.975 1.275 ]_
1.5 -0.1703 0-2984 0775 1-225

2 20 0 1.0 1.0 2.0 -0.4526 (3,.2552 0.715 1.24'_ t
5.0 -2.5520 0.1024 0.910 1-25 I.

10.0 -6.0425 0.05105 1.060 1.25

1-2 -0-0343 0 1476 2.015 2.215
1'5 --00998 0'1177 1.635 1"953 l;

3 1o o 0.5 2.0 -02285008821.001.860 ,5"0 -1"1295 0"0353 1"875 2"115 i

({, 10'0 -2"6253 0"0171 2"180 2'310
I

1.2 -0.0169 0.0192 4-520 4.625 tI
:':_[' 1.5 -0,0414 0.0223 3.780 3.940

4 5 0 0.25 0.25 2.0 -0,8831 0.0167 3460 3.640
_.

_:. 5'0 -0.3865 0.0082 4-250 4'360
_,_)3 10.0 -0 8734 0.0059 4.780 4.841

: CONCI,USIONS r
_._- S = .[[x,12dt

i, By now readers should be able to realize that the 0

• maximum principle has a certain advantage over S = _ [a+bl(x))2]dt
other modern optimal control techniques, it is that o

!- it can be used to evaluate the number of switching r
( _ points of the bang-bang control policy via the S = _ [0]2dt r

_:, .,_ switchin_ function and adjoint vectors. Three or f
I ) example_ given in this article take advantage of S = J[a+c(O)2]dt
' _ this rule.Furthermore, the maximum principle o J

t

r I
i can be applied not only to the system with linear = _ [a+bt(Xl)2+c(O)2]dt t

performance equations but also to those with non- o
linear performance equations. Bellman[9] proved r
theo;etically that the number of switching points S = _ [bt(xt)'+c(O)2]dt

I , 0 ;

is ene less than the dimension of the problem for r

lit_ar systems. However, this theory cannot be S = J l01dt
a_plied to non-linear systems, o

It is worth noting that other forms of the The objective functions have different physical ::i

objecUve functions can be considered. For example significance[3,4,6].
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NOMENCLATURE 1 I_

a t rKt'K,

K3 --1 ., ia2 rzKt _-_(T, ,.,_+T, ml.)

a3 Kta T2 !

o, rK,.'K, K, T,----o t
t'

a5 rK2K, T 2
KII

ao rK3K4 Ttco i

r2 ' Ii
at t rtK_ trt t/K4 KI 2 i

at 2 r tr2Kt t T2c° i
Q Qt + Q2, flow rate of air in the system

at3 T_Kt t/T2rl l proper in m3/s I_
a2t rl2Kt2,'K! t

t Q t Air flow rate by circulation air in m3/s

a23 T,_Kt 2.'T2r t 2 Q2 Flow rate of fresh air in m3/s

a,2 rK,, K_ 2 Qw Flow rate of coolant in m3/s
a'42 K4/K12

Tt

,4 Integration constant r --, the ratio of time coqstant of system• "_2

A 1 Integration constant proper to that ofh_ .,t exchanger

i Q,
0 A 2 Integration constant rt Ol + 02 ' the fraction of circulation air
J

b

B Integratioa constant Q2 "_ ;• _
j, ci Constants defined in equation (3), r2 . I
, i = i, 2, ..., s Qt + Q2 ' the fraction of fresh air .., [

, cp Specific heat ofair in kcal/kg°C rt t "_ [
*t "t'll j

._ .. c_w Specific heat of coolant in kcal/kg°C
T2

[ D t Constant defined in equation (53) r t2
_12

I -- , D2 Constant definedinequation(54) S Performance index defined in equa-
E t Constant in equation (53) tion (3)

[_. _/ E2 Constant in equation (54) t 0t,dimensionless timeE3 Constant in equation (59) _ t

'i_ " E4 Constant in equation (58) t, Reference temperature in °C

_i! h_[(t)]p'dimensiOnalcOnstraintsOndecisiOnt_ROOmtemperaturein°C

vector function 0(0 td Disturbance temperature in °C

aff[:,'(t), tI Temperature of incoming circulation air
O(t), z(t)] Hamiitonian function defined in equa- in °C

It

, tion (5) to Initial time

olc* The portion of _ which depends on 0 t, Switching time 1K ra2 - a _a5 - a tao tw, Inlet temperature of coolant in °C
r-ala 4

t,_h Outlet temperature ofcoolant in °C
K' ral +atas-ata6 _, ,

r-a _a¢ t2 Outside air temperature in *C _.

T_L T Final time, dimensionless j
Kt T_o T, (t,- t,), room temperature m *C . "'

L,
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/'co Room t,:mperature at _ = 0* in :C T,.I

xtt T,.Io, dimensionless temperature of
Tel Temperature ofpocl I in °C pool 1

T,10 Temperature ofpool ! ate( = 0 + in _C "
L2

To2 Temperatureofpool2in°C x12 Tc2o dimensionless temperature of

T_2o Temperature ofpool 2 at _x= 0 + pool 2

' Td (td-- t.), disturbance temperature in °C :i(t) adjoint variable defined in equation (6)

:" 1", (t,-t_), temperature of the circulation 1
_i_ air into the system, in °C IGreek letters

T;o Temperature of the circulation air into _ Timeins
g" the system at • = 0 + in _C
_, _t/ Final time in s l

_. Qwpwc_(T.,h- Tw,) hypothetical
, _:. 7", Q tpcp ' 6(_0 !mpulse heat disturbance function, s- 1

temperature p Airdensity in kg/m 3

T,/ Final steady state value of T_?
Pw Density of coolant in kg/m 3

_. T, ,I., Upper bound of T, in '_C

I T, ,.i. Lower bound ofT, in °C

17 dimensionless disturbance tem-
r2 '

, • perature

i 7",0 Value ofT, at • = 0 in °C Vt ' tT_ t,_-t_in°C =: Qt+Q2 time constant of _be system

: ./* T_,h t.h- t_in °C proper in s • I

Tl i Temperature of pool I in °C V_ t [
r t t Q t + Q2 ' time constant of pool 1 in s

., Tt 2 Temperature of pool 2 in _C

V2 time constant of heat exchanger in s
Uo(t) Step heat disturbance function _2 Q--_,

" .- V 1 Volumeofroominm 3
, • gl 2

Vtt Volume of pool ! of two completely xt2 Qt+Q----'--_2,timeconstantofpool2ins
stirred tanks in series model in ms

_' T _½(T, m_ + T, mi.)
""" V 2 Volume of heat exchanger in ms 0,, _ :_.., . T, .,._- ½(T,m..+ T, m_,)' control
i:,__ :" _ _ variable: -_: Vt2 Volume of pool 2 of two completely

,_ _,.fi, _ stirred tanks in series model in m 3

,-',' x(t) s-dimensional state vector defined in -! at T, = T,,,t,

_' _:_j ::_ t equation(l); _7 ": _(t) Optimum value of 0(t)
.._,-_i:..* I x_(to) Xio, i = 1, 2..... s, initial value ofx at

',_t "':' .... " . _ t = to $(a) Heat disturbance function

_ ;: ] _/ Defined in equation (22a)"_:_ xt(t) T_, dimensionless room temperature
_" ' _ " Tco

,- . ,:_:,.':,.6,, ).t Constant in equation (45)

': " x_(t) A state variable defined in equation (11) /._ Constant in equation (45)

'_'"t-- _ x.(t)- dimensionless temperature oftheT_o, 2it Constant in equation(75) ii_ " .

circulation air in equation 01) _t, Constant in equation (75) _,_,
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l

On pr_sente la forme fondamentale du princJpe du maximum de Pontryagw, qui est _'
la clef de la thiorie moderne de contr61e optimal. Le prmcipe est appliqu_ _ I_:direr-
ruination des polices de contr61e optimal de plusieurs sy_t+mes de support de vie ou de
contrble d'entourage, i

" ' "_ _1
On cons_d_re trois exemples concrets dont tous se rapporlent av -_o_;r_e de tern- t,

p6rature d'un syst_me de support de vie con_istant d'une eqb;ne ._ a_r condition_
(ie syst_:me lui-m_:me) soumis :_ une perturbation de _.ii,Jieur par impulsion, et d'un [
_changeur de chaleur (l'_16ment de contr61e). Le premier excmple traite le cas dans t,
iequel la cons'ante de temps de I'_changeur de chaleur est n_gligeable. Le second r

exemple cons,d_:re le cas o/a la constante de temps de I'_changeur de chaleur n'est pas !
ignore. Darts ie troisi_me exemple on _tudie ia police optimale du syst_me ou le
courant d'air dans la cabine peut _tre caract_ris_ par les deux modules de vaisseaux en
s_rie (2 CST en s_rie) compl_tement agit_s. Dans cet exemple, on n_glige encore ia I
constante de temps de 1"6changeur de chaleur. On donne de faqon d6taill6e les pro-
c_d_s et les techniques par ordinateur employee pour obtenir les polices de contr61e 1_
optimal.

i

Dte grundlegende Form yon Pontryagin's Maximam Prinzip ist dargestelit, welches
der Grundstein der modernen Optimalkontrolitheo_;_ ist. Das Prinzip wird fiir die
Feststellung optimaler Kontrollverfahren ffir versch_edene Lebensunterhaltungsoder
Umgebungskontrollsysteme angewandt.

Drei konkrete Beispiele werden ins Auge gefasst, wobei alle sich mit der Tempera-
turkontrolle yon Lebensunterhaltung_systemen befassen, die aus einer klimatisierten
Kabine, (dem eigentlichen System) bestehen, die einem WfirmestiSrungsimpuls
ausgesetzt wird, und aus einem Wfirmcaustauscher, (dem Kontrollelement). Das erste
Beispiel behandelt den Fall, in dem die Zeitkonstante des W_rmeaustauschers
unbedeutend ist. Das zweite Beispiel behandeit den Fall, in dem die Zeitkon_tante
d_s W_irmeaustauschers nicht vernachl_issigt wird. In dem dritten Beispiel wird alasY

, Optimalverfahren des Systems untersucht, in welchem die Luftstr_mung ir_ der
Kabine durch zwei griindlich gemischte Reihentanks (2 CST's-in-series) im Modell
geschildert wird. In diesem Beispiel wird die Zeitkonstante des W/irmeaustauschers

! ; wieder vernachl_,ssigt. Verfahren und berechenbare Betrach tungen zum Erhalten 1
optimaler Kontroliverfahren werden mit Einzelheiten gegeben.

i

, I

N% f

't

|

11

_._. ,_
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Applications of Modern Optimal Control "
Theory to Environmental Control of i

b
,:

Confined Spaces and Life Support Systems*

_ Part 3--Optimal Control of Systemsin whichState Variables
_: have Equality Constraints at the Final ProcessTime
¢: L.r. FAN t i
_:'. Y.S. HWANG f
_.'. C.L. HWANGI"
f;

, _ The basic form of Pontryagin's maximum principle is extended to corer optimal
'_: problems with equality constra#lts intFosed on the final state rariables. The
;_ necessary conditions for optimum conttol polio" are dereloped attd are applied
' :'_- to two concrete examples.

i

•. .... r ".'_, The d) namic beharior of the life support system consisting of an air-conditioned
R _, _'" _-" " cabin (the system proper) subject to an impulse heat disturbance and a heat

, exchanger (the control element) is again studied. The first example considers
[ the optimal controt polio'for a s)'stem harin_ a heat exchanger with a negligibly

small time constant. The square form of the final condition of the state variable
is considered as an equality constraint. The second example considers the

..... optimal policy of a system where the flow of air in the cabin is characterized I
i " ** .,_T,,c __ " by the two completely stirred tanks.in-series (2 CST's-in-series) model. The i
; ., r_r_v,.... {. ,.._N time constant of the heat exchanger is not neglected, that is, the response of i
i ExPERh'4'- _'" _ "" _the heat exchanger is not instantaneous. The squares of the final conditions
t of the state variables are again considered as equality constraints.

t

INTRODUCTION NECESSARY CONDITIONS FOR 'i

I ' The basic form _f Pontryagin's maximum prin-
OPTIMALITY FOR TIME OPTIMAL

!ciple, has been introduced in the preceding part[I], PROBLEMS WITH EQUALITY

I Here we shall extend the basic form to cover the CONSTRAINTS .
IMPOSED ON THE FINAL

" _ optimal time problem with equality constraints STATE VARIABLES ;_

': -- _ imposed on the final state variables. _:_
7_... Kopp[2,3] adjoined the equality constraints to Again let us consider the differential equations_'f_ _, ofthe following form_ _ the objective function via Lagrange multipliers

, and then solved the problem by a trial and error dx_
,,._¢e.;, _'_'_,. ", procedure. Denn and Aris[4] treated the problem dt_ = f_[xt(t), x_(t) ..... x,(t):

_T.:_-,_?_. , " by the Green's function approach. We shall first
' obtain the necessary conditions for optimum by Ot(t),O_(t),.. 0,(t)], i 1,2 .... s (1)

_$._-_,_%-,. adjoining the equality constraints to the objective with the initial conditions given by
_,,_._a,_ , ,_ function via Lagrange multipliers and taking a
_'_ '_" ' " -' weak variation of the resulting expression[5]. The XMo) = X_o, t = to (2)

_:_'-',-_ , [ necessary conditions thus obtained will be applied

•_:,_':r Suppose that we wish to determine the control
"_*_" to two concrete examples.v ._ _ ._,, vector 0(0 soas to minimize (or maximize)

,' S -- J Fix(t), 0(t)]dt (3)
_i'_:' *This workwas supportedby the Air Force Ofl_e of _0

_ ' ScientificResearch,Ofl_eof At_rosp,_ Ra_arch, United_. StatesAirForce.UnderContractF 44620-68-0020(Themis subject to the q-dimensional constraint on stateProject),and NASAGrantUnder ContractNGR-17-4)01- variables at the unspe¢_fi_ !,:rminal time, T, as

o.

" t lnttitute for SystemsDail_ ml Optimization,Kanuut

State Univenity, Manhattan,_. £_[x(T)] ==0, i _ 1, 2..... q (4)

m PRECI_INOPAO_BLAI_ NOTF]L_F_
l
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where initial time to is then fixed and T is the and then inserting these relations into equation (12)

unspecified control terminal time. Here the ob- and carrying out the Taylor series expansion about
jective function, equation (3), is different from the the optimal state, .re.0, 5, and 7".Retaining only the .,
form used in Part 2 of this ser es[I]. However, we linear terms of the resulting equation and then
can transform equation (3) into the form used in dropping the bar notation give

Part 2 by introducing an additional state variable (

.v,+ t such that 6S' = hT_.,Y[.v(T),0(T), z(T)] + _ rl ?g'i=l _Tt

-L+ t(t) = .[ F[x(t), 0(t_]dt (5)
,° '+' ?.v, ,+t d.v, lT_}

: It follows that + 'y_lC _ -y_lE( T) y _ '

dx d°+i(t) - F[.vU), 0(t)l (6) + ,'_&v'(r) _ /', :." --,(Tt+c,

+ �-g+y0. :o-7
.v,+ t(to) = 0 (7) '" + -

.., r,'.,and hence the objective function now bzcomes + _ 6:_ / .-;-2-_ (14)*
,_, L_z, dr J)

S = .v.,+,(T) (8)
+ We must =et this first variation equation at zero toor

,+_ obtain the necessary conditions for a minimum.
S = _. c_x,(T) (9) The resulting equations which determine the optimal

. _=t control and state vectors are as follows:

which is in the standard form used in Part 2 with .,+t

i c,=0, i= I 2, s
y z,(t)f, tx(,),O(,)] (15)

c_+ t = I _2.,_ dx/

• Supposethattheequalityconstraints, gi[x(T)]=O, _'zl + -_=fdxIt).O(t)], i 1,2 ..... s+l
i _ and the performance equations, equations (1) and (16)
; (6), are adjoined to the objective function via t_.g/ dz+ "_t dfj

?.._ i 1,2, $+1

i Lagrange multipliers, v_and z_. dx, dt j =t Ox, "j ....f

' ' ,_+t ¢ (17)2' S'

2-' '=' -- =0 = Y_ _z', i= 1,2 ..... r (18)
, = c_.vi(T)+ _ rlgi[x(T)] 0,* .... '

dO+ j= t d0_

I rs_t ( dX _
" "1 + _ _ z,_f,[x(t), 0(t)]-LL'._, dt (10)

, ,0 +=l ( cltJ These represent the (2s-t- 2) differential equations
for the two-point split boundary value problems.

; We can then definethe Hamiltonian The condition_ at the initial time are given in

,it equations (2) and t7L whereas those at the final
:' , ,ar[x(t), O(t), :(t)] = _. zJl[x(t), 0(t)] (11)s= t time are

t.c.'_,_,, and substitute thi, relation into equation (I0) to & dg, .....

_+':+. ....• ! obtain = .z+(T)=jLtvj_,. -+c" t = 1,2,._ ..... s+l

J_lt',_: _''' _ ! and (19) ¢__+,_ , s' = Ec,x_r)+E _,g,t.,W)l+J"{.*[.*),

[_+::'*'au_r,__+:_," ,+. .+' dx+ (12) ..tx(r),o(r),ztr)l+E _v,
_#_&. ;.:: O(t), z(t)]- _=z,(t) _ dt ,_,,__. +;:4_+-°+,+_++.

_+_:+t_'"'+"'+ t ,whichisdefinedas '+"-"_,x,,+,,..._.dx,(r).....'+.+'++_++-_, ' ' l+_.+j:,.+++++ , The first varia ion of S', 6S + 2. c, _ - 2. zit/_ 7 -- u t+:uj

,,:,_.; , +_.,. + _s' = S [x, O, z, l]- s [.¢,O, L T] I

"_'" _:+'+:':_"i " Equation (19) provides (s+ 1) conditions with q [I_._,'('" • t may be obtained by letting Lagrange multipliers to be determined. Equation , ;,,

_+._!•+_: x+(t)o_(t)_=:i+(t)+6x#), i = !, 2.......,r's+i (4) provides q equations which can be used for f l?_+i, Ogt)+6Ogt), i = 1,2, elimination of the Lagrange multipliers, and

++" r = 7'+6T (13) ................. i* ""++'_;'
_+, z,(t)= *._(t)+azgt), i= 1,2, .... s+l, *l_rivstionofeqmttion(14)itllivenintheAplmndlx. ,, .:i'+'.'_ '

:I+.......
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equation (20) provides one additional equation Since

which c:'n be used for determination of the un- c j = 0 ....
specified terminal time.

It is worth noting that when the constraints c2 -- l. "

g,[x(T)] = 0 are not Imposed on the final slate equations (22) and (23) become
variables, the necessary conditior's derived here
reduce to those derived for the basic problems zdT) = r_.xdT) (22a)

presented in the precedingarticle[! ]. In other words, -z(T) = I (23a)
: equations (19) and (20) reduc_ to

Equaliohs (24), (22a) and (23a) assure us that this
z,(T) = c, (19a) type of problem can be solved by making u.,,e ot

[x(T), 0(T), z(T)] = 0 (20a) the necessary conditions presented in the preceding
• section as well as those presented in Part 2 of this

The set formed by these equations and equations ser;es[I].

• (15) through (18) is identical to that formed by Examph, 2--As mentioned in Examole 2 of
t ', equations (5) through ;8) ,n the preceding article. Part 2[I], the response of the heat exchanger as

Equation (20a)is correct because the minimum (or weq as that of the cabin or room is not always

: maximum) value of the Hamiltonian is identical to instaWaneous. In Example 3 of the preceding
zero at every point of time t for the time optimal article, we considered the system con..isting of a
problems, room or cabin with the flow of air characterized by

The final condition, x(T), which is fixed in the the two CST's-in-series model and a beat exchanger
i _ fixed right-end problems can be considered as the whose time constant is negligibly small• Here we

simplest caseofgdx(T)] = 0. consider a slightly different system in which the

o ," response of the heat exchanger is not instantaneous.
' _ EXAMPLES The perfon,mnce equations are [see equations (43)

_ through (45) in reference 6].: _ .. Here the necessary conditions developed in the
I , preceding section will be applied to the following dxt t
; _ examples, d"--7"+rl txl ! = at _x: +at 2 125_i

, Example i--Let us reconsider Example I of the dxt 2
[ t preceding article[I]. The statement of the problem _+rt2xt 2 = a2_.rt _ 126_
! . remains the same. Now the square form of the dt
| final condition of the state variable can be con- dxz

sidered as an equality constraint on the state --_+rx 2 = a,2xt2-a_O-a, 127)varmbles at the control terminal time, i.e.,
with the initial and final conditions

gt[x(T)] = ½[xt(T)] 2 = 0 (21) xtt(0 +)= xt2(0 +1 = x2(0 0�=I at t = O*

We now wish to show that at the optimal condition
'_ the two necessary conditions at the control terminal xtt(T) = xt2(T) ---0, x2(T) = I at t = T ,_,_ (281
!._._ time, equations (19) and (20), are satisfied• I:m-

ployingequations (19) and (20), we have where T is unspecified. The control variable, 0,

dx _(T? is constrained as "r_"

_ zt(T) = t'txt(T) d,_l(Tl+ct = vtxt(T)+ct (22) I01 __ I (29) "_.P

?[xt(T)]Z. We wish to determine a piecewise continuous

z2(T) = ½r, _2(T) +e2 = c, (23) control variable 0 so that the response of the
system can return to its desired state in a minimum

dxt(T) period oftime, that is,
,aC[x(r), o(r),z(T)] + v tx t(r) _ r

_:_:_.,: s = J dt (30) '- 0

dxt(T). dx2(T)]

_"__'"":_:,,:: +to, ._---+ e, _j is minimized.

_"_ 3 - zdT) dxdT). • "T" dx_(r)] We shall first make use of the basic form of the .,.,
,!_;. _ t0|�ð�_.]maximum principle presented in Part 2 of this

_ series to solve the problem, i.¢t
= ar[x(r), OFT),:(T)]

_ _'; = 0 (24) ,,(t) = _ dt ' "'_"'i'

III
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or The solution ofxt 2 has the form

dx___= i, x3(01 = 0 (31) .vt2 = Aexp(2tt)+Bexp(22t)+CexpI23t)+K,

dt 0 _< t < t,t 141)

Hence _e have there A, B and C are constants and ,;.j. 22 and 23
S = x_(T) are roots ofthe characteristic eq uatioa

,'_ = ,-'n t[-rtnvtt +an tx2+at2] 23+(r+rjt +re 2))fl +(r, nrt z+rrtn+rrt 2)2

+Zn2[-rtzx12+a21-vl i] +(rr t trt2--at ta2taa,) = 0 (42)

+:,,[ "-rx2 +a.tzxt 2 -a_O-a_]+:3 and/,'is a constant and its value equals to
(32)

d:tt K = rat2a2t-a_atta2_-atla"ta" (43)

dt - rtt:jt--a2t:J2 133) rrttrn2-atta2._aa2

dzt 2 Inserting equation (41) and its first and secol,d
= rt 2:n 2-a42:2 134) derivatives to equations (25) through (27) and then

dt solving forxt t and x2 lead to
d22

, d""_= r:2-at tz'uJ (35) !xt n = _ [(2t +rt2 )A exp(Att)+()'2+rt2)
a21

d: _
---=- = O, zj(T) = I (36) Bexp(izt)+(As +rtz)C exp(;.st)+rt2K],

, dt
0 <_ t <_ t,_ (44)

It follows from equation (36) that and
,i

'_ :_(t) = l, 0< t < T (3_) I
X2 = _ [A[)._+(rnn+rt2))., ,

Equation (32) can then be re_ ritten as at ta2 t

_, ,_1_= 21 t[--rt txl n+an lx2+al2]+zt2[--rt _.xl2 +rl trt2] exp().lt)+B[),_+(rt t +re 2)/-2 .h

4"2 txl t + .-'2[--rx2 +a42xt 2 --asO--a,,]-i- I +re trl 2] exp().2/) + C[)._ +(re t +re 2)23

_38) +re nrt 2] exp().3t)+ r t trt 2K'-at 2a2t},

", Therefore, 0 .. t < t,t (45)
.W* = -a:.20 (39)

Let

An optimal conU_l corresponding to this cast: A] = 2t-trn2
should be of the bang-bang type. Thus the con-

A2 = 22+rn2
ditions for optimal control (minimum ,_*) are

A3 : ).._+r|2

0 = -I, if -a_: 2 >0 A4. ,_o+(rtn+rt2)).t+rntrt2

• 0 = +1. if -asz, < 0 A s = 2t_+(rlt+rtz)22+r||r12' o

7_,,, ,, Ao = ;t_+(rtn +rt2),_3+rttrt2
(_ _._ In order to bring the initial deviated state,

_:_,_._. Xll(0) = xt2(0) = x2(O) = i at t = 0 A, = a2t-rt2KAs = I-K
•'% to the final desired state,

.".'_ " Aq +an -rttrtz K,:_,. = a t ta2t 2a2t

, ., .t, XII(T) = xtz(T) = 0, x2(T) = 1 at t = T, Then equations (41), (44) and (45) can be rewritten

' :i we shall first apply the control 0 = !. in other as
_:2",, words, we have 0 = i in the interval 0 _; t [ t,n.
_'_':"_' " "'" _ [A tA exp(2tt) + A zB exp(i zt)_: Substitution of 0 = 1 into equations (25) through xt n =

_/':%'," (31) and subsequent elimination of xtt and x2 a,lt

.,_:-_.,,r fromtheresultingexpressionsgiveriseto + A _C exp( 2 sl ) + r t zK ], 0 _z t _ t, t

"'"_" " d'xt= (46) :,:'_,.= " d3xt z

_! -'_+(r+rtt+rtz) _+(rn nrtz+rrot xn, " A exp(2tt)+Bexp(2zt)+Cexp(,_st)+K, (dxt_ 0 _ t _ tel (47) [

(40) a,,a,, I .°

m --- -_.
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where A 4A" exp(}. IT)+ A _fit" cxp(;. 2T) + A ,("' exp(,;.([)

Ai7 = rAIA_+AzA.,+A._.I._-AIA._-A2A,, +rttrm2K-al2a2i-at,a2, = 0 (6hi

-A3A a) exp(.; :t.1) exp(_.2t, i) exp(2.1t,,) In principle, we can solve for 7..,,, and t,.. from
the above equations by a trial and error procedure.

A,. = (A,At.L+AzA_,+,4._A._A,.,-A_A,,_ However, t,, and t,2 appear implicitly in the_c

-AzAoA_._-A._A_,)exl_2,t,i)exp().d,s) equations, which increase the difficulty of soking

the problem. To circumvent this difficulty, _e shall
•"f1_= {A,A.A,_+A_AI,t+A._A,_-AjAt.

continueto solvethisproblem by consideringthe

-A_A,4-A._A4A,_)exp(}.,t_l)exp(}..d,, ) square form of the final condiuon_ of the state

variables as equality constraint_ and by emplo) ing
A 2. = _A t A ,, + A 2A._A i _+ A, ._A _ - A, A sAt ._ the addition:,l necessary conditions developed in

- .42A,, - A 4A i_) exp(21 t, _) exp(22t,, ) this article.

The equality constraints on the limd st_,te
A, a = a 2 ,x, i(t,,)- r 12K' variables are

, A,._ = x, 2(t,t)-K' g,[x(T)] = _[.v, I(T)-0] _ = _[.x',,(T)] 2 = 0 (67)

A 16 - al la2 z.x'_(t,_)+a_a_t -r t zr,_K' gz[xlT)] = :_[x,z(T)-0] 2 = l,[x, .IT)] _ = 0 168)

Similarly. A". B" and C" can be determined by g_[.x'(T)l = l_[x_(T)- I] z = 0 (69)

A" = A _......_ (61) Therefore, equations (19) and (20) for thi_ problem
, A 24 are

i fit" AZ.__.._6 :,t(T) = rtpv_,(T)+c, (70)= A_, (62) -,_(7") = t'I2A'I2(T)+{" 2 (71)
I

i A, :_(7') -= r_[x_(T)- I]+c_ (72)
C" = -'- (63)

A_ (73)
'. :_(T) = c_where

{ •A2, = (A,A. + A=A,+ A,A,-A ,A,-A=A. #[x(T).O(T).z(T)]+r,ix,,(T)d"d;T)

.. - A_A_) exp(,;.,t,=) exp(i.=t,,)exp(;._t,_) ._.dx __(T) ., dx2(T) )

A2_ = (A_Az_ + AzAz_+ A_A_Az=-A_Az,

dxzlT)
dx_ iT) dx, _(T) +c_

, -A;A_Az_-A_Az.Oexp(_t,z)exp(,;._t,_) + c, dT -_-cz dT dT
A_o = (A,A_Azz + A,Az_ + A_A_._-.4 _A_

dx_(T) 1 _ F _ dx, ,(T)
-A_Az,-AsA,Azz)exp(,;.tt,=)exp(;,_t,=) -+-c, -_-.-j Lzt tIT)' I

A=_ = (AIAz_+A2A_A=z+A_A2t-A=AsA2z
%. " ' dxi _(T) d r.(T)

_;. A z = aztx t(t,z)-r= zK dx_(T)'l i
• :" 1 ' ' 0'_'/" "- t a,_ = x,_(t,=)-K _J

:_._.:- :, ., We can find t,_, t,z and T from equations (52) the above eqtmtion, it can bc shown that ¢

_:,._'_;_ _..... " "*' through (54) and the final conditions _[x(T). 0(7"). =(7")] = 0 (74) |_. *alr'*,_: ='

_"/:_:--r x,,(T) ==x,z(T ) ,= 0. xI(T ) = I. att == T SilzCe the objective function, equation (_K)), has

"_" _'*" _-'_ Thus been transformed into the following form
P

AzA,, exp(2zT)+ AzB,, exp(_zT)+ A=C,, exp_;c}T) 3 - clxtt(T)+ezxzz(T)+c)xz(T)+c_x}(T).(75) g,

+risK" 0 (64) ct ... cz .= c= .. O.c, .. I. _- ,

" IA" exp(,1.,T)+ B" exp(22T) +C" exp(22T)+ K - 0 equations 1"/01throulh 1731hecome

(63) zt t(T) - et tx_ tiT) (76)

!

[] nnmlmn_
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: .:1:(7') = rl,.._j:(T) (77) in thi._example, it,, _alue is _ery smal' Thu,. the
initial trial control pattern is ;v,sumed to he the

=..iT) = r;[.%(T)- I] (78)
optimal control _olutl,m given in Examl:,[: 3 of the ,4

=dT) = I (79) preceding part[I], that i_

andl'romequa_lon,,(32)and(74)._eha_e 0 = I 0 <- ! <_0"468

#[.v(T),,hT). :(T)] 0 = -I 0.468 < t < 1.100

:- *J 0 = I 1.100 < t

= :. iqF)J-r, ,.,.,,(7) _-=.,,._-,(r)+uj 2] where the _witchingtime,,, /,i and 1,2. are 0.468
t-'_ ,(T)[- r_,..v_2(T)4 u 2 I.Y!=iT)] ar=d1.100respectively.

With this ulit=al trial control pattern the ,_tatc
• +:2(T)[--r.%(T)+ a_,._'_:(T)-a_O(T) _ariables -_l ,, -vl., and .vz can be obtained from
, --a,]+l (80) equation,_ (46), (47) and (48) for 0 <_ t < t,_. from
, equation.', (49), (50) and (51) fl)r t,_ < t < t,,. and

Determin,.;=,,,', _,i_ _he terminal control time, 7". from equations (52), (53) and (54) for t,, < t _< T.t

" from the ab(_ve e_u._t;o_ in conjuhction with the where the terminal control time. T. is unknown.
performance equation.,,, equation for the adjoint Thl,, unknown terminal control time i_, then

' _ariables, and con._tramts is very difficult• if not determined from equation (82).
•"a,possible. Ih-wever, T m:_yb¢ obtained by using Th_ switching times, t,_ and t,_, and the terminal

: the gn,dient prc.'.::k,,c w_tn the pcnahy function contr,)l time. T, can be determined by simultane-
' t :_pproach.T_is pcnah, !'unctioncan be written as ously minimizing the pcnahy function, S". given by

i _ S" = [c'_x, _(Tl+c,x_ dT}+c_.v_(T}+c_x_(T)] equauon (81) and satisfying the condition given by" equation (82). This can be accomplished by em-

; f + _ [_'_ =[.X'==(]'))_" + _'_2[.X'_2(T)] 2 ploying a variety of techniques, for example as the
_ sequentialsimpi_;xpattern _arch[9] or the Hooke

_I . _ + r"[r 2(T)- I]2_ (81) and Jeeves pattern search[10].

" _ and the terminal control time, T, can be determined By u_ oF the tinal time and value of .v(t), we can

t hy the condition solve the adjoins equations, equations (33) through
dS" (35). backwards from/'to 0 with the hc,al condition,,

dr, t(7") ._-d'v_ z"T) givenby equations(7,_)through(78).
d-T"= I+r'""(r)_ +r'z'''a(l' d-7:

Let

I] dxz(T)--_= 0 182) t, = T-t (83_+_'_[x_(T)- dT Then

Ncqetha¢c= = c: = ('_ = O,c_ = I,and dh, = -dl

d.v_(T) Equations (33) through (35) become

I i d--T-=I d:,,

dl-_ "_ uz;"':--r' ":" (g4)

In other words, the terminal control time is chosen
so that the penalty function, equation (1_1),i_ at a

• _; minimum w;th respect to this terminal time. It is dt_ = ';'zz=-r'_:_z (85) --

possible,however, that the terminal time deter- d:z
minedby equation(g2) may not be the time which d't; = a_ ,:ll -r:z Ig6), minimizes th_ penalty function. If there is any

, question concerning this assuml_ion, we may El)minas)nil:, _ m_d:_z from theseequations, _e

_!i!' with respectto T when the first derivative of $"
: with respectto T is zero, or we may carry out an d):= d=r'=

exhaustivesearch or ral_lom _'arch around this dt--_+(r+r_+r_)-_ +(rr=_+r==r_

point to assurethat it isinde_ a minimumpoint, d_z
Sincethe control policyis of the l_nl-banl type +re t:) _ +(rr_ irl _-a_ _a__a_:):_ as0 ,.

° I shown in equation (39) and the performan¢_
_x equations are linear, the number of switchin| Solution ofz= has the form

points is one less than the dimensions of the system D exp(,t tst)+ E exp(_=t_)+ F exp(_d.) (g7)as mentioned pceviously[I,g]. Even though the :_ "
time constant of the heal exchanler is not nqlkcted when: D. E and F are unknown constants. Inserting

; I
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equation (87) to equations (84) through (86) and BI z
solvingfor z, i and:, z, wehave I:"- B_,)

i {D(;. +r)exp(;.tt_) I" Br'=11 -- I = --"

all B,o

+ E().2+ r) exp().21h)+ F().._+ r) cap()._/b)} v_here
(88)

and Rio = BIB_+ Bz# .+ B_B_- BIB,- B:B4- B_B_

I Bli = B'_B'+B2B_B'_+B'_Bs-B_B_-B_d"
:n, - ),D[)._+(r+rl ..))., +rrl u]exp(}.lts)

aj za__ - B_B._B_

+ ETA",+(r+r_ z)).2+rlrz CXP()-zth) BI z "-=BIB_+ B_B. + B._B_B,- B,B,B_- B_B-

+F[A_ +(r+r ll)A_+rr I,]Aexp(A_t_)] (89) -B_B_

Lcl B_ = BIB._B_+B2B,. _-B4B--BIB_-B.B_B_

,_ B, = 2_ +r -_B:

B2 = ).2+r B_ = a_lrl_._,'_z(O)
B_ = _.._+r

B_ = a_az_r_,.'.l_(0)
B_ = A"t+(r+rl _)Aj+rrl_

B_ = }._+(r+r I ,);.z +rr,i B_ = r_[.x'z(O)- I]

i The condition H = 0 as given by equation (80)B_ A_ +(r+r_ i)}.3+rr_
, i,, verified by substituting the values of state

Equations(87) through(89) become variables obtained at the terminal control time. ,

t., I x i ,(T), .__z(T). and .%(T), and ,he adjoint v_:riables
:_ _(I,) = _[DB_ exp().,t_)+EBzexp4/..z*,) at the terr:;nal control time, :t_(T). :,_(T), and

a_ _ : 2(T), into the equation.

+ FB_ exp4A_/_)| (90) The optimal control pattern determined is shown

• I in figure la. The optimal result is such that the first _
:, :(t_) - [DB_ exp(A,t_)+ EB_ exp(A_t_) swilching time t,_ is 0.487, the second switchingtime |

al lazl t,z is 1.085. apd terminal control time T is 1.096.

. + FB_ exp(,;._/_)] (:_1) The value of terminal control time is O.OIg longer
than that of the ca_ in which the response of the

:_(t_) = D exp(A,t_)+ Eexp(Azi,_+Fexp(i_t_l heat exchanger is negligibly small (Example 3 of
• (92) Part 2[I]). In actual practice, the differencecan be

:'. "" At t 7". I_ O. equations (76) through (78) neglected. In general, the respon_ of the heat
-, exchanger is almost instantaneous, especially

_,,y_ ,_'- become when the time constant of the heal exchangeris

._ '_,: :, ,(0) = r i,x, i(O) (93) muchsmallerthan that of thesystemproper.

_, The oplimal response of xzz is also given in_." :_z(O) - r,zx_z(O) (94) figure la and the correspondingr_ponses ofxlz •
-x_m_i_ ;: :z(O) - rz[xz(O)- I] (93) and x z are liven in fiRur_ lb. Valuesof thesystem ,

:._:_ oarametersemployed in oblainin$ the numerical

_._,.. .,... Alsoatt_ - Oequations(90)throulbh(92)bccom¢ results correspond to those of Cas_ I given ;n ,Part 2nfthis series.
, ._. _ DB,+EB_+FB) - a,_:t_(O) (%)

_-.: DB,+EB_+FB, - at ,a;_z_z(O) (97)

_._" ' D+E+F - :z(O) (9_)
CONCLUSION

_" Solvin I for D, E and F from the',e equationt, we The reador should r¢llite that the fixed rilht-e_d (
problem can _ be solved by considerinl the

have Wobkm m on_ with =qmdity constndntt on the f

I 8t._..2 final stat_ varilbl_ and then employinl the . ..

D - Bto 11ec_am7conditiomderiv_d in Ihk artick. _ "

)
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Fig. la. Opttnla[ control policy and optimal re_pon.leo/ rig. lb. Optimal response.Io/xl 2 and x2 Jar Ca.le I O]

x it for Case I of tile two CST's-in-serie._ model with the two CST's-in-series model _ith r, --" l)and rlt = 2
r., # 0, rtl = 2andr = 10. andr = 10.
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APPENDIX x_t) -- 5q(t)+6xi(t), i = I, 2 ..... s+ 1

Derivation of equation (14)Srom equation (! 2) C:(t) = 0_(t) + 601(t), i = 1, 2 ..... r

The objective function, S', is of the ,'orm gi_en by T = T+_T,

equation (12), _.e. z_t) = _l(t)+6zl(t), i = I, 2 .... ,s+l,
i4-1 q

S' = ,=!_ cixl(T) +`:__ t"gllx(T)] d;scarding the terms higher than the first order,

r r ,. t dx "l and dropping the bar notations, we have
I

,_ Carryingout the Taylorseriesexpap.sionof the 1-, (dg,[x(T)]_xXTl._
. '_. above equation about._, 0, ! and _, defining +_l vs t

I
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__1__ ? ,_ A = Integration constant
+

,,,[, i_ i 60, A, = Constants in equatmns (45) through

, _'1¢' F/r" ' _F __ (66)
+ _ _'L _-, +___,_t__ _/6: d v,

, , i'z, ?.t , ,L dt B = Integration constant

.[dx,\ (d-ldx, d2x,'\.-I B, = Constants ,n equations (90)through
+:'at--_-) + \dr d, +-,-_)?_t]dt (92)

(A 2) cl = Constants defined in equation (9),
Since i = 1.2 ..... s+l

r ? _ _ _.'_ C = Integratmn constant
_ 61d, = , -- dtM = .Y/ r6Tu, i_tio [I

D = Integration constant in equation (87)

,.\d____tt+z__tz)_tdt=_d(zdX,\i(dzidx,d'a,\. ,,, --_)fitdt E = Integration constant in equation (87)

; r d [ dX/\d "t F = Integration constant in equation (87)
= ,! dT_:' -d-i) to g,tx(r)] = a q-dimensional constraints defined in

equation (4)

= :i dt ] r

and O(t), z(t)] = Hamiltonian tunction defined in equa-
tion (1 ! )

• ' ' } ./dx,\
i _ ,."z,bt--_)dt ,"/* -- The portion of.* which depends on 0

X = A constant defined in equation (43)

• _ _,,, ._- (6x,)dt K' = A constant defined in equation (51a)

' = I 3-S , K, =T_-_
i i T _o "

" ! "(T,,,,,-T, ml.)
[ ., equation (A.2) becomes, after rearrangement, K_ 2T2

_s' = _rl,.tx(r),otr),:(r)]+_ ,.,_g_z,
'[ _ i=t _r Ks = L (r,m.+T,.i.)

t "" , _t dxi ' +t -, "T"dx,(T)) 2T2

'<' + E 6.r, f _ ' dg, T,0" " r,7_';U"," i_ t Kt 1

+ Y_6z, l _ dt (A.3)
_ ,:, Ldz, dt lJ Q = Q i + Q,, flow rate of air in the system

'_ This is equation (14). proper in mS/s d
,,;:i Ql = Air flow rate bYcirculation air in mS/s_'_11_:_,,£-_ . .i

":'_g'_.'O',_' NOMENCLATURE Q1 = Flow rate of fresh air in mSls

.- "_,_'7_:':;;¢_'. as = rK1K_ Q. = Flow rate of'coolant in mS/s

,*"'_ ao = rK3K4 ""

[_2_' r = L.I, the ratio of time constant of system ("

._ - all = rigi Iril/K4 ¢1
,: a i z = r leaK _z proper to that of heat exchanger ,..%;::''+

' -+.t. all = rillia/lil Oi i. i_.,-;_¢..
' ;_: "' rt ,= _, the fraction ofcirculation air ,--_ ._i;

U,I. 2

'r I II _
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.I/;pli.an,m_ +,t_,[.,h'JuOlVmm] ('.n:,'_'/T/:e_,:'_ I_

Q: /_ ...... - t'ppcr bound ol 7_ ,n (
r, .... .the fraction of fresh air _,

(2 Q : I.......= l.o_crbound ofT,in ( :
a

F,,, \:dueof7.Jt 7 0 in (
I'll

Tit 1"_, :- /,, --1. I11 C

il

rLz - 7",,h == l,,h-l,jI11 C
t12

lt t = Tcmpcratureofpool 1 m (
S = Pcrt\_rmancc index defined m equa-

ti(_n(9_. T_2 = [Lmperalurcofpool2m ('

S = A modified pcrf,_rmance index detined r =- A Lagrangc nmh_pher m equattotl I(})

in equation (10) I t = Volume ofroom m m 3

S" = A modified performance index dehned
+l .| I I = Woltlrflt _. of pool I of l_o COl|q Ictc_

m equatitm (81j._ xttrred tanks In ,,eric,; model m m 3

. dm_ens_onle_s time I Volume of heal exchanger II1 |113
Tt

++- I _: = Volume of pool 2 of tv, o completel_
t,, = Reference temperature m C sttrred tanks in .,,enes model m m 3

tb = T-t. dimensionless dine used in equa- v(t) = .s-din,en,,ional ,4ate xcctor defined m

t,ons (84j through (86) equation ( I )

• +; t, -- Room ter_peraturein C x,(t,,) = x,o. i = 1. _._ .... .s. mitml \alue ot

_' _, ;a = Disturbance tet,tperature in C vat/ = t.

, i+ .. t, = aJrtn+cTemperature of incoming ctrculatton At(t) = ---T,,,)7'.dmwnsionle_ room tenmcraturei"
: + " t,, = Initial t;me T,

_ .v.(t_ = -- , dimenmonless temperature of the
+ t,, = Switching times, i = I, 2 " T,o

_ t,,,, = Inlet temperature of coolant in C circulation alp Ill equation (27)

t,,_ = Outlet temperatureofcoolant in C __ - ,dimcnstonless temperature of

pool 1

T = Final time. dimensionless T_2

7" = (t,.- /.), room temperature in C A')2 = T--_o ,dtmensionless temperature of

_'i.... +_l T,. = Room temperature at x = 0 + in _C

|
pool 2

' :":" = Temperatureofpool I in C z,(t_ = adjoint variable defined in equattons
"_'t'_._i 7",,,, = Temperatureofpool I atx = 0 + in C (10)and(17) _ ..,

_" ,, T,., = Temperature of pool 2 m 'C i! •.'+:-

T, 2o = Temperature of pool 2 at x = 0 �Greehletters

_"_ _ Ta = (/u - t,,t")'disturbanCepettemperature in _C _ = Time in s=._,.tomato*eort 0 '* o'at+.
t"

air into the system, in *'C 6(a) = Impulse heat disturbance function,

_ _ _" ,_I T,o = Temperature of the circulation air into se¢-
, ._'_ _ the system at • = 0 + in °C

,( p = Air density in kll/m _Q,p_,cp,,(Tw,- Two), hypothetical Pw -, D_nsity of coo!ant in k$/m _

..... k temperature o = -- dimtmionlus disturbance t_m-

Tu = Final steady state valuta ofT, ' ,

, ,,_:_
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Vl L-_(L ..... +T, ,,,,)

r_ - Qt + Q2 ' time constant of the system 0 7",.....- _(T_m_,+7, m,.) ' control _an-
proper in s able ,,

r,, Q_+Q2,timeconstantofroollins t+1 at 7',= T,
= _--[ ;.itT_.-_-Tr rain

V2
r2 = ---. t,me constant of heat exchanger

Q i Off) = Optimum value of0(t I
ins

V, 2 2, = Roots of equation (42)
r,., - . time :',.,nstant of pool 2 in s

Qt+Qz

La forme fondamentale du principe du maximum de Pontryagin est Elargie pour
couvrir les probl_mes optimaux avec contraintes d'fgalitg imposEes sur les variables de

, I'Etat final. Les conditions n_cessaires pour une police de contrfle optimum sont
dfveioppfes et appliqufes/a deux exemples concrets.

Le comportement dynamique du syst/:me de support de vie qui consiste en une
cabine b. air conditionn6 (le syst_me lui-mfime) soumis b. une perturbation de chaleur
par impulsion et uv. 6changeur de chaleur (l'61Ement de contrble) est encore 6tudif.
Le premier exemple consid_:re la police de contrble optimal pour un syst_me ayant un
6changeur de chaleur avec une constante de temps n_gligeablement petite. La forme

: carrEe de la condition finale de la variable d'ftat est considfr_e comme une contrainte
• d'fgalit_. Le second exemple consid_re la police optimale d'un syst_me o_ ie courant
t , d'air dans la cabine est caractfris6 par le module des deux vaisseaux en sfrie (2 CST en
r sfrie) compl/:tement agitfs. La constante de temps de 1'6changeur de chaleur n'est pas
' n_gligf, c'est-h-dire que la rfponse de 1"fchangeur de chaleur n'est pas instantan_e.
i _ Les carrfs des conditions finales des variables sont encore considfrfs comme con- :
) . traintes d'fgalitf.
i"

i, Die grundlegende Form yon Pontryagin's Maximum Prinzip _ird erweitert, um

, Optimalprobleme mit Gleichheitsbeschriinkungen zu amfassen, welche den Ver/in-
,, derlichen des Endzustandes auferlegt waren. Die notwendigen Bedingungen fiir !

; Optimum Kontrollverfahren werden entwickelt uncl bei zwei konkreten Beispielen
i angewandt. :'

• ! Das dynamische Verhalten des Lebensunterhaltungssystems wird untersucht, i

I welches einer klimatisierten Kabine in
aus {dem eigentlichen System) Abh/ingigkeit

yon einer W_rmeimpulsstiSrung und einem W/irmeaustauscher (dem Kontroilelement)
t bes_eht. Das erste Beispiel untersucht das Optimalkontroilverfahren fiir ein System,

,,..clches einen W/irmeaustauscher mit unbedeutend kleiner Zeitkonstante hat. Die
Quadratform der Endbedmgung der Zustandsver/inderlichen wird als eine Gleich-

_'_,_'"' -I heitsbeschr/inkung angesehen. Das zweite Beispiel untersucht das Optimalverf_hren [
2;_=__- il eines Systems, m dem der Luftstrom !n der Kabine darch zwei vOilig durchgeriihrte I

W/_rmeaustauschers wird nicht vernachl_ssigt, d,h. die Reaktion des W/irmeaustaus-
0,, chers ist nicht unverziiglich. Die Quadrate der Endbedingungen der Zustandsveriin-

" .""_:_,l dcrhchen werden wieder als Gleichheitsbeschr/inkungen dargesteilt. ,

|I ,?¢.*'_

(

i
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Applications of Modern Optimal Control
Theory to Environmental Control of
Confined Spaces and Life Support Systems"

, Part 4--Control of Systems with |nequality Constraints
Jl Imposed on State Variables

L. T. FANt

"' Y.S. HWANGt

'_, C.L. HWANGt

_. The necessary condittons for optimum of a dynamic system whose state rariables
are constrained by certain inequality conditions are derived by applying a

_.." F _" ; eariational technique. The conditions are employed to determine the optima/
policy ./'or the room or cabin temperature control of a life support system.

_ The system consisting o/ an air-conditioned cabin subject to an inpuise heat

= disturbance and a heat exchanger acting as a control element is again studied.
_ The flow o.f air in the cabin is characterized by the two completely stirred

_r _"..: tanks-in-series 12 CST's-in-series) model. A c_nstraint is imposed on the room
_ temperature which has to be higher than a certain ralue for some physical or,., "_ F.X............

i . _ biological reasons.

! _ INTRODUCTION A DYNAMIC SYSTEM WITH STATE

I THE BASIC form of Pontryagin's maximum prin- VARIABLE CONSTRAINT
! ciple has been introduced in Part 2 of this series[I] Again let w_sconsider a continuous process, the

and the optimal control of the systems in which dynamic behavior of which can be represented by!
inequality constraints are imposed on the state the following set of differentialequations.

i variables at the end of control action con-has been

sidered in ['art 3[2]. In this part, we shall consider dx---2=
dt /][xl(t), .x2(t) ...... _',(t), O!(t), 02(t ).....

the necessary conditions for optimum for a

dynamic system whose state variables are con- 0,(t)], i = l, 2..... s (I)
strained by a certain inequality condition or con-
ditions. Chapg[3], Berkovitz[4] and Gamkrelidze or in vector form
[5] dealt with the fundamental aspects of the dx

problem, and both the theoretical and computa- dt = fix(t), 0(t)] (la)
i tional aspects were treated ta p_pers by Dreyfus[6],

Denham[7] and Deni',wtt and Bryson[8]. Despite where x0) is an s-dimensional state vector and 0(t)
these and other effort_[9-12], t_e optimal control is an r-dimensional control vector. Now, we wish to

of a system with state v:,,.'L_ble,.onstraints does not find a piecewise continuous control vector 0(t) in
appear to be well understood. Here we shall first the set O such that the function of the final state
state the problem and the necessary conditions for ±
optimum, and finally apply the conditions to the S = ) c_x_(T), c_ = constant (2)

.. :_ temperature control confined spaces and life ;-t
support systems[l 3]. takes on its minimum (or maximum) value, subject

to the condition that x(t) stays within a specified
* Thiswork was supportedby the Air ForceOfficeof region of the state space given by the inequalities _'ScientificRegcarch,Offk.'¢of AcrmpaeeResearch,United

StatesAirForce,UnderContractF 44620-68-0020fl'hemis gl[.'c(t), 0(1)] _ 0, i == I. 2..... q (3)
Project), and NASA Grant Under Contract NGR-17-
001-034. The duration of control, T, is specified. Functionst Institutefor SystemsDestlnandOptimization,Kantn
State Univenity,Manhattan,Kamii. f_, S and £_ are assumed to possess continuous

13"1

It
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138 L. T. Fan, Y. S. Hwang and C. L. Hwang

derivatives to at least the second order[3, 12]. In because, the state variable and the control variable
addition to these, the state vector must satisfy are related through the constraint on the constraint _"
certain initial or final conditions or both. boundary. Here we wish to prove that the Hamil- J

tonian is also constant along the constraint boun-
NECESSARY CONDITION FOR OPTIMUM daries under the optimal condition for a system

The basic form of Pontryagin's maximum prin- with two primary state variables represented by

ciple for systems _ithout state variable constraint dx,
- ]';[x,. x2, 0,. 02] (I I)is given in Part 2 of this series[I]• It states that the dt

Hamiltonian ._ and the adjoint variables are

defined by d__x2=
dt l'2[x., x2, 01, 0z], (12) t

= zi(t)li[x(t). 0(t)] (4) and with the objective function of the form ,t=l

d z i t3,,¢[ _. c_f l r '
- = - 4. :i(t)-f- S , S = S F[x,. x2.0,, Oz]dt (13)dt c_xl t xi oI=|

i = I, 2...... s (5) subject to the inequality constraints

zi(T ) = c i, i = l. 2..... s (6) g,[x,, x2.0,. (/2] > 0 (14)
g,[x,, x,, 0,,02] _>_0 (15)

and the necessary condition for the objective rune-

! tion S to be an extremum with respect to 0 is [0 { -< I (16)

_./ ?,_ Introducing an additional state variable, x 3, such
' ) -- =0, i= 1,2 ..... r (7) that
t t

xs(t) = _ Fix,. x2, 0,, O,]dtor
0

,;¢ = extremum on the boundary of the con- it follows that

, straint (on decision variables) and the extremum dxs: value of the Hamiltonian is constant at every point _ = F[x,. x2, C,. 02] (17)I dt
l of time under the optimal condition.

i For systems with equality constraints g_[x(T)] xs(0) = 0 (18)
r = 0, .j = I 2, q, imposed on the final state and

) variables, the necessary condition for the objecti_,e xs(T) = S (19)i

[ function to be extremum remains the same except or

I that equation (6) becomes 3 -)

i S = _. qx_(T)
-_(T)= _'r, dgc+ci, i= 1,2 ..... s (8)

i=| (20)

• _, _(Lri(T) ct = c, =0, cs = I

It also gives rise to the following additional con- Thus, the problem is transformed into that of
dition at the control terminal time. minimizing x_(T).

q dg_ _, Ox, According to equation (4), the Hamiltonian is
_[x(r), o(r), :(r)l+ ,_.,_r"J+,.,c,_ Jr _ z,f,+z,f_+z_f_ (20 "!'"

"= i= I •"_"_

- --_ :_(r)_')=' "" 0 (9)
and the adjoint vector is defined by

¢

,-t O/ dz, dJff r_fl Oft dXl taft dot
Equations (8) and (9) were derived in the preceding dt = - dx-S" - z,Ldx, o.,, ,

_:_1 part ofthisseries[2].system O.f, dOl'l r _fl+ _fl 0xiFor the with one primary state variable +: :-- i-z2
v#, vx,j LOx, dxz Ox,,J::_._ and with one inequality constraint imposed on the

t_ _"mt_,'I_ state variable, the condition that the Hamiltonian is elf2 d0, Of2 O02"l

: ,/:)i' I constant under the optimal condition remains the +0-'_1_ +0"_

1

/
_i same. However, it has been explicitly indicated[14]
_/" that by employing the chain rule, the condition rOFeFOx, OFO0, , ""
"_:""" given by equation (5) must be rewritten as -z_ Lg+ g g �_,0x, ¢

[] ml
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dz2 ,_:v; [_r, . P.r,_.,-, _Tf,,_o, ,',r,,_o,. _/, r.o_] t,_& ,7__.,_d t
C.V I

,-,,,'.,_ ,',o,,v, _ _/-t_ +_ ,v,

: +_ _+_)J+S, ,,_
i-,-,r ,_,F t!x !

,7, ,_x, ,7I,,_,o, ,;S,,_o_\ ( _r.,

,'F ,?0s-I
+ ,,.-.7-/ (23)

'ff'z _3X,+/312 _0,. _f2 #02_I ( ,)F
<" "'"'-' __x__.Z_o_, _%*,%_.,-,,_-tiL
•" dz3 0..I¢
",' - "---- ?F i)x! PF _0, PF ?Oz'_7

:, dt ,!x, O. z3(T)=1 (24) + 8.,', ?x, *,_,,, ?.r 2 _ P._-_JJ: v " -- ..... + (28)

_. Note that equations (22) and (23) are different from

4 that defined by equation (5). because the state Since .x't.x2.0t and 02 are functions of t only. we'" variables and the control variables are related
" can write the following equation.

through the equality constraints, equations (14) or

"_ (15). For this reason, differentiation of the Hamil- ?x 2 d.xz = dx_/dxt
> _ tonian with respect to :q must be carried out by ?.v_ - dx! dt/ dt = /_//'t

! ,_ employing the chain rule of differentiation. Alsonote that equations (22) and (23) reduce to equation c).xi dx ! dx tj dx z
{. (5) when the state variable x(t) is interior to the set (_x, - dx2 - d-t/--d-_ = ./t/./_

t of constraints, equations (I 5) and (16). The solution
ofequation (24/is _30i d0i

' ')' ca(t)= I, O< t_< T (25) ?t dt

i I ,?0, dO2

i " I Thus. equation (21) can be rewritten as (t = d--_-

; ._ = zlfl +z_/'_+F (26)

! ' ,!Or dO t dOi/dx, dOt/

The derivation of the above equation with respect ,_x'-"_= dx---_= d, / dt = d--T/f'
' to t is

(_,0, d0! d0tid_ ., dO,,'.d.,r d_+d:,+_., r,v,oo, _=_= d,ld, =-g/S'

__,] _/,,_o,. _f, _r't;] ,_o, dO:_ dO,/d.,, dO,;:i_- +d_._2.=_.t,(_.,c.._._.,,+_.r J ,_,x---_= dx, dt i d, =-_'lf'

r ,o,o,,,o,o,.,. oo,oo, ,o,i,'

+=, -77-+_N+_s, ,_.-7:=d.,--;=77-1dW= d--T/L('_o,
. af_.-I

,;: , +_-_27, j (27) Inserting these equations into equation (28) gives

.. Y,:,7.1."_"_7:: ' dJ(_ OF OF dF dO, 0F d02
, _ , Inserting equations 122)and (23) into equation (27) _ = -ft _ -fl

_, : gives dx_ d01 dt d0l dt

Of, Z ¢ Of_ dr,
.... . . d.lr' dF roy, do, OfidO,.Ofl . _flZa_x i_ ,._l_xl_fizl_xi

<+- .) + i: -fizi'_xl-" OOl d' Zloo, d, "

-.,do,.,
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i

Note that we have used the relation room temperature has to be higher than a certa,_ 1

dFd____Fj. ?F _3F dO, _F dO2 value for some physical or biological reasons. This '= , + 7--- f2 +7-2","-;T + -=Z-,, (30_ requirement becomes the constraint of the problem, i
?,xl dtCX2 CVl Ot ('O 2 The performance equations are "

When the extremal solution is on the constraint dx_j +
boundary, 0(t) is determined in terms of the state dt r_t.v_l = a_ ,a42'.v_ 2-a_ ,as'0
variables and the independent variable t by the
relation shown in equation (14). The corresponding -a_ _a_' +a_ 2 (35)

neighboring solution must satisfy dxj 2
d--_+r'2v12 = azl"vl' (36)

_gl i_gl d0 z ?gt, _g' dx,.
dgt =_d01+_0---_ +_ax,+?:._.2 x,l(0)= I at t =0 )

=0 x_2(0)= I at t 0
(37)

or solving for--d0] xt,(T)=0 at t = T
dt (381

X,z(T)=0 at t= T

dOt (t3g t dO2 ,_g_ , . ?g_ ,. "_fOg,'_-'
dt - \_-22 "dt-'+ _xt "tl + _-r2"/z)_f-'_l) where T is unspecified. The control variable andthe state variable are constrained as

(3])

' Inserting equation (31) into equation (29) leads to I0 1 _-<1 (39a)

: d.,_t. xll >=m (39b)
_ = 0 (32)

_ dt We wish to find a piecewise continuous control
variable 0 such that the system can be brought back

i _ or _¢Cis also constant along constraint g_ = 0.* from the initial deviated state, equation (37), to the
; _ Similarly we can prove .,'g' is constant along con- final desired state, equation (38). in the minimum
_, straintg2 = 0. period of time. In other words, the objective func-
i . This proof can probably be extended to the tion given by ""
i " general cases. For a system whose dynamic be- r -

havior can be represented by equation (I), the S = _dt (40)
i necessary conditton for the objective function, o

. equation (2). to be extremum on the boundary sub- is minimized. Note that a constraint is not imposed 1
_' ject to the constraints, equation (3), is that the on x_2 because it is known from Example 3 of

i Hamiltonian remains constant on the constraint Part 2[I] that xt_ does not cool down to theboundary, or negative dimensionless temperature.

f ' d.g During a period m which the inequality con-
d-'7 = 0 (33) straint.

and the adjoint variables are of the form xt t > m,
is satisfied, the solution obtained in Example 3 of

,,:,_,-,_:_, dt _x_ _z_ OX_'dm.r_ we have [see equations (75) tiarough (78_ in Ref. I]:

i '
"_<_ '_''" : "'i'_ + ,=, _0, d.---_,/,i=__.., 1,2, s x,, =_[(2,t+r,,)Aexp()tttt)+(2,,+r,,)a,t

_._ ,. (34) Bexp(2_zt)+rt_K ], 0 < t < t. (41)
_,_,_y_.._ The condition _(r)=o must hold when the x,_ = Aexp(A_,t)+Bexp(Atzt)+K,
L._e:',- "_'" control terminal time T is left free. 0 < t < t_, (42)

_A_''_ .,. = EXAMPLE xtt " aal_ (2it+r! z)DI exp().t tt)+(2t2+rt2)
: "{_?_._d Example 3 in Part 2 of this series[I] is recon-

" *'!_"_ D_exp(,L,at)+rl=K'], t. _ t _ T (43) _,sidered here. In the example, the dimensionless

_ room temperature assumes negative values during xt_ " Dt exp(,_,t)+ D_ exp()._zt)+K',

( •

. pan of the control period. Very often, however, the t. _ t _ T (44) [I_ ' '
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f

K = a z la_c2 _+,a j _a2, a_ - a _2a2 _ C = exp(r j 2t,,)FA exp(21 Jt,,) + B exp(,;,j 2t,o) ,
at la42a21 --rl Ir12 L i

1K' a_a2ta_'+at_a_a2_+a_'-a'-_ ma2_ •= , -_ + K (50)
a_ ja_2a_-r_ _r_2 rtz

azl-rtz-:,.12+:_.12K Because of the continuity of-_'Jt and xt2 with.4=
2 j _- 2 _2 respect to t, we have at t = t,a

"_ rt2+)._ _).1 iK_a2t .vt t(/_a)= mB=
_. 2t1-2,2 I- [(,;.li +rl 2)D t exp(21 it,,,)

:_ /;._1 a2j
= -(r= t+rl2) +(212 +rl _)D2 exp(:.t zt._)+rt zK']

_ +_ [(rll+rt2)_+4(r_r_2-a_taz_a4211 from equations (43) and 149), and
, 2

2,, .v__.(t,a)= ma_ +Cexp(-r, _t,_)
f -- --(r_+rz2) rz2

' _" --X [(rz i +rz z)2-4(rz ,r_ z--az ,a z za4_)] = Dz exp()._d._)+ Dz exp(;.t zt,,,)+ K
2

"-_ from equations (44) and (47). Solving for D_ and
_, and where D, and D2 are unknowns: whose values D_ from these equations leads to the following

it will be determined later, t,, is the arrival time when expressions.
the state variable x_, reaches the boundary where

, .VII = m. t,_ is the time when .x'_ departs from D_ = .

i _, the boundary. , - K' + ma_, + C exp( - r, 2t._) exp(2 t2t,_)¢, Since x_ = m on the boundary, equations (35) :

! _ and (36) become I -r_ _K'+ma z , (;., _+r t :) exp(;. _,t,_)
| Ik, , , I

i mr_t = at 'a'*2x_ z-a_ w_O-a_ _ao+a' 2 (45) Iexp(2_ _t,_) exp()._ _t,_) i

i ," d--t-+rt2"_'_2 = ma2_ 1467 = rtzK,_ma2_ +(;._z+r_2 )

i or solving for.,'l 2, we have (_K,._ ma2l .4. C exp[_rl _1_1] /rtz 1511
ma2 t

.x'_ - +Cexp(-r,_t), t. _ t <_t,a (47) ()'_z-)'_0exp ()'_tt,_)
r i 2 and

The corresponding 0 and x, t are D_ =

'g"'-" 1 , -r zK'+ma_ +(),_+r_)

"_ "'_; a_a_ ( K ma2, ._)
"'_::. . + '- _- C exp[ -r, ,t_]

__i t, _ t _ t,,, (48) rtz

(52)

_;,/ x_t = m, t._ t _ t_ (49) (2,=-2_)expO, t=t_)

_;_,_,;_ We now can see that D_ and D z are functions of
, -_ _ t.,. Their values and that of T can be obtained by

_,:. :. where C is an unknown, the value of which can be,,.,,, determined by inserting ._g_ = m into equation
......,._. ,..._, , • . making useof the final conditions of equations (43)

:];;_._,,, . (41) and solving fo" t.. Then t,,, may be substituted and (44) at t = T. Thus.,. - into equation (42) to solve for C. Thus

";-'_':; ' _":'. .x'_ = Aexp{A_t_,)+Bexp{A_t,)+K, t = t. _[(2tt+rti)D_exp(A_tT)+(Zt_+rtz )all

_:.)_:._ from equation (47) Dz exp(2t zT)+ r tzK'I = 0 (331 =,,

_" ma_t D_ expQ._T_+D_ exp(2_T)+K' = 0 (54)_*"'" "_ ._gz= _ +C exp(-r,zt.), t = t.

!,_._ Solving for C from these two equations, we obtain then inserting it into equation (53) yields :
i

Ill I_lli -
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7bhle I. Minimum values oJ the objective Junction (dur(itton
).11K' (55) I# control)for Co._e I of the two ('ST'_-in-.seric.s model _lth

D2 (t;'12--)'l 1)exp(}'l 2T) rz = 0 and rm'iou_ values m in the inequahtv con._tramt '" ,,
xl, > m. (

Inserting equation (55) into equation (54) and . ., il
solving D, gives s = T !

}-t2K .................. t;
Dj = (56) r,t m= -0'2 m= -0"4 No constraimon _j,

(2,2--21 i) exp(2t iT ) .............
1

I 2 0.992 0.992 0 992

Equating equation (51) to equation (56), and 1.5 1051 1.047 1.047
equation (52) to equation (55). we obtain 2.0 1.233 1.103 1.078

5.0 2.483 1.998 1.007

])l = I0.0 3.457 2.862 0.956

-rl 2K'-ma2, + (';',2+rl 2) =

rl 2 _---X >-0.4
-- _ X _0 cof_S_rollh_

(;.I 2 -21 ,) exp(21,T) x

= i

(2,2 - ;.t ,) exp(;, t IT)

_rliK,+ma21+12i,+r,2 ) • - i

' ( )

ii
i K ma2 )
, _ r12 . I

(212- }. ) t) exp(2121_1) o

(2t 2- 2,,1 exp(2 tzT)

respectively. Eliminating the common factor o o_ o ._ o_ , o _-i
(2,2 - 2 t t) in these equations gives Fig. I. Optimal control policies and system responsesfi)r

Case I oJ' the two CST's-in.series model with r_ = 0 and
[ 2__K'exp(21 _t_,) --=exp(2 t _T) r_2K" -ma2 _ r_ = 2 and witha constrainton the state t,ariable.

+[2t_+rt ,][-K'+ma2_ as shown in Example 3 of Part 2 of this scries[l]."JL r' _ However, because of the existence of inequality

} constraint on the state variable .v, t, the optimal ,+Cexp(-rlzt.a ) (57) control policy 6 takes some intermediate value
": :.; ,_ other than 1 or - I during part of the operation.

_ " 2ttK'exp(}.t_t,_) = exlM).tz -rt_K'+ma_

'__ 1\ - _i7 "';

\{.., ma_, Table2.Simulationof Co_e I of the two CST's.in-serie_+,,,),^ 0.,,,-

¢" )] Control Variable 0 J i

_'_'_" -C exp(-r,_t._) (58)
., ,_,._, t < t., t.,< t < t. t,< l< t,, t.< t < T T ,

,. _:'' _ t., and T can be solved from equations (57) and 1.0 -I.O 1.0 -1.o Nosolution ..
(58) by a trial and error procedure. Then D t and 1.0 -1.0 fill -1.0 No tolutkm

, ,_, Dz can be obtained directly from equations (51) 1.0 -I.0 ff6 -I.0 Nosolution

_! )-0 -0.8 I"0 - I"0 2'535 :. :

and (52) by substituting the value of t,_ into the 1.0 -fill 0.8 -1.0 2.363

,-- equation. 1.0 -0.$ 0-6 - 14) 2.249 (

FI The solutions of the problem are tabulated in I.O -0-6 I.O -I'0 1.435

I.O -0,6 0.8 - 1.0 t.388
=,",e Table I and are shown schematically in Figure I. l.O -0.6 0-6 -t.o I.D6

_',,_ The optimal control policy,isof the bang-bangtype * -_ -:;_.
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T,: Temperatureofpool2in C xi(t,,) v,,.i = 1.2 ...... _. initial value of v at

, T,: o Temperature ofpool 2 at :t = 0 + t = to

T., Disturbance temperature in C T, i.v__ _ . dimen_ionles_temperature,,! pool I
T, Temperature of the circulation air into the 7",_o

system in C 1_.2
-- . dimensionless temperalure of pool 2

T,,. Temperature of the circulation anr into the v,, 7",_,,
system at z = 0 _ in C :j(t) adjoint variable delined onequatnon (5)

T, Q,.p,.ce.._T,.h_ 7.,,j. hypothetical tempera-
Q nt%, ture Greek h'tter._

7",,,_, Upper bound of 7",in C i,. Density of coolant in kg/m 3

7; m,, Lower bound of T, in C Vn
t _ _, time constant of the ,,y,,tem proper

T,o Value of T, at • = 0 in C QI+Q2 nn,,
T_._ t_,.- to in C

Vt=
T_.h tw,- t=in C t_ _.timeconstantofpoollin,,,-, ,.Q:

; T_ _ Temperature of pool I in C

T_, Temperature of pool 2 in C _, -".timeconstantofheatexchangernn_
r: A Lagrange multiplier in equatmn,, (8) and ,z'_

(9) F'iz
_s: _ . time constant of pool 2 in s

V. Volumeof roomin m3 Q, + Qz

1'_u Volume of pool I ol two completelystirred 7",- _(T.m_,+ 7".,...)

'. tanks in series model in m3 0 7",m=,- :[(7",,.,,,,+ T, ,,_,) "control _ariable

i ' l', Volume of heat exchanger in m_ {+

- I at T, = r..,..
, t'_., Volume of pool 2 of two completely stirred
i tanks inseries model in ms I at T, = 7",=,.

.qt) s-dimensional state vector defined in equa- }.,_ Constant in equation (41)
I tion ( I ) _., : Constant in equation (42) "
|
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?gJ _ ?f2 dO2 ?F ?F ?'1_ ?/_ 71, dO,
+-2-'- /2)--22 12 -2-'---It X'--- +/l:t 7--+2112 --+7"2 _ --"-_,, cx2 30, dt _.v2 _t c._ t ?'.v2 _0, dt ,

• . d,,. d.. (,5) (,6) 118)
¢0. dt ++_-0-_l\?'-_t/ \?fie dt +It:-" --'--- , -z-"-:-----:"31"2+1,2 z _7f2 ?f'2dO,
- c._,_ c,,_ ?ff2 dt

cg_ /.+?'gz/ ) (A.8) (13) (14) 118)+_x. t _,.x.2. 2
_F 3F ?F d0, _F dO,

Since functions, 1_. /'2, F and ;;_, possess the con- -I2 7+._.2-1f+;x; 302 di" +-_2 dt-

tinuous derivatives, at least, to the second order, (19) (20) (21) (21)
equation (A.8) can be rewritten as

fF £F

d.W ".f2zt ?fl-fzzz _'f2-/'l:l _f; +z--It- -- 7-- c-vt + ?x 2.12
dt _x. +x2 cx_ (20) (19)

(13) (14) (15) or

f -- ,7 " "--21 -- --+¢.-El ._ --" +._ O,/'l + l': +?f, dO2 f'll d02
• _.x't f'O2 dt cO2 dt dt

+- (16) (17) (17) This is equation (32) in the text.

: Les conditions ngcessaires pour l'optimum d'un syst_me dynamique dont les variables

_ d 6tat sont contramtes par certames condmons d megahte, sont obtenues par I'applica-
; tion d'une technique de variation. Les conditions sont utilis6es pour d_terminer la
" -+ police optimale du contr61e de temp6rature de la piece ou cabine d'un syst_.me de

i I support de vie. On _tudie encore le systC:meconsistant d'une cabine b, air conditionn_• _ soumis .h une perturbation de chaleur par impulsion et d'un 6changeur de chaleu:
t "_ agissant comme 61_mentde contr61e. Le courant d'air dans la cabine est caract6ris6 par
: ,- le mod61e des deux vaisseaux en s6rie (2 CST en s_rie) compl/_tement agit6s. Une
i _ contrainte est impos_:e sur la teml_rature environnante qui doit 6tre plus d'une

_ certaine valeur pour certaines raisons physiques ou biologiques.

' , Die notwendigen Bedingungen fiir Optimum eines dynamischen Systems. dessen
,i Zustandsver/inderliche durch bestimmte Ungleichheitsbedingungen begrenzt sin&
't' i werden unter Verwendung einer Variationstechnik abgeleitet. Es werden die Bedin-

7 gungen verwandt, um das Optimalverfahren fiir die Raum- oder Kabinentempera-
turkontrolle eines Lebensunterhaltungssystems festzulegen. Das System wird wieder

_. _ untersucht, welches aus einer klimatisierten Kabine besteht, die eincm Wiirmes

i_!i!i _tl tSrungsimpuls und einem W_.rmeaustauscher ausgesetzt wird, welcher als Kontroll-I element dient. Der Luftstrom in der Kabine wird dutch zwei vtillig durchgerfihrte
Reihentanks (2 CS'l"s-in-series) im Modell dargestellt. Eine Einschriinkung ist der

i, :', Raumtemperatur auferlegt, die aus einigen physikalischen oder biologischen Gr_indengr6sser als ein bestimmter Weft sein muss.

m 'm
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Applications of Modern Optimal Control
Theory to Environmental Control of
Confined Spaces and Life Support Systems*
Part--5 Optimality and Sensitivity Analysis

_ L.T. FANt
Y. S. HWANGt

.._. C.L. HWANGt

7" The sensitivities of a cabin with temperature control which has been considered
," in the first jour parts of this series are examined. These include the sensitiz'ities

to (1) parameter rariation, (2) change in dimensions of mathematical models

and (3) change in constraints on state rariables are examined.
The system is not sensitire to the variation of the parameter (the recycle

_ ratio of air) when the magnitude of the variation is small. The effect, howet,er, ..

_ ......... _-_, is noticeable when the variation is large. The effect of the change of the para-
_ _ _":'L_; "" meter (the ratio of the time constants of the system proper to that of the heat

exchanger) is t'ery small. The effect of rariation o.f the parameter (the rolume! .fraction of the first pool in the two CST's-in-series model) on the optimal

i _ _,. . conditions is substantial.
_ There is a small but not negligible effect of the dimensional change in the ,:• system equations, which is caused by neglecting the time constant Of the heat

i " _b l_",_-.-'.......... "_ exchanger. The complexity of the model describing the system componem has a

i: _ I_XFI_['2_''''/t__ S _.'.: ,;.,f'i definite effect on the predicted performance of the system. The effect is apparent, for the particular models considere:l here, which are the one CST model and
the t_,'oCST's-in-series-model.

• 1 i i i

INTRODUCTION sensitivity analysis. While knowledge of the sens-
! itivity of the performance of a system as predicted

THE PRECEDING parts of this series are con-

cerned with the thermal modeling and simulation by its model to parameter variation is important,
of confined spaces and ife support systems[l] there are other aspects of sensitivity analysis which

are important for a particular problem or system.
and the optimal control of such systems[2--4]. These are (I) sensitivity to change in dimensions of
Examination of the optimal results[2--4] naturally
leads us to consider the deviation of a system from the mathematical model representing the system,
its nominal or optimal behavior. Such deviation of (2) sensitivity to transition from the continuous
the system behavior is caused by deviation from model to the discrete model in describing the
their nominal performance characteristics of sys- system, (3) sensitivity to the influence of various
tern components or other factors of the systems, functional blocks (system components) which
which are often characterized by parameters of the comprise a system, and (4) sensitivity to change in
system model. This is the essence of sensitivity constraints. Tomovic[7] discussed the contributions
analysis, sensitivity analysis can make in analyzing the

.... , ,' stability of a process. Demski[8] discussed the:'_,%! Tomovic[5] and Takamatsu[6] discussed the role
'_'_'" '" of sensitivity analysis in engineering problems, broad applications of sensitivity analysis in en-

-•_ ginecring and management sciences. Books by
.:_.. Th¢._' indicated that there are several areas of

_,_ Pagurek[9] and Sage[10] arc suggested references! for sensitivity analysis ofcontrol systems.
* g_ : "fhiswo k was supportedby the Air Force _ of -s.,

_i_,? _" _ $¢i¢._tificResearch._ of Aeroslmc¢Research,United Here we shall make use cf the results presented

_,_" States AirForce,UnderContractF 44620-68-0020(Thcmis in the first four parts of this series[I-4] to demon-
[_;_-_ 001-134.Pr°ject)'and NASA Grant Under Contract NGR-17- strat¢ the sensitivity, to (I) parameter variation,

_" " 'f Institute for systemscksilgnand optimization,Kansas (2) change in dimensions of mathematical modelsL/ StateUniversity.Manhattan,Kamsu. and (3) change in constraints.
149
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SENSITIVITIES TO PARAMETER change of the system equation which is caused by
neglecting the tnme constant of the heat exchanger.

VARIATION AND CHANGE IN DIMENSION A similar conclusion can be obtained by comparing

OF MATHEMATICAL MODEL Curve 3 and Curve 4, which are for the systems
represented by the two CST's-in-series model.

In the literature pertaining to optimal control Comparison ofthegroup of curves. Curve_ i and 2.
almost all the intensive studies in the field of sen- with the group, Curves 3 and 4, shows that the
sitivity are related tothe evaluation of the sensitivity complexit), of the model describing the system
of performance of a system, as characterized by its component (room or cabin) has a defimte effect on

model, with respect to small parameter varia- the predicted performance of the system. It can be
tions[5]. The specific values of the parameters used seen that such effect is substantial for the particular
for design and control will differ to some extent models considered here, which are the one CST ,
from the actual values. Therefore, it is of practical model and the two CST's-in-series model.
importance to the process designer to know how

sensitive the process designed by him is to these ,01k,.i

parameter uncertainties which may be due to, for [_,_ u,_ _o R.,,.,k

\\\\ , x, .,,. T_,o
example, the environmental and aging effects, the \\\\ z x, ,,,,, _-_:o
choice of a mathematical model both for the con- \\\_ 3 ½cx,,+x.._,,,.__, =o

trolled system and the controller, and the measure- _

menls. Suppose that the value estimated for a _t
parameter differs by 10 per cent from the true value.

Does deviation of this magnitude significantly |
, affect the optimal design of the process? The

sensitivity analysis used to attempt to obtain
quantitative answers to this question is thus an

t, o
i integral part for the complete optimal design of a

' ] ', _ I I
process. -Q'o o2 04 06 08 ,o , e

; Table l and figures 5 and 6 in Part I[1] show the ' -

, effect of variation of the parameter r _ (the recycle Fix'. 1. The _ensitivity to change in dimensionsof the
ratio of air) on the optimal conditions. It can be mathematicalmodeL

! seen that the system is not sensitive to the variation
of this parameter when the magnitude of the varia-

'l i tion is small. The effect, however, is noticeable THE SENSITIVITY TO CHANGE
"- ' when the variation is large. Table 2 and figures 3 IN CONSTRAINTS

_ and 4 in Part 2[2] indicate the effect of the change

of the parameter r (the ratio of the time constants The system sensitivity to changes in constraints
- _ t of the system proper, cabin or room, to that of the imposed on the system, more specially, imposed on

heat exchanger), This effect is very small. Table 3 the state variable (temperature) of the system is
_'---_ [ and figures 5 and 7 in Part 2121show the effect of discussed here.

_" _ variation of the parameter r tt (the volume fraction For this purpose, results presented in Part 4 of
i of the first pool) on the optimal conditions. This this series[4] are summarized in figure 2. Note that

effect is substantial. To illustrate this aspect of the the systems considered are all represented by the
_ sensitivity analysis, the dimensionless room tern- two CST's-in-series model (with equal size tank).

"/_ peratures as a function of the dimensionless tlme Since the constraint is imposed on x,j (dimen- '
".... under the optimal conditions presented in the sionless temperature of the first compartment ot

!., previous articles of this series are summarized in the model), naturally the effect of the change el _w,
_-_;7, : figure 1. Curves 1 and 2 represent the change of constraint on this state variable cannot be neglected. /'

=_ _ the dimensionless room ten,,perature as a function However, the effect on the dimensionless tempera-
v. _..-,._. of time for the system with one CST room or cabin, ture of the second compartment, which is also the

I_,___2. ' Curve I is for the system with the heat exchanger exit temperature of air from the room or cabin, is

_:, having a negligibly small time constant (ra ---*0, negligibly small. The effect of the change in the _,

__ r _ - 50s). Curve 2 is for the system containing a constraint on control policy is also very apprecmble C
•_l_r.q0/ . heat exchanger with small but not negligible time as indicated by the plot of 0 vs. t in the same figure. I,

constant (r, = 5s, rt = 50 s). Comparison of These observations are valid for the particular

o_,_" , Curves ! and 2 indicates that there is definitely a model considered and for the particular values of _,,
"' _'_- small but not negligible effect of the dimensional the model parameters employed here. '_._
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r_ to in the types of functional blocks which are con-
', I "'.'_. .... r: =o rained in the system and to the relative locations of

= ] -.'_.._-- _:,=oc,_, -_-0.4 the functional blocks is called the structural .,
o_- "-._..._ _ - :-;--.... sensitivity[5].

_: _ "-"_._ , In this sequence of five short articles, we havemainly resorted to Pontryagin's maximum principle
and variational techniques to determine optimal

, _-'---"-'-'- .... temperature control policies of several fairly simple
' _ but typical life support systems. It is obvious that

the maximum principle and variational techniques
_t , : -_"-_" _ do not constitute the entirety of the modern control

i] theory nor are the systems with temperature con-
trol the only type of life support systems. There are

7-,7 many facets to the modern control theory and there
, ,t_ exists a wide variety of life support systems. For

0 I [j/ example, dynamic programming, originated by

_- _"-,1____2"----- Bellman[l 1-13], has been and is being employed
; widely in solving optimal control problems, its

t - , techniques and applications constitute a significant
__' portion of the modern control theory, in life sup-

port systems humidity control and pressure con-
File.2. The senMtirityto shift of the constrahttsof the trol must often be provided besides temperature

mathematicalmodel, control and some life support systems are comprised
_ of partially open spaces. It cannot be denied,

' "* CONCLUSIONS however, that the maximum principle and varia-
i tionai techniques are major tools of the modern

. It should be evident that thorough consideration control theory[10,14,15] and that the temperatare
j " must be given to numerous aspects of the system in control system is the most vital component of
; _ order to achieve a meaningful sensitivity analysis, practically every life support system. We believe

The following must be considered in order to that singling out particular but important techniques
i ; obtain the desired information, and applying them to fairly simple but significant

_, I 1. Sensitivity to parameter variation. -xamples faci itate presentation and understanding
i ' 2. Sensitivity to change in dimensions of the by readers of the basic aspects of the modern

i mathematical models, control theory and its applications to the control :
3. Sensitivity to change in constraints, of life support systems.
4. Sensitivity to transition between continuous It is well known that a majority of air condi-

and discretemodels, tioning systems and temperature contro lets for
5. Sensitivity to the influence of the functional life support systems works on the on-off or bang-

blocks of a system. Items 1, 2 and 3 have been bang principle, it appears, therefore, that the
considered in this paper; items 4 and 5 will be modern optimal control theory is very much suited
briefly discussed below, for such systems. Admittedly, application of the

In certain cases, an alternative may exist in modern control theory to the control of tempera-
representing the model either by a continuous ture in a small residential dwell?rig is the kind of
model or a discrete model, lfthe predicted behavior luxury no one can afford or need in the forseeable

__._j of the system is very sensitive to a particular type future. There exist, however, many situations in

of the model, use of an appropriate model becomes which the duration of control and/or energy re-

!!_i!i: i important, quired for control must be critically adjusted. Such

Complex systems generally consist of several situations frequently can be found in applications
functional blocks, stages or units. Complex chain of life support systems in space, underwater, and

- --_ m reactions may follow alternative reaction paths and biomedical processes, and uses of the modern

: '" sitivity of the entire or to variation consideration.

Theory to EnvironmentalControlof ConfinedSpacesand LifeSupport Systems,Part t. I •_;._;;._

_ __ Modelinlland Simulation.Build. Sel., $, 57(1970). :_;_._.;._"

_ h ....
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J,, On examine les sensibilit_s d'une cabine avec contrble de :eml_rature qui a _:t_ 4 i

i consid_r_e dans les premi_.res quatre parties de cette s&ie. Elles comprennent les _ '
sensibilit_s (1) _ux variations de param_tres (2) au changement de dimensions de _ l

i " mod_:lesmat h_matiquc; et (_) au changement de contraintes sur les variables d'_tat. _ ;
: Le sysff:me n'est pas sensible &ia variation du param_,tre (le rapport de recyclage
_ d'air) Iorsqu', la granduer de la _,ariation est petite. L'effet est cependant important ;

' iorsque la variation est grande. L'effet du changement du param_tre (le rapport des
, constantes de temps du syst_me lui-m_me _ celui de I'_changeur de chaleur) est trC:s

petit. L'effet de ia variation du param_tre (la fraction de volume du premier bassin

i dans le module des deux CST en s_rie) sur les conditions optimales est sustantiel.' ' il existe un effet petit mats non n_gligeable du changement dimensionnel dans les

t _quations du syst_me, qui est dO _t la constante de temps de r_changeur de chaleur

_tant n_glig_e. La complexit_ du module d_crivant ie composant du syst_me a un
" ..... effet distinct sur ia performance pr_vue du syst_me. L'effet est apparent pour les
_i_.'__ modules particuliers consid_r_s ici qui sont le mod_,le _ un CST et le mod_:le b.deux9_'. :,._ .... CST en s_rie.

-,, .' Die Empfindlichkeit ether Kabine mit Temperaturkontroile, welche in den ersten

•'_.'_i' 3/_ vies Teilen dieser Serie ins Auge gefasst wurde, wird untersucht. Man schliesst ein

m,,__r_,_r_,.._.-,_,_,__,,_ Empfindlichkeit gegen (1) Parameteriinderung, (2) Xnderung in Dimensionen mathe- ilmatischer Modelle und (3) Anderung in Bcgrenzung der Zustandsver_nderlichen.
,_ ,.-:,- Das System ist nicht gegen _nderung des Parameters (Luftkreislaufverh_ltnis)
,"_,_ :',._ ' empfindlich..,wenn der Grad der _,nderung klein ist. Die Wirkung ist jedoch merkbar, ,

_,'A_.- wenn die Anderung gross ist. Die Wirkung der Anderung des Parameters, (das
" ' ,- Verhiiltnis tier ZeitkonstantedeseigentlichenSystemszu derdesWiirmeaustauschers)
_ '_ ist sehr klein. Die Wirkung der Parameter_lnderung (der Raumbrud_tcil des erstcn

_i_i Beh/ilters in dem zwei CST's-in-scries Modell) auf die Optimali_dingungen ist

betr_chtlich. ",,

Es rrgibt sich eine kleine, aber nicht unbedeutende Wirkung der Dimensions- (
_ndet ung in den Systemgleichungen, die durch Vernachliissigung der Zeitkonstante des

_r_:_. W_rmeat, stauschers verursacht wird, Die Komplexitiit d_ Modells, das die System-

._,l]__._._ komponente beschreibt, hat eine bestimmte Wirkung auf die

___.. des Systems. Die Wirkung ist offensichtlich bet den hier dargestdhen besonderen * _._-'

vorausgesagteLeistung

Modellen, w©lchedaseineCST Modell unddaszweiCST's-in-seriesModeil sind. ""_. _"
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APPLICATION OF NODERNOPTI_dAL CONTROL THEORY TO
ENVIRONHENTA', CONTROLOF CONFINED SPACES

AND LiFE SUPPORT SYSTEHS*

L. T. Fan, Y. S. Hwang, and C. L. Hwang
Institute for Systems Des4.gn and Optimization

Kansas State University, Nanhattan, Kansas 66502

Abstract

Hathematlcal model of an environmental control system whlch consists of a con-
fined space or cabin, a heat exchanger, and a feedback element such as a thermo-
stat are presented. The performance equations of the system, which represent
the dynamic characteristics of the afr-condltloned cabin (the system proper) and
the heat exchanger (the control element of the system), are derived. In the
basic model the flow of air in the conft.ned space is considered to be in the ._
state of complete mlxing and the disturbance is caused by an Impulse heat input. 4'*'_
The flow of air in the confined space or cabin characterized by the _o com-
pletel_ stirred tanks-in-series (a CST's-in-serles) model is also considered.
Pontrya_in'8 maximum vrinciple, which is s keystone of thc _odern optlm_1 con-

troX theory, is applied to the determination of optlmal control policies of the
temperature control of the llfe support systems.

C

1. INTRODUCTION cabin or submarine or underground shelter. (3' 4)

It appears that analysis and synthesis of the
This paper contains results of the original In-

control syste-- for the air-conditioning and life
vestigation on the environmental control of con-

support systems have so far been carried out by
fined spaces of life support systems or more

the classical approach. (I' 2. 3. 4)
specifically the temperature control of life

support systems by means of the modern control The classical approach to the analysis and

theory. A life support syste_ Is a system for synthesis of an autoaatic control system is

creating, maintaining, and controllin_ an environ- essentlally 8 trial-and-error procedure or a dis-

meet so as to pernlt personnel to function turbance response (or Input-output) approach.

efficiently. The control of temperature is Extensive usa is made of the transfomlthod8

probably the suet inq)ortant role of the life such as the Laplace transforn (8-dosain), Fourier

support system, transforu (_-domain), and • transforu (discrete

The need for providing an autoeuttic control time-dmuin). Even thouah mathematics _s axten-

system to an air-conditicnin8 system has long slvely used, the classical approach Is assert-

bean racoEnised.(_ ' 2) It is else • well kncun tielly an ennpirical one. ($)

fact that use of the autosatic control is nec- In recent years, an approach to the ausalysis and

essary for the llfe support systms of 8 space synthesi: of a control syst_, which is dietlnet_

eThis work was supported by the Air Force Office of ScientificResmarch, Office
of Aerospace Research, United States Air Force. Undercontract F4&620-68-O020

JiO (Theuis Project), and NASA Grant under Contract llGR-I?-001-034.
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J different from the classical one, has been deve]- In the present work. the emphases are on the use r

sped. This modern approach is generally called of the maximum principle and related variational

theory.(5, 6, 7, 8, techniques.(5, 7, 8. 9, 10, 11)the modern (optimal) control Their _]|-

9, IC, 11) It is based on the s_ate-space charac- cations will be 111ustrated by means of concrete

terization of • system. The state-space is the numerical examples.

abstract space whose coordinates are t;,_ state
The examples are concerned with the temperature

properties of the system or the variables which
control of a llfe support system consisting of an

system'-5)( air-condltioned cabin subject to an impulse heat
define the characteristics of the

This approach involves mainly maximization or
disturbance and of a heat exchanger. The optimal

minimization of an objective function (functional) policies of the system where the flow of air in
:' which is a function of state (plant) and control

the cabin can be characterized by the one tom-
variables which are in turn functions of time

•. pletely stirred tank model and by the two com-
, and/or distance coordinate. The objective

, pletely stirred tanks-in-series (2 CST's-in-

i function is specified, constraints are imposed on series) model are studied.
the state and decision variables, and an optlmal

2. PERFORMANCE EQUATIONS _R ONE
control policy is determined by extremizing the COMPARTHENTMODEL

objective function by means of mathastical teeh-
A control systa usually consists of threeniques such as the calculus of variations, maxl-

progrumlng.(5, 6) elements: the feedback element, the controlmum principle, and dynamlc

This modern approach is entirely theoretical in element, and the system proper. (23)
The feedback

¢

i the sense that no trlal-and-error is involved in element in a life support control system or an
• , £- "adjusting the controller", environmental control system may be composed of a j.
P L thermostat, bumldistat and pressure regulator, or
I There are reasons to believe that the classical ';

any combination of these, depending on the

, approach suffices in the analyses and syntheses purpose of control. The control element may in-
i of the control systems for a majority of alr-

clude a heat exchanger, humJdtfier, dehumidifier,

conditioning and llfe support systms because blower, portable air-conditloner, or any c_mbl-

I usually the requlr_ents are not extremely crlt- nation of these, depending on the objective of
teal and specifications are not very tight. It control. For instance, both the thermostat and

a is, therefore, Justifiable that must of the con- heat exchanger are often used to control the air "
(

ell fro1 and dynlie investigations of alr-

temperature l_ide a building. The system

Ii_ conditioning and life support systems, which have proper may be a confined space, e.g., an under-
:'_._.., appeared in the open literature, are based on the ground shelter, 8 space vehicle, a space su_t, 8

_ elassleal apprnsch. (12 - 20) There is, however, 8

_ ,] submarine or a building.
t_:D.m certain incentive in applyi_ the modern approach

_4_ " to analysis and synthesis of automatic environ- The system considered here is shorn schmnattcally

mental control 8ystmm in space crafts, sub- in Fig. 1. The confined space may be a typical

marines, underground clvll defense shelters and office located in a multi-story buildlng or the

certain medical facilities. In these systems, cabin of a spaceship. Air or oxygen or a

_,_,_ vary stringent requirements in the response time, mixture of ozyjen and nitrogen is circulated

_o,.,,o,,,--..,._., ,o, ,_o,oo.,,..,.,..,,....,,example, the control system of a space craft mint duct by mutchanlcel means, e.g., • blower or fan.

have an extremely retell rupoua tile and further- Co'ntrol of air temperature in the lyltem iS

more. the amount of energy required for the con- accomplished wtth a duct system. The thermostat

ira1 effort umst be vet7 mrs11 because of the in the syatemadJnsta the position of the control
weight ltlltstion lg_osed on the apace craft, valve of the heat exchanger in order to provide

the desired temperature.

J76
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j The performance equations of the system, which transfer medium, or caanglng both. The per-

represent the dvnamlc c.laracteristics of the formance equation of the control element can be

system and system component_ will bc derived, obtained again by emplovlng the continuity law or

A. The System Proper heat balance, which can be expressed in equatlon
form as follows:

The following three main assum_tlons are made con-

dTi QwPwCp_(Tw h - Twc)

cerning the system proper: T2 Ta +T i=T c- OI_Cp (3)(1) Room or cabin air is welt mixed, or

stated in another way, air temoerature where T2 is the time constant of the heat

within the system is uniform throughout exchanger. Note that QwOwCpw(Twh -Twc) Is the
at any instant in tim_. amount of heat removed from or added to the

(2) The thermal capacitance of room walls, system which can be controlled by adjusting either
:

floor, ceiling, and wind_ is neglec_eo, Qw when cw' Cpw' and (Twh - Twc) are constant, or

-s well as that of any furniture within (Twh - Twc) when Ow, _w' and Cpw are kept con-

' _ the system, stant, or both Qw and (Twh -Twc ) when 0w and Cpv

are constant. In order to have a mathematically
' (3) Heat loss through the walls and wincows
. neat form, a hvpothetical temperature T is

is negligible, r
' ' defined

i The performance equation of the svste_ prefer can T (4)
, _ be obtained by using the continuitv law or heat r = Ow:wCpw(Twh -

Twc)/Ol_C p

_ balance. Asstaning that the heat disturbance is Inserting this definition into equation (3) yields

. _ ( an impulse form. the cabin oerformance equation dT Ii " ' * becomes --_ Ti = Tc - T (5)I : :2 d_ r

T1 Ta +T c= rI Ti+r 2 T2+T I Td 6(,Q or in dimensionless form
[
} .i (i) z3 dx2 XlK4

i ---
Tc = 0 at a = 0 _I dt �x2= K I K4(K20 + g3) (6)

where Tc is the room temperature, Ti, the tem-
perature of the circulation air into the system C. The Feedback Element - Thermostat

I proper, T2, outside air temperature. Td, dis- Here we simply absume that the sensing element
turbance temperature, xl, time constant of the measures the room temperature instantaneously and

system proper, r I, the fraction of circulation that there is no accumulation of heat in the

_.g_T" alr, r 2, the fraction of fresh air, a, the time, element, or for simplicity, it will be assumed
_:_ _ and _(a), impulse heat disturbance function, that the sensing element is the zero order element

'" "'_"' In dimensionless form equation (I) becomes vlth its time constant, z3' equal to zero. Ref-

_)-, erence 23 gives a detailed explanation of thedx 1 rlglX 2, ,._ _ response of the thermostat.

" " "_=+Xl =--_4 _ "2gl+gl°8(t)
_." (2) 3. PERFORMANC_ EQUATIONS FOR TWO

,_;_' _'_ ,. = 0 St t a 0 CONPART_ENTS NODEL

_: ,s _ , Next, let u_ consxder the case in which air In the

_ r E. The Control Elmaet, t room or cabin is no lon_er in the state of com-

'_:¢r' _" The host ezchanserwhlch to the control element plate mixing. Specifically, we shall consider the

of the system under emmideration can perform its c_o tnvhtch flop of air in the room can be

control function In various ways, for example, by characterized by t_o completely stirred tanks (or
chassis 8 the temperature or flow rate of the heat pools or ccmparment8) (2 CSTOs)-ln-serios model.

177
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..... _l1-- .... i . : ..i ...... --'--r " __f_ ll l __{-- f l_ ', t _f +[_

The lullowlng assumptions musL |>e ddd, d to tho,,e dyl]
, �a(t) (9)

already made for the system proper In the pre- dt *r]Ixll 'Jll"2+_'12 13

ceding section: d^

12 + a21x + _ tt) (10)a) The room is divided into two well mixed dt rl2xl2" Ii .')

compartments in series. Volume of _4ch
d,<2

pool is denoted by VII and V12, and the _ + rx2 =a42x12 - aS - a6 (]i;

temperature in each pool is denoted by
4. oPTIMAL CONTROl. OF ONE COMPARTHENT)!uD_L

Tel and rc2.
S,mvose that the dynamic behavior of a life

b) Backflow of air from the second com-

partment to the first compartment is support system consistin_ of an air-condltloned
" room or cabin subject to the impulse heat dls-

negligible.
, turbance and a heat exchanger with negligibly

c) Disturbances are equally distributed over
small time constant ('2 "0). Then the system

the system, performance equation in dlmensionless form (an bc

d) Fresh air comes into the first compartment obtained bv combining equations (2) and (6) ,ind

+ at a constant flow rate, while exhaust air lettln_ :2 -0.

is released from the second compartment at dx 1
- a constant flow rate. ___ = _ (12)dt +r2xl r2gl rlKIK2" -rlklg3

p _ The _chematic diagram of the system is shown in with

Fig. 2. The performance equation for each pool +

can be obtained by uoing the transient heat Xl(O) = 1 at t - 0_r

_. balance around each compartment, Thus, for pool 1, Xl(T) = 0 at t = T

we have

where T is the unspecified final control time.
dTcl

_Ii da +Tel rlTi + r2T2 + TI---_I_ Td6(a) (7) We ,'i:+hto determine _-so that the response of
= t I Ii "the svstem can return to its desired state in a

Tcl = 0 at _ = O minimum period of time, that is, to minimize

or S = / dt (13)

dTcl = 0
_11 _+ Tcl rl Ti + r2 T2 t

If an additional state variable x2 is introduced

Tcl • Tcl0 at t = 0+ as
t

Similarly, for pool 2 we have x2(t) 0/ dr,

dye2 T!2 it follows that

_12 "-_a +Tc2 =TcI+X t12 Td6(a) (8)
dx 2

Tc2 = 0 at a • 0 d--t"• I, x2(O) • 0 (14)

The problem is thus transformed into that of min-

or Imizing x2(T).
dTc2 (7, 8)

tl2 d-'-_ + Tc2 = Tel According to Pontrya_in's maximum principle,

Tc2 = To2 0 at a • 0+ the Hamlltonlan is

I or In
dimensionless form

.'-i
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I d[Z(t), xt_), *'(t)] [n the case where the coefficient of ' in J

dx I dx 2 equation (21) vanishes, we have the possibility

" Zl _ + z2 -d-t- of singular control (10) For _ingular control• t

" Zl[-r2x I + r2K 1 - rlKIK2O - rlK1K 3] + z 2 (15) the control variaL le takes on values which are
and • hence the name

intermediate to "max ('sin'

The components of the adJoint vector are defined intermediate control is atso used in place of the

by singular control. (IU) Also Inertialess control

dZl _H will be considered. An tnert_aless controller
---- B

- r2z 1 .16) h,,s the ability to shift from t_ to " in-
dt _xj max min

stantaneously and vice versa.

dz2 _H

' d--'t-= - _x---2" 0, z2(T) " I (17) The maximum principle now requires that the
system equations, equations (12) and (14), be

Solutions of equations (16) and (17) are integrated simultaneously with the adjotnt

r2t equation (16) so tha_ the two-point boundary con-
t " Zl(t) = Ae (18) ditions

z2(t) - 1, 0 , t < T (19) Xl(O) - 1, Xl(1) - 0

• _ where A is the integration constant to be deter- x2(O) = O, x2(T) - undetermined

_ mined later. Inserting equation (19) into= m m

(" _ equation (15) yields Zl(0) undetermined, Zl(T) undetermined _

} . _ H--rlK1K2Zl0-r2zlxl +r2Klz 1-rlK1g3zl+ 1 are satisfied. For this minimum time problem

extremum of the Hamiltonian must vanish at every(20)
(7,8)

point of its response.
Therefore, the switching function, H_, the

portion of H which depends on _, is In order to bring the initial deviated qtate

Xl(O+) = 1 to the final desired operating state ]
H* = -rlK1K2Zl_ (21) Xl(T) - O, we intuitively re_ect the control

Note ti_at minimization of the Hamtltonian with 0 = 0ml n = -i (which corresponds to the minimum t

respect to : corresponds to that of the objective cooling action). Equation (12) can be integrated

function. Equation (21), however, indicates that with the conditions

the minimization of the Hamiltonian with respect 0 = 0ms x = 1 (23)

tn *_ is equivalent to that of the switching and

function. Thus, minimization of the switching

function correavonds to that of the objective Xl(O) = 1 at t = 0 + (24)

function. Equation (21) also indicates that for
as

the switchin_ function to assume the minimum value, -r2t / "r2t
e must assume its minimum allowable or its maximum Xl(t) - • +_-_(r2g I - rlKIK2 - rlKlg3)(1- • )
allowable value depending on the sign of the co-

efficient of 0. "r2t "r2t-e + 2_ (1 - • ) (2S)
r 2

- Umax = 1 If -rlglK2a I • 0
(22) where

0 = emi n • -1 if -rlglK3Z 1 , 0
= r2g 1 - rlglK 2 - rlglg 3 (26)

Time optimal control poZicy of this type is of

I bang-bang type. (3' 4. 6. 9) The integration constant A in equatio. (18) can
be determined by m ins the condition that m£nimun
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a

t H is zero for all the pro_,,;_ tt_,L in ti-,t, ovt,-.it '_]i'-zndi_.te._ tl_it tl,vllamlltonzdn is kvrt at

_ontrol. At t = 0+, we have fray. vq,J.lti.m,_ I i,_l 7_,:,_ ,t t,_t.r, :,oint _: tt_ r,e_p_,nse in tht<, _tnt-

(20). (23) and (24) -,,. ti-t, rr, hlt'. For

. Zl(O +) . -1 r., : u._ _., - 0.2
A

,_ r 2
b:] " 0.5 t.: - 1.%

and

-1 r_t k]- 1.5 ,_-= ",
zl(t)

lit e (27)
r2n - _. have fro_ t,quatitm_, t')). (L7) an_ (_0)

.2t
Equation (27) implies that z(t) will not chan_e l t.0.2t = 0,767t0

zl(t) = 1.3 I lit
sign since Zl(t) + 0 only when t approaches nega-

tive infinity, or in other words, control will .,l(t) - b.3e "0"2t
f 5.'_' (32)
t -

not shift from Oma_ to _min (or from Oraln to .max).
T = U.835_

_'- Therefore, this problem is a par'titular case oft

'y bang-bang control which has the bang part only. _.d _ro_ euuation (3!)

"_ The optimal control policy starts with Tr max and i

then keeps operating at the upper bound of T Zl • I,J = O.Tt_9 .it t = O
r

until the final desired state is reached. The 1

zl " 1-.-i " 0.909 at t _ T
fins1 control time can be obtained from equations

(20) and (33) together with the final condition Equations (31) rind (32) "ire _'ra._hi, a!lv ,.>h,,wn in

Xl(T) " 0 at t = T Fig. 3. The state variablt, x 1 approache_ a_mp- t
toticallv to the final state, t:l- control warS-

as follows able ' remains ,it unity until the final -it.it,, i _,

H - zl(T)[-r2Xl(T) + n] + 1 = 0 reached, and the ad_,oint vvctor incredses a_vmp-

totically. The opti_al control _an be verified
or solving for

girT)"" bv computin_ H at an arbitrary point, sav 0.3. of

zI(T ) . _-'I (28) the time coordinate as follots:

t =O.5
Also we have, from equation (27), at t = T

r2T Zl(t) = e'O'l/1.3
iI(T) - _ e (29)

n - r 2 Xl(t) - 6.5e -O'1 - 5.5
Solving for _ from equations (28) and (29) gives

and

T .. _ _n( ) (30) II- Zl(t)[-r2xl+ r2gl - rlKI', 2 - rlKIK3I + 1r2

This _olutton my be verified by interring it into e 0.1
" 1---_3-"['0"2(6"5e°O'1 " 5.5) +0.2x 0.5- 1.21 + 1

equation (iS)

XltT ) - 0

-r2T n st2 T) Thl_ computatlon shows that the minimum value of-a +_(l-
r 2 H is zero it every point of this continuous pro-

___ tees,
m exp[-r_ 4 itS( ) | Four cases with different cooling capacities of

- r

"_'411, " _ (i "'ttP|'r2 r__ in( "_'-'_')q |} the heat exchangers are considered here. Tr .ax
r2 and Tr sin take, the follovint values for these

• 0 four cases:

leo
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Case |: Tr max ]O°C Tr rain O°C Then, the Harriltnnian is

!

Cane 2: T - 20"C T = 0"C H(z, x, ¢,)
r _ax r rain

Case 3" T " IO°C T = O°C " Zll(-rllXll+alJ_42'x12-alla5 lab +al_
r max r min

+ Zl2(-rl2Xl2+a21Xll)+ z 3 (38)Case 4: T = 5°C T = O*C
_''" r m_X r min

Accordin R to the deZinition of the adJoint varl-
The numerlcal solutlons for theqe cases are

ables, we have
obtained from equations (25), (27) and (30), and

are tabulated in Table 1 dZll
..... rI - (39)

dt _Xll IZll allz125, OPTIMAL CONTROL OF TWO COHPARTHEN_S MODEL

dZl2 _=Let us aRain consider a llfe support system con- _H ' + (40)
• d--"_" - 3x12 - alia42 Zll r12i12sistinR of an air-condltloned room and a heat

• exchanger as in the precedin R example. However, _ " - _ ",dz3 3H 0 z3"T'_)
1 (4l)I

t ; suppose that the flow of air _n the room can be dt _x 3

characterized by the two CST's-in-series model.

, _e solution of z 3 can be obtained from equationA_ain assumin_ that the heat exchanger has a

(41) as
nea'l_ibl7 small time constant (_2 _ 0), the

z3(t) - 1, 0 , t < T (42)system performance equations, equations (9), (10),

and (ll), become
E_uation (38) can be rewritten as

dXll

i t` -- alla5 alla6 +a12 (33) H(z, x, 0) i

" , dt + rllXll

m e . ! o

• alla_2,xl 2 z11(-rllxll+alla42 x12 alla5 e-alla 6 +a12)

+ Zl_¢-rl2x]2 * a21Xll ) + I (43) I

dXl2

-d_--+ r12x12 " a21Xll (34) Therefore, the switching function X* is

The initial and the final conditions are He - - allaS'SllO (44) I

Xll(O+) " x12(0+) - i at t = 0+
(35) Inspection of H* shows that the optimal controller

Xll(T) " Xl2(T) • 0 at t = T should be of a bang-bang type. The control action
for this problem, however, is constrained in such

where T Is unspecified. We are to mlnimlle s asnner that

T
S -., dt (36) Iel _ I (45)0

The conditiona for which the Ramtltonian Is to be
lntroducln_ an additional atate variable

minimum are
t

" " I if -alia S'x3(t) - 0 $ dr. e e..,x 811 < 0
(46)

. t 0
have O o Oraln -1 if "alias #II "

dxl
d'_" " 1. x3101 " 0 (37) In order to brinl the initial deviated atata,

Xll(O+) - x12(O+) o I at t - O+. to the final

The problem is thus trana[omed into that nf min- desired oparatinR irate, all(T) - aI2(T) m O, at

imillng x](T), t - T, we intuitively employ the control lctlon

1
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!

P .
'f = max = I ,maximumcoolin_action). Sub- r12 + 'II - iiK - a21
4titutin_ thiq value of ," into oquatlons L33) and

_II " '12

(3_) and then eliminating Xll, we have
For 0 = -1, Xll(t) and xl2(t) are solved by using

d2x12 dXl2 ,
.-_T+(rll+r12) _d._._+(rllr12_alla42 a21)xl 2 equations (33) and (34).
d t"

ii tt v

+ alia 5 a21+_lla21a6 -a12a21=O (47) Xll(t)=_l [(_11+ rl2)Dl ea21

Solution of xI2 can k.e written in the form '12 t
+ (_12+r12)D2 e + rl_K'],. (50)

' _L2t _ t . T
x12 _Ae llt+Be +g, 0 , t • t s (aS) t s _ _

where _Iiand _12 are roots of the characteristic and
equation lilt

_ Xl2(t)-Ole +O2e 12t+g ', ts__ t,T_ (51)
_2 + + . ')+Irll rl2)_ (rllrl2 alla21a42 -0

• where

and
_ ' ,
_- ' ' I_' alla21a6 - ella5 a21 - a12a21

i ! K allaSa21+alla21a6 - a12s21 = alla21a42' - rllrl2
t

alla42'a21 rllrl2
, _ Constants DI and D_ can be specified by noting

i _ Inserting equation (48) and its derivative to that all and x12 are continuous with respect to

' i_ _.( equation (34) and solving for all yield t. We obtain from equations (49) through (51)
t | at t ,.ts

,I, X]l#

i _ _ K'

lilt _12t Xl2(ts) . DIellts + D2e 12is + i
-_l [(l,,+ rl2)ke + (_12+rl2)De +rl2K]I a21 _La

= AelIlts + Be_12ts + g (52)
0 < t , t (49)s

and

Conitantl A ar.d B in eq_ticna (48) and (49) can ._,

be deteruined by employing the initial condition, Xll(ts)

equation (35) and Craner'a rule am follows: I lilts
= _ [(_11 + rl2)Dle

1.21. rlZg r12+ _12 "21 _+ (_12 + rl2)D2e 12is + r12 g']I l-g lat,,

I rl2.1lll rl2_ll21 . .__1.21[(_II+ rl')ae_llt"
_12ta

a21 " rl_ " XI2 + _12g + (112 + rl2)Da + r12 g] (53)

_11 " _12 So!vans for Ol and D2 from these equetion_ leada

" " t "Xllta ($_.)
_*'" IIrl2+ xll 821 rl2g[ D1 ',A - lie

i,,]. 1 1 g I

I D2 - _ - g2e"_12ta (55)
112
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where 6. CONCLUDING REMARKS J

_I2(K' - K) By now readers should be able to realize that the
E1 =

12 - _11 maximum principle has a certain advantage over

other modern optimal control techniques. It is

Xll(K' - K)
E2 - that it can be used to evaluate the number ef I

_II AI2 switching points of the bang-bang control policy

We see that DI and D2 are functions of ts. The via the switching function and adjoint vectors.

value of t and that of T can be obtained by Two examples given in this article take advantage
s

using the final conditions of this rule. Furthermore, the maximum principle

can be applied not only to the system with linear

Xll(T) = Xl2(T) - 0 at t = T performance equations but also to those with non-

_. Equations (50) and (51) thus become linear performance equations. Bellman (24) proved

theoretically that the number of switching poxnts

AIIT %12T K' is one less than the dimension of the problem for
: Die + D2e + ,, 0 (56)

linear systems. However, this theory cannot be

I AIlT applied to non-llnear systems. ,.

_- -- [(All + rl2)Dle
a21

It is worth noting that other forms of the
_12T

+ (112+r12)D2 e +rl2K'] =0 (57) objective functions can be considered. For
example

Eliminating T from these equations and letting T

S = / [Xl]2 dt
_11 g' 0 ,

C_ E3 = _ ?AI2 All
S = / [a + bl(Xl)2]dtO

= T
E4 K AI2 S - / [012 dt

All - A12 ' 0

T
we obtain S = I [a + e(e)2]dt

0

E4
E3 )_II T

( .... ) A12 (_ ,, (58) S = I [a + bl(Xl)2 + c(0)2]dt-hilts " -_12ts 0
A -Ele B - E_e T

S = / ibl(Xl)2 + c(0)2]dt

t s can be solved from this _qu_cion by a trial 0

and error procedure. Then D1, D2 and T can be Ts o / 101dr
calculated directly from equations (54) through 0

(56). The objective functions have different physical

The solutions of this problem are shown ache- sl_nlflcance.(8. 9)

maritally in Figs. 4, 5 and 6 and are tabulated ,

_n Table 2. The solutions are very similar to

those of the precedin K example. However, one i

distinct difference between the response of the

dimensionless room temperature in this problem

and that in the preceding one is that the

dLmensionless room temperature can become heSS- _ _ •

Q rive in th£s proble_ while it can not be below
sero in the precadin 8 one.
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"ITable i. Optimal solutions of the one CST model

together with _2 = 0 i

Case Number Two Bounds of lJ K2 K3 Final Time TControl Variable

.... i

ii
I Tr max 30"C 1.50 1.50 0.8353

m
Tr rain O°C

2 T ffi20°C 1.00 1.00 1.2566 i
r max

T -ooc [
r mln

3 T = lOeC 0.50 0.50 2.5541
r max

"_ T = O"C
r rain

4 Tr = 5°C 0.25 0.25 5.493max

Tr min " OocL

-_ Table 2. Optimal solutions of the two CST's-in-series

_ model with T2 = 0

| '_ Case T T K2 i K3 l'" t T_ r max r mtn _ rll Xlls Xl2s s

_ 1.2 I -0.0760 0.7205 0.645 0.992 _"

1.5 -0.2298 0.4874 0.518 1.047 [

I 30 0 1.5 1.5 2.0 -0.6031 0.3862 0.471 1.078 [

5.0 -3.8727 0.1852 0.598 1.007 , !

10.0 -9.4477 0.9896 0.715 0.956 _

1.2 -0.0596 0.4538 0.975 1.275

1.5 -O.1703 0.2984 0.775 1.22) ,_ ;.

2 20 0 1.0 1.0 2.0 -0.4526 0.2552 0.715 1.245

5.0 -2.5520 0.1024 0.9]0 1.25

I0.0 -b.0425 0.0510! 1.0,_0 1.25 ; !
1.2 -0.0343 0.1476 2.015 2.215 J

1 1.5 -0.0998 0.1177 1.635 1.955

'_:'_ 3 10 0 O.b 0.5 2.0 -0.2285 0.9882 1.500 1.860

_ _ 5.0 -1.1295 0.0353 1.875 2.115

_J .... I0.0 -2.6253 0.0171 2.180 2.310

'_ _ 1.2 -0.0169 0.0192 4.520 4.625

1.5 -0.0414 0.0223 3.780 3.940

, , o o., o., .o.., ,.,,o
_/,_ 5.0 -0.3865 0.0082 4.250 4,360

,,>_, ! 10.0 -0. 8734 0.0059 4. 780 4.841

12-..

C

........ , i ....

," .... _"...... _' * ,i. Wm,a, , ,i ,, ,' _..... -"'.:', ._ [ .... tw.'. m,,,.--,,,- • ,- _ _ ............................
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I NOMENCLATURE T2

aI - r K1/K4 KI2 T2c0

a2 = r2 KI Q " Q1 + Q2, flow rate of air in the system
proper in m3/sec

a 3 = Kla

a4 - r K4/K 1 QI = m3/secAlrflow rate by circulatlon alr in

a5 - r K2 K4 Q2 = Flow rate of fresh air in m3/sec

a6 = r K3 K4 Qw = Flow rate of coolant in m3/sec

• T1 i
all rl kll rll/K4 r = -- , the ratio of time constant of !

T2 system proper to that of heat
• a12 l rt r2 Zll exchanger

a13 = rd K11/T2 rll Q1
r I = , the fraction of circulatlon air

a21 = r12 KI2/KII Q1 + Q2

= Q2
'_ a23 Td KI2/T2 r12 r2 = , the fraction of fresh air

_l a42 _ r K4/KI2 Q1 + Q2

, = K4/K12 T1
i _ a42 rll = _11 '

_ A = Integration constant
; _ T2 #

A1 = Integration constant r12 = _1% '

" _. = Integration constant S = Performance index :

B = Integration constant t - a , dlmenslonless time _,
T1 ._

Cp = Specific heat of air in Kcal/K 8 "C ;_
t = Reference temperature in "C

Cpe Specific heat of coolant in Kcal/Kg *C a
t = Room temperature in eC

X{x(t), 8(t), Z(t)] = Xamiltonlan function c

t d - Disturbance temperature in "C
H* = The portion of H which depends on O

t i = Temperature of incoming circulation air !
K = ra2 - alas - ala6 in "C

r - ala 4
t - Initial time
0

ra 2 + ala 5 - ala 6K°
t = Switching time

r - ala 4 s

T2 t = Inlet temperature of coolant in "C
KI . __ wc

Tco twh = Outlet temperature of coolant in eC
1

K2 = 2T% (Tr max " Tr min ) t 2 m Outside air temperature in °C

T - Final time, dimensionless
. 1 +T

K3 _2 (Tr max r min )
T = (t c - t a) room temperature in "C

T2 c '

K4 " --Ti0 Tc0 - Room temperature at a = 0+ in "C

T2 Tcl - Temperature of pool 1 in "C

Kll - Tic0

t Tcl O - Temperature of pool 1 at a - 0+ in "C

I|7

I

%'," _ v._, _- • _ . .... ...........
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t
Tc2 = Temperature of pool 2 in °C GREEK LETTERS !

Tc2 0 Temperature of pool 2 at _ = 0+ a = Time in sec. _;

Td = (t d - ta) , disturbance temperature in °C _f = Final time in sec. i

Ti - (t t - ta) , temperature of the cir- ^(,) = Impulse heat disturbance function, sec -1 i

culation air into the system, i
in °C 0 = Air density in Kg/m 3 I

TtO = Temperature of the circulation air into Cw = Density of coolant in Kg/m 3 {!
the system at a = 0+ in °C I

Td

T Qw Pw Cpw(Twh - Twc) o = ;- , dimensionless disturbance tem- ;= , hypothetical "2 perature [,

r Ol O Cp temperature Vl
i

¢ _1 = Q1 + 02 time constant of the system" proper in sec.Trf Final steady state value of Tr

i T - Upper hound of T in °C Vll

r max r Tll = Q1 + 0-----_' time corstant of pool 1 in sec.
Tr min = Lower bound of T in °C

r V2
TIO - Value of Tr at _ = 0 in °C _2 " Q-_ , time constant of heat exchanger insec.

• VI2 , time constant of pool 2 in sec.
i _ Twc " twc - tc in °C TI2 = QI + 02

i _" Twh = twh - ta in *C I

• _ T - + Tr_ . _ = r 2(Tr max mln) , control !

' (" " - _ I + T variable -' ti T2 (t 2 ta), outside air temperature Tr max 2(Tr max r min ) t

Uo(t) = Step heat disturbance function .! i
I + i at Tr = Tr maxi

3 - I at Tr Tr min =
i VI = Volume of room in m

I VII = Volume of pool i of two completely B(t) = Optimum value of'e(t)stirred tanks in series model in m 3 ¢(a) • Heat disturbance function

V2 = Volume of heat exchanger in m3 n = Defined in equation (26)

VI2 ° Volume of pool 2 of two completely
stirred tanks in series model in m3 lll = Constant in eque on (48)

Tc XI2 = Constant in equac'on (48)
Xl(t) =, -- , dimensionless room temperature

Tc0

T t
x2(t) - -_ , dimensionless =emperature of the

'rio
circulation air REFERENCES

Tel--, dimensionless temperature of I. Haines, J. E., "Automatic Control of HeatingXll =
TclO pool i end Air Conditioning," pp. v-vi, McGraw-Hill,

New York, 1953.
Tc2

* _ , dimensionless temperature of 2. Uchida, H., et el., "Automatic Control of
x12 To20 pool 2 Air Conditioning (in Japanese)," pp. 7-44,

Scientific Technology Center, Tokyo, 1963.

zi(t) = AdJolnt variable 3. Webb, P., J, F. Annls, and S. J. Troutman,

"Automatic Control of Water Cooling in Space _,

t Suits," NASA Report CR-I085, National Aero- -.

m
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SESSION PAPER 19-A

OPTIHAL STARTUP CONTROLOF A JACKETED TUBULAR REACTOR"_

s

I O.R. Hahn, L. T. Fan, and C. L. l_ang ,.

Institute for Systems Design and Optimization

Kansas Stare University, Hanhattan, Kansas 66502

for a class of distributed systems. Due to the tom-

ABSTRACT plexlty of partial differential equations, a completely
general maximum principle, as exists for lumped para-

The optlm_l startup policy of a Jacketed tubular meter systems (2, 3) has not been found. However, suf-

reactor, In which a flrst-order, reversible, exothermic flclent generality has been retained that the results
reaction takes place, Is presented. A distributed

maximum principle is presented for determining we.3_ apply to a wide variety of systems of interest in pro-cess control.

nccessary conditions for optimality of a dlffuslonal System Description
distributed parameter system. A numerical technlque Is

Attention viii be focused on systems which may be
developed for practical implementation of the dis_rib-

described by a general nonlinear vector partial dlf-
uted maximum princlple. This Involves the sequential ferentlal equation of the form

,_ solutlon of the state and adJolnt equations, in con-
' ut(x,t)= f(u(x,t) Ux(X,t),.Uxx(X,t)junction with a functional gradient technique for - - ' - '

lteratively improving the control function. O(x, t), x, t) (i)

: INTRODUCTION where u is an s-dimenslonal state vector defined on a
. normalized one-dimenslonal spatial domain x from x = 0

i, Thls paper presents an optimal policy for startup to x - 1 and over a fixed time Interval t - 0 to t - t¢
! of a Jacketed tubular reactor in which a flrst-order, The control vector 0 is considered co be distributed 16

reverslble, exotherm_c reaction is taking place. The space and ttJne and is r-dimenslonal. An independent
optimal control policy is deterred.ned by using a dls- variable appearing as a subscript denotes partial dlf-
trlbuted maximum principle. The control or decision ferentlatlon with respect to that varlable.

• d'" variable is the wall temperature of the reactor, which Equation (I) is auKmented by the following set of

_ Is manipulated to minimize a given performance index, initial and boundary conditions:

Computational results are obtained for a case with and _l(u) - 0 at t " 0, i " I, • • • , s (2)without a constraint on the maximum reaction temp-

erature. _m(u, .Ux) " 0 at ",c- 0, m = l ..... p (3)
The mathematical model for the Jacketed tubular

reactor is a continuous distributed parameter flow _n (u-' _x ) = 0 at x = l, n ,, I, • • • , q " 2s-p (4)
system, which gives rlse to s set of coupled non- It 18 assumed that no boundary forcing is present (is.,

linear one-d/menslonal second-order parabolic partial control action does not appear in the boundary con-
differential equations. A distributed maximum prim- ditions).
clple used by the previous _rkers_ for example Denn, Variational Equations
et. el. [1], 18 extended to a general system of non- Consider now small changes 60 in the control vec-
linear diffusion equations, with two-point boundary tor _. The resulting incremental-responses 8u! In the

conditions consisting of linear relationships between state variables u I must satisfy the following linear
dependent variables and their axial gradients. A perturbation differential equations:

set of neceslmry conditions for opthaallty Is obtatne_ T 6u + T 6u + fT 6e (5)
_'_ _ui¢ = fl T 6u + ft -x -_:_ for a fairly general performance index, fi -xx i e
_:,_._, _ In general, equations of the type treated cannot u_ _x _x -

_,:.: be solved by analytic methods and even numerical tech- i - 1, . • • , s
_ nlquss for coupled, highly nonlinear axial diffusion
• ,-_' equations are not generally available. Therefore, an where the above notation denotes the fallowing:

i_ iteret_ve computetlonal technique lnvolvln 6 a gradient I f/ _ fl _fl

._,..... _. In functionil ,llacs 1, preeented, which enibls, the I.-_]II I a"_lt ITxlillI 11_i numerical implementation of the distributed mmtmmprinciple. It Is shown that the technique is capable " . ::

,.,,,..,, .b,.bytheadditionofan.,,ro,rIet.,..,-lt,,uric- " /--, .'i'
ties to the performance index. L 'u_ L_"_-J L "8Jk_ _

• "'_ A DIIrrlIIIU_IIDIIAXIHIM PII_CIPI.I i,

A distributed smximum principle Is ,_reeentod for
deteruLnins _Jk necessary conditions for optimality

t +This study was supported in pert by NASA Grant No. RGIt-17-001-034, and by the Air Force Office of Scientific I_-
search, Office of &eroapece lesmarch, United States Air Force, Under Contrect P_4620-68-O020 (Thexis Project).

Present Addres8: The I_mdix Corporetton, I_nsas City, _ieoouri.
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_fi Consider nov adJolnln8 the varlatlolml system

the variational objective functional, Equattoli (11).
. : This yields "

fi e 1 T I /tf | GoT6 O- [_fi[ 6S " / Y 6u dx • (G T 6uL_er / 0 u_ - t-if 0 0 i - - -

,. - z_T[6ut- _ 6__-[u _Ux-_ 6__xx -[_ __l)d. dt
The variational tnltial and boundary conditions are - -x -xx -

(12)

,,, 61 6u " 0 at t - O, i - lj • • • , s (6) where _z(x, t) !a an s-dlmenslonal adJolnt vector.
g - The followln S identlCy Is now introduced:

ST 6u �ST 6u - 0 at x - O, m - 1, .... p (7) - 6ut (13)m - m -x (z T 6u)t zt T 6u + z Tu _ - - -

T 8u + _T 8u - 0 at x - I, n - I, . . . . Substitution of Equation (13) Into Equation (12) yields

nu " nu -x 1 T /if- "_ q - (2a - p) (8) 6S = [ F 6u dxI + f| ((3 T 6u + GOT 6#
0 u_ - it=tf 0 0 u_ - -

All partial derivatives are evaluated on the nomLn_l T T T
trajectory. -[(a T 6u)t - zt 6u - z f 6u - z f 6u

; Equation (5) can be urltten in the form of a lie- " - - _ - - _-x -x

earized vector partial dl._ferential equation - z T f _u - z T
6u - f 6u + f 6u + ._ 6u + f^ 6e - -u -xx f-e 6o_]}dx dt (14)
-t -_ - _, -_ -:, -_ -o - (9) "_ -

' " " - A portion of the second tntesrand of Equation (14)

. where is nov integrated with respect to x from x - 0 to x = I "
_fl _fl] _t'l _fl] by parts so tkat each term in the tntesrand Involves
[_-_- ... _-_--] ]_-_.... _'-_"--] either the variation 6u or 6e. This gives

/ t "/ / t Uxl 1 t_ f (T _ )xf -/: : / f -/: ' : "1 /leT f 6u dx- [_zT f 6U_]x.O 0 -/" • / "_ I " • i 0 - _ -.,x _x -x

L.;"l"'"",J t]u,,"'"",J " l/lz T f _u dx - [z T f _x - (aT [-u )x 6u.] "0

- Another term in the second Integral o£ Equation (14) Is

_fl _fe f-e • integrated with respect to t, yieldin8

/ (sT eu)t et - [zT eu_]t.0 (17)tlocesamr 7 Conditions For 0_timality 0 - -
It Is deslrnd to determine the control function O

which yLelde • minimum for th_ followin8 8eneraliled After some manipulation and herin& thet _u(x, O) " 0,

objective functioMl" the following result is obtained:

°$s [ru_ [ tf /1 T T
1 if ! + / ((C e + s

S " 0I P(u(x, if), x)dx + 0I 0I G(u(x, t), 8S - _ - .IT] go_ dx t..tf 0 0 . "

e(x, t), x. t) dz dt (10) _-e|&e �titT �iTf-u - (sT %)x f )In order to obtaln neceo_ry conditions for op.... - - - _ xx

t.lity, It i. required to find. relationship which Lr _._ %expresses variations of the obJnctlva .*unctlomtl. 6S, GuT]6u}d x sitIn terms of control perturbations. 80. Tikim8 first + dt �[- (s T )x ]6u
variations on the objective functional, Equation (lO),

gives + e T dt

i T_u + [ 8u +
_j o Oi ]r . dx t_tf 0 0 . - An equivalent relmlt van obtained by Denn, or. el. (1)

u using s Green's function approach.

GoT_o| dx dt (11) In order is eliminate tome not depending septic-
" Lily on 8e free the nacond integrind of Equation (18).

_hero it i8 stipuimtmd that _h component of the sdJoimt _

r'4 P:;1-- -- vector 8 utiily _he follcn/tq p/trill differential

t i I 1 ilt_OII

"'[4 """ >'-<"">"="II " iO iO ill " i " £1 " 111 it • -

i-l. • • • , I (11)

I _ =aw "v'-

m
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vhere so that Squab.ion _28) becomes
J

0 0 - " "

f " " f " " i f " vhers
-ui -u i

. The boundary conditions fo_- Equation (19) are speci- "
fled such that all

t ] ""[sT f - (zT f )x ] 6u+z T f 6u 1 -0
" "_-x -xx - "t_-xx x-O (20) It follows by reuonln 8 similar to that of Kstz

Thls Is accomplished by choosln s the adJoint boundary (4) vh_ achieved a slmllar result for a more general
conditions such that the coefficients of the unknown and abstract class of problems, that the best choice of

. _ vanish, control action e which minimizes the objective, endpoint variation 6u and 6ux function_ S is-that which makes

At this point, the system boundary conditions,," 1
Equations (3) and (4), are assumed to be linear and [ II dx (31)

i have the more explicit forts 0
stationery over the interval 0 • t < tf rich cespect

ti(u , _Ux)-0-u i +a i ui+b i at x - O. to components of e lying interior to the 8chmisslbla
x control region and a minimum for those lying on the

_, i-I...., s (21) boundat_l. For control components interior to the
: reslon , this means

; SL(u, _Ux)'O'u i +c i ui+d i at x - I, 1

; x 01 dedX - 0 (32)

t i " 1, ..., s (22) -
The correspondin s boundary variational equations Essentially this is sn infinite dimensional, or

bee•am funcclonal equivalent of Pontryalin's maximum princip]_

i 8ui +a I 6ui-0 st x-O, i=l, ..., • (23) (2. 3) for finite dimensional (lumped) syste m, .
z S_mar_

C The distributed maximr_ principle derived herein
• 6u i +c I 8ul-0 at x-l, i-l, .... s (24) may now be susmarized as follows. Given a system of

x partial differentia1 equations
The unkncvn endpolnt variations 6_ux in Equation

(18) can non be vritten In tent of the respective ]_t(z, t)

unk_-o_n varistlor, e _u. To set the coefficients of the - f(u(x, t) Ux(X . t). uam(x. ¢), e(x. ¢). x, t)
6uI equal to sara. the adS•ant varloblu z I are m . (33)
required to satisfy the follovln$ 28 conditions at
•- 0 and x- 1: subJec_ to initial and boundary conditloua

(i(u)-O st t-O, i- 1, ...,s
sl'fu " (_ fu )x-ai sT fu -0 at •-0, (34)

" " l• " - lx_ " - ixx @l(U, ux) aOou i +a I ui+b i at x-O, i-1, ...,a

i- 1..... • (25) • (3._)

-aT f-Uix-(ST- -fulz z)x'ei -sT-fuixz "0 at z-Is Vi(u'- ux)-O-u i•+c I ui+d i at x-l, i-l, ...,s(36)
it is desired to obtain the castro I vector e(n. t)

I - 1, ..., • (26) vhith mlntuixee the objective functio_Z

• p_cificatlms of the sdJoint vector Is r,_ L
pl_tted by stipulat_js 8 the trmversalL_y toad/tiaras S - 01 Y(u(•. if). x)dz

st i - 1, • (27) tf 1
81 m _i t -if. ..., + ! ! G(u(x. t). o(x, t), s. t)dx dt (37)0 0

_h_e cxeo_ the first inte8ral in Equation (8) to

re, oh 14 it follovs that 48 can nov be expmsed for fixed if.
eaqplicitly in terl of the castro1 p_rtulbetion. 60:

The solution to the ogtinima_on problem involves

[GOT+ the sit,Lions•on solutise of Equat_ _ (33) vith s settf 11 sT _]ie dx de (28) of _dJo_t partial _L_fferenr.taA equations
is

°v'_ 0 " -

- J ()S)

- a(u..e, z, t)+m(x, t) _ _(......%.. |. =. c) i - t, ..., s : .f

I (_"_) _lbieh satisfy the bmas_ry ¢oMltioN . _,,_

411
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T .zT -fu
_s ful -(z T ful )x-8/ oO at x=O. It i• de•Irable to insure that perturbation• in

z xx ixx the control vector, 66, are small enoush that lJne•rt-
J (_)) zatlon leadln S to Equ;tlon (9) I• valid. Toi- I, 8 @0_

8ccolpli•h thi•, a technique orIsinated by Bry•on a_d _"

• T -fu " (sT -fu )x "el sT fut -0 st x -1, k_l (8) and ext•nded to the infinite diuen•lonal.... cue by Selnfeld (6) L• utilised. Let
ix lxx xx

i-l, ..., s (&0) (6p)2 ltf i1 6eT w 6e dx dt (45)
0 0

and the tranaver•81ity conditions be s positive definite quadratic for= with w-W(x: t)

z1- Ful at t - if, i- 1, ..., • (41) a iatrix of euttably chosen vaishtin $ function; and6P 8 scalar which is specified to limit the masnltude

Equivalently, the problem can be foFIuletad in of the perturbations.
term of a lies•It•mien function defined as follows:

F_iuation (45) is introduced into Equation ()0)
N - G + T f (42) in ter n. of an undeteruin.-.d LsJranse multiplier I aso

The state end Ida•Oat equattonl are equivalent, then, follows:

to the Ham•leon•an canonical part•81 differential /tf I1 (HoT_ equations 6S0 -16e T W)68 dx dt+ _(6P) 2 (46)0 0 " " "

uit'll "fl' 1-1, ..., • (43) In order to attain the maxtmuI rat8 of chanje of Szi
with respect to e, the lntejrand of Equation (46) is

_' si t" - Hul+(Hu t )x'(llUl )xx' i- 1, ..., s (44) uaxlntsed by differ•art•tins with respect to 6e and•. x xx equatin$ th8 result to zero. thin yields the

" The weak necessary conditions are that th8 fell•via 8__expression:
•. spatial intearal of the HmIiltonian is made stationary W-'HA

• with respect to choice• of components of e which 1i8 _e - _" (47)
interior to the admissible control reales'and a ninl-

i ' mumwith respect to coIponents on the boundary. Substitution of Equation (47) into Equation (45) jives

, The results can readily b8 extended to iystm 21-+ [0 ltf i1 HaT W-I He dx dt / (6P)2] 1/2_ which include bounder/ forcinj end free initial stats -- 0 . - _
(48)

(1). £xtensian8 could 81so be made to accomodat8 Ugtn8 the above expression in Equation (hT), the
• , ir-_utti-diienalonal spatial coordinates and hishsr-

J _ _Jrder spatial derivatives variation, 6.e, can now b8 written

; w-1 UeThe solutioll of th_ two-point boundary value

' i! 60- + 1/2 (&9)

system of partial differential equations coup18d with - - tf 1 de Tthe satisfaction of Lhe necessary conditions presents [0 ! / I/"l I10 dx dt/(6P) 2]. 8 foT_'_ible coIputatiot_l probleI. However, in 0 . " .
epproLtmats numerical method involv/n 8 8 8radiant in whsre the minos sl|n 18 used for the cas8 whsre the

J function space Is introduced in the next section to objective functional. S. is to be minimised.
8rostly facilitate the obtalnl_ of numerical results.! 'Per th8 cue where e-set) only, the veishted

" A OOI_UTATIONALAPPN)ACHIn)It IETEI0(IMIMGoFrlHALITY metric, 4P, i8 defined 8_ " -;
tf i

Developed in this section in 8 couputaticmll (4P)2-05 6eT tl 6e dt (_0)scheme for obtainin 8 numerical results from th8 dl8-
-_ trtbuted maximum principle presented. The method is Inrroducin 8 Equation (_0) into Equation (30) by means
_. ttsrativ8 in nature. Our•lyOns repeated numerical in- of the undstsruinad Lasran88 multiplier. _. yields

• '. is•ration of the parlor•ante and adJoi,t equation. 4S'0!tf [0$1 oT_,-_ '_ combined with the us8 of 8 fusetion81 _redient Ii 40 dx-l_ TO W 6.]c_t+l(_P)2e ($1)'_

_. tathoiqua tO tnprov8 the control vector. -
• Differ•atOne/n8 of the One•stand of Equation (51) with

--_ A _unction81 Gredisnt Technique respect to 60 and lsttin8 the result eqmsl to zero 80
In to obtain'th8 maximum rat8 of •ban8 a of _S y181ds

•_ A rolotiouhip of the tTr, t of Equation (30) can
be of In of in function_._**_ thou8ht tarsi • 8rediut apace. --aTIvst

'_', II this ease, II l Ily he tlatlll to b8 8rediont I| Is the 40 • - v2_ I1_ dz
" (52)

_.*'" function space of I. The um_tunmrat8 of decroan8 of
•" '" Imd IUhetitutiun of the above 8xpreanion into Equation

_o.:_ the tunctiun_l I i; the spa_I of e viii be in the
direction HI. This rolatlIhlp provides the bMi8 (50) 81vua

• _l -+|0/if ! 10T O no dxldtll6P)'}" 1/__:"'" foe 8 emqmtotiunal sr.heieby vMOb the objective 1 ds_..ll_/1• functional I em he m4o_iiNd with libeler tO de•lees |O
,._; : of 0. " " (53)

_ _ kversl papers bm q)pesred recently (1, So 6)0 Thee upon 8uhetitutiq the _ove equntio4_ late
_.._ li,,_4ehhmm emended fiaft_ dlio_t_ tac)miquin to Equation (S_), the variation, iS, b4cooN

• . tnfinl_t dim•union81 _ysteem in fm_¢ttoe spm. The

Is" ide_ of • 8rediemt in fuactioe •pace seem to have 1O• +

_..r_ '-,.,* been or_sinated by Cou_mt and lilbert (7). " [_io/z Bt dx|dtl(4P)Zi llz
• (5_)

_ 4J4
. *_

v " " ' "" '_ ";.... - _b _. " " " J..............
i
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Dlnenlionis88 concentration of A : u1- CAI(CA+ cI) eel n _(e(t) ._ an. x (71)

_; Dtuemolonless reaction tenpersture ' u2- T/T r The HmnLltonion.... defined by Equation (_2). Ls

j DtmenlioLless veil temperature :O = Tv/T r H=_(Ul(X, t)- (x)] 2
Other parameters : Old +v[u2(x, c) - U2d(X)] 2

AU(©A+ cl) . 2h +ell 1
Q- CppTr . K C_ hr'l' fl'E1/RTr ' P_" E2/RTr Ulxx" Ulx" Trl(Ul' u2)]

Thue the By•tea eqL, tione bacons +s2[ } u2 - u2 - Q:r0(Ul, u2)- KXr(U2- e)] (72)
X

)Ul 1 t2Ul )Ul

"_"" J lx_ )x :rt(U 1, u2) (62) With reference to Equation (19), the adJointpartial diffe.-enti81 equations correspondin| to
Equations (62) and (63) respectively ire

in2 1 12u2 in2 1

"_''i _--_-x -Qtre(U 1, u2)-KTr(O 2- e) (63) 82Z- _ six x elx+ treul(Ul, u2)Zl +- Q_r0ul(ul, u2) z2
oh•re

e'kloexP(-PllU2)Ul" k2oexp('P21u2) (1 "ul) - 2_[Ul(X, t) - Old(X)] (73)

1 Tr_ul(Ul ' u2)e 1The dlmenelonleos boundary condition8 are s2t'-_ z2zx" S2x+
;Ul(0, t)

- a[ul(O, t)-._] at x = 0 (64) + [qtr_(_,
it

u2) [tit2
t

_Ul(l. t)

It - 0 •t x = I (65) - 2vlul(x, t)- .2d(X)] (74)

, _ iul(O,t)lt '[ul(O' f vher" _a-_,1.
- t) -u } at x = 0 (66) kloexF (-Pl/U 2) (75)

t i ;v,(l, t)

• eu2 tu 2 u22
it - 0 at z - 1 (67) . )-_---_]- [?lklGexp(.P1/ul)Ul

The follcvi_8 nmerlcal v•luu ere ...smed:

i ( 005, _r''O5 hr, Qo-200, 1_-30 hr"1. k1002.$1 "rlk2oexP(-P2/u2)(l"Ul )] (76)105 hr"1, 1.995 x 107 hr 01,kl0" Pl" 5.03, Since the boundary condtrt_.-._ 81van by EquationB !

t (64) throqlh (67) corral;end to the sen•re1 for_uJ. (
P2 "10.06, Tr• lOSe eli, u_-.9, u_,, .6 Equations (21) md (:z), the -desist boul:dezy _on- ':ditlou correspond to Equationa (2.L,)end (20),

Initially the concentration and reaper•tufa pro- respectively. Thus

files ere u•_ed to be co-.tent throushout the leusth sI (0: t) - 0 st x-O, i-1, 2 (77)of the reactor end •t the values of the Islet coo- •

ditiono, i.e., r.i (1, t)+el¢l(1 , t)=O at x=l, l-l, 2 (78)
el(X, O) - u_ at t - 0 t68) I

_(x, O) = u: at t • 0 (69) the final condition on the edJoint veriablencerceoponeLtn 8 to Equation (27) ere

It i• pro_oppoeed that • 8_.eady stats oparatia 8 8i(x, if) - 0 at t - if, I = 1, 2 (79)
point h_ been determined vh_th is optimal vith re•pact
to g_ne performance criterion (e.8., naximm yield). The solution of Equations _62) end (63) fo_ard

ctartup policy, in tu_, Is to he determt_ned ouch in tim frm t-0 to t - tf is 8cceamplished by the use
theg by co•trellis8 the addition or l_mOV81 of heat, of qlilinearieotiue (10. 11) re, ether vitn am
tim process is driven tram the initial state t_ard lapliclt dell•route 8chose. The details of the c_n-
th4 final steamy state in same optimal fashion. ;t Is puteticm81 method ere presented in (12).
deelred tO IIILtadae the spatial intqral of the

ve_ahted sun of the squared ceecentratiam and tea- To apply the quull'nosriaetio_ techniq,.e, the
poretvre deviatimm from tim desired etoad_, state pro- uoatltuer tom #(Ul, ul) in oquotiue8 (62) end (63)
files, v I (x) md u_a(n), iato8retod o_tr a trm_lamt arc first UnaariNd by neons of 8 first-order Taylor

atartopfumDtio_l_riodamyofthlfl_OdbevrltteaisqJth"The perforuice ;_._ mqp_ndodlfoltont_t the (k-l)oth itorative solution
tf

"1 o -.

• %,.),'). ,, ,,) ,#)- 4'-1)] ,.)
_re .i rare oudtlbly i _tlt vei8htiq co-

effi¢is_to. T_.e mare•pointed virid)b b IJbo d_lJoo- S_bot_t_tJ_J o| _uatil (J0) _n_ i_llnetteao (6_) 18d
etonl, s_ vail teaporature, O, vhicb is •enid•rod to (6)) yields the follwan8 lisoarlNd rocurrm_

be 8 I_smeUo8 of rise i_ i lie vitJd_ tlbe rgnlo rolatlemoldpt

4J6

nn.r_y s, • _ "
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_ (k-Z).tul(k) u_k-Z)) ux _eu(k). I ._k) _u ) - %[,(k-Z) + *uz - [,(.+1, n) - u(.-l, n)
It B xx + u(u+l, n-l)-u(u-1, n-l)] (88) '_

+$(k-l) (u k)_u k-l))] (81) The above difference operators have a dlscretizatlon "'
U 2 error on the order of (Ax) 2. The dependent varlable u I

is also averaged over the (n-l)-th and n-th time _

i [u(n, n) + u(u. n-l)] (89) i2t B xx-U )u I _I u_

+ (k-l),,u2(k)_u _
_u2 k-1))]_KXr[U k)_ e] The difference approximations for the first de:i- Iivatlve terms occurln 8 in the boundary conditions at

(82) x-0 and x-1 are taken to be three-point forward and te

The solutlon of Equations (81) and (82) is backward differences respectlvely:H

_ [-u(3. n)+4u(2, n)- 3u(l, o)] (90)greatly simplified by "decoupllng" the component Ux x-O° equations. This te dnne in the l-th equation by
setting M

_k) _k-l). J-I Ux[ _ _ [3u(Wrl. n)- 4u(M. n)+ u(M-l, n)] (91) }. _u -u x-1

[_ u k) -u (83) _ubstltution of the above difference operators Into
: 0 J ¢1 the recurrence relations. Equations (84) and (85), and

the boundary conoltiot_tD glve rise to the set of
Then Equations (81) and (82) become

_: linearlzed difference equations for the k-th iteration
- _q --_

_ u(k).1 u_k) u_k) Xr[,(k-l)+,(k-1)(u_k) ulk-l))| [81(k-1)(2.n)+ 28--_ Al]ul(k)(2.n)
-- it _ xx- x - Ul

(84) M Al]ul(k)(3,: + [el 2_13;/ n)

. uCk) I u_k) u(k)_QZr[,(k-,)+.(k-1). (k)_u_k-l_]
2 t _ -- 2][ VU 2 _U2 m AlUl(1, n-l)-Dl(k-1)(2, n)ul(2, n-l)_ xx

': ! - ( - O] (85) 2_uf
KTr[U2k) - ClUl(3, n-l) - El(k-l) (2. n) - 28+-'---"_AI

_ Thls I_ vail_,for as convergence Is attained. 4 k-l)
i

j " _ [ npproa( 's u)_) The equations are sill1 Inpllcltly (k_ (k-l)
, x co_pled as @_x-]) contains the solutions uik 1) and AlU1 "(m-l, n)+B 1 (m, n)ul(k)(n, n) ,
i u_k'l). t

+ Clul(k)(u+l. n)
Equations (84) and (85) are most conveniently _ :

i . solved by finite difference methods. However. for - -AlUl(m-1. n-l)- Dl(k-l)(m , n) ul(m. u-l) (92) _: parabolic equations care must be taken in applyla8 >

explicit difference approximations that stability ts El(k.1)(m. _ ;t ensured. In order to ctrctmvent this stability - ClUl(m+l. n-l)- n)
" _ problem, the i_plicit scheme due to Crank and Nicolson

| (13) Is consldered here. Thls method introduces more • • 3, .... M-I

i stabllA_y for any increment of ti_e. thus reducln8 the { ClJUl (k)(H'l'

I!_ number of t/_e increments required. [Bl(k_l)(H ' __ Cl]ul(k)(M '

+ n) + o)
In applying the Crank-Nicolsou st thud tlm spatial

_' _'_*_ i| axis is discretized into t4 incr.ents of equal lenSth "- Alul(H-I . n-Z)-Dl(k-l) (x, fl)ul(Mtn-l)-._...*.--...__-__ . AX SO that 6x-1/14. Time discretintion Is affected:, by.o,vithedifferenceequation,,tequaltim.,,,-
,,_- u_,_,l creunts At. The solution u(u.n) denotes the value of - Clul(M+l. a-l)-El(k'l)(M . n)" _:i" the dependent variable at the spatial location (u-l)Az /_t

_ and at time (n-llgt. Al]U2 (k)(2.
-_ The partial =i_e derivatives ere sppro_L•ated by [B2 (2. n)+ n)

z taking forward differences between the (n-l)-th sad

'_.-_-'_""[ n-th tim steps, i,e.. �___X_Z8+_ ]u2 (k)(3.

_" f'r . " " U t _ _ [U(m' ") " U(m, _1) ] (_)

'_,_.., | - -A2u2(1, n-l) - D2(k'l)(2. n)u2(2 , a-l)
r _ "' 7 "" r FOr spatlel dlscrettutlon, implicit difference

_. spar.to, are coestruet,d for th, fi.t .d ,,eoud -C2u2(3. n-l).| (k-l)(2. n)- _-_--31_"spatial partial derivatives by t_kia8 central dif-
ferbnces, avereled aver the (n-l)-th and n-th time

0"*"" ,,.,("(.-..)+,,<""(.../-(., >
' %, [u(,,l. n)-lu(a, n)+u(,-l, n)

i- + u(s  �ˆ�_-1)-2u(u.n-I)+u(w-l, n-l)] 4. Clul(k)(s+l , n)'

._ 1891
4S7 -_,

qp_ ,,-"
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!

--A2u2(m-l, n-l)-D2(k'l)(m, n)u2(m, o-l) --A3Zl(l , ,+1)- D3(2, n+l) Zl(2 n+l)
i ' ; i

, ) -%(-+'.--*)-"/"*)<---.°) I °) , " I
u'3, ..., l(-1 't

It) Z1 (_)
(m, It)

q

I

4 _ + C3zl(k)(m+l, n)
+ [B2(k-1)(H, n)+_ C2]u2(k)(H, n) "_

--A2u2(14-1, n-l)-D2(k-1)(M, n)u2(H, n-l) J --A3Zl(m-1 , n+l)-D3(m, nrl-1) Zl(m , n+l) ¢98)/ / •
-c2.2(mz. m-Z)-_-2(k-Z)(.,o) .._" -C3zz(m+Z,.+Z)+E3(k-Z)(m,n) I :'

I1" 3, ..., H-1 I
vhere

M C3)zz(k)(M-Z,n) L
m [A3 2B+_ ',

:. A1" A2" -- +_ ;
6H

H2 + [B3(H. n)+ _-_-_ C3]zl(k)(H. n) /
1 (k-l) (m, n) 1 /

ex(k-1)(m, n)-- _ tr0,l -B--a-t

_; 1 1 H2 1 --A3Zl(H-1. ,+1)- D3(H. ,+1) Zl(H. n+

B2(k-1) (m. n) - - _ QXr_u2(k-l) (m. n) - _ KTr. B At -C3Zl(H+l , n+l) + E;3(k-1) (H. n)

il C-C

8B 2
M

:++ z (k-Z)(m' .)__+ t__ [,4(2. o)+-_%]z2(k)(2, -) +,.Z(k-z)(m.,n)-- T _r+.z B at z
; + [C4- _ Ah]z2(k)(3. n)

i _ (k_l)(m. n)_+KZr_H;_+_ _ }'; _ D2(k-1)(m, a) - - + Qtr_ku2 _

--A4z2(l . n+l)-D4(2, n)z2(2, u+l) _i

" C IZl(k-1) (''' n) - - Zr[#(k-1) (-., n) - C4z2(3, u+l) + Eh(k-1) (H. n) :_

-ul(k-Z)(m, n) #ul(k'1)(% n)] A4z2(k)(m-1, n) + B4(m,, n)z2(k) (m,. n)

|E2(k-1)(m. n)-- QXr[4b(k-l)(m,. n) + C4s2(k)(u+l. n)

u2(k-l)(n ' (k-I)(.... n)]+KXr6 _ (99)" n)#u 2 - -A4z2(m-1, n) - D4(m, n)z2(m, n+l)
The endpolnt values ere deteralned fro,,, the follovlns

boundary equations -C4z2(a+l, n+l) + E4(k'l) (m, n)

• ul(k)(l, n) -- _H ul(k)(3 ' n) m=3, ..., !*.-1

+ _ ul(k)(2, n)+ _2S u_ (94) (A4- _ C4]z2(k)(H-l' n)H
+[B4(]'[, n)+_ C4]s2(k)(H, n)

ul(k)(14+l, n) = 4 ul(k)(H, n)- I ul(k)04_1, n) (95)

. N --A412Ol-1, n+l)-D4(M, n)z2(H, n+l)
u2(k)(1, n)- _ uz(k)(3, n)

/d4 - Cdbu2(Iq+l. u+l) + E4(k'l) (N. n)

where

.z(k)(.+Z, .)-_.z(k)(., a)---_.2(k)(.-Z, .) (97) . ...m 2 ._3 % _lr-_

Similarly the bsckwsrdl solutlOn of equations 1 . . 142 1(73) and (74) from rut t to toO to accoIpltshed by B3(n, U).- _rtuI_u , n)--_--_-_solvLn8 the follavln8 sets of LqpllcAt dLfference

_uat,.o,.f,. ,,-. to.,-]., ½q,rt,,z(.' .)_½ ., ,|4(u, n). XTr" T'_"_'

I) tin3(2,")+_"3)'_(k)(',") "_

+ [C3-- _ A3]s|(k)(3. n) t C3 0"_4"N2]j'+N; ,.

4SII
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D3(m, n)-_ 12Q_r0ul(m' n)- + Equation (79). Thus for convenience, the initial con-trol tr•Jectory approximation v•s taken to be

D,(m, n)--{QXr,u2(m . n)-_KXr-_+_t state value.

. I ' e(t) = .6 dimensionless temperature unit, the steady !

Figure 2 shows the optimal control trajectory

E3(k-l)(m , n)-QXr_ul(m , n)z2(k-1)(m , n) obtained after 30 iter•tlons, u_ing a perturbation co-efficient of a - .I. This valse, determined by trial

and error, provided • reasonable rate of convergence

- 2_[ul(x, t)-Uld(X) ] of the performance index to • minim,,-withoutosclll•tlons. The policy is seen to approach • bang-
bang trajectory vltb maximum wall temperature applied

EA(k-1)(m , n)-Xr@u2(m , n)zl(k-l)(u , n) to the system Inlti•lly. At •bout .20 re,aldence time• switch to minimum wall temperature occurs, followed
by a singular approach to the steady state value

- 2v[u2(x, t)-U2d(X)] starting at about .44 residence time.

Th_ endpolnt values for the adJolnt varlabl•e •re The resulting transient concentr•tlon and te_-
deter_ned, using the following boundary equ•tlons: perature profiles, Ul(X, t) and u2(x, t), obtained

using the optimal startup policy are shown in Figures

zl(k)(l, I Zl(k) (3,
4 (k)

n) -- _ n)+-_ zI (2, n) (100) 3 and 4, respectively wlth time _s • parameter. Shown
- in dashed lines for comparison are the transient pro-

zl(k)(H+l ' 4)! zl(k)(H ' fi:es resultin 8 from using steady state control. Then)" 2-_-_ n) value of the performance index obtained for the
optimally controlled case was .046557 co_p•r•d to

M zl(k)(N-l, n) (I01) .050435 with steady state control.2_+ 3M

z2(k)(l ' I z2(k)(3 ' 4 z2(k)(2 ' Since the optimal control policy so closely

i . n) - - _ n) +3 n) (102) resembled bang-bang control, a purely bang-bang policy

was considered. This consisted of st•rain 8 with maxl- '_

(k) 4M .2(k)z 2 (H+I, n)=_-_ (M, n) mum effort, switching to minimum effort and finally _
switching to the steady state control level. These

z2(k)()/_l ' _o switch points were approximated from the optimal' 14 n) (IO3) trajectory to be .20 and .50 residence times2B+ _

"_I respectlv•ly. The state equations were solved uslni
" Upon obt•intn 8 the adJolnt solutions, an improved the bang-ban 8 policy and the perfomanc• index,

i control function e(t) mr/ be obtained maine Equation Equation (70), was computed, yielding • value of
(54) and the Hamtltonlan defined in Equation (72). .046555. Thus _.he performance lode): rom•ined
The resulting change In control, 6O(t), is essentially unchanged usin s the ban_-bang approxim•t/on

and, because of its simp].tcity to implement, • bans-

. OII KTrZ2(X, t)dx bang poliO' would probably be preferred for thls

68(t) - -a 1/2 (104) application.

{0 gtf [0 fl Krre2(x, t)dx] 2 dr] Constraint on )/axlmom Reaction Temperature
Suppose it is desired to determLine the optimal

where a can be considered an • perturbation coefficient st•rtup control trajectory which mlnimim the
repreaeotin 6 step length. Using Stmpson's Integration perfor_nc• criterion, Equation (70), while •t the

scheme, values of z2(m. n), m..1, ..., H+I, :h: 1, same time holding the maxima reaction temperature •t
..., N+I, obtained by backwards solution of •dJolnt or below • specified upper limit. This inequality
equations, may be used in Equation (92) to compute constraint can be written
6e(n), n-l, ..., N. The new control function e(n).

n -1, ..., N is then found from the relation u2(x, t) - u2 <_.0 (106)EMiX

e(n),In" " e(n),Iold+ 6e(n) (ms)
The constralrt is introduced into the performance

Computation was performed _sin 8 • time increment index as • penalty by means of a weighting coefficient
of .02 residence time and 8 spatial increment o| .05 o as follewS:

dimensionless distance unit. The Limits on the con- tf 0/l{u[ul(z ' Uld(X)]2trol were assuasd to be 0amx -.670 and eal n- .530 S-0/ t)-
dimensionless temperature unit. The performmce ladal

S was evaluated using a temin•l ti_ o_ one residence ]2
ti_ and the vel8htln8 cuefticlents u and v were each +v[u2(x. t) - U2d(Z)taken to be unity. The desired stead,/ state profiles.,

Ula(X) and U_d(X), were chosen to correspond to a c_,- .u2sma]2tr61 value of 8 - .6 dimensionless temperature unit. +olu2(x, t) h[u2(x, t) -u2m]}dx dt

With regard to the selection of the initial (107)

approximation, it should be noted that the steady where h[u2(z , t).u2mas ] is the Hem/side unit step
._ state value of the control most be kno_ and used In function. Thus s penalty is _t t_oked ontit 8

the initial assueed trajectory st the terminal time strsimt Is violated, lt,e _el|htlql coef_ltlent •
if. This is bocanse the 818orithm xs incapable of increased lteratively. _toppin 8 the lteratioo when the
shlttln 8 the control at tarmln•l time. as seem _r_m mi_n temperature has converged to within • spmcl_/sd
Equation (104) and the traas_,allty condlt_.o_, islets• of the co_trslnt boondary.

o,
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State variable constralnt5 such as thls require Optiulzeclon of the t_o-polnt boundary value lJ

8 correspondln S _odlflcs:lon of the adJolnt equations system of second order, non-llnear, parabolic pnrtlal r

since an additional term involving a state variable Is dlfferential equstlons presents a formidable tom- iintroduced Into the performance index. Thus the putatlonal problem. An approximate numerical method
adJol,t equations, £qLtatlons (73) and (74), become which is Iteratlve in nature, Involvln8 repeated _ li

. 1 . humeri.tel integration of the performance and adJolnt I

Slt - _ Zl]ut Zlx+_r_Ul(U l, u2)z I equeclons, combined with the use of a functlonsl 1sr,Adlent technique to improve the control vector is
introduced to overcome computatlonal difficulties. L

+ Q_r_ul(u 1. u2)z 2 -2u[ui(x. t) -mid(X) ] (108) A convenient method [or handling Inequality con-
st-aloes Involvln S state variables Is also presented, i

. I - S2x+ _rOu2(Ul, u2)z I REFERENCES iSlt - _ a2xx
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ll. 1 CONTROL OF A CI.ASC OF NONLINEAR DISTRIBUTED PARAMETkR SYSTEMS
VIA DIRECT SEARCH ON TIlE PERFORMANCE INDEX+

D. R. llalm, Project l';nglneer
"lhe Bendix Corporation, Kan: as City, Missouri

L. T. Fan, Professor and tlead _f Chemical Engineering

Director of Institute for Syst,ms Design and Optimization

C. L. Hwang, Associate Professor of Industrial E,_gineering
Kansas State University, Manhattan, Kansas 66502, U.S.A.

ABSrRACT by Butkovskii and Lerner. (1' 2) These papers

'_ considered mainly a class of first-order partial

,: The synthesis of optimal controls is treated differential equations, which through a coordi-Sf,

. for a relatively wide class of mixed, continuous nate transfor, .Zion, could be treated with

flow processes. X_is class is comprised of Pontryagin's maximum principle.( 3, 4) A
_'" systems, the dynamics of which can be described thorough review of the literature on the optimt-

by nonlinear, one-dimensional axial diffusion zatton of distributed parameter systems is givenmodels with two-point boundary values. An over- in(5). Most of the literature has dealt with

all direct search technique is considered which linear distributed parameter systems. Relatively
is applicable to nonlinear distributed systems few papers have appeared thus far which report

with control saturation constraints. This successful computational results for nonlinearmethod, Iteratlve in nature, entails a scanning distributed systems. However, with the advent

. of an overall performance tudex for different of larger and more rapid computing systems _

_ trial control levels at increments of time, coupled with more sophisticated numerical t

t ''* yielding a piecewise-constant control policy, _nalysi_ techniques, str:des are now being made
State variable Inequality constraints are in this area.( 6, 7, 8, 9) Most of the workers !

handled by the penalty function method. The in this field have employed variational tech-
technique is applied to _he t_bular reactor nlques and have obtained various forms of maxi- ,
startup problem and the xesultlng control policy mum principles.
is shown to closely approximate that obtained

using a distributed maximum principle. A sub- As an alternate method In¢olving less com-

optimal non-lterative direct search technique is putational complexity than the maximum principle,
also developed. This involves the evaluation of an overall direct search technique will be pre-

an instantaneous performance measure at the end sensed in this work. This approach is applicable

of each time step for trial control values over to systems with saturation constraints on the
the admissible range. This technique, applied control variable and entails a scanning of the :

to the tubular reactor startup problem, is shown performance index at increments of time for dif-
to yield results similar to those of the other ferent trial control levels. The method is

two approaches, namely, the distributed maximum Iteratlve and considers an assessment of per- i

principle and the overall direct search seth- formance based upon the entire period of !
nlque, operation. A simplified non.-Itcratlve direct

search technique will also be considered in this
work. T'tts method involves the evaluation of an

INTRODUCTION instantaneous performance measure at each time

step for different control levels and thus yields
In the field of industrial process control, in- a suboptimal policy. Provision for state vari-

creasing attention is being focused upon the able inequality constraints will be considered
study of systems from the distributed parameter for both direct search techniques.
point of vim*,

The implementation of th_ direct search tech-
Perhaps the first work devoted to optimiution niques is accomplished by utilizing quasi-
of dlstrlbu_ed parameter systems was undertaken

+This study was supported in part by NASA Grant No. NGR-17-001-O]4. and by the tdr Force Office of

Scientific Research, Office of Aerospace Research, United States Air Force, Under Contract

F44620-68-0020 (Themls Project).
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llnearlzation, decoupllng of tile equations and distributed parameters, although somewhat dif-

" the application of an implicit difference tech- ferent from the approach taken I_ere.
nique for obtaining the transient solutions to

the system of nonlinear partial differential Description of the Method
equations.

A number of control levels tlj, J = 1 .... , J art,
Optimal ¢ontrol of n startup of a jacketed tub- selected, which ,]re equally spaced over the

ular reactor in which a first-order, reversible, range of admissibility and includt, the upper .,ld

exothermic reaction is assumed to take place is lower limits. The time axis is dtscretizin_;
con..idered. It is determined how the wall from t =0 to t =tf into N segments of length

temperature should best be manipulated to mini- tf/N and assumin_ a piece-wise-constant initial
mize a given performance index. Computational control policy 0[O)(n), n= 1, ..., N.
ret, uits are obtained for cases with and without

a constraint on maximum reaction temperature, t]olding each 0(O)(n), n =2, ..., H fixed, the
system state equations are solved from t = 0 to

SYSTEM DESCRIPTION t _ tf, replacing 0(0)(1), in turn, by each 0j.
After each solution of the state equations, the

Suppose that a system is described by a general overall performance index S is computed. If

nonlinear vector partial differential equation either extreme control level, i.e., 01 or 0j,
minimizes S, that level replaces the original

ut(x,t)= f{u(x,t), Ux(X,t), Uxx(X,t), 0(t)] 0(0)(1). If the performance index is minimized

, _ (1) for a control Level interior to the range of
admissibility, interpolation is performed by

where u is an s-dimensional state vector defined fitting a three-polnt Lagrangian pol>nomlal
on a normdli_ed one-dimenslonal spatial domain through the minimum point and each point
x from x=O to x=l and over a fixed time interval immediately adjacent. The minimum value of the

• t=O to t=tf. The control variable 0 is con- polynomial is then computed and the corresponding

stdered to be distributed in time only and is control level is taken to replace 0(0)(1)_ o

[ , one-dimensional, with maximum and minimum limits
specified. An independent variable appearing as _te procedure is repeated for each time incre-

a subscript denotes partial differentiation with =ent n = 2, ..., N. whereupon each original

: respect to that variable, a_£Omed control has been improved. This ends

¢, the first overall iteration. Since at e_ch time

Initial and boundary conditions are step, the assumed control level would be retained !
if no improvement could be realized with anoth2r ;

' _i(u) =O at t =0, l= l, ..., s (2) level, the perfo:manc_ index must decrease

i monotonicall?.em(U,Ux )= 0 at x =0, m= 1, ..., p (3)
The improved control policy then becomes 0(1)(n),

$n(U,Ux ) -0 at x =1, n=l, ..., q=2s-p (4) n = 1, .... N and is used as the starting point
for the second overall iteration. This iter-

It is assumed that no boundary forcing Is ative sequence is repeated until negligible

present, further improvement is realized in the per- ,
formance index.

It is desired to determine the control function i
0 which yields a minimum for the following A computer flow diagram for the ovrcall direct
generalizLd objective functional: search scheme Is shown in Figure 1. _i

_ ' S = f F[u(x, tf)]dx Provision for State Variable Constraints. The
' _'. _ 0 - overall direct search method is very easily

_'_L tf_ + f i1 extended to account for inequality constr_Inrs
.... 0 0 C[u(x,t), O(t)]dx dt (5) on state variables. These constraints may

appear In the form

_r#_ OVERALL DIRECT SEARCH•_ .... c(_,e) £ 0 (6)
-- '_"." The method of optimization based on the distrl- As In the maximum principle approach (5). a con-

,,_._;. buted maximum principle(5) _s computationally venient means for handling constraints of this
, , complex and time consuming• The method to be type la the penalty function method. This con-

"_'_ "' discussed here stems from a similar direct slats of adding additional terms to the tnte-
' "_" search technique described by Laptdus and grand of the performance index which have zero

Luus(lO) for nonlinear lumped parameter systems value until a constraint Is vlolated and

with saturation constraints on the control varl- tmpoatng a penally after a violation occurs.
ables. A modified version has been employed by Thus the state trajectories can be forced to the

" I Selnfeld and Laptdua(8) to treat 8yatems with

_._
_' _ 171
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constraint bound,_ry by iteratively manipulating tormance may take into consideration a time ln-

I the amot, nt ,)f penalty to be imposed, tegral criterion i. ,l'.,_n_ the reqponse of the
state variables over thL, small interval, or

SIMPLIFIED DIRECT SEARCIt simply an instantaneous measure involving the
state profiles at the end of the interval. 't]_e

I_f_th the maximum principle approach (5) aud the latter approach is conqldered herein, lhus a
overall direct _earch technique are relatively performance index could be considered in the

time con,,umlng. This limits the usefulness of sense of the integrand of the time integr,_l of

ttwse proc_.dures to olf-line use in pre- Equation (5) eva_uated at a discrete point i,.
calculatio,_ the open-loop system control policy time.
.rod the resulting trajectory over the transient

period of interest. Using the instantaneous state profiles as the
initial conditions at each time t = (n-1)_t,

llowever, the response of a real ,_rocess may dlf- n - I, ..., N, a numerical integration scheme
fer significantly from that anticipated by the is employed to predict the system response at
model because of model inaccuracies, changing t = nat for a number of pre-selected control

pa(ameters, load disturbances, etc., and it may levels, each held constant for the duration of

become desirable to redetermine the control the time period. _lese control levels are
action periodically, using current lnfnr_,:lon equally spaced over the admissible region and

about the state of the system. It thus becomes include the upper and lower limits.
essential to have a simpler optimization scheme

which takes into account the current state and The performance index is evaluated at t = RAt
use_ this information to compute on-line an for each value of the control and a direct sear&

appropriate updated control policy, perhaps in made to find the minimum value of the index. The

'" conjunction with an adaptive scheme in which the determination of the optimal control level for

model itself is also updated, the period is the same as described for the
overall direct search. If the Index is minimized

An optimizing scheme called an "optimum for the upper or lower limit, that level is taken
< predictor-controller" has been developed by to be the optimal control level for the time

Crethlein and Lapidus(ll) for lumped nonlinear period; otherwise an interior value is determinedL

systems with bounded controls. The approach by interpolation. A computer flow diagram for

_ taken was to sample the state at discrete values th_s simplified procedure £s shown in Figure 2.

(-'_ of time, and t, stng this data as the initial con-

ditlons, to calculate over one sampling period, Provision for State Variable Constraints. The

the response for several levels of control with- simplified direct search technique can be
in the allowable range. The optimal control was extended to ptovid? for _tate variable inequality

determined by evaluating the performance crl- constraints of the form of Equation (6). tlowever,

teflon for each control level an_ selecting that instead of a penalty function approach, a dlrect
level which yielded the least value of the cri- method will be considered.
terlon.

Upon computing the orclmsl control O(n) for the

A similar approach is taken in this work for the time period t=(n-l_6L to t -n_t and the cur-

determination of the control policy for a dis- responding state trajectories, a test is per- ._
tributed system whose dynamic behavior may be formed to detect violations of the inequality of

described by a system of nonlinear partial dif- Equation (6). If a violation appears eminent,
ferentlal equations in which there Ls only one another control level is selected which tends to

control variable, a function of time only. force the state trajectory away from the con-
stralnt boundary.

, ,. The feaslbilicy of the method for on-line com-

_ : purer control would be contingent upon the The ability to prevent constraint violations
_._ sampling, computation and actuation times being depends on the capacity of the control system to
_,_-_ short in comparison to the dynamics of the pro- avoid the constraint boundary once it is
_._ tess under control. Ho_ever_ many distributed approached. It may be necessary to consider two

processes are characterised by long time con- time intervals; (1) the period over which the

_ slants and exhibit sluggish behavior, possible responses are computed, say, (At) l, and (2) the
"'_"" making on-line co_puter control attractive, interval over which the resulting control action

is actually carried out. say, (At) 2, where ,:
Description of the Method. The proposed slmpll- (At)l • (At)2. This would give the control system

"'_ "'" fled direct search method, instead of assessing more advance warning of an impending constraint

' ::" system performance over the whole period of violation and thus prevent overshoot (or under-
. operation, evaluates cl,e effect of control shoot) of the constraint. This feature will be

action over a relatively small Interval o{ time. seen in the simplified direct search example.
Thus the technique must be considered suboptimal

i with respect to an overall performance index ofthe type of Equation (5). A measure of per- _
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OPTIHAL STARTUP CONTROL OF A JACKETED TUBULAR axial Peclet nu_nber, t= _/_ , dimensionless time,

I rREACTOR x= I/L, dlmenslonless axial distance, u I = CA/
_A +cB), dimensionless concentration of A,

The Hathematical Hodel. Consider a tubular, u2=T/Tr, dimensionless reaction temperature,and

continuous flow chemical reactor in whicn an 0 =Tw/Tr, dimensionless wa_l temperature. (,ther

exothermic reaction is taking place. _le parameters are Q=AH(c_+c Tr, K= 2h/Cp_ r
reaction con:_idered is first-c, rder and revers ib_ hr-1, P l= EI/RTro =B)/CP_and ]'2 E2/RTr- The dimen.l_,n-
(A _ B). In this example, the reaction tem- less boundary conditions are
perature and thus yield are controlled by mani-
pulation of the reactor wall temperature, u 1 (O,t)= 6[ul(O,t)- u_] e_ x=O (16)x

The mathematical model for the system is based u I (1,t) -O at x=l (11)
on the assumptions that system parameters are x
uniform and cnnstant with respect to t_me, wall

temperature is a function of time only, axial u 2 (O,t)= 8[u2(O,t)- u_] at x=O (18)
heat and mass dispersion and mixing are signifY- x

cant inside the reactor, and concentration, tem- u 2 (1,t)= 0 at x-l (19)
perature and velocity of the streata are constant x
with respect to radial distance.

The concentration and temperature profile_ are

A differential mass balance yields assumed to be initially constant throughout the
_ length of the reactor and at the values of the

_c A _2c A ac A inlet conditions, i.e.,

-_-_-=D -- - v -_-+R A (7) ul(x,0) u_ at t-O, (20). m at2

where, for the case of a first-order, reversible u2(x,O) =u_ at t=O (21)
A _ B reaction, the rate of production of A, RA,

L

• is given by the Arrhenlus expression It is presupposed that a steady-state operating

_ RA=_[kl 0 exp(_E1/RT)c A_k20 exp(_E2/RT)cB] point denoted by the subs:rtpt d has beendeterralned which is optimal with respect to some

i ¢ A differentlal heat balance y£elds performance criterion (e.g., maximum yieldS. The

, star,up pollcy_ in turn, is to be determined such

_= aT+(-_H) 2h that, by controlling the addition or removal of
_T kef_ _2T-v_-_ RA- (T-T w) (8) heat, the process is driven from the initial
_ Cp p _[2 _ C-_ state toward the final steady state in some

It is assumed that the manner of mixing is such optimal fashion. In this example, the objective
that the effective mass and thermal dlffusivltles function to minimize is "

tf fl
are equal, i.e., Dm=keff/Cpo-D. The boundary = $ {_[Ul(X,t) _ (x)] 2

conditions are(X2) S 0 0 Uld i

_CA(0'X)=v f + v[u2(x,t )- (:O]2}dx dt (22) {
_t _ [CA(0,_) -c A ] at t=O (9) u2 d [

_CA(L,1) where u and v are suxtably chosen constant
_--------_= 0 at t=L (10) weighting coefficients. The manipulated varlab

v Tf- is the dimen_tonless wall temperature, 0, _hlch=_ [T(0._) - ] at [-0 (11) Is considered to be a function of time only and
lle within the range

_-0 at t=L (12) < O(t) (23)
_t Omin - _ 0max

In dimensionless form the system equations.
equations (7) and (8) become The follo_Ing n_,erical values are assumed:

I B = 5, r - .05 hr, q = -200, K - 30 hr "I,
u "_ uI -u I -_rt(Ul.U 2) t13) r

It xx x k10=2.51x105 hr -1, k20-1.995xlO ? hr -1,
]

- - 1000"R. u_ • .9u 2 =_ u 2 -u 2 -q_r_(Ul,U2)- KZr(U2-e) (14) PI'5"03' P2 10.06, Tr .t xx x

_here u_ =

@(Ul,U 2) The kinetic dat_ for th_ reaction are due to
Fen.(4)

"k)o exp(-Pl/u2)ul ok20 exp(-P2/u2)(1-u 1) (15)

l_e transient solution of Equations (13) and (14)vht.re _r "L/v hr Is mean residence tlmc, O- vL/_ forward in time from t - 0 to t= tf is
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,Ic, ,,",', ",, 'd by the use of qua_llinearization (13) time integral of Equation (22) evaluated at tim_, '* _
:_.,,,t,,, with an ir_p*.icit lifferencc scheme, t = n/_t. !J '

'ILL,' ¢lt't ti l', t'l the computational method are pre- 1 2 i
= u (x) I

',tlttd Itl ref. 5. Sn Of {_[Ul(X'tn+l)- 1d

*l!,'.t..ll (,,tltr,)l U'_in_ Over,t|.l_ i)i_.e} t_ :;]'.tryh _. The 4 vile2(^ tn+i)- u (×)]2}dx (2',)
tt'n,' ,l_l', w,i, di._c*rvtizt2d into fifty ittcrement_ ' 2d
4q .02 r.',i h.nco time .lad the spatial increment
';a_ .05 dim, _ionles_ distance unit. The time Again fifty time increments of Lt= .02 residence
i:_, re_,.nt _w.i whict_ a control level would be time were used. The distance increment was .05

ht, ld roiastant was also taken to be .02 residence dimensionless length unit. _lle performance

time. initially, the assu, .d control policy was index, Equation (24). was computed at the end of
,nn'.ldered constant with r,,spect to time and at each time interval again for five control levels.

the value corresponding to :hat required to
_aintain the desired steady sta_.t profiles; i.e., The resulting control policy is shown in Figure

, (O)(n)= .600, n = 1, ..., 50. r,_,,putation was 5. Comparison with the results of the maximum

p,,rforr_ed for five levels o¢ control equally principle and the overall direct search, illu-
,_p,_,cd over the admissible r,_aL_-', i.e., .530, strates great similarity. Although the per-
.5,.,. .600, .635 and .670 dimensionless tent- formance was assessed over only one time Inter-

[:_,riture units, val, at a time, without regard for the entire
period of operation, the resulting transient

Fi_:ur_ 3 show.i the :esul_ing optimal control concentration and temperature profiles were u,ied
policy obtained after three overall iterations, to compute the overall performance index,

Actually, after only two iterations, negligi, le Equation (22). The resulting value was .046555,
lrprovement of the performance index was essentially the same as those values obtained

o_tained. Al_o indicated on Figure 3 is the using the two previous approaches.
r,-_t,_.ring o timal control policy obtained by the
di_: :":,_tedPmaximum principle.(5) Comparison of Constraint on Haxtmum °,.action Temperature.

Again an upper constraint of u2m = .700 was
the_e results shows marked similarity of the con- placed on the dimensionless reaction temperagure.trol policy to that obtained using the distrib-
uted maximum princi.le. The resulting value of After computing each optimal contr, l value and

the performance xnoex uas .046555_ almost tde_t- the corresponding state traJeetoriez, a test was

t tical to the maximum principle result, made for constraint violations, t_en the test
J¢ _tas made at the end of one time increment, cor-

Constraint on Maximum Reaction Temperature. To responding to the Intended time of application
demonstrate the technique for dealing with state of the computed value, the control system had
variable inequality constraints, an upper con- inadequate capacity to prevent overshoot of the

straint of U2max=.700 was placed on the constraint, even upon switching to the minimumlevel. A maximur_ dimensionless reaction tes-
dimensionless reaction ter,perature. The penalty
weighting coefficient was taken to be0 =104, perature of .7096 was obtained, compared to
whlch, as In the case of the distributed maximum .7175 without the constraint. Extending the

principle vas adequate to force convergence of check over t_o time Increments, and switching to
the temperature trajectory to the constraint minimum control upon the detection of a vie-
boundary, lation, a maximum reaction temperature of .7007

resulted, whlch was considered wlthln reasonable
tolerance of the constraint boundary. The

The resalttng control policy for the temperature-
constrained case is shown in Figure 4. Again, resulting control trajectory Is shown in Figure
comparison of this result with the result 6. For more severe constraints, a check for

obtained by tne distributed maximum prlnclple(5) violations might be required for several tlme I
shows much similarity, For the _onstratned case_ intervals in advance, or perhaps a value lower i " *
the overall direct sesrch method was found to be than the actual constraint could be used in the ,

quite sensitive to the Initial assumed control test.
policy. He,sever, the _nltial assumption of a
bang-bang policy approxtmatinA the maximum prln- CONCLUSION
t-iple result yielded rapld convergence.

Two direct search techniques, each Involving the

Suboptimal Startup Control U_ln_ Simplified scanning of a perfortmnce index for dlffere,_t
Direct Search. The total time period tiO to trial control levels, were cormi,lored. These
t - tf is divided into N equal intervals of techniques have application to nonlinear dis-
length At. Instead of evaluitin_ the performance tributed syftama in vhlch control saturation con-
over the entire time period, the performance Is attaints are specified. The overall direct
appraised at the end of each interval, the con- search technique considerI an nseeaaient of per-
trol bein_ held constant over the Interval. The formahee based on the entire period of operation -/

perforIa._ce index for the n-th time increment, and iI iterative. The other method, • sliplifiedn = 1, ..., N, Is taken to be the lnte_rand of the non-iteretiv_ search procedure, yields •
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plecewise-constant suboptimal policy based on an Because of the massiveness of the computation lh-
I instantaneous perfozmance measure evaluated at valved ulth a maximum principle and the ova, rail

the end of each time increment, direct search technique, it is limited to off-
line use in computing optimal open-loop control

The tubular reactor startup problem was studied and state trajectories based upon the antlcipatt._

by using the overall direct search technique, transient bchavior of the process over th_ tim,.
The resulting optimal control policy close/y span of interest. Also both the distributed m_x-
ressembled that obtained using a distributed Imu_ principle and overall direct search tech-

maxlmu._ principle and the value of the per- nique can be used as a standard of comparison for
formanrc index was almost identlcal. The overall evaluating less complicated suboptimal approaches

direct search technique was somewhat less complex such as the simplified direct search technique

to program than the maxim,,- principle, however, which has on-llne control possibilities.

it va9 actually more time consuming because many REFERENCES
complete solutions of the state equations--one
for each trial control level at each time step-- 1. Butkovskii, A. G. and A. Ya. Lerner, Soviet
vere required for each overall iteration. The Physics Doklady (English trans.) 5, 936-939
ability of the method to handle state variable (1961); 2. Butkovskii, A. G. and A. Ya. Lerner,
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Feedforward-feedback control ofdlstrlbuted I',/,:; -

parameter systemsT E_r=, &..:_. - ..... :_

D. R. HAHN.+ 1,. T. }'AN anti C. 1,. HWAN(i
Institute fi,r Systems Design and Optimization, Kan_L. State University,
Manhattan. Kansas 66502

[Received 10 February 19";0;

Regulatory cent rol of distrobuted s.,'st,-ns s,Jbjected to load disturbances inr_m,codered
by using feedfi_rward and state me_t:r_, control eonfigur#tions. Dynamic co.pen-
sat,on of the f-edforwsrd signal in aeeomplished with : lemi-lag function, the tome
constants of which art. detennmed by means of a numerwal wareh tm.hnhlut,.
('om|mn_tion of the state measure s;gnsl is provided hy the distrilmted ngtllre of the
proee,_ ;t_df. Exit temperature re.darien of s tubular heat exehanl_,r acted upon
by velocity and inlet temls,rature d;sturbsnees i.4eonsidertq| _ sn &pplie&tionfor
fr,,dforward control. Con.iderably better performance o_obtained with the a id,tion
o:"dynamic eompen_tion to the fiq,dforw-rd uignal. State inel_ure control is applied
to the exchanger for s fe_l teml_erature Ul_t add the effects of _'::_Jr Ioeation on
outlet perform,nee are investigated. An optimal sensorIo_.stion,Mdetemfined which
minimize_ the integral-square error st the outlet.

;

i •
} Two types of control applicable to regulation of linear systems, or systems
i . which can be linearized about an operating point, are to be examined in this
i ' work. One is feedforward control and the other is state measure control.

i Both approaches use system measurements to provide corrective control
, action to compensate for disturbance inputs. The former implies that dis-

turbanees are senmed at the inlet before they can affect the proe¢_ and the
! latter involves the measurement of the disturbance response at oome point

| within the system. A numerical search procedure will be applied to the

t synthesis of optimal compenn_tion for the feedforward signal. For state ]measure control, the effect of sep_)r ',::: ,-_;vn on the dynamic system response A

t will be investigated. !The methods are employed to ob'_ain a desired control of a tubular he_t

exchanger by manipulating the steam temlx_rature in a _urrounding jacket.
If the wall capacitance of the tubular heat exchanger is significant, it is n_ry

.._,; , to perform an energy balance on the wall, resulting in an additional equation
...."_. _ coupled with the energy equation for the process. Optimal control of a change '

•_ "< in set-point will be considered for the tubular heat exchant_._r,using dynamically '

_i/" compenMted feedforward control, the manipulated variable ',_ing the jacket
_._. , ,team tempe_tur¢. Regulatorye_,nt,ro, will be evaluated with the exchanger
_'___I_,,, ", acted upon by load disturbances, both for fmxlforward control with optimadly

.... :'_". . I' Cmmnuniest.xl by Prcfeq,morL. T. Fan. This _tudy was suppocted in psrt by NASA
Gramt No. _TGR-I'/-001-0_I4, and by the Air Focee Of8_ of 8eientifle _h. Olllee of

'_ 'x_ " " ' Aerospace Rmem_h, United $tm4_ Air Fot_e, under C0mtl_et F44O_--0tl-4_ ('r_i_
, ..',,, ,. Project).

:_Pliant iM_ir_i: The Bendix Coqx_tion, Ktm_t City. Miuouri.

._-
• .o
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361 D. R. lh, h, ct al.

desi_lie(l (|yl|alnh' _.Cmll,.nsathman,l state Ini'i_.Nur,' rol_tl',d with th,' t l';lll,N(hl(,Pr

ol_timallyh.'at,'d. "
S.m,, att,._ti,m has b,.,.n fzive_ t. the l,ra,'tival aSl.,,,ts .f i_Istr,mi,.lltati,,n

and state fl.,.dl'orward G,cdhark r_.itr.l _d"distrihtlt_'d l,ro_'...:',es. Watts (I_,_6_',)

us_.d a i'n.queuvy domain al,proarh to h'nd _,ptimal f,.q.dlbrward tl.,r....,.qdq.
h,_'ations in a Idu_-tlow heat e.x_.han_er with distril.m.d l..ati._, l'ar,.,,,val's
theorem was enll_h)ye,l to ol)tail| the lllVRll-Sqlllll_rP outl)llt error due to ilipllt
G)r('ingwith kll,)wnslx.utraidensity.('sil1_l)rOlx)rtionai,mtro[only.h(._,%as
al)h.to lindi1_teriorspati;dlocationswhic.hmade the melm-squarq,t,rn,r

stati.nary,l.irht(I_.),,0;)als,)ronsi,h.reda.4milarl)roldemfora (.oullh,r-(.urr(,lll

idug-fh)wheatexrhang,,r;rodusedi.r,n_,Azategradientminimizati_msrl,,m,,

to find sensor loration._ which minimized the ,_utput mean-square error. (;iv,.n
a nllllliwr o|' l_robcsat pre-sl_ ,ilied Iouatiolls. he wl_.sIlls,) aide t,_ thld opti,n:tl
weights to be giver_ ea,'h probe.

Mr,'ann (1963) has considered a _me d.main approarh for th.li_Az optimal
probe h_eationsand optimal weighting,.G_rmultiple prol.,s f{_ra heat exchang_.r
withaxialdiffusion.Thisinvolveda _,an.hon allanalogue('omlmterwiththe

,,riginalsystem equationr,'pre_nt_,iby a ._'tof simultane,ms onlinary
diffen,ntial e, luati,ms.

' 2. Rqpdttory control of distributed systuas
, The te('imi,iues presented in thi._ pa|_,r are alq,licable to ('olnl_'llSlttJolt for
{ load rhanges _hirh upset the system resiN)use from its desired steady-state
! owrating l,_int. Thes*. disturhan{.¢s ,_nkvbe initially localized and I_ropagat. ,
I through tile svsttqn such as it feed tuml_,rature UlW_,t,or may ocuur simul-

taneously at all i_ints as in the (,use of a flow velocity fluctuation.
* In many distrihuted pro(+sm_, although control must be exteml,.d over the

entire spatial domain, the l_,rforman(_ • of till'system is apprals.,._ ,_t a sinl,le
, point, usually the exit. For ex,miph,, the l_,rformance index of a tubular

reactor may be a function of the exit concentration of one of tile n,actants--or

it may be desired to regulate the outlet teml_,rature of a tubular heat exchallger

about a given set-po;.nt. The discussion herein pertains to such systems. It is

also assumed that control action, although distributed in its effect, is initiatedby a single, luml_l input.

!_ Conventional feedback coetrol systems are sometimes inadequate for

regulator)' control of distributed p_. For example, consider a process
""" in which it is desired to regulate the quality of the output stream. A localized

.,s. - , load disturbance may enter the proce_ at the inlet, but the feedback ,runs

'... ducer will not sense the Ulatet until the disturbance re_l_)nse pnqmgates

i_ . through the syntem and begin_ to o_ur at the exit. Then, M control action is

',...' applied to offset the disturbance, dead time and lag in control r_pon_ create

,.., ' a poor transient exit t_spon_, and make it difficult to regulate the exit stream
, effectively.

However, if it is po_ible to men_et he disturbance at the inlet (or its response

:._ "". ul_tream from the exit), then this i:_forma_ion may be utilized to initiate
•; control u_ion in advance of the arrival of the disturbance response at the cx't.
_-'_ In this way, the co.trol response e_r, be made to match the disturbance

• . response mote el_ely, re_ultin8 in better control of the OUt],Ot quality.

t , t"

t ,_ .

-- ......... __ _
i
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Feedfor,card-feedb.ck control of distributed paramet_,r sy,_t,.ms :;(;5

3. Feedforward control
J

Consider the feedforward control schematic for a distributed process shown
in fig. 1. A vector of disturbam.e inputs is sensed at the inlet to tim process
and fed tbrward to a control computer. The computer also has. as an input,
the set-point signal.

Fig. 1

°_"°_' , '

I i , t ¥OrIGIDII I

(O) FeedfoPword control

"-'l_t°_e I +.-,+ _ ,-, '

• "1 I Mon!pulotod I
I _ varlable I

', Load _ Process _d
disturbonces vorlo,bhf

(b) State rneos_re control

Feedforward and state measure control configurations for
":' tubular heat exchanger.

. In designing a fcedforward control system, the usual approach is to consider
the steady-state and transient aspects of the response separately (Shinskey

• ' ,. 1968). Accordingly, the function of the feedforward computer is first to calcu-
late the value of the manipulated variable necessary to produce zero steady-state
error under the influence of the disturbance. Then, dynamic compensation of

,e. the control signal is effected so that the transient deviation dies out in some
_"; optimal manner. Dynamic compensation is necessary because of dynamic
-%_,,_,- imbalances between disturbance and control responses. "."

; ;:..":',__ One method for dyramic compensation of the control signal, where dead . .

_'_, .... time in the disturbance response is not appreciable, is a simple lead-lag function
..'_._'_._," (Shinskey 1968). The output, O(t), is:

'_- ; _ - . .

_!_:/_ ,s_:£ O(t) = O# 1+ %-% exp(-tl% ) , 11)
_4: o ...... where O, is the ste_ady-staCe value of the manipulated variable and % and % am

_.,_,,_ : . : the lead and lag time constants, rcalaeetively.
T_- ':_',_ _ ' In cases where dead time is a factor in the disturbance response, the lead- .

. '_ :__ v: "-_ lag signal can be effectively combined v. ith pure time delay. The control output,

It A"

_-;7;" ' *. _ • x,_ .... ? _t" "._ . ,; ' . . '

- m,-" ii
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delayed by all amount td, call be written:

tl I 'iO(t-td) O_ l +r'!----raexp[--(t--td)/T_] , (t--td)>_O.= _h (2)

_o. (t--td)< 0. ,,

Optimal design of the lead-lag compensation invoh'es determining the h.ad
and lag time constants such that the controlled system response is optimal
with respect to some performance index. A procedure is developed here for
performing a parameter search to determine the oi)timal time constants using

" the method of conjugate gradients due to Fletcher and Reeves (1964). A flow
diagram for the overall search is shown in fig. 2.

Although gradients of the performance index with respect to the t)arameters
to be searched are required, difference approximations can be used where
analytic expressions are pot available. For systems under consideration here,
it is necessary to compute the full solutions to the system l)artial differential
equations each time the performance index is evaluated or a gradient
computed.

Constraints on the parameters or on the manipulated variable can be.
accommodated by the use of appropriate penalty functions in the performance

. index which penalize excessive excursions from the reference values.
1

¢

4. State measure control

i • Instead of sensing the disturbance at the inlet as in feedforward control,
_ consider now the measurement of the disturbance response within the system i

i and using this inlbrmation to provide corrective control. A complete appraisal i
} i of the disturbed state would entail measuring the entire profile. However, it ,
i has been shown (Lioht 1966, McCann 1963), that good regulation can be
' provided bv basing the state assessment on just a few points or even a single I

,_ point along the spatial axis. Herein, state measure control is considered in i •
. .. terms of a single state measurement at some point within the system, i i

The statemeasurecontrolscheme presentedhereisshown schematicallyin '

| _g. 1. As noted by McCann (1963}, state measure control is both feedforward
and feedback. It is feedforward in that the disturbance response is measured
ahead of the regulation point and this information used as an input to the

",_ ,. controller. It is feedback in the sense that the effect of control action can be

_:_ i:'_._" sensed at the measure point.
_g_ State measure control appear3 most useful in cases for which the exit ,5._.

' "_' '_ response to a disturbance is slow in comparison to the response due to control ,%
•_":" action. Bv proper location of the probe, it is possible to utilize the distributed

}_?,,_ ,/.,. nature of the system for dynamic compensation so that the controller may
._:!; , • "' consist of no more than a proportional mode.

_' ", _ " As in the case of feedforward control, the steady-state portion of the ,
,_. , , response is considered separately from the transient. This consists of computing "

:'"k ' " the steady-state proportional gain, which, multiplied by the steady-state value
;_._,.,:_ of the suppressed state deviation profile at the measure poiut, restores the exit

":'_i',_;_:,_'"• state to zero steady-state error under the effect of the disturbance. "

m mmm
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5. Provision for feedback

Both feedforward and state measure control are open-loo I) with respect to

the controlled variable, i.e. tile actual error at the exit regulation point is not []

use, i to provide corrective control action. For this reason the accuracies of the ij,
systems are susceptible to changing parameters, model inaccura,.y, inaccuracy

_,- of load measurements, errors in comlmting components, etc. Tiffs indicates a i/
need for a feedback signal to eliminate steady-state offset. I_

:_ The feedback controller would include the integral mode to provi(le the _ti
long-term accuracy required but would not be expected to contribute signifi- r

'i'. (.anti)" to the rapid initial correction. For this reason, in the examl,les l,resented,

the feedback portion has been omittod from the transient comlmtation, t

6. Examples

• 6.1. Outlet temperature regulation of a tubular h,'at exchanger usinff feedforward
!] control

To illustrate feedforward regulator)" eontro" theory, consider the prohlem

of regulating the outlet temperature of a single-pass shell-and-tube heat
-_.... exchanger. The control objective is to maintain the tube-side outlet tenapera-

i "" ture at a fixed set-point with the system subjected to load disturba',':es. These
: load disturbances are assumed to be fluctuations in the feed teml)erature and

the mean flow velocity. The manipulated variable is taken to be the steamt

: _ temperatrure in the shell, which is assumed to be a function of time only.

-" 6.1.1. The mathematical n_adel 1.

,' ', - The mathematical model of the tubular heat exchanger with axial diffusion I
l is derived. A simple single-pass shell-and-tube heat exchanger is considered.

i A liquid stream enters the tube of the exchanger and is heated by convection iI
from the inner wall. Heat is sup;flied to the tube by means of condensing 'i
steam in the jacket.

In deriving the mathematical ,uodel, the following a_sumptions are invoked :

(1) System parameters are uniform and constant with resl_ct to time. ;

. (2) Axial heat diffusion aud mixing are significant for the tube-side stream.
(3) Steam temperature ns a function of time only.

(4) Tube-side temperature and velocity are constant with respect to radial '
distance.

_,'_, ._ (5) Heat capacity of the tube is finite.
;:"-*,_o,, (6) Tube temperature is constant with respect to radial position.

_:_; ,' (7) Axial heat conduction in the tube is negligible.
_---, :_:.: • (8) Outer shell effects can be neglected. "_

_i_) ' ' _ ,

'" ¢_, '., An energy balance taken over a differential section d/. of the tube-side of the ,

_ :::,: . exchanger yields:

':::_:,,_ while taking an energy balance on a section of wall of length d/gives:

,.;.. = (4}
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The system is subject to the following boundary conditions: _
!

_7't(O. r) v [Ti((j ' t) - Tt/] at l O, (5)_! 1)

t'
i'Tt(L.r)=O at, l=L. (6)

kl

Equations (3) and (4) are non-dimensionalized by introducing the following

quantities:
Mean residence time: Tr = L/vsec.

Axial Peclet number: fl = vL/D,

Dimensionless time: t = r/r r,

Dimensionless axial distance : x = I L,

Dimensionless liquid temperature: u 1 = _/T r

Dimensionless wall temperature: u z = T,./T,

Dimensionless steam temperature: O = T.JT r,

Other parameters :
_1_ h,,.zPs,c 1,
rl = (_1,1PlAt' " -

1 h,,_/_, 1
-- = .... SOC- .

r,1 C_,u.PwA,,

' ! =
u, q;;0w 12see-'" [

; The system equations thus become: i

¢3u1= l_2u t ¢3uI r t [
-_,t- fl _x 2 ex t- _ (u,-- u,), (7)

" _u_ = _, (a- us) + r, (u_- u_). (8)

t The dimensionless boundary conditions are:" " _ua(0,t) B[ul(0,t)-uxt ] at x 0, (9)_x

i, _u_(1,0
:: " _x =0 at x=l. (10)

(_ '_ The numerical values for the exchanger used in this study are assumed ' "
_': to be:

fl = 10, '._"'

<:._,_ :'r _ 3 see,
1"1 -- 3"69see, _

_'tt ffi 2.65 see, : '_

i r_ ffi 1.05_'c,

_':" "" _ = 1000 OR,

u_ ! -" 0.530_ " -
.-ffi0.795.

f

- __.... _. , . ....... ,_- .._ ,:- . ..... -;7U=;,-,':_- . . _ ",!",r'r- - _-- • _,_

" , , ' Wt
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The time constants fi_r the system were determined experimentally by Cohen
and .Iohnsoo (iq56).

6.1.2. Perturbation equations

Consider the following pertmbation variables defined as deviations from a

steady-state operating point :

_2(x,t) = u2(x,t) - u2,(x),
0(0 = O(t) - Os,

_/(t) = u_f(t)- u_.i,
_(t)= v(t)- v...

If tim following parameters are taken to be constant, i.e.

r, = L/%

fl = v.,L/D,

eqw_. (7)-(10) can be written:

_u1 1 b=uI v _tq %.......... + -- (u=- uO, (I 1)
_'t /3 _:r= v. bx rt

'. _u" = _'_(o- u=)+ 5__(u_- u2), (,,2)

?,Ul(0.t ) v (13)
i _x - ,8vs [ut(0' t) - ut]] at x -- 0,

i
; f equl(l t) (14): ' --0 at x= 1.

[ The steady-state profiles uh(x) and u=.(x) corresponding to the operating
! :' point must satisfy the following equations:

"_ l d=ut. duh

I _ dx -_-dx- + (u=-ul.) = 0, (15)

$ &

1 1

(0,-'.%) + :r]]('q'- u=,)
0, (16)

. with the boundary ¢_)nditions:

_-',_ dub(0) (17) -'_" '.... f][uh(O )-uht ] at zfO, • ,
dx _'"v 4_ •

dub(l) (18) ,=0 at x= 1.
dx

Subtracting eqn. (15) from eqn. (ll) and eqn. (17) from eqn. (13) yields:

•::"_i": e_dt 1 O=_l (v Out du, l ¢r

)1ax =/_ ux(0.t)- u_.(O)- u/- ux.t • (201 i.,,
"_'/'( ," t I

1974004672-185



I

370 D.R. Hahn et al. _ "

.e

Thus with the introduction of a velocity pert'urbation, non-linearities are
introduced. These non-linear terms may he lincarized in a first-order Taylor
series about the oi)erating point, i.e.

v _u I dul. +_dul. i_ 1.- = (21)
% _x dx % dx +ix'

v u_(0, t) -."u_,(O) _ ul,(0 ) + _;1(0,t), (22)
v_ + v_

v _ " I (23)
Ys uI! _ uls! _ _s ul`! "4- _/1 "

Using the above approximations and subtracting eqn. (16) from eqn. (12) and
eqn. (18) from eqn. (14), the following system of linearized dimensionless
perturbation equations results:

1 _ _ I'_ _ _ _ dul° (24)
' _' = flUlxz-_'+_llu_-u_)-v_ -(ix '

_ = _ _) + r__(u_- u_), (25)
T21

' subject to the boundary conditions:

, u_,(0, t) = fl[_(0, 0 - _t1 + u_°(0) - u_,q at x = 0, (26)

_',. _z,(1,t)=0 at x= 1. (27)
r
, Here, the disturbance inputs are ut (t) and _(), the feed temperature end velocity
i fluctuations, respectively.

i The steady-state behaviour of the system is described by the following
! "' ordinary differential equation:

I dx' fl +fl_blO-_,,)-fl _ o, 12s)d_ =

subject to the boundary conditions:

d_t'(°)

t dx = fl[tl_,lO)-_]+fl [u_e(O)-u_,/] at x = O, (29).... du_,(l);.'_":' t _0 at x ffi 1, 130)

_ where •i '

Tt 1"11

_--_"--,_'_L_ _'-`u' . . --Ipffi .

_ "¢. .... . T,I 1",, + T,I

_._-'... Equation 1281 is now reduced to state space form by letting:

-_._._, _:_,_,_. To obtain the steady-state control variable 0. which provides zero steady-state

-b* " exit error under the influence of the disturbances, a new state variable is

1974004672-186
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introduced i.e.

The complete system of equations is thus:

dyt
dx = y_' (31)

dY2 ^ ^ v_dun (32)

dy3
dx = o (33)

with the boundary conditions
A

y2(O)= fl[yltO)--uh/]+f3::[UtotO)--Ulo I] at x = 0, (34)

yz(l)=0 atx= 1, (35)

yi(l) = 0 at x = l. (36)

Using computed values of dul,(x)/dx, eqns. (31)-(3:_) may be solved using
Runge-Kutta integration and superposition as outlined in Hahn (1969),
yielding the appropriate steady-state control value, _, and the suppressed

' 'r deviation profile _l(x). Temperature deviation profiles are shown in fig. 3 for
'. i a feed temperature upset of .dll = 1 and a velocity change of _/vs = 0.1.

_ Fig. 2

i' i
• _ u2(m), m alt... , M+';

: i
I Assums valun for |

* L,,o"=_"s'to.'n,.I

' I +i [usi,,gconm.t.O_ _:"-J"-'!so,,,,s,s_mpOE's
l I Ira-,,=-,0,. optlmo, I I '_¢d " `i'e 'rcml|f_meters _'o J _'b such i I t-O to t=tf, evaluate

]that the i_rfornmnce It_tx _ I peformonce Incktx S
I S IS minimized _---_ond compute grodlents
- _ - 1with re_ect to _'e ,__

Welte optl" ", poromlters l
_'o,'Po, corresponding c¢l'ltrol I

+ Ifurctlon e(n), n-l+'"_N |
','++- I ond exit temNrQture t_t'_

r_:'_" +" . _ I O_ u,(l_+ l,n), n,.l,....N+lJ

_/_'_ _r, 5 "f Flow diagram for conjugate gradisnt method of finding
_,_ .+_+-, ,, • , + optimal load-lag perimeters.

';+:2 +, .. : The performance criterion to be minimized is taken to be the integral-square
_" _ '1" " ' _ + " +' + ''' errorof the fluid temperature deviations at the exit. This can be written:

':':+': "" + i"

++_ _ " ' "( + '1 _: ++')2 "_++_ .... + 1 , L + " '

,+ : i_+,, _ /+. _+ :+, _++ +,, t7 + " ,
+ '] ; :_ ,++ ,+

IF. + .+ .° • ..,m'
i
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The solution of the transient perturbation equations given by eqns. (24) and

(25) are solved forward in time t = 0 to t = t/by deeoupling them and iteratively
applying the implicit difference method.

Fig. 3

10 :......._ Feed t=mpcrature disturbance

o

01

-1-0

J ' A , I l I !-; .i .; 6 .9 ,-o
x

Steady-state deviat ion teml_,rature prolih.s for fi'..d temperat m_
and w,locity dlst urbanc_,s.

Equations (24) and (25) are most conveniently solvt_t by finite-difference
methods. However, for parabolic equations care must be taken in applying
explicit difference approximations that stability is ensured. In order to circum-
vent this stability problem, the implicit scheme due to Crank and Nieolson

i , (Forsythe and Wasow 1965) is considered here. This method introduces more
, complexity into the difference model but guarantees stability for any increment

of time, thus reducing the number of time increments required.
In applying the Crank-Nicolson method the spatial _xis is discretized into M

increments of equal length Ax so that Ax = I/M. Time diseretization is effected
by solving the difference equations at equal time increments At. The solution

, u(m,n) denotes the value of the dependent variable at the spatial location

: (m- l)hx and at time (n- l)At.
, The partial time derivatives are approximated by taking forward differences

between the (n- l)th and nth time steps, i.e.

l

' I Ut _tt[u(m,n)-u(m,n- 1)]. (38)t

For spatial diseretization, implicit difference operators are constructed for the
first and second spatial partial derivatives by taking central differences,
averaged over the (n- 1)th and nth time steps, i.e.

" .... u.r.r_ (M=/2) [u(m + 1, n) - 2u(m, n) + _(m - 1, n)

_i +u(m+ l,n- 1)- 2u(m,n- 1) +u(m- 1, ,t- 1)], (39) ....

'.' %

ux =(M/4)[u(m+ l,n)-n(m- l,n)+u(m+ l,n- l)-u(m- l,n- 1)]. (40)
'_ _:i" ',

_i The above difference have a diseretization error on the order of (_v) =op_ratol_

_3_f_, ' (Forsythe and Wasow 1965). The solution of eqns. (24) and (25) is greatly

_.$4":_,: ' simplified by 'decoupling' the component equations. This is done in the ith ,
_:':.. ' "'i equation at the kth iterative solution by setting:

_:;'_•_ u k_- Ul(k-t) = _ (41)'.,::'C._" O, j _t i. .

=m l=mml
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Tile dependent variable u is also averaged over the (n - l)th and nth time steps: _ il

u _[u(n,,n)+u(m,n- l)], (42) !
t

The difference approximations for the first, derivative terms occurring in I'
the boundary conditions at x = 0 and x --- 1 are taken to be three-point fi_rward !
and backward differences, respectively:

_s ],_o z (M/2) [ - _(3, n) + 4d(2. n) - 3a(1, n)], (4:_)

u_ _ _ _ (M/2) [3fi(M + I, n)- 4u(M, n) + a(M- 1, n)]. t44)

By substitution of the above difference ol,erators given by eqns. (38)-(t4)
into eqns. (24)-(27), the following sets of difference equations for the kth
iteration are obtained:

[ ] [ ]431 AI dl_k_(2, n) + Cl_2fl_.3)_IA 1 dt(k,(3, n)B_+2fl+ 3_li
= -Al_l(l,n- l)-Dl_t(2, n- l)-Clul(3,n- 1, -El_k-"(2, n)

-2fl+3M ult(n)- " (ul'(0)-ul'/) '

A l dl_k_(m -- 1, n) -- BI d1(m, n) + C1t_lCk_(m+ 1, n) (45)

= - A l dl(m - 1, n - 1) - D l $dm, n - 1) - C l _l(m + 1, n - 1)

. -- ElCk-l_(m, n) m = 3..... M- 1,

! ' [A 1-- _C1]dllkl(M - 1, n) + []_1+ _C1]Ul[k'(-11,n)

= - A t _(M - 1, n - 1) - D_ _(M, n - 1) - Ct a_(M + 1, n - 1)

. - E_k-t}(M, n),
i"
' ,,'k'(m, n, = B,I[ -D'd'(m'n-l)-r'd''_-''(m'n)--%-O(n-1)]_''i Tt 1

i m = 1..... M+l, (46)
i, where

i M= M
[ A, - -2_+-4 ,

1 r r M = 1

B_=-2,t fl At'

. 1 rr 1 rr 1Btffi 2'rn 2rst ,

q=za

i._'"' 1.. M" 1

! Dt ffi 2 vu 2 r_t

• -:Cz, - vI Vs d,Z
% "* 5

AY ' [-

, ; ° ' - '. ' ?_. *a "t' , _'f- + ",
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The end-point values, _t(l,n) and _I(M+ l,n), are determined respectively

from the following boundary equations:

M 4M
_l(k)(l, n) = -- A Ikl '

•2_+3MUs (3, n)+2fl+3MUl(k)(2, n)

+2_ �h�ˆ(n)-_}')(u_.(o)-u,/) , (47)
_tl(kl(JI + 1, n) = _ _ (k,tM n) -- _l(k)(J/-- 1 n). (48)

In performing the computations, time and spatial increment sizes used were

0.0b residence t;me and 0.05 dimensionless distance unit respectively. Terminal

time t/was taken to be 3 residence times.

Fig. 4
.6

'_/UI(1)

0
_ C -2 '4 '6 .8 1"0 1"2 1"4 1"6 1'8 2'0 2'2 2_ 2'6 2"I_ 30

t

Outlet temperature re.pon_ to a step feed temperature upset for.. _, various effective axial diffusion coefficients.
t

Fig. 5

I .6 Inwrtsd foal,portu"5

0_cl)

I "'1
_ ,, 0 t t i i t t

4._,_ 0 '3 "4 '6 "O 1'0 1"3 1'4 1'6 1"8 3'0 35 2'4 2'6 ;!'8 $'0

_'_:;--'"° t " ""

"_0.1 Comparison of open-loop disturbance and control outlet temp_ rature ' •

'_" "' reopont_s for a step feed temperature disturbance.

<_,',.. 6.1.3. Feed temperature dislurbanc¢

:_'_ _i _ Consider a unit step upset in feed temperature, i.e. ds/ffi 1. The uncon-

_ " " trolled disturbance responses at tim exit are shown in fig. 4 for several effective

d, :;",, diffusion coefficients, A comparison of the uncontrolled disturbance response

at'' _ _,? " ' with the corresponding step control response required for zero steely-state
' S' " error is shown in fig. 5 for _- 10. As seen in fig. 6, with uncompensated "

(

• _ _,, •

as,

1974004672-190



i } Feedfi, rwtlrd-feedb,ck control of distributed poronteter syst{,m,_ 375 0 . ,

feedforward control, an inerease ill feed temperature results ill an initial
decrease ;n exit temperature due to tilt relatively faster response to control
action.

Thus eoml_cnsation is ; "lieated which provides for less energy to be
delivered to the system duri g the initial tnmsient than that required fi_rzero
steady-state error under the effect of tl_e upset.

Fig. 6

1

o

°fl8

i

i ! i t t • t I t t t t, i • | t
0 "2 '4 '6 -S 1"0 12 1-4 1"6 I'B 2-0 2'2 2-4 _'6 2"II 3"0

" _ t
r ' Uncompensated controlled outlet temperature response to
i ! a step feed temperature disturbance.
i !

, Due to the relatively slow exit response to the disturbance, it. was necessary
; to incorporate a pure time delay in the control. The design procedure was to "
[ fix the delay at some increment of time, j_t,j ffi 0, 1..... and for this delayi

compu_ the optimal time constants, % and %, using the method of conjugate _'J

' t gradients. In diffe_nce form, the control is thus:

= 149I

to, (.-l-j)<o,
_'\_:_""* where 0, represents the ,*:_iy-state control necessary to comliletely cancel the

_½,_,, ,, disturbance at the exit .....
_.,. The control yielding the lowest value of the performance index was deter- ..

: mined, using a time delay of O.15 residence time and lead and i_g time constants,_._ - _ of 0.0246 and 0.0937, respectively. The optimal control trajectory and corre-

t*' "" sponding exit response are shown in fig. 7. The ISE for the optimally com-_;:: " pensatcd response was 0.00102 compared to 0.01552 for the uncompensated

_. _ 6.1.4. Velor;ty disturbance

For a velocity dkturbanes, the situation is different t' igure 8 shows the
"_' " uncontrolled exit response to a step velocity disturb_ui_, _[e. = 0.I, and the

; t ,¢'li°'
.:.... ,,l, ']l;

P. _ .... ' - ._tt

• ._l_.lll. " t_._ i, .-- I illli i ii ill i i ............ iffL _ _Ji" - I ....... ili._. [" . ;----7 _t<" /+_+,_.
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corresponding step (.ontrol response required to romph,tely eliminate steady- I
state error. In this case the disturbance response leads the control response, i_
The controlled but unconil_,nsated exit response is shown in lag. 9.

Fig. 7
1 r

A

_1(1) O ............

/
-'1 L

'fJo

-5

g ,

-1 5
L * I | i i ¢ * s t ¢ * • * • J

t
i 0 "2 -4 (5 II 1'0 1'2 14 1'6 1"8 _0 ;1"2 2"4 ;!'6 2'll "iO

t

i * ()Utlet teml_.rature response, to a Ntep ft_.(i temperatttn, di,turb_neeusing optimal feedforward lead- lag control with delay,
t

{ Fi;r s t

. 7 sit

i : _"l 4 / /h.... ,o

! 0 l "4 "6 '8 1"0 12 1"4 " - _a :0 i'll ;!.4 i_ll ;Hi 30
<o,

._ Complirblon of open.loop di.t ,'" _i _ln(| control outlet . •

_"!_'_ _li-t_; . . ,qllperStilrt _ rt_sponst+s thr a _i,,p ,.loe.iy dimurbiuwe.It is thus tie.arable to provide dynamic i,_mpentm_ion to the controll_r to
:i enable the delivery of more energy to the system during the transient than

required for zero steady-state output error trader the influence of the distur-
> • ' * bllnee.

_o, . To limit the magnitude of the control deviations, the performance index is
? ' _ , " ",_ modified to include a weighted penalty on exeurs/ons from the steady-state
_'._,;.2. , value, i.e.

' fit['_-:f:":.:." ' _ = d_(l, tip+1,JOlt)-/l,p}ix 160) ;.

(

I
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t I

Fi_.9 _

O,<ot
;IJ

it is]

lo

5
t

o
• • * • i I * i t , • • • • , ,

+ 0 '2 -4 "6 8 1"0 12 14 16 18 2-0 2'2 24 2"6 2'8 3'0

t

Um'Oml)ensated controlled outh,t teml)eratun, resl)onsr if,
a sti.p velocity disturbarlee.

i

• In this case, the difference representatl,)n of the lead-lag comwn_ted

i ' ' feed forward i,s`signal

i " = %_Xl ) I)At_ 151)
(.- ]i. bin) _, i + -

! i Using the {¢nioqu.te gradieat technique, optimal lead-lag time constants
I I were comlluted Ibr several amounts of control weighting. The re.stilts are as
i i follows:!

| y ,_¢ T. s'l

i l.'neompenNated 0.70219 1.0000 !.0000

t i 0.1 !t.46461 0"6686 0"6119

0.01 O"15".16 0"3746 0"257 i
I 0.001 0.03239 0.335"/ 0.1999

Figure I0 shows the optimal control trajectory and _rrealmnding exit
l_esponse for ? = 0.001.

..... 6.2. Outlet lenilJ_rat,,.lre regulation of a lidmlar heal exchanger _ri_ slate measure

+f _: ti>:""o"2, control .'

" _'_ :_ ,_/_" ,-.+ Consider again the problem of outle, temperatu,e regulation for the tubular

_ heat exchanger, this time by meaus of state measure control. The load distur-' _" " '" bilnee is mum_xt to be a unit step increase in feed temperature. It is prolawzd
i

i'l_li_.',., to offset the disturbance effect by placing a sensor at some axial position within

_'__;_:_., _ _ the proeeis and using only the pmportiomil mode with the gain adjust,.,: lot
,_ +., " . ... zero steady-statc offset at the outlet, rnder the influence of the disturbance.

., _:., The s_llpres_! steady-state deviation profile Ihlx ) and the corresponding
, --:, steady-state control _},_ detemiinad by solving eqns. (31)-(311) with # = 0 and

':; it!- i. Ones these are known, the proportional gain O, for any meuure

#
_y

i" *l

i ".:_ -.,'.-,, _._"i,._+ _ '_'+ , ""- '+.. _+

' .. ill+ il_I "_ -I .. _. - _"
,,e IS I BIB
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Fig. i0

5r

0_(_)o I"_'_"_'--"-" ........."'5

vs oLJ

25 •
,20 •

10.

5.

0._
• • i t t t I,. * t t | I I t #

0 .2 .4 '6 ,S 1.0 1.2 14 1.6 18 2.0 22 24 26 2.8 30
t

,_ ()uth,t teml_,ratture r_ponm, to at ..,hK.ity di_turtmn('e ,l_ing

,, optimal feedforward h,ad lag control 190= t).114111.

I '
point x,0 can be eomputtd from the relation:

. G., _ u_.lx.l" 1521I
t A plot of i he resultant gain as a function of sensor ioeaUon is shown in fig. 1 _
i In order to apprai_- the dyna,nic pedormance of the exeha;_ger under state

measure t_ntrol, a closed-loop digital simulation may be ac{_mplished Insing
the system difference rel)resentat;,m, eqns. 145)-.14s). Since the control is
prol_rtional to the instantaneous value of the f,tate variable at th- measure

| point, i.e.
bit) = cA. d_lx., t), 15s)

the difference form at the nth time step for the/:th iteration may 'be written:

01t){n) ,= cA,.dt{t-'_(m °, n), (54 I

where m" is the spatial node corresponding t_ the measure ;_)int x.. The
," iteration is repeated at each time step until eonvergel,ce is attained.

Computation was performed over 3 residence times using time and spatial
• + increment, of 0.05 residence time and 0.1)5 dime_ionles_ distance unit, _pee-

tively. Upon computing the transient exit respolw* at each ,patial node, the
, exit integral-square error was comput4xl using 8imlmon's integration. To

_, . , penalize high gains obtained for larger x.,, a penalty term wa_ added to the
, performaut_ index, i.e.

',"1[  0(0.r)'-- 8 - _;_1l, tl]' + t)- dr. 15_1
r , _K,, x

_=_"_,.', Figure 12 show_ the resulting value of the performance index ,m a function of
the _r l_ri_tion, wkn and without the penalty.

t_,. dP
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Figure 13 shows the control trajectories obtained from tile simulation study
for several sensor locations, The corresponding exit re,ql)On,_e,_are shown ill
Figure 14.

In Figure 14 the top response indicates that the transducer is too close to

the inlet• The control action is premature, causing an excessive undershoot

of the set-point before the disturbance response starts to occur.

Fig. 13
o

-'2 I_romctcr : x m

-.4

-'6 ,7

-8

-1'0 1

-1-2

-1"4 _

-1 6

' -1'8

i t I I I I I l I I I I • i | i J ,0 "2 -4 '6 '8 1"0 1'2 1'4 1'6 1'8 2-0 22 2_I 26 2"8 30f

i t
State measure control trajectories for a step feed temperattlre upset.

Fig. 14
I

, , Ul11 ) Xm"4
"f * d'_ ............

Effect of lerieor location on the outlet reoponse to a step feed temperature ;.
:*,, I up-t using state me,.,ure control.

._ .-.. ....... ,. The bottom response shows the effect of having the transducer too far dotal

' _"i_ : " " 'i stream. The _ntrol response is too slow, resulting in excessive overshoot, due
_" i_. " _m to the distt, rbamve response. Ako, with the transducer close to the exit, the ..

_,_._. : , i proportion_ig.i:_ becomes high and cycling or instability may ensue.

" I I
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The best response, in the sense of minimum integral-square error (with _ •
control penalty), is shown in the middle. The probe is located such that there

J

is initially a small undershoot due to control action, followed by a small over-
shoot as the disturbance response arrives at the exit.

7. Conclusions

Two cont:'ol schemes were in_ estigated for regulatiJ,g the exit, state of a
linear distributed system or one exhibiting linear behaviour about an operating
profile. These were feedforward control in which a disturbance measurement
was fed forward to a controller to indicate corrective action and state measure

control in which the disturbance respol_se was measured at a point within the
system and used to generate a corrective signal. In practice, each would be
used to provide rapid initial disturbance correction, but used in conjunction

, with a small amount of integral feedback from the regulation point to eliminate
steady-state offset. Optimization for the feedforward scheme presented con-

, slated of determining optimal values for lead and lag time constants whereas
for state measure control, optimization involved the determination of an

t optimal measure point.
A computerized design procedure was demonstrated for determining optimal

dynamic compensation for the feedforward signal. The method of conjugate '_
i gradients was used to compute optimal lead-and-lag-time time constants to

_. minimize an index of performance. For the heat exchanger _v.qmple presented

' compensation for a feed temperature disturbance required a time delay, in
addition to the lead-lag compensation, to be inserted in the feedforward loop.

i For a velocity disturbance, it was necess_,ry to impose a penalty on control. effort in the performance index to constlain in the control to a physically
realizable level.

r A cic_sed-loop (with respect to the measure point) digital simulation tech-
, nique was devised for simulating the response of a tubular heat exchanger to a kr

' " '" step increase in feed temperature, using state measure control. The scheme was i
,! _" an implicit one in which the transient state at a given spatial point was multi- :

i l ! plied by a proportional gain to determine the value of the manipulated variable ,

• in the state e_lu._tions. A ow-dimensional search was performed to find the
i._ ...... ' best measure point in the sense of minimizing the exit integral-square error.

Using the resulting optimal measure point, state measure control provided: somewhat better performance than compensated feedforward control for the
same disturbance.

For distributed system regulation, state measure control has the advantage
:" _, that the distributed nature of the process itself is utilized to provide dynamic

compensation for the control signal and hence a simple proportional controller _.
may suffice for this portion of the control. On the other hand, the specification _'."
of the proportional gahi requires the knowledge of the nature of the disturbance. ._,_r,..
If multiple disturbances are likely to be present, it may be impossible to predict _.,

• i the exit error based on a single-point state measurement. In such situations it "!,,

_,, i would seem advisable to use a feedforward configuration, thus isolating the '="
-,-... I disturbance inputs. Feedforward control would also be indicated in situations
'._,_%.,'I where the response to control action is slower than the disturbance response.

_ _" ' "' _=_ Under these circumstances, the lag created by basing control action on the
disturbance response would only degrade the performance.

)
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,', OPTIMAL WALL TEMPERATURE CONTROL OF A HEAT EXCIIANGER*

:._. Harng-sen Huang, L. T. Fan, C. L. Hwang
; Institute for Systems Design and Optimization
_.* Kansas State University

,:_,. ABSTRACT -

' _"" An optimal wall temperature control of a slngle-duct heat exchanger

_ Is studied. The wall temperature which Is the control variable is assumed

to be uniform In apace but a function of ti:e. The system considered is :_
j:

a distributed parameter system where the fluid temperature is a function _

of time m_d a spatial coordinate. The contrci is to force optimally _

t the temperature profile of the fluid from the initial state to a new

tdesired steady temperature profile in a finite time. Two different

performance indexes are considered. One is the Integral of the absolute

deviation of the system temperature profile at any moment from the new

desired steady state profile and the other i8 the integral of the square

of deviation of the system temperature profile at any moment from the new

desired steady state profile. Both are to be minimized. Optimal solutions

are obtained by two methods, namely, linear progrmmin 8 and a variatioeml

technique.

ThLe etudy va8 eupportad in part by NASA(Grant 14o. HGR-17-O01-034) and

+I AlrOSI (Grant OSA_SR1r44620.-68-C-0020), *
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r INTRODUCTION

_: A heat exchanger is often an Important element in a variety of

engineering systems including the llfe support system in space veblcles.

It is used to absorb the heat generated by the adsorption bed for CO2

removal, the metabolic heat of the human body, the beat generated in air

_ conditioning units, and others.

In this study, optimal control of a single tube heat exchanger with

, __ a capability of controlling its wall temperature as a function of time is :

_'.., considered. However, temperature of the fiuld in the heat exchanger is a

t

function of both time and a spatlal coordinate. In other words the heat .,_

exchanger considered in thls work is a distributed parameter system whlch "_

is usually described by a partial differential equation or a set of such

C equations with time and one or more spatial coordinates as Independent

variables. A dynamic lumped system, on the other hand, is usually
J

modeled by a set of ordinary differential equations which involve tlme ]

as the only independent variable. Basically, all physical systems possess

the spatlal distribution of dependent variables, but often the varlables

are uniform in space or they nay be considered to be independent of space

_rLthout excessive loss of info_tlon. Under such circ_tancas a system

is said to be luuped. Hovever. for many heat exchan8ers, a lumped

approximation is tnedaqunta and it is necessary to take into account

spatial variationt of the variables to provide sufficient detail reserdin8

system behavior.

SpecificLlly. the problem in this work is to find • certain pattern

of the wall temperature variation with respect to time as thJt the fluid

temperature viii be chsnsad fret one study state profile to the nearest

'?

.mira
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possible vicinity of a new steady state profile in a finite time•

Usually the wall temperature can not exceed a certain temperature con-

straint that Is imposed on the control variable.

Yang [6] solved the transient response o£ fluid temperature in a
, ,'%

_ single tube heat exchanger subject to wall temperature variation Koppel

t/

et el. [2, 3] studied the optimal control of slmilar systems. The con-

I _' straint that was imposed to the system is of the integral type instead!,
of control saturation. They approached the problem baaed on the conjecture

t

that the control varlable is related to the system temperature by a certain

relatlonshlp. Sakawa [4] was perhaps the first to use linear progrumlng

i for obtaining the optimal control pollcy of the distributed parameter
!

system. Huang and Yang [1] used this technique to solve a heat exchanger

I: © problem with internal yell heat generation as the control variable. Both

wall and fluid transient temperature distributions depend on the internal

" . : heat 8eneretlon.

•. In the present study both iinear prosruBins and a variational tech-

_. ntque are employed. The variational technique employed here t8 stnllar

to that used by Koppel [2, 3], but an analytical control function is

obtained without Koppel es conjecture.

Sy•teR Equations,. The system considered In this york is •hom_ in

FIg. 1. It consist• of a duct through which a coolant flows steadily. Its

teuperature distribution is chansed from an initial •tats to • final desired

state. The foil•sinS ue_tlons are made [7].

a) The wall tenparature may very vlth tlmm but unlforu el•n8 the

x-aJr£s.

b) The fluid temperature and velocity are un£foM aloNj the radial

directl_.

mm teen n mm
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c) Axial heat conduction is negllglble in fluld. This is a

reasonable assumption when the Peclet number exceeds 100.

'_ d) The heat-transfer coefficient is constant along the x-axis and

: time. This assumption is experimentally verified to be

reasonable [6].

e) The fluid Js incompressible and all fluid properties are constant.

_ f) The flow channel has constant cross-sectlonal area.

g) The temperature of the fluid entering the duct is constant.

_ Nith these assumptions, the energy balance gives rise to the following
• _ • L

differential equation for the fluid [2, 7]. :_

___Z= u 0 A Cp _Ix,+Ax, - u 0 A Cp _Ix, + h P 8x'(_w - _) (I) _:,

p A Ax' Cp _T 1

t where y and _w are the transient fluid temperature and wall temperature,

respectively, 0 is the coolant density, Cp is the coola_t specific heat,

P is the wetted perimeter of the tube, A Is the floe cross-sectional area,

ah is the heat transfer coefficient between the wail and the coolant, Ax' Is

the differential distance along axial direction, and _ is time. The initial

and boundary conditions are

_(0, x') = _0 (2)

.y(.r, o) = Yo (3)

By introducin| the new dimensionless variables

"r .. (,I - xo) l ,¢0

s = h,v - vo)l_,o

_ O<x<l_.,- X • x'/L. -- --

t = T u/I,
hPt.

• lit _J,

pA_pu
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: _nd letting

the system equations, Equations (i) through (3), can be transformed

•4L to

_--__=X(o- _) (4)

T(O, x) = o (4a)

',, T(t, O) = 0 (4b)

' _" The analytical solution of equation (4) subject to the boundary conditions '

_ was obtained by Yang [7]. "

Perforutng the Laplace transformatlvn on equation (4) subject to the

initial condition given by equation (4a), one obtains

dT = K(6 T) (S)s_+ _-_

Integrating tnls equation subject to the trarJformed boundary condition of

equation (4b)

Y(s, O) = 0

leads to

K -Kx
_(., x) =_--_ (1 - • ,'*x)i (6)

The in_rse Laplace trsnsfors_tion of equation (6) |lvos two solutlou in

t_o douains of reel. t/_

_ I t s-Klt-Ox > t, T(t, x) = I{ e((;)dC (7)
0

c = It ,.Eli. 0 . h.Kx It-xx t, T(t, x) K e(Odr, ,'K(t'x'r') e(Od£
- 0 0

• I t i t-zc ,'_(t'OolOdt - c ,'Clt'OelOdg
o o

- I[, I t e'g(t'Oo(odd_ (81
t-X
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Two pettormmce tadt.ces are to be =tntsttxed. O_e ts the

I.l_t_t_l of the absolute deviation of the systm t_perst_re f_ the

4eslte8 fjev steady temperature profile Td(X) at the ftnal tl_t, if, uhtch

ill iIJ_flfl by

1

J - 01 ITltf, =) - l'dlxlld= 1101

s_d the other to the tntelral of the square of deviation of the system

..f_ t_efotvre fro_ Td(=) at the final _.'_e, which Is liven by

1 12
I - 01 [Tltf, =1 - Td(,=) dx 11011

.JII
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It is worth recalling that the flow through the system _s of the t

, slug _lov or plu 8 flow type. Therefore, if the final time is greater

• than the mean residence time, i.e., if tf > 1, the control maintained
/

at Od for 0 _< t < if, will lead to the flnal system temperature proflle

T(tf, x) which is exactly equal to Td(X) [compare equations (8) and (9)],

and thls in turn wlll always glve rise to the minimum attalnable
¢

_,_ performance index of zero. Therefore, the only case o. practlcal interest

_,i_i, is the case with tf less than one residence time, i.e. tf < 1.

'_,' While the two performance indexes given by equatlons (I0) and (lOs)

are quantitatively different, qualltatlvely both represent the

i
same entity, namely the integrated deviation of the systems temperature _

profile from the desired temperature profile.

APPROXIMATESOLUTIONBY LINEAR PROCIh_O4ING

Since the tntesrand of the objective function given by equation (10)

is llnear in the state varlab_e, the well-developed llnear progrmmlnS

approach can be used to obtain an approximate 8oZutlon. In order to

utillze the llnaar prosrmmlns approach, equstlon (10) is llnearlzed in

a 8tep-_lse manner by means of Shtpson's rule of intoSration as follows,

S - 0$1 JTltf, x) - Tdlx)Jdx

_ ctl_(t f, xl) - Td(Xt)l (Illi-0

vhare

l
x i "_, for i - Oi I, 2, ..., •

co - c. -
4

el " c3 " "'" " %-I "_

sad

sam
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c 2 c:, 2i rS • , • sl Cm - u

Equation (ll) contains the _ummation of all llnear ter_ and ehus

the linear programming approach can be utilized [I, 4]. Since the dimensionless

inlet coolant temperature is always zero, the first ten of the s_r_atfon in

equatlon (11) can be draped. In other words, the index Of |_ationb i starts

from one instead of zero.
Let

IT(if, x i) - Td(Xi) [ = as/ + epi, i a Im 2, ..., m (1:)

vhere esi, epi, i = I, 2, ..., m are non nOlative variables which satisfy

the follmalng relationship.

_. T(Cf, x i) - Td(X i) - ep£ - Calm I - I, 2m ..., m (13)

and

C epi - 0 and T(tf, x i) - Td(X i) = - el i if T(tf, x i) - Td(X i) < 0 +_

eel = 0 and T(tfm x t) - Td(X i) = epi if T(tf, xi) - Td(X i) > 0 (14)

api - esi - 0 if Tltf, x i) - Td(Xi) - 0 _ ,+i

i " lm 2. .... m

By Introduclu8 than nov varisblos, equation (ll) can be oxproaaod as

mJ

s u i.zx + .pi) (+L+S>

Iquatiou (7) sod (8) at the final t/so can be npprozinatnd by dividtn8

the tot81 trouiemt t/ms. if. into n ooJnmut_ and eaJua/u8 rust the O is

constant in each subinterval. Thus

n

T(tf, xi) - Z ALj Oj for i- 1, 2, ..., m (16)•I J'l

1974 N4 7' _' n7
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_'_. where
-.

= 0(t) for t < t < t.,
':_ Oj j_?_ _ J

k' tj = j tf/n for J = O, I, .... n,

_ and Atj are constants.
The linear programming model whlch will yield tile optimal policy o_

; the system can now be formulated.

Minimize

m

• E ci(esi + epi) (15)i=l

i
[ subject to

i _: _ T(tf, x i) Td(X i) = t - 1, 2, ..., m (17)• _ epl - esl,

8j _ 8max J - 1, 2, .-., n (18)

t = 1, 2, ..., m (19)
epi , esi _ Oj _• 0 J = 1, 2, ..., n

where Omax is the maximum allowable wall temperature.

From equations (7), (8), (9), and (16) through (19), it can be seen

that the problem can be stated as follmas_

Minimize

t 1 ct(est + ept) ?
i

subject to

Itm ilmmm mmmmlmt_mmmmmmmm
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' Allel + + Alnen pl 1: ... - e + es - Td(Xl)

A2191 + ... + A2nen - ep2 + es2 " Td(X 2)

_, • • o

,_,: AmlO I + ... + AanOn -epm + esm = Td(Xm) ,
N '

_" ei < _max

0 < 0
II -- max

_" est, epi, 6j > 0 for all i, J. 'ii ,
i This is a standard linear proKraunnin 8 problem which can be solved by the _ r

linear programming simplex method [ 4 ]. An IBM subroutine in Hathemat$cal i '

f

ProsraNming System/360 (360A-CO-14X), Linear and Separable Programaing, Is

' i
• _i t used for the co=putation.

SOLUTION BY A VARIATIONAL TECHNIQUE

Because the performance index given by equation (10a) is of the quadratic

type, the linear prograeming approach can not be used for its minimization.

'_htle the quadratic proBraamin 8 can be employed to obtain an approximate

solution, it appears that use of the variational technique is more appropriate

because of the possibility of. obtatnln 6 an exact or analytic solution.

The systems equations considered here are equations (4), (4a)_ (4b),

and (lOa).

Consider nov a snail chanse 66 in the control variable 0. The resultinS

q_ increnental response 6T in the st_¢ variable T of equation (4) must satisfy

the follovln 8 _ln_r perturbation differential equation.

|

1974004672-209
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6 _T - _ _T
_" = 7x + K(60 - 6T) (20)

The varlatlonal initial and boundary conditions are

t

6T(0, x) = 0 at t = 0 (21)

6T(t, 0) = 0 at x = 0 (22)

Nov the control function 0 which glves rise to the minlmtm of the

' "_ performance index given by equation (lOa) must be detemmined. In order to, _"

obtain necessary conditions for optimality, a relationship must be found which

expresses the variation of the performance index, _S, in tems of the control

' perturbation, 60. _,

The increment of the performance index, equation (lOa), due to the _.

system temperature variation is

" f i i
6S = 0 $ 2[(Z(t, x) - 'rd(x))6T][t=t f dx (23) _',

,, By adjoining the variational system equation, equation (20), to the vari-

ational performance index, equation (23)p one obtains

1 1 tf _T.. 3T

6S=0 / 2[(T-Td)6T]It=tf dx - 0 $ 0/ z[6 _+O_x-K60+Z6T]dt dx (24)

where z(t, x) is the adJoint variable.

Because of the identities of
t

(.6T)- _ 6T, •_ (25) "

! (s6'r) _z aT (26)

rubstitution of equations (25) and (26) into equation (24) yXelds

'_ 1 l tf

6S " 0$ 2[(T - T_iT]Jt,,tt dz " OI 05 [_'_ (z61') + _x (z61')

- (_ +_ - x,)_ - x,_s]_t_, (z_)

1974004672-210
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The first term in the second integral of equation (27) is now inLegrated

with respect to t from t = 0 to t - tf, and the second term with respect

to x from x - 0 to x - i, so that each term in the Integrand involves either

_' the variation 6T or _0 These give

., tf tf
: _ (z6Z)dt= [_6z]t=o (28)g, o

)

, f fl _ox = [z6Tll=ox_ _ (z6T)dx (29)

1 oAfter some manipulation and noting that 6T(O, x) = 0 and _T(t, O) = O,

the following result is obtained,

I tf

6S = 0 f [(2T - 2Td - z)6T]Jt=tf dx - of [z6T]x=l dt

' i_
1 tf _z _z

�/ f [('_ �-_x- Kz)6T �Kz6O]dtdx (30)
_" 0 0

' l_,e,lqminate terms not depending explicitly on 80 from the integrand of

-' ". the third integral of equation (30), it is stipulated that the adJoint

_._ variable satisfies the differential equati_

_z _z
-_.+ -_ - z== o (31)

This is accomplished by choosing the adJoint boundary conditions such

that the coefficients of unknotm endpoint variation 8T vanish. For the

coefficient of 6T in the second integral of equation (30) to be zero,

one has

z(t, 1) = o (32)

l
For the coefficLen_,_f _T in the first integral of equatioa (30) to be zero,

one has

1974004672-211
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< z(tf, x) = 2T(tf, x) - 2Td(X) (33) -_

The resulting variational performance index, equation (27), can now be

_ written as

, 1 t£
6S = f $ Kz(t, x)6e dt dx (34)

_, 0 0

Assuming that for the adJoint variable z(t, x) is piece-wise continuous,

. equation (34) can be rearranged by interchanging the order of Integration

as £ollowsi

tf 1
: 6S - K $ [ / zdx]60 dt (35)
' 0 0

i The analytical solution for the adJoint variable is obtained along

I_ _ the characteristic line which the following general relation exists. _{
along

I ds _t ds _x ds .7

I where s is the lenath along the characteristic line. Comparing equation(31) with this relation yields

dt

ds _

d'-s" -I,

dz
ds

Inteiratin8 these equitioil, one obtains

. x0 - I. (36)

msmm.,_
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where to, Xo, and z0 are values of t, x, and z respectlvely at the

_ starting point. The argument of the boundary condition siren by

:" equation (32) is represented by llne sesment C-Din Fig. 2. The argument

of equation (33) is split into two resions because T(tf, x) has two dlf-

ferent expressions from equations (7) and (8). Line sesment AB represents

_+ the argument of equations (33) and (8), i.e., for x _< tf. Line segment

_ B-Crepresents the argument of eauations (33) and (7), i.e., for x _ tf. .

_, Now consider point Q in Fig. _ which is inside the llne segment 8C. -

_, At this point, to = tf. Let i

t = tf - s (37)

x = x 0 - s (38)

C Then, eliminating s from these two equations, one obtains

x0 = x + tf - t (39)

Rearransin$ equation (37) yields

s = tf - t (40)

The slope of the characteristic line QP, (t - tf)/(x - Xo) , can be obtained

free equations (37) and (38), and is eoual to I. The am is true for the

characteristic lines B0 and CJ, which divide the arstment of adJoint

variable into tLeree resions_ 'i.e., resions I, II, and III. P.e$1on I is
.mmm

determined from the boundary condition at AB, realon U i8 dltemtned

from the boundary condition at BC, and resion III is determined from the
emm_.

boundary condition at CD. Substitutin8 equation8 (7) and (9) into equation

(33), the boundary condition at q becomes

m

1974004672-213



I

15

tf K(0-tf)

•. z0(tf, x0) = 2K 0/ a(o)e do - 28d[I - e"Kx0] (41)

Then along the characteristic llne QF, the solution for the adJolnt ,

:' variable can be obtained by substituting equation (39) into equation (41),

: and equations (40) and (41) into equation (36). £his yields ::

K(t-tf) tf K(0-tf) -K(x+tf-t)4"

,_ Z(t, X) I e (2K / B(p)e dp - 28d[I - e ]), (42)

! ofor

1 - tf > x>_ -- t

Since Q is an arbitrary point in the llne segment BC, equation (42) is the

solution for the entire domaln of region II. At any arbitrary tlme, region

II is inside the line sepent FG in Fig. 2, i.e., t _< x <_ 1 - tf + t.

In the same manner, the solution for region I, i.e., x <_ t of EF, can be

: G obtained by substituting equations (8) and (9) into equation (33), and by

noting that x is changed to x 0 because it is on the boundary point where

• r.' t I tf, x I Xo . The resulting equation i8 then substituted into equation :

' (36). Finally, replacing s in equation (36) by equation (40), one obtains

K(t-tf) tf K(0-tf) -K(x+tf-t)
z(t, x) i e (2K / e(o)e do-2ed[1-e ]) (43)t-X -_.

for

O<x< t. _

_inca the boundary condition for re$ioa III ti sara, it can be seen :i

from equation (36) that

z(t, x) - 0 (44) 2

for

1 __x, 1+ t- tf.

Numerical Procedure Baind on theICradl_ent Technique in Function

Space. Because t!_e control variable Is conltralnnd, end eq_Itlon (1) Is

linear In the control variable. 0. It Is lupositbli to let the Iradtent of

-It

"' I mm i
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the Hamlltonlan with respect to 8 be zero. The control variable will be

} of the bang-bang type unless singular control occurs. However, the

tterattve procedure by the gradient technique can be employed to obtain

the optimal control policy even in the singular control case. In fact,

a part of the control policy obtained in this work is singular. For a

_ lumped-parameter system, the perturbed performance Index is obtained for
/l,

_ continuous control processes by the gradient in function space method [5]
t '_* '

_ The resulting expression is
)

tf _il
6S = Of _-_ (60)dr :!

°5

where H is the Hsmiltontan. If one wishes to ntntmize the perfore_nce index, ithe gradient _H/_O is calculated and _0 is determined such that its direction '"

is opposite to the gradient, i.e.,

where a is a positive constant. Analogous to this, the perturbed index

given by equation (35) Is

tf 1

6S .E $ (o$ _]6edt0

and thus the control variation nay be 8Iven by

1

60-- $ =d,) (45)

Integration o2 the adJotnt vsrtab_t a]_tS x, vhieh appears in this

equation, can be accoupl4-hed by integrating equgtion (63) fron x = 0 to

x = t. integrgti_ equation (42) frmx - t to x - I + t - tf. amd

/_ integrating equation (44) frm Z - I + t - tf tO z - I. This yields

ms. sdl _
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1 K(t-tf) t tf K(p-tf) -K(x+tf-t)
f zdx = 2e { / [ / KO(o)e do - Od(1-e )]dx

0 0 t-x

::_ t-tf+l tf K(p-tf) -K(x+tf-t)
_: ) + f [K f O(p)e do - Od(1 - e )]dx}
-_. t 0 * I

(46)

: Interchanging the order of integration and performing the integration with

respect to x yield¢

1 K(t-tf)
f z(t, x)dx = 2e At(t) (47)

_, where

_:, tf K(o-tf) t Z(p-tf)

• _.,,_ At(t)= (l-tf+t) of 8(p)e do- K 0$ O(p)e (t- p)dp :_

1 K(t-tf) ._

-, 0d{l - tf + t +_ [e -K - e ]} (48) __

In computing the optimal solution, the following tterative procedure has

C been employed:

(1) Assume a control pattern e(t) = So(t).

(2) Compute the fluid temperature T(t, x) from equations (7) and (8).

(3) Compute the adJoint variable z(t, x) from equations (42), (43),

and (44).
1

(4) Compute the integration of the adJoint variable 0 / zdx from

equations (47) and (48).

(5) Let 6e = -a/1 sdx. Equation (35) will be _S = - _a/tf (68)2d t
0 0

which is always docreisin8.

(6) Cha_e the centralvariable such that eravisod(t) - Sold(t) �gO,

and repeat the whole procedure from step (2). If Orevissd(t)

exceeds its upper bound On semewhero between t = 8 and t = b,

I

m_
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' S - I [T(tf, x) - Td(X)]2dx _-.0

-,, tf 1

= f [Td(X) - Td(X)]2dx + / [Tl(tf) - Td(X)]2dx (49)
_'. 0 tf

',-, Note that the first integral of the rlght-hand side is zero,

To find Tl(tf) which minimizes the performance Index S, the gradient

_' of S with respect to TI has to be zero.

1

._ d._S ,= 2 f (Tl - Td)dX ,, 0 (50)t dTI tf

{ Since T1 is uniform for tf < x _< I, thls gives

1 1

i TI = i - tf tf I Td dx .

!: e
ed I -Kt f) ] :_

"z- tf [z- tf+g(e -z-e (hz) ,?

Substituting T1 into equation (49), the minimum performance index will be :,

/1
rain S = tf [T1 - ed(1 - e-If'x)] 2 dx :

[1 2 e-KX 2 e-2KX]dx _.- [(T l - ed) + 2ed(T 1 - ed) + ed
tf

26d - .
• (T1 - Od)2 (1 - tf) - _ (T1 ed)(a "K e "i_tf)

. __ (a.2 K . ,-_tf) 152)

While tim case with the quadratic pertorsanct luitx as 81van by

equation (108) 18 tim nain concern of this section0 the above araunant Is

equally valid for the performance lnde: 81van by equation (10). There

mmmnu_m nmmuod
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always exists a point, x = xI in the region tf _<x <_ i, where tilefluid |

temperature, Tl(t f), will change from Tl(t f) > Td(X) for x < x 1 to

Tl(tf) < Td(X) for x • x I. Then the performance Index becomes ii

1

",, S = / .IT(tf, x)- TdJdX,
.,/ 0 I]

tf Xl 1

__ - f IT d - Td[dX + f (Ti-Td)dX + f (T d - Tl)dx (53)o tf x1
r :s

_ In order to minimize S, its partial derivative with respect to x 1 and T1 I
t

must be zero. Taking partial derivative of S with respect to T 1 and letting

it be zero yield

_S

_T'--_= (Xl - tf) - (I - x I) = 0

i

: t This result implies that

1

x I .. (1 + tf)/2 (54)

Taking partial derivative of equation (53) with respect to x 1 and

' equattn 8 the resultln8 expression to zero yield

• " _S

- Tl - Td(X l) - [Td(X l) - T l] = 0

or

T1 - Td(X 1) - ed(1 - e'KXl)

hbotitution of equatton (SA) into this equation yields

-Z(l + t e) 12
'_z" °dlZ - " ] (ss)

Combination of equatiou (9) ad (55) 8hmm that

. . e-l(l + t/)12T1 Td • Od(e'_t ) (56)

m m u mu
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The minimum performance index of equation (53) becomes

(l+tf)/2 -Kx -K(l+tf)/2 I -K(l+t£)/2 -Kx
$ = f 0d[e - • ]dx + - ]dx

,' tf (l+tf)l_ 0die e

_ 1 e'ltf 1 -K(l+t£)/2 l+tf -l(l+tf)/2

= ed[g - g e I - ed[--_--- tfle

;' l+tf -l(l+tf)/2 8 -K(l+tf)12
. _ + 0d[l _ ']e +_ [e -K - e ]
t

Od -Ktf -K(l+tf)12
! [e-K+e - 2e 1 (57)

In the uncowJtrained case, the optlma3 control 18 i_flnite at t = 0+i.
j • _ and this is ImRedletely followed by the desired final steady state control,

e - ed. The optlmal control with constraints on control may be analosous

., ;, to this control for the unconstrained case. Therefore. it Is assumed that

the control is on the upper constraint boundary Inltlally and then move to

" the inner pert of the control domain. Provided this assumption is correct,

. one is required to locate the 8wttchin8 tins, t = t 1, at vhich the control

£8 uoved fr_ the upper bound to the inner part of the control domain, and find

the control policy after this swltch/JIK t/_e_ i.e. for t > t 1.

For the coatrol to be optin81, the variation of the performance index,

equation (35), must be identically zero. For the period t < tl_,m the

opt/ms1 coutYol is 0 u Omtx, two poeeibLltttee ex/_Jt. One possibility is

1
! ndx-O

0

t O0 that the control varieties 60, an 8i_m by equstion (45), is zero. The

o_t is

• mm m m
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01 zdx < 0 " !

d
so that the control variation, 6G, has to be positive. However, since ]:

,i

the control is already at the upper boundary, and the control is con- i

strained, 60 has to be zero. In this case, _he varla:ion of performance

_,. index, equation (35) t is zero again.

For the portion of the optim_l control not on the control boundary,
t _ only the first case can happen, i.e.,

1
/ zdx = O.

0

For the period t > el, therefore, 68 must be zero at the optimal control.

i From equations (45) and (47), one obtains

i ,(t) = 0 for t > el, (58}
) ' to satisfy
' I

i 0$ zdx = O. iThe intesral equJtlon, equation (_8_, where O(t) is expressed by equation

(48)_ can be oolved by twice dlfferentiatln 8 it with respect to t. Note

thst the intervals of intesretions in the risht-hsnd 8,'.de of equation (48)

ere from P = 0 to p = tf for the first tern, and ._r_ o = 0 to 0 " t for

the second torB. The interval of the first inteJrstion will be divtged into

two intervals Tqil_ from p s 0 tO p = t I Red from p - t I to p - tf. The

intervLl of the second lntnlrstion viii ells be aiwlded into two intervils

rm8in 8 from p - 0 to p - t I and p .. t I to p - t.

rot the period of t • el, the _ttm_l c_trol is _(t) - Om. Substi- !

turin8 this vsl_ into _mJtima ($8) mid _ffo_mtlst_ the riultiq a

:_ equsttm twice with respect to tins, t_ ms obtains

O(t)." Od. for t, _1"

j_

i m _nmmudJ
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a _(t) _s 0 at t = t I for the optimal cvntrol. Thereforet by

- substituting the optimal control policy [O(t) = Omax for t < tl,

O(t) = 0d for t >_tI] into equation (58), replacing t by tl, and inte-

grating the resulting equation, one obtains

0max - 0d K(t I - tf) (I I 0d -K 0max -Ktf I
, x e -_+tl-tt)=_e ---_--e (tf-l+_)

, (59)

" This equation can be solved for t I by iteration. For the unconst.ained

-_ _ t is zero.
,. case, where Omax ' I

A NUMERICAL EXANPLE

Numerical values of the parameters of the systp1, the final

dimensionless time t¢. - Tf u/L, the dimensionless heat exchanger coefficient _

C' K, the desired wall temperature, Od, 8nd the maximum allowable wall ._
q

tmperature, Omax, are taken as follows: _

tf = 0.5

K=I.O

0d - 0.5

0 = 4.0

The performance index given by eqution (lOs) will be deno';ed by S1,

i.e.,

. i l81 [T(tf, x) *' Td|2 dx,0

and the performance index 81yen by eq_tioa (lO) be denoted by $2, i.e.,

_) s2 - o/llTttf, x) -

1

. d 1
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Approximate Optimal Solution by Linear Programming. As stated

prevlously, this approach is applicable to the case with the objective I

:_ function S2. Figure 3 shows the approximate optimal control pattern !obtained by the linear programming method. This pattern is not strictly

of the bang-bang type. Sakawa [4] and Huan8 and Yang [I] obtained !

_ stmiIar results by using the linear programmlng method to solve a dlstri- , I

) _ buted parameter system. In this work, since the control Is assumed to be

a constant inside each time subinterval, the resulting pattern is discrete,

which is in contrast to the continuous nature of the results obtained by

, Sakawa [4] and Huavg and Yang [I].

* Figure 4 shows the corresponding temperature distribution. This :!

approximation was made by subdividing the tube into 20 segments. The time

i " _ increment employed here Is At = 0.01, I.e., 50 subinterval In time axis for

i
I s

tf 0.5. Since the integration In the performance index formula is approxi-

[ ,' mated by Simpson's rule, the points in Fig. 4 of x = .4, .45, .5 are connected
|

by a smooth curve. S2 corresponding to this approximate optimal solution

io 0.01576.

Variational Technique. As stated previously thla technique is mainly

applied to the case wlth SI. However, for the corresponding unconstrained

problems, both cases of S1 and S2 can be solved analytlcally with equal

ease. The values of S I and S2 are calculated from equations (57) and ($2),

respectively. The resultin8 final opt/Jaal syst_ temperature profiles are

given In Flgures 5 and 6 • In these figures, the solid lines in

the region of x _ 0.$ and the dash lines in the region of x & 0.5 aro the

desired temperature distrlbutlon_ given by equation (9).
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".' In Figure 5 for the case of minimizing SI, the optimal temperature I

distribution is T(tf, x) = Td(X) for x < 0.5 and T(tf, x) = T2 = 0.26135 |

for x > 0.5 which is obtained by equation (51). These are plotted by solid

lines in Figure 5. The minimum SI as given by equation (52) has the value

of 0.0005909. The value of S2 corresponding to the temperature distribution

@_, given in Figure 5 is 0.0148641.

_?_ In Figure 6 for the case of minimizing $2, the optimal temperature

distribution is T(tf, x) = Td(X) for x < 0.5 and T(tf, x) = T1 = 0.2638

for x > 0.5 which is obtained by equation (55). These are plotted by

, solid lines in Figure 6. The minimum S2 as given by equation (57) has the

! value of 0.0148385. The value of S2 obtained by the linear prograrmin 8 is _
?

0.01576 as stated in the preceding sub-section. This result is anticipated

because it is greater than the unconstrained optimal value. The temperaturei
!

i _ distribution in Figure 5 corresponds to the S2 value of 0.0148641. This

* value is greater than the present S2 value of 0.0148385 corresponding to

the temperature profile of Figure 6. This result is anticipated because

the temperature distribution in Figure 5 corresponds to the minimum S1 which

is 0.0005909. The S1 value in Figure 6 is 0.0229 which is greater than this

value.

Figure 7 shows the exact optimal control trajectory which minimizes

S 1. The switching time of control, tl, is obtained from equation (59) as

t 1 = 0.02914392.

Filura 8 shows the temperature distribution at various transient time.

Figure 9 shotm the corresponding transient distribution of the adJoint vagXable.

The dash line in Fig. 8 is the desired final tIRperature distribution, Td,

and is obtained from equation (9). The solid lines are the tmaperature

distribution at various time along the optimal control trajectory. These
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lines are obtained by substituting the optimal control policy of Fig. 7

:i into equations (7) for x > t and into equation (8) for x < t.

The lines in Fig. 9 are the distribution of the adJoint variable,

_ z(t, x), at various time along the optimal control trajectorT. These lines

are obtained by substituting the optimal control policy in Fig. 7 into

._ equation (43) for x_< t, into equation (42) for t _<x _< i + t - tf, and

v Each equation
._. into equation (44) for I _ x > i + t - tf.

_ represents a continuous line with continuous derivative. Equation (43)

, represents the curves with positive derivatives. Equation (42) represents
%

the curves with negative derivatives and is continuously connected to the ._

lines of equation (43) at x = t. Equation (44) represents the curves on

the x axis and _onnec_ed to the curves of equation (42) by dash lines. S1

C has the value of 0.000631104. While the same control pattern produces

S2 = 0.0158354, the S2 value from the linear programming part is 0.01576.
1

Figure I0 shows the variation of f zdx with respect to clme, subJect
0

to the control obtained in Fig. 7. For t < t I, it has a negative value) but

the corresponding control lies on the upper limit; for t _ t I, it is zero.
1

This result conforms with the previous analysis, i.e., $ zdx < 0 for
1 0 -

t < tl, and $ zdx = 0 for t > t I.
-- O --

Figure II shows the approximate optlmal control pollcy obtained by

the numerlcal Iteratlve procadure baaed on the gradient technique. The

reason it levlates from the exact optlmal pattern as obtained by the

analytlcal method Is that the exact control pattern svltches at t = .029143,

which can not be realised by using flue increment of _t - 0.01 by the

present nunerical iteration nethod. The value of SI is 0.000658405. For the

control pattern of 0 = 4.0, i.e., maxluun allowable valu_ _or t < 0.03

and 0 = 0 d - 0.5, for t > 0.03, the corraepondlu8 $ I has a value of 0.000660493,

sm l
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_ while the S1 corresponding to the exact optimal control as obtained by i
|

the analytical method is 0.000631. The deviation of the temperature II

and the adJoint variable distribution between the analytical method and I

1,the numerical iterative method are negligibly small. These plots are

. neglected. ,i

_. CONCLUDING .REMARKS _ _'

_, ._
_z In thls work, practical aspects in computation and solution of the "

optimal control problem of a first order distributed parameter system,

k,
more specifically a heat exchanser , has been emphasized.

' First it has been shown that linear programming can be advantageously '

employed to obtain an approximate optimal control policy for the case with -

an integral objective function, the integrand of which is linear in the state i_ I

variable. _ '
[

Both analytlcal and numerical procedures based on the variational

technique have been successfully employed to determine the optimal solutlon

for the case with an integral objective function, the Integrand of which 18

quadratic in the state variable.

In connection with this variational approach, it has been shown that

solutloa of the corresponding unconstrained problem which i8 less complicated

than the original constrained problem, Is indeed useful and beneficlal in

evaluatlng various approaches to be taken in solving the ori8inal constrained

problem.
%
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NOMENCLATURE:
|

c

A = flow cross--sectlonal area, ft2 i'

i

Aij = dimensionless constant ir

Ci _ dimensionless constant

BTU :.

C = specific heat, _ " i
P ii

- dimensionless variable defined by equation (14)
t._ esi

4.' epl - dimenelonless variable defined by equation (14) _

_ H = Hamiltonian function ':!

wru
h = heat transfer coefficient between tube wall and the coolant, ''_

ft 2 hr

i = dimensionless integer '_

hPL

K - dimensionless constant, 0 Cp A u

C L = heat exchanger length, ft !
i
t

m = dimensionless integer, total number of heat exchanger segments

n - dimensionless integer, total number of subintervals for tf

P = wetted perimeter, ft

S, S1, S 2 = performance indices, dimensionless

s = Laplace transformation variable, dimensionless; distance along the
characteristic llne, dimensionless

t = dimensionless time; tl, switching time; tf, final time

T = coolant dimensionless temperature; T, Laplace transformed temperature;

Td, desired coolant temperature

u - coolant velocity, ft/hr

x - hQat exchanger axial distance, dimensionless

s - a_Joint variable, dimensionless

_,_. Subscripts _,_

' t = summation along x-axta

J - summation alone time axis

| lU m=
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m = total number of increment along x

f
n = total number of increment along t

, Greek letters

' a = dimensionless positive constant

y = coolant temperature• °F

" YO " constant• °F

Yw = wall temperature, °F

p - density, lb_mm
, ft3 ; integration variable

z = time, hr

" 8 = dimensionless wall temperature; 8d• desired wall temperature; .-..

' 8 pl sf ; Omax• max• La ace tran ormed wall temperature Imum wall temperature _

_(t) = dimensionless, defined by equation (48)

| _ 6 - variational operator, dimensionless

i

l

Mm
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Fig. I A single tube heo_ exchonger.
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Fig.2 Choracte'isticlines for the
adjoint variable.
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Fig.5 Optimal final temperature distribution
without control constraints for the case
of So.
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Fig.6 Optimalfinal tempemtmecrstributionwithout
control co_,tstmintsfor the case of S=.
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TEKMINAL CONTROL OF LINEAR DISTRIBUTED PARI_[ETER SYSTE._[

BY LINEAR PROGR_I!NG*

H. S. Huang, L. T. Fan, and C. L. EwanE

Institute for Systems Design and Optimization

$ Kansas State University

r "_**

'" " August 29, 1969

ABSTRACT

Literature on the optimal terminal control of linear distributed

parameter systems by _eans of the linear programming technique is
]

reviewed.

Some suggestions are made which may facilitate computational

aspects of the problem. A brief acaount of the theory of linear pro-

Kram_ming is also given.

This study was aupported in part by NASA (Grant No. NGR-17-001-03,;) and
AFOSR(Grant USAFOSR¥44620-68-¢-0020).
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The main purpose of this report is to review critically and

exhaustively literature on the use of linear programming for the ovtlmal

terminal control of the linear distributed parameter system. Because

of the availability of well developed standard computer subroutines

[for example, IBM subroutine, Mathematical Prosramming System/360
j_.

(360A-CO-14X), Linear and Separable Programming], linear programming can

%_ be a very powerful technique, if we can convert a problem to a standard

linear programming problem. Zadeh and Whalen [1] appear to be the first

to use the linear progra_s_ing method for solvlng various lumped optimal

control problems of the lumped systam. Sakawa [2] is probably the first i
i

one to apply this approach to the linear distributed parameter system.

( This paper is divided into three sections. In the first section

linear progra_nlng is briefly explained. The second section shows how a

proLlam of optimizing the llnear distributed differential system with a

linear performance index can be reduced to a standard linear programming

problem. In this section a method for opttmizin S such a system is proposed.

which is based on Lesser and Lapldus's [3] approach for solving the time-

optimal control problam of a lumped system by llnear programming. Their

approach may be adopted for the more complex linear distributed parameter

systems. Several practical examples of the linear opt_lly distributed

parameters systems are reviewed in the third section.

t

m mind
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THEORY OF LINEAR PROGRAMHING

Corslder the general system described by the foll_Ing linear

equations.

allXl + al2X 2 + ... + alnX n " b 1

am2x2 = b

L_

where the x's are the unknowns, the a's and b's are the given constants

and n > m. The problem of optimizing the system Is to flnd the xts which

satisfy the condition

j: ¢ xj,_0, j - l, 2, ..., n, (2) _i
, and minimize the objective function

" z - ClX 1 + c2x 2 + ... + CnXn, (3)

where the c's are constants. These x's are called the optimal solution of

the system.

To obtain the solution by analytical means is very difficult if not

impossible. However, the problem may be solved numerically by linear programming.

One of rJ_a moat commonly used techniques r" linear prosramning ls the so-called sim-

plex uethod developed by Dantsi8 [4]. It xs an iterstive procedure for deterntnJng

the optJJnal extreme potnt and may be explained in the follovtn_ _anner.

The Gauss-Jordon reduction method is applied to equation8 tl) and (3).

The first step of this umthod is to divide the first expression of equation

) (1) by all. The next step 18 ¢o eliminate terns containln_ xI from the ._

rematntt_ u-1 expressiona. This ls accomplished by aubtrscttn_ each one of

"e

I m m n= seem I
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%

-., the other expression from the first expression after a simple manipulation. :

The second expression is then divided by the constant which normalizes _

the coefficient _f x2. Followln 8 the same procedure as that for the xI

tens, tens containing x 2 are eliminated from all the other expressions.

Repeating these procedures to all the m expressions and eliminating all the __

x t, f = 1, ..., m, from equation (3), we obtain

f t !

t "_ , x 1 + al,m+ 1 xm+ 1 + ... + al _ xn = b 1

!

,_, x2 + a2,m+ I Xm+l + ... + a2,n xn = b2

(4)

X �"%man n mm m,m+l Xm+l + "'" + a x = b
4

i

i" %+iXm*l+''" + c' x - z- zo,n n

' where atj, b i, and cj are the modified values of nil, o1, and cj, respectively

i • and z0 is a constant, ,_
One of the many possible solutions of equation (4) may be expressed as .:

x t = b i, for i = 1, 2, ..., m, i

= O, for t = m+l, ..., n. '_

where x 1, I = I, 2, .,._ m, are called the basic variables, and thls set is

called a basis. The value of the performance function Is _,

:22: ...'ii
A basla vh tisfias equation (T • basis to
be feasible, it is required that bi > O, for i = I, 2, ..., m. Now, from the

0 sisn of c_, J = u+l, ..., n. in equation (4), one can detaruine the basis for

the adJecant extreme point for which the current value of the performance
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j
function tends to decrease, that is, the value of the performance function

!

may be reduced by shifting one of the nonbasic variables with negative cj
f

into the basis. Let this nonbasic variable be defined as cs, where m+l _ s _ n.

By shifting the Xs'S col_n to the right hand side, equation (4) may

now be rewritten as

! t ! !

x 1 + al,m+ 1 xm+1 + ... + 0 + ... + al, n xn - b 1 - al, s x s

t ! t i ! !

, _ x 2 + a2,m+ 1 xm+1 + ... + 0 + ... + a2, n xn b 2 - a2, s x s

(7)

! ! | | t

X �aXsYl" " " mpn n _ lm,8 sm m,m+l I + " + 0 + ... + a x - b - a x

Cm+I xm+I + ... + 0 + ... + cn x n- z-z O-c s x s i

C
Since xs is the only nonbasic variable allowed to deviate from zero, _!.

the basic variables and performance function are xs-dependent,

b't ' t - 1, 2, , m, (8)xi u - aips Xs : ...

z- zO+ c' xs. (9)6

!

• Here, the al, s can be any finite value. From the condition x i _ O, x s mue_

in accordance with equation (8), satisfy the condition

! !

b I - ai. sx s__ O.

or

_'* a,_,,.tB t_1 xs -_ , if at,s > O. (10)

be_ !
By destgnstln 8 :J.l_tse_ t. which ytlldo the _tJmLIo Va].ue of :t/at,S zor

_) atO > O,u r ve can trrtta

. e b !

br " t t
m n _- nax zs (II)

/

m Imm_ _lm
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The ratio is the maximum x s,

?. implies that the performance fl,nctlon may be reduced by replacing x r by x s

as a new basic variable. As a result, the new basis effectively accompllshes

a Jump from the origlnal extreme point to an adjacent one with a sub-

sequent decrease in the value of _'. In order to replace x r by x s in equation

(4), the Gauss-Jordon reduction is applied to equation (4) to form another i
r

new cannonical form.

J

"_.., x) + al:r Xr + al,*m+l -.- + al:n '1"x_ I + ... 0 + ... + x n - b

ar,rt* Xr + ar,m+l Xm+l___+ "'" + 0 + ... + a t*r,n Xn = b'*r ¢_J
/

(12)

+ + i/k t_, X " b t_

8 _,r xr _ _,.+l X.+l+ "'" +o+ ... +",,n . m
+ '* + +o+ . +c-*

C'r* Xr Cm+l Xm+l ..... n Xn = z-z O-c' br*8

This procedure is repeated until all coefficients of the performance

function become positive. In the meantime, z cannot be reduced by the In-

creue in the nonbasic variables. Therefore, the solution i8 the optiul

butc solution.

The principal disadvantase of the simplex method is that, in the process

of n_ertcal reduction, many n_er8 have to be computed and recorded. These may

not a].l be used in the succaadin8 computational steps or nay be tread only in

an indirect way. However. the process 18 uade necessary because it Is not

known a prtodvhich n_mbars are needed and which are superfluous.

In order to eliminate this ceuplexity, a revised simplex method hu ban

g

_) developed [4]. Instead of computinll 811 the coefficients ai,j, I - 1, 2, ..., u.
|

J - m+l...., n. the revlead s/mplem method nnede to compute the ai.a.

1974004672-247
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4 I - I, 2, ..., m only. A linear progra_mln 8 subroutine based on the revised

slmplex method is avslt•ble [for example, Mathem•tlcal Progr•mmlnR $ysteml3b0

(360A-C0-14X), Linear and Separable Prograemlng]. Since thls revised

method ls baslc•lly identlc•1 in principle wlth t_.e orlgln•l slmplex

method, the decalled procedure of the revlsed simplex method is omitted.

OPTIMIZATIONOF DISTRIBUTEDPARAMETERPROBLEH
t 4"

_ I. Integral Representation of State Equations.
L

S•kawa [2] is prnbably the flrst one to apply linear progr_Ing to the

i solution of llne•r dlstrlbuted parameter problems. Thls sectlo_ generally
follows hls approach.

The state equ•tlon of • 11near distributed parameter system generally

can be represented by the p•rtl•1 dlfferentl•1 equation
A

az 3z= fo(X, t) z + fl(x, t)_+ ... + b(x, t)u(t _ (13_

• tete equatlon together with tts boundary conditions may often be repre- ._The

sented by the integral equation

t
z(x. t) = / g[x. X] u(X)d_ + h(x, t) (14)

0

SuppoJo thor • uuurt o! the deviation from the desired state at the

flnal ti_ 8ivan by

4

s - I _ I ,Ix, t t) - SdlX)lex (is) :0

ts defined am the pertormmce criterion or index of the 8yotam. Optimisation

(ulninisatton) of the eyotem 88 represented by equations 113) throuf_h 113) can

be accouplished by the lineJr pro/_rmatin8 approach.

n , I ........
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Approximating the continuous control function u(t) by a number of

discrete constants,

uj = u(t) for t j_ 1 _< t _ tj (16a)

J tf
= for J - 1, 2, ..., n, (16b)

tj n

_:_, equation (14) at the final time can be rewritten as [5]

, tf
L

.' z(x, tf) = 0/ g(x, _) u(_)d_ + h(x, tf)

i . n tj

-, E f g(x, ),) uj d_ + h(x, if)J=l t J-1

i n tj

i = Z uj / g(x, X)d), + h(x, tf) (17)• .. _ _-I t]-z
C

i
Sakswa [2] originally used Simpson's rule to Integrate approximately equation

i
i (14), I.e.,

ztx, t t) _ _: g(x, tj) u(tj) dj + h(x, if) _J-O
where

tf

id I d3 • - du_ I ='_ . "

2tf

d2" d* " "'" " dn'"'4_n" t
When the lntasrsnd in equation (14) t8 continuous, this approximation gives rise

to a sufficiently accurate solution. P_tvor, tn the cue of • discontinuous

inta8rand, the accuracy of this spprox/_stion will be very poor. Usa of

equation (17) does not liVe rise to much • difficulty even if u(t) is dtacon-

1974004672-249



The performance index given by equation (15) can now be approximated by

Simpson's rule as

' L

_ S = 0 / I z(x, tf) - Zd(X)[dx

"_:_ % E cilz(xl, tf) - Zd(Xl) [ (18)

% £=0

".:- where

', ) Li

xi =-- for i = 0, i, 2, m

e
CO _ Cm 3m '

4L
: Cl = c3 = "'" = Cm-i = _m

• and

_, 2L

z " _ c2 = c4 = "'" " Cm-2 =3mm
!

i
!

z(xi, t t) in equation (18) can be evaluated from equation (17).

n tj

I = g(xl, k)d_ + h(xl, tf)
' , z(xi, tf) jr-iuj tj-I$

!

', n

= E Aij uj + h(xi, tf),J'l

i = O, 1, 2, ..., n (19)

Let

[z(x i, if) - zd(xi)[ = emi+ epi, i - O, 1, ..., m (20)

where esi, tpi, i - O, 1, ..., m, are non-neaative variables which satisfy

the followin8 relati_hipa.

D a(xi, tf) - ad(X i) = epi - eat, I - O, 1, ..., m, (21)

qF.....

-- , m ....... . ......
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!

and r
L
/

r

epi O, z(xi, tf) Zd(Xi) esi / !'

if [z(xi, if) -Zd(Xl)l < 0 ,/ i
(22)

'. esi O, z(xi, tf) Zd(Xi) epl _ !

_" if [z(xi, if) - Zd(Xi)]'> 0 ', t.

" i = O, I, m .__w

%,

_ By introducing these new variables, equation (18) an be expressed as

__ (esl epi)

• '_ m

S - r ci + (23)

i '-° i
The linear programming model whxLh ,olii yield the optimal policy of l

f

the system can now be stated as follows:

Minimize I

m

S - Z cl(epi + esl)i=O

subject to

z(xi, tf) - Zd(Xi) = epi - esi, i = O, l, ..., m

uj _<U ax

i = O, I, ..., m

epi, esi, uj -->O, J = 1, 2, ..., n

where Um_x is the maximal allowable control value. The inequality r_l_tlon

uja u x

can be removed by introducing a set of new variables euj such that
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uj +euj =.ms x

e > O, J = i, 2, ..., n
uJ-

By substituting z(xi, tf) from equation (19) into the above formulation, the

probleml can be restated as follows:

Miniillize

Ill

S = Z ci(epi + esi)i=O

subject to
2

A01u I + ... + A0nUn - ep0 + eso = Zd(XO) - h(x 0 tf)D ,.

• . - + " Zd(X 1) - h(x I, tf)AllU1 + . + AlnUn -epl esl

O AmlUl + ''" + AmnUn -ePill+ esm = Zd(Xm) -h(Xml' if) _;

•
• ).!

uI +eul = ureax !

: •

U �•" U
n un _ax

esi, epi, euj, uj > O, i = O, 1, ..., m
J = 1, 2, ..., n ::_.

This is a standard linear prosr_Ring problem which can be solved by the

simplex or the revised simplex method.

2. Discrete Time Repr.esentation of State Kquations.

The intesral representation of the differential syst_, equation (13),

can be converted to the linear prosr_in 8 fore without much difficulty. _/

O However, only a simple systta with simple boundary conditione Is amenable

to the intesral representation. It is, therefore, more advantageous to . _.

.=,

_" " , | " ' , . . 'L .......
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convert the partial differential equation of a complex system to a _'

differential difference equation instead of an integral equation.

Very often a distributed diffusiona[ process of the process industries I_

can be represented by a model containing completely stirred tanks connected

• in sequence. For such processes, an equivalence can be established between !
_' a mathe_atlcal model given by the differential difference representation

_ and a physical model of the stirred tanks in sequence.

By subdividing the system by m+l Qegments, with the two half-sized
W_

segments at both ends, and lumping all the properties within each segment,

_, the partial differential equation, equation (13), can be approximated by

( m

t) = E aij(t) zj(t) + bl(t) u(t), i = O, I, ..., m (24)
J=O ,t

, zi(t) = z(xi, t) _'

|

Lesser and Lapidus [3] used the linear programming method to solve a i
.j

time optimal problem of a lumped system represented by thls set of differential _

eq_attons. They converted a continuous control function involved in the "

system into a discrete-time function for approximation. We shall propose

'; '_ a scheme in which their approach is applied to the terminal control of the _

linear distributed parameter system. Approximating the continuous control

function u(t) by a number of discrete constants, control functions, we have
o

uj = u(t) tj. 1 < t_< tj /,
i

J tf

tj =-'--- J " O, lo ..., n

The coefficient uatrix [ail(t)] and [bl(t)] can be approximated by
t.

! "' _ ' ' mlumw4,. _ '_ _ , .......
|
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:_ II 1 (tk) ] + 17: _k =2 [asj i [alj(tk-l)] "

• k i {bl(tk) + }, k i, 2, n (25)bI = _ bl(tk-l) " ...,

Substituting the above relation Into equation (24) yields

• _ _k k Uk' i = O, 1, . , m (26)zi(t)= • _.(t)+ bi . .

k tk_ 1 < t < t k

; z;

',_<, This is a set of linear differential equations with constant coefficients, <

and the solution is q

At . _k
_-(tk) = exp(Ak At) Z(tk I) + I exp(A k s) ds • uk (27)- 0

where _. and _k are column vectors of [Zo, Zl, ..., z] and [b , b I, ..., b ], _

Let

-k k k

" = exp(_, j At) - exp[ht r. AJl
GI J=l+l J-l+l /

1 _> k - 1, 2 .. , n (28)
0k " , •

/
Pk = 0 fat exp(Ak s)ds • _k J

By substltutlng these definitions into equation (27), the following set of

equations is obtained

-, z(t0_ + ,_l "Ii(t l) = oo •

i(t 2) - exp(i 2 At) [Go1 F.(to)�i Iuil + i2u2

+

-k i(t o) zk -k iji(tk) = GO" + .1-1 Gj • • uj
n

i(tf). _. ;(to) + z _ • tj • uj (2t)
;1-1 _

>.
• , m

197400467:;::1- .r-,4
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Replacing the matrix notation by its components yields

m n,0 n m Jk, zi(tf) = r. zj(t O) + Z [ y. n,J
J-O gi,J J=l k-O gi'k p ]uj

'_ n

_i = hI + Z AI, j uj, i = 0, I, ..., m (30)
J=l

'_ where

-n = , n,J, and [p ] :_Gj lgl,k j = :_

i "_f

!_: ¢ The performance index, equation (I5), Is replaced by equation (18) . This _

time discrete problem is then reduced to the same form as that given in the "_

o_

preceding subsection on the integral representation. Equstton (30) is

i equivalent to equation (19). The rest of the procedure for applying linear

I : programming is the same as in the precedin S section.

Iml ... m

_qpr-a , _ o --.L

I
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EXAHPLES OF DISTkIBUTED PARAMETER SYSTEM _'

A. Heat Conduction System

Sakawa [2] applied the linear progrmn_ing method to the solution of

a practical example of optimization of the linear distributed parameter

system. 11Le process considered by him is a one-sided heating of a metal slab

'_/_ in a furnace and is described by the diffusion equation [see Fig. I]

#
t 7_ a2q(x, t)= acL(x_ t) (31)S _ t

,,_ _x 2

__i' where q(x, t) is the temperature distribution in the metal slab which depends

• on the space coordinate x(0 < x < i) and time t(O < t ."T). The initial and

boundary conditions are given by
q

(
i. q(x, O) = 0 (32)

t

! _q(x, t)I = a{q(O, t) - v(t)) (33) -
Ix=O :,

' Ii _q(x, t)

= 0 (34) a._x x=l ._
!

$ where a is the heat transfer coefficient and V(t) is the furnace

gas temperature. It Is assumed that the gas temperature, v(t), has a first- ]

order phase lag from the fuel flow, u(t), i.e.,

o

where y is the furnace time constant. The performance index is defined as

the absolute deviation from the desired temperature profile at the final

time T
!

S = 0$ I q*(x) - q(x, T) ldx (36) :

where q*(x) is the desired temperature profile.

m

.....-m......_ .._._._i..._ _

1974004672-256



15

This set of system equations is transformed into the integral repre-

sentation by the Laplace transform. The resulting equation is

t
"' q(x, t) = / g(x, t-T) u(_)dT

0
f

i
, q(x, t)

2

_ = k 2 cos k(1-x) e-k2t + 2k 2 ® cos (1 - x)8 t e-8 t t

_ I I + a)cos k - _asin k i=l (k2 - 8 )(_+-_-- cos 8i
6i (37)

; where k = l/_-y.

i Equation (37) is equivalent to equation (14) and equation (36) is

equivalent to equation (15). The procedure for solving thls problem by .}

linear programming has been given in the preceding sectzon. A typical optimal

control policy obtained by Sakawa [2] is shown in Fig. 2.

B. Single Heat Exchanger Without Wall Heat Capaclty
Hvang, Fan and Hwang [5] determined the optimal control of a simple

plug flow tubular heat exchanger by using the linear progr_ing approach.

• A graphical representation of the system considered by the= is similar to

?
that shown in Fig. 3. The process is described by the equation

aT(x. t) + aT(x., t) = z[e(t) - T(x. t)] (38)_t _x

where T(x, t) is the fluid temperature distribution inside the heat exchanger

_ and Is depandent on the space coordinate x(O < x < I) and time t(O < t _< T),

_ : e(t) is the tube vall temperature vhlch is uniform along the space coordinate

? ._ and is t-.sated as a control variable, and K is a constant heat transfer

_ coefflcient.

z ....
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The initial and boundary conditions are given by

Z(x,0) = 0 (39)

/ T(J,t) - o (40)

The performance index is defined as the absolute deviation from the desired

_/

_ temperature profile at the final time tf.

1

:_ S = / ITd(X)- T(x,tf)ldx (41)

where Td(X) is the desired temperature profile.
t •

,, This differential system is solved by the Laplace transform. The

t resulting integral representation is

: _ e-K(t-_) e(_)d_, T(x, t) = K I , x > t

i _,. (42)
• t e_K(t__)[ C' T(x, t) - K I O(K)d_, x < t

i t-x
!

i
! _' Equation (42) is equivalent to equation (14), and equation (41) is equivalent
#

i to equation (15). A typical result obtained by Huan8 et al. [5] is shown

I_ in Fig. 4.
C. Tubular Heat Excha.nger with Internal Heat Generation

Huang and Yang [6, 7] solved an optimal control problem associated with

a tubular heat exchanger with internal heat generation by the linear progrmmin R

approach [see F.t R. 3]. The syst_ consists of a circular tuba of length L

iI through which a fluid flows' .ieadily. Heat is senerated in the tube wall.

: ..c,:...... The process is doscribod by the following equations.

(431

"_" g'T_ u_) =e-T ..

nn _

1974004672-258



•, _ _ _-_-_* _im_ _'_'_''

17

j

where 0(x, t) and T(x, t) are the wall and fluid temperature, respectively,

, ¢(t) is the rate of heat generation in the unit volume of tube wall and
4

is treated as the control variable, 0 is the density, c is the specific
P

heat, K is the ratio of surface conductance to heat capacity_ t is the time,

u is the fluid velocity, and x is the axial distance measured from the inlet.

The physical properties of the tube wall are distinguished from those of the

_ fluid by the subscript w. The initial and boundary conditions ure
J

T(O, t, ¢) -0

T(x, 0, ¢) = 0 (44) :

o(x, o, ,) -o

The performance index is defined as the absolute deviation from the desired

temperature profile at the final tlme tf, l.e.

1 T(x, tf, _) e(x, tf, _) _LOa(x)l)d(X)s- I (ll- I+ l[l ] (45)
0 T*(x) O*(x) T*(x)

where T*(x) and O*(x) are the desired fluid and wall temperature distribution,

respectively.

The solutlon of the system equation, equation (43), which satisfies

appropriate initial and boundary conditions may be obtained by usln_ the

Laplace transform. On applyln8 the Laplace trsnsforawlth respect to t,

the partial differentia1 equations are reduced to two ordinary differential

equations of veriable x. The 8aner81 solutions of the ordinery differential

equations are then fitted to the boundary conditions, and the final solutions

are obtained by the application of the inverse transformation as follows:
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)9

)

contains only one. Equation (45) is approximately the same as equation

(15). Two absolute value functions are inside the intearation sign of

eqtlation (45). Each absolute function should be defined separately as
.%

in equation (20). Figure 5 shows a typical control policy obtained by

Huang and Yan$ [6, 7].
7c

I

. SUMMARY

:i

_ Although linear prograuning is a powerful technique for determining
t i

the optimal terminal control of the linear distributed parameter system,

literature on this subject is fairly meager. Sakawa [2] appears to be the

t flrsr one to apply the linear programmin S method to the terminal control

,' of the linear distributed parameter system. He used Simpson's rule to

transform the integral solution into a llnear ccmbinatlon of control functions

_t which were evaluated at equally spaced sample points. For the case of a

hishly discontinuous control functlon_ e.$., bans-bans type, this approxi-

mation may 81ve rise to a serious error. Use of an approximation which

employs a plecewlse constant control function may be able to clrcuuvent this

difficulty.

I" ":,: Lesser and Lapidus [3] solved a time optimel control probl_ of 8 h_sh

 i2,r
l_kr-,_ dimensional lunped parmter syst_ by linear proar_InS. It appmers that

' of couplex linear distributed .ysteme.

T" , ' , ..... "="" .'"i ...... _ ""
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FAN el oL: MATHEMATICAL MODILS 01' THh HUMAN THERMAL SYSTEM 2_l

t [35] ditcretizes the temperature profile of the element A, Effective radiation area.and considers the variation of physical parameters, but a, b Factors which sigh the contributions to the
the regional variations are not included in the model, rate of change of body heat content by the

Although the physiological thermal regulation has increment of the rectal temperature and by
been recogni/cd for some time as an important factor the increment of the skin temperature re-
in the htJm,m thernml system, the mathematical de- spectively [in (10)].
,_crq)tHm of this phenonlt.n4m is still not satisfactory, a_ Radius of the ith element.
Tht. m,del developed by ('rosbie el al. [11 ] uses the C Rate of heat exchange with the environment
geometry of its infinite slal_ rather than a series of con- by convection.
centric cylinders, and I}uihls in the function of physio- C_ Thermal capacitance of the core of the
logical thermal regulation by allowing the effective extremities.
thermal conductivity, metabolic rate, and rate of Czs Thermal capacitance of the skin of the

1.. vaporization to vary as a function of tlae weighted mean extremities.
temperature of the body. The model, however, does not Cae Thermal capacitance of the core of the head.
include the effect of reglnnal variations in heat genera- Cns Thermal capacitance of the skin of the head.
tion rates and blood flow rates. Cp Specific heat.

A physiological thermal regulator has been developed C=rc Thermal capacitance of the core of the
by Stolwijk and Hardy [27 ]. The model, however, does torso.
not consider the countercurrent heat exchange between Cra Thermal capacitance of the muscles of the
large arteries and veins• A mathematical model of torso.
physiological thermoregulation developed recently by Crs Thermal capacitance of the skin of the torso.

. Stolwijk and Cunningham [26] can consider high met- D Rate of change of body I:eat content•
: abolic rates. Future human thermal models probably Dt Diameter of the cylinder.
• shouM inch|de both regional variations of the physio- E Rate of heat exchange with the environment

i . logical Imrameters and physiological thermoregulation by evaporation.
of each element. E, Evaporative heat loss.

The slab geometry was also utilized by Buchberg and E,_ Respiratory water vapor loss of the core of

Harrah [6] in establishing the relationship between the the torso.
' - _ temperature of coolant in tubes and the mean skin E,s Respiratory heat loss assigned to the core ofi

: ;_ temperature. Their model, however, does not consider the head.
i _j" the heat transfer by the blood circulation, regional varia- EX Exercise (kcal/mt/h).
i _ tions in heat generation rates, and blood flow rates. F_ Wetted fraction of the ,mrface.
: _ To utilize physiological information available in open .f, Effective contact area factor, dimensionless. :

i literature [1]-[5], [10], [12], [13], [16], [19], [24] H Effective heat loss assigned to the core of
l and to combine Wissler's model [31 ] with Stolwijk and the head.

Hardy's [27] model of the physiological thermoregula- H,, Heat transfer coefficient for direct transfer
I tion, it is very desirable to provide an improved model between the large arteries and veins.

! for the human thermal system. Such a model should H_ Effective heat transfer coefficient at the

consider the effects of regional variation of physiological surface of the ith element. ,.. parameters and the physiological thermoregulation of H, Heat transfer coefficient for convection.
each element. This new model would adopt Buchberg Ho Heat transfer coefficient for evaporation.
and Harrah's [6] conduction cooling to investigate the H, Heat transfer coefficient for radiation.
responses of the human thermal system to an external /s Heat transfer coefficient (skin to air) also
control device such as the space suit. The primary pur- known as surface conductance.
pose of the external thermal regulation device is to keep h._ Proportionality constant of heat transfer
the human body in thermal comfort [21], [22 ] by saris- between the arteries and tissue per unit
lying the requirentent of thermoneutrality, volume.

/_ Rate of heat transfer from blood to tissue.
% ,,,

_'__. - NOMR_Ct_TURS /h, Rate of tissue heat generation by metabolic_ reactions.

' , ;" A Body surface area. /J,_ Proportionality constant of heat transfer" "::-

A' Effective area of the exchanger, tween the veins and tissue per unit volume. ,_
A. Effective area of the body creatins convec. _Y Thermal conductivity.

tionlosses. Xt Universal radiation constant =,4.92 X10 -s

W A. Effective area of the body creating evapora- cal/mS/h.
tion _ K. Coefficient, heat exchange by convection.

"_-r= _::'_:-:::' ' - --' ;_ ............ ...................................1 . • ._'7 _ ' '/'--,:'-'- ..... '. • " "'_.... "'
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/fD, Mass transfer coefficientfor passivediffusion q tleat flux (Btu/h).
of water through the epidermis, q. I-lest loss by co.vecti.n.

KErfs Thermal conductance between tile core of q,' I)roducto{ the man, flow ralt, aml si,e,'ih, h,,.tt '
the extremities and tile skin of the extremi- of bh_.l enlering the ('apillarv beds I.'r u.it
ties. vohlme.

K, t'oeflicient of heal exchange by evalr_rallon, qo_ I*nxhlct .f the mass II.w r,lh, and .l_t.r.I,
K,' F.vaporatiou conductance in (20). heat ft.' arlerL'd IdlrM II.willg i.t. II.', apil
K/ "l'hernml conductivily of the fluid, laries.

K, o Thermal conductivity in functioual l_e- qov Prodt,'t of Ihe ma_ flow r;it_, and Sl,.ril,
riphery zone (Btu/h.ft °F). heat for venou_ blo_l flowing into the pub

Kncn_ Thermal conductance between the core and monary capillaries.
skin of the head. qo Heat loss by evaporation.

K,' Mass transfer coefficient for convection, qr Heat loss by radiation.
K0 1.1 XI0 _ cal/(cm.s°C)=0.4 kcal/m/h/°C, q,, Rate at which heat is transferrc_l from re-
K, Coefficient of heat exchange by radiation, nous blood in the thorax to air in the respiar-

K,' Approximate radiation conductance con- tory system.
stant, q, Total heat Io_ from the body (kcal/h).

Kt Thermal conductivity, of the tube. R Rate of heat exchange with environment by
K_"r_! Thermal conductance between the muscle radiation.

and the core of the torso. R' Heat loss due to radiation and conw.rtion

Kvu_ Thermal conductance between the muscle effect per unit volume.
: and the skin of the torso. Rj Relative humidity of the amlfi_.ut air
_ L. i.cngth of tile ith elemenl, r Radiiil distillp.'r frtllll tliil of Iylii,h_r

[ _ L' I.ength of tube. ft. J'_ I,Jlle, I hvJfl h_r vwl,ff_li,$11 [k, al/ht_J.
, i M Metalmlicrate. ,_'('ol,lmlloll_h,qtrhtH,n',dllm.ii_l,ml_._

M' Metalwlic rate per unit volume. T 'l'iMue lemla'raltlre.

M0 Basal metabolism. _"t Temperature of middle layer. )
M./ Mass of the blood contained in the arterial T_ Temperature of core layer.

pool of the ith element. 7". Temperature of blood in artery.
M0_s Basal metabolism in the skin of the extremi- To' Temperature of the arterial blood entering

ties. the capillary bed. •
M0_c Basal metabolism assigned to the core of the 7"., Temperature of the blood entering the arte-

torso, rial pool from the ruth element.
Mova Basal metabolism of the muscle of the torso. T,= Temperature at the axis.
M0xc Basal metabolism heat production assigned Ts Average body temperature.

to the core of the head. Tes Temperature of the central blood compart-
M0ns Basal metabolic rate of the skin of the head. ment.

M.' Mass of the blood contained :a the venous 7", Effective environmental ten_perature.
,_._ pool of the ith element. T_c Temperature of the core of the extremities.

-:_. m Mass flow rate fib/h). T._ New equilibrium skin temperature defined _
zT

;, _'_j' N Sweat Io_ (kg/m). in (12).

_ n Slope of the curve which represents the Tim Temperature of the skin of the extremities.relationship between 7",, and 7",. Ts, Arterial blood temperature at the heart.
.>_,_-, fdp/dT), Rate of change of partial pressure of water Tar Temperature of the core of the head.
:., %
_:,_,_ with temperature T_. Ta, Temperature of the head skin.
_¢i-:,'f' Q Volumetric blood flow rate (mS/h). T_.( Venous blood temperature flowing into heart

,, *:o.., Q. Product of the mass flow rate and the specific from ith element.
•:!, . heat for blood entering the arterial pool of T_. Inlet coolant temperature.
•>, the ith element from the adjacent ruth ele- To Initial skin temperature.

• , . merit. 7", Internal temperature (core temperature).
,(.,7 Or_ Internal heat generation per unit volume in AT, Increment of the rectal temperature.

_;_ functional periphery zone (Btu/h.ft*). 7". Mean skin temperature.!'_ Q, The rate of heat Iolsthrough the respiratory AT, Increment of the skin te._peratur(.. 'I

" e,, system. _o Mean radiation al_flute temperature of lit(.

"';_ , 0,, Product of the maim flow rate and the spe- body surface in (13).
, cific heat for venous blood flowing into the ]_.t Mean contact surface teml_ralure %'.
i ':F :_..... venous pool of the ith element from the 7",, Skin tempc_rature at thne t.

adjacent sth element. 7'. Temlwrature of bl(_xl in vein.

¢

• ' ........ _qlp"_ ._ _ " _ . ,.., ..-, ,,___ .........
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'I'.,,,\'e,,m._Id..d tt.ml..r.,lm-cht the nth ele- *Yt Thermal couductivity coe_rient of rate

m,.i,l, control{s/°(:-'_3.5el°C).
I.. Me,m r;l(li:tlit It,tllla.1,,lllrt. ,if surr(mndlngs. 6vx Increase in evaporation cot, l'th'ient due to ,
T,,, M,,,.J r,.ihmt al_s,,I.l,, h'Ull_t_r;lttlre of tile violent exercise. :_

*,a_J,,,.mli,g wall. #, Viscosity of the Ih,id.
/ q',w.t ,LII he.it tl',lllt_h.r t _wli, ieJlt.
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I_l.iI [11 M.J. AIIwl,xl ;utd II. S. Burry, "The effect ,,f hx:al temperature
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I'_ _,t'h t it)' of the lluid which :qq)r()a.ches the 124, 1954, p. 345.
t',_limler tom/s). [21 A. R. Behnke and T. L. Wil;mon, "Cutaneou,_difl'usi,m of heliumin celation to peripheral blood flow and absorption of atmospheric

I', II"at hiss due to evap_)ration per unit area, nltrogen through the skin," J. Physiot.,vol. 131,19.11, p. 627.

I',o = 7 kcal/m_/h. {31T. H. Benzinger, "On physical heat regulation and the sen_ oftemperature in man," Proc. Nat. Acad. Sci. U. S., vol. 45, 1959,
I',' Ileal loss due to ewq)oration per unit vol- i).645,

, ume. [41 r H. Beuzinger and C. Kitzinger, _The human thermostat,"
in Temperature--Its Measurement and Control in .Science and

i'1', I'arlial pressure of moisture in the air Industry, vol. 3, part 3. New York: Reinhold, 1963, oh. 56,
. p. 637.

I =percent RH X I'P at T,). [51 D. F. Brehner, D. McK. Kerslake, and F. I.. Waddell, "The
I'P, Partial pressure of water at temperature F,. relation between the coefficients for heat exchange by convec-

v Vehwitv of surrounding air (cm/s). lion and by evaporation in man," J. Physiol., vol. 141, 1958,; " pp. 164-168.
t't Velocity of surrounding air (ft/min). [61 H. Buchberg and C. B. Harrah, "Conduction cooling of the

i1" ilt_h,' weight, human body_A biothermal analysis," in Thermal Problems in• Biotechnology. American Society of Mechanical Engineers,
_ X I)ist,lnce fro,u tile surf, ice of skin. 1968.

i Xi liislilllt'e fronl| lilt, center of the tube to tile [71 A.C. Burton, "The application of the theory of heat flow tothe.. study ol energy metabolism," J. Nutr.,vol. 7, 1934, p. 497.
•! : t'llil -I" Ihe ¢'llnhwl ,urf,,'e .f lhe tulw. 181 - -, "The .l_erating,.,.charteteriatics'.. of the huma,I thermo-.
' } ,IY 0 I hi, kllt*ltNI|1 a'lffl4 hlvt, i reguhtt.ry .y.tem, ,, Temperature- Its Measurement aml _an-' Ird I'N.%Y_t'e and lndNstry. Auh IBid. Phys. ;'grw Y-rk:

'_ -iX, I'hi, kliVl_ td Iqll fill I' hivel, l(H.h.hl, Iq42.

AX. _(AX.+AXI). 191J, Clilt"onl,IL MrK. Krr_htke, nnd J. I,. W,tddvll, ./, Physiol.
:._I_ (I.ondon), vol. 147,1959,p. 2,t5.

_- AX, _(A)(I+_Xs). [lO! K. E. Cooper, O. G. Edholm, and R. F. Mottram, "The blood
y_ Sum of the thickness of the skin zone and flow in skin and muscle of the human forearm," J. PkysioL(London), vol. 228, 2955, p. 258.

the functional periphery zone. [Ill R. J. Croebie, J. D. Hardy, and E. Fessenden, in Temperature--

Its Mm_rmncnt and Control i_ S¢i*_._ and l_l_•tr_,* J. D.

, a_e Countercurrent factor of the core of the ex- Hardy, Ed., vol. 3, pt. 3. New York: Reinhold, 1_3, pp. :
- tremities. 627-635,

aac Dimensionless fraction accounting for the (121 O. G. Edholm, R. H. Fox, and R. K. MacPhenmn, "The eff_tof body heating on the circulation in skin and muscle,* J.
effect of countercurrent heat exchange of the PhysioL (London), vol. 234, 1956,p. 612.
core of the head. [131 k. W. Eichna, W. F. Ashe, W. B. Bean, and W. B. Shelly, "The -.

upper limit• o( environmental heat and humidi_ tolerated by
ass Factor for countercurrent heat exchange of accllmatimi men working in hot environment, f. I_ld, HI I.

the skin of the head. [141 J. D. Hun4) and H. T. Hamme2, "Control sy_ttnn in physiologi.
a,+ Thermal conductivity coefficient of propor- cal tew;_rature rt_ulation," in 7tmPim___-Tl_ M_arlre_t

tionai control for (ATa>0) -0.147/°C in a,_ to, ted i_ Sc/_m_ a_ l_r_r,/, J. . y, F..d., pt. 3."'' New York: Rienhold,1963,da.M, p. 613. ;

_' , (30). [16] J. D. Hardy and G. F. Sodermtmm, "Heat Iou from the nude _bodyand peripheral blood flow at temperatureof 22_ to 350C, _

_ at- Thermal conductivity coefficient of propor- I. N_., vol. 16, 1966,p. 493. .'

_ A.B. Hertenum and W. C. Randall, "Regional dlllerences in :.tional control for (_T_<0)-0.066/°C in [t61the lmll and muimal rate. of blond flew in the ,kin,. j. A_pL':'_:'" (31).
,_ .... PIO__. vol. 1,1946, p. 2,_11. f

a= Metabolic rate coefficient of proportional B?] D. Mc_;Kerdake Imd J. L. Wnddell, "The heat exchanges o[ _

_:_:-'_-_!_;_ control; ATa <0. wet _.ln, J. Pky_., vo2, 141, 1958, I_.,tSt--lt& y.i18] W. Madlh and T. F. Hatch, "Heat: hum • mtehanl__ and .r,ays. '.

,._::_ wee Countet_urrent factor of the core of the iotot46dnmmme.,Pty:/_._.,vol. 27,1947, pp. 200-2_7. ,_
, _r" torso (63). !191 D. g, C. MacDomdd and C. H. Wyndham, "Heat transfer in

. hum," I. APld. PkyHd., vol. 3, 1950, I_ 3_ -360. _-'"

""*' _i a.rl Countercurrent factor of the musclu of the [20],W.McG_w.HIII,H.M_dam,,1942.Hml rmmm/s_, 2h_ *d. New York: _"torso(_1).
a-, Cotintercurrent factor of the skin of the BIt P. E. McNall, J. J---, F. H. Itoh_, R. H. Nevlm, and W. z"Slxinl_, "'l'hmqa_ eomfort (thenmdly toured) conditions for '_

torlo (_). tfirw li_s _ i_thdW," A3HRA R Tfiml., v_i. ?$, 1961,pt. 1, _Imc.$.

_i Evaporation coefficient of proportional con- |,2] R. G. Nevtm, F. H. l_lelt ..W..: Spdnl_, ud & M. 'eyer. _"
I : trol m 11 kcal/mt/h/eC; £T_ >0. hln_, "A tmaL_tmm-numldity _ !o¢ thermal comfort dImted perlon&" ASHRA£ Tmsu., eel. 71, 1966_pt. !, p. 283.

Latent heat of watt. at T_. !_11 H. R. "P_um, "Aml_t, el time t_ ameal blood temper. _.
X, Evaporation coe_lctent of follrth pow_ PrO- mrm In tim nmelughuman forearm, 3. AII_. PKWY., vo]. 1, ._

1948,93-122. R L N 'portionalcmttrolS3kcal/mt/h/eC;ATa>0. 12_]S. Robimon, F..Meyw, J.. mn_.:C.X.Ts_,andL.O. _,.

p DenliW ol blood. H_ol_._m, "Relattom b.r,h_ swsatinl, eutamous blood Ilow, _'_.;and bady temperit, m In _mck," 3. AP/_. P_l_d., vol. 20,
¥ Density (kg/m'). , 1966, p. $16.

,%

tr
_'-. ,. L ._ .. k _ 2 ,.t'qF'.(._ _,_ ". _ _ ....... .. .... _t ...... _ .... "-"q

.-- _..........,.......,
I

1974004672-270



t
J

i
234 II_ETRAN_ACI'IONSO'_81O-_CAL _N_IN_E;;I_;,MA_"197I

[25] P. E. Smith and E. W. James, II, "Human response to heat Bait. _faAIh.Biopr'y$.. vol. 26. 1964,pp. 147-100.
stress, Arch, Entsron. HealS, vol. 9, 1954,pp. 323-342. 132_ --, A mathem:,tical model of the huma, therm,d ,_y_tem._

[261 J. A. J. Stolwijk and D. J. Cunningham, "Expansion of a mathe- ('hem. Enl. Progr. Syrup. Set., vol. 62, 1966.
matical model of thermoregulation to include high metabolic [33] C. H. Wyndham and A. R. Atkins, UAnapproach to the _du-
rates, _ Nat. Acad. Sci., NAS-9-TI40, 1969. tion of the human biothermal problem with the aid of a_ al_.doR

[27] J. A. J. Stol_ijk and J. D. Hardy, UTemperature regulation in computer," ill Proc. 3rd Internat. Conf. Med. F3ectron., London,
man_A theoretical study," PJ_uegersArchly., vol. 291, 1966, 1960 _
pp. 129-162. [341 C. It. Wydham, W. R. D. M. Bouwer, M. G. Device, It. I'..

[28] C. E. A. Winslow, L. P. Herrington, and A. P. Gagge, "Phy_- Pater_m. and D. K. C. MacDonald, UExaminaliou of u_e ,I
iological reacth)ns of the human body to varying environmental heat-exch:mge equation for determining changes i,_ l,wly le,l_-n • ,)
temper,_ture.% Amer. J. Pkysiol., vol. 120, 193T,p. 1. . peraturu, J, Apid. Phys,oL, wd, 5, 1qS2,p, .gq.

[Z9l E. H. Wi._ler, "Ste_t;-y.state temperature distribution iq man, [3£[ il. Yamamoto, M. Mam,buchi, trod Y. K,_w,t,hima, "liuma,*
J. Apfl. l'l_y._i(d.,voL 16, l_61, pp. 734-740. thermal regulation, _ u/q)tddi_hed tel. tep., Yok.h;tm., Ih_iv.,

1301_, in Temperaznre--lt: Mmsure_l and Control is Stience Yokohama, Japan, 1908.
and Induffry, J. D. Hardy, Ed., vol. 3, pt. 3. New York: [36] H. Yamamoto, T. Suzuki, Y. Kawashima, and K. Ishik.twa,
Reinho!d, 1963, pp. 603-612. "An analog model of body temperature," unpublished re_. rep.,

{311_, "A mathematical model of the human thermal system," Inst. of Public Health, Tokyo, Japan, 1969.

,

i _ Llang-Teeng l_an was born in Formosa, on August 7, 1929. He received the B.S. degree in chemical
•_ _ :., engineering from the National Taiwan University, Taipei, in 1951, the M.S. degree in chemical

_ - _'_ ePgineering from Kansas State University, Manhattan, in 1954, and the Ph.D. degree in chemical

_ _,. ,_t_d engineering from West Virginia University, Morgantown, in 1957. He also received the M.S. degreei !_,- in mathematics from Wes_ Virginia University, in 1958.

j _ _ .. In t958 he joined the faculty of Kansas State University where he is now a Professor and Head

_ of Chemical _n_neering, and Director of the |nst._t use for Systems De_gn and Optlmi_ion. Hej has published two books on the maximum principle and more than 130 technical papers in optimiza-' tion, fluidization, chemical process dynamics, and related fields.

;._._ ]hi-Ton i Him was born in Taipci, Formosa, on May 7, 1936. He received the B.S.C.E. degree from the National Taiwan Unlver- I_ity. Taipei, in 1959, the M.S.C.E. degree from the University of Oklahoma, Norman, in 1962, the M.S.O.R. degree from Caw

_.'_,_ Institute of Technology, Cleveland, Ohio, in 1968, and the Ph.D. degree from Kansas State University, Manhattan, in 1971.

_i?_) From 1962 to 1963 he worked as an Assistant Engineer for the New Jersey Highway Department. From 1963 to 1966 he 2• was employed as a Structural Engineer by Amman and Whitney, Consulting Engineen,, New York, N. Y. He is currently an t

_.._,_\ _ , Ani_tant Professor of Industrial Engineering and Operations Research at Wayne State University, Detroit, Mich.

,2 *" _

.,_ Chlng-l,_d Hw_I was born in Form,_u, on January _2, 1929. He received the It,& degree in me- _)
©ha_ engiu_n| from the Nad_ 'r_w_ U_v_ty, T_, in ]955, i_ the M,& and Ph.D.
deg_ from Ka_ State U_v_ty. Manhattau. in 19_ and 1962. respectively.

: He b currently an Aiodate Pro_lor o_ Industrial Engineering at Kuuu State University,
' and h_ co.borated on the book. rl_ _at_ Mulmam Pdn_'i_ Hb reeimrch intereots

i ' include opttmiutkm techniques._tems engineering, and fluid dynamics.

_[--..... "_k'... ._._l_.....,.,•_

-_ ...... _' .!, _' _ _ ._... -....... . , .,_......, . ,

I

 974004672-27



Steady-State Simulation of the Human Thermal System 6.24

LIANG-TSENGFAN, FU-TONGHSUan_CHING-LAI HWANG Biomechanics 1t
P.M., Monday 1

Institute for Systems Design and Optimiz;Hion 16 Nmmmbee
Kansas State Umversity

Manhattan, Kansas 66502

Steady-state slmulations o+" the human In carrying out the Simu[atlons on a diglta]

themal system with and without an external ther- c_puter, the finite difference techniques are
realregulation device are carlied out. The used to approximate the mode]_ which consist of

mathematical model of the human thermal syst_ partial differential eq_tions. Two typical
without the external themal regulation device is simulation results of the model with the regu-
essentially the model by Wissler. The model with latlon device are shown in Figures 1 and 2.
the regulatzon device is obtained by modifying Figure 1 shows the temperature profiles In

Wiss[er's model. _e =hemal regulation device various elements of a human body under the spe-
Is controlled in suth= way that the requirements cifle condition in which the head is being cooled

of the the_oneutrallty of the human body under by a hood with specified coolant temperature of
i_ the specific environmental condition and specific 40.O°F and flow rate of 250 Ibs/hr while the
_ body activity are satisfied. The effects of other elements are exposed to the effective
_" localized control of the external =hemal regu- environmental temperature of 107.6QF (4200°C)# •

lation device on the totality of the human ther- The results indicate that proper cooling of the
_ _al system are examined. _e results indicate head will adequately control the temperature at

i that the thermoneutrality of the hmnan body can other parts of the body. Figure 2 shows the
be attained through the partial cooling or effect of the l_quid coolant temperature on

[ v wa_Ing of the body. cooling of the human body which wears a cooling
The geometry on which the human thermal hood and Jacket while a_s and legs are insulated

! system is based consists of a number of cylin- from their hostile enviromnent. The results in-

. #I_ drical elements representing the head, torso, dicate that a comfortable brain temperature of

i " L a_s, and legs. In each element, the large 98.0°F (36.7°C_ can be achieved by a number of
arteries and veins are approximated by an combinations between the liquid coolant tem-

i t arterial pool and a venous pool. The heat trans- perature and its flow rate.
I _ fer from the tissue to the surface of the skin Acknowledgement. This work has been

; [ and the heat transfer by bulk flow of blood supported in part by NASA (Grant _. NGR-17-O01-
; _ between adjacent elements are taken into account. 034) and AFOSR (Grant USAFOSR F44620-68-C-0020).

_ Axial thermal gr_dlent in every element isneglected. A model based on this description of ] q _ ....T [-

t. the human thermal system is simulated on a digi- _ __ ....

I _ computer under a variety of external con- _ ; i C 1

ditions. _ _i• • sisting of a network of tubes which are held in =, -' --

removing metabolic heat generated in the body.
_- The operating or control variables of the exter-

,_ nal thermal regulation devlce are the Inlet _ii _I1• coolant temperature and its flow rate, A model

_ . of the integrated system is f,-mulated by in- _ ....

_'_*:*_ corporating the mathematical model of the _ter-hal thermal regulation device into the mathe- Fig. 1, Steady-state temperature profiles of

._.#,;A,_ matieal model of the human thermal system, the human body vlth cooling hood
_b_*. Steady-state computer simulation= of the ............
_:'_ integrated system are carried out and the tea- ]

, pereture distributions of the human body are " I
i'%," determined for a variety of the inlet coolant

,, _. . temperatures end coolant flow rate ,ombinationa.
' The effects of localized cooling or warming of J _._

'._...'.' _ head as well as head and torso for various body l=..._ _ :metabolic rates are also examined. The vari-

r_'.'; • ations of physiological peremeters, such as the

• local blood flow rate and local metabolic rate, • =;_
in the muscle layer and skin layer are con-

I sider_. In addition, the regiomtl variations
in the blood flow rate, metabolic rate, m_rate _£8. 2. 11maffe¢t of ceolmst t_rat_reon
of vaporization are considered, th_ (_oI_o| h_ma body Wlth hood an([

___ J_hat. Ol_¢_ellc rate - $O00STu/mt)

PAGE BLANKNOT FILMED +
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6• 25 Unsteady-State Simulation of the Human Thermal System

l, om_hsn.cs FU-TONG HSU. LIANG-TSENG FAN and CHING-LAI HWANG
P•M•. Monday
18 Novemb_ Institute for Systems Design and Optimization

Kansas State University

Manhattan, Kansas 66502

Unsteady-state simulations of the human In carrying uut the simulations on a digital
thermal system with ard without an external ther- computer, the finite difference techniques are
mal regulation device are carried out. The math- used to approximate the models which consist of
ematical model of tht;human thermal system partial differential equations. Two typical
without the exte_ ,al thermal regulation device is simulation results of the model with the regu-

, essentially the m_dt:lby Wissler. The model with lation device are shown In Figures 1 and 2.

the regulation de_ize is obtained by modifying Figure I shows the change of core temperatures of
Wissler's model. The thermal regulation device various elements during two hours simulation time

,.. is controlled in such a way that the requirements A human subject in this simulation is exposed to
' of the thermoneutrality of the human body at any an effective environmental temperature of

moment during the transient period are satisfled. I07.6"F. (42.0"C) except head which is being
The effects of localized control of the external cooled by a hood with coolant temperature of
thermal regulatioT_ device on the totality of the 60.O*F. and flow care of 250 Ibs/Hr. The results

, human therma] system are examined. The results indicate that Lhe i_uman subject will reach its
indicate that the thermoneutrality of the human uncomfortable state within on_ and a half hours

I body can be attained through the partial cooling because the core temperature (rectal temperature)
: : or warming of the body• of torso will increase more than 2•OAF. these

' ! The geometry on which the human thermal results are compared favorably with the expert-
i i system is based c_nsists of a number of cylin- mental data. Figure 2 shows the temperature
i drical elements representing the head, torso, profiles of torso at various simulation time. A

• ' ( arms, and legs• In each element, the large human subject in this simulation wears a cooling
•} _- arteries and veins are approximated by an hood and Jacket while arms and legs are insulated*

i arterial pool and a venous pool. The heat trans- from their hostile ettvironment. The results in-
f fer from the tissue to the surface of the skin dicate that if the constant thermal comfort is

and the heat transfer by bulk flow of blood to be maintained, the operativg variables have
I between adjacent elements are taken into account, to be controlled properly.
, Axial thermal gradient in every element is Acknowledgement. This work has been
i neglected. An unsteady-state model based on this supported in part by NASA (Grant No. NGR-17-O01-

I description of the human t:hermalsystem is simu- 034) and AFOSR (Grant USAFOSR F44620-68-C-0020).

fated on a digital compare:"under a variety of _._ .:

external conditions• _ ,._ _._.,_., _...... _.......
! The external thermal regulation device con- _'_, ,.. _,- z_,_ t

) slating of a network of tubes which are held in _2_--------1_ : '_• contact with the surface of the skin is for re - _ *

moving metabolic heat generated in the body. _ _, I-- __ )1

•. The operating or control variables of the exter- ! ---__ .... _---_'--_

'_'i" hal thermal regulation device are the inlet
coolant temperature and its flow rate. An L ,

_i unsteady-state model of the integrated system is _ ,_ -_-------+_---_ ...... _--_-

formulated by incorporating the mathematical ,_ _ i . ,
model of the external thermal regulation device -- _ _ ---!
into the mathematical model of the human thermal _ ' o_ .o ,_ =_

- "-.;' system.

,_" '_ I Unsteady-state computer simulations of the _, u_.=_-,_ ¢m _m._= =_ _, _ .__ _o_,_ _04 _ _4_

_. _ integrated system are carried out and the teI-
given time are determined for a variety of the ._.--a=.=_...-=._.-
inlet coolant temperatures and coolant flow rate ----'--•;--'

.... combinations. The effects of localised coolin$ _'--_---_---. o...=o,o, ....,.. =.o,o.
various body metabolic rates are also examined. |_ _---_-_u_---The variations of phyaloloslcal parameters, such I :_:-_ ;
as the local blood flow rate and local metkbolic .==_--'_L =_--,--_- '

I rate, in the muscle layer and akin layer are con- _-- ;sidereal. In addition, the re|lon_l variations in ..... _ _'

the blood flow rate, metabolic rate, and rate of ._--=_, _ '.-

vaporisation ere considered, .,_,_ _=_,.=_=.

I0 L1N&CEtI - WAIHINGTQIiKILl'OIl Nllk IIAIMIRr011, O. C, • IIOVBIII! Ii-II, I1111

It ' ¢, . ...t._p,.s • _, -_ _ -.-_
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I ABSTRACT

A mathematical model of the human thermal system under steady sta_e

conditions is formulated by using six cylindrical ele.nents representing

longitudinal segments of the head, torso, arms, and legs to approximate

the human body. The model allows the use of different physiological

parameters such ;__ local rate of metabolic heat generation and local blood

flow rate in "arlous locations of an element. The regional variations of

the physiological parameters are also taken into consideration.

A set of ordinary differential equations representing the thermal

behavior of all elements are approximated by a set of algebraic equations

which resulted from the application of the explicit forward finite difference

method, Specifically twenty-eight linear algebraic simultaneous equations

( are obtained by using fi',e grid points in the spacial coordinate of each

element. The model : : _,,.' imulated for a number of steady state envtronment:_lt

condit ions. _

i7

,I

(?

ii
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]. INTRODUCTI ON

Due to the difficulties of p_edicting the human thermal responses of i

persons who are often exposed to the hostile environment of industrial and !

mining plants such as chemical, atomic and metal plants and coal mines, and

of persons who are involved in _:nderwater or space exploration, a need

exists for a mathematica] model which will provide a method for predicting

the human thermal responses l,,der a variety of environmental conditions.

-, A _eed also exists for a m Lthematica! model which will provide a method for

:_, estimating the physiological parameters such as the local blood flo_ rate

i and the loc_l rate of heat generation by metabolic reactions wl,ich are often

'i: difficult to obtain by direct experimental measurement Although many

,! _. early models were develr_ed for the purpose of describing the physiological

_ phenomenon, the quantJt_ ire desrriptlon of the intraco_-poreal transport

i . of heat by circulaL'ng blood, which has been recognized for sometime as an

importaut factor in thermal physiology, is still unsatisfactory [9,16].

The purpose of this report is to present a mathematical model of the

human thermal system and results of simulation of its thermal responses to

a specific environmental condition under steady state conditions. The model

describes quaptltatively the physiological phenomenon of heat transfer inside

the human body and heat transfer between the human body and its environment.

the model is capable of predicting the temperature distriLutlon in the

various elements of the body. The simulation of the mathematical model can

be advantageous employed to verify the goodness of the model. It also

enables one ._oreplicate the experiments, to study control scheme, and to _"

e InveJtigate the system sensitivity and stability. [15,19]

]974004672-278
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Pennes [12] (1948) has demonstrated the utility of a mathematical model _ ii

I

by comparing measured and computed temperature profiles in the human forearm, il

Although the discre,ancies of the temperature profiles in the vicipity of

large arteries and" veins are sizable, his model has been considered as a

_ore satisfactory description of the human body than the "core and shell"

concept which has often been used by early researchers. The models developed i

i
by Eichna, Ashe, Bean, and Shelly [3] (1945) and by Machle and Hatch [ii]

([947) are based on the concept of "core and shell" in which the rectal

temperature and mean skin temDerature are used as measures of the core and

shell temperatures, respectively. These models fail in many cases because

the amount of build-in information is relatively small and the effects of

' _ peripheral circulation is not considered explicitly.

Wyndham and Atkins' model [20] (1960) approximates the structure of :

f the human body by a serie_ of concentric cylinders. The effects of periph- [

eral circulation are considered implicitly by allowing the effective thermal

conductivity to vary as a function of temperature but the regional variations _ i

j ,of physiological parameter_ are not considered. The model by Crosbie, Hardy,

and Fessenden _2] (1961) uses the concept of infinite slab rather than a

_-_ cylinder. Many important physiological responses to thermal stress are

considered in their model by allowing the effective thermal conductivity,

_ _$!c_' metabolic rate and rate of vaporization to vary as the mean temperature of

,_?_ the body varies. However, the effect of regional variations in heat generation

+ _ _ rates and blood flow rates are excluded.

•_i_,_ The earliest model developed by Wissler [17] (1961) is an extension of

_!'_ [12] (1948). steady-state temperature distribution in the! Pennes' work The

_ _ O human body can be obtained [17] wh.n the environmental conditions, the dls-

_i! !
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tribution of metabolic heat generation, the distribution of blood flow, and

the size of the body are specified. One of Wissler's models [18] (1963),

which is a modification of _!Idham and Atkins' model, can be used to obtain

the transient-state temperature distribution of the human body. A review

of the mathematical models of the human thermal systems has been presented

[4] (1970).

Th- mathematical model presented in this report is based on one of

Wissler's models [19] (1964). The present model considers the ]ocal

variations of the efCective thermal conductivity, metabolic rate, and rate

of vaporization. The regional variations of physiological parameters are

also taken into account. ".

The formulation of the mathematical model and the finite difference '

i ( approximation of the system equations of the model are presented in con- _.

,i siderable detail _n this report. The results of steady state simulation _ i

of an experiment in which a hypothetical human subject is exposed to a

T

[ . specified environmental conditien are also included. The environmental

1 condition specified is that a nude human body is exposed to an effective

exposed to a ]ower effective environmental temperature of 77.0°F. (25.0°C).

Q

. m m
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' FNRMULATION OF THE PL_Tt{E2IATICAL MODEL !

A mathematical model which represents the steady-state condition of

_t_e human thern_al system is formulated in this section. The model is based

on one of Wissler's models [19] (1964) whici_ is for the unsteady-state con-

ditions, ll_e present model differs slightly from that of Wissler's in the

expression of thermal energy balance equations of the torso. The present mode]

assumes the existence of an arterial pool and a venous pool in the torso and

considers the heat exchange of the torso with adjacent elements only through

: the pools. Wissler's model c.-nsiders the heat exchange of the torso with

_ adjacent elements thrmgh pulmonary capillaries.

2.1 Description and Mathematical Expression

i£" The mathematical model of the human thermal system fermulated in this

report considers the following important f_ctor=.: (i) local generation of

heat by metabolic reactions, (2) conduction of heat due to thermal gradients,

(3) convection of heat by circulating blood, (4) the geometry of the human

body, (5) the existence of an insulating layer of fat and skin, (6) counter-

current heat exchange between adjacent large arteries and veins, (7) sweating,

and (8) the condition of the environment, including its temperature, wind

velocity, and relattle humidity.

The geometry of the human body on which the system equations are based

is shown in Fig. i. It consists of a number of cylindrical elements

representing arms, legs, torso, and head. Each elementp consisting of tissue,

fat and skin, has a vascular system which can be divided into three sub-.

systems representing the arteries, the veins, and the capillaries,

|

| m
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1.,, }..., .1_icb is gencr;,tcd in an element b,: metabolic reactions is

st,,. ement, carried at.av by circutating blood to other elements

_r co the surface where it is generally ¢r'_usfered to the environment.

[f "', environmental temperaturt- is higher than the skin temperature, the

direction of heat flow is reversed. Based on the first law of thermodynamics

tl,ze phenomenon can be expressed mathematically as the differential heat

b,,lance equation for the ith element as follows:

d'_'.

l d ___.!L) + (T - T )
-_. r dr (Kir dr + hmi qci ai i

+ h + h (T - T ) (i)al" (Tai - Ti) vi vi i

= 0 ._ i

whe re ,;

T.(r) = temperature of the tts,_ue, bone, fat, or skin
1

at a distance r from the a×is of the ith ele- ]_

m@nt j

K.(r) = thermal conductivity of tissue, bone, fat, or
I

skin,

hmi = metabolic heat generation per unit volume,

qcl = product of the mass flow rate and specific heat

of blood entering the capillary beds per unit

voIume,

hal = proportionality constant of heat transfer between

the arteries and tissue per unit volume,

hvi = proportionality constant of heat transfer between

the veins and tissue per unit volume,
%

i T , = temperature of the arterial blood,al

iJ
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p , ii
T = temperature ot [he venous blood i_

vi !
t

The terms on the left-hand side cf equation (1) rot'resent the net rate of

heat conduction into tile unit w_[ume, the rate of heat generation by

metabolic reacti,,ns in the 'm_it volume, the net rate at which heat is carried

into the unit vokume by the bulk flo_: of blood, the rate at which heat is

trar:sfered into the u_it volume fr_,n _r'erial blood, and the rate ct which

heat is transfered into the unit volume from venous blood.
i'

D_e longit _,!:na! effect of i_c_L couduction is neglected in equation (i).

Penne_ [12] (1948) has shown that the longitudinal heat conduction is

_. negligible in _rms. This is probably also true in legs because their shape

I is similar to that of the arms, but it might not be true in the head and

i
torso. Hence the future human thermal model probably should include the l

effect of long tudinal heat conduction in the head and torso. {
l

An assumption that the temperature of blood leaving the capillary beds

is equal to the temperature of the neighboring tissue is also made. This

assumption is acceptable because the capilla_, has very small diameter

which ranges from i0_ to 20_ [17]. Such a condition does not prevail in

the large arterie:_ and veins. Therefore, it is necessary to assume that

the rate of I,eat transfer from the blood in the larger vessels to the

neighboring tissue is proportional to the temperature difference between

the blood and tissue. The proportionality constant is expressed by hal

for the arteries and h . for the veins in the ith element.
vl

It is _:nown that the human blood temperature in the various locations

of the body are different [6, 8, i0]. Therefore, two additional equations

which represent the overall thermal energy balances in arteries and veins

are required, t.n deriving such equations it is assumed that the blood in

!
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the ]arge arteries .rod vcinq ,,' '._, iti_ el_me_'.t _,.J,_uniform temperatures *-

T and T respectively a.q _h,,_v_, iq Fig. 2 ]h_, r_..ulting equations areai vi

a.
1

Qai (''am - Tai) + 2;_Li ": '_._j (Ix - Tai) r dr
0

+ Hay i (Tvi - T .) (2)ak

= 0

1

Qvi (T - Tvi) + 2_L.l [ (qci + hvi) (Ti - Tvi) r dr
0

+ tiav i (Tai - Tvi) (3)

=0

Qai = product of the mass flow rate and s, ecific heat for

where

blood entering the large arteries of the ith elementfrom the mth e]ement,

T (t)= temperature of the blood entering the large arteries of the 4
am

ith element from the mth element,

I,. = length of the ith element,
i

= radius of the ith element 1a.

1 |

Hav i = proportionality constant of direct heat transfer

between large arteries and veins,

Qvi = product of the mass flow rate and specific

heat for venous blood entering the large

veins of the ith element from the nth element, ,:

I T (t)= temperature of the blood entering the largevn _.

veins of the tth element from the nth element.

1

Illl
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r[1_eterms ol_ the left-hand _id_ , o r _.quation (2) represent, in order the

rate at which heat i_ carried '.nt,_ the large arteries in the ith element

bv the bulk flnw o! blood from the ad scent eJemcnt, the rste at which

heat i_ tranqferre,1 into the blood in t]_e large arteries of the element

from neighboring tissue, and tb.__ rate at which heat is transferred directly

from ,he large veins to the _arge arteries.

Equation (3) which is for the venous blood contains the c_.-respondiug

terms. The only difference between equations (2) and (3) appears in the

second term. This difference appears as an additional expression

• a.

I,. _ 2_LI __ i qci (Ti - Tvi) r dr
' 0

in the second term of equation (3) This expression corresponds to the

', ", rate at which heat is carried into the large veins in the ith element from

the capillary bed by flowing blood. The integral appears in equations (2)

j
i _ and (3) because the tissue temperature, Ti(r) , is a function of r, The rate

of blood flowing into an element is assumed to be equal to the rate of

blood flowing out of the element.

;._" 2.2 Boundary Conditions

{_l,.:_,_' l_e boundary condition which represents the heat transfer from the

_)_?_ sur[ace of the skin to its environment takes the following form.

-"',,'4 dT i

' _,".... [Ki --_r] = Hi[Ti(a i) - Tel] (4)
: r=a.

1

|
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i

wll- re i'
r

tt.1_ = heat transfer ceefficient at tile surface of the f'

': ith element (see Appendix A)

T = effective environmental temperature at the surfaceei

of the ith element

liquation (4) states that at the surface of tile skin tile local rate of

heat conduction to the surface through the tissue is equal to the rate

of heat transfer from the surface to the environment.

Due to the axial symmetry of each element the following condition

also exists

F
_.: dT i

, _ (_7-)_ = 0 (5)
r--O

,I (.

n_
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3. FINI_TE DIFFEKI{NCE AI'PROXU>IA !It. _)t" •i'l{ll M()I)EI

"[he finite-difference technique which is employed in this section

enabJes one to consider the vari,_:ion of physiological properties at various

positions of the body. Accordinx to this technique the independent variables

are discretized. More specifically, each of the cylindrical el,__mentsis

divided into a series of concentric cylinders and appropriate v:ilues are

assigned to the physiological parameters o[ each element. One of the advan-

tages of the finite difference technique is that one can use a smaller

segment of the radial distance near the surface of the element where the
t

temperature profile hns steeper gradient and a larger segment can be

I used in an inner core where the temperature profile is nearly flat.
t

k

_ 3.1 Finite Difference Scheme

; " The explicit forward finite difference technique ks employed to approx_tmatei '
!

equation (i). [I, 5] l"ne general expression of the forward finite diff_,rence

h

f technique can be written as

dT(x____))= T(x+Ax) - T(x) "
dx Ax

Each term in equation (1) can be integrated from r = rj - (&_, /2) to

I " ' r = r. + (A_+/2) where A_ represents the space increment to the left of

'_[_$ rj and A£+ represents the space increment to the right of rju
_ I

_'_,'-_. I r. +---- rj
_7_'_' '7 | 3 2 dTi

AZ f d(K i r-_-r ) + AZ f hmi-rdr

¢ x., rj 2 rj 2
%

'6,. : hmi+rdr + A£ I [(qci_+hai_)(Tai - TI) + hvi - (lvi - Ti)] rdr

r
[7

/
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. A_
+

F 4- ....
• ,)

+ f [(qc'i+ + hai-',-_(Tai - Ti) + hvi+ (T_,: - Ti)]rdr
F.

J

= 0

]l_e finite differs, no: approximation _f the equation becomes

L.' Ti -T. &_, T i
•Kt+ (ri + -_) - (j+I)L,_ lj _ K.t_ (ri - -_) J -A_Ti(J-I)

f

'_- + { -_ (r. - + -_
' _ 3 4 )hmi- + -_- (rj + )hmi+ }

_4

4 A_'- At

" + { _ (r. ) [(qc + hal ) (T - ) + h (Tvi - T. )]
i _ .1 4 [- - a i l' t j v i- 1 j

,rob

i 4_o+ At+

i + _ (rj + --4-)[(qei+ + hai+)(rai TIj) + hvi+ (Tvi - rlj)]} '

j = o (6) i

f

where TIj represents the tissue temperature of the ith element at tilejth !

radial point. The quantity with the negative subscript (-) represents the i

physio[ogILal parameters at the left of r, whereas the positive subscript (+) I
J !

represents the same properties at the right of rj.

Let

A_, &£

A2 = _ (rj +--_---)|
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,;4 = K (rji- 2 9

A5 = qci- +hai-

A6 = qci+ + hal+

Illen equaticm (6) can be written bv

,p

Ti__(.+l) - T. T.. -J A4 x _ 1.1 Ti(j-l)
_, A3 x" ?,i - A_'
;_ + -

f

+ {AI x h + A2 x h + (AI[A5(Tai ) + - .
" i ( mi- mi+ } - TIJ hvi-(Tvi TLJ)]

i + A2[A6(Tai - Tij) + hvi+(Tvi - TIj) ]}

= 0 (7) i

J

Equation (7) can be rearranged as

A4 A3 A4 AI x A5 x - A2 x A6
T. (j-l) [t-__ ] + Ttj [- At+ At_ hvl-

A3

-A2 x hvi +] + Ti(j+l) [_--_,+] + Tai[A2 x A6 + AI x AS]

+ Tvi [AI x hvi " + A2 x hvi+]

= -[AI x hint - + A2 x hmi +] (8)

|

lmm_lll
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X T + Y "i -_ Z T + A .... + V . T = C (9)
i) f(i-l' ij i i, :(j+l) 1, ._l ij vi ij

where

A4
X ° "-:

A3 A"
- A1 × A5 - AI x h . - A2 x A6 - A2 x h

i ,",, _, v_- vi+
+

Z. :- =---

t] ..,+

A. = At x A5 + A2 x A6
, I}

- V. = AI x _ + A2 x h" _.i zi- vi+

Cij = -AI x hmi - - A2 x hrei+ ;

It is worth mentioning that Xij, YIJ' Zij' Aij' Vii' and Cij are all functions

el r_he physiological part,meters and mesh size. The metabolic heat generations,

h and h are considered only at certain [ayers Of the Jody. Assumptionsmi- mi+'

have been madu that ),eat generation by metabolic reactions in the layer of fat

md skin is zero and that basal r,etabolism occurs only at the core layer.

Any additional heat generated by metabolic reactions due to body exercise is

considered to occur in the muscle layers.

At the boundary where r - rj, the Incegratlon of equation (I) from

r = rj - (A__ /2) to r = rj can be approximated by

e

mm
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.', I'L,I - Ti(i_l)
: _ ':i+ (,j) [dr(ir'---lr-r - "_ (r - -- i- J .' ,'_

+ ; (r - ?_)[(qc_- + i_ )('F - + h ]• . a - _.i Tij) vi-(Tvl - Ti,l)

= 0 (IO)

The boundary condition given in _'r,uation (4) is employed to evaluate the

dT
value of [Ki+ (_rr)] at r = rj in equation (i0). This yields

''- TiJ - Ti(j-1)
-(ra) H [T' -"r e l - Ki_(r J )

- , T _t
,' + _ (rj 4")[(qci- + hai-)(?ai TiJ) + hvl-( vi i.J"

.£
= 0

i O r
i

¢

Tij Ti(J-l) + B2[B3(Tal - Tij)-(rj) ili[TiJ - Tei]- BI x A_

m_

1974004672-291



t (iI) be rearranged as

B1 B1 B2 x B3 - B2 x hvi _]Ti(J_l) [_--_--] + Tij[-r J Hi __

+Tai[_Z x B3] + Tvi[B2 x hvi _]

(12)
= -rj Hi Tel

It should be noted that the value of metabolic heat generation, hmi,

is assumed to be zero in equations (I0) through (12). This is due to the

assumption that the layers of fat and skin do not generate heat by mecabollc

_ reactions •
.=

Equation (12) can be simplified as

LO

Xij TI (J-l) + YijTij + AijTai + VijTvi = Cij (13)
I

J where

Xij = _

Aij = B2 x B3

V =B2xh

:LJ vt- _,

Cij - -rj Hi Toi

@
%."

1974004672-292



Similarly, the finite difference approximation for equation (i) at the ,)

center of each cylindrical element can be obtained by integrating equation

A£+

(i) from r = 0 to r =--_- . _'

I
A£+ - _£+ _£+ A_+ A£+

El+ (-_--) Ti2 TII + {--_- (-_-) } + (T) [ +
A£+ hmi+ -_-- (qci+ hai+)

(Tai - Til) + hvf + (Tvi - Til)]

=0

or

Ti2 - TII

Cl x 6£+ + C2 x hml + + C2[C3(Taf - Tfl) + hvL+(Tvi - Tfl)]

O - 0 (i4) :-.

%

where _£+

cl - Ki+(-7:-) _:/ _i

A_+ A¢+
c2. T (-'f") ...

C3 - qct+ + hat+

Equation (14) can be reazranpd as follo_t

Tll[_,CI T rC1 1- c2:,,c3- =. h_+]+_:,:,..,,.+.

+ 'ra:t[c2x ¢:_]+ 'rv:t[c2x by,t+]

- - c2 x h_L+ , (15)

O
j,

t

I
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Further simplification of equation (15) yields

'. YilTil + ZilTi2 + AilTai + VilTvf = Cil (16)

where

Cl

" Ytl = A£+ C2 x C3- C2 x h rl+

/

l ,

All = C2 x C3

Vi! = C2 x hvi +

0
Cil ,, -C2 Xhml +

The coefficients Xij, YiJ' Aij' Vij' and Cij in equation (13) and the

coefficients Yil' Zil' All' Vil and Cil in equation (16) are also functions

of the physiological parameters and mesh size.

By using Simpson's rule [14] to carry out the integration, equation (2)

becomes

(ai)2 J ,

Qai(Taa- Tel) " 2wLi has Tai " m + 2wLi hai Z Cij Tij rj
• J=l

+ liar i (Tvi - T_L)

-0

5' . , • ,r_ "

.......=
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Qat(Tam - Tat) - _Lihat Tat (at)2 + 2_Li hat j=lX Ctj Tt] rj

+ Hayi(Tvl - Tai) (17)

where

, , rij
Cil = Cij = 3(J-1)

, , 4 r4.I

52| Ci2 = Ct4 = " " " = Ci(J-1) = 3(J-l)'" (18)

, , , 2 r..

_ Ci3 = Ci5 = " " " = Ci(j-2) = 3(J-1)'_ _i-

In order to use a smaller mesh size for the special coordinate around ,_: -

the outer layers where the gradient of the temperature is steeper than that -:",=,._,_.,-'__ '

in the inner part of the cylinder, equation (18) is modified slIshtly and
!

the followin 8 values of Ctj are used in the computer program.

The radius of the cylinder is divided into three equally spaced interva_.

The outer third is then divided into two halves. The grid points are

designated as rl, r2, r3, r4, and r$.

The values of Cij can be given as follows:

cil - )

, e _

0
!
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::_ _ PilTil + PI2TI2 + Pi3Ti3 + Pi4Ti4 + Pi5Ti5 + Ai6Tai "_;

r_ + VI6Tvi + Ei6_am f

_. -

! = 0 (19) '_

i i
wh ere ,_

, i i ai ;

-_ i Pi? = 2_L_hai[3 (_-)]rl

i Pi2 = 2_LIbai [3 ]r2

_ , Pi3 ffi2_L!hai[5 5 (_-)]r3

' i
, ( 4 ai

[-

= at
Pi5 2_Liha i[i (__) ]r5

Ai6 = -Qai - _Lihai(ai )2 - Havi

Vi6 = Hay i

El6 = Qal

Equation (3) can bc similarly approxi_ted as

2
(a i)

Qv.l(Tvn.-Tvi) - 2_Lt(qci �H+ �°Tvl

J ff

+ 2_Li(qci_hvi) E Cij Tij rj + Havi(Tai-Tv£)
J-l

- o 12o",,

' IB BII BIIBIII
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The values of CIj can be given as

F- +:

" i ai

cil: 5 (T)

" 4 a.

ci2 -- 5 (-_)

" 1 a_ 1 ai

ci _ : -_ (3=)+ -_ (g--) _+

,, ai

4 (g_.)i' Ci4 = 3

• ai

, . ,, _ (_-) *

e!

Substituting the values of Cij into equatlon (20) and rearranging the

terms, one obtains

2_Li(qci+hvi) {[I (_--_i)]rlTil + [4 (_--_i)]r2Ti2

+ ['_" "_ ) ] r3'rt3 + [_"(,_,,_.))"-4It4

a:l.

+ [-qvi-_L:l.(qci+hvi)(ai) 2 - Hav.j.] Tvt + Ovt.Tvn

-0
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, ! This equation can be simplified as _} I

i QilTil + Qi2Ti2 + Q_3Ti3 + Qi4Ti4 + QisTi5 + AiTTai _.:._

g
' i + Vi7Tvi + EiTTvn ,._

= o (2!)

- where

1 at

Qil = 2_Li(qci+hvl )[5 (_-)]rl

4 ai

!'; Qi2 = 2_Li(qci+hvl )[5 (_) ]r2

}-;_/ I ai i ai

C) Qi3 = 2_Li(qci+hvl )[5 (_) +5 (w) lr3

Qi4 = 2_Li(qci+hvl ) [3 ]r4

ai

Qi5 " 2_Li(qci+hvi ) [1 (_:) ]r 5

Ai7 =Hav i

VI7 = -Qvl " _Li(qci+hv_)(ai )2 - Hev£

El7 = Qv£

The syscem equations, equations (1), (2), end (3), for the ith

i element can now be replaced by a set of linear alpbraic simultaneous equationsrepresented by equations (9), (13), (16), (19), and (21). In aumlry,
e

R
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+ AilTai + VilTvi = Cil ::

YflTil + ZilTi2 i_

Xi2Til + YI2Ti2 + ZI2Ti3 + Ai2Tai + Vl2Tvi ="Ci2 _ ;

Xi3Ti2 + Yi3Ti3 + Zi3Ti4 + AI3Tai + Vi3Tvl = Ci3 II _

i = (22)
• Xi4Ti3 + Yi4Ti4 + Zi4Ti5 + Ai4Tai + Vl4Tvi Ci4 / -,

!_ ,
i
T XisTi4 + YIsTi5 + Ai5%ai + VISTvi = C15

i PIITil + PI2Ti2 + PI3TI3 + PI4Ti4 + PIsTi5 + AI6Tai + Vi6Tvl " -Ei6Tam

i-
_'" QIITil + Qi2Ti2 + Qi3Ti3 + QI4Ti4 + QIsTi5 + AITTai + ViTTvi " -El7Tvn
r-

O

go
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, ) Ji
3.2 Linear Algebraic Simultaneous Equations i

_ The number of difference equations obtained frown the technique employed _ i_

I in this work depends on the number of grid point used to discretize the _ _

i
independent variable. A set of simultaneous linear algebraic equations ,_ L

5
I

included in equation (22) are obtained by using five grid points to dis-

cretize the radial distance of the i:h element. With seven simultaneous

linear algebraic equations representing the thermal characteristics of each

element, the total of twenty-eight simultaneous linear algebraic equations I

are required to represent the human thermal system. The synthesized system

i'
. equotions for the entire system are illustrated in Table i.

i The flrat set of linear algebraic equations in the upper left hand

i:>
corner represents the thermal characteristics of the head. The second,

hand corner represent the thermal characteristics of the torso, arm, and leg,

respectively. The interdependence between elements is represented by the

terms scattered around the blocks of terms. The coefficient of these inter-

connecting terms are the function of blood flow rate between the adjacent

elements.

Since the coefficients ef all the terms appearing in Table I are fractions

of the physiological parameters and m_si_ size, the local sad reslonal

variations of the physiological paramters can bc conveniently ex_mlned.

The temperature _Istrlbutlon in each element for a given environmental

condition can also be determined by solving these twenty-eish_ elmultaneous

linear alsebralc equations.

0

ms
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_,_ The method of solving these equatlons is by eli _dnation using the _,

• largest pivotal divisor []]. Each stage of elimination c,nsists of

interchanging rows when necessary to avoid division by zero or small elements.

The computer program for thi'_"method is con_'eniently provided by the IBM

System/360 Cci=_ti_ic Subroutine Package under the subroutin E name SIMQ.

.j
l
%

I)
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4. SIMULATION OF THE MATHEMATICAL MODEL _ I

_ To test the validity of the mathematical model of the human thermal [

system, a number of simulations have been carried out _nd the results are _ i

described in this section. An experiment with a human subject is carried

out in an environment in which the torso, arms, and legs are exposed to an

effective environmental temperature of I07.6°F (42.0°C) whereas the head is •

exposed to a cooler temperature of 77.0°F (25.0°C). This particular environment

is selected in order to lay the ground work for future studies on thP effects i

of localized cooling (or warming) on the entire human thermal system. The

following types of simulations have be_n carried out and they are listed in

: " the increasing order of complexity.(1) The blood flow rate between the adjacent elements and the local heat

£) generation by metabolic reactions are assumed to be zero in the system. The

assumption implies that a human body is disjointed into six independent elements,

namely, the head, tors_, two arms, and two legs.

(2) The disjointed independent elements are connected by blood

circulation between adjacent elements. The local rates of heat generation

by metabolic reactions are, however, neglected, t

(3) The elements are all connected by blood circulation between

adjacent elements. Each element is generating heat by metabolic reactions.

These particular types of simulations are selected because one can obtain

results which can be verified fairly easily.

' The purpole of the subsection is to present the results of slmmlatlons

_d employ them to test the validity of the nodal. Table 2 emmmrizes the I

mm_rieal values of physical dimension of ths human body and its physlolollcal

I_r_ters.

• l mm ,.
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Figure 3 presents the results of the first type of slmulatlon stated

_. previously. It shows the temperature profiles of various elements under

_teady-state condition. The metabolic rates In various eleme_ts and b1_od

: r flow rates between adjacent elements are assumed to be zero. The results

' indicate that the temperature profile of the arms, legs, and torso are

nearly straight around I07.6°F (42.0°C) which is assumed to be the effective

environmental temperature of these elements The temperature profile for

T the head is also nearl_ straight around its effective environmental temperature

; which is assumed to be 77.0°F (25.0°C). The slight deviation of temperature

profile from its effective environmental temperature is caused by the errors

- due to the finite difference approximation and Simpson's rule of Integration. i
The results also show that the model works properly when the metabolic rates i

of all the elements and the blood flow rates between adjacent elements are
!

assumed to be zero.

The purpose of the second type of simulation in which the blood circulation

between the adjacent element_ is considered while the metabolic heat generation

in all the elements is neglected is to investigate the interdependence among

:he elements. The cooler effective environmental temperature of t_e head is

expected to affect the temperature profile of other elements where the effective

environmental temperatures are higher than that of th_ head. The temperature

profiles are also expected to fall within the two bounds: the upper limit of

107.60F (42.00C) and the lower limit of 77.00F (25.0"C). Figure 4 presents

the results of this second simulation. It shows the temperature profiles of

all elements. Because of the direct connection by blood circulatlon between the

torso and head, arms, and legs. the tmmperature profiles anon 8 them show only

t a slight difference of shout IoF in temperature at the inner core. This

l
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slig_it difference is caused by the assumption that both the arterial blood
pool and venous blood pool have a uniform temperature throughout a given

element. A difference of about 7_F can be seen, however, between the temperature _

t
at the surface of the head and those of the other elements. _

i-

The main reason that the temperature profiles are lower than I07.6°F

(42.0°C) which is the effective envlronmen_al temperature of the torso, arms, I

: and legs is that the effective environmental temperature of the head is .'7.0°F

(25.0°C). This lower effective environmental temperature is intended to cool "

" the blood temperature inside the head. The venous blood flowing out of the
%

: head, in turn, cools off the blood temperature of the torso, arms, and legs.

_ _. Because the amount of blood distributed to each element is assumed to be .

_.. approximately 20% in the head, 60Z in the torso, 8% in the arms md 12% in

(" the legs, the steady-state temperatures obtained which are around I05.8°F

(<l.O_C) can be reasonably expected,

Some of the most significant temperature profiles of all the elements

are shown in Figure 5. It presents the resuits of the third type of simulation.

Blood circulatlon between the adjacent elements and metabolic heat generation

in each element are permitted. The results indicate that the effect of the ,_

lower effective environmental temperature on the head is overcomed by its _

high rate of heat seneratioo by metabolic reactions. The same reasoning

can account for the higher temperature profile of the head than that of the _,_:

arm. The temperature profile of the arm is slightly lc_er than that of

the lep even though the sum me_abollc rate Is assigned. This is duo to the

fact that the arm hu x smaller volmm than the lq and is sully affected by

i_' effective _nvirenmental temperature. The results al_o indicate that the

0
\

I
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v

simulated environment is not adequate for a person to stay indefinitely i! _'

because the steady state core temperatures of the elements of the body are

around !I2.0°F. i
i

Figure 6 presents the results of a parametric study of the temperature
ii

at various locations of the body. The core and skin temperatures of the
l
J

head and torso are presented. The results indicate that the temperatures

increase almost linearly as the metabolism increases. _.

0

i

-4 •
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5. DISCUSSION AND CONCLUDIEC REMARKS -C

As mentioned In the previous section, the model presented in this _

_ report is a modified steady-state verslon of Wissler's unsteady-state model _i

[19] (1964). l_e main difference between these two models is in the expres- !
J

sions of '_at conduction of the torso and energy balance equations of the |

, arterial blood and venous blood in the torso. Wissler [19] (1964) used !
t

Crank-Nicholson's inplicit finite difference technique to approximate the

unsteady-state system equations and employed the Gausian elimination method

to solve a set of interrelated linear algebraic equations for each element.

_\, The model discussed in this report uses the explicit foncdrd finite difference

technique to approximate the steady-state system equations and employs the

elimination method by using the largest pivotal division to solve the

C) simultaneous linear algebraic equation for the entire system which considers
T

the interdependence of all the elements.

The technique illustrated in this report also gives rise to great

flexibility in using different values of local physiological parameters. But

because of limited information concerning the different rates of heat generation

by metabolic reaction in various locati<;nc of _n elemeut, a uniform rate is

assumed to each element. The variation of local h!ood flow rates, however, has

implicitly been taken into consideration by assigning different values of

thermal conductlvities in different layers of the element.

One of the important results of this simulation is chat one can visualize

the effects of localized cooling (or warming) on the therms' system of the

human body. The investigation of these effects will provide valuable infor_tton __

as to the feasibili_y of crsatin S a local ndcrotnvironment for those persons

who are often exposed to the h }stile environment. This study will also be useful

for devicin 8 ways to protect persons involved in space exploration or unde_ate¢
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activities and to prolong the working period of workers in hostile environments f

such as steel mille or mines.

i

• F
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I='_.I. A schemoticdiogrmnof humonbody.
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O Fig.5. T_ure profile of various _ ot
steody--statecondition.(Melo_ic rate- :300BTU/hr)
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APPE=DIX A L

e

Heat transfer coefficient frora the human skin to its environment isv

7 i
contribute_ _ by four fac.tors; namely, conduction, convection, radiation, !

and evaporation. Tiae magnitude of the effective heat transfer coefficient

i

_- depends very much on tile physical properties of the surrounding u.ediu;a_

the m=,tiou of the medium, the relative humidity of the -J"" and the _-

". T
•.,etness of the surface of the skin. Hence, the effective heat transfer _

coefficient , H, can be expressed by =_

H = I! + I! + H (A-l)
C r e

where

H = heat transfer coefficient for convection
c

H = heat transfer coefficient for radiation

C
_! = heat transfer coefficient for evaporatione

The heat transfer coefficient for conduction is neglected because

of its small magnitude. The heat transfer coefficient for convection

can be predicted using the following equation

H D (_K:f)O.c = 0.26(D_f )0.6 3K-_ . - (^-2)

where

D = diameter of the cylinder

Kf = thermal conductivity of the medium

V = velocity with which the fluid approaches the cylinder

0 " fluid density

_f = viscosity of the fluid
C = specific heat of the fluid
P
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£
;, Equation (A-2) is appl_cab]_ only if the fluid approaches to a sivg](,

_! cylinder in the direction which i._ perpendicular to the a×Js of the
%1

i! cylinder. The heat transfer _oefficient is proportional to th- 0.6 power

ii of the velocity and inversely proportional to powe_" ,
the O.4 of the diameter.

! ,For a cylinder that is 8 cm in diameter

. 10-4 vO.6 cal (A-3)
; H =l.8x 2 o,.
; _ C cm x sec X *.., :

" 1, where V is measured i_ centimeters per second. For a cylinder that is

26 cm in diametc¢ the correspo_:ding equation is

: 10-5 V0. 6 cal (A-4)
H = 0.95 x 2 °Cc cm x sec x

|_. ' _ Equations (A-3) and (A-4) are used to approximate tlle values of llc for the

[ arms, lege, torso, and head.

i , . cm 2 !, _ The value of Hr increases from 0.000145 cal/ x sec x °C to 0.0001663 il

" cal/cm 2 x see x °C as the temperature changes from 10°C to 40°C. It is

nearly constant. Hence, the complex geometry of the human body and the

wide variety of the area for radiant transfer as the posture of the individ-

ual varies will not effect the value of H significantly.r

The heat tronsfer coefficient for evaporation in the absence of

sweating is approximated as follows

II ",0.16 x 10-4_ cal
t e 2

Cm X 8ec x °C

This approximation is used in this report because :In the future study

of hum,u_ suhject under control the sweating will be minlmlzod.
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