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PREFACE

In recent years there has been-a large number of solutions presented in the
fluid flow and heat transfer literature which have employed numerical marching
techniques. However, most of these techniques seem to have been invented to
solve the specific problem at hand, and they, therefore, seldom build on the
work of previous investigators. To the author’s knowledge, no unified presentation
of these techniques;, including the many aspects of their use, is available.

Any discussion of a field in science or technololy must necessarily reflect
the author’s personal views about the evolution of that field. Since the author’s
interest in the numerical solution of fluid flow problems was begun and developed -
at the Carnegie Institute)\of Technology (now Carnegie-Mellon University), the
natural evolution of the field appears to him to be that which has taken place at
that instiiution, and in which he took part. Had the author, for example, come from
the University of Michigan or the University of Wisconsin, where excellent nu-
merical work of this type has also been done, it is likely that he would see the
field from an entirely different perspective. This is particularly true in a field
in which there is so much art rather than science in the evolution of the methods

- of solution. The author would therefore like to note at this point that much has
been done in the field other than that referenced here and would like'to apologize
to those who may feel that their work has been slighted. It was felt, however,
that much was to be gained by the unified approach used here rather than by
presenting a motley literature survey of the vast number of techniques which
have been employed in the past.

It .is the purpose of this book to present the finite difference formulation
and method of solution for a wide variety of fluid flow problems with associated
heat transfer. Only a few direct results from these formulations will be given
as examples, -since the book is intended primarily to serve as a discussion of the
techniqiles and as a starting point for further investigations; however, the formu-
lations are sufficiently complete that a workable computer program may be written
from them.

Some of the finite difference formulations given may be found complete with
all results in the literature by the author and others; in these cases the references
will be cited. For other problems apparently no finite difference formulation has

i -
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been previously employed, and in these cases the formulation is that of the author:
For most of these cases the author or his associates have at least done experi-
mental calculations which verify that the formulation and method of solution are
workable. In a few cases such extensive work would be necessary to verify the
formulation and method that a major research project would ensue, and in these-
cases the formulanon must be considered as tentative, although no radical de-
partures from the conventional techniques have been made. Such unproved formu-
‘ations are clearly noted in the text.

It is hoped that the real utility of thls book will be found not only in the actual
formuiations presented, which admittedly in a number of cases are for classical:
problems treated adequately by other means in the literature, but perhaps more
importantly for situations in which the same or similar equations must be used for
problems which are not readily amenable to other methods of analysis. Typical
problems of this type are those which include any arbltrary distribution of suction
or injection at a body surface, body forces such as MHD or EHD forces, any class
of variable properties including those in which tabulated property variations must
be used, and any type of velocity or temperature boundary condition. A number of
such problems are presented and a solution formulated at the end of each chapter.

In the appendixes a number of topics are discussed which are of i interest with
respect to the finite -difference equations presented in this book. These include a
very rapid method for solving certain sets of linear algebraic equations, a discussion
~ of numerical stability, the inherent- error in flow rate for confined flow problems,

‘and a method for obtaining high accuracy with a relatively small number of mesh
points.

" The author would also like to note that the use of the term marching technique
is'used here to apply to any numerical method of solving an initial value problem
in the original sense of the term as used by L. F. Richardson in 1925. The term is
thus applied equally to implicit and explicit techniques for the solution of parabolic
and hyperbolic differential equations. There seems to be considerable current
feeling that the term marching should apply only to explicit methods, but the
author feels it is equally descriptive for implicit methods and it will.be so used
throughout this book. :

v
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CHAPTER 1

INTRODUCTION

1.1 HISTORICAL BACKGROUND OF MARCHING PROCEDURES

Marchmg procedures for the finite difference solution of parabohc partxal
difference equations (particularly the diffusion equation) have been known
for many years (refs. 1 to 3). Only since the advent of the digital computer as an
engineering tool, however, have these methods been widely used to obtain solu-
‘tions to a variety of fluid flow and heat transfer problems. In many cases these
numerical solutions represent the most accurate avail\able solution to a given
problem or at least the most accurate solution to the equations which are assumed
to apply to the physical situation. In other cases the numerical solution represents
the only one available. Any  analytical solution of the momentum and energy
equations is difficult because of the nonlinear convective terms. In most cases a
solution can only be obtained by linearizations or approximations. On the other
hand, the accuracy of a properly posed set of finite difference equations is limited
only by the size of the grid spacing used in the solution.

‘Step-by-step integration processes (marching procedures) for boundary
layer flows were employed by a number of investigators in the 1930’s and 1940’s
(refs. 4 to 6). It was not, however, until the work of Friedrich and Forstall (ref. 7)
in 1953 and Rouleau and Osterle (refs. 8 and 9) in 1954 and 1955 that these finite
difference methdds reached a sufficiently mature stage that they could be con-
sidered generally useful. Although in these investigations a desk ealculator was
employed, formulations were used which have been found of considerable value
in electronic digital computer applications. Friedrich and Forstall (ref. 7) solved
the problem of coaxial viscous jets using an explicit method with which some
stability problems were encountered. Rouleau and Osterle (refs. 8 and 9) formu-
lated an implicit finite difference scheme which was universally stable and then
considered a variety of external flow problems. Bodoia and Osterle (ref. 10) ex-
tended this implicit formulation to confined flow situations. These four papers
formed the basis for all of the steady flow solutions which were to follow. The

1
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first extensive use of these methods for compressible flow problems was apparently

that of Mitchel (ref. 11) for external flow problems, followed by Walker (ref. 12),

" Deissler and Presler (ref '13), and Worsge-Schmidt and Leppert (ref. 14),\who
solved internal flow problems. .

The basic work on the numerical solution to transient flows of the boundary
layer type was done at the University of Michigan. These investigations include
those of Hellums (ref. 15), Farn (ref. 16), and Farn and Arpaci (ref. 17).

The pioneering work of Fromm and his associates at Los Alamos on the
solution by numerical methods of the complete elliptic time-dependent Navier-
Stokes equations will not be discussed here since this book will be restricted to
equations of the parabolic and hyperbolic type. See reference 18 for a discussion
of the work and further references.

1.2 RANGE OF APPLICABILITY OF MARCHING PROCEDURES

Numerical marching procedures are methods in which the solution is obtained
in a step-by-step manner, always moving downstream in the flow field, forward
in time, etc. Their use is restricted to certain classes of differential equations.
The equatlons must be parabolic or hyperbolic (classical examples being the diffu-
sion equation and the wave equation) and cannot be elliptic (e.g., Laplace’s
equation). The character of the basic equations of fluid flow and heat transfer,
the Navier-Stokes equations and the energy equauon, implies that there may be
no derivatives higher than first order in the main flow direction. Thus, the second
derivatives along the main flow direction in the viscous terms of the Navier-
Stokes equations may not be present, nor can the axial conduction term in the
energy equation. In many physical situations it is justifiable to neglect these.
terms, and if so, a marching procedure ‘can be applied. As a general rule, the
second axial derivatives may not be neglected if there is anything in the flow which
will have an influence upstream (e.g., an object in the stream, a sharp constriction
in the channel, or a heater grid in the stream). The second axial derivative may be
neglected and marching procedures may be apphed if the problem has an

“open boundary in the flow direction. Transient problems of the boundary-layer
type have an “open boundary in time as well as space, and marching techniques
may be apphed to these problems in the time (as well as the space) direction.

An additional restriction on fluid flow solutions using the marching technique
is that large backflow is not permitted anywhere in'the flow field. This condition
'is generally associated with separating flows, and, as a result, the solution cannot

be carried far beyond the separation point. Of course, the physical validity of the
" parabolic equations may be questioned even slightly upstream of the separation _
point. :
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1.3 STABILITY, CONSISTENCY, AND CONVERGENCE

The terms stability, consistency, and convergence have acquired many mean-
" ings both in and out of numerical analysis, so it becomes necessary to define them
as used in the context of this book. . .

The concept of stability of a numerical solution is somewhat difhicult teo
precisely define, although, as anyone experienced in obtaining numerical solu-
tions is well aware, instability usually manifests itself in a very obvious, usually
catastrophic manner. This is actually a fortunate state of affairs in that, at least
for all problems arialyzed so far, there is a distinct dividing line between insta-
bility and stability. Instability is generally considered to.be the result of either the
cumulative growth of roundoff errors without bound as the solution is marched
forward, or the growth of error due to the presence of an extraneous solution to the
difference equations. Instability of either type will generally be seen as a strongly
growing, oscillatory cululative error which, in practice, rapidly causes a computer
- overflow. The usual distinction between stability and instability ‘s that given by
Forsythe and Wasow (ref. 19). This distinction is that a procedure is stable if the
cumulative error as the solution is marched forward does not grow faster than
some low power of the reciprocal of the mesh size in the marching direction;
instability corresponds ‘to the cumulative error being an exponential function of
the reciprocal of the mesh size. There seems to be no intermediate condition. ’

The criteria for stability of many of the difference representations given in
this book may be obtained in a relatively straightforward way. For some cases it
is extremely difficult to obtain analytical expressions for the stability criteria; in
these cases it is reasonable to simply proceed with the numerical solution. If
instability develops, as was previously mentioned, it will do so rather quickly and-
violently, in which case adjustments in the mesh sizes and parameters may be
tried until stability can hopefully be attained. Throughout the book. stability
criteria are presented where available. Afipendix B gives a stability analysis for
a typical case and outlines the method in general. :

A consistent finite difference representation has an exact solution (assuming
no roundoff error) that approaches the solution of the differential equations which
the difference equations replace as the mesh sizes used approach zero. Consist-
ency of a difference representation is dependent on the difference forms used to-
replace the various terms in the differential equations and, to a certain extent,
on the boundary conditions and difference- representation of these boundary
conditions. Where the term consistency is used in this book, many investigators
use the term convergence, but since convergence is also widely used to describe
a characteristic of an iterative process, the less widely used consistency seems a
- better choice. : '

All of the difference representations given in this book are consistent, except
for certain formulations given for plane and axisymmetric jets which are con-.
sistent only for nonzero secondary velocities. Consistent representations which
allow zero secondary velocities are also given for these cases.
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If an iteratively obtained solution to a set of linear or nonlinear algebraic
equations approaches the exact solution as the number of iterations becomes
large, the method of solution is called convergent. As mentioned before, this term
is also widely used to describe what in this book is called consistency.

1.4 EXPLICIT AND IMPLICIT DIFFERENCE REPRESENTATIONS

‘Explicit difference representations are those in which, as each step in the
marching direction is taken, the unknown quantities in the equations may be solved -
for one at a time. Implicit representations require the solution of a set of simul-
taneous equations for the unknowns as each step is taken.

The choice of explicit or implicit finite difference representations will depend
on many factors, including the problem itself and the size and speed of the available
computer. ' :

In order to examine the various representations, consider the flow field with
a mesh imposed on it shown in figure 1-1. The main flow direction is x. No bound-
ary conditions will be considered. Assuming the flow may be adequately described
by the incompressible constant property Prandtl equations, the basic equations
of motion are ’

du, du_ o

w ”ay_”W . (1-1) -

FiGURE 1-1.—Flow field and finite difference grid.
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du  9v . :
—4+ —=0" . 1-2
dx dy . ( )

For any numerical work, the first step should be to put the basic equations in’
dimensionless form. However, since our interest here is in a discussion of ex-
plicit and implicit forms, this step is omitted. It is assumed that both u and v are
known for all values of x and ¥ in the region 0 < x < x;. It should now be possible
by using a marching procedure to advance the solution to xjy, , then to x4, ete.

A number of difference forms are possible for the representation of equation
(1-1). The following are examples:

Explicit:

:

Ujri, k" Uj, k ul‘,k+1;uz',k—1 ’
S G v AT G 7

-y <uf,k+1 —-2u,~,k+uj,k_1)

(By)* (1-3)

Implicit:

' Ujs1,k— Uj, & Ui+, k+1 —Uj+1, k-1
| . (BEEELE ), (M5

Wjrr,kert — 2841,k Ujer, ko (1-4)

(Ay)?

Semi-implicit (Crank-Nicholson):

w Wirr, k= UWj, k
i | T —=
4 Ax

U1, k41— Uiy, k-1, Wi ey — UG, k-1
2Ay 2Ay
2

+vjk

Wjtr, ke1 — 28541, et Ujer, k1 +uj,k+1—2uj,k+ Uj, k-1
(Ay)? (Ay)?
2

=5

These representations are illustrated in figure 1-2. The explicit form (eq.
(1-3)) has only one unknown, uj;,,%. in each equation. Therefore this form can
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©{j k+) . C 9l ke (j, k+ 1) 1, kD)
(j, k) GeLk o Gk (+1K G,6 (j+1,K)
G k-1 ' (+1, k-1 G,k (+1 k-1
Explicit Implicit Semi-implicit

FIGURE 1-2.—Finite difference representations of momentum equation. (j, last x value at which ve-
locities are known; j+ 1, x value at which velocities are to be found.)

be solved directly (explicitly) for the values of uj.1, x entirely in terms of known quan-
tities. The explicit form has the advantages of high speed and simplicity of solu-
tion. The primary disadvantage of this form is that there are stability restrictions
on its use. These restrictions are that vAx/[u;,x(Ay)?] < V2 and |vj,«|Ayfv<2.
These criteria are derived by Rouleau in reference 9. This restriction may not be
too serious for such problems as free jets with moving secondaries, but for situa-
tions where u may become small or reach zero (as in cases where solid boundaries
are present) this restriction can be so serious as to preclude the use of the explicit
form. ]
The implicit form (eq. (1-4)) involves three unknowns: u;+1, k-1, #j+1,k, and
. uj+1,k+1- When this difference equation is written for each value of £ in the flow
field, a set of simultaneous linear algebraic equations in the values of wji1,x is
formed. This set must be solved before another step can be taken in the x-direction.-
- The .implicit form has the advantage of universal stability for all mesh sizes so
long as u does not become negative. The seeming disadvantage of the implicit
representation is that the solution of a set of linear equations is, in general, time
consuming. It should be noted, however, that for a set of linear algebraic equations’
of the type generated by equation (1-4) there exist methods Wwiiich are very nearly
as rapid as carrying out the explicit solution from equation (1-3). See appendix A
for a description of one such method.

The semi- 1mph01t representation (someumes called a Crank- Nlcholson repre-
sentation), equation (1-5), is an effort to gain a more accurate representation of
the differential equation by averaging the various terms wherever possible so
that each of the terms will be evaluated at essentially the same point. The solution
and stability criteria for the semi-implicit’ form are identical to those for the
implicit form. In practice, the author has found the advantages of the semi-implicit
form to be somewhat exaggerated, and that simply employing the implicit form
with a slightly smaller mesh size results in virtually the same effect. Forsythe and
Wasow (ref. 19} also note the lack of evidence for significant advantages of the
semi-implicit approach. It should be noted that the representation in equation
(1-5) has been chosen in such a way as to eliminate nonlinearities in the difference
equations. It is questiona‘ble whether it is ever worthwhile to make the difference
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‘equations nonlinear only to mcorporate the . advantages of the semi- 1mphclt
representation, since a considerable increase in computer time is required in
order to solve the nonlinear equations.

The continuity equation has generally been written in a form whlch for the
present problem at least, is explicit. Only one of the many possible representations
is ' '

uj+1,k+lTuj,k+l+yj+l,k+l_vj+l,k=0 ’ (1—6) i

Ax Ay

This equation may be solved in an explicit stepwise manner for vj4+1, x+1 assuming

vj+1, & is known. The solution is started from a point where vj+1, « is known (a lower

‘boundary, centerline, axis of symmetry, etc.) and marched upward. The values of
Uj+1, k+1 and uj.1, x are known from the solution of the momentum equation. Vari-
ous representations of the continuitv equation are employed in this book for

different flow situations. For external flows, the form of equation (1-6) will be almost

universally used. For confined flows, the form employed will be dictated by the

particular problem being considered and will be discussed in detail for each new

situation.

1.5 CHOICE OF MESH SIZE

~ The choice of mesh sizes for the problems considered in this book is dictated
primarily by the truncation error of the difference equations and, in some cases,
by the stability criteria. The only way in which a final mesh size may be chosen
with complete conﬁdencé is to run the problem with successively smaller mesh -
sizes until little or no change is observed in the results. Such a procedure may be
impractical from the standpoint of computer time required, and in this case an
alternative, although somewhat less desirable, solution is to run the problem for
two mesh sizes and use one of the techniques for extrapolating to zero mesh
size (refs. 19 and 20). This method will not produce satisfactory results if the
mesh' sizes’ chosen are not fairly close to the size requlred to glve a reasonable
solution. :
No quantitative statements can be made about the choice of mesh sizes in
various regions; however, smaller mesh sizes are required in regions of more
rapidly changing velocity and temperature. This means that a fine mesh is required
close to the wall in boundary layer problems, as well as close to the leading edge.
It is worth noting that the leading edge (or the entrance in a channel flow problem)
is a point of singularity in boundary layer theory, and that solutions obtained using
the boundary layer equations in the region close to the entrance will be incorrect
in this region. The effects of this point of singularity can be confined to the region
very close to the singularity if very small mesh sizes in the downstream direction
are used until the profiles smooth out somewhat. Typically, mesh sizes in the
marching direction of the order of 1/100 of those employed further downstream

459-174 0 - 73 -2
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may be desirable in order to confine the leading edge effects to the region close
to the singul_ayity. A number of investigators have transformed the equations to
boundary layer coordinates in an effort to minimize the effects of the singularity,
but in view of the success of simply using a very small mesh size in this region,
such a procedure becomes mainly useful in minimizing the effects of boundary
layer thickness along the plate and its value must be welghed against its greater
complexity. In chapter 2, section 2.4, a detailed discussion is presented of the
effect of the leading edge singularity on the calculations for an actual problem.

In the region close to a wall, or in the mixing region of streams of different
velocities, it is usually desirable to employ a finer mesh size than that needed far
out in the free stream where velocity and temperature gradients are less steep.
The technique for changing transverse mesh sizes in the flow field is discussed
in appendix D.

To give a starting point for the choice of mesh sizes, it may be stated that trans-
verse mesh sizes of the order of 10-! to 10-2 will usually be sufficient, while mesh
sizes.in the downstream direction may vary from as small as 10-% close to the
leading edge to 10-3 farther downstream. These sizes are, of course, predicated - .
on the use of the dimensionless variables used in succeeding chapters of this
book. Any other choice of dimensionless variables may have a profound effect
on the mesh sizes which are necessary.
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CHAPTER 2

BOUNDARY LAYERS

This detailed discussion of numerical téchniques is begun by considering
the external laminar boundary layer which forms on the surface of a body when
the body is placed in a free stream of a viscous fluid.

2.1 TWO-DIMENSIONAL BOUNDARY LAYERS

For our purposes it is convenient to reformulate the general two-dimensional
boundary layer problem (of which an example is shown in fig. 2-1(a)) into a flat
plate boundary layer problem (as shown in fig. 2-1(b)). The pressure gradient and
velocity far above the plate may be functions of x. Their values are determined
from the solution for potential flow around a body having the shape of the actual
body. This potential flow solution, evaluateéd at the surface of the body, yields the
desired values of u,(x) and dp(x)/dx. The flow at the “leading edge” of the flat plate
'is a uniform velocity with a value equal to that obtained from the potential flow
solution evaluated at the surface of the body and x=0 (e.g., if x=0 is a stagnation
point on the original body, then this velocity will be zero).

The temperatures in the stream far above the plate and at the “leading edge”
are assumed constant for the incompressible case, but they must be computed
from the energy equation for the compressible case since the velocity and pressure
- fields of the potential flow solution affect the temperature.

- 2.1.1 Incompressible Constant Property Flow—Velocity'Sblution

For the incompressible flow case, the equations of momentum and energy
are uncoupled so that they may be solved separately. The basic equations of
motion, making the usual boundary layer assumptions; are

ou, ou\__dp. (0w | |
p(”ax+'-’ay) dx T H <6y) - @)
' 11

PRECEDING PAGE BLANK NOT FILMED
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- Quter edge of -
boundary layer
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(b) |777777777

(a) Typical two-dimensional boundary layer conﬁguration.
(b) Two-dimensional boundary layer problem reformulated as flat plate boundary layer.

FIGURE 2—l.¥Modeling of a two-dimensional boundary layer as a flat plate boundary layer.

u , dv__ _ _
o 6y_0 , 2-2)

The boundary conditions are

u(x, 0') =0
v(x, 0)=0 2-3)
u(x’ oo)zux(x)

w0, y)= um(O) (see appendix F)

Before undertaking a numerical solution, the first step should invariably be to
place the equations to be solved in a dimensionless form having as few parameters
as possible. This may be accomplished for equations (2—1) and (2-2) by employing
the following dimensionless variables: ' '
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__xp )
ulua " L2pu,
L :
y=L= Y=y/L 2-4)
Lt _ .
P Do
pui J

where the characteristic velocity uo will usually be chosen as the velocity far
upstream from the body, and a typical length L is measured along the surface
in the x-direction. For the flat plate case u.,,(0) = u,.

The differential equations in dimensionless form become

U oU dP  9U

Caxt oy~ @& "o (2-5)
U oV _ '
X or (2-6)
. . N
with boundary conditions
Ux, 0)~
V(X,0)= ~
UX, w)—um/uo—U X) (27
U,Y)=U.(0)

From the potential flow solution, U, and dP(X)/dX are known

Equations (2—5) and (2—6) may now be written in difference form. A dlfference .
grid is imposed on the flow field as shown in figure 2—2. The most useful repre-
sentation for equation (2—5) is the following implicit form:

Uj’_k_Uj+1,lI;;Uj,k+Vi,kUj+1',k+é;YUj+1,k—1
=_PJ'+A;PJ'+Uj+l,k+l—2(UA]';'1),2k+‘Uj+l,k—l (2-8)

A simple explicit form is used for equation (2-6):

U}+1,k+1—Uj,k+1+Vj+1,l.-+1— Lk _ g ’ (2_95
AX AY
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.l
r k-1
|| Ll
U0 | ey e —
y 1) .
)
I.
| -
k=1
777 TITYTITT “Frrrrrrr 777 0
4 X ;
4

F1GURE 2-2. —Finite difference grid.

Equatidn (2-8) may now be rewritten in a more useful form as
/WS S [ Ui, 2 :
[ 2AY (AY)2]U’“”‘"+[ AX (AY)z]Uf“’"

y. e Pj— Py + U2 :
| G L | v e =20 (2-10)

2AY (AY)? AX

Equation (2-10) is now written for all values of k from k=1 to a sufficiently large
value of Y to ensure that the free stream has been reached; this value of ¥ will
correspond to k=n. The free stream boundary condition will then be U=U,, at
k=n+1. As a general rule, the value of n should be chosen to ensure that there
are several points (3 or 4) for k < n+1 such that U = U... If the solution is actually
\started from the leading edge, it will be relatively simple to find an adequate value.
of n as the solution is carried downstream. The value of n must be increased as
the boundary layer grows in thickness if a fixed AY.is used. When n reaches
" a sufficiently large value that computations become awkward (perhaps 50 or 60)
it will be found worthwhile to double AY and halve n before continuing.
The set of linear algebraic equations corresponding to equation (2—10) for
k=1(1)n (k varying from 1 to n in steps of 1) may be written in matrix form as
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B : _ /TON b
(42 Bz 02 .Uj+l,2 i ¢‘l
oz B ‘ Uiir,s b3
Tl N2 2
Qn-1 Bn—] Qny | I]j+1, n—1 (bn—l
o Bn . Uj+1,n A ¢n_
(2-1)
where - :
___V,-,,e_ 1 v
WTTIAY T (AY)2 >
Uik, 2
Re=2ax *ay):
N Vik 1
Q= 2AY (AaY):

mza—gﬂ+ug
TAX

~ (All elements are zero ex‘cept those shown.) -

- The matrix of coefficients in equation (2—11) is tridiagonal; that is, the matrix
" consists of a band three elements wide centered on the main diagonal. For tri-
diagonal matrlces a very efficient solution method exists and is discussed in
appendix A.

Once the values.of Uj,,,, have been found, equation (2—9) may be solved

' for Vji1, k41 to give

Vj+1,k+1=Vj+1,k—A—X U1, k41 =Uj, k1) . o (2-12)

Since Vji1,0=0, this solution may be marched upward to the free stream, starting
at the plate surface. The entire procedure may now be repeated at the next step
downstream and continued as far as desired.

The truncation error of the finite dlfference representation at each step is

of O(AY?) and O(AX) for the momentum equation and of~@(AY) and O’(AX) for
continuity.

The solution is universally stable for U=0. fU<0 as w1ll occur at and
past separation, the stability criteria are given by Bodoia (ref. 1) as
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|U|(AY?)
: ©2-13)

[2|U]
V= A

These conditions will be satisfied only if the negative value of U is very small; .
hence, the solution may be carried only up to and perhaps very slightly past the
separation point. A complete solution to the problem posed in this section is
presented in section 2.4 as a representative example of the use of the techniques
of this chapter. The solution is carried out for the case of dP(X)/dX=0.

1
2_
2

2.1.2 Incompressible Constant Property Flow—Temperature Solution

For constant properties, the energy equation is uncoupled from the flow
equations. Neglecting viscous dissipation (which may readily be included if
desired), the energy equation may be written as

at at a%t '
| folof < u 6x+‘v ay)_ k 3y (2—.14)
A number of temperature boundary conditions. at the wall are possible. Two com-
monly employed conditions will be considered here— constant wall temperature
or constant wall heat flux. The complete boundary conditions for the problem are

 t(x,0)=t,  (constant wall temperature) \
or
ot
—k g{ ~ =gq (constant wall heat flux)
=0
| ol | Yy e
and - ’ . _ ' ' 4
t(0, v) =t,
t(x, ) =t, }

The choice of dimensionless variables is
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_ | XM
U=ulu, X Topue
_pvL. =Y
Vv " Y 7
t—1ty ’
T———;Tt— (constant wall temperature)
%0 w

or

—k
T_qL (t—t.) (constant heat flux)

Inserting these dimensionless variables into equation (2-14) yields

aT oT _ 1 o°T
U6X+V6Y—PrM”
where ‘
HCp
Pr= T

In dimensionless form, the boundary conditions (2—15) become
TX,0) =0

T(0,Y) =19 (constant wall temperature)

T T(X,») =1
or
aT ‘
FX0=-1
(constant heat flux)
T(0,Y) =0
TX,x) =0

17

(2-16)

(2-17a)

(2-17b)

(2-18)

Since an implicit difference scheme has been used to solve the momentum
equation and since it is most desirable to use the same mesh sizes for the tempera-
ture solution and not to be limited by stability criteria, an implicit difference
scheme is also employed for the energy equation. Equation (2—-17a) may be written

in difference form as
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Ty =T
£ j+1,k J. k J+1 k+1 —
Sax TV 2AY

j+1, k-1

Uj, ke

L Thren1=2T 500, kb T 1 0
Pr (AY)?

(2-19)
This may be rewritten in a more convenient form as

Viee 1 U; 2
[ ZAIk’ Pr(AY)‘ ] Tj“"k_’_i_ [7&’*’ Pr(AY)* ] Tjr,k -

V Yik ]. .—UZ" kTi,k
+[2AY Pr (AY)z]Tf“’“*"'- AX

(2—20)

The marked 51m11amy of equation (2—20) to the momentum equation dlfference
representatlon (2—10) can be useful in the writing of a computer program.

The finite difference forms of the boundary conditions (2—18) are obvious
except for the gradient condition on the constant heat flux case. A difference
form for the gradient which is consistent in truncation error with the energy
equation (see appendix B, section B.1) is b

ﬂ ___3Tj+1',0+4'7}+1,1

— _Tj+1,2=_1
aY | v=o ~ 2(AY)

@-21)

s

where Ty, 0 = Tw which for the constant wall heat flux case is unknown. The
difference representations of both the basic equation and the boundary conditions
must have truncation error of the same order so that accuracy is not lost. Com-
bining representations of one error order for the basic equation and a different
‘error order for the boundary conditions may-give results which are less accurate
than either representation alone. ' \

The matrix formulation of equatlon (2-20) written for k=1(1)n with constant
wall temperature is

B QT T T T || T T
a B Lo - Tivr,2 oM
—_ Tj+1,3 d):;

'
ay,

Br-1
a,

Q,,
Bx

Tj+1,n—1 )

Tj+l,n

'
n-i

b,

(2-22)
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where . . ’
ar — Vz',k 1
k 2AY Pr(AY)?

AX Pr(aY)?
Q' = V!',k 1
¥T3AY  Pr(AY)?

The matrix of coef’ﬁc1ems of equation (2—-22) is trldxagonal indicating the use of
the method of appendix A.

If the constant heat flux boundary conditions are used, the additional unknown
wall temperature requires an additional equatlon (eq. (2—21)). The matrix formula-

tion is

\

-3 4 -1 Tj1,0 —2(AY)
o By Q Tie1.1 Y
a B Q, Tjir,» oM
2 w| = _1=
al’l—] Bl’l—l Ql,l—l Tj+1,n-1 (b;,_,
'al,l Bl’l T}"’l’" ¢;l
(2-23)

where o, B, {1, and ¢, are defined in equation (2-22). This matrix is no longer
tridiagonal, but it can be made tridiagonal by using Gaussian elimination (ref. 2)
to eliminate the off-tridiagonal element (—1). Only the top row of equation (2—23)
is modified and becomes

LRl B"
_3+ﬁ 4+E Tis1,0 —2(AY)+¢‘
o B & Tii1 oM

(2—24)

If the velocity and temperature fields are to be solved in the most economical
manner (in terms of computer time and storage space), the velocity solution at
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the next step should be computed next, then the temperature at that step, etc.
In this way only one column of velocities and temperatures need be saved at any
one time. Of course, the same mesh sizes should be used for the velocity and
temperature solutions.

In solving for both the velocity and temperature it may be found advantageous
to employ a fine mesh size near the wall and a coarser one near the free stream.
The details of this technique are discussed in appendix D. Usually the velocity
solution requires finer mesh sizes near the wall than does the temperature solution
so that the velocity solution is the determining factor in the choice of mesh size.
An exception is for high Prandtl number fluids, for which the thermal boundary
layer becomes very thin. In this case, the temperature solution becomes the
determining factor in the choice of mesh size, and even finer mesh sizes are
needed than those required for an accurate velocity solution.

2.1.3 Incompressible Constant Property Flow — Heat Transfer Solution

. The local Nusselt number is given by

qx

N = = ta)

(2-25)

where ¢ is the local heat flux. In dimensionless form; the local Nusselt number is,
for constant wall temperature,

oT
Nux—aYXRe | ' | (2.—26)
where
Re= pucl
“
and for constant wall heat flux
] .
Nu,=-T—XRe R (2-27)

The mean Nusselt number is given by
. 1 . X
um=—f Nu, dX S (2-28)
XJo

Equations (2-26) to (2-28) may now be expressed in finite difference form.
For constant wall temperature, -
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_ "3Tj+1,0'+;4Tj+1,1—Tj+1,2j| )
and for constant wall heat flux, .
_Xjn .
Nue=g "~ Re ' (2-30)

To find the mean Nusselt number, Simpson’s rule (ref. 2) may be used. Since,
however. an even number of intervals are required for integration by Simpson’s
rule, the value of Nux can only be obtained at every other step. The mean Nusselt

number is given by
AX 1
)5 )+ Nun j_,(x,-_l)](Xm) (2-31)

= [(Nu, P

2.1.4 Compressible Flow—Velocity and Temperature Solutions

+4Nu,

Num j+ J+Nu.l‘ i+

For the compressible flow case, the equations of momentum and energy are
coupled and must be solved simultaneously. The compressible flat plate boundary
layer problem has been solved numerically by Mitchel (ref. 3). The formulation
_given here draws on the work of Mitchel, as well as that of Walker (ref. 4).

The basic equations for the compressible boundary layer are

bu, du\_ dp, o ( du | .
p(”ax+ ay) dx+ay< ay) (2-32)
d(pu) , 3(pv) _ . g_an
ax T ay =0 . (2-33)

ot , 9t _ dp i( 3_t> (3_“)2 -
pcp<uax+vay) udx+ay kay + 3y (2-34)
p=p%t (2-35)

The viscosity and thermal conductivity are generally assumed as functions of
temperature only. As an example of such functions, the commonly employed
power-law relationships will be used here, although of course any desired relation-
ship could be readily substituted. The assumed expressions for viscosity and
" thermal conductivity are

~N

= pu(t) = uo(t/to)f (2-36)

k=k(t)=ko(t/to)? (2-37)
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where po and ko are the viscosity and thermal conductivity at a reference tem-

perature to: . :
Equations (2—-32) to (2-37) constitute six equations in the six unknowns

u,v,t,p, ., and k. '
The boundary conditions on velocity for this problem are

u(x,0)=0

v(x,0)=0

u(x, ©) = u,(x)

u(0, ¥)=u,(0) (see apgendix 3]

(2—-38)

As in the incompressible case, only the commonly considered thermal conditions
of constant wall temperature and constant wall heat flux will be used here, although
any other temperature boundary conditions can easily be accommodated. For
constant wall temperature the boundary conditions are ' S

N | , t(x, 0) =ty
‘ tx, ®) =tn(x) . 2-39)
(0, Y)=to=t.0) } -~

For constant wall heat flux, the temperature boundary conditions are

ot
k ay y=0—q . N
t(x, ©)=t,(x) (2-40)

t(0, y) =to=1(0)

In equations '(2—38), (2—39) and (2—40), the values of u, and t., both of which are
functions of x, are presumed known from the inviscid flow solution in the free
stream. T '

The next step in obtaining a numerical solution should be to put the basic
equations and boundary conditions in dimensionless form. The dimensionless
variables are chosen as :
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v=% =1L
Uo to
—povL p=L
Mo Po

XHo pr=P (2-41)
p()ll,()L2 Po
_Y sk
Y 1 k P
pr=E
Ho

All quantities with subscript 0 are evaluated in the free stream at the leading edge.
When these variables are inserted into equations (2—32) to (2—37), the dimen-
sionless forms of these equations may be written as

o (13U ﬁ/)_'_ 1 dp ( +20) )
p (U xtV oy )= e dX+aY Y @-42)
S 9(p*U)  a(p*V) _ o e
aX + aY ' (2 43)

T P.1a /(T | 2
g(Ug; VL)—ly—UgX+P (7% )+(y—1)‘M§p,*(-‘£]) (2-44)

F)4

P=p*T | (2-45)
=Ts (2-46)

k*=To - (2-47)

where the free-stream Mach number at the leading edge is My= uo/ V'y%to and
the Prandtl number evaluated at the same location is Pr= pocylko. Equations
(2—42) to (2—47) now constitute a complete set of dimensionless equations.

The boundary conditions may now be written in dimensionless form. The
velocity conditions are -

459-174 O - 73 -3
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U(X,0)=0
V(X,0)=0 s
v =X g (T
U,Yy)=1

For constant wall temperature, the temperature boundary conditions are

T(X,0)=T,
T(X, ®) =£f'°—(tj—(l= T.(X) 3 | (2-49)

T0,Y)=1

For constant heat flux, the temperature conditions become

—* oT _—_ﬂ
oY |y=0 koto
T(X, %) =T.(X) (2-50)
T(0,Y)=1

The basic equations may now be written in finite difference form. An implicit
. . ) . . A
form is chosen. The difference equations are

k= Uj Usir,ier—Ussr
L, —J¥LE My R s 2 h—
Pk [U,,,c - Ly, ke

AX

_1 Pin—P;

2(AY) ]

Ujs1,k61 =2Us41, 5+ Ujir e ]

J *
M2 AX +“f”“[ (AY)?

#;k,k-#l—#‘;‘,k-l][U.i+lyk+l_Uj+l,k—1 o
+[ 2(AY) 2(AY) ] (2-51)

Pj+1,k+lUJ+"k+‘ Pj,k+1UJ,k+1+Pj+1,k+1VJ+l,k+l pj+1,kVJ'+1J~‘_

AX

T; T

AX

NG 0 (2-52)

* +3, k— 1,k T_j+l,k+1 _Tj+1,k—1
P}k [ Ujr =5+

2(AY)

1

= ik
Y

'Y“lU Pj+1‘-P

’+—k;“,,£[

Tis, k1= 2T 11,1 +T 541, k-1
AX Pr

(AY)?
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+_}_':kf,k+1_k&—l] [Tj+1,k+1—’ j+1,k—i]
Pr 2(AY) 2(AY)

+M; (v—l)M;’k[Qm,m— j+l,k—‘-1]2 @2-53)

2(AY)
* . PZ'+1 ' i !
Pjs1,k T (2-54)
j+1, k
ik = (T, k)t (2-55)
kYo k= (Tj+1,k)g (2-56)

This finite difference representation presents distinct advantages in that all
equations are linear in the various unknowns. Thus at each step the equations
represented by equation (2-51) may be solved for the values of Uj.1,x, then
. equation (2-53) for the values of Tj+1, x, equation (2—54) for p,, ,, equation (2-52)
for Vjs1,x, and finally equations (2—55) and (2~56) for mir . and £

Before this solution can be carried out, it is neceséary to express the boundary
conditions in finite difference form. The only condition which it is necessary to
discuss here is the heat flux condition in (2-50), which may be represented as

k* [ j+1,0 Jj+1,1 ]+1,2]= 2_ 7
.0 Z(AY) koto ( > )
The method of solution for the basic equations may now be presented.
The momentum equation (eq. (2—51)) may be rewritten in a more convenient
form as ' :

[—p;k,kl/},k_ /"’]*,k +#ﬁk+l—ﬂf,k_l]U‘
2(AY)  (AY)? 4(AY)? AR

pf“, Ui v 2[.1,*,
+[ JZXJ +(A;/)k2]UJ‘+l,k

+[P}k,ij,k_ Mj*,k _l“]fk,kﬁ-l_/“"_;k,k—l]U.
2(AY) (AY)? 4(AY)? Jrt ke
=pj*’ka’k— 1 Pj+1.—Pj
AX yM3  AX

(2-58)
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This equation written for k=1(1)n may be written in matrix form as

B o '
[42) Bz (),2 ) l]j+1, 2 ¢2_
Q3 Bs Q3 Uj+1, 3 ¢3 .

. | = -

Qln_1 Bn—l‘ Qn—l U1+1, n-1 dJn-l '

Oin Bn Uj-}l, n d)n - QnUao J

(2-59)

where

ap =

— ¥ *
PiuVik H )k

NUMERICAL MARCHING TECHNIQUES

Uj+1,]

+

2(AY) (AY)? 4(AY)?
P; AUJ k21
b=

(:U‘;: ket M;: 1)

0 ____p;jkV:i,k_ i";:k _»(“;:kﬂ—l’“ﬁk—x)
kT 2(AY)  (AY): 4(AY)2

PO 1 Pk
WTTA M AX

The matrix of coefficients in equation (2—59) is tridiagonal and the method of
appendix A may be applied to solve for the values of Uj1, «-
The energy equation (eq. (2—-53)) should be solved next and may be rewritten as

—PheVik_ 1 Kk +1_(j,k+l—kj,k—1)]T.
2(AY)  Pr(AY)2 Pr  4(AY)? J+1, k-1

oh Ui, K ]
+[ AX Pr(AY)2 K

+[p.;'ieri,k___1_ k:k 1 (k k+1_'k_?:k-1)]T‘ _
2(AY)  Pr(AY): Pr  4(AY)? AR
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=‘Y_1 : Pj+1 1 [Uj+1,k+1“ j+1,k—1:|2 ’ _

Equation (2—60) written for k=1(1)n now may be expressed in matrix form.
Only the constant wall temperature case matrix equation will be presented here
since the constant heat flux case is only slightly different, and details of the
matrix formulation can be readily extended from the. discussion for the incom-
pressible case temperature solution (section 2.1.2).

The matrix equation is.

| B O, . Tjii,a & — o Tw
o B0 SRR B O N Y
o Bs O » Tjirs | #s
_ — X | — =| —
iy Bl’l—l -1 - T).'+l, n—1 b
a, B,’, Tj+|, n } ¢l’l -0, T.
(2-61) .

where

,=—p;;kﬁV,-,k_L .kj"jk.+1 (k¥ esr— k1)
¥~ 2(AY)  Pr(AY)z Pr 4(AY)?

a

B’=&ZU""‘ 2 ki,
Pe="ax tPhr(ar)

pX Wik 1 kY, 1 (kY

*
J» k1 _; k—l)

Y=2@aY) Pr@aY)y . Pr 4(ar):
,_')/-1 Pj+1"‘Pj _ % Uj+|‘,k+l_Uj+l,k—l 2
=I5 U g = D, | S

Agam as in the velocity solution, the matrix is trldlagonal and the method of
appendix A may be used to solve for the Tiir. k.

With Ujs1,x and Tji1,x known, the perfect gas law (eq. (2-54)) may be used
to obtain the density as
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_ P j+1

* =
Piv1,k.

(2-62)

Tj+l,k

Next the continuity equation (eq. (2-52)) may be solved for the transverse
velocities yielding :

Vj+l,k+l=<%’j’i)V_]+l kTt [(_f_)_l_ﬂ_) U k1 _‘Uj+l,k+l_] (2-63)

1, k41 A)‘ P]+1 k+1

This solution is started at the plate (Y 0) where Vj.1,0= 0 and marched out t¢
the free stream.

Finally, the dimensionless v1scosnty and thermal conduct1v1ty are found
from equations (2—55) and (2—56):

wii e =(Tie1,6)’ ' (2-64)

N

k} j+1,k (T]+1 k)g (2_65)

This solution at.j+1 is now complete and the solution may be advanced another
step downstream. The process may be continued as far as desired.

The truncation error for both the momentum and energy equations is of #(AY?)
and O(AX). For continuity the truncation error is of @(AX) and O(AY).

The difference representation given here is stable for all mesh sizes. 80
long as U= 0. ’ A

2.1.5 Compressible Flow — Nonlinear Finite Difference Representation

Many finite difference representations of the momentum and energy equa-
tions are possible, including a number which are not linear in the unknowns.
These nonlinear representations, such as those used by Walker (ref. 4), must
be solved-iteratively, but their advantage is a possibly more accurate influence
of the variable properties on the solution (i.e., a possible use of larger mesh sizes).
Except for the use of the iterative method, the solution for these representations
is quite similar to that used for the linear difference equations. As an example,
consider the following possible representations of the momentum equation (2-42)
and the energy equation .(2~44). The momentum equatiori may be written as

U;
ok [U]k Uik —Unk ZX L4 Vi

Upsr, k1— j+1,k—1]=
2(AY)
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_LPj+1_Pj+ * [Ifj+1,k+1—2(/}+1,k+l/j¥1,k—1]
M3 AX Mok (AY)?

l";—:—l,k+1 _l"’]tl,k—l] [Uj+l,k+l - j+1,k—l:| 2-66
+[ 2(AY) 2ar) | (%)

And the energy equation becomes
+

'P;ik [Uj,ijH’Z;Tj’k‘*' Vj,k Tj+1[,k;z;y)j+x,k—l ]

y—1 P.f""l—Pj 1 [Tj+l,k+1_2Tj+l,k+Tj+l,k—l]
= i +—Fk*
v Usx AX Pr itk (AY)2
_‘_i[kj*+l,k+l_ J*+l,k—l]|:Tj+l,k+l— j+1,k—1]
Pr 2(AY) 2(2Y)

’ Uier k1= Ujr1,6-1 12
+M2(y—1) u¥ [ L. eLdn ]
8O =1 s 2(AY) 2-67)

The viscous term in equation (2—66) and the conduction term in equation (2-67)
have been represented by using the dimensionless viscosity and thermal con-
ductivity at the unknown (j+ 1) position. Since w}, j is afunction of temperature,
equation (2—66) cannot be solved directly for the Uj. 1 « values, and since K%k is
also a function of temperature and appears in equation (2—67), this equation is
no longer linear in Tj:1,x. However, a straightforward procedure is simply to
guess values for wf , , and £}, , (probably the values from the lglst column).,
The properties are then considered as known and equations (2—66) and (2—67)
may be solved in exactly the same manner as in the previous section for Uj.1,«
and Tj+1,k. The property relations are then re-evaluated using the new values
of Tj.1,x and the process repeated until the values of Uji1,x and Tj41,x agree
with those obtained on the previous iteration to any desired degree of accuracy.
In general, only a few iterations (less than 10) will be required to give good ac-
curacy. The values of Vji1,x can now be determined from continuity, equation
(2—-63), and another step taken downstream. The procedure may be continued
as far downstream as desired. -

2.1.6 Compressible Flow—Heat Transfer Solution

The heat transfer solution is identical to that for the incompressible case
(section 2.1.3) except that kj"‘0 will appear in the heat flux expression.

~
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2.2 AXISYMMETRIC BOUNDARY LAYERS

For axial flow and heat transfer along a body of revolution, approximations
to the basic equations of momentum, continuity, and energy result in two dif-
ferent sets of ‘equations of the boundary layer type. These two sets of equations
correspond to two different physical situations. In one case the body has a radius
"of the order of the boundary layer thickness (i.e., a slender body) and in the
other case the radius of the body is large compared to the boundary layer thick-
ness. In both cases it is assumed that there are no steep variations of radius with
axial distance.

For the large radius case, transverse curvature may be neglected in the
momentum and energy equations and the equations are quite similar to those
for two-dimensional flow. This led Mangler (ref. 5) to develop a transformation
which maps the axisymmetric problem into an equivalent two-dimensional prob-
lem. Since we have already discussed two-dimensional boundary layer solutions,
the large radius solution will be considered as formulated and we shall not discuss
it further. It should be noted that for compressible flow the Mangler transformation
is only valid for perfect gases and constant specific heats. :

The formulation for the slender body will be of value for several reasons.
The formulation is valid not only for slender bodies but also for axial flow along
a circular cylinder of constant radius of any size and includes the transversed
curvature effects which are of considerable interest (refs. 6 to 8). In addition, the
difference equations derived here will also be valid for the axisymmetric jet with

' moving secondary which will be discussed in chapter 3.

The problem configuration and coordinate system are shown in figure 2——3
The inviscid flow solution around the body is assumed known, giving i, t.,, and
dp/dz. The free stream velocity far upstream from the body is us. Within the
limitations of the assumptions (slender body, only small variations in radius) it
is adequate to consider the coordinate system as the r, z—system rather than
going to a curvilinear coordinate system in which the coordinates are normal
and tangential to the surface of the body. Depending on the nose shape, the
formulation given here may.not be valid close to the nose of the body.

2.2.1 Incombressible Constant Property Flow — Velocity Sqlqtion

The equations of motion for -the constant property incompressible flow
problem are

du  du)_ _dp,  (Lau ) '
p (u 6z+-v ar) dz+M (r 8r+672 (2-68)
. du, 13Gr)_, | (269)

0z r Odr
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FIGURE 2-3.— Configuration for boundary layer flow on slender axisymmetriz body

The boundary conditions for the problem are

u(.rb, z2)=0
u(, z) =uw(2)-
v(r, 2) =

(2-70)
u(r,0)= um(O) (see appendix F)

The problem must now be restated in dimensionless form. This can be
accomplished by the following choice of dimensionless variables

U== £
Uo puoa”
y=2% R=. (2-71)
I
_P—po ' r
p= pud .Rb Ta

In equations (2-71), a is a characteristic value of the radius.

When these dimensionless variables are used, equations (2—68) and (2—69)
become . -

aU dP 193U 93U
Ua—Z_+VaR__ +

AN DS (2-72)
oU 1 9(VR) _ _
212 (2-73)

31



- 32 ’ , NUMERICAL MARCHING TECHNIQUES

The boundary conditions in dimensionless form are

U(Rs, Z)=0
U=, 2) =2 P=0.(2)
V(Ry, Z)=0 &
U(R, 0)= ”“(0) =U.,(0)

A finite difference grid is now imposed on the flow field. This grid is shown
in figure 2-4 for the case of a cylindrical body (Ry= a constant) with k=0 at the
surface of the body. Variations in R, introduce certain computational difficuliies
which will be dealt with later. Equations (2-72) and (2-73) may now be ex-
pressed in finite difference form as -

Ui,k =Ui ke, , Uprrkrr = Ujrr,
2z Vi 2(AR)

Pj+1_Pj+L Uisr, k61 = Ujir, x21
AZ R 2(AR)

Ui,

Ussr, k1= 2Ujs1, 5+ Ujsr, 1

+ (AR)? (2~75)
UolZ)
L k= n+1 (U= UgZ)
[L k=n
R - A=
T
R k=1
b BE v \
P 0

b

Fi1GURE 2-4. —Finite difference grid for constant radius cylinder.
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and .
UJH’H/;_Z_ i, k41 +RL,, (Vj+1,k+1Rk;1R_'. }'+l,kRk>=0 (2-76)
Equation (2-75) may next be rewritten in a more convenient form as
T v e R v vy LS
+[2{%§)’§RJAR)‘UET{‘F] U"“"‘*‘:%“L&_;z@ | &)

Equation (2-77) written for k=1(1)n constitutes a set of simultaneous
linear algebraic equations which may be written in matrix form as

Bl . Q, ' ’ - Uj+1‘,1 ¢1
a2 B : . Ujir,2 ¢a
az Bz Q; . Uji1,s &3
T o
Qp_1 Bn—l Qn—l ’ Uj+1,n—1 ¢n—1
Apn ,Bn Uj+1,n ¢H_QnUco
(2-78
where
Vi 1
*%="3(AR)  2R:(AR)  (AR)

Uik, 2
Be="az T aR):

oV 11
¥ 2(AR) 2R:(AR) (AR)?

_Uix Pi—Pj.,
$=2z T az
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The matrix of coefficients in equation (2-78) is tndlagonal and the method of
appendix A may be applied to solve for the values Uj1, k-

The continuity equation (eq. (2—76)) may now be snlved for Vi1 k+1 to yield:

—— (Ujs1,641—Uj k41) 2-79

R AR R
Viet,gs1= j+1,k< k) £

RI.-+1 AZ RI.+1

Since Vj+1,0=0, this equation may be solved in a stepwise manner from k=0
(the surface of the body) and marched out into the free stream, obtaining a value
of Vji1,k+1 for each k. _ A '

The solution may now be advanced downstream one AZ and the previous
process repeated. In this manner the solution may be carried as far downstream
‘as desired.

The variation of the radius of the body with Z may slightly comphcate the
orderly advancement of the solution downstream. If R, varies with Z, and at the
axial station j the surface of the body is set on a mesh point, then at station j+ 1
the surface will not fall on a mesh point for arbitrary AZ. One possible solution
is to transform to a coordinate system in which R, does not appear to vary, but
this is difficult to generalize, and the viewpoint taken in this report is to solve the
basic equations directly without recourse to transformations.

* The method for accommodating R, variations with Z which seems to best
combine accuracy and simplicity is to let the surface of the body fall on the
mesh where it may and call this point k=0. Then at k=1, the first mesh point
above the surface, the difference equations must be slightly modified to account
for the fact that the space between this point and the surface is only a fraction
of a full AR (see fig. 2—5). The method for doing this is identical to that for changing
to a different mesh size in a field and is discussed in detail in appendix D. The
only modifications to the matrix equation (2—78) are in Bl and (;, and these
become ,

B‘=[£.21+[V""v_.a(;zz)][atA_lf)]“La(AzR)z | (2-80)
Q‘=[?g_S(AIR')Z](iia)_(Aiav(lia) (2-81)

where 8 is the fraction of a full AR mesh space from the surface to the first mesh
point above it. The only modification necessary to continuity (eq. (2—79)) is to use
8(AR) in place of AR for k=0. Note that the k=0 point may shift as the radius
changes. Care must be taken to incorporate this shift in & in the values in the
jth column—for example, what ‘was ¥, before may be ¥;, x+1 now in reference
to the new origin for k=0. o
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R
u_Az_{
| Az
k=0 } i
1/’ BAR)
k=0 l
! \&AR) . | ®AR)
Al
2 —
Ry
7 7
(a) o
R.
: » ,
] S(AR)
%‘/—Lbo ) /,//‘;Backwarddifferences'
% P S \evaluated here
- r' , o .
1 ; SAR) \
AR | | L0 \
'__Azl . \
L A %%bx,_;\
.
/»\
Az teaz' -
D) Z

(a) Overall view of mesh configurations.
(b) Enlarged view of body surface crossing horizontal grid lines.

FIGURE 2-5.—Mesh configurations for slender boay of varyin'g radius.

Another problem becomes evident if the body is decreasing in size with
increasing Z and the body surface crosses a horizontal grid line as occurs at
two points in figure 2-5(a). In this case, the backward differences may be eval-
uvated by employing AZ' instead of AZ as shown in the enlarged view in figure
2-5(b), and by using the values of the variables at the surface of the body for
U;,\ and Vj,; (both are of course zero).
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As in all external flows, the thickness of the boundary layer will determine
where the edge of the numerical field should be and how many points are re-
. quired. This was discussed in detail in the flat plate boundary layer formulation
(section 2.1.1).

The solution will-be stable for all U=0. For U<0,it is necessary that

AZ 1

[U1(AR)? ™ 2 @-82)
and
1 2[0]
‘V—R—k =Ny - (2-83)

‘These stability criteria were obtained by Hornbeck (ref. 9).
The truncation error of the momentum equation is of @(AZ) and 0’(AR2)
For continuity the truncation error is of @#(AZ) and O’(AR)

2.2.2 Incompressible Constant Property Flow—Temperature Solution

The energy equation corresponding to the slender body assumption is

: ot at 0t 1 at
pc”( a+”ar) k<6r2+rar) (2-84)

As in the flat plate case, only the common temperature boundary conditions
of constant surface temperature or constant surface heat flux will be considered
here. However, any other conditions may be readily substituted. The boundary
conditions are

it(ro, 2y =ty (constant surface temperature) -
or
—k ar =q (constant surface heat flux) _
. - (2-85)
and )
t(o, z)=t,(z)
t(r, 0)=1.(0)

The following dimensionless variables may now be defined:
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Zp
U= u/uo = '2
a?puo
va
y=£% : R=rla
M ;
t~—1ty
T= — (constant surface temperature)
x tw

or

— & (t—t,)  (constant heat flux)
qa

Equation (2-84) in dimensionless form becomes

oT 8T _ 1 (92T 19T
UaZWLVaR—Pr(aR2 RaR)

and the boundary conditions written in dimensionless form are

T(Ry, Z)=0
T(R, 0)=1 (constant surface temperature)
T(«x, Z)=1

or - r
ar . o
R Re,Z2)=—1
(constant wall heat flux)
T(R,0)=0 '

T(, Z) =0

Equation (2-87) may be written in finite difference form as

U Tg+1,2‘Z— T, o Vi Tj+1,k;l(ZR7;j+l,k-l

_1 {Tj+1,k+1"‘2Tj+1,k+1j+1,k—1 _1_[T}+1,k+1—' 1kt

~pr (AR) R 2(AR)

This may be rewritten in a more useful form as

37

(2-87)

(2-88)

]} | (2-89)
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[_ Vie - 1 __ 1 . Upe , 2
[~ staay + sparecamy ~ Frame) Toei | B+ Brcams) T

+[ Vi k 1 1

2(AR) 2(Pr)R,,-(AR) " Pr(AR)? AZ

N ‘ l ‘ . 1 s
] ]j+1,k+1='—‘l‘_“?__"k K (2_90)
'l he finite difference form_ of the heat:ﬂux co'nditioh in (2-88) is

oT
" 3R

—3Tj+1 o+ 4Tj+1 1 j+l,2l .
= AR =—1 -
3(BR) &2

The finite difference form of the remainder of the boundary conditions is self-
evident. : .

‘Equation (2—90) written for k= 1(1)n along with the proper boundary condi-
tions constitute a set of algebraic equations which may conveniently be written in
matrix form. Only the constant surface temperature case will be given in matrix
form here. The modifications necessary for the constant heat flux case are identical
to those for the flat plate case (section 2.1.2) and will not be repeated. ’

The matrix equation for the constant surface temperature case will be

B R B b
a B &, ‘ . Tivi2 | | &
Cay By B Tivi,s' | | s
= = = X | — =|—
Sy Baor 2y Tje1,n-1 Gns
o Bl T 6,—Q,
(2-92)
where . _ :
al __V;',k ]. 1

k¥ " 2(AR) 2(Pr)RVA-(_A-R“)‘—Pr(AR)2

U . 2
r __Zi,rk <
Be="az TPr(aR): .

g 1 1
k" 2(AR) 2(Pr)Rx(AR) Pr(AR)2
gy = Lkl

AZ
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If the method discussed in the velocity solution section to allow for R, varia-
tions with Z is used, then 8 and {}; must be modified to become

Bi=G5+ | 7 Pr(§)(AR)][8(AR)]+6(P.r)(AR)2 (2-93)

Q;%[%_br(a)l(AR)h](1-?—8)_Pr(iR)-2<l:-6> A(2—94)

The matrix of coefficients in equation (2-92) is tridiagonal, and the method of
appendix A may be applied to solve for Tj.,  at.each step downstream.
For the constant heat flux case, «; also appears and is given by

’

=2 (o1 1 _
“T 5P (1+3) (AR)? (V Pr(8)(AR))(8(1+8)(AR)) (2-95)
The heat flux ex.pression (2-91) becomes

AT = (429 Tji 0t (1+8)2 1,1 = (8)2Tjur,2_
R |r=r, 8(1+8)AR '

-1 (2-96)

- As in the velocity solution, if the body surface crosses horizontal grid lines as
shown in figure 2—5(b), then AZ 'may be employed in evaluating the backward dif-
ferences and Uj 1, Vj,1, and T, are evaluated at the surface of the body. The
quantities U;,, and ¥V, are zero, and T; ; will be known for the constant wall
temperature case and may be found by linear extrapolation of the surface tempera-
tures at the two preceding axial steps for the constant wall heat flux case.

" The temperature formulation for the axisymmetric boundary layer problem is
universally stable. The truncation error of the finite difference representation is of

0(AZ) and O(AR)%

2.2.3 Incompressible Constant Property Flow — Heat Transfer SAolution

The heat transfer solution for the slender body of revolution is identical to that
for the flat plate (section 2.1.3) except that the characteristic length L is replaced
by the characteristic radius a.

2.2.4 Comp.ressil.)le Flow— Velocity and Temperature Solutions

As in the two-dimensional case, a perfect gas has been assumed and the
viscosity and thermal conductivity relations have been assumed as a simple power
law. These relations between properties are for illustrative purposes only and any.

459-174 O - 73 - 4
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other relationships may be substituted. The coupled fundamental equations
for the compressible flow—slender body case are '

B ) _dp 10, 00 i
p(uaz_.-i-var) ' 'dz+r6,r p.rar _ (2-97)
a(gu) +1alem) : (2-98)
92 . - r oOor . )

ot 8tN_ dp 19 [, dt) <3_“>2 _g
per (u Oz T ar) uv dz + rar (kr ar) tr ar (2-99)
D :pg?t . ~ . (2_].00)
w=u(t) = po(t/to)’ 2-101)
k=k() =ko(t/ta)? (2-102)

. . »
The velocity boundary conditions are assumed to be

N u(ry, 2) =0 /
v(ry, 2) =0

. 2-103

u(r, 0) =u.(0) (see appendix F) ¢ )

u(o, z) =uy(z) '

As examples of typical temperature boundary conditions, constant surface

temperature and constant surface heat flux will be considered here. For constant
-surface temperature the boundary conditions are

t(ro, z)=t, -
t(r, 0)=t.(0) (2-104)

t(w, ‘z) = i;oo(z)
and for constant heat flux,

at _
or | r=r, q

—k

¢(r, 0) =1..(0) (27105)

t(%®, z) =t,(z)
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The dimensionless variables which seem to offer the most advantages are

U:l Z_ ot
o poltoa’
V=”;’L”“ R=" (Rb=';”)
0
t k ‘
T=— e — -
o k ke '(2 106)
p=L x_ M
Po * Mo
*;ﬁ
P P

If these variables are used, equations (2—97) to (2-102) may be written as

oU 1. dP 134 aU _
p(UaZ+VaR)_ M2dZ+RaR( RaR) (2-107)
d(p*l) la(P*RV)= _
SRR (2-108)
aT y—1 1 d aT
* e =Ll Pl
p (UaZ+VaR) 5 U (P)RaR("RaR)
U |
2 —
+ (y—1)Map* (aR) . (2-109)
P=p*T | @)
. w*=(T)yr . (2-111)
k* = (T)9 (2-112)

where the Mach number evaluated at to is Mo = uo Vv. to, and the Prandil
number evaluated at to is Pr= pocp/ko.

The boundary conditions on velocity in dimensionless form are

U(Rb’ Z) =0
V(Ry, Z) =0
U(w,Z)=u.(Z)ue=U.(Z) | - (2-113)

U(R,0)=Ux(0)/uo=Ux(0)
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and those on temperature for constant surface temperature are .

T(R,0)=1 ‘
T(>, Z) =t (Z)/to— T» (Z) o (2-114)
T(R», Z) = twlto =Ty

or'for constant heat flux

T(R,0)=1
T(o, Z) =t (Z)[to=T,(Z)
o7 w . | > (2-115)

x4
k aR R=Ry koto

Equations (2-107) to (2-112) may now be written in difference form. An implicit
representation is used for momentum and energy and all representations are
chosen in such a way as to make all difference. equations linear in the various *
unknowns. The dlﬁerence representations of equations (2—-107) to (2—112) are

PE (UJ-,A.M+ g, Uinee = Uj-H,k—])

AZ nE 2AR
__ 1 P P!+F4 .[Uj+l,k+l_2.Uj+l,k+Uj+1,k—1
yM3 AZ (AR)?
+.L Ujri, k01 — Uj+1,k—l]
Ri 2AR ]

ﬂﬁk+1.—-/"ﬁk—l] [-Ui+1,k+1_ J'+1»k"‘1j| =
+[ AR 4 SAR) @2-116)

p;+1,kUJ'+1,k—P;kUi,k+Pf+1,k+1Rk+lV‘J'“»k“ _pj*ﬂ,kR"'Vi“’l‘:O @-117)
AZ R«(AR)

. Ty, x—T;, Tievier—=Tivnen | _y—1 Py —P;
P?fk[Uf”‘_JLZz—”“LV’”" BTV ]_ Ui =5z

{k* [Tj+l,k+l"‘2Tj+1,k+Tj+1,k—l+i Tivr, ke1— j+l,k—1]+
T ¢ (AR Ry 2(aR)
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_"_ _k;kﬂ-—_kﬁk_l 7}+1,k+1—' j+1,k—l]}
[ 2(AR) ][ 2(AR) '

Uiy 101 —=U; e
_ % j+1, k41 j+1, k-1 ) _
+ (v l)Mguj,k[ 2(3R) ] (2-118)
P
P~ (2-119)
J
who o= (Tra, k) ' ' 2-120)
| kfr o= (Tjer, )9 f - (2-121)

As in the two-dimensional case discussed in section 2.1.4, these equations
may be solved successively in the following order which essentially decouples
them: equation (2—116) for the Uj.1, ’s, equation (2-118) for the T}, «’s, equation
(2-119) for the p},, i’s, equation (2-117) for the ¥j.1,i’s and ﬁnally equations
(2-120) and (2-121) for pf,, , and k}, et ke

The only boundary condition for which the finite difference form need be
discussed is the heat flux condition j in equation (2—115). This may be represented
by

—3Tj1,0+4T 41,0 — j+1,2] _T4qa
¢ [ 2(AR) koto

k¥ 2-122)
The relation (2— 122) must be solved simultaneously w1th the energy equation
2-118).

Equation (2—116) may be rewritten in a more useful form as

[— PﬁkV~’:\- . IJa;:k f“';:k 4 I‘l'_;’:k+lv_ p’;jk—l:l U :
2(AR)  (AR)® ' 2(Rx)AR 4(AR)? rbet
P;:ij,k F'*j,k _ /"’*j,k

phelin 20547 _
[ AZ _—F(AR)“’] U’“’k+[2_(AR) (AR)? - 2(Rx)AR -

¥ % : P —P. * [z
e . 1 P — Py pf U,
T T A ADYe Uj+1,k+l -

4(AR)? YMz~ AZ AZ

0

(2-123) |

Equation (2—123), written for k=1(1)n, now constitutes a complete set of equa-

tions for the values of U; 1, x. This-set may be written in matrix form as .
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,Bl 0, : Uj+1,1 d)l
o B2 O . _ Uj+1,2. b2
a3 Bz s ' Ujir,s b3
(£ 77881 B_n—l Qn—l Uj+1,n—1. 4)"#1 |
- Ay Bn ‘ Uj+1,-n 'd)n—QnU“,
(2-124)
where

. * * CE %
_ Pkl Mk M, & M5, ke ™ My r—

*=T5(AR) (AR)® 2(R0AR ' 4(AR)?
piUi v | 21
= + ,
B=""az (ary :
) =P;|,</.-Vj, l\'_.l*"';jk _ B _':“;',:/.-H_,U«;fkq
*“2(AR) (AR)? 2(R:)AR 4(AR)?
L Pra=P pb U3,

¢(C=_7M§ AZ AZ

The coefficient matrix of equation (2-124) is tridiagonal, and the method of ap-
pendix A may be applied to solve for the values of Uj,, &.
The energy equation (eq. (2—118)) may now be rewritten as

[_Pﬁij.k_ Kk + kS i kﬁkﬂ_,k;fk—_l]r . |
2(AR)  (Pr)(AR)* ' 2R.(AR)(Pr) " a(Pry(AR): ] """

+

+[pj>l,<kUj,k 2k} ] .
AZ T (Pr)(AR)2 ]

* * ® % _ L%
+[Pj,ij.k kS y L T T

2(AR) ~ (Pr)(AR)? 2R.(AR)(Pr) 4(Pr)(AR)? ]T1+1,k+l='
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_'y'—lUj'kPj+1_Pj+Pji,‘kUj,ij»k

vy AZ AZ

Uj+1, k+1 Uj+1,k—l

2(AR)

+ (v—l)Mﬁu;'fk[ ]2 (2-125)

Equation (2—125) written for k=1(1)~ along with the proper boundary condition
at k=0 constitutes a complete set of equations in the values of Tj.1,. This set
of equations may now be written in matrix form. Only the constant surface tem-
perature formulation will be given here. The constant heat flux matrix form and
method of solution can be readily inferred from the two-dimensional incompressible
case given in section 2.1.2. The constant surface temperature matrix equation is

B: €4 ' S Tje1,1 d1—oTw
a, B; £, ' . - Tjs1,2 0%
a; Bi Q Tit1,s b3
. | — _|—
P Q’n—_l Tjvr,n1 | bnos

o, B Tjsi,n ¢,— 0, T-

2-126)

where -

,=_p‘;k,kl/:iyk_ k]?k,k ) k_;k,k ) kf,k+l—k-;k,k—]

%~ T2(AR) (Pry(AR)? 2R (AR)(Pr)  4(Pr)(AR)?
,_Pf,kUj,k 2kj*,k

A%z TP.aR)
szpﬁka»k_ k;k,k _. k;k,k _kf,kﬂ_k;‘,k—l
¥ 2(AR) (Pr)(AR)% 2R:(AR)(Pr) 4(Pr)(AR)?

y=1  Pi—P; p* Ui iTie [ Ut ksi—Upen ke 1
11y, fllin e U =
R L O e 1777

The coefficient matrix of equation (2-126) is tridiagonal and the method of appendix
A may be used to solve for Tji1,&. v

Equation (2-119) may now be used to give p}, ; at each point.

The continuity equation (2—117) can be solved for Vi1, k41 to give
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p]?k-}-l kRk AR Rk
Vier, ko1 =—3——"———Vjy1, +(———>—(pak Ui i
jH1,k+1 pjtl,k+1Rk+l j+1,k AZ P}k+1,k+,Rk+1 i, kY

- P;:L'l kUj+1 k) (2.—127)

Equatlon (2-127) may be marched outward from the surface (k 0) to give all
values of Vi1, 1 +1.
Finally, equations (2-120) and (2-121) can be solved for u}, , , and £}, ;.
If R, is a function of Z, then the difficulty of the surface not falling exactly
- on' a mesh point will be encountered. The method of attack applied here is the same
as that described in section 2.2.1 for the incompressible case. The matrix equations
(2-124) and (2-126) must be modified to account for the partial grid space at the
surface. As before, 8 is the fraction of the grid space adjacent to the surface. The
modifications are, for equation (2-124),

p_;'leJ',l p;:IVj,l(l —3d) 2#'}?1

h="az 5(AR) | 5(AR): |
(I=®uf  (wf,—#i)1=8)
TTE@R): | 2m(AR) e
e 30, (8 g — 1) .
=135 (aR) A+ 8)(AR)?  2(1+ ) (AR)? 2-129)
Wheré

I e | &
B a= R 511 +2p.]1(1—8)-i-2;Lw1 1+35

and the modifications to equation (2-126) are, for constant surface temperature,

B,=p1?f1(/},1+913':11’},1(1';5) 2k,
A 5(AR) (Pr)8(AR)?
(A=8)kr, - (kf ,—kj,0)(1—8)
"~ (Pr)&(AR):  2(Pr)®(AR)? (2-130)
¥y 3k* K -
0;=—FPeiid 2L (&, o) (2-131)

(1+8)(AR) (1+8)(Pr) (A‘R)2—2(Pr) (1+a) (AR)?

and
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_71

*
Pjsi — P1+pi,1Uj,1 G,

Ui AZ AZ
82 2
8)+UJ+1 2( +8)J

& —aiT,,

Ups1,.(1—
. 2,k j+1,1
+ ('Y l)MOl“'J,I[ 5(AR)

_[ _p;jlle.l _ 2kj=fi kJ*l
8(6+1)AR §(1+8)(Pr)(AR)2 82(l+5)(1)r)(AR)2

kg — ko _
+2(Pr)(]8:-1)182(AR)2]T“’ (2-132)

where
5—1 &

k?"-*( )2* 5 2k*<———-)

=Ko\ ggr )T Lm0 1+

For constant wall heat flux, an expression for o/ is also needed along with modi-
fications of ¢ and the heat flux expression. The necessary quantities are

,__'_pjglile,l _‘ 2kj>|:1 ' k*
17 8(6+1)AR 8(1+8)(Pr)(AR)? 82(l-+-8)(Pr)(AR)2

a

K =k,

2(Pr)(6+1)62(AR)2 (2-133)
., o y—1 Piwn—P;  pf U; \T;,
b= U=+ v
( &2 ) 2 )
+(v—l)Mﬁu}fl[Uﬁl’l(l_a;&%“'z 149 ] ' (2-134)
L~

and the heat flux con_dition

LT |

0T g [T,-+1,1(1+8)2'—1};1,2(62)—T,-H,o(1+25)]
R lp=r, 7°° 8(1+8)(AR)
=2 ® (2-135)

koto
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For details of handling the constant heat flux case see section 2.1.2.

When all quantities have been obtained at the station (j+ 1), the solution:
may be advanced downstream one AZ and the process repeated. The representa-
tion is universally stable for all U = 0. The truncation error is of @(AR?) and 0’(AZ)
for momentum and energy and of @(AR) and #(AZ) for continuity.

2.2.5 Compressible Flow —Heat Transfer Solution

The heat transfer solution is identical to that for the incompressible case
(section 2.2.3) except that k¥ o will appear in the heat flux expression (see eq.
(2-135)).

2.3 OTHER PROBLEMS WITH A SIMILAR FORMULATION

2.3.1 Wake Behind a Flat Plate.

The problem is illustrated in figure 2—6. Rouleau (ref. 10) solved the incom-
pressible wake problem using a finite difference formulation similar to that to
be presented here in order that he might evaluate the finite difference results in
comparison with the classical solution of Goldstein (ref. 11). The formulation is
virtually identical to that for the flat plate boundary layer with dp/dx=0 except,
that the boundary condition ‘

UX, 0)=0

for the boundary layer problem is replaced by
"’—g (X, 0)=0 L (2-136)

Because the additional unknown Uj, 1,0 has been introduced, it will be necessary
to write the momentum equation at Y=0. Consider, for example, the incompres-
sible case. The momentum equation in difference form at ¥ =0 may be written as

: UJ ol_]%yj_ﬂ_‘_n o J+1 1 Uj+1,—1 =Uj+1,1_2Uj+1,0+U,‘L+l,—l (2_137).

2(4AY) (AY)?

The boundary condition (2—136) in difference form is

D Uiy —Upr. |
+1,1 +1, 1= —
Pt =0 (2-138)
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Ficure 2-6. - Wake behind flat plate.

and hence

Uj+1,|=Uj+1,_1 (2—139)

When equation (2—139) is used, equation (2—137) may be rewritten as.

Uper.o— U Upr = U |
) +1,0 0 _ +1,1 +1,0 _
Uyo i =it =2 [—J————J—( ) ] 2-140)
or .

Ui.o Uz

(55 o o [ 0 = @-an

This equation, along with the momentum equation (2—10), written for k=1(1)n
now forms a complete set of algebraic equations for the values of Uj1,x. The
" resulting matrix equation, in which equation (2-141) now ‘forms the top row,
retains the desirable tridiagonal form of the coefficient matrix. A similar change
must be made for the energy equation, with a symmetry condition d7/d¥=0
applying at Y=0. The extension to the compressible case is straightforward. In
all cases the velocity profile used for starting the solution at the end of the plate
will be a boundary layer profile, obtained either by the numerical methods of this
chapter or by classical analytical techniques.
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2.3.2 Two-Dimensional or Axisymmetric Body With Suction or Injection at
the Surface

The only change to the formulations given in this chapter to accommodate
suction or injection at the surface is that instead of the transverse velocity being
zero at the surface of the body a transverse velocity is specified. For the two-
dlmensmnal case

VX, 0=VoX) (2-142)

and for the axisymmetric case N

V(Ry.Z)= Vw(Z) : (2-143)

where ¥, can be any desired function of the axial coordinate. No changes in the
difference equations are necessary.

2.3.3 Tangential Jet Adjacent to a Wall

The problem configuration is shown in figure 2-7. Tangential jet injection has
- recently received considerable attention as a means of providing boundary layer
and heat transfer control {refs. 12 and 13).

Several minor modifications to the two-dimensional formulation are necessary
in order to consider this case. The dimensionless variables should be redefined so
that the characteristic length L is replaced by the jet height d, and the proper ve-
locity and temperature profiles must be used at the “leading edge” (actually any-

Joo{0)
o0’

UptY) ' -

F1GURE 2-7. —Tangential jet adjacent to wall.
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where on the surface that the jet is injected). This initial profile may be expressed
as

S U0.Y)=uy(Y) uy=Uy(Y) | forY=<1 (2-144)
and '
77(0, Y) = uw(O)/uo— U.(0) forY>1 (2-145)

Possibilities for U,,(Y) include a umform proﬁle of any desired magnitude or a para-
bolic profile. It is also possible to modify equation (2-145) to represent a Blasius
type profile corresponding to the situation of a jet injected somewhere downstream
of the leading edge of the plate' where a boundary layer has already begun to de-
“velop before the jet is reached. A very wide variety of boundary conditions on tem-
perature are possible so none will be discussed in detail here, but their applica-
tion to the finite difference problem is straightforward.

It should be noted that difficulties have been encountered by the author and
" others when jet velocities become very large compared to the secondary velocity.
This difficulty generally is manifested as an oscillatory character of the profile in
the mixing region of the jet and secondary. This phenomenon has not yet been
satisfactorily explained. -

2.3.4 Boundary Layer Flows With Body Forces (MHD, EHD, etc.)

A large class of problems in which there is a body force on the fluid may be
" approximated by using an equation of motion for two-dimensional flows of the
form

du duy . dp a'( au) :
—typ— )=+ — — |+ F , Y, U, -
P (u dax vay)‘ dx 9y May (x5, u,v) (2-146)

where F is the body force on the ﬂmd An equivalent equation for axnsymmemc
. flows is

pudtsod)——doy 1o (m B 4Pz - @4
. dx  ror d ' : '

A complete discussion of magnetohydrodynamics and electrohydrodynamics
‘cannot, of course, be undertaken here; the reader is referred to any of the stand-
ard references such as Pai (ref. 14) or Hughes and Young (ref. 15). However,
the problems encountered may be placed in two broad categories; those in which
the form of the body force as a function of the velocity may be determined without
‘simultaneously solving for the velocity distribution (that is, where the induced
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fields are small compared to the applied fields), and those in which the solution
for the velocity distribution and the body force distribution must be obtained
simultaneously.

If the induced fields are neglected then the body force distribution as a
function of velocity' may be inserted in equation (2—146) or (2—147) and, with
some variations to allow for the form of the body force, the fluid flow and heat
transfer problems may be solved essentially as before. The continuity equation -
will be unchanged, and the proper form of the energy equation (refs. 14 and 15)
must be used. A number of different forms of the body force distribution may be
encountered. If the body force is a function of position-only, it adds only to the
right side of the difference representation of the momentum equation and does
not affect the method of solution at all. If, as is often the case, the body force is
a linear function of u, then the only change in the difference equation is an addi-
tion to the coefhicient of Uj,y,x in the difference equation. If the body force were
a nonlinear function of u or v then it would be necessary to employ an iterative
" method to obtain a solution to the resulting set of difference equations. The
methods discussed in the next chapter for jet flows with zero secondary velocity
may be useful in this context.

If, for incompressible flow, the induced field eﬂects must be included and it
becomes necessary to simultaneously solve for the velocity and body force dis-
tributions, then the difference forms of both the equation of motion and the nec-
essary field equation (e.g., one of Maxwell’s equations) must be solved simul-
taneously. The resulting difference equations, at least for MHD, will be linear.
‘The matrix of coefficients will not be tridiagonal, however, so the solution will
‘necessarily be somewhat time consuming. An iterative method in- which all
off-tridiagonal terms are evaluated at the last iteration may be found useful.
' If the flow is compressible, the energy and continuity equations will have to
be solved simultaneously with the equation of motion and field equations, and an
iterative scheme becomes almost mandatory.

2.4 EXAMPLE PROBLEM—FLAT PLATE BOUNDARY LAYER

As an example of the use of the numerical technique and of the problems
which may be encountered near a leading edge, we shall now consider the classical
problem of the incompressible boundary layer on a flat plate.

Since for the flat plate case dp/dx =0, the dimensionless form of the differen-
tial equations of motion and the associated boundarv condltlons (egs. (2-5) 10 (2-7))
become

U aU_gl_f : .
U +V— e (2-148) .

ol Vv _
X G_Y_O . (2-149)
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U(X,0)=0
V{x,0)=0 _
UX o) =1 (2-150)
. U, y)=1
With the similarity transformation
' Y
"=y (2-151)

-equation (2—148) may be transformed into a total differential equation, the solution
of which is the Blasius series (see Schhchtmg ref. 16). This solution is shown as
the dotted line in figure 2—-8.

‘ Numerical solutions to the set (egs. (2-148) to (2 150)) were obtamed using the
difference representations (2-8) and (2-9). The U velocity profiles are shown as
solid lines in figure 2-8. The mesh sizes used were AX=0.001 and AY = 0.025
with n=80 (i.e., with 80 increments from the plate to the free stream). - _

If the numerical solutions were exact (no truncation or roundoff error), then
when plotted as a function of 5 all values U(7) should fall on the same curve, and
that curve would be the one obtained from the Blasius series. In actuality, since

71—
61—
' ————Blasius series
Numerical solutions
51—
=
.o
F=1
E 41—
e
?g ) Distance,
= 3 X (steps)
E
s : 0.01(10)

Dimensionless velocity, U

FIGURE 2-8. — Comparison of numerical solution with Blasius series solution for ﬂat plate boundary
layer.
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the boundary condition at the leading edge is such that the velocity at the plate

"drops abruptly to zero, two sources of error are introduced. The first of these is
truncation error, since only a few mesh points in the transverse direction will be -
affected due to the thinness of the boundary layer at the first step downstream of
the leading edge. The second, and far more serious, error is introduced by the fact
that the leading edge is a singular point, and hence the solution in the neighborhood
of that point cannot be adequately represented by a Taylor series expansion. Since
a finite difference representation is simply the first few terms of a Taylor series ex-
pansion, it cannot be expected that a finite difference solution will be accurate in
the neighborhood of the leading edge. The solution should improve in accuracy as
more downstream steps are taken and the singularity left behind.

The curves shown in figure 2-8 demonstrate the expected behavior. The in-
fluence of the singularity is very strongly felt at 1 step and 10 steps (although the
boundary layer thickness is surprisingly good). After 100 steps (at X =0.10), the
numerical solution deviates from the Blasius solution by at most about 6 percent.

The question now arises as to how the effect of the singularity may be confined
to thevregion close to the leading edge. To help to-answer this question, a numeri-
‘cal solution was then obtained using AX = 0.00025; one-fourth of the value of AX
used in the previous solution, with AY and n remaining the same. Curves virtually
identical to those shown in figure 2-8 were obtained when the same number of
AX steps were used. This was true despite the fact that these curves were ob-
tained at an X value only one-fourth of that at which the previous profiles were ob-
tained. This result indicates that the downstream effect of the singularity is a

“function primarily of how many AX steps are taken from the leading edge and not
the value of X. The effect of the singularity may thus be confined to the region very
‘close to the leading edge by 51mplv takmg a large number of steps with a small AX
in that region.

A common criticism of the approach emploved here, in Wthh the partial differ- .
ential equations are solved directly, is that it is not an effective way to obtain very
accurate answers, due to the leading edge singularity and the effects of large varia-
tions in boundary layer thickness along the plate. As mentioned in chapter 1, a
change to boundary layer coordinates is helpful in overcoming this problem, and
many numerical schemes of varying complexity have been evolved which are
based on this transformation. However, since the approach taken in this book is
to solve-the partial differential equations directly without transformations, it was
felt worthwhile to determine the mesh sizes and computer time required in order
to obtain an accurate solution by this direct approach. After some experimentation,-
results were obtained for the U velocity distribution which varied from the exact
solution by no more than two digits in the third decimal place (less than 0.5 percent
error). This solution required mesh sizes as follows: AX =1.5X10-%, AY=0.003425
up to k=180, and AY=0.01370 from k=180 to k= n= 320 (a total of 320 transverse
mesh points; see appendix D for details of employing two different transverse mesh
sizes). Five thousand steps were taken in the downstream (X) direction from the
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leading edge to reach X =0.075 where the comparison with the exact solutions was
made. This procedure took slightly over 2¥2 minutes of high speed digital com-
puter time. This time could:have been shortened cdnsidérably if a variable num-
ber of transverse mesh points were used, depending on the local boundary layer
‘thickness, but in the interests of sxmphcxtv a constant number of transverse mesh
points was employed.
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CHAPTER $

s

In this chapter solutions are formulated for the problem of a laminar plane
or axisymmetric jet issuing into an infinite medium, either stationary or moving.
For a first approach the surrounding medium is assumed to be of the same fluid
as the jet. More complex situations will be considered in later sections of this
chapter. A uniform external pressure field in the surrounding medium is assumed.

The equations employed in this chapter are valid only if the pressure in the
interior of the jet may be considered equal to that of the surrounding medium.
This requires that the surface tension of the jet be negligible and that the jet be
fully expanded. A fully expanded jet is one in which the pressure at the jet mouth
is equal to the pressure in the surrounding fluid (e.g., a jet emerging from a tube);
an underexpanded jet is one in which the pressure is higher at the jet mouth than
‘that of the surrounding fluid (e.g., a jet emerging from a reservoir). In the latter
case the pressure in the jet interior does not reach the pressure in the surrounding
fluid until after the vena contracta is reached. This situation is not considered
here.

3.1 PLANE JETS

The plane jet is illustrated in figure 3—1 along with the coordinate system
used in this chapter. ‘

3.1.1 Incompressiblc Constant Property Flow — Velocity Solution

The incompressible constant property equations of motion for a plane jet in
a uniform pressure field are

2' 3 .
p<u%+v§l£>= a_g (3-1)
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FIGURE 3—1.—Plane jet configuration showing velocity profile at x=0. »

du  Ov '
2L % 9 -
_ax+8yA (3-2)

The boundary conditions to be considered are

¢ . u(0,)=up(y) y=a(seeappendixF)
u(0,y)=us(y) y>a: :
u(x, ®) = ug .

Ju
0y (60 =0
v(x,0)=0

3-3)

The basic equations are made dimensionless by the following choices of di-
mensionless variables: . » '
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U=~ x=2
Ue pucat ‘
(3-4)
y=pve o y=X
I a

Equations (3-1) and (3—2) may be rewritten in dimensionless form using the
variables (3—4) as

oU BU_ﬂ/ ) _
Uﬁ-*-VW—BYz - (3-5)

aU | oV '
ax Tar= 0 . (3-6)

The boundary conditions (3—3) in dimensionless form are

U0,Y)=U,(Y) - Y<1
U0,Y)=U,(Y) Y>1
U(X, o) =Us() :

oU B
5 (X, 0=0
V(X,0)=0

6-7

3.1.1.1 Highly implicit difference representation valid for small secondary
velocities.— A finite difference representation must now be chosen for equations
(3—-5) and (3—6). The finite difference grid is shown in figure 3—2. The difference
form selected for equation (3—5) is highly implicit in that not only are all Y-deriva-
tives evaluated at j+ 1 but, in addition, the coeflicients of the nonlinear convective
terms are also evaluated at j+ 1. This representation, which results in nonlinear
algebraic equations for the unknowns Uj.y,x and Vi1, %, is necessary if zero and
small secondary velocities are to be considered, since the usual implicit scheme
with the coefficients evaluated at j is inconsistent for these conditions. This in-
““consistency is not discussed in detail, but for zero secondary velocity the usual
implicit form results in the U velocity profile decreasing linearly from the edge
of the jet to whatever value of Y is chosen as infinity. This result is obviously
incorrect. The usual implicit scheme, which is also discussed in this chapter,
does give correct results if the secondary velocity is of the order of the primary
velocity or larger.
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\
k=n+l-
k=n
AY
K
[ P
r—"" .-/“ e el F—pr————
k=2
k=1 -
k0 ———— - X
Flj2 : IR

FI1GURE 3-2. —Finite difference grid for plane jet.

The nonlinear difference representation chosen here is valid for all values of
el up: )

U Ui,k — Uk U1, ke1 = Ujer, k1] _ Ujsr, 601 = 2Ujs1, s + Ujpr, k1
ok (T +Vir1,x =

2(AY) (AY)?
3-8
The representation of the continuity equation (3—6) is conventional:
[]j+1,k+l_Uj,k+li+ Vj+l,k+1_Vj+l,k=0 ('3_9)

AX AY

Equation (3—8) is nonlinear so that none of the usual techniques for linear
algebraic equations may be employed. However, one very simple and effective
iterative technique is now described. First, equation (3-8) is rewritten, using
superscripts to indicate on which iteration that value was obtained; for example, .
UJ(QI_,‘ is obtained on the (/)th iteration while Uj(j_*ll)k is obtained on the (/+1)th
iteration. Equation (3—8) becomes

0, () U= ) Ul U U
Lk \TTAX ik 2(AY) (AY)*
3-10)
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It is useful to rewrite equation (3—10) as

yo _ v, ,
|~ 5iats — e Ve + [+ ] U

2(AY) (AY)? (AY)2| vtk
re 1 U U
+ [z‘(_:\}"i ‘_(Ay)z] U= ’—"‘A“y(’—’ (3-11)

The first iteration is started by guessing values for U9, , and Vj(ﬂ)l - These
guesses are usually the values at the preceding step upstream (i.e.; U;,» and
Vi,k). Taking [=0 in equation (3-11) and writing this equation for k=0(1)n
result in (n+1) linear equations in the (n+1) unknowns U(), ., since UJ‘?), X
and V(g)l . are now considered known. As in the boundary layer case, n must be
taken large enough so that on several points of the grid the U velocities are essen-
tially that of the free stream, and n will have to be increased as the jet expands.
Eventually n may be halved and AY doubled. When the set of equations has been

solved for U, ,, equation (3—9) may be solved for V() ,

V;(1+)1 k+1_V(]'lF)l k—_( J+l k+1 = Uj k1) (3-12) -

All values of V;H ksr CAN beA found in a stepwise manner from equation (3—12)
by working outward from the centerline of the jet.

The entire procedure can now be repeated for [=1; that is, U“+>l . and
Vi), . will be in the coefficients of a set of linear equations in U?), ,. These equa-

tions are solved and then ¥{®, | is obtained from continuity. The iterative process

is repeated as many times as necessary until U{{) and U{), | agree to within any

FE2 W
desired degree of accuracy; a similar requirement exists for VJ‘:;“,{ and VJ(R o At

each iteration, the matrix form of the set of linear equations may be written as

B ey | uen || e
oD | B QY U;l:‘l)‘ 'd,(‘z)
A BY QY Uwn, | Y
—_ - — x| — = —
aU)l B(nl)—l Q(nl)—l U(jtll)n 1 ¢(nl)—1

O O 0= QPU()

(3-13)



62 ' ) . NUMERICAL MARCHING TECHNIQUES -

where

L,
&) =—3(AY)  (AY)?

()] .
Bu)z Uj+l,k + 2 .
k AX (,AY)z,
' Q= Vi 1

2(AY) (AY)?

(U]
U)+1 k U ok

¢l(c’)=

Equation (3-13) incorporates the symmetry condition at k=0 which in finite
difference form is

Uj+1,1=Uj+1,—1

The coefficient matrix of equation (3—13) is tridiagonal and the method of appendix
A may be used at each iteration to solve for the values of U(’“) After the iteration

process has converged, another step downstream may be taken and the process
repeated. ‘

It might be noted that this iterative procedure is a composite of Jacobi and
Gauss-Siedel iterative techniques as extended to nonlmear equations. Crandall
(ref. 1) discusses these methods for linear equations.

In some cases it may be desirable or necessary to either overrelax or under-
relax the iterative procedure. If difficulty in obtaining convergence of the iterative
_ process is encountered, then underrelaxation is indicated; overrelaxation is usually
employed to accelerate an already convergent iterative process. The author’s
experience with jet flows having uniform velocity profiles at the point where mixing
of the two streams begins is that underrelaxation is not necessary to obtain con-
.vergence. However, for the example discussed in section 3—4, where the velocity
profile in the primary was parabolic and the secondary was at rest, underrelaxation
was necessary. . :

Before discussing the relaxatlon procedure, we shall briefly mention the

notation to be used. In the straight iterative procedure, the quantities Uj(.fr)l .

appearing in the equation of motion take on the values of U{D, after each itera-
_tion, and then a new set of Ug*l”k’s is solved for on the next iteration. Symbolically
this may be written as

0 (1+1) S o
U1+1 k (_Uj:l.k
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In the relaxanon procedure, the values of U(’) . are modlﬁed somewhat from

the previous ones. This modlﬁcatlon may be expressed as

Ul U, 43 U =00, )
‘where X is called a relaxation factor. Values of A in the range 0 < A < 1 correspond
to underrelaxation while 1 < A =<2 correspond to overrelaxation. For A=1 the
procedure again becomes straight iteration which simply corresponds to replacing
the old value with the newly computed value.

An iterative method such as this will necessarily be more time consuming than
the usual implicit scheme in which only one set of simultaneous linear equations
of the type (3—13) need be solved at each step; however, this representation is
necessary to ensure a consistent solution for zero or small secondary velocities.

One interesting consequence of employing the highly implicit technique is
that since Vj i does not appear in the equations, V' (0, Y) need not be specified
at the mouth of the jet to start the marching procedure. Since ¥ (0, Y) is not truly
a boundary condition (see appendix F), this is at least esthetically pleasing.

3.1.1.2 Implicit formulation valid only. for large secondary velocities.— We
now present an alternative formulation to the jet problem which is valid only if the
secondary velocity is at least of the order of the primary velocity. This implicit
scheme is very similar to the implicit scheme used for boundary layer problems in
chapter 2 and in those cases where it can be used has a considerable time-saving
advantage over the iterative method just discussed.

The difference representation of equation (3—5) for this alternative formulation
is
U;, L Ujsr,641— Uj+1,k—1=- Uivr, k61— 2Uj41,6+ Ujir k1

7 2(AY) (AY)?

¥ ]+1 k—
Uik

AX .
(3-14)

In order to facilitate a matrix representation, equatlon (3—14) may now be re-
arranged as

e L e Lo

Vi 1 o (U;0)? .
HEr e R vy

Equation (3-15) wﬁtten for k=0(1)n constitutes a set of (n+ 1) linear equations
in (n+1) unknowns which may be rewritten in matrix form as
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Bo Ujsi,0 do
(047 []j-f-l.,l 4)1
Q. Ujsi,2 b2
. X | —- _
Qn—1 Bn—l Oy Vl]j+l,n,—1 d)n-l
(2773 B" . [Jj+l,n d)n—Qn(Us(oo))
A (3-16)
where
qype = -
2(AY) (AY):
Ui, 2
AX (AY)? g
_ V1
*T2(aY) .~ (AY)?
 (Upx)?
P= 0%

At each step, the tridiagonal set of equations (3:16) is solved once, which provides
Uj+1, k. Then from equation (3—9).

AY | -
Vj+1,k+1=Vj+1,k—ﬁ(L[j+1,k+l_l]j,k+1) (3-17)

This equation is marched outward from the centerline to the secondary stream
to provide all values of ¥Vji1,x+1. The solution may now be advanced downstream
one step.

The representation (3—14) obviously has great time saving advantages over
the representation (3—8). However, no guarantee can be made as to exactly how
large u;/u, must be in order for the representation (3—14) to be valid. If any doubt
exists, the results of (3—14) should be verified by carrying out at least a small part
of the solution using (3—8).

Both forms (3—8) and (3-14) are implicit. It would be possible to formulate an
explicit solution to the jet problem which would, however, be valid only for nonzero
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secondary velocities. The explicit formulation would have no advantages over the
implicit formulation (3—14), since the times required for solution are comparable
and there are stability restrictions on the mesh sizes which can be used with an
explicit form. The explicit form, therefore, is not considered here.

The truncation error of the finite difference representation at each step is of
O (AY)? and @ (AX) for the momentum equation (both forms) and of @ (AY) and
@ (AX) for continuity.

The implicit solutions are stable for all U = 0. This has been demonstrated
by Rouleau (ref. 2) for the form (3—14) and has been found to be true for form
(3-8) by experience, although a stability analysis cannot be readily carried out
because of the nonlinearity of the difference equation. Since -only positive values
of U should be encountered in the jet problem, the solution can be considered
universally stable. It should be noted, however, that difficulties similar to those
discussed in section 2.3.3 may occur if the disparity in velocity between the primary
and secondary streams is too great. This can result in small oscillations in the axial
velocity in the mixing region. The reason for this behavior is not understood.

3.1.2 Incompressible Constant Property Flow¥Temperature Solution

Assuming constant properties and neglecting viscous dissipation, the energy
. equation for this problem may be written as

at ?*t
pc p(ll +v ay) ayz (3—18)
The boundary conditions are
t(0,y) =t y<a
t(0,y) =t y>a :
t(x, oy=ts (3-19)

at
3y (x,0)=0

Equation (3-18) may be made dimensionless by the following choice of .
dimensionless variables:

' T=tt __t: X=pz‘t12
P t) P
U=ulu, Y=y]la (3-20)
V=pua/pn

When these variables are inserted in equations (3—18) and (3— 19) the problem
may be restated in dimensionless form as
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of 1 °T
U VaY Pr oYz (3-21)
. 7(0, Y)=1 ‘ Y<1
T(0,Y)=0 Y>1
T(X, ©)=0 - (3-22)
aT o - .
oy X, 0)=0

A finite difference representation may now be chosen. The finite difference
form given here will correspond to the finite difference form of the momentum
equation (3—8) and should be used when that form is used. If the secondary
velocity is sufficiently high to allow the use of the form (3—14) for the momentum
equation, then the coeflicients of the convective terms in the following equation
should be made U,k and Vj, k. The difference form of equation (3-21) is

- T T
Uj+1 k J—%——q. V+1 k Hl,k;_l(Ayfr‘l’k 1

_1 Tier k01— 2T 51,0+ Tjr k1 (3-23)
Pr - (AY)?

Equation (3-23) is similar to equation (3—8) in that the coefficients are evaluated at
Jj+1. However, in the incompressible case being considered, the flow equations are
-'solved first and the coefficients are hence known and the difference equation
remains linearin 7. :

Equation (3—-23) may be rearranged in a more useful form as

Vi 1 ' U, 2
[_ SLE_ ]Tj+1,k—1 +[ Ll k+ ] j+1,k

2(AY)  Pr(AY) AX. " Pr(ay):
Viei i 1 Ui 1T .
+lgz&11’/h) Pr(AY)]T’“ Vel Gl

Equation (3—24) written for £=0(1)n and expressed in matrix form is
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! _2 J 0
B Brarn R I s
o B Ty | | &

ar o B , Tjir,z ¢,
— X | — =|—
Uy ,Br;—x (OAEPE Tj+l,n—l d;','*l
an Be. Tj+l,n n .
(3-25)
where
a,=__Vj+1,k_ 1
¥~ T2(AY) Pr(AY)
v Ussrk 2
P ax T Priaty
,=Vj+'1,k_ 1
¥ 2(AY) Pr(AY)?
,_Ujer,kTj, k
P TAx

The coefficient matrix of (3—25) is tridiagonal and the method of appendix A
may be applied. It.is of course most desirable to employ the same grid for the
velocity and temperature solutions. '

The truncation error of the difference representation is of @ (AX) and & (AY?).
The representation is universally stable.

3.1.3 Compressible Flow— Velocity and Temperature Solutions

For the compressible case, we again assume that the jet is fully expanded,
has no surface tension, and emerges into a uniform external pressure field. In
the compressible flow situation the basic equations are coupled and must be solved
simultaneously. o

The basic equations are

p (w240 20) 22 (,29) 320

3-27)
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Ot v i A I e
pt = constant (3—-29)
= n(e) | (3-30)
| k=1Fk(t) A (3-31)

Equation (3—29) assumes a perfect gas at constant pressure. Any other equation

of state may be used if desired.
The boundary conditions are

. u'(09 }’)=up
w0, y)=us
u(x, ©) =u,

Ju

4

v(z, 0)=0"
. t(07 )’)=tl)
t(0, y) =t
t(x, ©)=t;

at n

¥ < a (see appendix F)
y>a

Yy<a
y>a

T (3-32)

J

These equations may be put in dimensionless form by the following choice

of dimensionless variables: .

— _Xip
ppupa®
y=%
a
k
* o
k %
% M
# Hp
. P
P Py

(3-33)
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For these dimensionless representations the conditions in the primary stream at the
jet mouth have bheen chosen as reference values. Inserting these variables into
equations (3—26) to (3—31) gives ’

(UaU+V5U) '9( au) ‘ | (3-34)

aY aY

3(p*U) L 3™ V) _
aX aY

(3—35)

oT 1 9 (,.0T v\ :
(U6X+V6Y> Pr6Y<k )+(7 DM p (aY) (3-36)

(where the Mach number in the pnmary stream at X=0 is M,= up/ Vy%tp,and
the Prandtl number at the same location is Pr=(ucplk)p)

(3—37)

1

=T
=Ty | (3-38)
k*=(T)9 (3-39)

" The usual power law relations for u and & have been assumed as in the preceding
chapter. Any other relationship may be readily considered.
The boundary conditions (3—23) in dimensionless form become

U, Y)=1 Y<1
U0, Y) = usup Y>1
U(X, °°)=us/up
W x,0)=0
oY (3-40)
V(X,0)=0
T(0,Y)=1 Y<1
T(0,Y) =tt, Y>1
T(X,®) =tftp
oT
y &, 0)=0

3.1.3.1 Highly implicit representation valid for small secondary velocities.—
Equations (3-34) to (3—39) may now be expressed in finite difference form. An
implicit representation similar to that used for equation (3—-8) in section 3.1.1
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is used here for both momentum and energy in order that the formulation may
be valid for zero and small secondary velocities. The representation which must
be used results in nonlinear difference equations. Since this is the case, the equa-
tions must be solved using an iterative method; therefore, it is not necessary to
always evaluate the properties in such a way that they are known when a given
equation is considered. Evaluating the properties in this way was useful in sections
2.1.4 and 2.2.4 since the linearity of the difference equations was preserved.
Somewhat better accuracy can presumably be obtained, however, by evaluating
the properties simultaneously with the velocities and temperatures in each equa-
* tion. The solution in this case can be accomplished by using an iterative method,
and since an iterative method is a]ready necessary, no complications are added

to the solution.
The difference representations of equatlons (3-34) 10 (3— 39) are

o Upr,c—Uj Upiroirr— Uperoie
P;:n,k [Ujﬂ,k—JH’ZX ]’k+Vj+1,k JH”‘;(AY)J“’,‘ 1:|

% I:Uj+1,k+1—2Uj+1,k+Uj+1,k—-1:|

- Jj+1,k (AY)2
7% — X AUy voi—Us
) L SO WS R KW 1][ 1, k+1 )+1,k—1] _
[ 2(AY) 2(AY) (3-41)
pjtl,k (Jj+1,k_P;jk Uj,k p_;:"l,k+l V;‘+1,k+1_p;11,[; V:i+l,k__ .
: AX + ; AY =0  (3-42)
T, T T £
P;H,k [[]j+1,k -&I"—ZY—]’—’C-F Vie, i JH’k;(AY)JH’k"I]
=.l..{ * [Ti+l,k+l—27}+1,k+Tj+1,k_‘1:|
Pr {i+bk (AY)?
[kj*+1 k1 k]tl k- 1] [Tj+1,k+1—Tj+1,k—1]}
2(AY) 2(AY)
+ (y—1) M2 u* [Uj+l,k+l_Uj+l,k—l]2 (3-43)
PrLE 2(AY) -
« -1 :
Pk T T (3-44)
B, ™ Tivr k) : : (3-45)
ke = (Tj1,6)9 e ~ (3-46)

The iterative method of solution for equations (3-41) to (3-46) discussed
here is quite similar to that employed in section 3.1.1 for the incompressible mo-
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mentum equation. It is not necessarily the fastest way to solve the set of difference
equations but it is reasonably fast and is very straightforward. As in section 3.1.1,
the superscript [ on a quantity indicates that quantity was obtained on the (/)th
" iteration, while the superscript ({+ 1) indicates the ([+1)th iteration. Equations
(3—41) and (3—43) are rewritten as

l:_p]ﬂi),ij(i)l,k_Mﬁéi),k KD ks — ;:5:),1:_1] a1 +[P;‘ﬂ),,\.U}i)1,k
2(AY) (AY)? 4(AY): he AX

*(1) *(1) YD) B () - — g * D)
+2/'Lj+1,k:| Ui + [pj+l,ij+l,k_P“jil),k  Hen ke j+1,k—1] (1+1) -

(AY)2 ] "Ik 2(AY) (AY)? 4(AY)? JH1, ke
| o g U
=p1+1,k A_,+X1k Js k (3-47)
and '
[_ p;:fi),kVJgi)l'k _ k;ir(i),k (k;:fi).k+l - k;k.;_(i),k_l):] .
2(AY) Pr(AY)? 4Pr(AY)? jt1, k-1
_;_ [pJ*:i)kU](-l:il;c + 2k;k+(i),k ] (41) [P;;(i),kV;i)l,k _ k;ilx),k
AX Pr(AY):] i+bk 2(AY) Pr(AY)?
_ (k;kir(i),kﬂ —k]fk-ifi),k—l) (1+1)
4Pr(AY)? FE TS
Ua+n  — ji+1) 2 p*) JU+DT;
= — 2,4 %) J+1,k+1 j+1, k-1 JtL kTt k Js

Equation (3—47)>written for k=0(1)n now constitutes (n+ 1) linear equations
in the (n+1) unknowns U](.fjll”k, since those quantities with superscript (/) are
considered known from the previous iteration. Equation (3—48) represents a
similar set of equations in T{!%") . For each iteration the procedure is to solve the’
set of equations represented by equation (3—47) for .Uﬁ,’:]”k, then the set repre-
sented by equation (3—48) for T;.ﬂjl"’,\_, and finally the equation of state (3—44) for
p;i*y) to yield

®U+1) = -
Pisik — Taen (3-49)
Jti,k

The continuity equation (3-42) may now be solved for ¥{!4!), giving
¥+ *(1+1) * ‘
pu+n :_pl_“’_k_ (1) ——— MU(_I+1) __Pik ok (3-50)

J+1,k+1 *(1+1) itk AX *(1+1) j+1,k *(141)
Piv1,k+1 Pivy kb1 Pii1 k1

459-174 O - 73 - 6
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Finally, equations (3—45) and (3 —46) are used to give pii*) and EFUHD.

All quantities now have been determined for the (l+ Dth 1terat10n and the
process can be repeated to find values for the (I+2)th iteration. This should
continue until the values of each quantity obtained on a given iteration agree to

. within some specified accuracy with the values for that quantity obtamed on the

preceding iteration.

The set of linear equatlons in U{'+Y), represented by equation (3— 47) may

be written in matrix form as

2 *(D
B(l) - Hivt o s d)(l)
e (AY)2 j+1,0 0
1 { 1
ar g ap o, | et
i i ! .
oo B Uy, | |
o, BY, 00 |0 (e,
! ! 1 n_
ald  BY U}fll,)n d’('k)
where
*(1 ! *(1 *(1 R
ah=— pl“‘(‘)"VJ(“‘)l k 'U‘+(1)k p‘j+(l,k+1 /"'j+(1),k4
2(4Y) (AY)? 4(AY)?
*({). 3 *({
B”) p]+l k 'gl,k 2"" +(1)[_
k AX (AY)?2
p*O ' *(2) () )
Q(l)_ Pj1, "V(“ k_ M5enk _ K1, ke i+1, k—1
2(AY) (AY)? 4(AY)?
*(1)
()= p_]+l k +1 IcUJ k
Z AX

QO (us/up)

(3-51)

and the set of linear equations represented by (3—48) for T].(J’r’;”k may be written

in matrix form as
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—2KD '
.OL(D — Ji0 Ta+1) Y
Pr(AY)? j+1,0 )
a® B T, prw
Ky 4 "W '
w0 g o | e [
(D '« ' L '
an—l 'Bn(—)l ‘Qns-)l Tj(+-‘;})n—l ¢n(—q
a0 BTG 1 18,0 — Q0 ()
3-52
where ( )
' gD *(1) 0
W=Dt iVt e _ Giik +1, k+1 41, k-1
k 2(AY) Pr(AY)? 4Pr(AY)?
*(1) 1+1) *(0)
(D= p]+l k +-*i k 2kj+1 k
k AX Pr(AY)?
*(l) . *(1) *(l) *(
Qo= j+1 kV(+l k_ k]+1 k _k]+l k+1 k_)+1)k 1
: 2(AY) Pr(AY)? 4Pr(AY)?
- *(1) (I+1) (1+1) (I+1)
O UES _f_+_"‘U++‘—"T’+ (y— 1)M2 *(1) [ UJ'++1,k+1 UH] k- 1] 2
d AX Hivt k 2(AY) ;

The matrix of coefficients in both equations (3-51) and (3-52) is tridiagonal and
the method of appendix A can be used to solve the sets of equations.

If desired, overrelaxation or underrelaxation can be applied to any or all
of the equations given here. The method is discussed in section 3.1.1. Only ex-
perience and experimental calculations will indicate whether anything can be
gained by going to the relaxation procedure. '

3.1.3.2  Implicit representation valid only for large secondary velocities. — As
in the incompressible case, if the secondary velocity is large, the coefficients of
.the convective terms in the momentum and energy equations can be evaluated
at the X-position corresponding to j (i.e., at a position where they are known from
the solution at the preceding step). This makes it possible to obtain linear dif-
ference equations if the manner in which the properties enter the equations is
chosen carefully. Linear difference equations are, of course, most desirable since
each set of linear algebraic equations need be solved only once at each axial
station. This is in contrast to the many solutions necessary at each step in the
iterative method which is required for nonlinear difference equations.
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The linear difference representations of equations (3-34) to (3—39), valid
~ only for high secondary velocities, are ‘

UI kT Ug k U"+1 k+1_" ‘+1,k—l]
+1, J > J
[Uf FTTUAX i 2(aY)

% Uj+1,k+1"2Uj+1,k+Uj+l,k—1
=Mk

(AY)?

Eﬁkﬂ_l-‘f,k-x][l]jﬂ,kﬂ— j+1,k—1] _
+ M5 ~ 2@ | ¢

BL+l,kUJ+1'k pj,kUJ-k pj+!,k+lVJ+lsk+1 pj+l,kVJ+1k

AX —+ AY —=0" (3-54)
. T; , '—T',k T; Lk -T; Lk —
Pﬁ;.-l:Uj,k JHAX L2t Vik JH_;I(AY)JH I:I
_1 ¥ Tivi k1= 2T 501, 6+ Tiir i1
Pr| %ok . (AY)?

+[’5ﬁk+1 kF iy ] [Tj+1,'k+1 —Tie1, k-1
2(4Y) 2(AY)

+(‘y_'l)M;_,}“j*,k[Upl,kH_Uj+1,k-1:IL— (3_55)

2(AY)

o1 ‘

Pivik =T 0 - (3-56)
Wi o= (Thar. i) @5
kJ*H ke (TJ+1 A)(’ (3—58)

Equations (3—53) and (3— 55) may be rewritten in more useful forms. Equation
(3—53) becomes

} ._P;k.ij,k_ #?ﬁk +“g?{ikf1_#!?lik—l]U. o~
1 2(AY) (AY)? 4(AY)? AL

pixUin  2uf,
[0 e | O

P, Vi E_ L"_)*A _ﬂjﬂik+|‘_l~"ﬁk-1 ) _Pik,kU.g,k _
+[ 2(AY)  (AY)? 4@z U=y (8-59)

and equation (3-55) becomes
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[—" p;:ij’k'_ k)*k +k;;‘k,k+1_k_;k,k_1} T, p:kUj,k
2(AY)  Pr(AY)? 4Pr(AY)? Il k=1 AX
+ 2k.;|:’\ ] T - [p;:ij’k _ k;:k _ k;jk-{\-l B kjfk—l] T )
C U Pr(AY):] TR oAy Pr(av): aPr(aY): | TTTRET
e Uj+l,k+l —- p;kk Uj,ij,k

= (y=Dmzut, ( (3-60)

j+1,k—l)
2(AY) AX

The set of equations corresponding to equation V-‘(3—59) written for k=0(1)n
must be solved first at each axial position for Uj,1, . This set may be written in
matrix form as

—2u.*
Bo (A};,)g Uj+l,0 ¢0
an B Q, Ujsr,s oM
‘O ,32 Qz Uj+1,2 (f)z.
_ x| =|_
2 27881 Bn—l Qo Un_, l Gno1
Ve
«y Bn Un ¢n—0nu3/u1p .
3-61)
where
A N _=piVik B R T B
' "7 2(aY)  (AY): 4(AY)®
B.:p;kU""‘ 2u] |
’ AX ' (AY)?
O =’ikV””"_ M _Esz+i_ﬁ2k—l
“TT2(8Y) T AY)RT T 4(AY)
p¥ U?
— ik , k
bk ——LAX

The matrix of coefficients in (3—61) is tridiagonal and the method of appendix A

may be applied.

Next, the set of linear equations corresponding to equation (3—60) is solved
for Tj41, k. The set can be written in matrix form as
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—2kfo b

Ao prav)y URR) o
all Bl' Q; Tj+1,1 ¢>1’
o B Te | |6
. x| _ =|__
C!y’._l Br'l—l ;1—1 Ti+1,n—1 d):l—j
a  Bn Tis1,n b — Qe
(3-62)
where
I_A—p;:kr/;',k_ k;:k kjfk+l—k;:k—l

ETNG) TPr(AY)E | 4Pr(AY):

Bé:pﬁ"Ui”q 25,
AX ' Pr(AY)

* * * 1k
_PiiVie Kk L

¥T 2(AY) Pr(AY):  4Pr(AY):

* ’ '
_ P kUi, kT x Ujsr, k1= Ujsr, k1 ] 2

g =i g, | o

The matrix of coefficients in equation (3—62) is also tridiagonal.
Equation (3-56) can now be used to find p},, ,, and then the continuity

equation (3—54) is used to find ¥4, «. Solving equation (3—54) for Vj;1, 141 gives

Pl x AY P * '
VJ’+lv,k+1=( *JH”‘ )I/j+l,k+A_X‘[(—L)l/j,k_< ijﬂ’k )Uj+1,k] (3"63)

*
Pi+1, k41 Pis1, ke P, k+1

Equation (3—-63) can be applied in a stepwise manner starting at 4 =0 and moving
in the direction of increasing k. Finally the property relations (3—57) and-(3—58)
‘are used to obtain iy, cand kX . '

The solution is now complete at the present axial station and a step AX may
be taken and the process repeated. The truncation error of the difference equations -
is of @ (AX) and @ (AY?) for momentum and energy and of @ (AX) and 7 (AY) for

continuity. The equations are stable for all U = 0. .



JETS ' ) 77
3.2 AXISYMMETRIC JETS

The problem configuration and coordinate system for the axisymmetric jet
flows to be considered are shown in figure 3—3. While there is considerable simi-
larity between the formulations for the plane and axisymmetric cases, variations
in difference representations and techniques due to the different form of the basic
equations in the two cases would appear to make a complete presentation of the
axisymmetric formulation worthwhile.

3.2.1 Incompressible Constant Property Flow-* Velocity Solution

The incompressible equations of motion for the axisymmetric jet are

du, du\_p o 6_u) _
p(’”az+var) r6r<rar (38-64)
du 1o(m)_, (3-65)
dz r Or

Ug to °°T
ug
up a
~2=0 7
~
Us
ug to l

FIGURE 3-3.— Axisymmetric jet configuration showing velocity profile at z=0.
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The boundary conditions to be considered here are

u(r,0)=up r<a (see appendix F)
u(r, 0)=u, r>a
ule, 2) = us | | (3-66)

du .
ar (09 z) _0

v . ) /

v(0, z) =0

" The basic equations may be made dimensionless by the following choice of
dimensionless variables:

=t e
2 .
Up - pa (3-67)
_pva _I
4 R==

~ Equations (3-64) and (3-65) in dimensionless form are

U oU 19U, 92U . o _
UVaz TV sR"Ror Tor® ' (3-68)

W, La0R)_, [

aZ R OR
The boundary conditions in dimensionless form are
UR,0) =1 R<1
U(R,0)= g-; R>1
“U(OO, Z)=%:; ‘ (3-70)
% (0,2)=0

V(,z2) =0

3.2.1.1 Highly implicit difference representation valid for small secondafy
velocities. —Equation (3-68) must now be  placed in finite difference form.- The
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R
k=n+l
k=
n 1
AR
L LAt — ———
k=2
k=1
k=0 —— 74
12 gl '

FIGURE 3—4.—Finite difference grid for axisymmetric jet.

finite difference grid is shown in figure 3—4. As in the two-dimensional case, a
nonlinear finite difference form of the momentum equation is necessary in order
that the representation be consistent for zero or small secondary velocities. The
finite difference form chosen for equation (3—68) is

U U U i —_
. Lk~ Yk V. jt1, ket — Ujer, k-1
UJ+1,k +

AZ Jj+1,k 2(AR)
1 Uj+] ;,-+1‘Uj:§-1 k~1 Uj+1 k+1_‘2Uj+1,k+Uj+l,k—'l

=— Jitn, .21} : 3-71
Ri  2(3R) + (AR)* B

Equation (3-71) applies for all £ > 0. For k=0, a specml form of the equation
must be obtained by lettmg R — 0 in equation (3—68). Equation (3-68) wuewn
becomes

= lim
R=0 R—0

Uﬁ

(_l aU) R
ROR/) " aR2| o (3-72)
When L’Hospital’s rule is apphed to the first term on the right side, equation (3-72)
becomes

U
=2 OR2| g=¢

(3-73)

Equation (3-73) may be written in difference form as



80 . NUMERICAL MARCHING TECHNIQUES

Ujr1,0— Uj,0=4 [Uj+l,1 - Uj+1,0]
AZ (AR)?

Ujst,o (3-74)

Incorporated in equation (3-74) is the symmétry condition
' Uj+1,-1 = Uj+1,—1
Continuity (eq. (3—69))' may be written in finite difference form as

Uns=Upsy L (Vi eriRies = Vi, ) o (3-75)

' AZ R AR

A special form of continuity is also necessary for k=0. This- may be found by
_ letting R — 0 in equation (3—-69). This gives

o

ol
3Z |r-o IR R=0——0 (3_76.)
The finite. difference form used for (3—76) is
U. —U, V. » .
j+1,0 i, 0 j+1,1 _
A7 +2 ( AR ) 0o . (3-77)

Equation (3—75) then applies for £ > 0 and equation (3-77) for k&=0.

The method of solution for equations (3—71) and (3—74) is very similar to that
used for the plane jet in section 3.1.1. The superscript (/) indicates values obtained
on the (/)th iteration while those with superscript (/+ 1) are the ones obtained on
_ the ({+ Ith iteration. Equation (3—71), valid for £ > 0, may be written in the form

(€3] . )
[__V.Hl,k_'_ 1 1 }U('I+l) +[l_fu+ 2 ]U““)

2(AR) " 2R, (AR) (AR)Z ] i+1.k-1 AZ " (AR)? | Gtk
+|: V.(i:-)l,k _ 1 - 1 ] U('1+1) ‘=U(i,+)1,k UJ"A“ (3"78)
2(AR) 2Ri(AR) (AR)z | i+t k+1 AZ
Equation (3—74), valid for k= 0, may be written as
usd, 4 —4 _U(‘Ql,ou',o :
vanarar K Frvor LS e vanl )

Equation (3-78) written for k=1(1)n along.with equation (3-79) for k= 0-now"
constitute (n+1) equations in the (n+1) unknowns Uj(fjll’)k. At each iteration,
these may be considered as linear since all values with superseript (/) are known

0
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from the preceding iteration. The set of linear equations

written in matrix form as

4
Y~k v
gy o v,
«Ww gy s
al B, QD ‘Cﬁ”nn
ar(l,) B 1(1,) l]_)(ri ! )n
"where
o Vi 11
k 2(AR) 2Ri(AR) (AR)?
(1)_% k>0 .
B'="az TR *70
Q(H:K(ZQ""'— LI
 2(AR) 2R.(AR) (AR)?
d)“) M
and
U
'35)1)=_.L+_"_(l+ (k=0)

AZ (AR)?

81

which results may be

¢4
d)(]l)
¢él)

U}
d)n 1

S0 — Oy

(3-80)

The matrix of coefficients in equation (3—80) is tridiagonal, and the method of
appendix A may be used to solve for the values U(’“) at each iteration. In order
to complete the iteration, the values of V"“’. must be found from continuity.

From equatlon (3—~77) for k=0

pu+n =_ (Uj.0—

k1,1

Ud+n )

j+1,0

(3-81)
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and from equation (3—75) for £ >0

Vi+1) = p+1) <

j+i,k+1 j+i,k

. ) SDR (U““’ —Uj.x) (3-82)
Riei ) AZ)Ryt 710k |

The values of V““) can be found in a stepwise manner working outward from
k=0. _

The iteration is now complete and the values just determined now assume a
superscript ({) and the process is repeated. This is continued until the values of
~ Un, and U, as well as F{14Y, and V{0, | agree to within some predetermined
accuracy. Then another step AZ downstream may be taken and the iterative
procedure again employed. '

3.2.1.2 Implicit difference representation valid only for large secondary
velocities.— As in the plane case, if thé secondary velocity is sufficiently high,
a linear representation of the difference equation for momentum may be used.
This representation of equation (3—68) is, for k¥ >0,

Us o UZ'*""_U!""+V, . Uiii,ior1=Ujer ka
J. Vi,

AZ 2(AR)
1 Uirr ko1 =Ujar, k- .Uj+1,k+1_2Uj4.-1,k+Uj+l,k—1 _
TR 28R T (2R (3-83)
and the ﬁnite difference form of equation (3—-73) is, fork = 0,
Uj,on-H’ZZ_ Uj’?=4‘Uj+l’(lA;z)(£j+l’o . . (3—84-)
Equations (3-83) and (3—84) may be written in more useful forms as
_ Vi 1 1T . ‘ U; 2 ] .
[ 2(AR)+ 2R (AR) (AR)Z] Ujir,6-1 +[ + (AR)? U,+1,l,.
Vj,[.- 1 1 . . _ U_]’ Kk -
+[2(AR) SR+ (AR) (AR)Z] Uj+1,k+l ="A7 (3-85)
and
¢ . . U)
U; 4 4 0
[A—%O-FWJ Uj+1,()+[—m] Uj+],1 —AJ_Z— (3—86)

Equation (3-85) written for k=1(1)n along with equation (3-86) for k=0 con-
stitutes a complete set of linear equations in the values of Uj, , and may be -
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written in matrix form as

4
Bo ~{aR): 1 Ujsryo
@ B 0 Ujei 1
az B: Ujir,2
X
Qp—y Bn—] ()n—l Uj+|, n—1
Ay ‘ :B" Uj+l,n
where
Vi k 1 1
= b —
%="3(AR) T 2R:(AR) (AR)
Uj. « 2 .
— LR
Bx AZ+(AR)2 (£>0)
Q‘ = Kbk —_ l _ 1
*I"2(AR) 2R./(AR) (AR):
Se=U: JAZ
and
U' 0 4- -
=Yjio —
Fo=3z T aR) (k=0)

83
o
(o}
o2
d) n-1
¢n - Q,,us/u,,
(3-87)

The matrix equation (3—87) for Ujs1, x may be solved by using the method of
appendix A. This set is solved only once for each axial position. After the values
of Ujsy, » have been determined for a given value of Z, equations (3—77) for k=0 and

(3—75) for k > 0 may be solved for the transverse velocities to give

Vi

and

AR

+1,1=m(

Uj,o"Uj+1,0)

(3-88)
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Rk (AR)RA
Rk+,> (AZ)Ri Wi, x=U) (3-89)

Vier, k1= Vj+1,k (
Another step AZ downstream may now be taken and the procedure repeated.

3.2.2 Incompressible Constant Property Flow — Temperature Solution

Under the assumption of constant properties and neglecting viscous dissipa-
tion, the energy equation for the axisymmetric jetis given by

o, o\_ (o, 1ot .
pcp(u_a—+v5)_k(8r2+rar) (3-90)

The boundary conditions are

t(r,0)=t, (rsa)
t(r, 0)‘=t; (r>a)
1(o,z2)=t, . . C (391

o B
o 0,2)=0

Equation (3-90) may be made dimensionless by the following choice of
_dimensionless variables:

T= t_ts u
tp_ts ILp
z
=E y =L (3-92)
pupa M
R=Z
a

If these variables are inserted into equations (3—90) and (3—91) the problem may
" be restated in dimensionless terms as

T ,9T_ 1 (92T 1 3T :
UaztV R Pr(»aR2+ R aR) | (3-93)

subject to
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T(R,0)=1 (R<1)

T(R, 0)=0 (R>1)

T(»,Z)=0 (3-94)
aT
57 (0. 2)=0

As in the plane case, the difference representation for the energy equation
will correspond to the nonlinear representation of the momentum equation, which
in this case is equation (3—71). If the form (3—83) can be used for the momentum
equation, the coefficients of the convective terms in the next equation should be
replaced by U;, x and Vj &. :

The finite difference form of (3—93) chosen is

T; c—T; Tiq, —T1, 8-
Ujer, k %M+V}+l,k Ll k;(AR;H kol

_1 T_}il,k+1—2Tj+l,k+rTj+1,k—1 A T ke — j+1,k—l] _
_Pr[ (AR)® oy 2(AR) (38-95)

This equation is valid for # > 0 and may more conveniently be written as

td

_y 1 .
[ Vierk : ]Tj+1,k—1+[U”+l'k+ 2 ]Tj+1,k

2(AR) _ Pr(AR): T 2(Pr)Rx(AR) AZ T Pr(AR):
Vis 11 O UpaTi
+ [2EAR) Pr(AR)? 2(Pr)Rk(AR)] Tier ke ’ AZ (3-96)

For k=0 a special form is necessary. Taking the limit of equation (3-93) as R —> 0

gives .
oT 2 92T
- == — —97
UaZ R=0 Pr 6R2 R=0 (3 )
This may be written in finite difference form as
Tivv,o—Tj0 _ 4 Tiv1,1 —Tji1,0
Uj+l,0 AZ Pr (AR)2 (3_98)
Equation (3-98) incorporates the symmetry condition Tjiq,, =T+, -1 This A

may be rearranged in a more useful form as
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U, 4 —4 Ussi,o;
|57+ g | Tooo* [ Fotaeys] Do = 69

Equatlon (3-99) is valid for £ = 0.

Equation (3~ 99) along with (3—96) written for k—- 1(1)n now constitutes a set’
.of n+1 linear equations in T;,,, ; and may be written in matrix form as

4 . ,
[ — T‘
o ~Pr(aRry: 1.0 %
af oy Qf Ty | | &4
ar B, 1, > Tjs1,2 - b,
a;l—l Br:—l Q?’l—l Ti+1, 01 . d),’,_]
aT’l Bt’l 7}+1J" ¢;l
(3-100)
~ where
ar=_ Vj+l,k__ 1 + ’ 1 ‘
K 2(AR) Pr(AR)2 2(Pr)Ri(AR)
Uj+1k 2
= : >0
| B="az TPraR): (k> 0)
_Q/_V}+lk 1 1
¥ 2(AR) Pr(AR)Z 2(Pr)R«(AR)
¢,:=———-U"*ZQT“'
and
,_Uj+l,0A 4‘ —
Be="az T Pr(aR)? (k=0)

The matrix of coefficients in (3—100) is tridiagonal and the method of appendix
A may be applied. A procedure of increasing the size of the field as the jet expands
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while keeping the total number of points reasonably small should be employed.
Details are given in section 2.1.1. It is, of course, most desirable to employ the
same grid for the velocity and temperature solutions.

The finite difference representation is universally stable for all mesh sizes.
The truncation error of the energy equation is of @ (AR2?) and & (AZ).

1 3.2.3 Compressible Flow — Velocity and Temperature Solutions

In the compressible flow situation the basic equations are coupled. For this
case they are .

dw, du\_1d ( du\. _
p(uaz-}—var)—ra.r(ﬁ"ar) - (3 lol)";.
Apu) Lalpro) _ (3-102)
0z . r a_r
' ot oty 19 at du\* ' ‘
; C - — === iy pund : —
| Pp<uaz+var)r r6r<kr6r>+#(6r) (3-103)
pt = constant ~(3-104)
= pu(t) - (3-105) .
k= k(t) (3-106)
subject to the boundary conditions
u(r, 0) = u, (r < a) (see appendix F)
u(r, 0) = u, (r>a)
u(°°, Z) = U
du
ar 0,2) =0 :
v(0,2) =0 (3-107)
t(r,0) =1¢, - (r=sa)
t(r,0) =1, (r>a)
t(°°9 Z) =
Jat o
ar (0,2) =0 \‘

The basic equations may be put in dimensionless form by the following
choice of dimensionless variables: '

459-174 0 - 73 - 7
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U=ulu, 7z ="t
Pplipa®
Pprva -
V=" R=rla (3-108)
T = tity k* = klk), .
m* = plpp
P* = plpp

As in the plane case, the primary conditions at the‘jet mouth have been chosen
as reference values. Inserting the dimensionless variables (3—108) into equations
(3—101) to (3-106) gives

'O*(UZ_[Z]+ VZ—E - % % ("*R f,—g) (3-109)
A
(U%Jr Vg;) Pr}R) R (k*R >+ (V—l)Mf,M* (%)2 (3911i)
prr=1 | (3-112)
pr= (1) (3-113)
pomy (3-114)
where |
u
=
and
(),

The usual power law relatlonshxps have been assumed for equations (3-113) and
(3-114).
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The transformed boundary conditions in dimensionless form are

U(R,0)=1 (R<1)
U(R,0)=2 (R>1)
Up
_Us >
U(OO’ Z)_Up
18
V(0,Z)=0
T(R,0)=1 (R<1)
T(R,0)=7 (R>1)
P
T(w,Z)=2
tp
aT
o7 0.2)=0

89

3-115)

3.2.3.1 Highly implicit difference representation valid for small secondary.
velocities. — Equations (3—109) to (3—114) may now be expressed in finite dif-
ference form. The form chosen is quite similar to that used for the plane case
in section 3.1.3 and the discussions given there also apply to‘this case. The form
is consistent for all secondary velocities including zero. Equations (3—109) to

-(3-114) are represented as

Ujir,x—Uj x

Uj+1,k+1 - Uj+1,k—1]

p}kﬂ,k [l]j+1,k AZ Vj+1,k 2(AR)
— % [Uj+1,k+1»_2Uj+1,k+Uj+1,k—1
M1,k (AR)?
+_1_ Uj+1,k+1"Uj+1,k—1]
Ry 2(AR)

* X _
+[Mj+l,k+1 Mj+1,k-—l] [Uj+1,k+1- Uj+l,k—1]

2(AR)

2(AR)

* * * ]
Pj+1,kUj+1,k "Pj,kUj,k : Pj+1,k+1Rk+1 Vj+1,k+1 *p}kﬂ,kRk Vj+1,k__ 0

AZ RiAR

(3-116)

(3—117)
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‘ T; T: T, e _ .'.,‘_
p]?k+_1,k‘[Uj+1 "—il__gz_‘u\_"’Vﬂ,k .1+1 k+21(AR);+1 k 1]

=_1_ e .ATj+1,k+1—27}+x,k+ﬁ+hk—' +_‘_];_Z‘j+l,k+l—]:'j+l,)\‘—l
P o+ 1,k (AR)Z . Rk 2(AR) ‘

+ [kj*+l,k+l —kJ?"H,k—l] [Tj+1,k+1 —]}-{-]’k_;]}
2(8R) 2BR)

+ (y =DMz, k[%*—"’“‘ - U"“’k“]z (3-118)

2(AR)
A | | |
plar e =F "0 - (3-119)
wionw= o) ' (3-120)
Krer o= Ty ) o '. ) (3-121)

Equatlons (3 116), (3—-117), and (3—118) are valid for k>0 only For k=0, special
forms are required. These are found by first taking the limits of equations (3-109),
(3-110), and (3—111) as R — 0. Equation (3—109) becomes

puil| o (2 .
U Y 2#—4 3R |eo (3—122)
equation (3;110) becomes
a(p*U) "9k <ﬂ’)( = | (3~ .
aZ R=0+Zp IR/ |k=0 0 (3 123)
. and equation (3-111) becomes
aT _ 2K* (
oz R=0 Pr aR (3 124)

Equations (3—122) (3—123), and (3 124) may be rewritten in finite difference

form as ,
. U; o0—U; o ) Uir1,1— Ujs1,0
p,*HTonH,o (]—HOA—Z—J—> =4'#1*+1>,0 [“E_(&_R‘);;l] (3-125)

* Lk
Pj+1,0Uj+l,0_pj,0Uj,0
AZ

Vi, .
+2pf1,0 ( Z;el) =0 (3-126)
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7}+I,O—TJ',0> _ 4k1*+1,0 [TJ'H,I_ J'+1:0:|

Phealsno < AZ Pr (AR)?

(3-127)

These equations are valid for £=0. _ . '

The iterative method of solution to equations (3-116) to (3—121) and (3—-125)
to (3—127) is identical to that used in section 3.1.3 for the plane compressible jet |
and described in detail in that section; therefore much of the description is omitted
in the following presentation. As before, the superscript (/) indicates values ob-
tained on the (!)th iteration while the superscript (I + 1) indicates values obtained
in the ([+1)th iteration.” Equations (3-116), (3—-118), (3—125), and (3—127) are
. NOW rewritten as :

T SOV D | B, u;*:fzk“—u;wzk_l] .
2(AR) (AR)? 2(RL~)AR - 4(AR)® | J+1, k-t
+ [pfjf{kl]}i)l,k 2"4;1(1[?"] Uy
AZ (AR)Z j+1,k .
[T R il
2(AR) (AR)? 2(Rx)AR " 4(AR)* 1k
p* UW U ,
= IR 3129
[_ p;:f{), kV;’Ql», k _ k;:f?, k k;i{), k + k;:fi), k+1 - k;;(?, k—l] > TSI-H)
" 2(AR)  Pr(AR)® " 2R.(AR)Pr ' 4(Pr)(AR)? 1 k-1
[
AZ Pr(AR)z] "1k
[P;:L(?,kV}Ql,k_ k;:(?,k _ k;i(?,k . kﬁ?,kﬂ_k}kﬁ),k—l:l _ \
2(AR)  Pr(AR)? 2R.(AR)Pr 4(Pr)(AR)? L ket
Pﬁf?, kl];'{tll,)ijrk ' : U_g'f:'ll,)k-#l ‘_‘U;‘{:ll,)k—l 2
=——M—_—.+(7-—1)M§#}1‘P,k< 2(AR) ) (3-129)
*) [D *(1)
pj+1,0UJ+1,0+4lLJ+1,0 (i+1) _ Wk | g
AZ (AR)z 7j+1,0 (AR)2 1,0 h i+,
L | _ P e | (3-130)

AZ
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aﬁd

p*( K1) *(1) —4
Pjr, OIJ]+] + 4'k1+1 0 ] +1) [ S— ] T+1)
AZ T Pr(AR)z] 0T L Pr(AR)? rho] Tih

*(l) U(I-H) T
_ +1 0~ j+1, _
= ——_AZ (3-131)

The set of linear algebraic equations represemed by (3—-128) written for
k=1(1)n plus (3— 130) for k=0 may be written in matrix form as

)
B _Hiero _ Ut+v dWw
0 (AR)z v . j+1,0 0
D - 1
o g0 o v, || o )
! l { (+1) 0)
caf B O : Uity S
—_ — X - =|
! l ! (1+1) 0
an, o, 0w, | | vl | e,
l RO (¢ n—_Qu
wo oy || o, | | sp-apur,
. (3—-132)
where
— a¥ 1 *(1) *(1) *(1) — ¥
oD = j+(1),k V;+)1 I L S E Y K5ev ke j+(1),k-1
- T
k 2(AR) (AR)? 2(Rx)AR 4(AR)?
*(7 1 *(1)
B= Pt U, 21550 (k> 0)
k AZ (AR)?
*(1 ! *(1 *(1 *(1 —
Q(l) p]+(1)kV§+)1 K “1(1);: :“‘j+(1),k I“’]+(1)k+l f“j+(1),k—1

2(AR) (AR)2 2R)AR 4(AR)?

*(1 l .
o P U Vs
k AZ

and
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gttt WA
AZ  (AR)?

The set of linear equations resulting when (3—129) is written for k-= 10)n
plus (3-131) for £=0 may be combined in matrix form as

— 4D
g ——ixla . TC+D | ¢
o Pr(AR)? ‘ j+1,0 0
(O] "(n KO 1+1) "
'_al Bl Ql T(j+1,1 ¢1
g Ay |y ||
’ . X1 __ =[__
all Bl Ll LA I R o
Wy gin (1+1) - "y — QW)
R TGP |00 Galt)
(3-133)
where
— I : COEHD *D) KD
o' (D= p;‘ill),’kV(jlil,k_ k;‘l(l)l,k + kjg-ll),k +kjil,k+l k_i+1,l.'—l
K 2AR) PrAR)?  2(Ry)AR)Pr 4 (Pr) (AR)?
B'(,)= p;‘-ill), k US{:II,)A‘+ 2k.7:(',1), [ (]C>O)
k AZ Pr (AR)2
# ) *(1) KD KD
Q’(l)zpii,l),kli('l&hk_ kﬁ,)l,k _ kj+11,k _kj+lLk+1 kj+|,l.--1
K 2 (AR) Pr(AR)* 2(Rx) (AR) Pr 4 (Pr) (AR)?
#(1) 1+ T P IS Y ST R
¢'(’)=pj+1"" Vil S F (y—1) Mau*o U e ZU )
K .4 arj+1,k 2-(AR)
and
g PR B0,
AZ . (AR)? :

For each iteration the set of equations represented by (3—132) is first solved for

Uj.ijl"’k, then the set represented by (3—133) is solved for _T;.Lﬁ{)k, and finally the
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equation of state (3—119) is solved for pj‘i’l’f"lz to yield

] .
PR =T (3-134)
j+l k - .

The continuity equation for k=0 (eq. (3—126)) may now be solved for V;.L*l‘,)l:

.
. 1+1) = AR Pi.o —U““)

Vi =5azy lpray O ] (3-135)

The remaining values of V;.ﬂjl‘)k are found IfI"IOm equation (3—117):

* * - *(+1) [JU+1)
1+1) Priw Re +1) 4 RAR_ (o Uik = pjsil U’“ ) - (3-136)
e =GR R WU R AT o,

- Equation (3-136) may be solved in-a stepwise manner working outward from
k=1. Finally, equations (3-120) and (3—121) are solved to find y,*(’*;‘) and.

k*"“) The iterative process is repeated until the solution has converged to the

de51red accuracy and then another step downstream may be taken.

3.2.3.2 Implicit difference representation valid only for large secondary veloci-
ties.— As in the plane case in section 3.1.3, if the secondary velocity is large, the
difference equations may be written in a linear form. The forms chosen for equa-
tions (3 109) to (3-114) are

pﬁk [Uj,k Uij,Z'Z_Uj,k_*_ V]A Ujﬂ,;;lA;ngH,kﬂ]

Js

— gk Uj+1,k+1"'2Uj+1,k+Uj+l,k—1 l(]j+l,'k+]_'Uj+l,k—l
. (AR)? R 2(AR)

® Lok .
My i T Py Ujir, 01— Ujir, k1

- ,+[ “2(8R) ] [ AR ] (3-137)

pjtl,k Uj+1 K p_] k U +pjt1,15+1 R, Vj+l,k+1_pjt—l,k R, Vj+l,k=0 (3-—138)
AZ AR
- T; —T;,x T'v . —dj+1,k-1
* U. j+1,k j,A+V. Jj+1,k+1 _.1+ , ]
-p“[ Y Ik 2(AR)

1 {k* [Tj+1,k+l—;2Tj+l;k+Tj+l,k—l+-_LTj+l,k+l-_' j+l,k~1]+
r (AR)?2 - R, 2(AR)

P
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[k;,k+1_k;,k_1 ][Tj+l,k+1 _7}'+1,k71:|}

2(AR) 2(AR)
. Uj+1,k+1_ j+1,k-1 2 ’
+(7‘1)M§“}",k[ 2(3R) ] (3-139)
Pfo T =1 (3-140)
pk o= Tin k) ’ (3-141)
ko e = Tienn)? (3-142)

For k=0, the following forms are needed for equations (3—122) to (3—_124):

p,?‘ioUJ"O(U!.JrI’AOZ_U!.’O)‘:A' ;’O[U!'“,l'— j+l,0] (3-143)

(AR)?

PisroUir10=Pl, UJ’°+2PJ+1.0 Vierr

AZ AR

0 - (3-144)

and

o Tiv1,0—Tj,0 _4'k;:0 Tj+1,1_Tj+1,0 )
' = (3—145)

p¥ Uj, (
ARy I (AR)2

Equations (3—137) and (3—143) may be rewritten in more convenient forms.
Equation (3—137), valid for £ > 0, becomes

% . * * * %
[ pj,kVJrk M5k Ky ok i eer ™ M5y

2(AR) _(AR)2 2(R:)AR '4-(AR')2 ]U)‘+1,k_1

o orprUnk  2uf p* Vi u*;
+[ .k Jk']‘ j+1,k+'[ J.k .k

AZ ' (AR)? 2(AR) (AR)®
u¥ . ;L* - *_ . pr U?
N R Ty ITh 1]U1+1,k+1=———”22”" 6140

" 2(Rk)AR 4(AR)?

and equation (3—143), valid for k=0, becomes
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*- t ok . ) % v
* U, 4] — 4 * [J2
[P),o 50y K0 ] Uj+1,0+[ “1,0] Uj+1,1=p]’° J.9

AZ (AR)? (AR)? AZ (3-147)

Equation (3-146) written for k=1(1)n, along with ei;uation (3-147) for
k=0, comprises a complete set of equations in Uj+1,x. This set may be written

in matrix form as

— 4k
Bo (A;j); Ujsr)o do
[24] Bl Oy Uj+1,1 ¢1
oy Bz Q, Uj+1,2 | ¢2
Qp—1 Bn—l Qn—1 Uj+1,n—1 d)n;l
[ 2% Br Ujt1,n ¢bn— Qausfup
(3-148)
where

o :_Pﬁk Vik s " I +/“;jl‘"-|'-1_”;jk—l

2(AR)  (AR)? ' 2(Rx)AR 4(AR)?
zpﬁk ljj,k 2/‘Lﬁk ‘
B=""37 Tary >0

O

* *
_Pix Vj,k_ Kok

ok
M k1 — My g1

" 2(AR) (AR)? 2(R.)AR  4(AR):
b = P} kU5 1l AZ |
and

ﬁ =p;j0Uj,0 4/‘1’_;':0
" AZ (AR

(k=0)

Equations (3—139) and (3-145) may now be rewritten. For £ > 0,

: * "o %
k' b o — K

[—p;k,ka’k; K« + . J
2(AR)  Pr(AR)? 2R« (AR)Pr = 4(Pr)(AR)?

] Tiir, 61+
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preUne 2K
+[ AZ +Pr(AR)2]Tf+""'

I:pﬁij’k_ Ko - kJ _k;jkﬁ'l_k;fk—l T,
2(AR) Pr(AR)* 2R«(AR)Pr 4-(Pr)(AR)2] B

_Uj,k 2 % (j}+i,k+]_l]j+l,k—l 2
= AZ+(_~y—1)/‘4,,u,-,k,( ZAY) ) (3-149)

A (The relationship p} ,Tj,«=1 has been employed in (3-149).) For l§=0’ |

pﬁon,o 4‘k_;k,0 .
[ AR (AR)Z] Tjero

(3-150)

+[—4k}fo]  _ Pl ;,o_Uj,o‘
Pr(AR)? | *7*0' T AZ T AZ

Equation (3-149) written for k= 1(1)n and equation-(3-150) for k=0 are
a complete set of linear equations in Tj.1, 4. The set may be written in matrix
form as

' _4kJ>'j 0 . : ’
Bo Pr (AR)? Tisr,0 bo
aj Bi 0 Tjir,s N
o B: Q . ' % Tii,2 _ @'
a,_ B;z—l Q;_, TjH, n-1 d);:—l
o, B Tius,n br— Qi (t2)
"(3-151)
' where
b p;,(.ka» K ka . k;'k, K kj, K+l kjf, k=1

o, =

k= T9(AR)  (Pr)(AR)? T 2R.(Pr) (AR) T T4(Pr)(BR)?

; p;: kU.i, k- 2kjjl\ .
Be=""2Z T PraR)> (k>0)
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. Q' = ngVf’ k* ' /i.zk @L;-#l— kik
k 2(AR) (Pr)(AR)2 2Rk(Pr).(A_R) 4(Pr)(AR)*
pr Uik Uit1, k61 = Ujir,6-1 2
_.L____ S 2, %
8y = B G-y [ ]

and
' p;:on,o 44k;:0 ‘ = .
BTz +Pr(AR)2 (k=0)

The set of equations (3—148) may now be solved for Uj,s, x using the method
of appendix A, and then the set.(3— 151) can be solved for TJH + using the same
method.

. From equatlon (3-140) the densny may now be found

1
Tj+l k

(3-152)

.ok —
Pivi,x

The continuity equation is next solved for Viet, kv Flrst fork=20 from equation
(3-144),

. ‘_AR['U 4+( p}'fo)U ] ‘ 4153
11T 97 j+1,0 _;’:-1,0 j. 0 . ( )

and for k=1(1)n from equation (3?138),

Vi l=<i+_1k_'f__) Ve 4 AR(Ry) (P;kUj,k—,pﬁrl’kUjH,k
b P Riw/) M0 AZ (Ri+1)

J+l k+1

) (3-154)

%
Pjiy, ke

Finally, n J+1 X and J“ . may be found from equations- (3—141) and (3-142). The
solution may now be advanced downstream another step.
All forms of both the momentum and energy equations given in this section
. are universally stable except for U<<0 which presumably will not occur in the
* laminar jet flow situation.
‘The truncation error for both the momentum and energy equation difference
representations is of O(AR)?2 and @ (AZ). The truncation error of the continuity
equation is of O (AR) and O (AZ). '
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3.3 OTHER PROBLEMS WITH A SIMILAR FORMULATION
3.3.1 Jets With Body Forces

The basic formulations given in this chapter may be modified to include a
body force of any type (for more details on the methods of solution when the body
forces are electrical or magnetic in nature, see section 2.3.4). Body forces due to
gravitational effects may also be readily included.

If the body force distribution is symmetric about the jet centerline in the
main flow direction of the jet, symmetry is preserved. If this is not the case, the
jet is no longer symmetric and it becomes necessary to determine the velocity
distribution across the entire jet cross section at each axial step. In the case of
the plane jet this means only that the full jet width must be considered instead
of solving for velocities in only half of the jet width and then applying symmetry.
If the body forces are sufficiently large, it may also become necessary to include
the effects of momentum flux in the direction in which the body forces are applied.
The formulations of this chapter may then no longer be directly applied. For the
jet which has an initially circular cross section, body force distributions not axially
symmetric and alined with the main flow direction make the problem three di- -
mensional and compound the complexity of a numerical solution enormously.

" The three-dimensional problem is not discussed here, but some idea of the dif-
ficulties involved and possible approaches to the problem may be found in later
chapters . of this book in connection with the discussion of flow in noncircular
channels

3 3.2 Jet Mixing When Primary and Secondary Streams- Are Dlﬁ'erent Com-
pressrble Fluids

If a primary jet of gas issues into a secondary stream which is composed of
a different gas, diffusion becomes one of the important mechanisms in the mixing
_process. The diffusion equation must then be included in the basic equations along
with the proper equation of state, and the properties must be evaluated using the
methods required for gas mixtures.

As an example of this type of problem we shall consider the formulation for
the plane mixing of a primary jet of gas with a moving or stationary secondary
stream of ‘a different gas at a different temperature. The configuration is shown
in figure 3—5. :

- Pai (ref. 3) discusses the jet mixing of different gases, and the basic equations
for diffusion may be found in Rohsenow and Choi (ref. 4) and Bird, Stewart, and
Lightfoot (ref. 5). The equations given here are the result of the usual assumptions

. of the boundary layer type along with the assumption that the mass transfer due
to diffusion involves a negligible momentum flux.

To the author’s knowledge the finite difference formulation for this problem
has not been previously available, although Pai presents a solution for the iso-
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U to o
FIGURE 3-5.—Plane jet mixing of two different gases.

thermal case in whlch the basic equations are transformed into forms of the
generalized heat conduction equation and then exammed for several simplified
cases (isothermal or 1sove10c1ty)

The equations of momentum, continuity, and energy may be written as

u u

(e i)
| a(;)xu) +a(apyv)=0 (3-156)
() B E)ull) e

In our dlSCUSSlOIl of dlffusmn we employ the subscrlpt a for the primary gas
and b for the secondary gas. We define

Cx=Culp (3-158)
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where C, is the mass of component a per unit volume, p the mass of mixture per
unit volume, and C? the mass fraction of component a. In terms of C¥, the diffusion
equation may be written as

aC* aC* -3 [ aC*
( —“) (3-159)

—a —a — —_—
PL % +pv Ay Day p dy

where D is the diffusion coefficient. The D has been assumed constant which
is an excellent approximation for most gases at constant pressure.

' We now require an equation of state for the gas mixture in order to express p
as a function of C*, p, and t. We first express C* as : -

N(IM(I
* — = ————
Ca=CaP= N1 N,

(3-160)
where N, and N, are, respectively, the number of moles of gas a and gas b per unit
volume of the mixture, and M, and M, are the molecular weights of these gases.

Since
N=N+N, . (3-161)

where N is the total number of molecules in the gas mixture per unit volume,
equation (3—160) may be rewritten as- :

C*= N.M, _
" NaMq+ (N_N(I)Mb ’ (3_162)
The equation of state for the mixture is
N=pl%t 3 . (3-163)

where 2 is the universal gas constant andp is the total pressure of the gas mixture
(constant in this case). Combining equations (3—162) and (3-163) and solving
for N, give : :

C*N

1\m=m . - (3—164)

where = M/M,. Equation (3-160) may now be written in the form

N(IM(I -
Cr=""" (3-165)

Solving equation (3—165) for p and using equation (3—164) finally yield
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- pMa
P (Cr+n(1—CH)) % - (3-166)

The transport properties are assumed to be functions of temperature and
concentration only. An extensive literature has been devoted to the subject of
the transport properties of gases and mixtures of -gases and it does not seem
worthwhile to present expressions here for these properties. The reader is referred
to Hirschfelder, Curtis, and Bird (ref. 6) and Reid and Sherwood (ref. 7) for detailed
discussions. For our purposes it is sufficient to state that the properties may be
any desired function of concentration and-temperature without complicating the
actual solution in any way. We therefore simply state

cp=cp(t, C3) (3-167)
) p=p(,CH L (3-169)
k=k(t, C}) : (3-169)

Equations (3-155) to (3-157), (3-159), and (3-166) to (3-169) now completely
describe the problem.
- The boundary cqnditions for this problem are

u(0, ) =1y y<a (sce appendix F) |
u(0, y) = us y>a
u(x, ®)=u,
. g—; (x,0)=0
v(x,0)=0
t(0,y)=tp y<a
t(0, y) =t y>a o
t(x, ©) =t . (3—170)
ay (010
€0, y) =1 y<a
Cz(0,5)=0 y>ﬁ
Calx, ©)=0
ag,*(x,0)=.0 | ' o . J
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The equations (3—155) to (3—157), (3—159)-, and (3—166) to (3—170) must now
be expressed in dimensionless form. The following dimensionless variables are

chosen:

=ulu,
— Pova
v Ky
T=tlt,
N*=N|N,
X= XHp
Ppipal

Y=yla

k*=klk,
= u/pp
=plpp

C;=‘Cp/(cp)p

(3-171)

The concentration CF is already dlmensmnless All reference values w1th sub-

script p are evaluated at the primary jet conditions at X=0.

Inserting these vanables into the basic equations, the problem may be

rewritten in dimensionless form as

(U—+V

aU aU) i(‘ LOUY

0X aY aY

> - 3 (p*U)

aY

ap*V) _

6X+

X +r Y

*[Uau;T) aa;T)] 1 9

[ p3CE, ,9Ck
P (, aX Y

Y

oT
* _— 24, %
Pr aY(k aY)+w7 DM;u

) 18(4
Sc Y

1

p*= .
T[Cy+m(1—CH)]

where
’ u
M,= £
’ VYRt p.
- (3)
pD/p

459-174 0 - 73 - 8

(3-172) .

(3-173)

(3-174)

(3-175)

(3-176)
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P =<&> _
r k »

_are the Mach, Schmidt, and Prandil numbers, respectively, evaluated at conditions
in the primary stream at X=0.
The boundary conditions in dimensionless form are

U©,Y)=1 Y<1 1
U0, Y) = u,/uy Y>1
UX, ®)=usluy

aU _
5 X, 0=0

V(X, 0)‘=0

T, v)=1 y<1 B
T, Y)=tsltp Y>1 (3-177)

T(X, ®)=ts/ty

aT
ax & Q)—O

C*0,Y)=1 Y<1
1
C*(0, Y)=0 Y>1
Cr(X,2)=0
N
aC* _
_3,7(X’ 0)—-0 _ J

A finite difference form must now be sélected for this problem. In order that
the formulation be valid for all secondary velocities greater than or equal to zero,
and to ensure accuracy in the evaluation of the properties, a nonlinear difference
representation will be employed. The forms chosen for the momentum, continuity,
and energy equations are essentially the same as those used in section 3.1.3. The
complete finite difference representation for the problem is

o1 =Upipp  Uporeon = Uper,ie
Pfine | Vs DBy, | issr s |

Usir, ka1 —2Uje1 6+ Usir -1
=/~";=+1,k|: Jj+1,k+1 (A_);,l)zk j+t,k 1]+
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[/‘L;:+1,k+1-”f+1,k—1 ] [Uj+l,k+l_Uj+1,k—1 ] 3-178)
2(AY) ‘ 2(AY) (
p_;k+l,kUj+lsk~p;<,kUj:k+pjt'l,k+1 Viet, k+1 _Pﬂl,ijH,k

AX AV =Q (3—179)

N U “(ep)ir,kljer, 6 — (e3)5, T k
pj+1,k ]+‘l,k AX -

(C:)j+l,k+1Tj+l,k+1 - (Cp)ﬁr,,k_,TjH,kq]

+ Vj-.*-l,k Z(AY)
=l{ * I:Tj+l,k+1—21:l‘+1,k+Tj+l,k—l]
PrMivun (AY)?
+ [k;kﬂ,kﬂ — k;kﬂ‘,k—_i] [Ti+l,k+l - Tj+1,k:—l]}
2(AY) 2(AY)
. U. —U; 12 !
_ Ui+, k+1 j+1, k-1 _
+ 1)M;,L;=H,k‘[ YT ] . (3-180)
(€= CDik . (CDjerirs = (€3 e nms
Pk [Uj+1,k AX + Vi 2(AY) ]
1 * (CE)ja1, k41— 2(CE)jur, ke + (CX)jrr, k1
_'S_C{Pjn,k (AY)?
+ [p.;k+1,k+1 __ p;:-l,k—l] I:(C:)f“”‘“ _ (C:)i“”‘“]} (3—181)
2(AY) 2(4Y) '
p* = L (3-182)
Lk T k((CH) e,k + (L= (CF)jir, k)
(C:)j+l,k = (C:)j+l,k(Tj+l_,k, Cfﬂ,k) (3—183)
;.L]f"+l’k= ;L;‘H,k(TjH,k, C;'k+1,k) (3-184)
A S ¢ YT Cli k) (3-185)

There is a very large number of possible iterative methods which might be
applied to solve equations (3-178) to (3—185). The technique discussed here is
very similar to that used in section 3.1.3 except for the presence of equation
(3—181) (the diffusion equation) and the modified equation of state and property
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relations. It should be noted that this iterative technique has not actually been
applied by the author to this specific problem and, although there seems to be no
reason why it should not work, the final proof must always be numbers on a sheet
of computer output. Since the iterative method has been discussed in detail
in sections 3.1.1 and 3.1.3, the presentation here is confined to the equations
themselves. Equations (3—178), (3—180), and (3—181) are now reformulated slightly.
The quantities with superscript (/) are from the iteration prior to the present
one, while those with superscript (/+ 1) are to be obtained in the present iteration.
Equation (3—178) is rewritten as

(+1) (+1)  —[Ji+1)
*(1) T j+1,k,“Uj,k+V(,) Uj+l,k+l Uj+1,k—l
pj+1,k j+, k AX j+1, k 2(AY)

S

. +1) - (1+1) (1+1)
— 4 %) []j+1,k+l 2[jj+l,k+[jj+l,k—l
41, k

(aY)?

N [ piP A P ko ] [ Uit — Ui ] (3-186)
 2(aY) 28y |

Equation (3—180) is rewritten as

Ae®)D T(+r) — .c* : o T
*0) | pu+n (e5)% .k jtL.k (i")”k ik

pj+l,k[ J+1k TAX

+ YW ,<c:>}i’1,k+,7}i+,t>k+,—(c:);y,,k_,r;zpk_l]
- 24y
=_1_ *(1) T.(iitlx)"”l_—ZTng:ll,)lc—l_]}iﬁl,)k—l
Pr| itk ( | : (AY)2 |
v+ [kﬁi)’k“_k;ﬁ{k—l][T}r;{)kuu_q}iﬂ)k—l]} :
- 2(AY) 2(AY)
U+n) _U(i+1) 2
y j+1,k+1 j+1,k-1 _

Finally, equation (3—181) is rewritten as

—(C*
CDEN= €D (CHEN,, (Ca>;-i+s,)k_1]

oo, v, L @, ST
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L [ O €
Sec Ptk (AY)?
[p;':éi’,“,— mkﬂ][(C:)ﬁﬁf’kﬂ—(c*)fﬁ” ]} (3-188)
2(AY) 2(AY)

Equation (3-186) written for £=0(1)n now constitutes a set of (n+1) linear
equations in the (n+ 1) unknowns U(’“) Equations (3—-187) and (3—188) written

for k= 0(1)n constitute similar sets of equations for T(’“) and (C*)(’:l“k

Equations (3-186) to (3-188) can be rearranged i m the followmg more con-
venient forms: '

*(l) ) : *(l) *() — g *0

[ AN R s N WSS f+1,k—x] (1+1)
2(AY) (AY): 4(AY)2 41, k-1
+ Pt Usts, Ky 2 U(i+1)’
AX . (AY)? Yitl, k
+[ p;i(ll)k 21 k. th(llzk_#jt(ll),k+1_ jﬁ-‘]l)’k_l]U(l+l)
2(AY) (AY)? 4(AY)? J+1, k41
[ ;:(ll)k( :);Bl’k_l jfl"k; k-’t(‘l)" ]EJt(ll)k+l—th-ll)k 1] (i+1)
2(4Y) Pr(AY)? 4(Pr) (AY)? J+1, k-1
AX ) Pr(A_Y)Z i,k
[ ;(ll)k( *);21 k“V’(B‘ k kit“)k ic*L(ll)kﬂ_th(le '] (1+1)
2(4Y) - Pr(AY)2 4(Pr) (AY)? J+1, ke
: —( 1)M2p (Ui(ﬁf)kﬂ_UJ(hl)k 1>2 o0 a () Uit (3-190)
Y ]+l k 2(AY) AX A
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oD JU (1) D p*O)
[ PV PR R Piitas ’ Pt k-

- - *¥) (I+1)
2(AY)  Sc(AY)? ' 4(Sc)(AY)z ] (CD e
I:p_*(l) Ui+ 2p*“) )

1,k i1,k j+1,k.
+ *) (1+1)
AX Sc(AY)?] (Ca)fﬂ,k

+ ':plt(i),kVJ(i)l,k _ p.;k-ifi),k _p;;(i),kﬂ _p;;(ll),_k—l ] (C*) (D)
2(AY)  Sc(AY)? 4(Sc) (AY)? alj+1 ks

i

pXD YU+ (C*); 4
a’ds

L,k 1,k
AX .

For each iteration the procedure is to solve the set of equations represented

by (3-189) for U{!4!), the set represented by (3-190) for T{1), and finally the

3-191)

Jj +1, A
set represented by (3—191) for (C:)](ﬁlli Equation (3-182) can now be solved for

The values yien, ., 'may now be solved for from continuity (eq. (3-179)):

’ *(1+1) : U+ D[JU+1) — ¥ .
Va+1) = p+1) M _AY pj“Tk Uj:i’}c pj’kU]’k 3-192
JH1k+1 itk \ p¥(+1) AX p *¥(+1) ( )

P,k : P ik
The properties c;, u*, and £* can be found from equations (3—183) to (3-185).
The iteration (I + 1) is now complete. The iterative process may be repeated as
many times as necessary until the values obtained on succeeding iterations agree
to within any desired accuracy. Once the iterative process has converged, another
step downstream may be taken and the solution obtained at that location using the
same method. Over or under relaxation may be readily applied. (If there is difficulty
in obtaining convergence, underrelaxation will probably be necessary.)

The madtrix representations of equations (3—188), (3—190), and (3—191) are
now written. Equation (3—189) in matrix form is co

‘ —9u N '
B ““Hivi,0 [+ HD
0 (AY)Z j¥1,0 0
o) B | e | e
- ‘ ! ' ) I+1 )
o) BP0 o, | e

—_— = ) Xl— =|—

I lj li (1+1) (D
all B QY q+1,n—1. &

! { 1+1 H— i
_Cl’il‘) 'B(n) ’ i U}:l,)n d)(n) Q’.(n)‘u""'/u'p
(3-193)
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where
M P *(1) *(1) )
D= pj+l,kV;+l,k_""j+1,k Ky ke ™ i, ke
K 2(AY) (AY)? 4(AY)?
£ )] (1)) *(1)
(D) == s Sl 2050
B = AX (AY)?
{ ) *(1) *(1) — ¥ D
Q(I)ﬁp,;'}-l),k j+1,k_”‘j+1,k_p“j+1,k+1 Kiii ko
k 2(AY) (AY)?2 4(AY)?
*(1) (D )
o P s
L
Equation (3—190) in matrix form is
L 9p*D :
y _i*10 TU+D) 1
0 Pr(AY)? j+1,0
(1 141 )
I U U Ty, | |
1l (1 1+1) =l (D
Caytd _B2() Ql;” ern,z =i,
W pi "n (+1) (1)
an(..)l Bn(—)l Qn—l L+, n—1 ¢ n=1
' 1t I4+1
a_n(l) Brﬁ ) T§-+-+l,)n
where
— k(D *\ (1) ) *( *(I — L*(
o' (= i kN eV i e KD R R
k 2(AY) Pr(aY)? 4(Pr)(AY)?
*(D *Y( 1 (t+1 *
B’(l)zgj-é—l,k(cp)gll,kUl'+l,)k 2k7D &
k - AX Pr(AY)z
C¥(D) *Y () (U] *(0) *(N — L*¥()
Q,(,)=”j+(l,k(cll)_§'+1,k+le+l,k _ it i _kj;l,k“ ki ke
k 2(4Y) Pr(AY)? 4(Pr) (AY)?

d):l(l) — Q;,(”ts/tp
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(3—194)
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' 'r(j)_&as-(ll),k(cl;’g)l, UJZ:: I\Tf’k L( _l)Mg '*(,) UJTll)kH—Uﬁl)k 12
o= AX R i1, k 2(4Y)
Finally, equation (3—-191) in matrix form is
—2pX0
o (seiis) € | |81
C . ’
Y A O (€A 1P
al® BL® 'Q'z’(f) x| (€Huy,  |=| w0
A A I oA "0,
ap g || e, | e
. ' (3-195)
where
oD = —oi kV_;(21 k__ P +p]t(l’) ket TP ko
O 2(AY)  Sc(AY)E ' 4(Sc)(AY)
B0 = ’?Jt(ll) WU +29 P
K AX Sc(AY)?
er(l);‘lzyl), (jlzrl,k_ [ _&%kn_pﬁ?,k_l
S 2(AY) Sc(AY): . 4(Sc) (AY)?
p;’;({) kUgitl)k(C:)j’k

(1) =
k AX

The truncation error of the momentum, energy, and diffusion equations is of

O (AX) and O(AY?). The truncatlon error of the continuity equation is of & (AX )
and 7 (4Y).

‘ Although no stability analysis for this formulanon has been carried out, it

may be safely assumed from previous experience that the representation is <table
for all U = 0.
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3.4 EXAMPLE PROBLEM'—TWO-DIMENSIO&AL JET

As an illustration of the numerical technique, a solution has been carried
out for a plane jet of fluid emerging from a finite slot with a parabolic velocity
.distribution into a stationary region of the same fluid (fig. 3—6). This problem differs
only slightly from the problem formulated in section 3.1.1 for a uniform primary
stream of velocity up. The formulation given in section 3.1.1 may be used for the

" present problem if the velocity up is used to represent the maximum velocity in
the parabolic velocity distribution and if the boundary conditions (3—3) are modified
to become

2
u(O,y)%up(l—i—z) y<a

(0, y)=0 y>a

u(x, ) =0 \ (3-196)

du _
3y (x,0)=0

v(x,0)=0 J

—
Wl NL

y0

T e

/

FIGURE 3-6.—Plane jet emerging from wall with parabolic velocity di..ribution into stationary fluid.
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In dimensionless form, the conﬁitions (3—196) become

Uo,)=1—-y2 yv=<1

U(0,¥)=0 Y >1

U, =) =0 (3-197)
oU
5 (X, 0)=0

VX, 0)=0

The solution now proceeds exactly as outlined in section 3.1.1. .

The numerical solution was carried out with mesh sizes of AX=0.001 and-
AY=0.05 with n=300. This large value of n made it unnecessary to expand the
grid as the jet expanded, although clearly the number of mesh points in the
Y-direction was much larger than was necessary for small X. It was found neces-
sary to employ underrelaxation to obtain convergence of the iterative procedure.
An underrelaxation factor of 0.3 was used.

Axial velocity U distributions obtained from the numerical solution are
compared in figure 3—7 with the solution of Schlichting (ref. 8) for a plane jet
emerging from a slit of infinitesimal height but with a finite momentum flux. The
two solutions are compared on the basis of an equal momentum flux. The profiles
at X=0.2 shown in figure 3—-7(a) indicate that the expansion of the jet is about the
same for both solutions. However, the Schlichting solution gives a higher center-
line velocity since the source of the jet is concentrated into an infinitesimal height
while the jet in the numerical solution emerges from a finite source. Much farther
downstream at X=0.8, as shown in figure 3—7(b), the distribution of the source
of the jet becomes much less important and the two solutions agree very well. A
‘number of representative velocity profiles from the numerical solution are shown
in figure 3—8. ' '
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Numerical solution - finite jet

\ ————- Siit jet (Schlichting)

e

[T

(a) ] i

- 2
pimensionless distance from centerline, Y

Dimensionless velocity, U

Dimensionless distance from centeriine, Y

(a) Distance, X =0.200.
(b) Distance, X =0.800.
FIGURE 3-7.— Comparison of velocity profiles for plane jet.
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1.0

.8
=2
2z
g .6
g
2 Distance,
= :
> .4
s
E
(=1

.2

; ! . i |
0 1 2 . 3 . 4 5 6 7 -8 9 10
Dimensionless distance from centerline, Y -
_'F;IGURE 3—8.—Plane finite laminar jet velocity profiles — parabolic exit profile.
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CHAPTER 4

FREE CONVECTION

- Free convection (also called natural convection) results when a fluid in the
presence of a gravity field undergoes density variations.due to a nonuniform tem-

perature distribution within the fluid. For almost all practical situations, the fluid

can be considered as incompressible in the sense that variations in pressure do
not significantly affect the density and that the effect of temperature variations on

density can be adequately accounted for by using a coefficient of thermal expan-
sion. Eshghy and Morrison (ref. 1) gives a complete discussion of the limitations of -
these assumptions. In addition, for large Grashoff numbers, a boundary layer model

is acceptable for the free convection problem and we shall employ such a model

in this chapter. '

4.1 FLOW ON A VERTICAL HEATED PLATE

The problem configuration considered first is shown in figure 4—1. The vertical
plate is heated and the surrounding fluid is at rest.

4.1.1 Velocity and Temperature Solutions

The “incompressible” free convection equations (see ref. 1) may be written as

u du % . :
p<u—+ ay> Koy + pg:B(t — t.) @)
—+—=0 - (4-2)
dy ’ -
at a\ _, 8% '
pcp(ué—-l-vg;)—kayz . (4-3)

where g, is the x-component (vertical) of the acceleration due to gravxty and B
is the thermal coefficient of volumetric expansion.

115
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t, -~

Fluid at rest

ALTITITEIMASELLELLLELLLLLHLLEAT1A11EHITIITILEE LA LRRR LR AR A S AN

y

FIGURE 4-1.—Free convection flow on vertical heated plate.

The boundary conditions specified for the classical free convection problem

are

u(x, 0)=0
u(x, ®) =0
4(0,9)=0 ‘
v(x, 0)=0 ) (4—4)
t(x, 0) =ty

“t(x, ®)=1t,
t(0, y)=t.

Other boundary conditions may be readily considered when the numerical tech-
nique is used as will be demonstrated in later sections of this chapter.

The equations (4—1) to (4—3) and boundary conditions (4—4) may now be put
in dimensionless form by the proper choice of dimensionless variables. The
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variables chosen are those used by Bodoia (ref. 2) for his mvestlgatmn of confined

free convection:

4

‘U= v n= ul
- L2gB(ty—1t) v(Gr)
Lo
v
pt=t
tw—tx
v x
X= Bl t) I T LG
Y=<

L

@s)

where Gr=B(ty,—1t.)L3g./v? is the Grashoff number and L is a characteristic

length in the x-direction.

When these variables are inserted into equatlons 4-1) to (4«—3), the basic

equations become in dimensionless form

al oU _ 02U

Uax TV ov"or
oU oV
axtar = °

—+T

aT oT 1 o2T
UsxtV oy~ prave

The boundary conditions (4—4) in dimensionless form become

U(X,00=0
L U(X, @) =0
U@,Y)=
V(X,0)=0
T(X,0)=1
T(X, ©) =0

TO,Y)=0

(4~6)

@~7)

(4-8)

(4-9)
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The only parameter appearing in the dimensionless problem is the Prandtl number.

A finite difference form for equations (4-6) to (4-8) must now be chosen.
Essentially the same type of formulation is employed as was used for the jet with
zero secondary velocity in section 3.1.1. This form is necessitated by the zero
velocity free stream, which will result in the usual lmpllclt formulations being
inconsistent as discussed in section 3.1.1- The finite difference forms chosen
for equations (4—6) to (4—8) are

S

Uiy o~ Us ) U, —U.
j+1,k i k . +1, k+1 +1,k—1
Uj,+l,k + Vg i = .

ax e 2(4Y)
7 Lo Uj+1,k+1—2([£;;;k+ Uj+l’k_l+Tj+l,k (4—10)
Uj+l,k+A; j,k+1+Vj+1,k+A; V,-H,k:() '(41_11)
Tivi.o—T; Tioros — Ty i
Uj+|,k—"%fii+ V_+1 . Jj+1 k+12(Ay_;)+1 k-1
=P—1r T-"“’."f‘ *2(£i;;;k + T -1 (4-12)

Since the difference formulation given here is nonlinear, an iterative scheme
is required to obtain a solution. The method used here is very similar to that -
employed in section 3.1.1. The" difference equations (4-10) to (4—12) are first
rewritten as

pl+1) U 5 Ui+1) — U(l+1)

U(I) j+1,k J» + ) j+1,k+1 j+1,k-1
j+1,k ‘ AX j+1,k » 2(AY)
(I1+1) — (i1+1) (I1+1)
— U]+l k+1 . 2lj_]+1 k+ U]+l k— 1+ T(l) (4_13
(AY)2 j+l,k )
J— [2 —
Uj(i+11)1:+1 s k+1 V](-:il)kﬂ Vj(ﬁl}c 0
AX AY (4-14)
V +1) . (I+1) — TU+1)
U(H'l) Tj+1,k T +V(l+’) Tj+1,k+1 T_;+l k—1
Jtl, k AX j+1, k 2(AY)
+1) - (I1+1) (1+1)
1 T+1 k+1 2T]+| +Ti;+1 k—1 (4__15)

~Pr (AY)e
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where the superscript (!) indicates values obtained on the (/)th iteration and the
({+1) indicates those to be obtained on the (/+ 1)th iteration.
Equation (4—13) may be rewritten in a more useful form as

_ (03]
[__I__KJL"_] ya+n

(0)
+h:| Ud+n
(AY)2  2(AY)

41, k— 1+|:(AY)2 AX J+1, k

-1 yo vw U g .
1,k U,
+[ (AY)2+2(JAY) ] Ul(ﬁl)hﬂ _]+TX—_+ 71,(21 . (4-16)

Equation (4—16) written for k=1(1)n now constitutes 7 linear equations in the n
unknowns U(fj;’)k since the quantities having superscript (I/) are assumed known
from the previous iteration. As is usual for external flows, the value of n must be
chosen sufficiently large so that a number of points in the grid are essentially in
" the free stiream. The value of n must be increased as the boundary layer grows,
and eventually it will become worthwhile to halve n and double AY. The choice
of an initial 'value for n and AY is somewhat difficult, but reasonably good values
can be obtained by referring to the classical analytical solutions for the free

convection problem (refs. 3 and 4). The set of linear equations may be written
in matrix form as ' ’ ‘

(1) (1) (1+1) (7)
'31 Q1 U_;+1 1 4)1
gL QW ' (1+1) 0
@ 132 Qz Uj+l,2 ¢2
() g o i+1 |
3 Bs Qs U;J?z ’ d’(s)
— — — x — =3 —
(1) ) Q] . (+1) : I}
an 1 B(n—l Q n-1 Uj++| n—1 d)(n)—l
() (1) (141) (@)
o B, Uisn, P
| (4-17)
where .
= — 1 Vit

k (AY)?  2(AY)

N
j+1,k

B(’): 2 - +
V=R T AX

n
Q(l)z___l—+ Vidi«
k= T aY)? T 2(AY)

459-174 O - 73 -9
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0 :
Uj+l,kUj,k+ﬂ,)
AX J

+1, k

)=
d)(k ).:

The matrix of*coefficients in (4—17) is tridiagonal, and the method of appendix

A may be used to obtain a solution for U‘.f;‘)k_

. Equation (4~14) may next be solved for {41, .
V( 14+1) = V(I+.1) . A_Y U( 1+1) U ' A
Lket Uik AX ( Lk i k+1) ’ 4-18)

. This equation may. be solved in a stepwise manner working outward from the
plate.

Equation (4-15) may now be rearranged in a more useful form as

-1 T 2 Umy
- , f+1) - 2 1+1)
[(Pr) (AY)? 2(AY)] T(j++ll,k—1+ [ (Pr) (AY)2+ AX ] ?’(jfl’k

Y PO 1
(Pr)(AY)2 * 2(AY) ]| “it1.kn AX
Equation (4-19) written for k=1(1)n constitutes n linear algebraic equa-

tions in the n unknowns T{!1") This set of equations may be written in matrix
form as '

(4-19)

" "\ ' ’ (1+1) "D — o' (D
B 91(-) , Tj++1,1 d)l( ‘) &,

[ ' i ] . +1) (1)
az(l§ 'Bz(l) sz T}ﬁ,z o,

’ ’ ’ ’ (1+1) - Q1
a B QI , T Py

" " | T(1+1 "
an(_l; Bn‘J Qn(—l T}H,)n—l ¢n—l

(1 ¢ 1+1) "
C!n() Bn() T_;(:;,ri_ d)n

. (4-20)
where

| o' (D= -1 Vi

k (Pr)(AY)2  2(AY)

¢ ’ "9 Ui+

"= hatl
By (Pr)(AY)? + AX
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Qe 1 Vit
kK (Pr) (AY)? ~2(AY)
d)’(l): J(‘l*‘:f)‘TJ,k
k

As in the momentum equation solution, the method of appendix A may be used.
The iterative technique now consists of solving the sets of equations (4—17),
(4-18) and (4-19) in that order repeatedly until the values obtained on a given:
_iteration agree with those obtained on the previous iteration to within some”
predetermined accuracy. ' _
Preliminary calculations by the author indicate that the iterative process
may not converge unless some underrelaxation is employed. The relaxation pro-
cedure is discussed in detail in section 3.1.1. The underrelaxation factor found
- useful in the preliminary calculations was. 0.3, but this should be determined for
any given problem by experimental calculations.
The formulation given here is stable so long as U = 0. The truncation error
is of @(AX) and @(AY?) for momentum and energy and @(AX) and @(AY) for

continuity.

. 4.1.2 Heat Transfer Solution

The local Nusselt number is given by

— qx
Nuz= (tw — 1) 4—-21)
or
| o
_ _ 9 ly=0 .
Nuy= (tw— ) _ 4—22)

When the dimensionless variables (4-5) are used, equation (4-22) becomes
aT :
Nue==5y|,., 0 € A (@-23)

where -

Cr— &B (tw’; t,)L?

. ’ )
"is the Grashoff number based on L. In difference form this can be written as
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Nur=[3TJ+1,02—(§§/};1,1+7}+1,2] (X) (Gr) _ @-24)

(see appendix B, section B.1). The average Nusselt number is given by

1 (x ‘
Nun = X L Nu:ch % (4—25)

This equation can be readily evaluated using Simpson’s rule (see section 2.1.3,
- eq. (2-31)). ‘ 3

4.2 OTHER PROBLEMS WITH SIMILAR FORMULATION

4.2.1 Combined Free and Forc_ed Convection on a Vertical Heated Plate

This problem can be solved using the methods of this chapter, but only for
so called “aiding” flow in which the free stream velocity is in the same direction
as that induced by free convection. “Opposing” flow, in which the free stream is
in the opposite direction, results in a flow reversal in the velocity field and in-
stability of the finite difference technique. In order to approach this problem, it is
necessary to solve the entire flow field simultaneously and to specify boundary con-
ditions far above and far below the plate, an extremely difficult task which is be-
yond the scope of this book. _ n '

For aiding flow, only a few changes are necessary to the formulation in section
4.1.1. The boundary conditions (4—4) become

u(x, 0) =0

u(x, ©) = u,

u(0,y) = u, '
v(x,0)=0 (4-26)
t(x,0) =ty ' '
t{x, ®) = t,
£(0, y) =ta

In dimensionless form, the conditions (4—26) become

UX,0)=0

UX,»)=U,

uo,y)=U,

V(X,0)=0 @)
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where

U. = Vit
7 L2gB(tw—tu)

The matrix equation (4-17) is modified only in the last row of the right side
column vector, where ¢{” is replaced by (¢\? —Q0U.).

Even though the free stream velocity in the case now being considered is
nonzero, it is strongly suggested that the difference forms (4—10) and (4—12) be
retained, since preliminary calculations indicate that various numerical difficulties
may be encountered if the usual implicit form is used when the free convection
velocities become appreciably higher than those in the free stream.

It should be noted that the dimensionless variables may if desired be re-
defined using U, as a characteristic velocity, but this gains little, and the limiting
case as U, cannot be readily considered.

The heat-transfer results may be obtained by using the formulatlon of section
4.1.2.

4.2.2 Free Convection With Wall Temperature or Wall Heat Flux a Function
of Position

In the formulation given in section 4.1.1, it was assumed that the surface
temperature of the plate is specified and is constant. If instead the surface tempera-
ture is a function of x, or if a heat flux (which may be a function of x) is specified,
then the problem must be reformulated. A

" If the wall temperature is a function of x, then only minor changes are needed.
The wall temperature £, at x= 0 replaces £, in the dimensionless variables (4—5).
The boundary conditions (4—4) are then rewritten as

UX,0)=0

UX,©)=0

VX,0)=0 | -
T, 0) = Tun) = et

T(X,®)=0

(0, Y) =

The matrix equation (4—20) must be slightly changed in that the first row of the
right side column matrix, (¢, —a{") becomes (¢'"—a'"Ty(X)).

If a wall heat flux is specified (which in general may be a function of x), then
the reformulation is more extensive. The boundary conditions (4—4) become
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The new choice of dimensionless variables replacing (4-5) is

~ NUMERICAL MARCHING TECHNIQUES

u(x,0)=0
u(x,»)=0
u(0,y)=0
v(x,0)=0

—kj—,; (,0) = q(x)

t(x,0)=1t,

t(0,y)=t,

vk

U=L3g,qu0'u
' Lv v
r=<

_ (t—t)k
T. 2o

__ v .

L°gxBqo
Cy=2Y
Y=1

(4-29)

4-30) .

where q¢ is a reference heat flux (e.g., at the the leading edge of the plate). Using

these variables, the basic equations (4—6) to (4—8) are unchanged.
The boundary conditions (4—29) become in dimensionless form

oT _a(X)
- 5?~(Xa 0) -

UX,0)=0
U(X,)=0
U©0,Y)=0
V(X,0)=0

qo
T(X,»©)=0

r0,Y)=0

4-31)
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The heat flux condition at the plate in (4—31) must be expressed in finite
difference form as

ST — 4T +THY  g(X)

j+1,0 j+1,1 j+1,2

2(AY) % (4-32)

Equation (4-32) along with equation (4—19) written for k=1(1)n constitutes
{n+1) equations in the (n+1) unknowns TJ‘J’:‘}‘ This set of equations may be
- written in matrix form: '

3 -4 1. T, b,
I
ad g QI ‘ 7;<+IT13 ¢!
o B a0 i | e
al  gun Q;(I) | X | T = Ly |
o g4 T ¢!}
o0 BT | | 4]
(4-33)
where
T S Vi
k (Pr)(AY)? 2(AY)
e 2 UL
ko (Pr)(AY)? AX
! (I+1)
Q= - —1 + Vj+l,k
k (Pr)(AY)? * 2(AY)
'(I+1;( .
¢/ (= —_}‘+XX L2 (k>0)
, a(Xj) ] .
$=2(AY) — (k=0)

The matrix of coefficients of (4—33) may be easily made into a tridiagonal one
(see section 2.1.2) and the method of appendix A used to solve for T}ﬁ‘z The

iterative process is identical to that used in section 4.1.1 with the matrix equation
(4-33) replacing (4-20).
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‘The heat transfer solution for the local Nusselt number must be slightly

reformulated from that given in section 4.1.2. The local Nusselt number is given
by '

M= Ry -39
‘which is, in dimensionless form,
_ X (L'g.Bqy) [¢(X) o
Nu_l'— Tu, ( ng ) [ qo ] (4‘_35)

4.2.3 Free Convection With MHD or EHD Body Forces

The methods which may be used for this problem are virtually the same
as those presented for the other problems in this chapter. The only change is the
presence of an additional body force term in the momentum equation and if
necessary the proper field equations. See section 2.3.4 for details of the method.

No difficulty is encountered if the additional body force aids the free convec-
tion flow, but if it opposes it, the solution cannot be carried beyond any point at
which flow reversal occurs. ‘

4.3 EXAMPLE PROBLEM-FREE CONVECTION FROM A HEATED.
VERTICAL PLATE

The problem chosen here as an example of the numerical technique is the
vertical flat plate free convection problem formulated in section 4.1. The wall
temperature is assumed constant and the fluid is assumed to be “incompressible”
in the usual free convection sense. Similarity solutions for this problem have been
obtained by Polhausen (ref. 3) for Pr=0.73 and by Ostrach (ref 4) for a wide
variety of Prandtl numbers.

The numerical solution was obtained for a Prandtl number of 1.0. The mesh
sizes used were AX=0.0001 and AY=0.025. The number of points employed
in the Y-direction was n= 100, which resulted in a value of ¥Y=2.5 effectively
representing infinity. This value of ¥ was sufficiently large for values of X up to
about 0.01, which was as far as the present solution was carried. Larger values of
X would necessitate expanding the mesh. Underrelaxation with a factor of 0.3
was necessary to obtain convergence of the iteration. :

The results are shown in figures 4-2 and 4-3. The snmllarlty solution of
Ostrach (ref. 4) yields velocity and temperature profiles which may be represented
as single curves if the similarity variables
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. ——=—~—— Numerical, X=0.001
“Numerical, X = 0.01
O  Ostrach (ref. 4
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Dimensionless similarity variable,

| |
0 .5 10 15 2.0 2.5 . 3.0 - 3.5 4.0 4.5 5.0
Dimensionless similarity coordinate, 7 ' ‘

FIGURE, 4-2.—Free convection velocity profiles for Prandtl number Pr=1.
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————— Numerical, X = 0.001
Numerical, X = 0.01

O  Ostrach (ref. 4)

Dimensionless temperature (t - tx)/(tw -t

| l J
0 .5 L0~ L5 2.0 2.5 3.0 3.5 4.0 4.5 - 5.0
Dimensionless similarity coordinate, n

FIGURE 4-3. ~Free convection temperature profiles for Prandt]l number Pr=1.
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, Uu .
£ ~oxz

and , ' o (4-36)

__r
T Ve xn

are employed. These results are shown in figures 4-2 and 4—3 along with the
results obtained from the numerical solution after 10 steps downstream (X=0.001)
-and 100 steps downstream (X=0.01) from the leading edge. The nuinerical
results have been transformed into the similarity variables £’ and 7. After 10 steps
the velocity profile from the numerical solution agrees with the similarity solution
to within a maximum error of less than 9 percent, while the temperature profile
is very accurate. After 100 steps the numerical and similarity solutions yield
. virtually identical results for both the velocity and temperature distributions.

The deviation of the velocity solution at X =0.001 (10 steps) from the similarity
solution is due to the combined effects of the leading edge singularity and the
small number of transverse mesh points within the boundary layer. The behavior
of the numerical solution near the leading edge is thus qualitatively similar to that
found for the boundary. layer example in section 2.4. The effects of the leading
_edge singularity can be confined close to the leadlng edge by employing small
AX steps in that region. . o . ;
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CHAPTER 5

TIME DEPENDENT BOUNDARY LAYERS

A considerable amount of work has been published recently on the numerical
“solution of time dependent viscous flows. Some typical examples of this work are
references 1 and 2. However, these solutions have for the most part been con-
cerned with problems which are spacewise elliptic, that is, problems such as flow
over a cylinder or weir, or free convection in a closed cavity. These are, in general,
problems in which all terms in the Navier-Stokes equations must be retained.
. Tt is not the purpose of this chapter to present techniques for problems such as:
this; rather, our attention is confined to transient problems describable by differ-
ential equations which in their spatially varying terms are similar to those dis-
cussed elsewhere in this book. Problems of this type include transient free
.convection on a flat plate (analyzed using finite difference methods by Hellums,
ref. 3) and the flat plate boundary layer with an oscillating free stream (analyzed
numerically by Farn and Arpaci, ref. 4).

5.1 PLANE TRANSIENT BOUNDARY LAYER

The problem presented here is that of the transient boundary layer on a flat
plate when the free stream has an arbitrary motion in time parallel to the plate.
Both incompressible and compressible formulations are presented, with the’
explicit incompressible velocity formulation essentially that of Farn and Arpaci
(vef. 4) with some minor changes. i

5.1.1 Incompres.sible Flow— Velocity Solution .
The equations of motion for the incompressible case are
du du du\_ dp *u
) p (ao+“ax+"ay)_ dx+"‘(ay2) : 6-1)

129
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du  dv

6x+ ay ’ - 6-2)
[ ]

where @ is time, and the coordinate directions and velocities are as shown in

figure 5-1.
The pressure gradient 1mpressed on the plate can be found by writing the

equation of motion for the inviscid free stream:

1dp_du. - ., :
pdx 99 ' “~ ox (6=3)

When equation (5-3) is substituted into equation (5-1), the equatlon of motion
in the boundary layer can be written as :

du, du  du _a£,+ 3u,¢+v *u
90" “ax "oy o6 E% (5-4)

The initial and boundary conditions for the problem can be stated as

u(x,y,0) =uo (x,%)
v (x,9,0) =v, (x,5)
u(0,y,0) =u, (0, 6) (see appendix F)

u(x,0,60) =0 (5-5)
u(x,©,0)=u, (x,0)
v(x,0,6) =0

— U, (X, 0)

U (0,8)

7777777 7777777777777 777777777 77777777

" FIGURE 5-1, — Problem configuration for transient boundary layer on a flat plate.
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Dimensionless variables must now be chosen. A characteristic velocity is
needed and is specified here only as u. since the one chosen depends on the prob-
lem being solved. The dimensionless variables are

U=u/ucA
y—poL
'’
szuc (5—6)
Y=y/L_
L)
T o2

. As before, L is a characteristic leﬁgth along the plate. When variables (5—6) are

~ inserted into equations (5-4) and (5-2), the dimensionless equations of motion
are )

10 oU aU,. . aU, o*U

UG Syt UG o (5-7).
au oV : '
a,—i-ﬁ—o . : A (5—8)
where

Uac = uoc/u(_‘

The boundary conditions (5-5) become in dimensionless form

UX,Y,0)=U,(X,Y)
VX,Y,00=V,(X,Y)
U, Y, 7)=U..0, 1)

UX,0,7)=0 (6=9)
UX, o, 1)=U.(X, 7)
V(X,00)=0

A fnite difference representation must now be chosen. To the author’s
knowledge, all such formulations appearing in the literature are explicit, but an
implicit method would also appear to have its merits, so both are presented here.

5.1.1.1 Explicit representation.—The explicit representation of "equation
(5-7)is
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U‘+1ki+1_U' U; e i = Uk, i
LY J+1, k, i +1, k0 vk,
. R e

At AX
_ . Uj+1,k+1,i_Uj+1,k—l,i>_(aUac aUx)
+V)+1,k',l < 2(AY) ‘ - aT +U3c 6X i1, i

Ui o1, i—2Uj1 5, i+ U k-0
(AY)®

+ (5-10)

"The ¢ subscript in equation (5-10) corresponds to the present (known) time step
and i +1 to the future (unknown) time step. This representation is explicit in that
equation (5—10) can be solved directly (explicitly) for Uiy, x, i+1:

U'+1.k i—'Uj ki
Uj+1,k,i+1=Uj+l,k,i_AT {Uj+l,k,i (‘Q -

AX |
- , Uj+1,k+1,i/_Uj+1,k—l,i]_(aUx _aux)
+V’*"""[ 2(AY) or U )
: "__j_Uj+l,k:H,i_2Uj+1,l},i+Uj+1,k_1,,'} e '
- T @ry -1

‘The values of U at each point in the flow field at the time step L+l can thus
" be found in terms only of values at time step i.

After the U field has been determined at time step i+ 1, the V values at
‘this time step may be found by writing equation (5-8) in difference form:

Uj+1,-k+1,i+1"" j;k-.H,i+1 ZVj+1,k+1,i+1_.Vj+1,k.,i+1_ ) .
AX + v AY =0 ® 12)_
Solving for Vji1,k+1,i+1 yields
A .
Viei,k+1,i141= V}+1 kyiv1 ™ AX (Uj+l ka1, iv1—Uj ke1,iv1) (5—13)

Equation (5—13) may be solved in a stepw1se manner for each value Of X, work
ing from the plate to the free stream in the Y-direction.

The explicit procedure can now be summarized. The initial condltlons on
U and V are specified over the entire flow field at 7=0. One time step A7 is now
taken with the subscript i+1 in equations (5-11) and (5-13) corresponding to
values at this new time and the subscript i corresponding to the initial condi--
tions. Starting at the leading edge, we can now use equation (5-11) to solve -
for the values of U at the new time, one step AX downstream, working outwards
from the plate. Another step AX downstream can now be taken and the process
continued until the values of U are known over the entire field at the new time
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step. Equation (5-13) can now be used in exactly the same pattern until all values-
of V at the new time step are known. A new time step A7 can now be taken and
the process repeated.

Since the solution is explicit, it is to be expected that there are necessary
conditions for stability. These conditions are given in reference 4 and are

i L = A oo —
[U/ax+2/(anye> A7 (6-14)
T%TéAY L (5-15)

In order to keep A7 positive, condition (5—14) also implies the same stability
criterion on negative U velocities necessary in the implicit formulations for
steady flow given in previous chapters, that is, if U <0, then

' 2(AX)

UI<ay): ]

(5-16)

which, in general, is satisfied only for very small values of (— U). This means that
only very small backflows are permissible and is an important restriction on the
method, since large negative values of U, also obviously cannot be permitted.
Thus an oscillating component of the free stream flow can only be permitted if
. it is superimposed on a steady positive part of U, sufficiently large so that U,
always remains positive.
. The truncation error of the difference -equations is of (A7), F((AY)2),
and 0’(AX) for momentum and & (AX) and @ (AY) for continuity.
5.1.1.2 Implicit representation. —Despite the fact that the implicit formulation
to be discussed here has apparently not been often employed, it has the great
advantage of universal stability so long as U = 0. This means in particular that
there is no restriction on the size of A7. Very commonly, in using the explicit
formulations, such small values of At are required that computations can become
extremely time consuming. Since the matrices encountered in the implicit formu-
lation discussed here are tridiagonal, it would appear that the time required for a
complete set of calculaticns at each time step will be approximately the same as
that required for the explicit method, but the values of A7 which may be used are
very much larger than those permitted by the stability restrictions of the explicit
method. As a result, it is likely that the implicit method would require less com-
puter time than the explicit method to reach the same value of 7. As of this writing,
apparently no such comparisons have been carried out, so the superiority of the
implicit method remains to be proven.
There are many possible choices of implicit forms for equation (5—7). The one
chosen here is
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U}+l,l\,1+1 Uj+1,k,i+U_ i (Uj+1,k,i+1—Uj,k,i+1
. i+1
At : AX

‘ - [Ui i+1—U; s
+VJ‘»‘k,i+1 [ 41, k+1, ;l(Ay)J-H,k 1,,“]

=(6U00+ ane) _'_Uj+1,k+1,i+1_2(jj+1,k,i+l+Uj+1,k~1,i+1
ot * 3X i, in : (AY)?

6-17)

Equation (5—17) is highly implicit since every quantity appearing in it with the
exception’ of one U value in the backward time difference is evaluated at the
unknown i+1 time step. The representation is also spacewise implicit in exactly
the same sense as the implicit representations used for the steady state problems
treated in the preceding chapters; that is, for each time value, the solution in-
" volves solving a set of simultaneous equations in U at each spacewise AX step
starting at the leading edge of the plate and marching downstream. At each time
step the solution is thus very similar to that given in preceding chapters. The
subscript correspondmg to 7 will be fixed at i+ 1 until the entire flow field at that
time-has been determmed Equation (5-17) may be rewritten in a more useful
form: :

V l 1 . U. ) - . «
[ Vik,is1 ] et ke, 1+1+[M+ 2 +-A1—T].Uj+1,k,i+1

2(AY) (AY) L oAx (AY)?
Vi k,iss 1 .
+[ﬁ_m] Uje1, k41, i+1 ) ,
aU, U; i Uik,
(67‘ BX >J+l 1+1+ ]+A17,'k, * Z}I\(’ = (>-18)

Thjs equation, written for k=1(1)n, may be expressed in matrix form as

B Uiri1, i1 b
(22 ,32 Qz ) Uj+1,2,i+1 d)z
oy Ba s ' Ujir,3,i41 b3
—_— — x . _ _

. _ _ _

An—1 Bn—; Qo . Uj+l,n——1,i+1 ¢n-1

oy Bn Uj+1, n,i+1 d)n - QnUx
’ (5-19)

where
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=_Vj,k,i+1_ 1
T T2(aY)  (avy

U‘ K, i+l 2 1
_Ujx R
Be="ax Tarz*
V Jh i+l 1
= 2(AY)  (AY)? ’
U, aU., Uj+1,k.i’ (]_})-,I\',i‘f"
b = ( ~+Us 6X-)‘+1 1+1+ AT + AX

The matrix of coefficients in equation (5-19) is tridiagonal and the method of
appendix A may be used to obtain the values of Ujyy, 1. i41.

Continuity (eq. (5-8)) may be written in the same way as for the explicit
solution (eq. (5—12)) and solved for Vji, ki1, i11:

- AY '
VJ+I k+1, |+I—VJ+1 k,i+1 AX(U_)+1 k+1,i+1 Uj,k+1,i+1) (5"20)

The V’s may be obtained from equation (5-20) in a stepw1se manner workmg
outward from the plate. -

The implicit method can now be summarized. The initial conditions are
first specified over the entire flow field. The flow field at 7= A7, one time step later,
can now be found by starting from the leading edge and marching downstream.
The solution at the leading edge is specified as a boundary condition, and the
velocity distributions one step AX downstream are found by solving the matrix
.equation (5-19) for the U’s and equation (5-20) for the ¥’s. Another AX step
may now be taken and the velocity distributions determined. This procedure is
carried out in this manner until the entire flow field, as far downstream as desired,
has been found at 7=Ar. Another time step may now be taken and the entire
flow field again solved for. The process may be repeated as many times as neces-
sary to determine the solution for any given value of 7.

The ‘method should be universally stable for all mesh sizes as long as U = 0.
The truncation error is of @(AX) and 0’((AY) ) for momentum and @#(AX) and
O’(AY) for continuity.

5.1.2 Incompressible Flow—Temperature Solution

The energy equation for the transient incompressible boundary layer prob-
lem is

at at at %t :

459-174 O - 73 - 10
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. Two different thermal boundary conditions at the plate are considered in
the present formulation—a constant wall temperature and a constant wall heat
flux. These conditions are assumed to be independent of both position and_time.
Formulations for those cases where the boundary conditions may be functions

of position and time are basically no different and are mentioned briefly in sec-
tion 5.2.

The initial and boundary conditions considered here are
T . t(xay90)=t0(x,y) /

t(0,y, 0) =1¢.(0, 0)

t(x, , 0) =t.(x, 0)

and. ' : (5-22)
t(x,0,0)=¢t, - (constant walll temperature)
. or - .
—kﬂ =qu . (constant wall heat flux) ’
) 9y [y=0 :

The problem can be restated in dimensionless form by using the following
dimensionless variables: : '

.

_u _ Mo )
U= i T= E
popl 7
A S
y=2
- and (5-23)
=ty :
- T=ﬁ (constant wall temperature)
or )
k _ '

T=_E (t—tc) (constant wall heat flux)

q .
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All quantities are as defined in the preceding velocity section, and ¢, is a charac--
teristic reference temperature chosen to suit the particular problem at hand.
Equation (5-21) may now be written in dimensionless form as

9T, ,.9T, oT_ 1 a2T .
a_T“LUﬁ“LVﬁ‘PraY‘Z | (5-24)

and- the boundary conditions (5-22) become in dimensionless form for constant
wall temperature |

i(X,Y,/O):Mtlr To(X, -

T(0,Y,7)= ‘l(—OLZ— T, (0,7) e

T, 7)== —be 7 (x, ) o
- T&,0,0=0 D

For constant wall heat flux,

: _k et
T(X,Y,O)‘quL(to(X,Y) te)=To (X,Y)

7 0,Y, 1) =—F (1. (0,7) =) =Ts (0,7)
qul =" (5-26).

«(X,7) —te)=To (X,7) .

T:(X7 o, T)——

aoT L
5_}—/(X’097)_ 1

As was the case with the velocity solution, either an explicit or implicit finite
difference representation can be chosen for equation (5-24). The representation .
. chosen should be the same as that used for the velacity soluuon
' 5.1.2.1 Explicit representation. —Equatlon (5-24) may be represented in

exphcn finite difference form s
|

T'«}-l,k, i+t — L1, ki, 'v T l,k,'_T',h‘,'
e 1+U"+"“'<J+ AX ) \
T/‘+1,I\'+l,i; j+l,l.'-1,i]
. +I/j+l,k,l'[ ] 2 (AY)

_1 Tj+1,k+1,i—21}+l,k,i+]}+1;k—l,i] _A
-7 (ary: (5720
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Thls explicit representatlon may be solved directly for Tjs1,k,is1?

T: =T, .
- JH1, ki Bk,
Tj+1,k,i+x~Tj+1,k,i—AT {Uj+1,k,i<_"—_—_

AX
+Vj+l,k,i[T"*l,k+l2,(igyg'+l,k—1,‘i:|
_l Tii1, k41 ,i_2n+1,k,i+Tj+1,k-1,i]} _
Pr[ (AY)? (5-28)

The values of T at time step i+ 1 can thus be found in terms of the values of
U, V, and T only at time step.i. These values of/T at the new time may be found
in any spacewise order desired. At each-time step the velocity solution may be
carried out first, and then the temperature solution. Another time step can then
be taken and the process repeated.

To the author’s knowledge, no stability analysis of (5 28) is avallable How-
ever, by analogy with equation (5-11), the stablhty criterion can reasonably be
expected to be

' 1
U/AX +

5 = At (5-29)
Pr(AY)?

Whether the condition (5—28) or the conditions (5-14) and (5-15) are the deter-
mining factors in the choice of A7 depends on whether Pr is greater or less than
one. Similarly, the choice of AY is determined by the velocny solution for low and
moderate Prandtl numbers, but high Prandtl numbers may require a very. fine
- AY mesh for the temperature solution which as a matter of convenience would
also be employed for the velocity solution.

The truncation error of the energy equation is of @(Ar), @(AX) and O((AY)?)..

5.1.2.2 Implicit representation. —Equation (5-24) can be written in implicit
finite difference form as

Tj+1,k,i+1 _Tj+l,'k,i+U Tj+1,k, i+1 _Tj,k, i+1
o
Ar okt AX

T'+1,k+1,i+1 — L j+1, k=1, 041
Joky i1

2 (AY)
- —_ 1 I_L+l K+1,i41° 2T}+] k, 1+1+T}+1 k-1, 1+1] _
=/ @Ar) (5-30)

The method of solution for equation (5-30) is very similar to that employed
for the implicit momentum equation (5-17) in section 5.1.2. Equation (5-30)
is first rewritten in a more convenient form as
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Viik,i 1 Uj ki 2 1
[ 2 (K’Y;l _PT (AY)Z] T‘j+l,k—l,i+l+[ JA"X+1+PT (AY) ] TH—IA i+l

i 1 Tivrviesi, Ui ivn Tk
+|:Vé ?AJ;) Pr (AY)? ] JHL R+ i1 = J+A]’TA’ + 2k +&X"’A’ = (5-31)

For the constant wall temperature boundary condition, equation (5-31)
written at time step (i+1) for k=1(1)n constitutes n equations in the n unknowns
Tjs1, k, i+1 for each value of j. These equations can be written in matrix form as

!
B: Tiir.1,i0 b,
oy, By A Tict,2,i00 | | &
i oy By Tjvi,3,in b5
—_ . X| — 1= —
‘o ’ ' ' -
a,_ Bn—l Qn I T.i‘H > =1, i+1 d)n—l
a, B Tisi,n, it b — T,
(5-32)
where
o ZVikin 1
[

k- 2(AY)  Pr(AY)?

I_L/j,k,>i+l 2 i
Bi="Ax TPraY): A

I=Vj.,\'.,i+]_ 1
K 2(AY) Pr(AY)?

d) = _]+l,l\.l+ J, K, i+l ._],k,l+1
Toar AX

The matrlx of coeﬁiments in (6—32) is tridiagonal and the method of appendix
A may be used to solve for Tjy;, x, i1

If the constant wall heat flux boundary condmon is used the wall tempera

ture Tji1,0,i+1 becomes an additional unknown. The finite difference form of
the heat flux condition is written as

aT —3Tj11,0,i+1+4Tju1,1,i01 = Tjr, 2, i1
Y |x=0 2(4Y)

(5-33)
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(see appendix B, section B.1). This equation must be added to the set shown in
equation (5-32). The matrix equation becomes

o 2 . Tiir,0,is -1
2(AY) AY 2(AY)
-0‘; Bi Q; Tivr,1,i41 d);
@ B - | Tz | |4
oy ,B;l‘-l Q| Tier, et i .
a, B, A Tien,minn || 6—QuTx

- (5—34)

where all quantities’are defined as for equation (5-32). While the matrix in equa-
tion (5—34) is not tridiagonal, it can be made tridiagonal by a simple transformation
(see section 2.1.2). The solution may then be carried out by the method of
appendix A. : .

For each time step, the so]utlon is now carried out as a marching solution in
X by solving a set of the form (5-19) for U, solving equation (5-20) for ¥, and then
solving a-set of the form (5—32) or (5—34)-for T, begmnmg at the leading edge of the
plate and moving downstream.

As indicated in the discussion of the implicit velocity solution, there is every
reason to think that this implicit temperature formulation will be universally stable
_if U=0. The truncation error of the implicit energy equation representation is

of 0(Ar), O(AX) and 0((AY)2)

5.1.3 Incompressible Flow — Heat Transfer Solution

~ The transient incompressible heat transfer may be analyzed in a manner
identical to that of section 2.1.3 for the steady state incompressible flat plate
case. Time-averaged Nusselt numbers may be obtalned by a simple application’
of Simpson’s rule.

5.1.4 Compressible Flow — Velocity and Temperature Solutions

The coupled equations for the transient boundary layer ﬂow of a compressible’
fluid are '

(fu, ou, ou)_ dp ou e
”(ao+uax+”ay>‘ dx+ay(“ay') _ © 35?
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dp, apu)  3(pv) _ _
60 ox + 6y 0 o ' (5-36)
o2y 8) e D (L) (Y .
pC,:(aB +v8y)—udx+ay k'f)y +u ay) (5-37)
p=p%Rt : (5-38)
p=pn(t) . (5739)
B k= k(¢) ‘ (5-40) |
The initial and boundary conditions for the problem are
u(x, y, 0) = uo(x, y) . ‘ \
u(0, v, 0) =u.(0, 6) (see appendix F),
u(x,0,0)=0

u(x, », 0) = u.(x, 0)
v(x, v, 0) =”_0(.x, y) - | | |
v(x,0,0)=0 .

t(x, y, 0) =to(x, ¥) : > (5-41)
t(0, ¥, ) =¢..(0, 9)

t(x,‘°°,0) =1.(x,0)
and

t(x,0,0)=ty, (constant wall temperature)
or ‘

—k~ =qu (constant wall heat flux) )
9y ly=0 ‘ .

As in the incompressible case, we arbitrarily choose the representative constant
wall temperature and constant wall heat flux cases for examination here.
In the compressible case, little would seem to be gained by replacing dp/dx
by its relationship to other free stream quantities. Therefore, u.(x, ), t..(x, 8)
and dp/dx(x, 8) are presumed known from the free stream inviscid solution.
The dimensionless variables chosen for the problem are
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u [T

‘ ' AU=u—c ‘ T=ch2

pch p

V= ¥ o P
He P Pe
t ' k

T=_C I k* E/

(5-42)

D [
Pe H e
Aphe

X szcch

=Y

Y_L

. All quantities in (5-42) having subscript c are characteristic values of that quantity.
These characteristic values can best be chosen when the form of the free stream

- variations are known in any specific case. When the dimensionless variables (5—42)
‘are inserted in equanons (5-35) to (5—37) the equations become

aU aU aU 1 dP. « 08U '
ap* B(p*U) B(p*V) -
or + X * “8Y =0 (5-44)
w (3T, T ARSEST <
p ( +U6X+V ¥ UdX

1 39 | o (U
+ 2 (¥ ay) v=vmw* (%) 69

P=p*T ,, (5—46)

=1/ , (5-47)
k*=Tv : . (5-48)

In these equations, M.=U/Vy%t. and Prc= pccplke. In formulating equations’
(5-43) to (5-48), a perfect gas has been assumed and power law expressions have

been assumed for the viscosity and thermal conduct1v1ty, based on t. as a reference
temperature
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The boundary and initial conditions (5—41) written in dimensionless form are

=u0(Xs Y)= UO
Uc

UX,Y,0) (X, )
U(o,Y,T)=%(:’T)=U,,(o, 7
U(x,0,7) =0

UX, o, )= i“—(f—l):m X, 7)
VXY, 0) @% Vo(X, Y)
V(:Y,:O; =0

T(X,Y,0) 2%0’2): To(X,Y)
T(0,Y,7)= ‘(0 _7T,(0,7)

T(X,0,7)=ED o (x o)

s oor

and
T(X,O,T)=tw/tc=Tw
_k*aT =qu
Y | v=0  kete

c

(constant wall temperature)

{constant wall heat flux)

(5-49)

A finite difference formulation must now be chosen for the problem. To the
best of the author’s knowledge, no other difference formulation is presently
available. The form chosen here is of the implicit type because of the inherent
stability advantages of such a form. Equations (5 43) to (5—48) are written in

difference form as
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* Ui+1,k,i+1" Uj+1,k,i U Uj’+1,k, i+1 —Uj k, i+t
pX . : +Uj k,in
§, k,i+1 AT - AX

+V ) [ Uj+1,k+1,i+1_ j+1,k~1,i+'1:|}=_ 1V<Pj+1,i+1'— j,i+1)
i, K, i1 ] Z(AY) ‘)’Mg AX

Lk [Uj+1,k+1,i+1—2Uj+1,jc,,-+1+Uj+1,k_1,i+1 ]
) 'f‘p« Lk, i+l (AY)2
bl
+ [ M;:k-*—l,iﬂ_"'"jfk—l,iﬂ ] [Ui+1,k'+1,i+1—Uj+1,k-1,i+1 ] "
2(4Y) 2(AY)

\

© (5-50)

Pjr1, k. i+t Pj+1,k.i+PJ+1.k+|,.+xUJ+1,k+1,i+1 Pj,k+1,,-+|UJ,1.-+|,z+1

Ar ' AX . AX -

£ : L —p* Y .
Pj+1,k+1,'i+1VJ+1,k+1,:+1 Pj+1,k,i+1VJ+1,k,z+1

+ AY

=0 (5-51) -

Y

. Tivvonivi—Tisr ki T T
Pﬁk.iﬂ'{( = IHAT = ')+Uj,k,i+1( j+1 +AX Joky it )

"*'Vj.l';,i-;-l [Ti+1,k+1,i-§1(£y;‘+l,k—l,i+1 ]}=Y—l Uj,k,>i+1 <P1+/1 iv1— P, ,+1>

Y
.+i k*l . T,L+1,k+l,i+l 2TJ+1 Kk, 1+1+T_;+1 k= | :+1]
Prc jok, i+l A (AY)
| +|:kj*.k+l,i+1_k;<,k—l,i+l ] [Tj+1,k+1,i'+1 Gl k=1, i1 ]}
, “2(AY) . "~ 2(AY)
Ui nay t01—
— 2% - Jti, k+1,i+1 JH1, k=1, i+1 _
. +(7 l)Mc”’J.k,Hll: ‘ 2(AY) ] (5 52)
Piorin=pfr ki Tier ki (5-53)
i kien = (Tier e, i) : (5-54)
k}+l kyiv1 (Tj+l K iv)? , ’ (5— 55)

Assumm(r that the entire field of U, ¥, T, and all properties are known at
time step i, we now proceed to determine the flow field and properties at time
step i+1 by starting at the leading edge of the plate and marching downstream.

Equation (5— 50) is first rearranged in a more convenient form:
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I:—p;:k,i+1Vj’kri+1_I'L;:k,i+l+"":k+l,i+l-,"'j*,k—l,i+l Ui -
2(AY) ~(AY)? 4(AY)2 A

p;:k,i+l EZk,’fHUJ""r‘“ 2”’;!:,:’4»1
4+ A + AT + (AY)z Uj+1,k,i41

* o - * —
" pj,‘k,i+lVJ"‘"+1_'l"'j,k,i+1_#’j,k+1,i+<l k-1, i1 U
1, kH1, i1

2(AY) (AY)? : 4(AY)?

=p;jk’”lUj+l,k,i+p;jk,i+1UJ?’k’i+l_ 1 (Pj+|,i+1-P,-,i+1) (5;56)
AT A YT AX

Equation (5-56) written for k= 1(1)n provides n equatlons in the unknowns
UJ+1 k,i+1- This set may be written in matrix form as '

B O, ) ' Uj+1,1,i+1 ' o
a2 ﬁz Qz . Uj+1,2,i+1 ¢2
ooz Ba . Ujii,3,in b3

o - 1z .

2 78] Bﬂ—l Qn_l Uj+1,n—'.1,i+1 ) (bn—l
ay Bn ; Uj+1,7l,i+l ¢n_QnUx
(5-57)
where

o = — ;k,iﬂVf”""“_"‘;:k,i+x+”‘;jk+1,i+|"'#;:k_,y,-“'

’ 2(AY) (AY)? 4(AY)?
B =p";;k".'“_*_-p;:k,HlUj’k'Hl+2I'L;:k,i+1 )

oar AX T (avye
Q =pjfk,i+lVJ':k'i+1_#'jq,(k,Hl_I'f:k+l,i+l_l"’jfk—l,i+l

T 20aY) (AY)? 4(AY)?

»¢.=p£k,i+lUj+l'k'i+pj>',<k,i+lU_;'z,k,i-H_ 1 (PJ'HH'“_PJ"J“)
" Ar T AX yM? AX
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The matrix of coefficients in equation (5-57) is tridiagonal and may be solved very
rapidly by using the method of appendix A.

Once the values of Ujst, k, 141 are determined we turn to the energy equatlon
Equation (5-52) can be rearranged in the more convenient form

[—pﬁ""”‘Vj‘k’ 1 k] k,it+1 +/f11\+1 i+l kj*k -1, i+1 T
2(AY) PrC(AY) 4PTC(AY)’ g+, k-1, i1
+ 8.2"\'.i"+1+pj>l’<k’i+|ijk;i+] 2k ki1
At AX Prc(AY) Tiviik, i
+I:B‘Zk‘i+le"k’i+l 4k" k. i+1 kjﬂjkﬂ,iﬂ_kjﬂjk—l,iﬂ T; "
2(4Y) Pr.(AY)?2 4Pr.(AY)? JHLL k1L i

® * ‘
_ P, ,+1Tj+l.k, i+Pj‘,‘., H;lUj.k, 1T, &, i1

At AX
-1 Pir.ivi—P; g
A B +1, i+1 s i+1
v Uj,k,z-H ( AX )

A ; S .
- 2 g+, k1, i1 g+t k=1, i1 _
=DM, | et |G

\

Equation (5—58) written for #=1(1)n now provides n equations in the n unknowns
Tj+1, k,i+1 for the constant wall temperature case. This set may be written in
matrix form as

) . '
B: & : ) Tivr,1,im1 ¢, — o Ty
’ ’ [ ‘ . .
a By 2 ) Tiv1,2. 601 oM
X ' 1
a; B3 ' Tji1,3, i1 b3

’ ! !
n—1 Bn—l Qn—l Ti+1,n—l,i+l n— 1

a, By Tivi,n,iea ¢, — QT

(5-39)

where
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a,::_p_;k,k,i+lV_i,k,i+l_ k}k,k,i«l»l kﬁkﬂ,in_kj*,k—:,i“
K 2(AY) Pre(AY)? 4Pr (AY)?
'B,:Pj*,k,iﬂ Pj*,k,i+1Uj,k,i+l+2kj*,k,i+1
KL Ar AX " Pr(AY)?
,=P}k,k,i+1Vj,k,i+1_ kﬁk,ﬂl _k;k,k+l,i+l_k_;k,k—l,i+l ‘
K 2(4Y) Prc(AY)? 4Pr.(AY)?
d),__p_;k,lf,ii»lTj'H,k,i of ki1 Uik, ist Dk i
k At AX

+‘Y;1 Uj,k,i+l <Pj+1,i+1_Pj,i+1)

AX

2
Uj+1,k+1,i+|—Uj+l,k-1,i+l ]'

_ 2% y
+ (y I)M,_.l-‘«j,k,t+l[ 2(4AY)

The matrix of coefficients in (5-59) is tridiagonal and the method of appendix A
may be used to solve for Tji1,k, i+1. .
" If the constant wall heat flux case is to be considered, the wall temperature
Tji1,0,i+1 is an additional unknown. The necessary additional relationship comes
from the heat flux boundary condition at the wall which may be expressed in

finite difference form as

—k*

J,0,i+1

-3Tj+1,0,i+l+4‘Tj+l,1,i+l_' j+1,2,i+1]_l_]_w_L
[ 2(AY) keto  (5760)
in equation (5-60) to keep the equation

sk
j+1,0,i°

Assuming that relatively small mesh sizes are used, either should be accé_ptable,
.and only computational experience will indicate which is preferable. The addi-
tional row corresponding to equation (5~60) must be added to the matrix equation
(5—59) along with a few other slight modifications. A more detailed description of
the modifications necessary for dealing with constant heat flux cases is described
in section 2.1.2. '

Next, the dimensionless density p* may be determined from the equation of
state (5-53):

We are more or less forced to use k;‘ 0. is1

linear in T’j41,0,i+1; one possible alternative exists, and that is to use &

* — Pj+l,i+1

P b=
Jj+1, Kk, i+l Tj+|,’k,i+1

(5-61)

The continuity equation (5-51) may now be solved for Vier, kar, is1s
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*

y Pk, in y .
JHL KL, 41T T % j+1, k, i+l
. J+t, k41, i1

AY

%* .
Ui P, k+1, i U .
—AX JH1, k41,841 T % J k41, i+1

j+1, k+1, i41

_ﬂ(p]?<+l,k,i+l‘—p;k+l,;c,i)

Ar - (5—62)

Pjsi, ke, i1
. This equation may be solved in a stepwise manner, working outward from the
plate. Finally, the properties are obtained from (5—-54) and (5—55). '
Another step AX downstream may now be taken and the process repeated.
- When the solution has been carried downstream as far as desired, another time
step A7 may be taken, and again starting at the leading edge, the solution is
marched spacewise downstream. As the solution is obtained, only the quantities
upstream of the point j+ 1. for time step i+ 1 and downstream of the point j for
time step I need be retained. '
Although no stability analysis has been undertaken it is reasonable to assume
-that the implicit equations are stable for all U= 0. The truncation error is of
O (AX) and O((AY)?) for momentum and energy and 7 (AX) and 0’(AY) for con--
tinuity.

.

5.1.5 Compressible Flow — Heat Transfer Solution

The compressible flow transient heat transfer analysis is only slightly dif-
ferent from the steady state incompressible heat transfer analysis discussed in
section 2.1.3. The only modifications to the incompressible steady analysis are in
the use of a variable £ * in the heat flux equation (see eq. (5-60)) and in time averag-
ing the Nusselt numbers by using Slmpson s rule. ! '

5.2 OTHER PROBLEMS WITH SIMILAR FORMULATIONS

Any of the additional variations and complications considered at the end of
chapter 2 on steady state boundary layers can also be readily included for the
transient. case. No details are given here since most of the extensions are straight-
forward. Other problems which can be considered with little additional complica-
tion include those in which the wall temperature or heat flux is a function of space
and time, suction or, 1n]ect10n which is a function of space and time, and tranSIent

flows with MHD or EHD body forces.
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5.3 EXAMPLE PROBLEM-OSCILLATING BOUNDARY. LAYER ON A .
FLAT PLATE.

As an example of the use of the numerical technique for transient flows, the -
solution obtained by Farn and Arpaci (refs. 4 and 5) for the oscillating boundary
layer on a flat plate is presented. The plate is assumed to be stationary and the free
stream oscillates periodically about a constant mean value. The init al conditions
are assumed to be those of steady Blasius flow. The general boundary conditions
(eq. (5-5)) presented earlier can be rewritten for the present problem as

u(xa Y, 0) = u'B(x7 }’)
"~ v(x, ¥, 0) = vg(x, y)

u(0, y, ) = up+ Au, sin wl '
u(x,0,0)=0 . (5-63)
u(x, ©, ) = unm+ Au, sin wb
v(x,0,0) =0
~ where ug(x, y) and wvg(x, y) are the steady Blasius solution based on a constant
free stream velocity of um. The constant mean velocity in the free stream is also
" um. The amplitude of the free stream oscillations is Au, and th‘_e frequency of these
oscillations is . The dimensionless variables (eq. (5-6)) may now be defined

with the characteristic velocity uc equal to un. The boundary conditions (5-63) in
dimensionless form are then

UX, Y, 0) = Us(X, Y)

VX, Y,0)=Vp(X,Y)
U,Y,7) =1+ AU., sin W't

UKX,0,7)=0 oo
UX,o,1)=1+ AU, 'sin Wr=1U_(7)
- V(X, O, T) — 0 .

where Us(X, Y) and V&(X, Y) are the Blasius solution in dimensionless form, and

AU, = Au jum

and
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The equations of motion in dimensionless form are equations (5-7) and (5-8).
These equations of motion are represented in exphc1t finite difference form as .
equations (5-10) and (5—12)

The solution to these difference equations was carried out by Farn and Arpaci.
Two cases were considered—high frequency and intermediate frequency. The
values of the mesh sizes and parameters employed for these two cases are shown
in table 5-I. Since the-dimensionless variables used by Farn and Arpaci were
different from those employed in this chapter, the numbers given in table 5-1
have been converted to the variables of this chapter.

TABLE 5-1. — MESH S1zZES AND PARAMETERS EMPLOYED BY FARN AND ARPACI (REFS. 4 AND 5)

N Dimensionless Range of . Maximum Amplitude of
mesh incre- ‘| dimensionless | Dimensionless | dimensionless | frée stream | Dimensionless
ment,AY mesh incre- time incre- | axial oscillations, | frequency, ¥
ment, AX ment, A7 ‘coordinate, X AU,
Near | Far :
High frequency 0.025 | 0.05 7X10-* 2x10-4 0.082 0.05 X 102
to o .
3 X103
Intermediate 0.025 | 0.05 1.2X10-3 3 X104 0.102 0.05 ) 58.1776
frequency to ' ’ '
3x10-3 -

The authors’ primary interest in this solution was in the steady periodic "
behavior; in order to reach a steady periodic state, however, it was necessary to
go through the transient. For both cases, five cycles were sufficient to attain steady
periodic flow, but carrying the flow through this transient required considerable
amounts of computer time.

Figures (5-2) and (5-3) show comparisons of the results of the numerical
solution with those of Lin (ref. 6) for high frequencies and Hill and Stenning (ref.
7) for intermediate frequencies. Figure (5—2) shows the amplitude ratio AU/AU,
for two different frequency parameters (XW=9.0 and X =25.8) as functions
of YVW/2. These solutions agree very well with Lin’s high frequency analytical
solution which is a function of Y V2 only and hence yields a single curve. The
phase angles of the velocity also agree well with Lin’s solution for high frequencies -
(see ref. 5). Figure (5-3) compares the amplitude ratio obtained from the numerical
solution with Hill and Stenning’s approximate solution and experimental data
for an intermediate frequency range. The agreement is again very good. For more

-~ detailed comparisons of both amplitude ratio and phase angle in the mtermedlate
frequency range see reference 5.
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12—

High frequency solution by C. C. Lin (ref. 6)

Frequency parameter, A
A i XwW '

Amplitude ratio, AU/AUy
[~}
[

v 9.0 Numerical solution
O 25.8 (amplitude of free stream
.2z oscillations, AUy, = 0.05)
| | | I | I I | |
0 1 Z 3 4 5 6 7 8 9

Normalized distance from plate, Y ~W/2

FIGURE .\5—2.—Amplitude of high frequency oscillations in Blasius flow. .

1.2— -
/
1.0[—
=
< 8
3
]
e
g .6
D
E / ————— Numerical sotution (amplitude of free stream
3 .4 oscillations, AU, =0.05; frequency
g parameter, XW = 2.45) :
—— — Intermediate frequency solution | .Hill and Stenning (ref. 7)
2 O Measurement (AUgs = 0. 15 XW = 2,65)
! 3 | I | I |
0 1 2 3 4 S 6 7 8 9

Normalized distance from plate, Y~/Wi2

FIGURE 5-3.— Amplitude of intermediate frequency oscillations in Blasius flow (XW =2.45).
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CHAPTER 6 |
PARALLEL PLATE CHANNEL

The treatment given for the parallel plate channel in the present chapter
~ and that given for the circular tube in chapter 7 follow in many respects along
similar lines. This similar treatment is due largely to the fact that both geometries
are two-dimensional, although the effects of -the cylindrical geometry in the
circular tube case cause sufficiently significant differences-between the formula-
tions to warrant separate chapters for the two cases. In some situations, detailed’
and lengthy discussions for the parallel plate channel and circular tube would be
identical or nearly so; for such situations, the detailed discussions are given in
the present chapter and reference is made to these discussions in chapter 7.

6.1 ENTRANCE FLOW AND HEAT TRANSFER IN A PARALLEL PLATE
CHANNEL

The first problems to be considered in our discussion of confined flows are
those of entrance flow and heat transfer in a parallel plate channel. The parallel
plate channel has been chosen for initial considération because the formulation
illustrates the techniques used for confined flows without the complicating geo-
metrical and three-dimensional factors of other configurations. The parallel
plate channel geometry is shown in figure 6—1. This channel is an appr0x1mat10n
toa rectangular channel of high aspect ratio.

6.1.1 Incompréssible Constant Property Flow — Velbcity Solution

The development of laminar flow in the entrance of a channel bears con-
siderable resemblance to boundary layer growth on a flat plate. Accordingly,
the most commonly employed model for this problem is a- boundary layer model
near the channel walls with a potential core toward the center of the channel
which accelerates as the boundary layers grow (see Schlichting, ref. 1). This -
model does an entirely adequate job in most respects; it is questionable only
near the channel inlet where transverse momentum effects are important and

153
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FicURE 6-). —Problem configuration and coordinate system for parallel plate channel.

hence the boundary layer model breaks down, and in the core region where viscous
effects may actually be present. One other aspect of this type of model is that
the velocity distribution at the inlet to the channel is assumed to be uniform.
In actuality, the effect of the channel propagates upstream into the reservoir,
causing the inlet profile to be rounded as shown in reference 2. In this reference
Wang and Longwell obtained a numerical solution to the complete Navier-Stokes
equations with all terms included for the two-dimensional problem of flow through
an infinite stack of parallel plate channels. This upstream propagation effect
did not influence the results strongly except for low Reynolds numbers (less
than about 600).

The model for the velocity entrance region which we choose to employ
here is the same as the one used by Bodoia and Osterle (ref. 3) and is very similar
to the one discussed previously except that equations of the boundary layer type .
are assumed to apply over the entire flow field. This permits the viscous effects
in the “core” region to be included. The transverse momentum effects which are
important very near the inlet are again ignored, as are any upstream propagation
effects. However, the velocity profile at the inlet to the channel may have any
shape desired, including the uniform profile customarily employed.

The following formulation is based largely on the work of Bodoia and Osterle.
The equations of meotion are assumed to be

ou, du\_ dp 9%u _
p(“ax+”ay~>_ dx+.”“<6y2) (6-1)



PARALLEL PLATE CHANNEL - . 155

and
du %52 0 (6-2)
subjgct to the following boundary conditions:
| u(0,y) = up (assumed constant here, although a function of y
is also permissible; see also appendix F)
'ufx, a)=0
Gy (0 0) =0 (6-3)
v(x,0)=0
vix,a)=0
- p(0).=

The equations of motion may be made dimensionless by the followmU choice
of dimensionless variables:

U: Lo : X a_%u,o

_pa o y=2

v=E- y=2 (6-4)
(P pe)
puj

Equations (3—1) and (3—2) written in dimensionless form become

oU _aU  dP o2 ' _
UaX+VaY ax T oy (6-5)

.and
au  av_ _ -
X tToy 0 (6-6)

with the boundary conditions
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U,Y) =1
UX,1)=0
T 0= o
V(X,0)=0
V(X,1)=0
. P(0) =

\

We must now choose a finite difference representation. The grid used is
shown in figure 6—-2. We employ the usual implicit form for equation (6—5).

Uper,i=Uj i, -~ Uievenn —Ujir, i Py —P;
_U”" Tax h 2(AY) TAX
- - : Uj+1,k+1_2Uj+1,k+Uj+1,k—1 oy
+= RIVEE 6-8)

* A somewhat unusual representation of equation (6—6) is chosen for a reason which
will become clear shortly. The form is

) Ujer, ke1— j,k+1+Uj+1,k'-Uj,k+Vj+1,k+1— Lk

2(AX) TAY 6-9)

Equations (6—8) and (6—9) written for k;——()(l)n constitute 2n+2 equations
in the 2n+2 unknowns Uji1,0, . - -, Ujs1,u5 Vis1,1, - . ., Vji1,n; and Pji. The
number of unknowns can be reduced materially by writing the continuity equation

(6-9)-for k=0(1)n and addlng together all of these equations. The resulting
equation is

Ujr1,0+2 2 Uis1,6=Uj, 0+ 2 2 U, x (6-10)
L k=t

k=1

If both sides of equation (6—10) are multiplied by AY/2, it can be seen to be the
* trapezoidal rule integration form of the equation

o
‘fUdy =f Udy
0 i+ 0 Jj

6-11)
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F1GURE 6-2. —Finite difference grid for parallel plate channel.

which is an integral form of the continuity equation. This equation is, of course,
not independent of any of those already given, but simply incorporates the bound-
ary conditions on<¥ at the channel centerline and walls by requiring that the axial
flow rate be a constant. The use of this equation to simplify the solution of confined
flow problems was apparently first Ssuggested by Bodoia (ref. 4) who called it an
equation of constraint. .
Since equation (6—10) does not involve ¥, equation (6—10) together with equa-
tion (6—8) written for k=0(1)n now constitute n+2 equations in the n + 2 un-
-knowns Uj+1,0, - . ., Uji1,n and Pji1. To aid in obtaining a solution, it is
convenient to rewrite equation (6-8) as

-V 1 U, 2
[WA'Y_;_W] U"*""“[Z?* (AY)z]U"“"“

{3 1 1 Uz, +P;.
+[2(JA;5—W]Uj+1,k+1+[A—X]PjH=%_ (

6—12)

Equations (6-12) (written for £ = 0(1)r) and (6-10) may be written in matrix form as
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1 2 2 2 2 — — .2 2 By Ui, o
1
Bo Q0 E Uj+1,1
ut
ar B AX Ujir,2
7 »1 ‘
(¢2] Bz Qz A—X Uj+1,3
L .
a; By Qs AX U3+1’4
1 S
Xy 1 ‘B‘n—l Qn—liﬁ . Uj+1,,,
.
Qn. Bn AX- Py
where
| Q=—L('c orate: try at Y =0)
o (AY)z incorporates symmetry a .
S=Uj,0+2 E'Uj,k
k=1 .
and :
- Vik 1
=T 9(AY) T (AY)?
: _'Uj,k -2
Be=3x T
Vik L (k > 0)

_ e =350y) ~ (AY)?
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‘s

S

o

1

¢s3

d)il—l v

bn
(6-13)
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U2+ P

k= AX

The matrix of coefficients in equation (6-13) does not have the desirable tridiagonal
character of the matrices encountered in the previous chapters on external flows.
This matrix is, however, quite sparse. It would be possible to write a special
computer program to solve the set (6-13) by taking full advantage of this sparse-
ness. This would only be practical if a large number of production runs were
contemplated and the savings in running time and storage space considered more
important than the programming time required. As a general rule, it seems most
practical to solve the set by using one of the standard routines for linear equations
or matrix inversion which are available at any computer installation. A possible
alternative is to solve the set by Gauss-Siedel iteration. This method will work
effectively except for equation (6-10) (top row of eq. (6-13)), which must be dras-
tically underrelaxed. (See chapter 3, section 3.1.1.1 for details of the relaxation
process.) . ) :

After the set (6-13) has been solved for Uj.1.0, . . . , Uj+1,2 and Py, 1, equa-
tion (6-9) may be employed in the form '

AY -
Visr, ko1 = j+1,k—‘2"(‘A—X—)(Uj+n,k+1'— j,k+1+Uj+1,‘k—Uj,k) (6-14)

which may be marched outward from the channel centefline to-give the values of
Vj+1,1, C e e, Vj.;.],n.

Another step AX downstream may now be taken and the process repeated. »
This may be continued as many times as necessary.

The use of two different AY mesh sizes, coarse near the center of the channel

"and fine near the walls, will aid considerably in reducing the number of unknowns
and hence the size of the matrix in equation (6-13). This technique is described in
detail in appendix D. ' '

The proper choice of the AX mesh size at and near the channel entrance is a
very important factor in obtaining an accurate solution. This region represents -
difficulties of two kinds: first, the equations of the boundary layer type used in this
chapter are not valid there because transverse (¥) momentum and axial (X)
second derivatives become important; and second, the entrance itself represents
a mathematical difficulty in that it behaves like a singularity. The breakdown of
the equations is not discussed here except to say that the boundary layer equations
provide an excellent model except in a very small region close to the inlet. The
mathematical singularity may be dealt with in the manner described in chapter 2
for the leading edge in the boundary layer development problem, by keeping
AX very small and hence taking a large number of steps in the region close to
the entrance. As in the boundary layer case, the spread of the effect of the singu-

"larity downstream is primarily a function of how many steps are taken to reach
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a given X position; if a large number of steps are taken to reach this value of
_ X, then the effect of the singularity there tends to disappear. The effect of the
singularity may thus be confined to a region arbitrarily close to the entrance.
_ After this singularity has been taken care of the AX mesh size may be mcreased
conslderably :

As usual, the only sure way to decide on final mesh sizes is to obtam solutions
with succeedingly smaller mesh sizes until the solutions obtained on two suc-
cessive mesh reductions agree to within the desired accuracy.

The’ stability restrictions for this problem have been established by Bodona
(ref. 4) and are the same as those given'in chapter 2 for the incompressible bound-
ary layer\problem. The formulation is universally stable for U = 0, and if U < 0,then

AX 1 | ' :
ey =2 R (6-15)

: 2 Ul . . 3
which are generally satisfied only for very small values of | U |.
The truncation error of the momentum equation is of 7(AX) and 0’((AY) )
and that of continuity @ (AX) and @ (AY).

Appendix C includes a dlscussmn of inherent error in flow rate for conﬁned
flow problems of thls type

6.1.2 . Incompressible Constant Property Flow—Temperature'Solution .

The energy equation for incompressible, constant property flow is uncoupled
from the momentum equation once the velocity distribution is known When
vxscous dissipation is neglected the energy equatlon may be written as - ’

at at ) 9%t ' 4

oo wmto= )=k (6717

_ P ”( dy/ . ay* e

The two most commonly considered thermal boundary conditions for confiried

flows are constant wall temperature and constant heat flux per unit length in the

flow direction. Both of these conditions are considered in this formulauon The
boundary conditions can be stated as
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l(O, y) =1

at

—_— e O

3y (x,0)
and -

¥
t(x, a) =t, (constant wall temperature)

or

k*g—; (x, a) =g (constant wall heat flux)

161

(6-18)

- The choice of the dimensionless temperature- variable is dependent on the
thermal boundary condition which is to be considered. The remainder of the
dimensionless variables are the same for both boundary conditions. The dimen-

- sionless variables chosen are

t—t
= Y (constant wall temperature)
0~ tw .

or

T= ia (¢t —to) (constant wall heat flux)

v=%
271}
y=£ve
N
paiuy
a

The temperature problem in dimensionless form now becomes

oT . oT 1 &T
UxtVsr=prove

(6-19)

" (6-20)
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sﬁbjeci to
T(0,Y) =1 (constant wall temperature)
or
T(0,Y) =0 (constant wall heat flux)
oT _
52 (X,0)=0
(6-21)
and
- T(X,1)=0((constant wall temperafure)
or
aT. ‘ :
£7% (X, 1) =1 (constant wall heat flux)

Equation (6-20) may now be expressed in an implicit finite difference form
similar to that used for the momentum equation in the preceding section. This
difference form is

Tici.o—T; & T; —T~ e
. +1, k . K : J+t, ki j+1, k=1
Y S C N T1NY

_L Tj+1,k+1 _2Tj'+1,k+T_L+1,k-1

~Pr (AY)? (6-22)
Equati‘on‘(6-—22) can be rewritten in a more useful form as
[z:(??’)c”Pr(iY)z]T"*,“"ﬁ‘*[[ﬁ&k*ﬁ‘r(i_n?] Loros
| +[2I(/X§)_fr(zlw)2] Tf“"‘“zﬂzf—xu (6-23)

Equation (6—23) written for £ =0(1)n forms a set of n+1 simultaneous linear
equations in the values of Tj41,«. If the wall temperature is known (constant wall
témperature case), then these n+1 equations involve n+1 unknowns. The
resulting matrix equation is '
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Bo £, : Tit1,0 b
a; B Q) Tii1 1 | &1
a, B O | Tjaa,2 b,
. x =
oy Bnoay Dy Tj+1,_n—l d);fl
o« B Tn | |
- (6-24)
where .
avz'-l/'j,k_ ]-
k' 2(AY) Pr(AY)?
Uik, 2
Be="ax Y Pran:
Vi 1-
L I S E>0
o 2(AY) Pr(AY)? ( )
. U; Ty,
d)k_—._————J’A,\XJk
and - :
-2
P k=0
Q", Pr(AY)? (k=0)

The matrix equation (6—24) is tridiagonal and the method of appendix A may be
used to obtain a solution for the Tj1,,’s. _

For the constant heat flux case, the wall temperature T'j,1, n+1 is unknown,
resulting in n-+2 unknowns. The additional necessary equation, which expresses
the heat flux at the wall, may be written in difference form as

3T, n1— 4T ji, 0+ Tiin,n1 .
Oy (6-25)

See appendix B for a discussion of the backward difference form chosen.
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The matrix equation (6—24) may be modified to include the additional unknown
and equation by adding on an additional row and column. -
The last few rows will then appear as

Cayy B O X| Tyt | = | 0y
ap ,3;. Q,n Tis1,n - 38
1 =4 3 || . .
2(AY) 2(AY) 2(AY) At . (6-26)

where the elements are defined as in (6—24)

The element 1/2 (AY) in the last row makes the matrix in (6—26) nontridiagonal.
However, the matrix may be made tridiagonal by eliminating this element. This
can be accomplished by dividing the last equation by 1/2 (AY), multiplying it by

a,, and subtracting the next to the last equation from it. The resulting last few
rows are

' ' : ' . : Y ’
Xy Bn—l ) Qn—l X Tj+1,n—1 = ¢

a, B Q, Tian ) ¢,

0 (—4a—B) Bai—Q) | |Tiwwn| |2aV)ai—0:

(6-27)
The equation (6—27) has a tndlagonal matrix of coefficients and the method of
-appendix A may be used. :
As discussed in the external flow chapters, the mesh sizes used for the velocity
and temperature solutions should be the same for convenience. The fineness of
the AY mesh will be determined by the velocity solution for moderate to low
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Prandtl numbers and by the temperature solution for large Prandtl numbers. Of
course, numerical experimentation (including refining the originally chosen mesh
size) is necessary to verify any choice of mesh size. :

The solution can be carried downstream in the usual manner, solving first
for the velocity distribution and then for the témperat_ures at each axial station. .

6.1.3 Incompressible Constant Property Flow — Heat Transfer Solution

. L3 B .

In order to solve for the heat transfer in confined flow situations, it is first

necessary to find the bulk (mixed-mean) temperature. This quantity is defined
for the parallel plate channel as . \

a
: f utdy
_ JO

= (6-28)
f udy -
0

Inserting the dimensionless variables (6—19) into equation (6-28) gives

T,=2——=| Urdy - " (6-29)

The dimensionless bulk temperature T, may be calculated numerically by em-
ploying Simpson’s rule: ’

. ) n
(Uj+1,'0Tj+1,0+4- 2 Uj+l,ij+l.k

k=1,3,5,7...

AY
3

Tb|j+l =

n-=1 ’ : ‘
+ 2 2 Ujsr, kTj+1, k) _(6_3_0)

( k=2,4,6,8...

Equation (6—30) requires -an even number of spaces across ‘the haif channel (n
must be odd). } :
The local Nusselt number is given by

Nu,==% (6-31)
" where h
(6-32)

SO
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—g£| (2¢) . ’ .
Nu, = —21 4=t | . (6-33)

ty — tw
For isothermal walls, equation (6—33) may be written in dimensionless form as
. | ‘ ,
9 :%/I _ |
Nu, = =t - (6-34).

or, in finite difference form,

—9 (37}'+l,)1+1 _4'Tj+1,n + Tj+;,rt—l-)

Nu, = 6-35) -
ue 2@ Tl ©-35)
For constant wall heat ﬂux, the expression is '
[ P— (6-36)
T, —T, .
. /
or, in finite difference form,
Nusg=r——2 (6-37)
Tb|j+1 _Tw,j+l
The mean Nusselt number is given by
. 1[x ,
Num=ij Nu,dX - (6—-38)
0 .

This may be computed by using Sirﬁpson’s rule as

) 1 /. j '
Nul'llj“:XT(N"'-l‘lo_'_lL i Nu'l‘li+2'
J+ 3

e

'—"l )
: S Nur|i+NuI|j+1 )
i=1,3,5,7, ... i=2,4,6,8,.. - )
(6-39)
The calculation of Nun|j.1 can only be done at every other AX step so that an
even number of intervals from X =0(j=0) will be involved.
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6.1.4 Compressible Flow - Velocity and Temperature Solutions -

For the viscous compressible flow in a parallel plate channel, no fully de-
veloped flow situation can exist in the usual sense. As the pressure changes along .
the channel, the density must also change, resulting in a velocity distribution
which continually varies with axial position. The entire length of the channel,
from entrance to exit, may thus be considered an “entrance” region. The same "
model is used for the compressible case as was employed earlier for the incom-
pressible case; equations of the boundary layer type are assumed to apply over
the entire flow field. The flow may be either subsonic at the entrance, as from a
reservoir, or supersonic, as from a supersonic diffuser. In either case, if the
flow approaches a Mach number of 1 in the channel, then considerable care in
computation and interpretation is requ1red This is discussed in greater detail
following the formulation..

The coupled equatlons of motion and energy are

du  du)__dp du o _
o(w3 ooy dx+ay<"ay)’ (6-40)
3(pu) ”)+—L( v) g A (6-41)
ax dy .
ot oe\_ dp 9 (3 au Y 4o
pc”(”ax+”ay')_“dx+ay<kay>+"(ay)z : (6-42)

Assuming a perfect gas,
p=pRt -  (6-43)

and as in the external flow problems considered in previous chapters, we assume a
power law relationship for the viscosity and thermal conductivity: .

w=po(tfto)! i (6-44)
k=ko(t/to)" . _ (6-45)
where the 0 subscripts represent reference values, here chosen as condmons

at the channel entrance. .
The velocity and pressure boundary condltlons are

\
459-174 O- 73 ~ 12
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1(0, y) = uo (see appendix F)

u(x,a)=0

u _
3y (x,0)=0

v(_x, 0)=0
v(x,a)?O
P(O) =Po

NUMERICAL MARCHING TECHNIQUES

(6-46)

The thermal boundary conditions considered include either a constant wall

temperature or constant wall heat flux condition:

(0, y) =t
at p
and '
t(x,a)=ty (constant wall temperature)
or

E k :—; (x,a)=¢q (constant wall heat flux)

The following dimensionless variables are chosen:

Uv== X=-L°., N
Uo Poloa”
y = Pova y=Y .
Ho a
t k
T== *— L
to k ko
P |k
P== F=
Do - K Mo
)
Y po

(6-47)

L (6-48)

The reference values, with subscript 0, correspond to the conditions at the entrance

to the channel.

-When the dimensionless variables (6—48) are inserted into equatio-ns (6—40)

to (6-45), the problem may be restated in dimensionless form as
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where Mo= uol VyZt and Pr= pocylko.
The boundary conditions (6—46) and (6-47) become, in dimensionless form,

h Uo,Y)=1
UX,1)=0
. ) 1/
5 (X.0=0
VX, 0)_=0
ViX,1)=0
P(0)=1
T0,Y)=1
aT .
and . : i
TX,1)Y=T,
or ’ ’

* —4qa
k Y(X 1) kt

(constant wall temperature)

(constant wall heat flux)

160

y U 1 dP o ( U -

(U +V aY) T yMz dX aY(” aY) (6-49)
3(p*U) | a(p*V

) st o
’ aT , T\ _y—1 d_P_l_a<*aT) , ( .
p (UaX+VaY) : UdX ooy K 5y )+ (r = DMsu? (6-51)
P=p*T (6-52)
=(T)/ (6-53)

k*=(T)v (6—54)

(6-55)

- A fnite difference representation must now be established for this problem.

The finite difference form chosen here is based on the so-called *“post-boundary-
layer” equations of Walker (ref. 5) for the circular tube. The finite difference
representations of equatlons (6-49) to (6-54) are

: i

-
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Ujtr,c—Uj, & Ujis k+1;'Uj+l,k—1']
EnEALIL L ILINTY /g ’
AX Ik 2(AY)

=:1_Pj_“—_&+ * .‘[Uﬂl»““_2Ui+l,k+Uj+1,vk—1]
Ty ax  Hew (AY)?

* — ¥ i —T7.
I:Mj’kﬂ Mj’k_l][U]+l,k+l j+1, k-1

2(AY) 2(AY) ] (6-56).

* J+1, k+1 j, k+1 *. j+1, k ik -I
P} ke [ 2(AX) ]*"f’k [ 2(AX)

Uj,k+1 Uj,ic Pj+1‘“Pj P;.k’kHUj,kH)[TjH,kH_ j,k+1]
+ —
(T,-,,m Tj,k)[ 2(AX) ] ( 2(AX)

Tj, ka1

'_<p;"kUj,k)[Tj+1,k— j,k] p_;-k+1’k+1Vj+l,k+l_p;k+1’ij+l,k=0 (6-57)

Tix 2(AX) AY

Tivti—Tn Tiovoins— it e
P:k [Uj,k———"—“ﬁl’gx’ LE Ly, =i A;EAY)]H - 1]

~

‘y_l Pj+l_Pj k]*,k Tj‘Fl,k+1_2Tj+l,k+Tj+1,k_1
= ry Uj,kk AX +—ﬁ[ (AY)Z ]
1 k;'k,kn_'k}k,k_l Tj+1,k+1"' 41, k=1
+1‘Tr[ 2(AY) ] [ 2(AY) ]

'+ (‘.Y_I)Mf,ﬂﬁk[ Uj, k1 — j,k—l] [ Ujir, k+1— j+l,k—1] (6-58)

2(AY) 2(AY)
Pj+1=P;;1,kTﬁ1’k .. - | (6-59)
L = T . (6-60)
Ky o= (T, 1) 0 | (6-61)

Several comments are in order concerning this choice of difference representa-
tions. The unusual and somewhat lengthy representation of the continuity equation
(eq. (6—57)) includes the perfect gas law and was chosen to keep the equation
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linear' and to avoid the necessity of an iterative type of solution. The form also
has advantages in forming the integral representation of continuity, as will be
seen later. The representation of the viscous d1s51pat10n term in equatlon (6 58)
also serves to eliminate nonlinearities.

The finite differences forms of the momentum, ‘continuity, and energy equa-
tions written for £k=0(1)n now constitute 3n+3 simultaneous equations in
the 3n+3 or 3n+4 unknowns Uj+1,k, Vis1,k, Tj+1,k, and Pjy1, the number de-
pending on whether the constant wall temperature or constant wall heat flux
condition is desired. Note that, despite a considerable amount of effort devoted
to that end, these equations are still not linear, due to the representation of the
d(p*V)/3Y term in continuity (eq. (6—57)). In this last term in equation (6-57)
both p* and ¥ are unknown and are multiplied together. The equations can be
made linear and the number of equations substantially reduced, but first equations
(6-56) and (6—58) are rearranged in a more convenient form. Equation (6-56)
becomes

[— R TR —#,-‘fk_l] . . [P, 7 kUi N 2#}'fk] U
2(8Y)  (AD)F" T a(ayv): Lt TRY T T Ay | e
+ [p;:kl/};k _ I'L;:k _ #’;‘jk.‘.] _l‘l’;:k_l:l U - +[ 1 :I
2(AY) (AY)? 4(AY) Ujsr, k41 MEAX i1
il P 6-62)
AX  yMzAX

and equation (6—58) become_s

[_p’wj"'_i e Mﬂ] T,
2(AY) Pr (AY)?2 Pr 4(AY)? it k=1

[P;iji,k 2 k* ] : +[p;jlei’k i k.;ljk
TlTax TP (AY) HLET | T9(AY) T Pr (AY)?

1 k¥ kl*

js Kk Uj o1 = Ujiea l
k k-1 s s
Pr Js ;EAY_—)JZ ] Tj+1,k+l + { (y_l)M(z)"L;:l. [W]} Uj+l,k—l
: U, ki1 = Uj, k-1 (A=)« :
_{(Y_I)M(Z)l-";:k[ 4'(AY)2 ]}.U)+1,k+l+[m—] Pj+1
1 — y)U,, vP;

Equations (6-62) and (6—63) written for £ = 0(1)n constitute 2n + 2 equations
in the 2n + 3 unknowns Ujs1,&, Tjs1,k, and Pjiy. (This is for the constant wall



172 ° . NUMERICAL MARCHING TECHNIQUES

- temperature case; if the constant wall heat flux case is considered, there 'are
2n+4 unknowns.) The number of equations for the constant wall temperature
case can be brought to 2n + 3 without adding any additional unknowns by adding
together the continuity equation (6—57) for each value of & =.0(1)n. This yields

n . U-.. ] - TU: -,
* J+1, ki Js k+1 % Jj+1, & ik
2 ot [Tt Jrose [ Patan

( Uj,k+l+ Uj « [Pj+l_Pj]

+ =
'Tj,k+1 ‘ 'Tj,k 2(AX)
, . . p;k’k+lUj,k+1 [Tj+1,k+1 _-Tj;k+1]
. - Tj,k'+.l. 2(A.X)‘

oL T T
Tix 2(AX) ||
: (6-64)

Substltutlng the equation of state (6—59) as necessary and multlplymg by (AX)
(A Y), equation (6~64) can be rewritten as

n o ) P, T;
* - U i * . g * . j+1 A j+1, k+1 ).
kg(j [pj" et j+1’kﬂ+pj'kUJ“,"+pj’k+lU]’kH ( Pj Tj,k+1

P 'T; AY
* . j+r j+1,k ar .
rortne (=1 ) )

: AY | -
Z ( pj, k+1UJ k+1+P1 kUJ k) 2 . (6-65)

Note that the nonlinear term referred to earlier has vanished from equation
(6—65) because of the repeated additions of terms with opposite sign.

Equation (6-65) along with ‘equations (6—62) and (6—63) written for k= 0(1)n
now constitute a complete set of 2n+ 3 linear equations in the 2n+ 3 unknowns

- Ujs1,k, Tjsr,x, and Pj,, for the constant wall terhperature case. The set may be
- written in matrix form as
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where
Q= — 2Mﬁk
(AY)?
S 'P;f ki k ”’ﬁk I"L;j k+1 ”';: k-1
o =

T2(AY)  (AY)? 4(AY)?

Q __‘-p;:ij"‘_ Mk __/““;kﬂ—p“ﬁkﬂ (k > 0)
¥T2(AY)  (AY)? 4(AY)? -
_ pjﬂ:kl]_?,‘k Pj
¢="Ax AN
ne = yM3(AX)
o = — P;f ki _ k;jk i k;: k1 k;j k-1
x 2(aY) Pr(aY):  4Pr(ayY):
8= P; kUi x L 2K
k AX Pr(AY)?
Q,;p}fk’/j,l; o k;:’\' ‘ k;jk-*—l—k;:k—l

kT 2(AY) Pr(AY): . 4Pr(AY)?

U, ke1 — Uj ks
- — 2k (2Ll AL
lpk (‘y ]-)M()M’j,k[ \ 4‘(AY)Z :I

e A=k
S v(Ax)
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bL= a _Y).Ug‘.kPg'

T y(AX)
AY : -
Ev=py, 1)

Ek=Pf,,.(A_Y) (k>0)
—p}Uio(AY)
2(Tj,0)

E’ _ _PﬁkUj,k(AY)
TR T; i

Ei=

(k>0)

(AY)

C= Z (0} Uiknr+ o}, J'\)

k=0

n AY
§= 2 (p;:k+1Uf""+1+p;:kUj"") o

k=0

For the constant wall heat flux case, Tji1,n4+1 (the wall temperature) is also un-
known. This adds one unknown to the set of equations. The additional necessary
equation is the heat flux boundary condltlon in equation (6—>55), which may be
written in difference form as

Tiitons— 4T+ 3T, qa
® j+1,n~1 j+1,n el | _q___ _
kj n+1 [ ) 2(AY) ] kOtO (6 67)
or
. ’ 2qa(AY
Tyomos = 4Ts 0% 3T o100 = AL (6-68)
o1 olo

This representation, using k PERTRCRL the interests of maintaining linearity. Many
other possible representatlons of the heat flux condition are possible, but since k*
is in general a function of T, it is difficult to envisage any other representation

which would keep the equation linear in 7. The additional equation (6~68) must be
incorporated in the matrix form which will now have its dimension enlarged by one.
The resulting matrix equation is
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where all symbols are defined as in equation (6—66) and

0= 2qa(AY)
kj’l,< )H—ll‘:ot0
\

The matrix equation (6—66) or (6—69) can be solved by any of the standard
methods for linear equations such as that given in appendix E. The use of a
refined meésh near the wall as discussed in appendix D is very useful in main-
taining accuracy while keeping the size of the matrix to a minimum.

' After this sét has been solved, the density pj%,,  may be found by using the
perfect gas law, equation (6—59), to yield

‘ P;,

* —
Pivie=

-70
Trorr (6-70)

Continuitys equation (6—57), can now be solved in a stepwise fashion, working
outward.from the centerline, to yield

*

£k /Pl AY o
I.I/j+l,k+l= (M) Vj+l,lg'—'( Jrk+1 ) [2(AX)] (Uj+l,k+1_Uj,k+!)

¥ *
Pj+1,k+1 Pj+1, k+1

— p;‘jk AY B .
J?k+l.k+l>v (2(AX)) User.x=Uj &)
Ay Uj, ke Uj,k)'
— . Uk .
(2(AX)P1*+1,A~+1) <T_,~_,\.+1 + Tk (Pj+1 i)

piwriUi s '
o (Lirn > [2(AA§’)] (7}+1,k+1__7),1.~+1)

%
LAY

Pre Ui\ [ AY . )
+ (i) sy | @m0 e

'Finally, uj,,  and k%, x may be found from equations (6-60) and (6—61).

Another step AX downstream may now be taken and the entire process re-
peated as desired. ' - .

For many wall heating and cooling conditions, the velocity of the compressible
flow in a channel increases with increasing distance along the channel, primarily
because of the deécrease in density caused by the frictional pressure drop. The
Mach number thus also tends to increase under these conditions. The marching
procedure can be carried downstream until the local Mach number anywhere
in-the channel nears 1. At this point, certain difficulties develop which require
some interpretation. This interpretation, based on the work of Walker (ref. 5),
is now discussed. \
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One-dimensional compressible flow.theory predicts- that if the flow is sub-
~sonic at the inlet to a constant-area channel, then the Mach number cannot
exceed 1 anywhere in the channel; and if a Mach number of 1 is reached in the
channel, it must occur at the exit. The model employed in the present discussion
has certain one-dimensional aspects in that only the axial momentum equation
is included; however, it also has a two-dimensional character in that transverse
-velocities and transverse variations in the axial velocity profile are permitted.
As a.result of these two-dimensional aspects, the predictions of the one-dimen-
sional theory on the behavior of the Mach number do not apply directly to the model
considered here, but might reasonably be expected to apply to the Mach number
averaged over the channel cross section. Walker (ref. 5), in his work on the circular
tube, found this to be essentially true; for the adiabatic wall cases he considered,
the Mach number increased along the tube until the average Mach number be-
came very close to 1. At this point, the local Mach number on the centerline of
the tube was greater than 1. Attempts to carry the solution past this point in-
variably resulted in numerical instabilities and a violation of the Second Law of
Thermodynamics (the entropy generation became negative). This point was thus
considered to be the exit of the channel. The fact that the model tells us the loca-
tion of the end of the channel is not too surprising, in view of the fact that the
parabolic equations considered here -have no capability to “look ahead” and thus
we are forced to specify both an inlet pressure and an inlet Mach number. In a
real physical situation, the inlet Mach number would be a result of applying a
certain pressure differenceé over a given length of channel. We have simply
turned this around by spemfymg the inlet Mach number and finding the length
of channel necessary to satisfy all conditions.

The previous discussion, while strictly applicable only to the circular tube,
also should apply without qualification to the parallel plate channel.

Walker has also shown that difference representations of the type used here
are stable for all U = 0 so long as the Mach number is not equal to 1. The stability
at a Mach number of 1 could not be established.

The truncation error is of O(AX) and @ ((AY)?2) for momentum and energy
and of O (AX) and @(AY) for continuity.

6.1.5 Compreséible’ Flow——Heat Transfer Solution

As in the incompressible flow case. discussed in section 6.1.3, the local Nus-
selt number is given by ‘

Nup==72 ()

Complicatipns_ arise, however, in that for the compressible confined flow case,
the choice of a reference temperature for 4 is somewhat involved. Due to the
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presence of viscous dissipation, the bulk temperature is, by itself, no longer -

meaningful in this context. Shapiro (ref. 6), based on previous work by McAdams, .
Nicolai, and Keenan (ref. 7) and others, recommends that the adiabatic wall

‘temperature be used for this reference temperature. The adiabatic wall tempera-

ture is defined as ‘

Ctaw = tm [1 + F ( 2 )Mfm,] V' . 6-73)

where Mg, is taken as the local Mach number averaged over the channel cross
section, t, the mean temperature based on a one-dimensional model, and F is
called a recovery factor. The value for F was found by McAdams, Nicolai, and
Keenan (ref. 7) to average about 0.88 for air, and it has subsequently been suggested
(e.g., Dorrance, ref. -8) that reasonable values for F can be obtained by using

F=+VPr . . (6-74)

The two-dimensional analog of the one-dimensional mean temperature is
the bulk temperature, so that we use

fa put dy :
tn =ty ="—— (6-75)
f pu dy
0 .
- In dimensionless form, the mean temperature is
: 1
f p*UT dy \
Tw=T,= Y = p*UT dy . (6—76)
f p*Udy °° '
0
The average Mach number is given by
M =lf" 2 _4q 6-77)
ave a R v‘@
or, in terms of dimensionless quantities,
M MflUd : >(6—78)
ave — Y10 o \/T y . .

The dimensionless adiabatic wall temperature may now be formed using
equations {6—74), (6—76), and (6-78), a
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1 _1 U
T, =(f >'=lJqu)[1+\/P,r(«~—y )Mz(f —-—d)] 6-79)
w‘ o‘p y B . 21 0 0 '\/T y ( )

We are now prepared to define

6
b= —y— ~ | - 6-80)

Lty —taw

From equation (6-72), the local Nusselt number is then given by

- 2a giy . ’

=_ "7 ly=a¢. ’ ! ’ —_

Nu, fo— fun , . (6-81)
In terms of dimensionless variable>s,'
| 2.2—)7/‘ ,

Nuyy,= ——1*=1 -

u To—Tow (6-82)
-Equation (6—82) may now be expressed in difference form as
) Nu1|j+l=2(3T,~+1,,.+1—4n+1,n+7’3+1,n_;) |

6-8
2(AY)(T}+1,n+1—' aw|j+1) ( 3) -

where

AY e .
Taw'j+1— < ) <P,+1 0U1+1 0TJ+1 ot4 2 PJ*+1,kU}+1,ij+1,I.~ ’

3 k1,357

- B ’ n_l - _——
+2 2 ’ Pﬁl,kUjH,kTiH:k) {1+ (A:) VPr (y l) M2 [ o

k=2,4,6,8,... 2 (Tj11,0)12

n (]j‘*’l. k . n—1 - . Uj+l k 2 .
+4 —_——q42 ——————] } (6—84
k=l,3,25,7-,.., (]}4'{11’\')1/2 k=2,4,6,8,... (7}"}'1,’:)1/2 ( )

Equation (6—84) uses Simpson’s rule and requires n to be odd.
As in the incompressible case, the mean Nusselt number is given by

. .
Nup= i j Nu, dX . (6—85)
X Jo s
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or, in finite difference form,

1 R = |
Nun,,, =7~ (Nu,|0+4 S Nujt2 S Nuxlrf-NuIle) AX
J+1 i=135,7,... i=2,468,. ..
(6-86)
This calculation may only be performed at every other AX step, so that an even

number of AX intervals from X 0 (j=0) is involved.

6.2 OTHER PROBLEMS WITH A‘SIMILAR FORMULATION
6.2.1 Flow in Parallel Plate Channels With Porous Walls

In order to consider parallel plate channels with porous walls, the only modi-
fications necessary to the formulations given earlier in this chapter are to the bound-
ary conditions and equation of constraint (integral continuity). Bodoia (ref. 4) has
briefly discussed this problem for the incompressible.case, and essentially the
same approach to that problem is presented here. The configuration is shown in
figure 6—3, with the finite difference grid identical to that shown in figure 6—2.

For the incompressible case, the problem formulation is unchanged from that
in section 6.1.1, except that the boundary conditions (6—3) become

u(0, y) =up (see appendix F)

u(x, a)=0
2 %0 =0 |
Y 3 (6—87)

v(x, 0)=0

v(x, a) =vw(x) :

! 7 p(0)=po

y

v L vyl ‘
[ Ug—a] - - ) 5
a
= x - -

F1GURE 6-3. — Problem configuration and coordinate system for plane porous channel.
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It should be noted that these boundary conditions correspond to a uniform in-
let profile. Many other inlet profiles may be postulated and present no difficulties -
to the present method except for the choice of a reference velocity which would
probably best be taken as T. It should also be noted that if the suction or injection
velocity is constant with x and of the proper magnitude, it may be possible to get
velocity profiles which are geometrically similar in a certain sense, but this is of
little concern to us here. For details see Berman (ref. 9). Using the dlmensmnless
variables (6-4), the boundary conditions (6-87) become

U0,Y)=1
U(X,1)=0
o= |
9 (6-88)
V(X, 0)=0 |
V(X,1) = Vu(X)

P(0)=0 J
The equatioh of constraint (integral continuity), equation (6-10), becomes

2V, (X)AX

Ujr1o+2 2 Uj+l,k= Uj,0+'2 2 Uie—

k=1 + k=1

If Vw(X)is known a priori, then no additional unknowns are introduced beyoﬁd
those present in the impermeable wall case. The only modification to the matrix
equation (6—13) is in the top element of the right column vector where S becomes

W (X)AX

S;(J},0+2 E Uj,k"‘ AY

k=1

(6-90)

Another reasonable possibility is that the velocity through the wall may be
a function of the pressure difference between the interior and the exterior of
the channel. This might correspond to a relatively thin porous wall, across which
Darcy’s law (flow rate proportional to pressure gradient) may be applied. This
model typically would yield a relationship of the form

Vw | j+i1 = APJ'+1 . . | (6_91)

where 4 is a constant.
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When equation (6—91) is substituted into equation (6-89), the matrix equation
becomes

1 2 2 2 - - = 2 2 2A2;&,X) Ujii, 0 _ S
1
Bo Do AX Uji bo
1
a; B X Uji,2 b
: .
Ag [)'2 Qg KX— Uj+l',3 ¢2
as Bs s AX Ujii,4 o3
¢ - —1 17 -
Qp—1 Bn—l Qn—l H Uj+l,n (l)n—l
. 1 ’
An Bn ﬁ Pj+1 ¢n
(6-92)

/
where all symbols are as defined with equation (6—13). The computation of the
V’s is not affected. ' T ' '

If the suction or injection is not the same on the top and bottom of the channel,
then there is no symmetry at the channel centerline, and the finite difference
equations must be written at each point across the entire channel. The changes
in the matrix form are straightforward. :

The compressible flow in a parallel plate channel with suction or injection
has been presented in finite difference form by Buzzard (ref. 10). For the sake
of unity of presentation, however, the discussion given here is based on section
6.1.4 rather than the .work of Buzzard. The approach is fundamentally the same.

The modifications to the formulation of section 6.1.4 to account for the °
porous walls are again in the boundary conditions and equation of constraint.
The formulation is unchanged except that the velocity and pressure boundary
conditions (6—46) become !

459-174 O - 73 - 13
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©(0, ) = uy (see appendix F)

u(x,a)=20

ou
— (x,0)=0
9y (6-93)

v(x,0)=0 -
o(x; @) = v(x)

p(0) = po

Using the dimensionless variables (6—48), the boundary conditions (6—93) become
UM,Y)=1

UX,1)=0

U
99 (X,0)=0
24 (6-94)

V(X,0)=0
VX, 1) =Vu(X)

P(0) =1

- A
The temperature boundary conditions are unchanged.
The equation of constraint (integral continuity), equation (6—~64), becomes

n Upor.ior —Uj.x Uprs— Uy
* J+1, k+1 Jok+1 ® J+1,k gk
| 2 (AX) Jer [ 5E

o (Uj,k+l+_[ﬁ) [Pj+l —Pj:l_p;jk«HUj,lMl [Tj+l.k+l _Tj,lﬁ»l]

Tiker T/ | 2 (AX) Tj 2 (AX)
_P;Ikaj.k [Tj+l.k_ Tj,k] p_;:—l.n+le+1,n+1=O (6-95)
Tj.« 2 (AX) AY :

Substituting the equation of state (6~59) as necessary and multiplying by (AX)
(AY), equation (6-95) may be rewritten as

n . P. Tisr k1
2 [p_;ljl\'+lUj+l,k+l +Pf,‘kUj+|,k. + (p_;:k-HUj,k+l) ( [ng - ) +

k=0 Tj. k+1
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* U (_J_ I.L*L")] (AX) V}+l a+ 1L j41
Pj T« TJ+1 n+1

s

2
. AY |
=5 (e (el tpiil,) 5 (6796)

This equation differs from equation (6—65) ,employed in section 6.1.4 by the addi-
tion of the term (AX) Vi1 werPjs1/Tjer, ner. If the wall temperature Tjiq, 011 and
‘the suction or injection velocity at the wall Vj.y, 441 are specified, then the term is
merely an additional linear term in Pj;, and the procedure of solution employed
in section 6.1.4 may be followed directly. If, however, the flow through the wall is
proportional to pressure through Darcy’s law, that is,

Vw|j+’l =APj+1 (6—97)

then the term becomes nonlinear (quadraticj in Py, and of the form (AX) AP;H

Tji1,ns+1r- The only readlly apparent approach to this. problem is to linearize the
term as (AX) (4) (P;) (Pj+1)/Tjs1,n+1 (assuming the wall temperature is specified)
although this will obviously result in some loss of accuracy. The accuracy will of
course improve with decreasing AX. If the wall temperature is not specified (as
in the specified heat flux case) then a nonlinearity in Tj.q a4 is also introduced,
which again would seem to be most readily resolved at the cost of accuracy by
using Tj, ns1 instead. Of course, all of these nonlinearities may be accommodated
without loss of accuracy, but only by employing an iterative method for the entire
solution at a considerable cost in computer time.-

For the specified wall temperature, specified suction or injection velocity case,
the matrix equation (6—66) applies directly, with only the bottom right corner
element of the coefficient matrix modified to become :

n : (AY) | (AX) Vis1,ney
G= *enUi e *U: k
k—z() (pJ,I\+IUJ-I\+1+p)-I\U},A> 2P; + Tir, net (6-98)

As in the incompressible case, the symmetry simplifications employed in the
present discussion no longer apply if the suction or injection rates differ at the
top and bottom of the channel and all quantities must be determined over the entire -
height of the channel.

6.2.2 Developing Confined Free Convection Flow Between Parallel Plates

- The finite difference formulation and solution for developing free convection
flow confined between parallel vertical plates has been obtained by Bodoia and
Osterle (ref. 11), and the formulgtion given here is due to them.

‘Much of the dévelopment is similar to that presented in chapter 4 for uncon-
fined free convection, and the emphasis here is on the changes due to the confined
nature of the flow. »
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The configuration to be considered is shown in figure 6-4. The two vertical
heated plates are held at a constant temperature, higher than the inlet tempera-
ture of the fluid. In the limit, as the plate spacing 2a becomes very large, the
flow is essentially no longer confined, and the flow along each plate behaves as
discussed in chapter 4. Bodoia and Osterle have assumed the velocity profile at
the entrance to the channel formed by the plates to be uniform. This condition
might be open to some conjecture, but the true inlet velocity profile could only
be determined by solving the complete elliptic problem (most difficult indeed at
the present state of the art). Since all of the flow must come from the — x direction
toward the +x direction in order for the parabolic equations used here to apply,
the uniform inlet profile seems the most logical choice. It is conceivable that the
actual inlet profile might even involve backflow, but in the absence of other ex-
perimental or analytical evidence, we employ the uniform profile.

9x

Heated
- wall, -

Y

*
AMMNRRRNNY \\\\L\\\\\\“\\L\\\}\\ ALULLHLLLLLLR LR AR LR RN RN

i

FIGURE 6~4.—Problem configuration and coordinate system for heated vertical parallel plate channel.
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The obvious difference between confined flows and the unconfined flows
discussed in chapter 4 is the pressure gradient caused by the flow (or vice versa)
in the confined channel. As is customary, we here define the pressure p as the -
difference between the actual pressure and the hydrostatic pressure which
would exist if the entire fluid were at the inlet temperature:

P = Pactual — Phydrostatic (6-99)

The equations of motion for the confined flow case are thus modified from
equations (4—1) to (4-3) for the unconfined case only by the addition of the pressure
gradient term to the momentum equation. The basic equations are

du ou\ _ _@ a’_u : B -
p(u dx T y) T dx +p ay? + pg=B(t — to) (6-100)
au ’
6y =0 (6-101)

ot at 2t .
PCP( ox Fyaa’ _y> k pyes (6-102)

where symbols are defined as in equat:ons (4—1) to (4-3).
The boundary conditions are -

u(x, a) = 0
du
@ (x,0)=0

©(0, y) = u, (see appendix F)

v(x, 0) =
vix,a)=0 _ | (6-103)
t(x, a) =ty |
t(Oy y) = to
at
3 (x,0) =

p(0) =0
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‘ We define the following.dimensionless variables:

ua 7 R LT Co NS Sl

U= v(Gr)
y=2= |
14
ppa’
o P I_i2(Gr)2
(6-104)
Ct—to
T - tw - to
X
X=21n
y=2
a

where

Gr: asng(tzw_‘to) .
v .

The fundamental equations and boundary conditions (6-100) to (6-103)
then become in dimensionless form,

aU . . aU _ dP . o°U

Uﬁ+Va—)7-_&—X—+a—}72'+T (6-105)
oU oV »
ax Tar? ’ : (6-106)
T T 1 o°T
v v = _ (6-107)

aXx " aY Pray:



PARALLEL PLATE CHANNEL _ - 189

U(X, 1) =0
oU
' 7y &K 0)=0 -
_ _ uoa
U(O’-Y)_U"‘y(cr)
V(X,.0)=
"V(X, =0 (6—108)
T(X,1)=1
T(0,Y)=0
aT '
57 X0 =0
i P(0)=0

The parameters which appear in the problem are the dimensionless inlet
velocity U and the Prandtl number Pr. Since Uo is a parameter, the -question
arises as to whether this formulation is also valid for combined free and forced
convection. Indeed, this appears to be the case. In Bodoia and Osterle’s original
work, the solution was carried downstream until P again reached zero (until the
pressure in the channel reached the external hydrostatic pressure which would
exist at to). For each value of Uo, a corresponding channel length was thus ob-
tained which corresponded to free convection only. For any channel length
different than this one, the problem is actually one in combined free and forced
convection in which U, must be considered as composed of two components: the
free convection component, which is just sufficient to cause P to reach zero at
the specified channel length, and the forced component, which causes P at the
exit to be either positive (opposing flow) or negative (aiding flow). The portions
of Uy, due to each effect cannot be determined without separately solving the free
convection problem for the specific channel length of interest, which would require
a trial and error process to determme the 1nlet velocity which results in P=0 at
the channel exit:

The difficulties encountered in chapter 4 Wthh requlred a nonlinear differ-
ence representation are not present here, since the velocity throughout. the
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channel (except at the walls) is nonzero. We therefore employ conventional implicit

difference representations similar to those used elsewhere in this chapter. The

difference grid employed is identical to that shown in figure 6-2.
Equations - (6—105), (6—-1063, and (6—107) become, in finite difference form,

. Uj+1,’k‘_Uj,k _. Upsr, k01 = Ujer, k-1 Py — P
Une =gy V™ @n. AX
o Ujsn, keer = 2Ujaa, i+ Ujsa, ke ' '
4~ (AY)? . + Tjos, & (6-109)
Ujrr, k00 = Uj, g + Uj+1,.k—U},k Vier, ko1 — Vs, ke _ _
3(AX) : :'+ AY =0 (6 110)
U T}+1,k_Tj,k+V: Tist, k1= Tier, k1 =iTj+‘,k+1—2T;+;,k+ Tii1, k-1
e PET 2 (AY) Pr (AY)?

AX
(6-111)

The equation of constraint is unchanged from that employed in section 6.1.1:

Uj+1,0+22Uj+l,k=Uj,0+22 .Uj,k .: (6-112)
=1 k=1
Equations (6-109) and (6-111), written for k=0(1)n, along with equation
(6-112) constitute 2n+3 equations in the 2n+3 unknowns Uie1,00 + + o> Upsang
Titr,0, . . T)+l n; and P]+l )

Omlttmg the details and writing equations (6—109) and (6— 111) directly
.in the most convenient form give

[z~ avy v [+ v ’“"*[MY) vl LR

+< ) +T,+,k (6-113)

I/j;k _ 1 U 2 :
'[_Z(AY)' Pr(AY)2]7;+1k1+[AX+P (AY)] _,+1I.

- Vi k 1 U;,xT;,x _
+[2(AY) Pr(AY)] = gt (67114)
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The energy equation (6-114) does not involve any, unknown velocities at a
given step and is therefore solved for T first at each step downstream. The matrix
equation is identical to equation (6—24) and will not be repeated here.

The matrix form of equation (6—113) is solved next. This matrix equation
is identical to equation (6—13) except for a redefinition of ¢ in the right column
vector, which becomes ’

Uz, +P, S
e=tE T T ~ (6-115)

The method of solution used to solve the matrix equation is discussed following
equation (6—13). .
' After solving equation (6-110) for Vj.1, k41 (=0(1)n), another step down-
stream may be taken and the process repeated.

Bodoia and Osterle have shown the present formulation to be universally
- stable forall U = 0. '

6.2.3 Fiow in a Parallel Plate Channel With Body Forces

. The analysis of flows involving body forceés differs little in general from the
formulations given earlier in this chapter. For most situations such as magneto- -
hydrodynamics . or electrohydrodynamics, the only changes are the addition of
constants or modifications to the coefficients of the various equations. For a few -

" more details, see section 2.3.4. 4 - '
The development region for a parallel plate channel in the _presence of MHD
and EHD body forces has been analyzed using finite difference methods by
Shohet, Young, and Osterle (ref. 12). ' .

6.3 EXAMPLE PROBLEM-INCOMPRESSIBLE ENTRANCE FLOW IN
APARALLEL PLATE CHANNEL.

. The finite difference analysis of the development region for incompressible
flow in a parallel plate channel by Bodoia and Osterle (ref. 3) has been employed
as a benchmark by a number of other investigators of this problem. The formula-
tion was presented in section 6.1.1, and the results are given here as an example
problem. -

Details of the choice of mesh sizes used by Bodoia and Osterle aré not avail-
able other than the statement that “Beyond a short distance from the mouth a 20
point mesh across the channel was used, but close to the mouth a larger number
of mesh points was used to obtain better accuracy.” However, personal communi-
cations with Bodoia and Osterle and attempts by the author to duplicate their
results indicate that something on the order of 40 AY mesh spaces were used near
the inlet, with the AX spacing increasing gradually from about AX=2.5X10-5
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at the entrance to AX=1.0%X10-3 far downstream. The calculations were per-
formed on an IBM 650 dlgltal computer

Figure 6-5 shows the development of the dimensionless ax1al velocity U
as a function of X for various transverse positions. Flgure 6—6 shows the pressure
development The information in these two figures is also presented in table 61,
abstracted from reference 4.

Figure 6—6 also compares the numerical solutlon w1th the solution presented
by Schlichting (ref. 1). Schlichting’s results were obtained by joining a power series
expansion downstream to an asymptotic solution upstream, matching the veloci-
ties at X=0.004. A rather sharp change in slope of the centerline velocity re-
sulted. Schlichting’s technique apparently resulted in an excessively rapid growth
of the core velocity and a smaller pressure drop than that found by the numencal
technique.

It is interesting to note that the numerlcal results, requlrlng many hours of
computing time on a first generation machme could be obtamed in a few minutes
on a modern third generation machine.

Dimensionless
transverse

. position,
16 - Ty

0

14

—
~N

Laeg
(=4

- Dimensionless axial velocity, U

l ! 1 1 | . | i | l f
0 ' .02 .04 - 06 .08 .10 R 4 .16 .18 ]
Dimensionless axial position, X ’

FIGURE 6—5.— Velocity variation in Poiseuille development.
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TABLE 6-1. —POISEUIELLE FLOW CALCULATION— DIMENSIONLESS VELOCITY AND PRESSURE

Dimensionless

Dimensionless axial position, X

transverse
position, ¥’ 0.001 0.002 0.004 0.006 0.008 0.010 0.012
0 1.0615 1.0751 1.1013 1.1244 1.1443 1.1615 1.1767
1 1.1443 1.1615 1.1767
2 1.1443 1.1615 1.1766
3 1.1442 1.1613 1.1763
4 1.1012 1.1243 1.1438 1.1604 1.1745
5 1.1010 1.1234 1.1414 1.1555 1.1665
.6 1.0750 1.0993 1.1176 1.1290 1.1351 1.1373
i 1.0612 1.0725 1.0863 1.0874 1.0788 1.0655 1.0501
.8 1.0551 1.0485 1.0132 .9665 .9204 .8798 8455
-9 9587 .3655 7194 16204 .5567 .5136 .4832
1.0 .0000 .0000 .0000 .0000 - .0000 .0000 .0000
—-P :06210 .07664 | .10503 .13075 15324 .17306 .19082
Dimensionless Dimensionless axial position, X
transverse
position, Y 0.016 0.020 0.024 0.028 0.032 0.040 0.050
0 1.2031 1.2259 1.2463 1.2648 1.2818 1.3121 1.3441
Nl 1.2030 1.2258 1.2460 1.2643 1.2811 1.3105 1.3412
2 1.2028 1.2252 1.2448 1.2623 1.2778 1.3043 1.3306
3 1.2017 1.2228 1.2406 1.2556 1.2684 1.2887 1.3067
4 1.1972 1.2144 1.2275 1.2373 1.2447 1.2542 1.2601
5 1.1813 1.1893 1.1928 1.1935 1.1923 1.1871 1.1786
.6 1.1339 1.1253 1.1144. 1.1030 1.0918 1.0715 1.0504
7 1.0185 .9896 .9644 .9429 9246 .8950 .8677
8 7922 7535 7241 7011 .6825 6541 .6291
9 4427 _.4162 3971 .3825 .3708 .3534. .3383
1.0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 -
—P 22218 .24992 27522 .29873 .32085 .36192 .40892
Dimensionless Dimensionless axial position, X
transverse
position, ¥ 0.060 0.080 0.100 0.150 0.200 1.000
0 1.’3707 1.4111 1.4388 1.4758 ) 1.4903 1.499999
1 1.3663 1.4039 1.4292 1.4629 1.4762 1.485000
.2 1.3511 1.3803 1.3993 1.4239 1.4336 1.440000
.3 1.3195 1.3357 1.3454 1.3573 1.3619 1.364000
4 1.2626 1.2635 1.2628 1.2611 1.2604 - 1.260000
5 1.1703 1.1565 1.1467 1.1336 1.1284 1.124999
.6 1.0337 1.0095 .9938 9733 9653 .969999
7 .8475 .8197 .8022 7796 7708 .765000
.8 6112 .5870 .5720 .5526 .5451 .540000
9 .3275 .3132 .3042 .2926 .2880 .250000
1.0 .0000 .0000 .0000 .0000 .0000 000000
—-P .45249 .53258 60631 77507 .93269 3.338018|
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FIGURE 6-6.— Centerline velocity and pressure variation in Poiseuille development.
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CIRCULAR TUBE

7.1 ENTRANCE FLOW AND HEAT TRANSFER IN A CIRCULAR TUBE

* The flow and heat transfer in a tube of circular cross section have for some
time been extremely popular subjects for analysis due to the enormous number
of practical applications of this geometry. As in the parallel plate channel case

~dlSCllSSCd in the preceding chapter, the emphasis for the incompressible case
is on the entrance region flow and heat transfer since the fully developed solu-
tions are merely special cases of the formulations given; for the compressible
cases, the entire flow is an “entrance” flow since no fully developed region can be
defined. The problem configuration and coordinate system are shown in figure 7-1.

Wall
//////////J///////////////////

r=a

P

Up

z

F1GURE 7-1. — Problem configuration and coordinate system for circular tube.
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7.1.1- Incompressible Constant Property Flow— Velocity Solution

The model usually assumed for the entrance flow in a circular tube is the
boundary layer model, which apparently provides a sufficiently accurate solution
for engineering purposes. For the case of flow in the entrance of a porous circular
tube, Hornbeck, Rouleau, and Osterle (ref.- 1) have shown that a higher order of
_approximation, including radial momentum flux but not second derivatives in
the axial direction, does not give significantly different results from the boundary
layer type of model for Reynolds numbers greater than about 500. We shall limit
the present discussion to the boundary layer model. :

The equations of motion are

2
and "
r ‘;—Lz‘ + a—%’r’—) =0 | - (1-2)
'I:‘herboundary con»ditions on velocity ;'1re
“u(r, 0) = ug (see gppendix F).
u(a,z) =0 |
(?a_l: ©.2)=0" (7-3)
v(a, z) =0
' v(0,2)=0
p(0) = po

where uo is the inlet profile (usually but not necessarily assumed constant).
The problem may now be restated in dimensionless form. The dimensionless
variables chosen are : ' )
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U=—
Uo
=2
14
pP= (p—po)
,pug
R=1
a
vz
aug
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(7-4)

where uo is the mean velocity in the tube. In terms of these dimensionless vari-

ables, the problem may be rewritten as

U .U _ _dP_ 8U_ 14U

ViztVsr="aztere TRaR
U  3(VR) _
RaZ+ oR - 0

subject to the boundary conditions

UR,0)=1
UQ1,2)=0
% 0,2)=0
V(1,Z)=0
V(0,Z)=0
P(0)=0

L (7-5)

- (7-6)

(7-7)

The finite difference formulation to be presented here has been given in the
literature by Hornbeck (ref. 2) and Hornbeck, Rouleau, and Osterle (ref. 3). The
difference grid is shown in figure 7-2. Equations (7—5) and (7—6_) are expressed

in difference form as
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L1117 1L LLLLT LIS LI LI LI

R=1 ~k=n+1l
k=n
k+1 +
' T B2 AR
. i
—_—7
R k=1
j-1 ] j*+1
R=0 k=0

FIGURE 7-2.— Finite difference grid for circular tube.

" U, x—Uj Uj.+1,k+1—in+1,k—l_ Pj+‘1,—Pj
Uix="az  tVix 2(AR) . AZ
Uj+1,k+|—2Uj;1,k+ Uj+1,k—l L Uj+1,k+1_'U-j+1,k—l ) _
+ (AR)? YRy 2(AR) (7-8)
and’
Rk(UJ'H,k_Uj,k) Rk+l(U;+1 I\+I_U] A+1) 1+1 k+1Rk+1_ J+t, R
2(62) 2(AZ) + AR =0 (79)

As was found in chapter 3 for the centerline of the circular jet, it is necessary
to give special atténtion 10 the equations at R=0 and to form'a special version
of the equations along the centerline. This may be accomplished by taking the
limit of equations (7-5) and (7-6) as R — 0. Applying L’ Hospltal s rule, these
equations may be wrltten atR=0as

P o | :
iy ax-1 (7-10)

aU

3 -

azZ

and

aU A
ﬁL +26RL =0 - (7-1)
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_Equations (7-10) and (7-11) can be written in finite difference form as -
Uj+1,o—Uj,0__Pj+1—Pj' Uj+1-l—Uj+lv0] _
Uin™"az T az +4[ (AR)® (7-12)
and .
'Uj+1.|+'Uj+1,0_Uj,l_Uj,0+2Vj+l.l___0 (-13)

2(AZ) - AR
Equation (7-12) includes the symmetry boundary condition on U at R = 0 expressed
in dlﬁerence form as Uj+1 1=Ujs1, .1. Equation (7-13) includes the condition
Ve, Z)=

Equanons (7-8) and (7-9) written for k— 1(1)n and equations (7-12) and
(7-13) for k = 0 together constitute 2n 4+ 2 equations in the 2n + 2 unknowns
Uj+1.lu Vj+x.k, and Pj+1-

The system of equations may be considerably reduced in size by using the
integral continuity equation as discussed in the last chapter. Adding the continuity
- equation (7-9) for k=1(1)n and equation (7—13) for k=0 together, the resultmg'
equation can be written in the form

1 L 1
AR (ZU1+1 0+3U_1+Il) szUj-H,k‘_“AR (ZUJ()“" U)|>+2RUJA
fo=1

(1-14)
E.quatioh (7-14) is the finite difference analog of
1
f URdR = a constant - (7-15)
0
The use of this type of equation is discussed in more detail in section 6.1.1.
- It is now convenient to rewrite equation (7—8) as
| Vi 1 1 UL 2
[_ 2(AR) " 2R.(AR) (AR)?]'U“"“" " [ T @FRy? ] Al
. V}', k ) 1 - 1 _1_ . Uj i + PJ'
+ [2(AR) 2R.(AR) ~ (AR)Z] Usroert (AZ) Pior= Y
and equation (7-12) as
. UJ () 4 4 1 . Uj. 0 ; .
[ (AR) ] J+10+[ (AR)? ] 1+1|+<AZ> —T ' 7-17)

459-174 O~ 73 - 14
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- Equation (7-16) written for k= 1(1)n, equation (7-17) for £ =0, and equation
(7-14) now comprise n+2 linear algebraic equations in the n+2 unknowns
Uj+|,k ande+1- i

This set of equations may be written in matrix form as

AR 3AR

S R R — — — Rey Ra 0| | Upno| |S
. 1 .
. BO -Qo . L KZ Uj+1,1 (;bo
1
2 4] B Q, ] ’ A_Z_ Uj+1,2. b1
- ' 1
as B: Qs A7 Ujii, s b2
) » .
a3 B; Qs . KE X Uj+1,4 = d>3
. 0 i U ¢
on_1 B n—1 A7 j¥1,n n-1
1 P.
ap Bn AZ Jj+1 . (_bn ‘
(7-18)
where
: — Uj,;} 4
Bo= AZ+(AR)2
Qo= 4

~ (AR)?
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UJZ,0+P.’ v . . i
¢°==’"TKE?__
S“-—U, o+3(AR) Uj, l+iRkUj,k
k=2 :
and
¥
_ 'j’k ) 1 : 1
%=3aR) 2R.AR) .(aRE. *>0 |
Uix 2
= 2 k>0
Bx AZ+(AR)2 ( )
Vi 1 1
- k>0
Q= 2(AR) " 2R.(AR) (AR): ( )
¢k=U3,+g
AZ

~ Since the matrix of coefficients of (7-18) is not tridiagonal, no unusually

rapid method can be employed, and Gaussian (or Gauss—Jordan) elimination
is suggested (see appendix E). Once the solution has been obtained, another
step AZ may be taken. :

It is strongly suggested that the variable mesh technique discussed in ap-
pendix D be employed in this problem, since by using a fine grid near the wall
where it is needed and a large grid elsewhere, the number of efuations to be
solved can be reduced materially. More details of the application of this technique
to pipe flow problems may be found in reference 4. . .

The representation given here has been shown to be stable for all U=0
in reference 4. If U < 0 then the stability criteria which must be satisfied are

AZ 1
ILH(AR)Z/Q
_ : (7-19)
_1 2IUI '
lV R’ \/zsz

These will, in general, be satisfied only for very small negative values of U.
The truncation error of the momentum equation is of 0(AZ) and @ (AR?)
and for contmmty ofﬁ(AZ) and 7 (AR).



202 ‘ NUMERICAL MARCHING TECHNIQUES
7.1.2 Incompressible Constant Property Flow— Temperature Solution

The energy equation for the problem considered here is

' at  at a2t 10t
pc”( 3z +”ar)“l{,(arﬁrar) _ - 20

Viscous dissipation has been neglected in equation (7—20) but could readily be-
included. Axial conduction has also been neglected.

‘ We shall again consider two commonly used temperature boundary conditions,
those of constant wall temperature and constant wall heat flux. The boundary
" conditions for the problem are

t(r, 0) = to (assumed constant, although again not necessary)
-t(a, z) = ty (constant wall temperature) '
or
at 7-21
k or (a, z) = q (constant wall heat flux) ( )
and
ot ‘
—(0,2)=0
ar (0:2)
The following dimensionless variables are now chosen
. t—t o
T= ; - (constant wall temperature)
to tw
or
. k
. T= ;1- (t — to) (constant wall heat flux)
and v
v=%4 : :
o . (7-22)
. y_ve ‘ .
V ]
M
pacuo
R=-< ‘
a

The temperature problem in dimensionless form then becomes
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oT o _ 1 (8T 19T _
Uz VR~ pr (aR2+RaR) (7-23)
subject to _ . ,
T(R, 0) ='1 (constant wall temperature)
or’
T(R, 0) = 0 (constant wall heat ﬂux)
% 0,2)=0
. (7-24)
and
T(1, Z) = 0 (constant wall temperature)
or '
aT
. 3R (1, Z) =1 (constant wall heat flux)

The finite difference formulation to be presented next is essentially that of
Hornbeck (ref. 5) except for minor changes to conform with the representations
employed throughout this book.

The difference form of equation (7-23) is

T‘+1,k - T‘,k,
—j_AZ—J._, + Vj,k

Tj+1,k+l — Tj+l,k—l

Ui x 2(AR)

Pr

1 [Tj+1,k+1 = 2T,k + Tjar, k-1 L Tivr, k41— Tj+1,k—l] (7-25)
(AR)? ' R 2(AR) ,
This equation applies for k= 1(1)n.
. For R=0 it is again necessary to apply_the limiting process as R — 0 to
equation (7-23), which results in

T _ 20| s
"2 | p~¢ ProR:? ]n:o ( )
Expressing equation (7-26) in finite difference form yields
T; —-T; 4 [T; -T;
Uj,o J+l,[(;Z ),0=E|: j+1,1 }+l,0] (7_27) "

(AR)?

Equation (7-27) includes the symmetry condition expressed as Tjy1,1="Tjy,
atR=0. ' '
" Equations (7-25) and (7-26) may be rewritten in more useful ’for‘ms as
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-V 1 1 Uj x 2
[2(AJR) PR (AR)  (Pr) (AR)Z] Tyt ben +[ AZ T (Pr)(AR)? } Tierx

. Vi 1 1 _Uj Tk .
+ [ 2(AR) 2(Pr)R.(AR) (Pr')(AR)z] Tivikn=""37 (7-28) _

and

[Uj,o 4 —4 Uj,OTj,O (7_29)

a7+ wcanr |t | e | T =iz

If the wall temperature is constant, equation (7—28) written for k=1(1)n
and equation (7-29) for k=0 constitute a set of n+1 linear algebraic equations
in the n+ 1 unknowns T'j;,, . This set may be written in matrix form as

,3(; Q(; . TJ’+1»°-A d’(;

ai B Q) 6| | Tir ¢

o B o Tjin.s i
X =

7 ! ! . !
Xy Bu- Qn—l i T)'+lv"—1 ¢'u—l

a;z Br’z . Tj+1v" ' | d)"z
7_
* where (7-30)

,_Ujo 4
Ah=2ZtPH@R>

___—4
=P ARy

U;.oT;.

=105

" and
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AN iy 1 _ 1

“%=73(AR) " 2(Pr)R:(AR) (Pr)(AR)?
o Uik, 2 : |

Bi= Az T PO ARy (k>0)

v Vik 1 _ 1

Q"“2(AR)‘ 2(Pr)R:(AR) (Pr)(AR)2. (k> 0)
o= LT

The matrix of coefficients in equation (7-30) is-tridiagonal and may be solved by
using the method outlined in appendix A.

If the constant wall heat flux case is to be con31dered the wall temperature
becomes an additional unknown. The necessary additional equation is supplied
by the wall heat flux condition in (7-24) expressed in finite difference form as

R 3Tj+1, n+1 .'_'4'Tj+1~, n + Tj+1, n-1
2(AR)

=1 (7—311) :

where Tji1, 041 is the wall temperature. This additional equation must now be
added to the system of equations previously described and the complete set
may be wrltten in matrix form as )

By Q. 1 Tis1,0 bo
a; B Q Tjii,a oM
o« B O Tye | |65 |
o, Buoi Ly Tjt1,n1 o
a, B, &, Tjviin b
1 —4 3 Tianan || 200R)

(7-32)
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where all symbols are as defined in (7—30). Although the matrix of coefficients in
(7-32) is not tridiagonal, it may be readily made tr‘idiagonal as is discussed in
section 6.1.2, and the method of appendix A may be used to obtain a solution.

" After the solution has been obtained another step downstream may be taken
and the process is repeated. _

It is of course best to obtain the velocity and temperature solutions together,
solving first at each step for the velocity and then for the temperature. If it is
desired to solve a problem in which the temperature develops from the tube

_entrance but in which the velocity is already fully developed (i.e., the Graetz
‘problem); then the velocity solution is, of course, bypassed.

The difference formulation for the energy equation is universally stable. The:

truncation error of the difference form of the energy equation is of @(AZ) and

O((AR)?).

7.1.3 Incompressible Constant Property Flow — Heat Transfer Solution

The bulk (mixed-mean) temperature for the circular tube is defined as

A J ! 2mrut dr
=" (7-33)

b= a
f 2mru dr
. 0
which, in dimensionless form, is

T,=2 f' URTdR ' (7-34)
0 . .

This bulk temperature may be calculated numerically by applying Simpson’s
rule, which yields '

2(AR) N |
— (AR)( 2 4Ujs1, iR T, &

i+ 3 k=1,3.5,7,9, ... .

Ty

]

+ 2U i1, kRiTjsr, k) (7-35)

-1
] Kk=2,4,6,8,... .
where n must be odd; that is, there must be an even number of spaces across
the tube radius. If the variable mesh procedure mentioned earlier is used, then
the integration will have to be done in two parts, each part covering the region of
only one mesh size.
. The local Nusselt number is given by

Nu,==— (7“36)
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where
_ 9t _
h(tw"tb)—kar . (7-37)
0 : -
S —3—:] (2a)
Nuyy=—30 1 r=a ' (7-38) -

bty tw

For constant wall temperature, equation (7—38) can be written in dimensionless
difference form as : '

(_2QZ ) _2[3Tj+1,n+1"4'Tj+1,n+Tj+1,n-|
' , oR 1 R=1 2(AR)
Nu, = = -~ (7-39
“ s T, i Tolw (7=59)
For constant wall heat flux,
h(tw—ts)=¢q : (7-40)
S0
F k(e —tw) .
which may be expressed in dimensionless difference form as '
Nu:| =(—2—) | (7-42)
‘ Jj+r Tb - Tw J+1 )
The mean Nusselt number is computed as
.. 112 . : . .
Num':_J" Nu;de (7_43)
ZJo ,
which may be evaluated using Simpson’s rule as
A 1 N J -1 AZ
Nitw, ( .| +4 Nu.| +2 N, >__
" i+ Zjst e 0 i=,,3,25,7,._. “ i l=2,§;8 “ i+Nu, /) 3
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As discussed in chapter 6, the calculation of Nu|j+1 can only be accomplished
at every other AZ step so that an even number of intervals from Z=0 (j=0)
isinvolved.

7.1.4- Compressible Flow — Velocity and Temperature Solutions

The coupled equations of motion, energy, state, and property relations
for the compressible flow in a circular tube are assumed to be, for a perfect gas,

du, du\_ dp, 19 ( ou\ |
p( 8z+v8r)—_dz+r ar (p. ar) (7-45)
d(pu) ., 1d(prv) _
+ = —_ —,
a9z r or - 0 ’ . (7-46)
e (g Y dp 18, o auyr
per (“az+”ar) “ z+r6r‘<kr 6r)+”“<ar> (7-47)
p = pRt ' ' (7,—48)
¢ s Ve . ‘
= p(t) = po (t—o) (7-49)
o
K=k =k (£) (7-50)
.

As before, we assume a power law relationship with temperature for © and k.
The velocity and pressure boundary conditions are

u(a,z) =0

u(r, 0) = uo (again assumed constant, although a function of r is
entirely permissible; see appendix F)

%(0,7.)=0 : o (@8
v(a,z) =0 | |

v(0,2z) =0

p(0) =

The thermal boundary conditions to be considered are, as before, constant
wall temperature and constant wall heat flux
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t(r, 0) =1to
at
py 0,2)=0 ) '
and | ‘ ' (1-52)
' t(a, z) = t, (constant wall temperature)
or, ' i
at .
k a (a, z) = g (constant wall heat flux)
The dimensionless variables for this problem are
7=
polLoa?
u r
U= . R= -
_ pova —
V= = (7-53)
t m '
T —_ * = I
to ® Mo
p P
P = — ¥ — 7
Do p Po

Employing these dlmensmnless variables, equations (7—45) to (7-50) may be
written as

(02 2U) e L 1 (0 )
P (UaZ+VaR ~mzaz P RaR W Ror (54
I(p*U)  13(p*RV) '
5z TR R O - ()
*_aT)y—idP 1'(*__)
pr(viz+v & y Vazt®orak \FRaR 4
| . .
+ (y—1)M3u* (a—g> (7-56)
P=p*T (1-57)

p*=(T)/ - (7-58)
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k*=(T)v - (7-59)
where My = uo/ Vy®ts is the Mach number evaluated at to, and Pr=ﬂocp/ko

is the Prandt]l number evaluated at the same conditions (the inlet conditions).
The boundary conditions on velocity and pressure are. in dimensionless form.

U1,Z)=0
UR,0) =1 B
% (0,2)=0 -
- (7-60)
Vil,Z)=0 :
V(0,Z)=0
P(0)=1
The dimensionless thermal boundary conditions are .
T(R,0)=1
oT : .
5E(0,Z)-0
" and
‘ ) , , . (1-61)
T(1,Z2) = -t-"i (constant wall temperature)
_ 0
or o |
k* or (1,2) = g9 (constant wall heat flux)
oR ofo

A finite difference representation to this problem must now be selected. The
representation given here is based on that employed by Walker (ref. 6) for what
he called the “post-boundary-layer region.” The main difference from Walker’s
formulation is that, in his equations, the degree of implicitness is arbitrary; in the .
present formulation, the equations are fully implicit in an effort to be consistent
with the representations given elsewhere in this book. The actual numbers gen-
erated should differ very little. The difference representations of equations
(7-54) to (-59) are

Uper,x — U;, '
Pl [Une A,

Ujia, k41 — Uj+1,/.-_1] _ 1 Py — P
"2(AR) YyM2  AZ
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- Uier, kor — 2Ujaq e + Ujr, k1 +_1_Uj+1,k+1— j+1,k—l]
Bk (AR)? Ry Z(AR)

* * . L =U.
["5‘, k1 “j,k-u] [UJ+1»'~'+1 J+1,k-l]

2(AR) 2(AR) (7_62)

* '[Uj+l,k+l_ j,k+l]+ " [Ujﬂ,k“Uj,k].
- P 2(AZ) ik |7 2(AZ)

- HEE @ Gasd
<”’ "2‘4"“) ]
) (L)

+ ;+1 k+1Rk+1VJ+l k+t — H, ARkI/,+1 k)
(Rk+1 + R,\> ( AR

7}'+l,k_Tj,.k Tj+l,k+l*"Aj+l,k—1 _y—1. (Pjﬂ—Pj)
'*_pf’f'k[U""'——Az—Jer"‘ 2(AR) ]_ y Uz

l {k* [Tj;l,k+l_27}+1,k+Tj+l,k71
* P (AR)?

+ 1 Tj+1,k+1»-_\ Tj+1_,k—1 [k;: b1 —kﬁk_l]
Ry 2(AR) ] 2(AR)

X I:Tjﬂ,kﬂ _Tjﬂ’k—l]}
. 2(AR)

Uj, k1 —ij,k—liI I:Uj+1,k+1 - Uj+|,k—1]
2(AR) 2(AR)

+r=vms, |

(7-64)
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"y‘\' .

Pj+1 = pf“’ijH,k - (7-65)
Wor e = (Tian,6)d , ~ (1-66)
K o= (Tio,0) 0 | - (7-67)

The complicated form of the continuity equation (eq. (7—63)) is required,
as in the preceding chapter, in order to obtain a set of linear difference equatlons
which can be solved without recourse to iteration.

Special forms of equations (7—62), (7—63), and (7-64) are required for R=0.
These may be obtained by first taking the hm1t of equations (7—54), (7—55), and
(7-56) as R-—) 0. ThlS procedure yields

. a Z = 71:4%, 3—123 + 2 g—zR% (168
p*U'a—T: = T U 3; + = k*.f%T . (1-170)

. These equations in »ﬁnite difference form are, for (7—68), . N
o ()Ul 0! JHZ\Z Uo _ W{/ﬁj PjX;Pj +au, {%%L"] (7-71)

Equation (7—63) gives the correct finite difference form for (7-69) when written for
k=0. For equation (7-70), the difference form is

]1j+1,0_71j.0__"}’—1' Pj+1_Pj 4 Tj+1‘1_‘Tj+1,0 -
Uio P o

s —_ ¥

_ p;foUJ"" AZ 0% ’ AZ + Pr kj’o
The finite difference forms of the momentum, continuity, and energy equations
written for £=0(1)n now include 3n+ 3 or 3n+4 unknowns Uj¢1,k, Vjs1,k, Tier,x,
and Pj.,, depending on whether the constant wall temperature or the constant wall
heat flux condition is used. Before considering a possible reduction in this number,
it is convenient to rewrite equations (7-62), (7-64), (7-71), and (7-72) in more use-

ful forms. Equations (7—62) and (7-64) for k=1(1)n become

|:_~ P;:,‘.Vt,',l.- _ _"L;fk I'.l";,gk #';.ckﬂ —'U‘;,‘k—l] U + [Pﬁ,‘.Uj,k
2(AR) ~ (AR)* " 2(Ry)AR 4(AR)? vtk AZ

+
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%
2#;.A-]U. : [P, Vi Mk e~ Py
JH1,k

(AR)? 2(AR) (AR): 2(R:.)(AR) ~ 4(AR)? ]Uj+1,k+1

1 P; ) p;.(kUik
+ [vMﬁ(AZ)] Pin= YWMAZ) T AZ

+

(7-73)

<+

[_ P,*AVJ' k kJ*I. k;:,‘. + k;jk+l - k;fk—l] T,
2(AR)" (Pr) (AR)?*  2Ri(Pr)(AR) - 4(Pr)(AR): AR

P;f,‘.Uj,;.-+ 2k}
AZ (Pr)(AR)] JrLk

* % i
i,k kj,k+l kj,k—l
- Tj+1 W+

2(AR)  (Pr)(AR)®  2R.(AR)(Pr)  4(Pr)(AR)?

. Ui vor—Us; 1 :
+ {(y—l)MSp-;'fk [M]} Uyttt

* I *
pj,l_-Vj.k kj,k

k*

4(AR)?

 [Upker—Uje (1—y)U
_ > % Jok+1 Jok—1 Y)Ujk )
(=M, | 242 ]}U’*'“*'+[ S| P

_ =Nk piUinT
yaz) AZ

(7-74)

Equations (7—71) and (7—72) for £=0 become

rpr U, Au* du* 1
[ EEANE L 1’02] Ujrr,0+ [—(A—RJT:_] Ujr1,1+ [m] Fier

* UZ P
J 0-j,0 J _
=~az ‘ez )

and

P;oU o 4k’ — 4k} (1—y)Uj,o
[AZ +(Pr)(AR)2]T’“°+{(P)(AR)]TJ*"‘+[ YAZ ]P"*‘

_PioUiolie  Pi(y=1)Ujo - (7-176)
AZ v(AZ)

Equations (7-73) and (7-74) written for k=1(1)n along with equations
(7-75) and (7-76) for k=0 now comprise 2n+2 equations in the 2n+3 or 2n+4
unknowns Ujii,k, Tj+1,k, and Pj.1, depending again on which temperature bound-
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ary condition is considered. For the constant wall temperature condition, we are
one equation short of having a complete set of equations. This additional equation
may be obtained by adding together equation (7-63) written for all £=0(1)n.
This resulgs in the following:

n R+ R ) . Pivi Tjsr,km
2 <—+"2—"_) [p;:kHUjﬂ,kH+P;:k:Uj+1,k+P;:k+1Uj,k+x (__ - >

P; T}, ka1
-~ \ Pivy  Tir,i\7 AR
+pfl< U., (_J___._’_)] —_—
‘ APENP T T /) 2

Ay . AR
—2—) (p;‘j,mU,-,mfp;ij,-,k) 5 (7\—77)

Equation (7-77) along with equations (7—73) and (7-74) for k=1(1)n plus equa-
tion (7-75) and (7-76) for k=0 now constitute a set of 2rn+ 3 equations in the
2n+ 3. unknowns Ujs1,k, Tjs1,x, and P, for the constant temperature case. This
set may be expressed in matrix form as '



215

CIRCULAR TUBE

(8L-2)

s Mg |9 '@y — — MMM ‘g g — — g g g
o wHy e .‘ g o : 0 “A
T.?v _1:._+.Q. _lﬁb quﬂ _l_“Q _.l“d. . _|=9| _I:Aa

i B u “Uotd e A

ol || | o w oW A= A
| = el x| W o wo

:Qv, ' _+.\\~ ufy, ’ ) :Q o
1-ngh 1—u ._+.sb 1-ujy Ll § S o B )

g @1+l N T : ) g w
_av _._+.s\~ 173 . . .. Lc _Q o
ﬁv :._+.xb oy, : . | ‘, "% :Q

459-174 O - 73 - 15
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where
. _ P;j oUio 4"“';,( 0
Bo="37 T AR
_4“;?0
. = (AR)?
o =”—'P;kaj,k_ ’U“J?‘j’f , Mi)l:k p‘ﬁkﬂ _,L;jk—l .
KT 2(AR) (AR)* " 2(Rx)(AR) 4(AR)?2
_p;ijfv"' 2“;:1\‘ . ;
Be="37 FTarz *>0
Qk_ — p_;'j ij,k _ I‘L;jk'z _ I“‘_;ljl: _ ,‘L_;'f k+1 - l-L;'j]‘_l (k > 0)
2(AR) ~ (AR)>  2(R:)(AR) 4(AR)* Y
S
™ YM3(8Z)
y = P] + J ’\Uj K
b=z T Az
o p.;fOUvj»O 4k;,‘0
Ao="az T PN(aRy
Q = —4]%3!:0 S
°= (Pr)(AR)?
(’x,:_pj kV k;jk 4 k;jk kJ*Hl ;*1.1
K 2(AR) (P’r)(AR)? 2R, (AR)(Pr) ~ 4(Pr)(AR)? .
p* U, 2% *
' J k7j,k ik .
A="az Trrr *0
Q= J*kVJ A ' | kj*ln k* l':kﬂ_kzlf—l (k > 0)
*~ 92(AR) . (Pr)(AR)* 2R, (AR)(Pr) 4(Pr)(AR)?
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, Uj, k01 = Uj, k-
Vim =i, [Pt

,_ (=Y.
=75 (a7)

,_(I_Y)Uj.k JAU,ATJI.
$%="Tmz) T Az

_Ripfy(8R)
o 4
B (Bl o ARy (k>0)
~Rip*,U, o (AR)

E;= 4(T; o)

B <RA.+Rk+,>p“ U, .(AR)
L=

5 T (k>0)

2 Jo k41

+
6= % (BtRes) (7, v, ) 400
k=0

(AR)

n (Ry+Ris
S: 2 < k 2 k l) pj’ljl\‘-f-lUj I‘+I+p_} k Js A)

For the constant wall heat flux case, Tj.1.n+1 is also unknown. The necessary
additional relationship is the heat flux condition at the wall. In finite difference
" form this is :

(7—79)~

L* <3Tj+|.n+1_4‘Tj+l,n+Tj+l.n—l>=ﬂ_
Jonsl 2(AR) koto

As in the parallel plate channel case, the use of k* i1 18 to ensure linearity of the
difference equations. The error induced should be relatively small ifs the mesh
size in thé Z-direction is kept small.

The equation (7-79) increases the size of the matrix equation by one, and the
resulting matrix is
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where all symbols are as defined with equation (7-78) except

0= 2qa(AR)
. _k;'h. n+1k0t"

Any standard matrix inversion or equation solving routine such as that
given in appendix E may be used to solve the set (7-78) or (7-80). As mentioned
many times before, a refined mesh near the wall is of considerable value (see
appendix D). _ ‘ '

As in the parallel plate channel case, difficulty will be encountered when the’
average Mach number in the channel nears 1. For a detailed discussion see
section 6.1.4 and Walker (ref. 6). Walker has shown that these equations are
stable for all U = 0 (except possibly M =1) and for all mesh sizes.

The truncation error is of @(AZ) and O ((AR)?) for momentum and energy
and of O (AZ) and O (AR) for continuity. For a discussion of the error inherent
in flow rate for confined flow problems, see appendix C:

7.1.5 Compressible Flow—Heat Transfer Solution

The heat transfer formulation for the circular tube is virtually identical to
that for the parallel plate channel presented in section 6.1.5, so only the differences
and final results are presented here. '

The bulk temperature in the cylindrical geometry is given by

f 2mrputdr
0

=" (1-81)
j 2nrpudr -
0
or, in dimensionless form,
1
Tb=2f p*RUTdAR (7-82)
0 ) .
The average Mach number is given by
M =Lf" 2rr ———dr . (7-83)
ave 7Ta2 o @‘ 5
or,in terms ofdimensionless'qpantities,
: 1
M(u;(f: 2M0 'ﬂ]—dR (7_84')

0 \/T
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From section 6.1.5 it is recalled that the adiabatic wall temperature is given by

t,,w=t,, 1+\/ r(

or, in dimensionless form, .

T,,,,,=T,, [ 1+VP (“/

) M,’,J

1 ,
2 >Mllbe

(7-85)

(7-86)

The dimensionless adiabatic wall temperaturé can now be expressed for the

cylindrical geometry as

r=(2 ], eRUTaR )| L2V DM (f, Y]

(7-87)

The same expression derlved for the local Nusselt number in chapter 6

also applies here. Itis

T

B " Nu,=

aRR]

an

(7-88)

The value T is specified for the constant wall temperature case and obtained from’
the temperature solution for the constant heat flux case. -
The finite difference form of equation (7-88) is

2(3Tj+l RES|

—4Tj+1, u+ Tj+|‘n—1)

" Nu,

where Ty | e

T

e

r=1.3,5,7,...

n—1

+2 > Pl ReUsa, /\Tj+1 A){1+

A=2,4,6,8,.

R

X1 4, T RS
[ k=1.3,5,7, ... (TJ'“"\‘)W .

In equation (7-90), n must be odd.

w1 2(AR) (T, i —T

+2

j 1=[2%)_]<'4 2 P, AR Ui, “TJ“ k
+1 - _ K

(1w|j+1)'

obtained by putting equation (7-87) in difference form, is

n-1’

k=2,4,6,8, ...

RiUjia, k

(Tjur, k)2

2VPr (y—1)M; (AR)?
9 .

i

(7-89)

(7-90)
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As in the incompressible case, the mean Nusselt number is given by

-~

, .
Nun"':’lJ» Nllde (7_91)
Z Jo
or, in difference form,
. 1/ j N - N ' N AZ
Nu,y, = <Nuz +4 us| +2 - Nu:| +Nu, )_
L LI S :;,25‘7, ! i=3,4,26,8,..- i /3

(1-92)
where Nu,,| is evaluated at every other AZ step, starting from the inlet.
. J+1 :

7.2. OTHER PROBLEMS WITH A SIMILAR FORMU‘,LA_TION
7.2.1 Flow in Circular Tubes With Porous Walls

v

In order to accommodate the consideration of porous walls in the circular
tube, it is only necessary to alter the boundary conditions and equations of con-
straint from those presented for the impermeable wall cases earlier in this chapter.
There are also, of course, marked similarities to the parallel plate channel porous
wall cases presented in section 6.2.1. Only the differences from already presented
formulations and the final results will be presented. The configuration is shown
in figure 7-3. The finite difference giid is identical to that shown in figure 7-2. »

Hornbeck (ref. 4) and Hornbeck, Rouleau, and Osterle (ref. 3) have presented
detailed formulations and solutions for the incompressible flow problem, and
the present formulation for thie incompressible case is based on these investigations.

Considering first the incompressible case, the formulation is as given in section
7.1.1 except that the boundary conditions (7-3) become

F1GURE 7-3.—Problem configuration and coordinate system for circular porous tube.
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u(r, 0>) = uy'(see appendix F)
u(a,z)=0
9 0,2)=0
ar (7-93) -
v(a, Z) =Uw(z)
v(0,2)=0
p(0)=py
or, in dimensionless form,
U(R,0)=1
U(1,Z)=0
Fs
(7-94)

ol
m(O,Z)—O

V(1,Z)=V.(Z)

V,Z)=0

The equation of constraint (7—14) in dimensionless finite difference form
becomes, for the porous wall case, ‘

1 3 il 1 3
AR (ZU_]'+1,0+Z‘U_]'+],] )+2 RyUju1 x=AR <ZUJ\0+ZUJ-I )
: =2

Az

+ 3 RUji—
l;: KYj.k AR

Rus Vj+1. n+1 (7_95)

If Vigy,pea is a spéciﬁed function of Z, then the matrix equation (7-18) can
be employed directly, with the only modification a redefinition of S in the right
column vector to

A u A |
Sz(—“4R)UJ,()+3(AR) Uj,1+2 R;;Uj,k_' 4 Vj+|_,,'+| (7—96)
k=2 :

4 ‘AR
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I Vi1, usr is a function of pressure (e.g., through Darcy’s law),
Vj+1,n+1=APj+1 (7_97)

then an additional coefficient must be added to the matrix in the upper right
corner. The new matrix equation is

B 57 | (U] |0
o g i | (s o
oy B: L ’A_IZ‘ JUjs.s ¢'2

ay Bz (1 | A_IZ‘ X lUj+|.4‘ = ¢§,

a,,,:, Buor Qo —AiZ— Ujiion b

an B ﬁ P bu

(7-98)

where all symbols are as defined with equation (7-18).

The modifications to the compressible flow problem presented in section
7.1.4 are similar. The thermal boundary conditions are assumed unchanged, -
and the velocity and pressure boundary conditions (7—51) become A
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ula,z)=0
'u(r,0)=u(,
gir‘(o,z)=o'
: (7-99)
v(a,z)=vw(z)
v(0,2)=0 .
p(0)=po
. or,in dimensionless form,
U(l,z)=0
UR,0)=1
% 0,2)=0
~(7-100)

V(1,2)=Vu(Z) -

V(0,2)=0

P(0)=1

. The equation of constraint (7-77), when modiﬁéd to account for the porbus
wall effects, becomes : :

" (Rii+ Ry ' P';rn Y
’;)<_’_ B )[p;?l-\.+lUj+l,k+l+p;ikUj+1.k+p:k+l.Uj,k+l( I_J)j - T he )
‘ Pji Tjx\]/AR
o . J+1 L+t k an
. o Ui (T )]( . )
(AZ)W i1, a1 P & (Rk+l+Rk)
+ : =3 (Rt
Tj+1.n+| ‘ ;0 2
AR\
X(pf i1 Uik 05, Usk) (—2—> ~ (7-101)

As was indicated in section 6.2.1, the only problem which can be readily
considered here without sacrificing the linearity of the difference equations is the

2/

’
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7
specified suction or injection velocity and specified wall temperature case. For
some suggestions on possible treatments of other boundary conditions, the reader
is referred to that section. If V1, i1 (Vo(Z)) and Tjis, w1 (Tw) are specified, then
the only change in the formulation of section 7.1.4 is in the coefﬁcwnt G in the
matrix equation (7—78) which becomes

o [ (Rt Ry ' (AZ)VJ+, ot
G—,:l‘go(_— 9 ) P;ijUJ I\+1+p_, k Uj, ) ]2P +—_Tj+1,n+l | (7-102)

This completes the formulation for the porous wall case.

7.2.2 ,Develqping Confined Free Convection Flow in a Circular Tube

The extensions of section 6.2.2 to a circular geometry are relatively straight-
forward. The problem configuration is shown in figure 7-4.

, ' Heated
! oo o wall,

UO‘

) ' N

FIGURE 7-4.—Problem configuration and coordinate system for heated vertical circular tube.
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The fundamental equations are

du , du\_ [(duw 1du\ dp _
P(uaz+uar)—,u<ar2+r r) ax+png(t to) | (7-103)
(g0 )y (B L0t -
Pcp<uaz+var>—k(ar2+rar) (7-104)
du  19(wr) _ . ~
6z+r or =0 o - - (7-105) .

where p is the difference between true static and hydrostatic pressure, g. the
z-component of the acceleration due to gravity, and B the coefficient of volumetrlc
expansion. The boundary conditions are

u(r, 0) =uy

u(a, z)=0
u _
5&7(0, z)=0
v(‘O,‘ 2) =0
v(a, z) =0 T ' (7-106)
, t(a, z) =ty
t(r, 0) =1t
at :
5, (0,2)=0
. p(0)=0

Using the dlmensmnless variables defined in (6-104) (of course substituting
R for Y and Z for X), the fundamental equatlons and boundary conditions become
in dimensionless form ‘

U U _30, 12U_dp '
U 7-107
UVaz*Ver= ok "RoR &z (-10m

oT . T _ 1 (&T _T) »
Uﬁ”fﬁ—h (aRz+R R (7-108)

14(VR) _ o 3
2o | (7-109)

subject to
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U(R, 0)=U,
Uit,z2)=0

aU -
R (0.D)=0

v, Z)=0 ,
va,Z)=0 | | (7-110)
s T(1, 2) =1
T(R,0)=0

aT B
R (0,2)=0

P(0)=0

_As in the parallel platé channel case the two parameters in the problem are the
Prandtl number and U,. As indicated in section 6.2.2, this set of parameters actu-
ally results.in a complete formulation for combined free and forced convection.
The reader is referred to that section for details.
" The finite difference grid employed is identical to that shown in figure 7-2.
The finite difference form employed for equation (7—107) is

Uj+l, I\'+1_Uj+1,k~|

2(»AR)

Ujﬂ,l;-Uj, y

ij/\' AZ I‘+Vjv k

P —P; +Uj+l, kit =2U 1kt Ujin, k1
AZ ~ (AR)?

+‘ Uj+|, L'+1_Uj+|, k—1
2R (AR)

+ T (>0)  (7-111)

A separate form for k=0 may be readily obtained by letting R — 0 in equation
(7-107) and applying L’Hospital’s rule as necessary. The resulting differential
form is ' ' '

U dP | 9*U »
4 YA R:()_._§+2 dR? R=0+ d R=0 (7-112)
or, in finite difference form, emp'loying symmetry,
Y § P.. —P. Ui, —U;
Uj,() Uj+1,A|>Z S0 _ J+AIZ J +4 < J+l(‘AR)2J+l‘“>+Tj+l,U (7_113)

The finite difference form for equation (7—108) is equation {(7-25) for k£ > 0.and
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equation (7-27) for k=0, while the finite difference form of equation (7-109) is
“(7-9) for k> 0 and (7-13) for k=0.

As indicated in the parallel plate channel discussion in section 6.2.2, the en-
ergy equation is solved first at each downstream step by solving the matrix equation
(7-30), which is tridiagonal. The momentum equation is solved next. The matrix

 equation resulting from equation (7-111) written for k=1(1)n and equation
(7-113) for k=0, along with the equation of constraint (7—14), is identical to the
matrix equation (7—18) except for the following change in the definition of ¢: -

Uz .+ P; SR SN
br= T'*‘ka (k=0) v (7-114)

The continuity equatlon (7-9) for &£ > 0 and (7-13) fork= 0 may now be solved for
Vi1, x+i and another step taken downstream. :

- By analogy with section 6.2.2, it may be reasonably assumed ‘that the solution
is stable for all U = 0. The truncation error is the same as in all other conﬁned flow
‘cases considered in this chapter, @#(AZ) and @ ((AR)? ) for momentum and energy
and O (AZ) and O (AR) for continuity.

7.2.3 Flow in a Circular Tube With Body Forces

See section 6.2.3 and especially section 2.3.4 for discussions which apply
- equally well to the presently considered geometry. :

7.2.4 Entrance Flow and Heat Transfer in a Concentric Annulus

In this section, we depart from the parallel treatment given the parallel plate
‘channel and the circular tube through chapters 6 and 7. We consider a configura-
tion unique to the circular geometry, the concentric annulus. The configuration is
shown in figure 7-5. _

Only the incompressible case is considered here, but the extension to com-
pressible flow is straightforward, based on earlier sections of this chapter.

7.2.4.1 Incompressible constant property flow—velocity solution.— The fun-
damental equations are the same as those that apply to the circular tube (egs.

(7-1) and (7-2)). The boundary condltlons are :

_u(r, 0) =uo (see appendix F)
u(a, z)=Q
u(b, z) =0 o
o (7-115)
via, 2)=0 :
v(b, 2)=0
p(0) =py "
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r

LSS LSS L

— Up—

FIGURE 7-5.— Problem configuration and coordinate system for concentric annulus.

—— OO

‘Employing the dimensionless variables (7—4), the complete problem fnayb then
be stated in dimensionless form as

2 |
U£Q+V_Q=_£+M+lij (7-116)

oz dZ " 9R* " R 4R
oU  a(VR) _
51“?—04 - (7-117)
U(R,0)=1
U(l,Z)=0
U~<Q,Z>=0
a
(7-118)
V(,Z)=0
_V(Q,Z>=0
a
P(0)=0

The finite difference grid employed is shown in figure 7-6.

The finite difference forms chosen for equations (7-116) and (7—117) are those
used for the circular tube (eqs. (7-8) and (7-9)). No special version of the equa-
tions is necessary for R= 0. since this point is never reached. v

One unusual aspect of this problém is that the continuity equation (7-9) must
be written at the inner wall (k=0) as well as at the interior points. It has not pre-
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viously been necessary in our consideration of confined flow problems to write a
difference equation at a solid—fluid interface. In all of these previous problems.
however, there has been a line of symmetry at £= 0, whereas the present problem
possesses no such line of symmetry. ’

Adding together equation (7-9) written for k=0(1)n. we obtain the equation
of constraint for this problem in the form

E RI;UJ'-H,/;:E R:U;. »: (7-119)
A=t =1

With-finite difference equation (7—8) written for k= 1{1)n and the equation of con-
straint (7-119), we have a complete set of linear algebraic equations in

Uj+1.|. e e e e s Uj+1.n 3nde+1-

The set may be written in matrix form as
/

Rl RZZ RI{ - - Rn—] RII 0 Uj+|’ 1 S
. 1 "
Bl Ql : : KZ Uj+1. 2 (;bl
: 1
28] ,32 Qz ' A_Z Uj+1.3 ¢2
) . . 1 .
s By W ﬁ Ujir.a o
- X — = __
1
Oy ,Bn—l Qn—l KZ Uj+1. n d)ll—l
1 .
oy Bn ﬁ Pj+l ﬁbn
{(7-120)

‘where all symbols are as defined with the matrix equation (7-18), except that
S=S R,
. k=1

_Any standard method, such as that of appendix E, may be used to solve the set
(7-119).
The difference form of the continuity equation (7-9) can now be used to find
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////////////le//lj////////////

R k=n+1
k=n
k+1 TF
[e-AZ»1 AR
v |
—_—7 N
R k-1
SRR I RS
R=bla’ ’ k=0

’/7/{///7//////////////////////////

FIGURE 7-6.— Finite difference grid for concentric annulus.

Viii. r+1, working outward from the inside radius. Another step AZ downstream
may now be taken and the process repeated.

It might be noted that since fine grid sizes are necessary near both walls,
the complications introduced by changing mesh sizes twice in the radial direction
may outweigh the gain in computing speed which using the variable mesh tech-
nique of appendix D usually provides. A uniform smal] mesh size over the entire
radial span may thus be most convenient.

7.2.4.2 Incompressible constant property flow—temperature solution.—In
order to avoid excessive complications because of the many combinations of
thermal boundary conditions possible, we consider only the constant wall tem-
perature case here, but allow the inner and outer walls to be at different tempera-
tures, each also different from the inlet fluid temperature (assumed uniform).
Other situations such as constant heat flux (possibly different on each wall),
combinations of heat flux and temperature conditions, insulated walls, and
variations involving axial dependence of the thermal conditions, all can be readily
considered with a few minor changes.

The energy equation in the axially symmetric geometry is given by equation
(7-20). The thermal boundary conditions are

t(r, 0) = to
t(a,2) =tow | (7-121)
t(b, Z) = tiw

459-174 O - 73 - 16
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232
We choose the following dimensionless variables:
— t—1to
Low — to
and
U=—
Uo
e (7-122)
v
z
T paiu,
R=—
- a
The complete problem in dimensionless form then becomes
oT | oT 1 (T 14T ‘
UV k=7 R RIR) (i-123)
T(R,0)=0
T(1,Z)=1
T(é ’ Z) = Pr— = Tiu'
tow - to

a

The finite difference form used for equation\(7-123) is equation (7-25);
and ,when equation (7-25) is written for k=1(1)n, the set becomes in matrix

form
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B Q Ty,
Y Tjii.
az B Qs T4,
.a;l—_l B;z—l Q;l—l Tj-H

a;l ’ ,B;z Tj+1,

where all symbols are .as defined in equation (7-30).

, N—1

233
o1 — ;T
$2
é3
$u
én— Qs
(?—124)

The set (7-124) is tridiagonal and the method of appendix A may be employed

in its 'solution. K

. 7.2.4.3 Incompressible constant property flow—heat transfer.—For brevity
we again consider only the constant wall temperature case, allowing the inner

and outer walls to be at different temperatures.
" The bulk temperature for the annulus is defined as

J 27rut dr
b

tb - a
J 27mru dr

b

which in dimensionless form is

. 2 !

= 1— (bz/az) bla RUT dR '

T,

(7f125)

(7-126)

The dimensionless bulk temperature 7, may be evaluated by using Simpson’s

rule, which yields
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2(AR)

L L T3 = o]

( 2 4-Uj+1,kRij+1,k
k=1,3,5,7,9,... '

n—1

-+ E 2Uj+l.kRij+l.k) (7-127)

where n must be odd. .
The local heat transfer coefficient from the inside wall is

hiu;(tiw - tb) = (7_128)

and from the outside wall : i

dat
hOw(tOw - tb) =k E_ (7_129)

r=a

The definition of local Nusselt numbers depends on the characteristic lengths
chosen. Since the radius b is assomated with the msnde wall and a with the outside
wall, we define the following:

2h b

.Nu,'z.= T ‘ ' (7-130)
and
Nuo, = 2";;““ (7-131)

Using the expressnons (7- 128) and (7-129), the Nusselt number expressions
become ‘ :

Nu,, = s ° (7-132)
lz (tlll" )
and
2 — (a) .
ar r=a
NU()z (t()w lb) (7_133)

’

or, in dimensionless terms,
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baT '
230 | n
Nu;,= =blu (7-134)

To—T,
and
aT aT
Nuso: = 2Tif_"T=b' _: e (7-135)
In finite ;iifférence form\, these expressilons are
| '—2(b/a)["’3T"+"°;f§§‘)"_“*”]
Nuis],, = T =Tl (7-136)
(note that Tj1.0=T}y) and
: [3Tm it = 4T g1, w+ Tisr, ]
- Nug: |, =— Z(Tff) (7-137)

J*l
(note that Ty, ne1= Tow=1). The average values of these local Nusselt numbers
may be readily obtained by using equation (7—44).

7.3 EXAMPLE PROBLEM—INCOMPRESSIBLE FLOW IN THE
ENTRANCE REGION OF A CIRCULAR TUBE

The formulation of section 7.1.1 for the incompressible constant property
velocity field has been solved by Hornbeck (ref.-2) and some of the results are
presented here as an example.

The variable mesh technique discussed in appendix D was employed, with
the radial mesh size AR=0.1 in the region 0 <R < 0.8 and AR=0.025 for 0.8 <
R =1.0. The axial mesh size was increased progressively from AZ=2.5X10-5
near the entrance to AZ=1.0X10-% far downstream. The actual mesh sizes
used in the various regions were AZ=2.5X 10 in the region 0 < Z<2.0X 104,
AZ=1.0%x10"% in the region 2.0X104<Z=<1.0X10-3, AZ=5.0X10"4 in
the region 1.0X 103 <Z=<1.0X10-2, and AZ=1.0X10-3 for Z>1.0X10-2
These mesh sizes were established by extensive: numerical experimentation.

‘Figure 7-7 shows the axial velocity development as a function of Z for various:
radial positions, and these results are presented in table 7-1.

" In reference 2, comparisons of the numerical solution were made with the
solutions of Campbell and Slattery (ref. 7) and Langhaar (ref. 8), both of which
are solutions based essentially on integral techniques. :
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"Dimensionless
radial position,
R
0

2.0—

Dimensionless axial velocity, U

; L1 S N I [ | [
o .02 .04 .06 .08 .10 12 .14 .16 .18 )] .22 .24
Dimensionless axial position, Z . .

}
FIGURE 7—-7.—Dimensionless axial velocity development for various dimensjonless radial positions.

~ These comparisons are shown in figures 7-8 and 7-9. All three solutions
yield virtually identical results for the pressure drop, shown in figure 7-8, but
significant variations among the -three solutions arise for the velocity results.
The solution obtained by Langhaar was based on a linearized momentum equa-
tion, therefore the solution of Campbell and Slattery appears to be more ac-
curate and is the main basis for comparison with the numerical solution. Almost
all of the differences between the numerical solution and that of Campbell and
Slattery can be attributed to the use of a two region model (flat central core and
boundary layer) by Campbell and Slattery, whereas the present numerical solu-
" tion uses a continuous model over the entire region. The two region model! with
" a flat central core results in the centerline velocity (shown in fig. 7-9(a)) increasing
less rapidly than the numerical solution, while for R=0.6 (shown in fig. 7-9(b))
the ve'locityvincreases more rapidly than the numerical result. At R=0.9 (shown
.in fig. 7-9(c)) the results are virtually identical since this radial position is within
the boundary layer region of Campbell and Slattery’s solution for almost the
entire region. '
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F1GURE 7-8.— Dimensionless pressure as function of dimensionless axial position.

Table 7-11 shows a comparison of the results of all three solutions for the
kinetic energy correction factor F ., and the entrance length Z.
The factor F . is defined as

FA'eZPfd+%;BZ _ (7-138)

where Psq is the dimensionless pressure sufficiently far downstream to assure
that the flow is fully developed, and Z is the corresponding axial distance (see
Goldstein, ref. 9). The entrance length Z, is defined as the Z-coordinate at which
the value of U on the tube centerline reaches 99 percent of its fully developed
value of 2.0000. Despite the differences between the velocity profiles of Langhaar
and the numerical solution shown in ﬁgﬁre 7-9, the values of Fy. and Z. for
_these two solutions are in excellent agreement. The longer development length
found by Campbell and Slattery apparently reflects the slower velocity develop-
. ment at the centerline which results from the flat central core assumption.
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Numerical solution

La . R Campbell and Slattery
O Langhaar .
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Dimensionless axial position, Z
(a) Radial position, R=0.
(b) Radial position, R=0.6.
(c) Radial position, R=0.9.
FIGURE 7-9. —Dimensionless axial velocity as function of dimensionless axial position.
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TABLE 7-11.—COMPARISONS OF DlME_NSlONLESS ENTRANCE LENGTHS AND KINETIC ENERCY
CORRECTION FACTORs FOR CIRCULAR TUBE

Dimensionless Kinetic
entrance correction
length, Z, factor, Fke

Numerical solution........... 0.226 - 1.140

Campbell and Slattery...... .244 1.090

Langhaar.........ocoocevenenn.. N 1227 1.140
1
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RECTANGULAR » CHANNEL

Flow and heat transfer in the entrance region of ducts of noncircular cross
section presents a difficult three—dimensional problem. To the author’s knowledge,
only one entrance region fluid flow solution by finite difference methods is avail-
able, that of Carlson (ref. 1). This solution deals with the incompressible entrance
flow in a square duct. A finite difference solution for the thermal entrance problem
in rectangular ducts of arbitrary aspect ratio has been obtained by Monigomery
and Wibulswas (ref. 2). . i

At present, to the best of the author’s knowledge no solutions, by finite
difference or otherwise, are available for the simultaneous development of velocity
‘and temperature in the entrance of a noncircular channel (excepting of course
‘the parallel plate channel). One of the most perplexing problems in the solution of
noncircular channel entrance region problems is that the use of the usual order
of magnitude analysis does not result in a usable and complete set of equations
in the various unknowns. Since the available work on the rectangular channel
illustrates these difficulties very well, we shall concentrate on this geometry in
the present chapter.

8.1 ENTRANCE FLOW AND.HEAT TRANSFER IN A
RECTANGULAR CHANNEL

The channel configuration and coordinate system is shown in figure 8-1.
Carlson (ref. 1) has shown that order of magnitude studies result in two distinct
models’ for the fundamental equations of motion for the incompressible case. We
shall first consider the formulations for these two models. It should be noted that
actual results havé"been obtained only for the square channel, although the
formulation for the arbitrary aspect ratio cases is discussed extensively.

Three representative heat transfer modes as suggested by Irvine (ref. 3) for
the rectangular channe! case are considered next, with the temperature formula-
tions and then the heat transfer formulations given in that order for each of the
three modes. : '

- o 241
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.

— :

FicuRE 8-1. — Configuration and coordinate system for rectangular channel.

The final part of section 8.1 is devoted to a tentative formulation for the
compressible flow in a rectangular channel.

- 8.1.1. Incompressible Constant Property Flow — Velocity Solution —First Model

The complete equations of motion for the rectangular channel, incorporating
only the assumptions of laminar, incompressible, constant property flow, are as
follows: ' '

x—momentum:

ow_ dw ow\__9p Pw 0 G_W) '
p@ﬂx+?0y+ a)"az+“<M’+a’+a’ (8-3)
Continuity:
du , dv , dw

—+—+—=0 ' (84



RECTANGULAR CHANNEL

These- equations are subject to the following complete boundary conditions:

u(x, a,z)=0

u(x, y, b)=0
ou .
a_z (xs y90)—0
du , _
a—y (x,0,2)=0

v(x,,‘y, b)=0

vix, a, z)=0

v _

v(x, 0,2)=0

w(x, a, z)=0

w(x, y, 5)=0
dw _
5 (x,0,2z)=0

wix, y,0)=0

op
op =0
3y (x,0,z)

ap -
@ 0)=0
by (%, 5, 0)

u(0, y, z) =u,
v(0, v, 2) =0 (see appendix F)

; A w0, y,z)=0 (sée appendix F)

p(09 Y, z)=p0

243
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An order of magmtude ana1y51s, essennally that of Carlson (ref 1), may
now be applied to equations (8-1) to (8—4). If we denote [ as the entrance length
of the channel, then we assume the following orders of magnitude:

x=0(l)
y=0(a)
(8-6)
2=0(b) :
l;= 0(".0)_

' Applying these orders of magnitude to the continuity equation (8-4) gives

Ayt T e

We now assume that b=¢ (a)—that is, that the duct has a finite aspect
tatio and as a result w=¢ (v). Applying this information to (8-7) gives '

0(v)=0<%uo> _ , - (8-8)
Inserting the relation' (8-8) into the momentum equations (8-1) to (8-3),
and mdlcatmg the order of magmtude of each term directly beneath that term,

we obtain the followmg

. X-momentum:

T : 2 2 2 \
p(uﬂ + v@ -i-wa—u)=-a—p—f-,u.<a—l.i + gu + M)

3 dy 0z X dx? dy? d 2%
: 8-9)
o)) A e ()
y-momentum: h ‘
wo v o\ . (Po . dw
p(“a tovg T 8z>— ay (axl t o T az2>
(8-10)

puia puja\ _ [ puia (;Luoa M) <M)
o5 )o(5)o(557) (5 ) ) (%
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e .

Z-momentum:

. (pula puia puia ' Hioa wt (w)
o250 (B5%) o () o( z&)dal)‘? al

Assuming that we are considering the range of parameters where inertia
effects are important (puol/w=1) and that (a/!) < <1 which restricts the model
to high Reynolds numbers, we note that all terms in equations (8—10) and (8-11)
are 7 (a/l) or smaller compared to the terms in equation (8-9). Also, the term
p(3%uf/dx?) in equation (8-9) is of & (a?/l?) compared . to the remainder of the
terms in that equation. Neglecting all terms of & (a/fl) or smaller compared to the
terms-of equation (8-9), we obtain .

- ou du duy _ dp d*u | d*u

p <u 8x+v ay+w Bz)_ dx+_p“ <8y2+ azz) | (8-12)
du, 9u , ow_ |
9x  dy © 9z : (8-13)

This model corresponds to the usual boundary layer assumptions that trans-
‘verse momentum flux is small, that gradients in the x-direction are smaller than
those in the y-direction, and the p=p(x) only. This model has many advantages,
" but one serious drawback; it is incomplete. Equations (8—12) and (8-13) repre-
sent two equations in the three velocity components u, », and w and are hence
not solvable. (As in the parallel plate channel and circular tube cases considered
in earlier chapters, p is not a true unknown in the same sense as u, v, and w
since p = p(x) only). An additional relation between v and w must be specified
in order to have a complete set. Carlson (ref. 1) has proposed that for the square
duct one possible choice is to assume that, at each point in the duct cross section,
the transverse velocity -vector is directed toward the duct centerline. Such a
‘model must-of course be verified, and this has also been done by Carlson by using
a higher order approximation to equations (8—1) to (8-4) which does constitute
a complete set. This higher order approximation is discussed in section 8.1.2.

" The additional relation between v and w may be specified as

(v) (2) = (w) (7) e

This relation guarantees that the transverse velocity vector will be directed toward .
the center of the duct. Although this relation has been verified only for the square
duct, it is felt by the author that it may reasonably be extended to ducts of moderate
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aspect ratio (say < 4) although certainly not to large aspect ratios. A modification

of this model may be possible which will be acceptable for large aspect ratios.

Such a modification will be discussed after the present formulation is given.
Equations (8-1) to (8-4) may now be put in dimensionless form by employing

the following dimensionless variables:

pa’uy
/ Y=Z
_ a
z==
a
U=-"
Uo
=Mb
I
Wz.paw
In
P= (p—po)

~ Inserting these variables into equations (8—12) to (8~14) gives

U L aU ol _ - dP  3°U  a°U
Uix Vvt W az=— o taz

oU oV oW _
axtar Tz 0
VZ=WY

(8-15)

(8-16)

8-17)

8-18)

The boundary conditions from (8-5) in dimensionless form which apply to the

present problem are
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. UX,1,2)=0
UX,Y, o0)=0

ou - .
7 (X,Y,00=0

aU s
‘67 (X, 0’ Z)_O

V(X,Y,0)=0
V(X,1,Z)=0
& X, v,0=0 ’ C 8-19)
V(X,0,2)=0
WX, 1,2)=0
WX,Y,a)=0

ow ., _
Y X,0,Z)=0

Wi{X,Y,0)=0
U,Y,z2)=1
P(0)=0

where o-=b/a, the aspect ratio of the channel.

» Before writing the basic equations in finite difference form, it is found ad-
vantageous, as in the other confined flow situations we have considered, to intro-
duce the integral form of the continuity equation. In dimensional form this is

b fa . '
f J vdy dz=ueab ; . (8—20)
0 Jo _ _
' or, in dimensionless form,

o 1
f f UdYdZ=0o 8-21)
0 0

Equations (8-16) to (8-18) and equation (8-21) may now he written in finite
difference form. The difference grid is shown in figure 8—2 We choose the follow-
ing form: ‘

459~174 0 - 73 - 17
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b
: ] Z=g¢
ket (Ll L L LSS LLLS LY
- A7 *
k=n -
AY Y=1
4
/
k=1
k=0
l=01=1 t=mil-m+1

F1GURE 8~2. —Finite difference grid in rectangular channel cross section (for a constant value of j)

Uj+l.k+l.l_'Uj+l,I;'—1,l

Uiiiowo—Uj k1

Uj,l.'.l AX +_Vj,l;,l 2(AY)
Uj+|.l\-,l+1; J+1, k., 1-1
Wik 2(62)
__Pj+1_Pj+Uj+l.lc+l,I_2Uj+l.A‘I‘I+Uj+1,k-l.l
AX (AY)?
Ui ke —2Usy et Ujiy k01
+ TVAE (8-22)
Uj+l,k.l_Uj,l.~.l Vj+1‘A~+|.I_Vj+i‘k.l Wj+l.k,l+1_Wj+l.l.-.l__
AX AY Az o0 @2
Visv.kili= Wi .Yy : (8—24)

and

40- " i .

(_A—er)zkz E AU 1 + [Z 2Ujiv,0.0+

c=11=1

2 2Ujii 0+ Ujsr0.0 (8-25)

k=1

Equation (8—25) represents the application of the trapezoidal rule to equation (8—-21).

Equations (8—22) to (8—24) written for £ = 0(1)n and [ = 0(1)m plus equation
(8-25) now represent (3mn+ 1) equations in the (3mn + 1) unknowns Uj.q k.,
Viev.xot, Wisi k.1, and P;.\. For any reasonable grid size, the direct solution of
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this set of equations’is out of the question because of the very large amounts of
computer storage space and time required. For this reason, an iterative method,
which is quite efficient, is employed. Equation (8-22) is solved for U, «,s as

— V.. 1 ‘ Vi i 1
Uj+1.k,1={Uj+1.k—1,l[ Skl )2]+Uj+1,k+1,1[#u_—]

2(AY) Ay 2(AY) (AY)?

— Wi 1 Wi"‘"’_ 1 ]
+ Uj+1,k,l—1_[ 2(AZ) - (AZ)')]-F Uj+1,l.-,l+1 [2(AZ) (AZ)Z

Pj+1.-Pj_U§ K, 1 -2 2 Uj,l.',l:l ‘
s _ _ 926
+ AX. }/[(AZ)'—’ (AY): ~ AX (8-2 .)

This equation is written for all k= 0(1)n and [=0(1)m except k=1, [=1,
where equation (8-22) is solved for Pj., mstead yielding

' A . | 28 1
Pj.H:Pj‘i'U;.z.lyl‘}‘AX{Uj+1,z,|[_QTJ'AI?’;"FTZY_)Z]

st [ ]
+Upr [;2?22')#(;2)2]
+U"+"'~“[;V&IZ’;+(AIZ)2]

' +U,~+|._.,,[(A_Zz)z—(Ai)z—Ugg‘]} ®-27)

Equation (8-25) may now be solved for Ujv+1,1,| to yield

n m

— _o-___ . ’
UJH’I'P_(A‘Y)(AZ) I‘ZIIZlUJH,k,I
(k=1#1)

h

1 .
z UJ+1 0,1 2 2 UJ+1 k,07" 4Uj+1,0,0 (8_28)

Equations (8-26) to (8-28) now represent expressions for each value of
Ujs1. k.1 in the cross section plus Pj;,. Guesses are now made for all of these
quantities (Uj, x.; and P; usually provide excellent estimates), and they are then
continuously recomputed in cyclic order over the entire cross section (Gauss-
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Siedel iteration) until a sufficient degree of convergence is reached. This method
of iteration converges only if equation (8-28) is drastically underrelaxed; a relaxa-
tion factor as small as 1/mn has been found necessary in practice.

Once the values of Uji1,x,1 and Pj,, have been determined with sufficient
accuracy, the transverse velocities must be found. The continuity equation (8-23)
may first be solved for ¥ i, . This is most easily accomplished by using equation
(8-24) to find W4y, x,1in terms of Vi 1 as '

Wj+1,k,i=% Viei, kot : : . (8-29)
I3 : : :

‘Substituting this in continuity (eq. (8-23)) and solving for ¥j.1,«,1 yield
AY AY ,
Vj+1 R+1, ,+AZ W_}+] k, l+1+AX(Uj+1,k,{_Uj.k.l)]

Vj;n\,k‘f: | (1+(%§—))§f>

(8-30)

This equation may now be employed in a stepwise manner, starting in the upper
right corner (Y=1, Z=¢) and moving in the —Z direction to Z =0, then
moving -down one step in the —Y direction and repeating the process. As each
new Vj,i i, is computed, a Wj,y, 5, ,may be found from equation. (8—29). This
procedure is carried down to and including A=1. For £=0 (the Z- axis), Vi1, 0,1

is zero, and continuity may be solved for W1, 0,1t0 yleld
AZ
Wion=W;ii 0161 +5% AV Vi, '+AX Ujsr.0.0—=Uj 0,1) (8-31)

This equation can be solved in a stepwise manner starting at [ = m and moving
in the —Z direction. All transverse velocity components have now been computed,
and the solution completed at the present value of X. An additional step downstream
can now be taken and the process repeated.

It should be noted that the use of the variable mesh technique discussed in
appendix D is highly recommended for this problem to cut down on the number of
points in the cross section and still maintain reasonable accuracy. The technique
is somewhat cumbersome (as shown in fig. 8-3), however, since four different
regions with different mesh sizes are necessary and the corresponding difficulties
with bridging the mesh size changes arise. '

It was noted earlier in this chapter that a possible adaptation could be made
to the present model to make it reasonably valid for high aspect ratios. In figure
8-4 is shown the cross section of a high aspect ratio channel with the direction
(but not magnitude) of a postulated transverse velocity distribution indicated. The
end effects are assumed to penetrate to one-half of the channel height, and the
remainder of the channel is assumed to behave like a parallel plate channel, with
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FIGURE 8-3.—Four regions which result when two different mesh sizes are employed in each of the
two transverse directions.

b |
/S LS LSS L LSS

: S/
R bbbt +§,,2:/l_
o N
[ 777777777777 77777777777

o

FIGURE 8-4.—Possible model for direction of transverse velocity vectors in a cross section for high
aspect ratio channel.

the transverse velocity components in the Y-direction only. Near the sides of the
channel, the transverse velocity vectors are assumed to be directed toward a point
along the midplane of the channel and a distance a in from the sides. While such
a transverse distribution seems to be reasonably plausible, such an assumption can
only be verified by further analytical (including higher order approximations) or
experimental verification. In defense of such a model, the influence of the trans-
verse velocity distribution on the axial velocity distribution and pressute drop
does appear to be relatively weak except very close to the channel entrance. -
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Carlson (ref. 1) found that for the square duct the incompressible equations
are stable for all U = 0. This result also presumably applies to the rectangular
duct of arbitrary aspect ratio.

The truncation error is of @ (AX), @ ((AY)?), and @ ((AZ)?) for the momentum
equation and of @ (AX), @ (AY), and @ (AZ) for continuity.

8.1.2 Incompressible Constant Property Flow—Velocity Solution—Second
Model

To obtain a higher order approximation to the fundamental equations for the
rectangular channel, we consider again the orders of magnitude shown in equations
(8-9) to (8~11). In the previous model, we neglected terms of @ (a/l) compared to
the terms of equation (8—9). Remembering that a/l <1, we should obtain a higher
order approximation by neglecting only terms of ¢(a?/l2) when compared to the
terms in equation (8—9). Neéglecting these terms gives

p(ua—u+vg—;+w%§>=—g—i+u<%+%zg> (8-32)
p<u@+ug—;+ ‘;’z’) ‘—g—§+u<2y’f+£> (8-33)
p.(u%%+v(2—l;+w%—:))=—g—lz)-+u(%%+%> (8-34)

du 3_; ‘;_':=0~ : (8-35)

Note that only terms involving 9%/dx* are missing from these equations. The
absence of these terms, however, is fortunately sufficient to maintain the para-
bolic chdracter of the equations. The other fortunate aspect of this model is that
equations (8-32) to (8—35) constitute 'a complete set of four differential equations
in the four unknowns u, v, w, and p. :

If the dimensionless variables (8—15) are employed equauons (8-32) to (8—35)
become

ol alU oU « aP  o*U  o*U

UtV oy tW oz=ox oy T aze ' (8-36)
U +f/‘j—’;+Wg—’Z/=—£ (Re)* +3Y'f+ e (8-37)
Uﬂ/+V% Wﬂ/——£ (Re)?+—+ ;’@% (8-39)

i[+";I;+ﬂ/—0 ' ' (8-39)
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where Re= pauy/p. This additional parameter Re did not appear in the first model
discussed in the previous section.
The difference representations chosen for equations (8—36) to (8—39) are

Uj,k,l .}+1.I\.AIX ]~I\.1+Vj’kyl J+1,A+|,2'(Ay)_)+]‘[\ 1,1
Uj+1,k,l+|_Uj+1,k,l—|_ P}-H,,\.,,——Pj’k,,
| W 2(AZ) = A%
Uik = 22U e 0+ U k- Usen ki = 20500 6,0+ Uik, 19
i (AY)* + (AZ)2 (8-40)
U k. JH""A’X Y “"“"2’(Ay)1+l,k 11
Vierks o1 = Vivnwaor _ | y Piviksr, 0+ Pivn, k0 — 2Pj k-1
TP 2(82) - (R 3(8Y)
Vierwert =2V k0t Vier b V.i+l,k.l+1-2Vj+1,k,l+Vj+.l,k,l—l _
N (AY)? + (AZ)? (8-41)
Wici ko= Wik Wit ki1 —Wis oo
Uj.l.-‘l J+1,I.,AIX J'A'I+Vj.k,l J+1,I.+1él(Ay) JH1, k=11
Wicio o0 = Wiin k-1 Pt ke F Pivr e — 2P ki
+ Wik 2(AZ) = — (Re) 3(87)
+W‘i+l'k+|"_2Wj+lvka’+Wj+l,k——1,]
T (AY)?
Wit oote1 = 2Wiii, w o+ Wiii k121
+ (AZ)? (8-42)
Uirrok = Uik Vierwent = Vierp,t Wj+1,k,l+n—Wj+1,k.’_—_O (8-43)

AX AY , AZ

The form chosen for dP/dY and dP[0Z is dictated by the previous experience of
the author with similar problems (ref. 4) in which it was found that the usual
central difference representations could give sawtooth irregularities in the pressure
profile unless very small mesh sizes were used. These irregularities are apparently
due to the usual central difference representation not including the center point
(P;, x.1); therefore, when the difference equations are written there is only indirect
coupling between the pressures at adjacent points, while there is direct coupling
between pressures at alternate points. The form employed to overcome this dif-
ficulty consists simply of a biased average of forward and backward differences,
one-third forward and two-thirds backward. This form has a truncation error
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. somewhat worse than a central difference representation, but it does bring the
central point P;, ;,; into the difference representations.
Along k=0, equation (8-37) reduces to

aP_ _
51—/—0 (8-44)

which we chose to write in a high order difference form (@ (AY)Z)‘as
3Pii1,0,1—4Pji1, 1,0+ Pjit,2,1=0 (8-45)

Similarly, along /=0, equation (8—38) becomes

P _
52—0 A | . (8-49)

which may be written in finite difference form as 4
3P 1, k0= 4Ptk 1+ Piir k,2=0 (8-47)

The X-moméntum equation (8~40) written for all interior points k=0(1)n,
[=0(1)m; the Y-momentum equation (8—41) written for k=1(1)n, 1=0(1)m with
the special version (8-45) along the Z-axis [=0(1)m; the Z-momentum equation
(8-42) written for k=0(1)n, [=1(1)m with the special version (8-47) along the .
Y-axis k=0(1)n; and the continuity equation (8-43) written for all the interior

- points k=0(1)n, /=0(1)m constitute a complete set of 4(m+1) (n+1) equations
in the 4(m+1) (n+1) unknowns Uy, %1, Visr,k,t» Wis1, k.1, and Pjyq k1. The
solution to such a large and varied set of equations must of necessity be more of
an art than a science, and it will, therefore, involve considerable trial and error.
Since to the author’s knowledge this set of equations for an arbitrary aspect ratio
has not been solved as yet, no direct advice can be given. However, the set of
equations corresponding to a square duct has been solved (ref. 1) by taking ad-
vantage of the symmetry in the square duct: This solution should furnish informa-
tion on the approach to the solution for a duct of arbitrary aspect ratio. -

The solution for the square duct may be described briefly as follows: The
4(m+1)(n+1) equations become for the square duct 3(n+1)? since equation
(8-41) for (j+1, k, 1) is the same as equation (8—42) for (j+1, I, k), and the
number of unknowns is correspondingly reduced since Vj.1, i, (= W;.1, 1, x. Hence,
‘equation (8—42) need not be written if W; ., and Wj.1, .1 are replaced in the
remaining equations by V; ; » and V., . Additional symmetry-could be em-
‘ployed across the duct diagonal to reduce the number of Ujii,k,i’'s. However,
specifying normal derivatives across the diagonal is somewhat cumbersome, and
the fact that the Uji1,x,: profile as computed should be symmetric furnishes a
“bootstrap” check.
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The equations which are solved for the various unknowns are the following:

Equation (8—40) for Uj,, i, for all k, ! except k=0

Equation (843) for Uj+1,0,1for all ]

Equation (8-43) for V1« for all k, l except k=0

Equation (8-41) for Pj41 k41 1forall k, 1

Equation (8-45) for Pj41 0, for all l
All of these equations may be solved by Gauss-Siedel iteration except equation
(8—43) for Vj,1,,1. This equation must be severely underrelaxed. An alternative
employed by Carlson was to determine the change in Vji1 4, for each iteration
by taking the average of the residuals of the equations at the four points surrounding
(+1, 4 1). '

The use of a set:of equations as complex as these is obviously a last resort;
these equations should be employed only if a simpler model (perhaps similar to
that suggested at the end of section 8.1.1) cannot be found which gives good results.

A complete stability analysis of such a set of equations is extremely difficult
to obtain. The only information available is based on some “numerical experiments”
by Carlson for the square duct. It is apparently impossible to simultaneously con-
sider a small value of AX and a small value of Re. This means in practice that in
general it is not possible to find accurate solutions for low values of Re (say less
than about 500). For a Reynolds number Re=650, Carlson found that a value of
AX=0.0025 (quite coarse) was the minimum possible value which .gave what
appeared to be stable results.

The truncation error of the equations is of @(AX), @((AY)?), and @((AZ)?2)
for the three momentum equations (except for the pressure difference representa-
tions which are 7 (AY) and @ (AZ)) and @ (AX),0(AY),and O (AZ) for continuity.

8.1.3 Incompressible Constant Property Flow — Temperature and Heat Transfer
Solutions

Once the velocity distributions have been determined, the energy equation
can be considered. The constant property energy equation, neglecting axial
conduction and viscous dissipation, is

' at a3t 9%t 3% :
PCp (ua + @ +w 5;) =k (‘672 + 8z2> (848

The boundary conditions on the energy equation present something of a
problem for noncircular ducts. In order that it not be necessary to solve a simul-
taneous problem in the wall and the fluid, including such wall properties as the
thermal conductivity, certain assumptions must be made. Irvine (ref. 3) has
suggested that for noncircular ducts it is reasonable to consider three cases:

(1) Constant wall temperature both peripherally and axially (a high wall

thermal conductivity assumption) '
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(2) Constant heat input per unit axial distance and constant peripheral wall
temperature at each axial position, with the wall temperature varying
axially only (a high peripheral wall thermal conductivity assumption)

(3) Constant heat input per unit axial distance and per unit peripheral distance
(a low wall thermal conductivity assumption)

These cases would seem to represent the extremes of the real physical situation.

The boundary conditions for these three cases may then be given as follows:

Case 1:

L(O’ 3’, Z) =t_0
t(x,a,z)=ty
t(x, ¥, b) =1 |
o (8-49)
it =
Gy 2 0.2)
at
Fr (x, y, 0)=0
Case 2:
L(O Y, Z) =to
« ot ,
L 9 s f "oy \ d2=q
(8-50)
@ (x,0,2)=0
at
(?z (x’ }” 0) _0

where g’ is the input heat flux per unit length through the walls of one quadrant
of the channel.

Case 3:
t(0,y,z)=tp
2_; (x,a,z)=q"
kS (x v, B) — | (8-51)
:—;(x, 0,2)=0
2 (x,5,0)=0
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where q” is the input heat flux per unit area through the channel wall.

Simple variations of these conditions could also easily be considered—for
example, different heat fluxes through adjacent walls, an arbitrarily distributed
‘heat flux along any wall, ete. The formulations for the cases given in equations -
(8-49) to (8-51) should demonstrate the techniques involved. The choice of dimen-
sionless variables and solution method is dic¢tated by the case considered. The
dimensionless representation and solution are now discussed separately for each
of the three cases.

8.1.3.1 Case 1—constant wall temperature.—The dimensionless variables
chosen are ' - '

T= ty—1t
. tw - t()
__xv
a’uy
(8-52)
y=2 '
a
gz
Z= a
Inserting these variableé, the energy equation (8—48) becomes
oT . ,oT . aT 1 (8T, 8°T
UaxtVay™ WEZ‘FI—(aY% iz) (8-53)
— subject to the dimensionless form of the boundary conditions (8—49):
® . . .
T(0,Y,2)=1
. E T(X,1,Z)=0
TX,Y,o)=0
- (8-54)

aT _
oy X, 0,2)=0

oT o
S_Z—'.(X" Y’ 0) _0

Equation (8-53) may be expressed in difference form as
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Tj+1,;.~,)—Tj,k,1 Tj*"!k‘*l,'_T‘j-}-ll,k—],l
L
: ) Tj+l,k,l+1— Gk, =1
Wk 2(AZ)
=_l_[Tj“”"“"—zTJH,k,I+Tj+1,k_1,1
Pr (AY)2 |
] +TJ'+'»’\‘J+1_27(',‘A+1Z,)A-2,1+Tj+1,k,1-1] '(8—-55)

The simplest method for the solutlon of equation (8—55) is Gauss- Sledel iteration.
Solving for Tivr, k1 glves

Tt ={ Toovonent| 50005+ Priamye )
Vi, 1 /NP,
+T:i+1,k—1,l[2(AY)+Pr(AY)2~j|+7}+l'k"+l[ 2(AZ) +Pr(AZ)2]

Wj,;\',l_‘_ 1 ]
2(AZ) Pr(AZ):.

Ui ki TUj k.1 2 2 _
() [ ]

This equat{on may be used to solve for each value of Tj+1,,/in the field, repeating

in some regular order until the values of T}, ,; on successive iterations agree

- to within any desired accuracy. A step AX downstream may then be taken and the
process repeated. It is suggested that the velocity and temperature calculations
be done on the same grid, with first the velocity calculations and then the tempera-

. ture -calculations performed at each AX step. This procedure will minimize the
computer storage required. '

If it is desired to solve some variety of the Graetz problem (fully developed -
velocity, developing temperature), then the fully developed velocity profile is used
for Uj, x,; and all transverse velocity components are zero.

We now calculate the heat transfer for the constant wall temperature case.
Applying the first law of thermodynamics to a control volume of length AX along
the channel and taking the limit as AX—> 0 give

+ T 61 [

y b fa . -
hdab(t,—ty) =dix f f pcptdydz ' 8-57)
] . ) . .

where the bulk temperature t, is defined as
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j j utd'ydz

p =T ————— (8-58)
J’ ] udydz '
Solving for h gives
__ro _
"= 1a+b) (tw‘_tb> f L,’“dydz - (8-59)
The local Nusselt number is defined as
hD, A
Nur=—,;i (8-60)
where Dy, the hydraulic diameter, is defined as
' 4-(4ab) C
Dh=tavab™ a+b ' 8-61)

Inserting the expression for h from equation (8—59) into equation (8—60), and. ex-
pressing the results in terms of dimensionless variables gives

_—40%(Pr) 1 dT,

Nuz= (+o) T, dX

(8-62)

where

gk [} roariz oo

J f vdydz

The integral in. equation (8-63) can be evaluated by the use of the two-di-
mensional form of either the trapezoidal rule or Simpson’s rule. The trapezoidal .
rule, which should be sufficiently accurate for most practical purposes, does not
. restrict m and n to be odd. The expression is

T,

=1 [2 E4T,+1 k, lU_;+1 K, 1+z 2T541, 0. Ujs1, 0,1

m T L=

n ' AY
+z 2Tj+|,k,on+|,k,0+7}+l,0,0Uj+l,0,0] ( 2AZ) (8_64')
k=1 .

..
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The derivativelc(liXﬂ may be readily evaluated as

ATy _ Tyl —T);

X AX (8—65)
The average Nusselt number is given by
‘ 1 (X ' . ’ .
Nun= _f Nu,dX . : (8"66)
X o A

As usual, this expression may be evaluated at every other AX step, starting from -
the entrance (j=0) as

Nu,|, AX (Nu,]o+4 i Nugli

J+1 =
3 i=1.35.7. ..

1

+ 2
X+

c 1
Nu, |,-.+Nu1 |j+1)<—> (8—67)
1=2,468... )
where j+1 must be even.
8.1.3.2 Case 2—constant heat input per unit length, uniform peripheral tem-
perature.— The dimensionless variables chosen for this case are

t—t
T=-"——
q'lk .
(8-68)
= v
a*uo |
y=2X
a
(8-69)
z=1
_a
Employing these variables, the energy equation (8—48) becomes
oT ol , o _ 1 (8T 2T .
UaX+V_aY+W§_Pr(aY2+aZ‘2 . (8770)

The bot_mdar.y conditions (8—50) become
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7(0,Y,Z2)=0
J" oT

o]

(8—-71)
oT B
5)7 (X,O’Z) =0

T B
57 (X.Y,0)=0

The finite difference form of the dimensionless energy equation (8—70) is identical
to that used in the previous section for the constant wall temperature case and is
given by equation (8—55). The finite difference form of the second boundary con-
dition in (8—71) requires some explanation. Expressing only the gradients in differ-
ence form gives

Jl 3T i1, i, me1 — AT i1k, m+ Tir b, ma dY
0

2(AZ)

+ J 93T s, nrt 0 — 4, 0+ Tier, nm1, 0
0

2(AY) dZ=l' 8-72)

Now for this case, by assumption,
I/ .
Tj+1,k, m+1=Tj+l,n+1,I=Tw|j+1 (8—73)

. where Ty|;+ is the dimensionless wall temperature, which will in general vary
with X. Using this fact, equation (8—72) may be rewritten as

E;(ZZ-’—)]J' dY AZf T_)+l k, de+2(AZ)f T]+I Kk, m— 1dY

3Twl; o 2 [ 1 o
+2_(Zlﬁj(‘) dZ—K}—,L Tj+1,n,le+2(A—Y)L Tivi,n1,1dZ=1 (8=74)
or, when rearranging and solving for Ty|j.1,

2
Twlj-H [1+AY] TJ+1 n, IdZ+AZ o Tj+1,k.de

ity sty [ Tt] () o
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The integrals in (8—75) can be given in finite difference form using Simpson’s rule:

o AZ . m
Tj+1,n,le»=_3— Tjsr,n,0t+4 2 Tjsa,n,i
o . i=1,3,5,7,. ¢
m-i . * ) .
+2 2 Tivs,n, i+ Tia,n, rn+l]' (8-76)
i=2,4,6,8,.. :
and
1 AY n
LT‘J-H,k,de:—:‘}—[TjH,o,m-'f"l'.— 2 Tj+1,i,m
i=1,3,5,7...
n-1 ' :
+2 E Tita,i,m+ Tj+1,n+1,m] (8-77)
i=2,4,6,8... .

with exactly analogous expressions for the integrals of Tji1, n—1,1 and Tji1,k, m-1-

Note that the wall temperature has again appeared, since Tji1,n, m+1 and
Tjs1,n+1,m (as well as Tji1,n—1, m+1 and Tji1, ni1, m—1 which appear in the integrals
of Tji1,ne1,1 and Ty i, nio1) are all Ty|;4y. After collecting all coefficients and
solving for Tw|js1, ’

2(,  2(AZ 1
Tuly =2 {14 5573 | (Torno= 3 Tovnmua)

- 3(AY) 4
v4 S <‘T~ ~L1r ) +2 S T Ly ‘
'_ E i+, n,i 4 J+1,n—1,1> ) 2 . <j+1,n,i 4 j+l,n—1,i)]
i=1,3,5,7... i=2,4,6,8...
2(AY) ' 1 1
+3(AZ) [(Tj+l,0,m—'z Tjﬂ’o’""‘)+4'i=1'3,5,1“.<7}+1,i,m_ZTj+1,i,m—1)
- 1 o 1 1(AZ  AY\] -
. j im—_T' i,m— e T o ol aAv ey —
+2E(T g ‘)H/[AY*AZ 3(_AY+AZ)] (8-78)

The method of solution for this case can now be discussed. As in the previous
section 8.1.3.1, the finite difference form of the energy equation is solved for Tji1,x,:
and the result is given by equation (8—56). The method is now identical with that
used for case 1, except that after each sweep through the field, the wall tempera-
ture must be recomputed using equation (8—78). Some numerical experiments by
the author indicate that equation (8-78) must be rather severely underrelaxed in
order to obtain convergence of the iterative process. Successive sweeps (t_hrough
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the cross section are taken until all values of Tj+1, x, : change by less than some pre-
determined amount on two successive iterations. The solution is then considered
converged and another AX step taken downstream.

We now proceed to the heat transfer analysis. The local heat transfer coefficient
is defined from  ~ : : .

h(a+b) (to—to) =g’ - (8-79)

_or

_ q ' _
h= (a+b) (tw—ts) (8-80)

The local Nussélt number is defined as

Nuz= hDy (8-81)
where
_ 4ab
. D= at+b

Inserting equation (8—80) into equation (8—81) gives

4q'ab
. Nu,= -
v k{a+b)2(tw—1tp) .(8 %)
or, in dimensionless form,
4
Uz g (8-83) -

T A+ ) (Tw—Tp)

Although for this case an analytical expression for T, can be obtabi-ned, it is recom-
mended for the sake of consistency that T, be found from ‘

f 7 f ' TUdydz
0 0 -

f"f' UdydZz
0 0

which is given in finite difference form in equation (8--64). The mean Nusselt num-
ber, if desired, may be found from the finite difference equation (8—67).

T,= (8-84)

459-174 O - 73 - 18
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8.1.3.3 Case 3—constant heat input per unit area of duct surface.—The
dimensionless variables chosen for this case are

L— o

T==_"

. q" alk

— xv

a2u0

. ; A (8-85)

; y=%
a
z==%
a

Using these variables, the energy equation (8-48) becomes

oT T . aT_ 1 (&T T\ :
U_aX+VaY+WaZ°Pr( yZ +a§2_)- (8-86)

which is identical with the form used for cases 1 and 2 in the two preceding sec-
tions. The boundary conditions (8—51) in dimensionless form are

7T0,Y,2)=0

oT '
BZ (X7 Yv 0)_1

aT o . _
7y &12)=1 (8-87)

o (*,0,2)=0

aT -
= (X, ¥,0=0

The energy equation in finite difference form and the solution for T,y «,: are iden-

tical to the two previous cases (see eq. (8—56)). The difference forms of the second
and third boundary conditions in (8—87) are

3Tj+1, k,m+17 4‘Tj+1, k, n+ Tj-H, k,m-1__

2(AZ)»

1 (8-88)
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and

3Tj+l,n+l,l"4Tj+l,n,l+Tj+l,n—1,l___1 . (8-89)
2(AY) -

Equations (8—88) and (8—89) may now be solved fOrIT}+],k,m+1 and Tjiy, n+1, 1,
respectively: '

2 4
Tj+1,k,m+1='§AZ+§ Tj+1,1.-,m—‘%Tj+1,k, m—1 (8-90)
’ 4 1 '
]"J.+1"n+l,l=%AY+§7}+1,n,zf§71j+1',n—1,z (8-91)

The problem is now similar to that of case 1 (section 8.1.3.1) except that the wall
- temperatures are unknown, along with the interior temperatures, and equations
(8—90) and (8—91) must be solved along with equation (8—56) on each sweep through
the cross section. Slight underrelaxation of equations (8-90) and (8-91) may be
desirable.

We now consider the heat transfer for case 3. The definition of the heat trans-
fer coefficient for this case may be found from

h(tw—t)=4q" , (8-92)
50 that

=9 ‘ (8-93)

The local Nusselt number is defined as

Nuz=— -
‘u i _ (8—-94)
where !
dab
Dy= -
"= (8-95)
Inserting equations (8—93) ahd (8-95) into equation (8—94) gives
rr b .
Nu, = — 4 @ (8-96)

k(a+b)(tw—1ty)

Expressing Nuy in terms of dimensionless quantities gives
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4o

Nu,;,=
(1+ o) (To—Th)

(8-97)

As in case 2, an analytical expression can be found for T, but it is suggested ‘
for internal consistency and accuracy that T}, be found from

[ 7 f " TU dy 4z
0 0

f f’ UdYaz
1] 0 )
which is given in finite difference form in equation (8—64). The mean Nusselt
number, if desired, may be found numerically from equation (8-67).

(8-98)

'Tb=

8. 1.4 Compressible Flow in the Entrance of a Rectangular Channel — Pro-
posed Velocity and Temperature Solutions - :

" To the best of the author’s knowledge, this problem has not previously been
considered in its complete three-dimensional form anywhere in the literature.
The methods used for the incompressible prob_lenf furnish a guide, but the formu-
lation must necessarily be based largely on techniques and representations which
have been successful for other geometries such as the circular tube (see Walker,
ref. 5, and Deissler and Presler, ref. 6). The model employed is based on the first
model for the incompressible case discussed in section 8.1.1 and consists of one
momentum equation, the energy equation, continuity, the equation of state, and
the additional relation that the transverse velocity in each cross section be directed
toward the channel centerline. This restricts the formulation to moderate aspect
. }atios. '

.The configuration is identical to that considered in the earlier sections of this
chapter and shown in figure 8—1. For simplicity, only one case is considered
here—that of constant wall temperature. Other thermal boundary conditions may
readily be considered using sections 8.1.3.2 and 8.1.3.3 as references.

The basic equations for the compressible flow are V

du ou du dp [6 ( 614) d ( au)] ;
B+ =40 =)=—4 | T (L) + Z (L& —
p(u dx ”ay+waz) ' dx+ Ay “ay +az Maz (8-99)

-
a(pu)+ (pv) + 3 (pw) -0
dx dy . 0z

vz=wy ‘ (8-101)

(8-100)
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g ol G GI A (R I

Ly o (8-103)
k=) (8-104)
o= ut) (8-105)

The boundary conditions are

‘ulx,a,2) =0 u{x,y,b)=0

du ' du
P (%,%,0)=0 By (x,0,2) =0

v{x, a, z) =
v(x, ¥, b) =0
0 0,5) = 0

wix, a,z}) =0

wlz 7, 5) =0 | (8-106)

wlr, 1,0)=0
t(x; a,z) =ty

Hzx, ¥, 8) =ty
at at
5, (¥, 01=0 3y {x,0,2)

u{0, y, z) = uo (see appendix F)

‘ £(0> ¥y Z) =g

p(0) = po
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The dimensionless variables chosen are:

v=4
o
V= pova
" e
W= powa '
Mo
'T=i
to
p=~L
Po
= x,LL() —
X Dotiod . (8-107)
y=2%
a
z==
a
A..
=21
ko
pr=1
Mo
_P
P* =155

Inserting these vériab]es into ecjﬁations (8-99) 'to (8-103) yields

p*(Uﬂ+ y U, W:Q—U)= 1 dP 8 (/L* 50)4_1(#* 3U)

aX aY aZ

oX T oy 0Z)  ymzdx "oy \* ay) Tz \M 9z)
(8-108)

a(p*U A(p*V *
(™) , 3(p*V) , 3 W) _ (8-100)
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VZ=WY (8-110)

(U—+V +W89— _lU—‘ | |
A3 D) D) e 22+ (2]

P =p*T | v (8—112)’

where My = uo/ V'y%t, , the Mach number referred to the entrance conditions.
If the usual power law relations are assumed, equations (8-104) and (8—105)
become in dimensionless form

p* = (T)/ (8-113)

k*= (T , (8-114)

|
The boundary conditions (8—1? in dimensionless form are
UX,1,Z2)=0 U X,Y,o)=0
olU oU
— (X,Y,0)=0 —= (X,0,Z2)=0
7 ( ) Y ( )

V(X,1,2)=0
V (X,Y, o) =0
vV (X,0,2)=0
W (X,1,2)=0
W (X,Y,o)=0 |
W (X,Y,0)=0 (8-115)

T (Xa 1, Z)=Tw=l Lw
: to

r (X, Y7 0')=Tw
T —o T _

U(0,Y,2)=1
T(0,Y,2)=1
P (0)=1
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‘The basic equations can now be represented in difference form. Since an
iterative scheme must be used, no effort is made to keep the difference equations
linear. Equations (8-108) to (8-114) become

Usirkon,i— Uspir ko1t
2 (AY)

Uj+l,k,l+1 —Uj+1,k,1—1]'
2 (AZ)

« o o Ui e —=Uj i,
Pjk,i | Yj k1 AX

+V ko

+Wj,k,1

1 Py, — P+ ’ [(Jj+l',k+2,l—2Uj+l,k;l+Uj+l,k—l,l] '
TV AZ Mk (AY): , |

+[£ﬂ,k+1,l"“jﬁ:,k-1zl] [U1+1,k+1,l"Uj+1,k—1,l]

2 (A7) 2 (A7)

[Uﬁx,)\-,lﬂ—z Uj+1.A~,l+Uj+1,k,l—1]
(AZ):

*
5k

l"ﬁl,k,lﬂ—l’“ﬁi,k,l—:] [Uj+l,k,l+1_ j+l,k,l—l] o
+[ 2 (8Z) - 2 (AZ) (8-116)

] * A%
Pk, 1U+1 kot =Pk U +pj+1,k+1,IVj+l,k+l,l Pj+1,k,_1Vj+llu

AX AY

Wik
HLEl=0  (8-117)

* — ik 3
+pj+1,k,l+le+l,k,l+l Pis1,k,1

AZ
Vj+1,k,IZI=le+1,k,lYk' © (8-118)

Tiviei—Tj et . it ke, i= Tjrr, k1,1

PJfk,-IVI:ULk-’ AX + Vi k1 . 2 (AY)

Tivr k001 — j+1,k,1—1] —1U Py, —P;
2 (A2) Y AX

[Tj+1 ki1, 0= 2T en k0t T ke, I]
" (AY)?

+ Wik

+ o {t

. * L% — '
+[ﬁ+1,k+l,l kj+llk—1,l] I:Tj+l,k+l,l Tj+1,'k—l,l]

2 (AY) 2 (AY)
+th1 o [7}+i,k,l+1"‘2(7'&';,){;,1+71j+:,k,1—1]

+|:EL Lk, 141 k_)tl,k,l—l Tj+1,k,l+l—Tj+l,k,l-1]}_|;
2 (AZ) - 2(AZ) .
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o U-,.,—U.,__,lz
=1 My g, [ttt

- ‘ +[Uj+l,k,l+1— j+l.k;1—l]2} (8—119)

2 (AZ)
Pii=Pjr kTt - (8-120)
M’Jt—l,k,l—jz.*'l ko _ (8—121)
Kbt = T,k (8-122)

Very little concrete advice can be given on the solution of these equations, since
to the best of the author’s knowledge it has not yet been attempted. Certainly an
iterative scheme is required, and in general, equation (8—116) should be solved for
the Ujii,x, /s, equations (8-117) and (8-118) for the Vi1, «, /s and W1z, 0's,
and equation (8—119) for the T, x, /’s; beyond these broad statements, little
detail can be specified. There will certainly be difficulty in obtaining a converged
‘solution. . .

. It would be presumptuous to discuss the heat transfer formulation for this
problem without any proven solution method for the velocities, temperatures, and
properties. Therefore, the reader is referred to sections 6.1.5 and 7.1.5 for dis-
cussions of compressible flow heat transfer in parallel plate channels and circular
tubes, respectively. These discussions certainly will have some application to the

. present problem, once the difficulties of obtaining a converged solution to the
difference equations have been overcome. :

8.2 ' OTHER PROBLEMS WITH A SIMIL‘AR FORMULATION
8. 2 1 F low in Rectangular Channels Wlth Porous Walls

If a spe01ﬁed suction or injection velocity is applied to the walls of the channel,
some small modifications must be made to the formulations of this chapter. As
usual, we shall only present the changes to the already given formulations.

We limit our discussion here to incompressible flow, because of the obvious
uncertainties in the compressible flow formulation. If the first model, discussed
in section 8.1.1, is employed, then modifications must be made to integral con-
tinuity and to the boundary conditions. Assuming the suction or injection velocity
to be uniform around the periphery of the channel (although it may vary with axial
distance .in a specified manner), the following modifications must be made to the
~ boundary conditions (8-5):

v(x, a, z) = vp(x) '_
w(x, v, b) = vw(x) } (8—-123)
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or, in dimensionless form,

V(Xl Z)
o)

V u(X) | o
WX, } | (8-124)

Vi(X)

The difference form of integral continuity, equan:on (8~-25), becomes

4 : nm

k=1 I=1

+22U;+1 01+22UJ+1k0+ Ujti, 0,0 (8-125)

= k=1

The solution can now be carried out exactly as detailed in section 8.1.1. Solving
equation (8—125) for Uj+1,1,1yields

R Vw (1+0)AX n m
- j+1
Ujriia = (AJY)(AZ) —2 EUj+l,k,l

k=1 1I=1
(k,t#1if k=1)

1 1& 1 '
T2 E‘Uj+1,o,z—§ > Ui“’k’“_Z Ujt1,00 - (8-126)
=1 k=1 .

This expression can be used in place of equation (8—28).
' If the problem of specified wall suction or injection velocity is to be considered
using the second model (section 8.1.2), then only the boundary conditions need be
changed to the form (8—124). These conditions are then automatically brought into
the solution when the finite difference forms of the various equations are written
adjacent to the walls. : '

If the suction or injection velocity is related to the pressure at the wall (e.g.,
through Darcv’s Law), then additional modiﬁcations to the original formulations
are necessary.

When the first model of section 8.1.1 is used, since pressure is a function only
of X, a typical relation between velocity through the wall and pressure might be

Vw|J',+] =AP;sy ~ (8—1\27)

Equation (8-127) can now be introduced into the iterative scheme of solution of the
first model immediately following the solution of equation (8-27) for P;.; and pre-
ceding the solution of equation (8-126) for Uj+1,1,1. Equation (8- 126) must of
course be used here since it allows for flow through the wall. Underrelaxation of
(8—127) may be required if 4 is large.
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If it is desired to use the second model of section 8.1.2, then since the pressure
can vary peripherally around the channel, so can the velocity through the wall,
which might be typically expressed as

Wiii,k,mi1=APji1 k,me1 (8-128)
and ’
Vict, ne1, 1= APji1, ns1,1 ) (8-129)

Equations (8-128) and (8-129) may now be introduced into the iterative scheme
of the second model, probably immediately preceding the solution for Pj,y &,
However, this has not been tried, and the usual difficulties in obtaining con-
vergence can be expected. Again, underrelaxatlon of (8-128) and (8—129) may be
necessary for large 4.

8.2.2 Entrance Flow in Channels With Cross Sections Composed of Rectangular
Elements

If we wish to consider flow in channels with cross sections composed of
rectangular elements such as the L-shaped channel, the rectangular channel with
_arectangular plug (a “rectangular annulus”), and other similar shapes as shown in
figure 8-5, the formulations given in this chapter for the second mode! (section’
8.1.2) apply directly when the boundary conditions are properly applied at the
~ channel walls. The advantage of such channels over channels of arbitrary cross
'section is that since all boundaries are straight lines and all angles are right
angles, rectangular finite difference grids are directly applicable. It should be
noted, however, that different grid sizes may be necessary in different regions in
order for an integral number of grid spaces to exactly span the region. The usual
difficulties can be expected in trying to obtain a converged solution with the
" second model.
The first model (section 8.1. 1) cannot be employed here unless some educated
guess can be made about a relation between the transverse velocities at a given
cross section (a rather difficult task in such complex configurations).

8.2.3 Flows With Body Forces in Rectangular Channels

_ The rectangular channel has been a source of considerable interest to workers
in the MHD field since it represents the configuration of many MHD generators.
To the author’s knowledge as of this time, however, no numerical work has been
done on the entrance flows in such channels incorporating the effects of the body
forces. Including these effects in the formulation of the first model (section 8.1.1)
would seem to introduce few practical difficulties. However, the assumption that
the transverse velocity vector is directed toward the center of the channel may no
longer be valid because of the presence of the body forces. Including the effects
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)

FIGURE 8-5. — Examples of channels composed of rectangular elements.

of body forces in the second model (section 8.1.2) would undoubtedly cause
additional problems in obtaining convergence, and since these problems already
seem very large indeed, this approach will undoubtedly require a great deal of
work. . : . : '

The reader is referred to section 2.3.4 for a generally applicable discussion of
the effects of including body forces on the numerical techniques employed in
this book.

8.2.4 Confined Free Convection in a Vertical Rectangular Channel’

This problem has apparently not been previously considered in the literature.
The modifications to both the first and second models in order to accommodate
the buoyancy effects are not very extensive and are briefly discussed here. The
treatment here parallels that given in section 6.2.2 for the parallel plate channel
and 7.2.2 for the circular tube and draws heavily on those sections. The geometry
is shown in figure 8-1, with g, in the — X direction.

Consider the first model of section 8.1.1 with the modlﬁed basic equations
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vz = wy

275

(8-131)

8-132)

(8-133)

where p is the difference between the static pressure and the hydrostatic pressure,
&+ the x-component of the acceleration due to gravity, B the thermal coefficient
of volumetric expansion, and to the fluid temperature at the channel inlet. The
velocity and pressure boundary conditions are unchanged from those of section
8.1.1 and the temperature boundary conditions are (8—49) of the constant wall

- temperature case (case 1).

The choice of dimensionless vanables is based on those used in section 6.2. 2,

‘equations (6— 104):

where

Gr=

v2

agzB(tw = to)

(8-134)

thations (8-130) to (8-133) may now be written in dimensionless fo;m as
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1

ol aU dP 92U 92U _
U +V6Y+W8Z dX+6Y’+aZ2+T (8-135)

oT aT 1 (8T  a°T
UaxtV aY WSZ“Pr(aYz+aZZ) (8-136)

oU oV W
oyt =0 . 8-137)
VZi=wYy (8-138)

with the dimensionless boundary conditions (8-19) on velocity and pressure,
except that :
_ Uoa

U,Y,z)y=U (Cr)

(8-139)

and with the constant temperature boundary conditions in dimensionless form,
which are

T(0,Y,Z)=0

rx,1,z2)=1
TX,Y,o)=1

T (8-140)
oy (X,0,2)=0

T 3
7 (X,,0)=0

~ The finite difference-representation of (8-135) is identical to (8-22) with the
additional term added to the right side (4 Tj+1,x,)- The finite difference forms of
equations (8-136) to (8—138) are unchanged from their earher versions which are
(8-55), (8—23), and (8—24), respectively.
The procedure for solution is then to solve the temperature problem first at
. each time step. This is just the content of section 8.1.3.1 but using the boundary
-conditions (8—140).

8.3 EXAMPLE PROBLEM-LAMINAR INCOMPRESSIBLE ENTRANCE
FLOW IN A SQUARE DUCT

As an examplé of the techniques employed for the rectangular channel, we
present the solutions of Carlson (ref. 1) for the laminar incompressible entrance
flow in a square duct. Both the first model, discussed in section 8.1.1, ana the
second model, discussed in section 8.1.2, were employed in these investigations.
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Since the square duct was considered, symmetry about the duct diagonal was
employed to reduce the number of unknowns.

For the first model, the axial (X) mesh sizes used varied from AX = 2.5 X 10-5

" near the inlet to AX =4 X 10-3 far downstream. Solutions were obtained for
transverse mesh sizes of AY = AZ = 1/12 and for AY = AZ = 1/24. The velocity
distributions obtained were not significantly different for the two different mesh
sizes, but the pressure results varied sufficiently so it was felt the most accurate
results could be obtained by extrapolation of the solutions for the two mesh sizes
to zero mesh size (see ref. 1 for details). :

For the second model, there were practical limitations on both the axial and
transverse mesh sizes. There is an apparent stability restriction on the difference
representation of the second model which places lower bounds on the values of
AX and the Reynolds number Re. Although a stability analysis is most difficult
for the second meodel, Hornbeck (ref. 4) has carried out a numerical stability
analysis for a similar (although only two-dimensional) model employed for the
circular tube entrance flow problem This analysis indicated that there might be'
a lower limit for stability on a product of AX and Re, perhaps of the form’
(AX) (Re)2 All numerical experiments on the second model showed that a similar
restriction applied to the use of this model for the square duct. The second model
was first successfully solved using Re = 2000 and AX = 6.25 X 10~ In order to
consider the effect of Reynolds number on the flow pattern, the second model was
also solved for Re = 1000, 750, 650, and 500. For these Reynolds numbers, an initial
AX of 2.5 X 10-3 (quite coarse) was as small as could be considered. The transverse
mesh size employed for all cases ‘was AY=AZ=1/12. The large amounts of
computer time required for each case precluded the use of any smaller values for
AY and AZ. , ,

The numerical results from these two models are now presented and com-
pared with each other and with the analytical solution of Han (ref. 7), which is
based on an integral technique using a linearized form of the axial momentum
equation. Experimental data obtained by Goldstein and Kreid (ref. 8) using a
Laser-Doppler flowmeter is also available for entrance fiow in a square duct
and is included in the comparisons. -

Figures 8-6 and 8~7 show axial velocities as functions of X at two different

_transverse locations—the duct centerline (Y=0, Z=0) in figure 8-6, and the
centerline of one-fourth of the duct (Y =0.5, Z=0.5) in figure 8-7. The second
model results are for Re = 2000. At the duct centerline, all mathematical models
and the experimental points agree very well. At Y =0.5, Z = 0.5, the numerical
solutions show a sharp rise and dropoff with a peak around X = 0.02. The rise is
due to this transverse position being in the relatively flat ““‘core’ for X < 0.02, and
this core is accelerating as the boundary layer grows. After about X = 0.02, the
boundary layer reaches this transverse position and the velocity begins to-decrease.
The experimental points of Goldstein and Kreid clearly exhibit a similar behavior
not shown by Han’s results, )
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2.2—

Dimensiontess cen\‘erﬁne axial velocity, UtX, 0, D)

L4 —————First model . _
Second model, Re = 2000

[m] Han :

O Goldstein and Kreid (experimental)
1.2 -
Lo 1 | | ! | I |

0 - .04 . .08 .12 .16 .20 .24 .28 .32
- Dimensionless axial distance, X
FIGURE. 8—6.— Axial velocity at centerline of reétangular duct.

L5—

————— First model

Dimensioniess axial velocity, UtX, 0.5, 0.5

L2 . ———— Second model, Re = 2000
a Han )
O  Goldstein and Kreid (experimental)
L1
Lo | l l | l L [
0 - .04 .08 A2 .16 2 .24 .28 .32

Dimensionless axial distance, X
FIGURE 8-7. — Axial velocity at Y=0.5, Z=0.5 in rectangular duct.
<

Figure 8-8 shows axial velocity profiles from ‘the first ri‘]c;del and from the
second model for Re = 2000 at various values of X. Results from the second model
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for Re = 1000, 750, and 650 differed only slightly from these profiles, and then.
only very close to the duct inlet. By X = 0.02, the velocity distributions obtained
from the second model for .all Reynolds numbers agreed to within 5 percent. An
exception to this was found for Re = 500, but since considerable numerical
difficulty was encountered for this Reynolds number, the results are not felt
sufficiently reliable to report here. , :

Figure 8-9 compares the axial pressure distribution for various theoretlcal
. solutions. The two numerical models give results which fall below those of Han.
The results for the second model are for Re=2000, although the curve is virtually
identical for all Re = 650 if X > 0.02. Since the second model does not-explicitly
‘employ integral continuity, there is a certain tendency for the flow rate to drift
slightly because of roundoff error. The author therefore feels that the pressure
distribution from the first model (which has been extrapolated to zero transverse
mesh size) gives the most accurate pressure results. .

Table 8-I shows the results of several investigators for the entrance length
X., defined as the dimensionless axial position at which the centerline velocity
reaches 99 percent of its fully developed va]ue and the kinetic energy correctlon
factor Fye, defined as

P
3.2 - O
) First model DD
————— irst mode , _
Z-SF‘ Second model, Re = 2000 Im) s
O Han o 7
: s
S 2.4 = e _
a’ .
> o - /
8 20— 0 /‘/’ .
= . N
2 | L0 s
= 1 :
£ Lo o ,/
© g
w Ve .
g DD 7 /{lly developed
s L= 5= pressure gradient -
z 1. ) ,
g o, /
a gl— O~
’ ,
D/.
/A
4 /
| | | | | | [ =~ ]

0 . .04 .08 12 016 .20 .24 .28 .32
. Dlmensmnless axnaldlstance X .

F1cURE 8-9. — Centerline pressure as function of axial position for various investigations.
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TaBLE 8—1. —ENTRANCE LENGTH AND KINETIC ENERGY CORRECTION FACTOR FOR SQUARE CHANNEL

Dimensionless Kinetic
Investigation : entrance energy
length, X, correction
' factor, Fi..
Han (ref. 8).....cccceeevvviennnn. ©0.301 : 1.51
Goldstein and Kreid (ref. 9) )
. (experimental)................. 360 | e
Lundgren, Sparrow and ]
Starr (ref. 10)......coeeveeens [ eenni 1.275
Present numerical solution:
First model..................... - .278 1.215
" Second model................. .266 1.073
dP 1
erz_Pfd’i‘(ﬁ)de'*"a v (8-141)

where Pjq is the dimensionless pressure evaluated at an X sufficiently large to be
in the fully developed region and X is this position (see Goldstein, ref. 9). The
analysis of Lundgren, Sparrow, and Starr (ref. 10) yields entrance pressure
defects, but not velocity distributions, for arbitrary shaped ducts. The results
shown are of course for the square duct. The large discrepancies in the entrance
lengths among the various investigations were not unexpected, since this quantity
is extremely sensitive to small variations in velocity and, as indicated by Goldstein
and Kreid, can vary widely. With respect to the kinetie energy correction factor,
it is worth noting that Sparrow, Hixon, and Shavit (ref. 11) carried out experiments
on rectangular ducts, and although a square duct was not included, Fy. was
considerably lower for other aspect ratios than previous theory (refs. 8 and 10)
predicted. The results of the present numerical investigation for the square duct
also show this trend. .

Finally, we note that the results from the first model appear to be entirely
adequate as compared to the more complex second model, at least for Re = 650.
One additional point of interest is to examine the assumption employed in the
first model that the transverse velocities are directed toward the duct centerline.
The second model does not force this condition, but instead employs the two
transverse momentum equations. Figure 8-10 shows the direction (but not the
magnitude) of the local transverse velocity vectors in the cross section for the
second model, Re=2000, X=0.005. With the exception of the immediate region
of the corner, the assumption that the transverse velocities are directed toward
the duct centerline seems to be satisfied very well. The validity of such an assump-
tion, or variations thereof, for other aspect ratios remains to be proven.
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CHAPTER 9

OTHER NONCIRCULAR AND
VARYING AREA CHANNELS

The discussions to be presented in this chapter are concerned primarily with
entrance flow and heat transfer problems. This is true for several reasons. If
_channels with varying cross-sectional areas are considered, then there is in
general no fully developed solution; this is also true of compressible flow in any
channel. Incompressible flow in constant area channels does eventually reach a -
fully developed flow situation, but this may be considered as a special case of the
entrance flow. More important, fully developed flow in constant area channels is
mathematically represented by a two-dimensional form of Poisson’s equation,
‘and very powerful and sophisticated techniques outside the scope of this book
may, and indeed should, be employed if only the fully developed solution is re-
quired. Some of these techniques may also be useful in obtaining the entrance
region solutions discussed later in this chapter.

9.1 NONCIRCULAR CHANNELS OF CONSTANT AREA

The solutions of problems of flow and heat transfer in channels having other
than circular or rectangular cross sections present a variety of difficulties. The
first obstacle is in the selection of the proper equations of motion. For certain
geometries, a relation such as that specified between the transverse velocity
components in the first model for the rectangular channel (section 8.1.1) may be
useful. Other p0551b111t1es might include neglecting the inertia terms in the trans-
verse momentum equations, specifying the axial component of the vorticity as
zero, etc. While these stratagems have little physical foundation, the saving
feature of problems of this type is that, at least based on the experience of Carlson
(see ref. 1 and chapter 8) for the square channel, almost any relation between
transverse velocities will give at least adequate results. This is probably due to
the fact that as long as the region very close to the entrance is not considered, any
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relation between transverse velocities will be of second order, as may be seen from
an-order of magnitude analysis of the fundamental equations (see section 8.1). In
any case, some approximate relation between transverse velocity components is
highly recommended in preference to solving the complete set of three momentum
equations.

Another problem which may.be encountered is the difficulty of dealing with
irregular boundaries, or with boundaries not directly compatible with a rectangular
or cylindrical finite difference grid. This problem has been discussed extensively
by Forsythe and Wasow (ref. 2) and Allen (ref. 3) and can be a source of con-
siderable difficulty in carrying out the details of a numerical solution. In some
cases, it is possible to transform the problem to a coordinate system where a rec-
tangular or cylindrical grid can be employed. If this is feasible, it is highly desirable
because, although the equations of motion may be highly complicated in the new
coordinate system, the finite difference approach is straightforward. It is also
worthwhile to note at this point that finite difference representations can also be
based on equilateral triangular, parallelogram, and hexagonal grids (see Allen,
ref. 3). Although relatively little use is usually made of such grids, these grid
shapes could be particularly useful for cross sections of similar shapes. The reader
must be cautioned, however, that in employing such grid shapes he is largely on
his own. :

9.1.1 Alternating Direction Implicit (ADI) Techniques

An advantage available to investigators attempting to solve channel flow
problems numerically is the large amount of work which has been done on the
solution of elliptic problems involving second order differential equations such
as Laplace’s or Poisson’s equation. Much of this work can be heuristically
extended to-the solution of channel flow problems, which at each step downstream
have the appearance of an elliptic problem in the transverse directions. As men-
tioned before, if ‘only the fully developed solution is desired, then these methods
may be applied directly. Techniques such as the alternating direction implicit
(ADI) methods have apparently not as yet been applied to any great extent to
entrance flow problems, but they appear to show great promise for noncircular
channels. Forsythe and Wasow (ref. 2) and Carnahan, Luther, and Wilkes (ref. 4)
have excellent discussions of these techniques and their use in solving elliptic
problems, and it would seem of little value to repeat the complete treatment here.
However, a brief description might be in order.

ADI methods actually have two uses. They may be employed to solve problems
such as the transient two-dimensional conduction equation, in which a solution
for temperatures must be marched out in time while the spatially varying tem-
perature field must be found at each time step. In addition, ADI methods may be

"used as effective iterative schemes for effectively solving spacewise elliptic
problems such as Laplace’s equation. Both of these capabilities are of interest to
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F1GURE 9-1. = Representation of two-dimensional transient conduction equation.

us in attempting to solve fluid flow and heat transfer problems in noncircular
channels. o

Consider first problems of the type represented by the two-dimensional
‘transient conduction equation. There are two classical methods for solving this
type of problem and both have serious drawbacks.

One of the methods is the fully explicit method which is shown in figure
9—1(a). In this method, all spatial derivatives are represented at the known time
step j and the time derivative is represented as a forward difference, which
brings in the value of the function at the unknown j+1 time step. This value may
then be solved for directly (explicitly): When all the points in the space field at
j=+1 have been solved for, another time step may taken. The value of this method is
that the amount of computer time per time step is very small. The drawback of
the method is that stability restrictions force very small time steps, generally
much smaller than necessary to obtain reasonable accuracy. As a result, many
time steps are required and the computer time required increases correspondingly.

The other classical method is the fully implicit method, shown in figure
9-1(b), in which the spatial derivatives are expressed at the unknown j+1 time
step and the time derivative as a backward difference. This method results in a
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set of simultaneous linear algebraic equations in the values® of the unknown
function at j+1 equal in number to the number of points in the space grid. This
set of equations can be quite time consuming to solve since, in general, it will be
very large and iterative techniques must oftén be employed. The method has the
advantage of universal stability, however, and any time step size consistent with
accuracy may be used. )

Obviously it would be advantageous to combine the best features of the explicit
and implicit methods, and this is precisely what the alternating dlrectlon implicit
methods accomplish.

The representations used in the Peaceman-Rachford method, a typical ADI
method, are shown in figures 9—1(c) and (d). At one time step the y space difference
is written at the known j time step and the x space dlfTerence is written at the
unknown j+ 1 time step as shown in figure 9—-1(c). When such an equation is
written for every space point at j+ 1, instead of having a set of equations involving
all values at all points in the space mesh, there resylts an independent set of linear
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(a) y-explicit, x-implicit form results in set of algebraic equations for each value of y, involving only
unknowns along a single line as shown.

(b} x-explicit, y-implicit form results in set of algebraic equations for-each value of x, involving only
unknowns along a single line as shown. -

F1GURE 9-2. —Unknowns resulting from each of the alternating direction implicit forms.
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algebraic equations involving only points along a given y-position, with a different
independent set for each y-position as shown in figure 9-2(a). Each of these sets
can be solved separately, and, very significantly, each of the sets has a matrix of
coefficients which is tridiagonal. Thus, the very rapid method of appendix A
may be used for each set and, as it turns out, no more computer time is required
to solve the entire space field at a given time step than would be required by the
fully explicit method. Once the entire space field has been solved for this time step,
the difference representation is changed to that shown in figure 9-1(d). Another
time step is then taken; and this time the result is a set of simultaneous tridiagonal
linear algebraic equations for each value of x, as shown in figure 9-2(b), which
may be solved as before. The procedure is thus to alternate at each new time step
from the representation shown.in figure 9—1(c) to that shown in figure 9-1(d)
and back again. Because of the tridiagonal nature of the equations, no more com-
puter time per time step is required than with the fully explicit method, but the pro-
cedure is universally stable so that the size of the time steps, as in the fully implicit
‘method, is limited only by truncation error._ _

The use of the ADI methods to provide an iterative technique for the solution
of elliptic problems such as Laplace’s equation now follows directly. The values
obtained on each iteration simply take the place of the values obtained at each
" time step in the preceding discussion. The representation is thus implicit in the
values to be obtained on the present iteration and explicit in the known values
from the last iteration. The resulting sets of tridiagonal equations are solved, the
new values assume the role of the known values, the representation is alternated
in direction, and the process repeated until convergence is obtained. ADI iterative
techniques are among the most efficient iterative methods presently known for
solving Laplace’s and similar equations numerically, particularly when suitable
relaxation factors are used. ' .

9.1.2 Irregular Boundaries

If the techniques of coordinate transformation or the use of unusual mesh
shapes as discussed earlier in this chapter do not make the boundaries compatible
with the mesh used, then it becomes necessary to use a conventional rectangular
or cylindrical grid and let the boundaries intersect the grid lines between grid
points. Several methods may be used to treat these boundaries. '

The first and simplest method is to use as fine a mesh as possible and to let
the grid points fall where they may. Then, choose those points nearest the boundary
as ‘boundary points and the functions evaluated at these points as boundary values
(see fig. 9-3). This method can work surprisingly well if a sufficiently fine mesh is
employed. This has been called interpolation of degree zero by Forsythe and
Wasow (ref. 2) in an excellent discussion of irregular boundaries.

An alternative which is not only aesthetically considerably more satisfying
but which also gives much better results than interpolation of degree zero for the
same mesh size, is to use central difference representations near the boundaries
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FIGURE 9-3. —“Zero degree interpolation” to represent irregular boundary.

that have unequal spacings between the grid points. These representations have
been called irregular stars by Southwell (see Allen, ref. 3).
The discussion given here is based on the method of mterpolatmn used in
appendix D for unequal mesh sizes.
~ If a first central difference at the point k& would span a boundary as shown in
figure 9—4, then the difference may be expressed in terms of the boundary value as

af
_a)’k

_fo—f(1—6%) — fi (82)
6(1+6)Ay

9-1)

If a second central difference at the point £ would span the boundary as shown!m
figure 9—4, then the difference may be expressed as :

9%
ay?

—o[fa= ULt 0)fi]
x (1+0)0(Ay)?

9-2)

These representations involve second degree interpolation. If the represen-
tations (9-1) and (9-2) near the boundary are used along with the usual second-
degree symmetrical central difference representations in the interior, the equations

[k-l '

F1GURE 9-4.— Uneven mesh spacing near boundary.
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of fluid motion and the energy equation can be written anywhere in an irregularly
shaped field. Linear interpolation could also have been used to obtain formulas
similar to equations (9—1) and (9-2); but the representations given here are more
accurate, just about as simple to apply, and, most important, have the same error
order as the usual central difference representations used elsewhere in this book.

The real dificulty of using such techniques as these at a boundary is in the
amount of programming and computer time they require. With irregular boundaries
one must continually check in the course of sweeps of the field to see if the bound-
ary has been reached; if the boundary has been reached, special computations
must be performed.

9.1.3 Normal Gradient Boundary Conditions

In the context of the problems discussed in this book, normal gradient bound-
ary conditions will usually arise as heat flux conditions at a surface. If there are
grid lines normal to the boundary at the desired point, then the normal gradient
conditions may be expressed in the conventional manner used throughout this
book. If, however, the boundaries are curved or irregular, then there may be
great difficulty in expressing such conditions in difference form.

Although Forsythe and Wasow (ref. 2) indicate that it is far from clear how
best to deal with this problem, they do present one possible approach which will
be outlined here. Shaw (ref. 5) gives a similar discussion. It is assumed in this
discussion that there are no corners on the boundary (i.e., that -the boundary con-
sists only of curves with no discontinuity in slope). The problem is illustrated in
figure 9-5. Through each exterior grid point closest to the boundary, a perpen-
dicular to the boundary is drawn and extended to the interior region of the cross
section until it intersects a grid line. Thus, a line is drawn through P and perpen-
dicular to' S until it reaches point Q. The value of the function (@) may be found
in terms of f(A) and f(B) by linear interpolation. The value f(P) will usually be
unknown and will result from the solution of the problem. Then the normal gradient
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FIGURE 9-5.—Method for representing normal gradient boundary conditions.
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d flon is represented as

o _ ) —£(@) .
on hl/cos 0

One such equation may be written for each of the grid points adjacent. to the
boundary. Equation (9—3) is not as accurate as the usual central difference repre-
sentation to the differential equations involved and may be more compatible with
the extrapolation of degree zero method of dealing with irregular boundaries than
with any other more accurate method. In practice, it is apparently feasible to-
handle corners using this technique if the interior angle of the corner is not
too small and if the mesh sizes are made sufficiently small, at least in the region
of the corner.

9.1.4 General Remarks ,.

The foregoing discussion should indicate clearly that the method of ap--
proach to the general problem of entrance flow and heat transfer in constant area
noncircular channels is far from well defined. It is thus necessary, once a specific
problem has been adequately mathematically formulated, to use to a considerable
extent a “cut and try” technique. While this approach may be offensive to some
formalists, there appears to be no substitute for it in the practical numerical
analysis of a new (and usually nonlinear) engineering situation. If one -generaliza-
tion about the fluid flow problem can be made, it is that the use of an integral form
of the continuity equation in finite difference form will almost invariably result
in a reduction of the number of equations which it is necessary to solve. However,
even this statement is true only when some simplified model for the flow has been
chosen as opposed to solving the complete Nav1er Stokes equations with only’
the axial second derivatives neglected

9.2 CHANNELS OF VARYING CROSS-SECTIONAL AREA

Flow and heat transfer in channels of varying cross—sectional area present
the additional complication to a finite difference analysis that the total number
of transverse mesh points and/or the transverse mesh size will not remain constant
as each axial step is taken. ‘

Since the fundamental equations in such flows are identical to thgse for
constant area channels (assuming that the area changes with axial position are
not so severe that separation occurs or that the second axial derivatives of velocity
and temperature can no longer be neglected), our concern is with the mechanics
of varying the number of mesh points or size of the mesh as necessary. -

Three possible approaches to the problem are the following:

(1) Adjust the transverse grid size with each axial step so that the total number
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of transverse grid points remains constant. This technique (illustrated in fig.
9-6(a)) results in difficulties in the evaluation of backward differences. Since the
values of the function are not available exactly at the points desired, it is necessary
to interpolate for these values.

(2) Adjust the axial step size so that exactly one transverse grid pomt is added
(or suhtracted) while maintaining the same transverse grid size (see fig. 9-6(b)).

(3) Maintain the transverse grid size as constant and let the boundary fall
where it may, then adjust the difference representation that spans the boundary
(see fig. 9-6(c)).

We shall now discuss briefly the use, advantages, and disadvantages of these
three approaches. Method (1) (fig. 9—6(a)) requires interpolation at location j so
that the values of the function at these points may be used in evaluating backward
differences. It would appear that accuracy is not sacrificed in this process, provid-
ing that the interpolation is of such an order as to provide error no greater than the

difference equations themselves (usually interpolation on a second-degree poly-
" nomial will be sufficient). Some extra computational time is required to do the
necessary interpolation after each axial step. This technique of interpolation
has been used successfully by Beus (ref. 6) in his numerical investigation of

.AX.AX.AXLAX_._/
- L I It

by
77
' 7
(b
e B e Boundary point-~
AY
//ﬂ’//;‘( . /)'/ (j+Ln \
iz ; - -
T By . / o] BX |o—
M = &x =
77 - _
. /77777¥
7
(c) (d)
1] . s .
. (a) Number of transverse grid points (b) Axial step size adjusted.to add one
held constant. . transverse point on each side of chan-
nel at each axial step.
(c) Axial and transverse step sizes held (d) Evaluation of backward differences
constant and boundary allowed to for method (3) in diverging section.

cross grid at any point.

FiGCURE 9-6. — Methods of handling grid structure in channels of varying area.
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compressible flow in varying area channels, which is discussed in section 9.3 as an
example problem.

Method (2) (ig. 9—6(b)) has the advantage that backward differences may be
evaluated directly. However, if the channel area changes very slowly, the axial
step size may be larger than desired; if the transverse mesh is reasonably coarse,
the effect will be exaggerated. One reasonable course of action with this method
is to employ the variable mesh technique discussed in appendix D. By employing
this technique, the transverse mesh size in the region immediately adjacent to
the wall can be made as small as desired and, correspondingly, the axial mesh
size can be held to a moderate level. A potential difficulty with this method is that
in a diverging section (e.g., a diffuser) if the transverse mesh size is held constant,
then the number of grid points may become too large. This difficulty may be .
countered by using the same approach employed for the free flows discussed in
chapters 2 to 5—that is, by doubling the transverse grid size and halving the num-
ber of points at some axial station and then proceeding as before.

Method (3) (fig. 9-6(c)) appears to overcome most of the shortcomings of the -
other two methods, but this may be only the result of the fact that the author has
had personal experience with using the first two methods but not with the third.
This method allows the direct computation of backward differences except for
the points adjacent to the boundary in a diverging section, and it allows an arbi-
trary choice of axial step size. Those transverse differences which span the bound-
ary may be evaluated by the use of equations (9—1) and (9-2). For the points
adjacent to the boundary in a diverging section, as shown in figure 9-6(d), the
backward differences may be evaluated as :

af _ fix1.n — f (evaluated at boundary) 9-4)
dx j+1,n Ax’

The evaluation of equation (9-4) requires no auxiliary computation since the value
of f (boundary) is known.

No matter which method is used, it may be necessary to use very small mesh
sizes in a converging section or at a throat, since the boundary layerithicknesses can
become very small in these regions and the gradients very high. If it becomes
necessary to shift from a coarse transverse mesh to a finer one as the solution is
carried downstream, then some type of interpolation such as that indicated in
method 1 will have to be employed, at least at the one axial position in the channel
where the transverse mesh size change takes place.

As in all channel flows, the use of integral continuity in difference form will
help to reduce the number of simultaneous equations to be solved.

Flow and heat transfer in noncircular channels of varying cross-sectional
area and arbitrary cross section would appear to present a monumental challenge
to the numerical analyst, and to the author’s knowledge, no information in these
areas is available.
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9.3 EXAMPLE PROBLEM-— COMPRESSIBLE FLOW IN VARYING AREA
CHANNELS

The example given here is the solution presented by Beus (ref. 6) for the
compressible flow in. axisymmetric channels of varying area, with particular
" ‘application to converging-diverging nozzles. A single set of equations of the

boundary layer type is applied to the entire flow field and numerical techniques
are employed which are adapted from those discussed in section 7.1.4 for the
constant area tube. The use of the boundary layer model over the entire flow field
allows the consideration of the effect of the growth of the boundary layer on the
flow rate through the nozzle. This effect is neglected in the usual nozzle analysis,
in which the boundary layer is ignored in computing the inviscid flow in the nozzle,
and the resulting pressure gradient is imposed on the wall boundary layer. The
latter approach is entirely adequate and, in fact, necessary for nozzles which are
relatively short and of large diameter with a relatively small radius of curvature at
the throat (see fig. 9-7(a)). This approach is not sufficient, however, for long

. slender nozzles (fig. 9-7(b)) which are of increasing importance in fluidics applica-
tions. For long slender nozzles, the boundary layer model con51dered here properly
includes the viscous effects on nozzle flow rate.

(a) Small throat radius of curvature, large throat radius.
(b) Slender nozzle.

Fi1GURE 9-7. — Nozzle geometry.
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The fundamental equations of viscous compressible flow employed by Beus
are equations (7—45) to (7-50) of section 7.1.4, with the following boundary con-

ditions:
(run2) =0
u(r,0) =uo(r) where various .boundary layer thicknesses are
specified at the nozzle inlet (see appendix F)
g—l: (0,z2)=0
v(rw,z) =0
v(0,2)=0
p(0)=po
t(r,0)=¢,
g—: 0,2)=0 -
and
t(rw,z) =tw (constant wall temperature)
or

A g—: (rw,z)=0 (adiabatic wall)

L o-5)

The dimensionless variables employed are (7-53) of section 7.1.4 with a
representing a characteristic radius of the nozzle (Beus employed the inlet radius)
and uo replaced by any characteristic velocity chosen as convenient. The resulting

" dimensionless equations are (7—54) to (7—59) with the following dimensionless

boundary conditions:
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U(Rw.Z)=0 '
U(R,0)=Us(R)

alu _
3R (0,Z2)=0

V(Rw,Z)=0
-V(0,2)=0
P(0)=1
T(R,0)=1 9-6)
o 0.2)=0
and
T(Rw, Z ) =Ty, (constant wall temperaturej

. or

aT _ C -
3R (Ry,Z)=0 (édlabatlc wall)

Because the boundary layers in the throat area are quite thin, some type of
variable mesh procedure was indicated. Rather than employ the method of ap-
pendix D, which would be somewhat unwieldy in a variable area channel, Beus
chose to make the following transformation of the radial. coordinate:

s=1
Y=R:—Rs{0<R=<R, o 9-7)
' R =zY=0

where Ryo(z) is the local radius of the duct. Equally spaced Y-coordinate points
may now result in unequally spaced points in the R-coordinate. Larger values of s
result in a bunching of points close to the wall in the R-coordinate, exactly the
effect desired to accommodate the high velocity gradients in the boundary layer.
The resulting differential equations and finite difference forms chosen are much
too lengthy to repeat here, and the reader is referred to reference 6 for details.

One particular difficulty which arises due to the area variation is worth
noting— mainly to indicate the dificulties which may arise in the type of problem
discussed in this chapter. For various reasons, it is more useful in the compressible

. nozzle flow problem to write integral continuity in the form

Tw d .
JO 5, (Pwrdr=0 ©-8)
rather than in the usual form’

459-174 O - 73 - 20
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Ty . :
f purdr=constant ' (9_9)
Jo
For a constant area duct, equations (9~ 8) and (9-9) are actially identical equations
when written in finite difference form, both simply stating that

r . o
f wpurdr ;=I wpurdr
0 Jo

However, if ryis a function of z, the finite difference forms of equations (9-8) and
(9-9) are not identical due to different truncation errors involved in their difference
representations. In practice, since equation (9-8) does not explicitly hold the flow
rate constant when written in difference form, a certain amount of cumulative
drift tended to occur in the flow rate as the solution was carried downstream. This
was corrected by an iterative procedure carried out at each step involving the
difference forms of both equations (9-8) and (9-9) (in dimensionless form, of
course). To obtain convergence it was necessary to underrelax the difference form
of equation (9-9). The amount of underrelaxation varied, depending on whether
a converging or diverging section was being considered. Some, difficulty was
“encountered with convergence at the throat as will be discussed later.

. The parameters which must be considered in the problem include the geom-
etry, the Prandtl number, and the inlet Mach number. For a given geometry and
Prandtl number, if a low inlet Mach number is specified, then as the solution is
marched downstream, the flow is subsonic through the converging section. sub-
sonic in the throat, and subsonic in the diffuser. As the inlet Mach number is
raised. a point is eventually reached where the flow becomes almost sonic at the
throat, before it drops back down subsonically through the diffuser. The nozzle is
then running slightly below what must be considered as design conditions for that

geometry. If the inlet Mach number is'increased by a significant amount, a violent
numerical instability results immediately beyond the throat. If, instead. the inlet
"Mach number is increased by increments as small as of the order’ of AM,=0.00001.
then an inlet Mach number can be found which results in the flow at the throat
passing smoothly through the transonic region and accelerating supersonically
out through the diffuser. The nozzle is then running at its design conditions. The
design pressure ratio is simply the dimensionless exit pressure of the diffuser.
(Any desired point in the diffuser may be considered as the exit, since the nozzle
can be cut off at any point in the diffuser without disturbing the upstream flow
as long as the flow is supersonic). This calculation is obviously very sensitive to
the inlet Mach number and the search for the correct value can be quite time con-
suming. The iterative procedure on integral continuity mentioned earlier must be
suspended for a few steps through the transonic region at the throat since it is not
possible .to obtain convergence in this region. Fortunately, the flow rate varies
little in this region because of the small area variation, and the results are not
significantly affected. ’ '

j+1 (9-10)
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Now that some of the considerable difficulties of the technique have been
discussed (again demonstratjng the amount of art necessary in such calculations),
we turn to some representative results. These results were obtained with basic
mesh sizes of 0.02<AY<0.05 and AZ=0.0001, although AZ was reduced when-
ever the area varied rapidly or when 1.25 > M > 0.75, and values of AY as small as
AY=0.005 were used for checking purposes. The transformation exponent s in
equation (9-7) was varied between 2 and 6 as required to provide sufficient mesh
points within the velocity and thermal boundary layers. Different relaxation factors
for the iterative scheme on integral continuity. were necessary in different regions
of the nozzle. Details may be found in reference 6. The equations and programs
were verified by comparing results with existing solutions for straight tubes, both
compressible and incompressible, and with varying area incompressible flow
solutions.

Figure 9-8 shows a comparison of the pressure distribution obtained from the
- numerical solution with the classical one-dimensional isentropic nozzle solution

Throat

y | Ll L]
(a)

Dimensionless wall
radius, R,
- :

- One-dimensional, isentropic
—— —-—Back (experimental)
————— Present sofution

Dimensionless pressure, P

l |
0 4 8. 12 % . 2 24x1074
(b} Dimensionless axial distance, Z

(a) Nozzle profile.
(b) Pressure distributions.

FIGURE 9-8. — Nozzle profile and pressure distributions in a nonslender nozzle.
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and with the experimental distribution of Back, Massier, and Gier (ref. 7) for a
subsonic-supersonic nozzle. This nozzle is not actually sufficiently slender to
" expect either the numerical solution or the one-dimensional isentropic solutions
to be particularly accurate, but the nature of the numerical solution, particularly
in its slope near the throat, indicates that at least some of the two-dimensional
and viscous effects not included in the one-dimensional solution have been
accounted for. -

Figure 9-9 is representative of most of the results of this investigation. It
shows the velocity distributions for a typical slender nozzle with a thick boundary
layer (8/rpy,=0.8) at the nozzle inlet."The boundary layer is obviously suﬂicient]y
thick through the entire nozzle that the effect of the boundary layer thickness on
the flow rate cannot be neglected.

Table 9-1 shows the effect of the boundary layer on flow rate fqr several adia-
batic nozz]es. The W, is defined as the ratio of the flow rate obtained from the nu-
merical solution to the flow rate obtained from a one-dimensional isentropic
solution for the same pressure ratio across the nozzle. The largest flow rate de-
crease, about 25 percent, occurs for the nozzle with the largest inlet boundary layer
thickness ratio, case 3. For a fixed inlet boundary layer thickness ratio (cases 1,2
and 4), the flow rate decreases with increasing slenderness of the nozzle (increas-

/ing throat ratio) because of the thicker boundary layers in the interior of the more
slender nozzles. :

L
T = 19.4
czl t Nozzie profile
(=4
E
B -~ -
@ S~ Edge of .
2 T~ __~boundary layer
o h ~ l
wy .
§ ~~—
E
[=]
2= 5x107 Throat o »
2= 1221074 ' z=30,5x107 z= 40x10
z= 20x107 .
- || Centerline
- - | | T I T e -
0 2 4 6 8 10
Dimensionless velocity {typical), U
| | l 1 | I | 4
0 - 10 2 30 40 60 i 60x10”
Dimensionles_s axial distance, Z

FIGURE 9-9. — Velocity profiles for typical nozzle (8/rec)o=0.80.



NONCIRCULAR AND VARYING AREA CHANNELS A 299

N -+ TaBLE 9-1. —FLow RATE RaTio COMPARISON

Inlet
‘Throat | boundary Flow rate
Case ratio, layer . ratio, W,
relr thickness,
(a/fw)o
A | 2.0 0.30 - 0.947
2 19.4 - . .30 918
3 19.4 .80 - 744
4 200.0 .30 .885
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APPENDIX A—SOLUTION FOR A SET OF LINEAR ALGEBRAIC
'EQUATIONS HAVING A TRIDIAGONAL MATRIX OF COEFFICIENTS

The matrix of coefficients of a set of linear algebraic equations is classified
as tridiagonal if it consists of a band of nonzero elements centered on the main
diagonal and three elements wide, and if the remaining elements of the matrix
are zero. A sét of equations of this type may be written as

B, G X, R,

Az B: - C» © | X R,

As By Cs - Xy Rs
4n—1 -Bn—l Cn—l Xn-l : Rn—l

An ' Bn . Xn Rn

(A-1)

Before continuing with the specific case of a tridiagonal set of equations, we
‘will briefly discuss in general the Gaussian elimination method which is to be used.
The objective of Gaussian elimination, which is a commonly employed and
highly efficient method of solving sets of linear equations, is to transform the matrix
of coefhicients of the set into an upper triangular form (i.e., a form in which all ele-
ments below the main diagonal are zero). This may be accomplished by the opera-
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tions of muluplymg or dividing any equation by a constant and adding- or sub-
tracting any equation from any other equatlon This upper triangular set has
- the form

Dy Dy Dy — — . — Din L v -Sl
Dsy  Dss — — = Ds, Y, 1S
D:i3 S — D3n Y3 S3 -
(A-2)
D(n—l n—-1) D(n—l )n Yn—l Sn—l
Dnn Yn Sn

The last equation may then be solved directly for Y, . the next to the last for ¥, _,
once Y, has been found. etc., continuing the back substitution until the top equa-
tion-is finally solved for Y;. A variation of this method, called Gauss Jordan elim-
ination,.is presented in appendix E.

Equations of the form-(A-1) are particularly easy to put into the form (A-2).
A number of the necessary operations will be performed on equation (A—1) to illus:
trate the method and then generalized to a recurrence scheme highly suitable for
a digital computer. First, the top equation in (A—1) is divided by B;:

¢ 2

. 1 Bl Xl. . B]
: e (A-3)

A B, C; X Xo1=1{R:

As By G X Rs

The top equation is now multiplied by 4. and subtracted from the second equation:

¢ R,

! B, X B,
CAs | e RN (A9
(B:Z B1 ) Cz X Xz - <R_)— Bl Ag) .

A4, By G| (x| | Rs
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The second equation may now be divided by its diagonal element (Bo - CBA ) and
1

multiplied by A; and then subtracted from the third equatlon This clears the ele-
ment where 4; was located to zero. These operations may be repeated for all equa-
tions, and the resulting set is of ihe form

1 G .. : X, R|
1 ¢ x. | |r
1 3 X; R;
. _ : o Tl (A-5)
SN . xl— {=]|—
1 G| [ Xewr | |Ric
1 1 X }{:,
The last equation of (A—5) is
Xu=R, . " (A-6)
Back substitution into the next to last equation yields
Xoo1 =—XuCy_, + R, | | (A-7)

All of the remaining equations yield a similar relation.

If the order just discussed is followed, then the method has the great advan- -
tage that all of the initially zero elements off of the tridiagonal band in (A-1) remain
zero throughout all operations. As a result, these elements do not require storage
space on a digital computer; thus, the only storage space required is for the tri-
diagonal band and the unknown and right side column vectors. The total storage
space required is therefore (5n—2) locations rather than the (n?-2n) required
for a complete matrix representation. In addition, the diagonals A4;; Bx, and Ci
may be represented as vectors rather than as elements of a matrix. This eliminates

" the necessity of using matrix subscripts, which with many algebraic program-
ming systems requires additional operations and hence, additional computer time.
The most important time saving with this method, however, is brought about by the
fact that the number of necessary operations is of @(n), whereas for the usual
- Gaussian elimination for a filled matrix, the number of operations is of @(n3).
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. With the relatively well-conditioned sets of equations which result from
finite difference representations, sets of equations with n of the order of several
hundred may be readily and accurately handled using this method.

The method mdy now be presented in the form of an algorithm. We employ
the usual computer notation in which the equal sign means replaced by. The
elements of the matrix equation (A—1) are modified as follows:

G
Cl_B]
yS)
Rl_B[
B1=l
Bi.=Br— Cr_A4
A k k—1/1k. (A_8)
.C‘A
k=2 {C=gt

R =Ry — Ry_1Ax

X =R,

k=n(—1)2 {Xk1 = — XiCria + Ry

To complete this discussion, we now present a FORTRAN IV subprogram
which accomplishes the solution discussed in this appendix. The symbols are those
used in equation (A-1). For simplicity, the dimensions used in the dimension
statement on A, B, C, X, and R have been shown as 120. It is suggested that the
value of n be inserted in this dimension statement whenever the routine is em-
ployed; more sophisticated dirﬁensioni_ng procedures are possible but depend on
the particular FORTRAN compiler used and will not be discussed here.

C PROGRAM FOR SOLVING SET OF TRIDIAGONALEQUAﬁONS'
SUBROUTINE TRIDI(A, B, C, X, R, N)
'DIMENSION A(120), B(120), C(120), X(120), R(120)
A(N)= A(N)/B(N)

- R(N)=R(N)/B(N)
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DO 1100 I=2, N.
=- I +N+2 B
BN=1JB(I-1)— AQ)*CAI-1)
A(II—1)= Al —-1)*BN
1100 R(II—-1)= (R(I1—1)— C{I —1)*RdI))*BN
X(1)=R(1)
DO 1101 I1=2, N
1101 X()= R(I) —AD*XA—-1)
RETURN |
END
The roﬁtin_e is calléd from the main program by the statement
CALL TRIDIA, B, C, X, R, N)

The results are left in the vector X and A, B, C, and R are destroyed.



APPENDIX B—FINITE DIFFERENCE REPRESENTATIONS, TRUNCATION
ERROR ANALYSIS, AND STABILITY ANALYSIS

B.1 FINITE DIFFERENCE REPRESENTATIONS

The foundation of all numerical analysis, and particularly of finite difference
methods, is the Taylor series. A function H(x) may be expanded in a Taylor series
near x=x, if H and zall of its derivatives exist and are finite near x = x,. The infinite
series expression is '

H(x)=H(xo) + (x —x0) (;—H

x=uxy 3! dx3 r==x¢

(x“'xn)2 ﬂ
2! dx?

For the present discussion, we limit ourselves to functions of a single independent
variable arbitrarily called x, but the results may be directly extended to functions
of many variables. We employ the following notation:

x—x0 = Ax

H(x) = H(xo + Ax) = Hj:;

H(xo) ___ HJ (B_2)
dx Xo dx j > e
Equation (B-1) may then be rewritten as
b i Ay | B2 H| | (A e |
Hj,,=H;+ Ax Iz j+ 2T dxt |, 31 dd ,~+"' (B—3)
307
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We may obtain an expression for %

dH | _Hi—H;, AxdH
dx |; Ax 2! da?

_(Ax)* &°H
;731 de

P (B-4)
J .

If only values of H are known, but not any of its dernvatlves then equation (B 4)

dH
pr0v1des an approximation to —— if we neglect all terms involving hlgher

dx j
derivatives of H. Since Ax is small and the derlvanves of H are finite (but un-
known), the dominant error term in equation (B—4) will presumab]y be %i—H

Since the only part of the term which is under our control is Ax we say that

dH

i —Hin —H | pax) :  (B-5)

j_ Ax

where 0 (Ax) is interpreted as of order Ax. The term (Hj_.—H;)/Ax is called a

d
forward difference representation of —— e

of error order Ax.

" If we define
H;y = H(x — Ax) o (B-6)

and express H;_; by a Taylor series expansion around xo, we obtain

dH (Ax)* d*H | d&*H
A TR e |, T e e, T B
- Solving this equation for ((11__['1 gives
X |
dH| _H—H. MxdH| _ (Axpd'H| B
dx |,;= Az Tade|, 3 A=, T (B-8)
or
dH H,—H;_
—_ =_J—J_l —_
dx |; Ax +0(Ax) v (B_ 9

The expression (H;—H;_,}/Ax is called the backward difference expression of error

Je

order Ax for (ji—H
v X
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If equation (B—7) is subtracted from equation (B—3), we obtain

2(Ax)* &*H

o dH '
Hj-!'l_Hj—|==2(Ax)H; j+ 31 de | (3—10)
Solvingforﬁ
dx |;,
dH | _Hj—H,., _ (Ax)* &'H | _ (Ax)* &°H Bl
dx |; 2(Ax) 3t da? |; St da® |;
or
dH Hj, ,—H;_
an | Hjn =i 9 ‘ _
dx |~ 2(Bx) +0((Ax)?) (B-12)

The expression (Hj+1 —Hj_,)/2(Ax) is called a central difference expression of error

order (Ax)? for (:1—21 / Since Ax is small, the.centrél difference-expression (B~12)
1 J .

is more accurate than either the forward (B—5) or backward (B—8) difference ex-

. dH | .
pressions for = | , assuming a fixed Ax.

dx |; .

We shall require only one type of difference expression for the second deriva-

. . : H .
tive. This may be found by equating the expressions ford— _from equations (B—4)

dx |;
and (B—8):
Hin—Hy - Ax &H | _ (A0 OH | _ (A=) & |
)Ax 2! daz j 31 da? ; M da ; ..
Hi—Hiy , Ax &H | _ (Ax) $H | | (A2 d'H
_H—H_, AxdH| _(Ax)* &#H d&H )
Ax MPIRT: ;3L de |y Al dat | (B-13)

.

Solving for &*H

dax?

~gives
J

&H | _ Hj —2H;+H;-,  (Ax)? d'H h - i
|, ~E Ga o dwr |t .+0§Ax) (B-14)
or
d&H | Hj. —2H;+H;_, o :
0 |,= " () +0((Ax) »_) (B-15)
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The expression (‘Hj+] —2H;+ H;_,)/(Ax)? is called a second central difference ex-

. 2H .
dx'—’ J )

pression.of error order (Ax)? for

Wherever possible in this book we have employed central difference expres-
sions for derivatives in the transverse (nonmarching) directions. (This was usually
not possible for the continuity equation.) When boundary conditions are required
on the. first transverse derivative of a function (as in heat flux problems), it is im-
portant that the error order in the expression for the gradient at the boundary be
the same as that of the central difference expressions used in the interior of the
region. Since the central differences discussed here are of error order (Ax)2, itis -
‘necessary that the derivative expressions at the boundary also be of order (Ax)2.
Central differences cannot be directly applied at the boundary, since a point out-
side the region of interest would have to be employed. An imaginary point exterior
to the region can be utilized, but it is generally the author’s preference to employ
forward or backward differences of order (Ax)? and thus express the derivatives
entirely-in terms of points interior to the region of interest and the boundary pomts

We first consider forward dlfferences We. find H(xo+2(Ax))—HJ+2 by a
Taylor Series expansion around xo:

. o
+4(Ax) &H +. .. (B-16)

dH
Hjpo=H; aa
e =H;+2(Ax) 3 +2(A) R b}

Now multiply equation (B=3) by 4 and subtract equation (B-16):

4‘Hj+1""HJ+2 3H; +2(Ax) dH ‘ - = (Ax )3 ‘+. .. (B-17)
Solving forM gives - .
dx |; :
dH _ H;»+4H;,, —3H; | (Ax)* &°H
ax |, S Tiv : 3w |, (B-18)
or
ﬂ_l _—Hj+2+4Hj+1_3Hj ' 2. _
Bl B 5(Ax) +0’((A9_c)) (B-19)

The expression (—Hj;+4H;,1 —3H;)/2(Ax) is called aforward difference repre

sentation of error order (Ax)? for dH

dx

J

- In an entirely analogous way, we may ﬁnd H;_» by a Taylor series expansion
and proceed to find
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dH | _3H,—4H, +H,,
dx |; 2(Ax)

+ 0 ((Ax)?)

(B—20)

where the expression (3H;—4H;_,+ H;_3)/2(Ax) is called a backward difference
representation of error order (Ax)? for % V

. j
We may now summarize the results obtained thus far:

Derivative | Difference répresemation Type Error order
'%I;{ J_ » ﬂ%”b | Forward | (ax)
v ,- N Backward | (Ax)
% ; . g gjzil‘(_A—f)u Central (Ax)?
%’ ol 3HJ_;I{J'A_;T&_2 Backvyard (Ax)?
%;If_{ ) | Hj+l;(ilzgjlitl | Cent.ralv ’.(Ax)z

B.2 TRUNCATION ERROR AND A SAMPLE TRUNCATION ERROR
ANALYSIS

In the context of this book, we define the truncation error in a difference
representation of a partial differential equation as the error made in the equation
.at a point by replacing the differential operators by difference operators. A much
more useful quantity to know, and one which is also often called truncation or
discretization error, would be the error in the velocities or pressures made by solv-
ing the difference equation rather than the differential equation. However, deter-
mining this error is essentially equivalent to knowing the exact solution to the
differential problem. Forsythe and Wasow (ref. 1) distiriguish between these two
types of error by calling the error made in the equation by replacing differential
operators by difference operators, the formal discretization error at a point. This
is the quantity which we will estimate in this section. There-is no guarantee
that the order of magnitude of this error will be the same as the order of magnitude
of the errors in velocities or pressures, but there is obviously an advantage in
keeping the error in the equation itself as small as possible.

459-174 O - 73 - 21
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As an example, we consider the truncation error at a point for the difference
representations of the incompressible boundary layer equations dlscussed in
section 2.1.1. For the momentum equatlon the truncation error is

_(azU_g_Ugj_VdU) [Uj+l.k+1—ZUj+l,k+Uj+l,k—l
Ty ax o dx dY (AY)?
—PjH_Pj—U~ ‘Uj+l,k“Uj,k_V‘ Ujir, k1 — Ujsr, k1
AX PECAX Ik 2(AY)

] (B-21)

Using the expressions (B—4), (B—11), and (B—14), we obtain

(AY)? otU AX 3P

B=- S| L roan+5EEE | vacany
vulFos| | roam ]+ [SEEER|  vaarm]

' (B—22)

Since all functions are assumed analytic in the neighborhood of the point (j+1, k),
their derivatives must be bounded. We may therefore write

E. = 0((AY)?) + 0(AX) : (B-23)

- The truncation error analysis for the continuity equation proceeds in a similar
manner;

E, = (GU. aV) <Uj+1,1.~ — U x " Vievow — Vj+1,k—)) (B=24)

“laxtay AX AY

Employing expressions (B—4) and (B-8) gives E; as

_AX ®U _AY RV , ~
E=%ox| ., +O0@X) -5 5m ] +O(AY))  (B-25)
or

= 0(AX) + O(AY) (B—26)

B.3 A GENERAL METHOD OF STABILITY ANALYSIS

Various methods of stability analysis have been used to obtain stability
criteria for difference representations of the type presented in this book. These
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include the work of Rouleau (ref. 2), which is based on a paper by Hyman, O’Brien,
and Kaplan (ref. 3), and that of Bodoia (ref. 4), which is based on the work of
Lax (ref. 5). Of the two, it would appear that the approach of Lax would have the
most general application, particularly to systems of simultaneous differential equa-
tions. The stability analysis given here will thus be based on the work of Lax,
and will rely heavily on the excellent description of this work given by Bodoia, with
additional comments added to aid in interpretation.

The Lax method of stability analysis given here requires that the difference
eguations be linear with constant coefhicients. Since this is not the case for any
problem in which we are interested, it will be necessary to make a heuristic exten-
sion of the method to the actual problems to be analyzed. This extension will
be made after the method has been presented.

The set of discrete variables U} ,, U3, . . ., Ut,, . .. Ui, is assumed to
‘be described on a finite difference grid at a point (j, k) by a set of difference equa-
tions which may be arranged in the form '

lp J+l k+i Z E Flp i k4l q=1’2"' s S (B—27)-

\‘M*

There are s such equations. Some interpretation may be helpful at this point.
The set of variables U}, . . ., U3, represents the different variables such as
Uj.k, Vj.i, and P; i (for this case s=3). Generally speaking, if there are s different
discrete variables at each point, then there should be s independent difference
equations written at each point, corresponding to the s equations of the type
(B—27). Each of these equations will have different coefficients, as denoted by
the superscript g on ithe coefficients in (B—27). Since, in general, all variables
may appear in any given equation, it is necessary to sum over all variables (the
summation on p). The summation on [ goes only from — 1 to + 1 since it is assumed
that only equations of second order and lower will be encountered in the transverse
(non-marching) direction, and a second central difference involves the variables
only at k41, k&, and £—1. The rearrangement into essentially the form of equation
(B-27) has been regularly done in the discussion of almost every difference
equation presented in this book. It i1s important to note that the vartables Ul’
represent the exact solution to the difference equations, which is only theoretlcally
obtainable, since in practice roundoff error will always be present, regardless of
how many decimal places are carried in the computations.

We now introduce 8 , as the error due to roundoff at the point (j, k) for the
variable U?,, and define in a similar manner &,, ,. In the actual computations
which we are performing, roundoff error will be present, and equation (B~27)
must assume the form

5

+1
2 ; ( J+l l-+l+6}’+1 k+l) =

s
p=1 I1=-1 =

+1 .
2 F L, p (Ul k+l+8l I.+I) (B-28)

p=1 I=—1
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Equation (B—27) may now be subtracted from equation (B—-28) leaving

+

M-

1 !

-1

b~
Il

]

: .8 +1
E, j+l k1 E E.F;?,, 6’ Y , (B-29)

We now search for a solution to equation (B-29) for 8”, 4+ Consider the
“errors at j=10 (chosen arbitrarily but without loss of generahty) This line of errors
correspondmg to the variable U(; may be expressed as the complex Fourier series

2 A ,; e(nn‘ir/n)l. . . (B—30)
m=0 ' - . e ) i
k=0(1)n '

where n, as usual, represents the last point in the field for which the difference
equation is written. The only solution to equation (B~29) which will reduce to
the form (B—30) for j=0 will have terms of the form

[fg]j eBak -_ o k (B-31)

mw ; TN . .
where Bin = et this form represents a product solution of a function of j and

a function of £. - : : :

The function of j, [£4]/, is interpreted as £} raised to the power j, where
&4 is a function of the coefficients of equation (B-29), £ and F, as well-as B.
There is one £ for each value of p, (i.e., one for each variable U”). We need
consider only one term of the Fourier series by superposition. We substltule a
term of the form (B—31) for 87 in equatlon (B-29), whlch yields

'.'M*

! s . -’v .
fl‘]1+l e’Bm U\+’)— f" J+1 e'Bm(’\+1) <y .
, 2 ;_: g g ‘ , (B—~32)

There are s such equations, one for each value of ¢= 1(1)s The set of equations
(B—32) represents a set of 51mu1tane0us equatlons in the unknowns

[%]iﬂ; U [ffg]'jﬂ
on the left side and ‘ ‘
AN
on the right side. This set of equations may be written in matrix form as

H, ;M—Ho T (B-33)
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1=—1

where Eif! and- = are the column vectors of the unknowns [f' P, [gs P+
and [¢ B]J, R [g ]J -and H y and Hy are square matrices of order s w1th elemems
given by a
(Hi)r, c= 2 E’r e'Bm("+’) ' (B-34)
== :
~and-
(Ho)r c= 2 Fr eBm (k+D s (B—35)

where the subscript r denotes row location and ¢ column location. The elements of
H, and H, are thus functions only of the coefficients of the difference equations

(B-27) and B :
 Equation (B-33) is now premultiplied by the inverse of H,, H i'>toyield
Ej'=(H7") (Ho) B} (B-36)
or
' Ei'=CGE, - | (B-37)

where G= H;'H,. The matrix G may now be seen to transform the vector (eyd,. ...
[&) into the vector F3 Y AR ., [€4)7+1. A nonrigorous explanation of stability
- might ‘then be that if G causes an “amplification” of & ""B’ then the representation
is unstable; and if it does not, then the representation is stable. Lax (ref. 5) termed
‘G the amplification/matrix'and defined as stability the requirement. that & must
be a bounded function of j. We may alternatively define stability in terms of the
so-called von Neumann condition (see Bodoia, ref. 4) by stating that if A? denotes
“one of the A, 7XZ , AP, . . ., A% eigenvalues of G, then it is necessary
appd sufficient for stability that all of the eigenvalues of G be bounded for all 8,
and that, with the possible exception of one eigenvalue, they satisfy '

A =<1 (B-38)
If one eigenvalue does not satisfy (B—38) , then that eigenvalue must satisfy -
A7 < 1+0(AX) . (B—39)

where AX is the mesh size in the marching direction.
. The heuristic extension to coefficients -which are nonconstant, (i.e., which
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vary with k) may be justified if it is assumed that instability develops locally and
then propagates throughout the field. Under this assumption, it is reasonable to
treat the coeficienis as constant over a small region and to apply the stability
analysis as discussed here.

B.4 SAMPLE STABILITY ANALYSIS

We chose for a sample stability analysis the simplest set of difference equa-
tions which adequately illustrate all of the features of such an analysis: the differ-
ence form of the incompressible two-dimensional boundary layer equations’
discussed in section 2.1.1. These are the same equations for which a truncation
error analysis was performed in section B.2. These equations are

Ujﬂ,k—Uj,

Uy Srta iy, Gt st Ll

o | +U,-+.,k+.—2&;),:+U,-+;,k_, (B-40)
and

Upiownn =Usiens | Vienwn = Vierk _ o (B-41)

AX AY

This set of equations differs from the set analyzed by Bodoia (ref. 4) only in the
form of continuity (B—41), and the analysis i1s quite similar to his. ‘

Equations (B—40) and (B—41) must first be rearranged into the form (B—27).
This rearrangement results in the following equations:

—Vix 1 Uie 2
[z~ aw] Ve + [Tax ] Vo

V', 1 . P; —P; ‘ U-, N
+ gty ~ | Voo ==+ [T e 02

and

1 1 - 717 1 :
[ﬁ] Ujii, k1 + [W] Vi, k1 — [U] Vili,x= [H] Uj,knn  (B—43)

For this problem, s=2 since U and V are the only discrete variables to be con-
sidered, and P is not a variable since it is specified for the boundary layer problem.

The actual computed values of U and V are U+ 8! and V4 82 where § is the
roundoff error in each variable. Thus, the actual equations we have solved are
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- V‘,k 1 p U',k 2
[2(A}Y) - (AY)Z] (Uj+1,k—1 + 8;‘+|,k—1)+ l:; (AY)Z] (U_,H v+ 81+| k)
Vi 1 . P;—P; U,
+gh - (AY)z] Wi or + 8}, 1) = =5+ (%r) W+ayd
(B-44)

and

1 1 ,
(IX) (Ujsr, ka1 + 6}+1,k+ﬂ-)] + (A—Y) (Vist, ko1 + 5;1’“,)

. (AY> (,V)+l "+81+1 k) "‘< ) (U, k2 + 5} k+1) (B—45)

* Subtracting equation (B—42) from (B-— 4-4) and equation (B—43) from (B—45),
we obtain

[‘E(A—I;)"TA;_)] Opet. - -+ [ax @] B
-l (@ 0o

and

1 1 ' 1
(AX) 8}+1 k+1+ (AY) 8f+1 k+1 <AY> 8f+1 k= (ﬁ) 8},k+| (B_4'7)

Note that we have dropped the subscripts from the quantities in the coefficients
of the &’s since we assume these coefficients constant in a small region.

These two equations, (B—46) and (B—47), correspond to equation (B—33)
when written in the form

H, Erl}“'—‘”oaf}. : (B—48)

_The matrices H, and Ho can now be formed by using the relations (B—34) and
(B—35). The matrix H, is given by

H,= [‘I 0 ] | (B—49)

‘'where
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J= [2?;;) (A;’) ]'eéw 1)+[U‘ (AY)? ]e bt [2(ZY) (AIY)‘Z] eiBM(,M

. = -l— iBm (k+1) . . "
K (AX)e + )

. 1 . . 1 :
=(-—1) eiBmk+1) — [ — | piBm (k)
L (AY) etmitt (AY) e

and H, is given by

M o]
HO:[N 0] . (B"SO

where -

and

N= (Al_f) eiBm *+1)

~ After dividing bbt_h sides of equation (B~48) by

e!Pm¥ [ (AY)? .
l AX
and using the identity . ‘
. . etiBm_COS Bmil sm Bm
the matrices H, and Ho may be rewritten, after some manipulation, as
—l_A Y
. s
= ' (B-51
LI (eiBm) (eim—1)

1

s

Ho= . (B-52

LI (e"m)
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where
_AX
ST TU(AY)?
A=2(cos Bm— l)l—iV(AY) sin B
|_AY '
TAX

Now the amplification matrix G is defined as

G=Hi'H, ) (B-53)
and L
s
1—s4 . 0
Hi'= ' ) (B—54).
._ls(e’ﬁmv) . 1
[(A—sd) (ePn—1)  (ePm—1)
so that
1
1—sA4 -0
6= o (B—55)
—IsA(ePm) of

ul —sAd) (e"m—1)

One of the eigenvalues of G is zero. The other is 1/(1 —s4). According to our
requirements for stability, it is necessary that

) ‘
1_—7‘ < 1+0(AX) (B-56)

This is the identical criterion found by Bodoia for the same set of differential
equations, but employing a different continuity difference representation. This
is undoubtedly caused by the very weak linkage between momentum and continuity
in the boundary layer difference equations. The elements of G satisfy the criterion
that they are bounded for all 8, except Bn=0. At B,,=0, (G): is unbounded.
Returning to the Fourier series expression for the error at j=0, equation (B—-30),
we note that 8,,=mn/n=0 must correspond to a zero error frequency. As men-
tioned in reference 4, a zero error frequency may only appear if the boundary
conditions are of the nonfixed type. This means that for the flat plate problem
since the boundary conditions are fixed; 8» =0 is not possible and our condition
(B-56) is sufficient. For problems of the wake type such as in section 2.3.1 where
a symmetry condition is used at the centerline, theoretically 8,,= 0 is possible but
to the author’s knowledge has not been noted in practice. For our purposes then,
the condition (B—56) may be considered sufhcient.
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We will now interpret the stability conditibn (B—-56). The term s4 is

sA =% [2(005 Bn—1) —-iV(.AY) sin B,,,] (B-57)
or
_[28X) ey [ XA
SA_[U(AY)Z("’OS @____1)] L[U(AY) smBm] (B-58)

'The locus of —sA is shown in figure B-1, and that of (1—sA4) and 1/(1—sA4) in
figure B—2. The solid curve is for U >0, and the dashed curye for U < 0. For
U>0,|1—sA4| =1 and therefore '

1
|)\| = H—_-;A_Isl (B-59)

The representation is therefore stable for U > 0. For U < 0 we examine

V(AX)-

_ 2(8X) 0. :
N 1 bl i L1 il B-60)
T—s4 [1_2(AX) (cos B _1)]2+[V(AX) IR
UAY): cos B U(AY) sin B _
Now we let
2(AX)
C=1_U(AY)2 (cos Bn—1) (B—61)
and
_V(AX) ‘ '
D= U(aY) sin Bm (B—62)
so that '
u>o0
Imaginary ~~77~ u<o
SVJ" kAY -sA
PN
/// \\
4\\ / o o Real
\\ //
-V, A

FiGure B-1. —Plot of —sA.



ANALYSIS OF STABILITY AND TRUNCATION ERRORS

Real
u>o
X ———U<0
-i
FiCURE B-2.—Plot of §=ﬁ-
1 _ C—iD
1—s4 C2+D?
and '
1 |_ve+Dp2 1
1—s4 C2+ D2 T De
Now
‘ﬁ\ s lonlyifC2+D2=1
or,
_2(AX) _n P axye
[ 1 U(AY)? (cos Bmn—1) ] + U (AY)? sin2 By =1
This inequality will be satisfied if
AX 1
U] (AY): ™ 2
and
_ 2|U|
V= AX

These are the stability criteria.
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APPENDIX (—ANALYSIS AND CORRECTION OF INHERENT ERROR
IN FLOW RATE FOR CONFINED FLOW PROBLEMS IN CHANNELS

OF CONSTANT AREA

When ‘a continuous velocity distribution must be represented by a discrete
set of values on a finite difference grid, some. error will necessarily be incurred
when an operation -such as differentiation or integration of that distribution must
be performed. In finding the flow rate in a channel, a transverse integration of the
axial velocity distribution must be performed, and it is the purpose of this appendix
to analyze and to help correct the error in such-a flow rate calculation.

This error correction can be of considerable importance, since a flow rate
calculation is performed, either explicity or implicitly, in every confined flow
.analysis discussed in this book. Errors in the channel flow rate will thus result
“in errors in both the axial pressure distribution and the local velocity distributions.

The effects of flow rate errors on the axial pressure distribution and local veloc-
ity distributions occur through relatively subtle mechanisms and, except in the
fully developed region, are very difficult to evaluate. In fact, many possible defini-
tions of flow rate error are possible. The definition of flow rate error and the cor-
responding correction technique discussed in this appendix, while nonunique,
seem logical. Most important, the error correction technique works in the sense
that when it is used results are obtained which are more accurate for both velocity
distributions and pressure gradients. This improvement in accuracy has been
verified by comparing the results with those obtained by using much finer mesh
sizes. . _
The use of finite difference forms of the continuity equation which involve
only first-order forward and backward transverse spacewise differences, as has
been common practice throughout this book, restricts the numerical approximation
of the flow rate to that of a trapezoidal rule integration over the mesh. This is
evident from the forms of equations (6—10) and (7—14) which are the difference
forms of integral continuity for the parallel plate channel and the circular tube,
respectively, and which result directly from adding together the finite difference
representations of differential continuity obtained at all transverse mesh points.
- Even in those cases where the integral continuity equation is not directly applied

323
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(e.g., the second model for flow in a rectangular channel, section 8.1.2), the trap-
ezodial rule integral is implied as may be seen by adding together the continuity
difference equations written for all transverse mesh points. The -actual error in
flow rate in such cases is greater than the error in trapezoidal rule integration,
since without the actual use of integral continuity the flow rate tends to drift
because of roundoff error.

The details of error analysis and error correction will be carried out here
for the simplest case, that of the parallel plate channel, but they may be extended
readily to a constant area channel of any shape. To the best of the author’s knowl-
edge, no information on error analysis and correction in flow rate is available for

. varying area channels, and any general error analysis would be very difficult to
obtain since the results would be highly geometry dependent.

We first examine the entrance flow problem discussed in section 6.1.1. In
the following discussion we assume the existence of a known exact solution to the
fundamental differential equations of the problem which yields continuous velocity
distributions over the entire region of interest. We then apply the discrete form
of integral continuity to these continuous velocity distributions in order to examine
the error involved in the discrete approximations.

Using the variables of section 6.1.1, the exact continuous solution gives

Uo "'=U9k= 1 . ) (C—l)

A trapezoidal rule integration for the dimensionless flow rate over the discrete
grid yields

. n AY
de (Uo,0+2 ’Z Uo,k) 7 (C_Z)
or, using (C—1) and since i (1) =n,
k=1
: AY
Qd= (1+2n) ? (C_3)
For a uniform mesh,
1
=AY -
| e | e
so that (C-3) becomes .
AY
Qu=1—=- (C-5)

The exact flow rate from a continuous profile would be

Qe: 1 (C—6)
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We define the inherent error in flow rate due to discretization as
€q EQe‘—Qa (C-7)

Using equations (C—5) and (C—6) gives
. AY :
. €@Q= ? ’ (C-8)

This is the error in flow rate made at the inlet by replacing the continuous
inlet profile by a discrete set of values having the same magnitude as the continuous
_profile at each point. _ '
The error €q evaluated from equation (C-7) will be different at different
axial positions as the solution is carried downstream since Qq as evaluated from
equation (C—2) does not remain constant as the exact solution velocity profile
changes. (The expressions for ‘4 in equation (C—5) and €q in equation (C—8)
apply only at the inlet.) It is instructive to compute the error €q for fully devel-
oped flow. For the present geometry, the exact continous fully developed velocity
distribution is given in dimensionless form by

-

U,=1.5(1—Y?) | (C-9)

At the grid points, assuming a uniform grid,
Ue, = 1.5[1 — k2(AY)2]

(C-10)
Employing the trapezoidal rule gives
' . n AY .
Qd = (er + 2 2 Uek> - (C'll)
k=1 2
or when using equation -(C—IO),
Qa=1.5 {1+2 2 [l—kZ(AY)Z]}Az—Y (C-12)
k=1 , _
Now, since
LA +1)2n+1 .
3 r=mn )6( ntl) (C-13)
k=1
we may rewrite equation (C-12) as
’ 2(1 — AY) - .
Qa=15 {1 +—(W——),— 2(AY)? ["("+ 1)6(2" hs 1)]} A2Z (C-14)



326 - NUMERICAL MARCHING TECHNIQUES

or, since

1

=AY ‘ ' "~ (C-15)

n + 1
we find after some manipulation that
AY)?
Qu=1-— % (C-16)
or, since Q. =1, T i
AY ' .
=0~ Qu= ( 2 (AT)* (C-17)

The error in flow rate made by replacing the continuous profile from the exact
solution with discrete points bearing the same velocity values is thus much smaller
in the fully developed region ((AY)2/4) than that in the entrance region (AY/2).
Either of these errors will of course be reduced in magnitude if the mesh size
AY is reduced. If the variable mesh size technique of appendix D is applied,
the error expressions given by equations (C~8) and (C-17) still apply, with AY= AYz,
the small mesh size used near the channel wall.

In actually obtaining a numerical solution, the value of Qg is set by the values
of Uy, r used for the inlet profile through the trapezoidal rule integral for the
flow rate (the equation of constraint) which states that

AY ¢, e & “\AY
Qu= (Uo ot 2 2 U, k) 2 (Uj_ﬂ,k +2 kE::] Uj+1,k) - = constant

(C-18)

The Qd then remains constant over the entire length of the channel. By proper
choice of the values of Us «, the inherent error in flow rate defined by equation
(C-7) may be compensated for either at the inlet or in the fully developed region
(but not both).

If the flow rate error is to be compensated for in the fully developed region,
the inlet profile may be multiplied by 1/{1— [(AY)2/4]}. For example,

1

S S C-19

Us, x TSIE | . (€19
1 _T

based on the error term (C-17). In the particular case under consideration here,
when the flow rate is corrected by (C-19), then the fully developed velocities at each
point (Uj,x) and the fully developed pressure gradient (Pj., —P;)/AX obtained
from the finite difference solution are exactly those of the analytical solution. This
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is largely a fortuitous circumstance, mainly because the exact fully developed ve-
locity distribution is a parabola and because the central differences used for trans-
verse velocity gradients are exact for parabolas. In general, the results of the error
correction technique will be good, but not perfect. The error correction (C-19)
will have some beneficial effect near the entrance, but not as much as a technique
specifically intended for that region. _

If the flow rate error is to be corrected at the channel inlet, the inlet profile
may be modified as

Uo,k= A v (C"?_O)

based on the error term (C—8). This correction is very effective near the inlet, but

- it has less benefit as the fully developed region is approached.

For each problem, a decision must bemade as to whether a correction of the

" form (C-19) or (C—20) would be most beneficial. If a fully developed solution is
available from another source (as it must be to get an expression of the form (C-19)),
then a correction of the form (C—19) would seem to be most esthetically pleasing,
since the solution would closely approach the correct fully developed velocity dis-
tribution and pressure gradient. However, since the development region would be
of prime importance in such a situation, a correction of the form (C—20) would give

" more accurate results in that region, and any errors incurred in the fully developed
region would be easily evaluated since the solution is already known in that region. -
On the other hand, a correction of the form (C—19) would not allow an evaluation of
the error in the development region since presumably no solution is available there.
If no fully developed solution is available, then a correction factor based on a uni-
form inlet profile such as (C—20) is the only choice. Thus, a correction of the form
(C-20) would seem to the author to be most practical in all cases.
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APPENDIX D—VARIABLE MESH SIZE TECHNIQUE

In the finite difference solution of viscous flows it is often advantageous to
use a fine mesh size in regions of rapidly varying velocities, such as close to a
wall or in a mixing region. Conversely, a relatively coarse mesh is satisfactory in
regions of more slowly varying velocity, such as close to a channel centerline or
near the free stream in a boundary layer flow. In references 1 and 2 Hornbeck
discusses the technique of combining large and small mesh sizes. The advantage
of this technique over simply applying a small mesh over the entire region is that
in an implicit formulation the number of simultaneous equations to be solved can
be reduced materially. This can effect a considerable saving in computer time,
particularly in confined flow situations where it is usually necessary to use stand-
ard elimination methods for which the time required increases as the cube of the
" number of equations. In addition, the roundoff error accumulated in solving large -
numbers of simultaneous equations is held to a minimum.

A variable mesh technique presents no difficulties when only forward or
backward first differences of error @(h) are required, where % is the mesh size,
since such differences involve only two points and can be wholly contained in
a region of any given mesh size with no difficulties encountered at the mesh size
change. For this reason, the mesh size in the marching direction for any of the
problems discussed in this book may be changed as desired without modification
to the equations since only a first backward difference of error @(4) in the march-
ing direction is involved. When it is desired to employ central differences, either
first or second, as in the transverse directions for problems discussed in this
book, difficulties occur in evaluating these differences at the point of mesh size
change. Thus, it is not possible to vary the transverse mesh size in the field with-
out some modification to the previously presented equations.

Suppose a mesh size change from AY, to a smaller mesh size AY: is to be made
at the transverse position corresponding to k=p. The region of mesh size change
is shown in figure D—1(a). A velocity Uj.1,q at a point AY; below the point k=p
is determined by passing a parabola through the values of Uji1,p+1, Uj+1,p, and
Uj+1, p-1, and then interpolating for Uj,,,  The interpolated value is given by
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p-1 — *
{a) ' " b
' (a) Large mesh to small S {b); Small mesh. to, large. mesh. .~

mesh.

F16Uure D—1. —Region of mesh size change.

9—1

. 3 :
Uin,=2—— 1+0 Uisr,p- 1+2(1" OUjir,p+— o+1 Ujs1,p41 - (D-D)
where o
. 0:— . . . R —
AY1 | | R (D-2)

The derivatives in question at the point k p can now be expressed in dif-
ference form as

U = Ups1,p61 = Upir g (D=3)

Y | k=p 2(AY,) . .
§l£ _ U1+1 pr1 2U_}+l p'* U_’+1 q | - (D_4)
Y2 =p (Ang)2 o

where Uj;1,q is given by equation (D—1). These expressions apply whether the
transverse direction Y is a Cartesian or radial (cylindrical) coordinate. ‘
If the mesh size is to be changed from a smaller mesh size AY: to a larger
mesh size AY, at k=p as shown in figure D— l(b) then the interpolated value is

given by :
0—1

Uro=57

U}-H p— 1+2(1_0)U_]+| p+2 1+ 6 (]‘j+l,p+l . (D_S)

: where 0= AYz/AYl
The derivatives at k= p are approxiipated as

%, —_ Uis1,a=Ujs1,p1

aY 2(AY.) (D-6)
32[{ — Uf+1.q‘_2Uj+l,1:l:+‘ Uj+1,1:—1 ) '(D—7) .
1) S P (AY,)? s

\

where Uj,1, 4 is given by equation (D-5).
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For confined viscous flows where the integral continuity equation is applied,
modification must be made if two different transverse mesh sizes are involved. As
an example, consider the incompressible entrance flow between parallel plates
discussed in section 6.1.1. The integral Sntinuity equation may be written as

f‘UdY -
0 Ji+

If the integrals in equation (D—8) are evaluated by the trapezoidal rule for the case
where the mesh size changes from a large mesh AY, to a small mesh AY; a1 k=p,
somewhere in the range 0 <Y < 1, then the finite difference form of equation (D—8)
becomes

(D-8)

' £l AY.
(Uj+1.0+2 2 Uj+1,k+Uj+1,,,)'A—2Y—l+ (UJH pt+2 z Ui, A) 22
k=1 k=p+1
AY AY,
( 10+22UJ/\+UJ ,,)——‘ (U, 42 3 U, A> O

, k=p+1
The -extension to cylindrical geometry ‘and other geometries is straightforward;
the integration must be done in sections which cover each region of a given mesh
size.

“In general, the use of two (or more) different transverse mesh sizes in the same
flow field does not significantly change the actual method of solution. This is true
since a special form of the difference equations is needed only at the point of
mesh size change, and in fact, is only needed then if central or forward or back-
ward differences of higher error order which span the mesh size change are in-
volved. Of course, the proper mesh size must be used in the corresponding region.

The continuity equation difference representations employed in this book
almost without exception involve only simple forward or backward differences
in the transverse directions, and not central differences or higher order forward
or backward expressions. Thus, the only point to be observed in using continuity
on a field of varying transverse mesh 51ze is to ensure that the proper mesh size
is used in the appropriate region. )
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APPENDIX E-QGAUSS-JORDAN ELIMINATION ROUTINE

One of the most effective methods of solving a set of simultaneous linear alge-
braic equations, where the matrix of coefficients is not of the band type discussed
in appendix " A, is a modification of Gauss elimination called Gauss-Jordan
elimination. The technique will not be discussed in detail here (see Ralston, ref. 1).

The rqutine presented in this appendix inverts the matrix of coefficients rather
than solving the set of equations. If the set of equations is written in matrix form as

AX=R - (E-D

where 4 is the square matrix of coefficients, X the column vector of unknowns, and
R the column vector representing the right side, then the solution may be formally
written as '

X=A4"'R
where 4! is the inverse of 4. The matrix multiplication of the square matrix 4-!
‘with the column vector R yields the solution column vector X.

We present first the routine to invert 4 and then a program segment to solve
for X using A-'. _

The following FORTRAN IV routine employs maximization of pivotal elements
(partial positioning for size) described by Ralston in reference 1. This helps to reduce
roundoff error. Since the routine has no error exits, attempting to invert a singular
matrix will simply give erroneous results or an overflow, depending on the com-
puter and compiler employed. Although more sophisticated dimensioning is possi-
ble with certain systems, it is suggested that the matrix C be dimensioned as n by n
(n=70 for the example given here) and that the integer vector J have at least a
dimension of (n+21).

C THIS IS A FORTRAN SUBROUTINE FOR INVERTING MATRICES BY
C MEANS OF GAUSS-JORDAN ELIMINATION EMPLOYING ‘PARTIAL
C POSITIONING FOR SIZE. THERE ARE NO ERROR EXITS AND AT-
C TEMPTING TO INVERT A SINGULAR MATRIX WILL IN GENERAL
C SIMPLY GIVE NON-MEANINGFUL RESULTS.

c ' )
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THE CALLING SEQUENCE IS SIMPLY '

CALL MIVNC(A, N)

WHERE A IS THE SQUARE MATRIX TO BE INVERTED AND N IS THE
SIZE OF THIS MATRIX. THE DUMMY ARRAY C IN THE SUBROUTINE
IS DIMENSIONED AS 70 BY 70.

THIS DIMENSION MUST BE MODIFIED BEFORE THE SUBROUTINE IS
USED SO THAT THE ARRAY SIZE IN THE SUBROUTINE IS THE SAME
AS THAT OF THE ARRAY IN THE CALLING PROGRAM (A IN THE
ABOVE SAMPLE CALL). THE VALUE OF N MAY OF COURSE BE DIF-
FERENT THAN THE ROW AND COLUMN DIMENSION OF A. THE
DIMENSION OF J IN THE SUBROUTINE MUST BE AT LEAST (N + 21).
SUBROUTINE MIVNC(C, J3)
DIMENSION C(70, 70), J(120)
. DO1251=1,J3 -
125 JA + 20) =1
DO 1441=1,]3
Co=0:
Ji=1
DO135K=1,]3 ,
IF ((ABS(C0)— ABS(C(, K)). GE 0.) GO TO 135
126 J1=K -
Co=C({, K)
135 CONTINUE
127 IF (LEQ.J1) GO TO 138
128 K= J(J1 + 20) ‘
JJ1 + 20)= J(I +20)
JU+20)=
- DO137K= 1 J3
S0=CK, D ‘
CK,H=CK, 1)
137 C(K, J1)= S0
138 CI, ) =1.
DO 139 J1=1,]3
139 C(, J1)= C(I, J1)/CO
' DO 142 J1=1,J3
IF (ILEQ.J1) GO TO 142
129 CO=C(J1, )
~ IF (C0.EQ.0.) GO TO 142
130 CJ1,)=0.
DO 141 K=1,J3

oo o000ann
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141 C(J1, K)= C(J1. K) — C0*C(, K)
142 CONTINUE
144 CONTINUE

DO 1431=1,J3

IF (J(I + 20).EQ.I) GO TO 143
131 J1=1
132 J1=J1+1

IF (J(J1 + 20).EQ.I) GO TO 133
136 IF (J3.GT.J1) GO TO 132
133 JJ1 + 20) = J(I + 20)

DO 163K=1,J3

Co=C(, K)

C({I, K)= C(J1,K)
163 C(J1,K)=C0

JA+20)=1 C -
143 CONTINUE

- RETURN
END

- The following program segment calls the inversion routine, as&uming the co-
efficient matrix is A and the order N, and then multiplies 4! by the right side vec-
tor RH and stores the result in the vector X :

CALL MIVNC (A, N) ,
DO 10 J=1, N '
SUM=0.
DO 11 K=1, N

11 SUM=SUM+ A(J, K)*RH(K)

10 X(J)=SUM :

.For sets of equations of the type encountered in the confined flow chapters of
this book, this routine has ‘given accurate results on a machine with an eight-
decimal digit word for V as high as 90.
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- APPENDIX F—SPECIFICATION OF TRANSVERSE VELOCITIES AT
- LEADING EDGES AND CHANNEL ENTRANCES

. In most of the problems formulated in this book, the transverse velocity
components at the leading edge in a boundary layer problem or at the entrance
in a channel flow problem must be specified in order to obtain a solution to the
difference equations at the first step downstream from the leading edge or entrance.
However, in the great majority of these problems, these transverse velocities are
not true boundary conditions in the mathematical sense. It is the purpose of this
appendix to clarify this apparent paradox.

Consider first the flat plate boundary layer problem discussed in chapter 2.
The differential formulation in dimensionless form is -

au alu dP o :
UB_X Va_Y _E+GY2 . F-1)

oU oV _ ’ )
ﬁ+a_l’_0 F-2)
U(X,0)=0
U(X,®)=U.(X) _
V(X,0)=0 F-3)

U0,Y)=U.(0)

Note that ¥ (0, Y) is not specified: That this condition is not a boundary condition
may be seen qualitatively by noting that there are no derivatives of ¥ with respect
to X in equations (F—1) and (F-2). That ¥ (0, Y) is not a boundary condition
may be verified quantitatively by writing equations (F-1) to (F-3) in stream
function form and noting that the set is complete without specifying ¥ (0, Y).-
The value of ¥(X, Y) may in fact readily be shown to approach infinity as the
singular point X =0 is approached. '
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Consider now the conventional implicit finite difference representation of
this problem (See chapter 2 for details). Equations (F~1) and (F~2) become

;+1 k— UJ Uj+1,k+1_Uj+l,I:—1
- + V.
Ui =5% P 2(AY)
P;+1 -P; U,+1 /\+1—-2U_]+] A+UJ+1 k-1 '
(_]j+1,k+1_“j,‘k-‘+l V,+1A+1“ ek . :
AX + NG =0 (F-5)

Equation (F-4) written for A4=1(1)n results in n s1multaneous linear algebralc
equations -in the n unknowns UJ+. ks each of the form

1 Vi U 2 I
[— (AY)? —2(AY):|UJ+I”"_ 1+[ﬁ+ (TY_;_;]U{'—H.I:
1 Vi 1. . PP +U
+ [_ (AY)_) + 2(3}’;)]U‘]+| l-+] ———"—A%——‘—’— (F_6)

The coefficients of the unknowns as well as the right side of equation (F-6) contain
the “known” velocities Uj x and V;, .. However, at the first step downstream from the
leading edge, Uj. . and Vj_ 4 are U(0,Y) and ¥(0,Y), respectively. Thus, ¥ (0,Y)
must be specified in order to start the marching procedure. This requirement is,
however, a result of the numerical scheme employed as opposed to a fundamental
boundary condition. We shall emphasizc this point shortly by discussing a numeri-
cal scheme which does not require the specification of ¥ (0, Y). In practice, a more
important question is whether the values specified for ¥(0, Y) in the conventional
implicit scheme discussed prevnously have a significant effect on the solution. The
fortunate answer is that they do not; the effect of even very large changes in the
values chosen for V' (0,Y) is damped out after only a few steps downstream from
the leadm“ edge. Since a large number of small steps must be taken near the lead-
ing edge in any event to confine the effect of the leading edge singularity to small
X (see chapter 2), the choice of ¥(0, Y) is quite unimportant. The author has found
that choosing (0, Y) =0 is quite acceptable. The values of V1, calculated from
equation (F-5) close to the leading edge are very large (of the order of 100) -and
behave in the general manner predicted by the dlfferentlal equatlon solution in
that V(X, Y) 2> xas X— 0.

‘We now present a difference form of equation (F=1) for which it is not neces-
sary to specify ¥(0,Y). The form is simply an adaptation of the highly implicit
formulation employed in chapter 3 for the solution of jet problems with zero or
small secondary velocities and may be written as
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Uj+l.k_Uj.k
AX

Uj+l.k+1 —Uj+1. k-1

2(AY)

Uj+l.k +V}+l.l\'

1+1 P Uj+l.k+l—2Uj+1.k+Uj+l,k—l ]
AX (aY):

F-7)

This equation and equation (F-5) written for £=1(1)n provide 2r simultaneous
algebraic equations in the 2niunknowns Uji,x and V41 . Since equation (F-7) is
nonlinear in the unknowns, these equations must be solved by an iterative process
(see chapter 3 for details). It may now be noted that .7} i does not appear in either
equation (F-7) or equation (F-5); hence, the marching procedure may be started
from the leading edge without specifying V(0,Y). Solving equation (F-7) is more
time consuming than solving the conventional implicit representation (F—4); there-
fore, it would seldom be used in practice since the results obtained are virtually
identical for both equations. (For special exceptions see chapter 3.) We have, how-
ever, illustrated our point that the necessity for specifying V(0, Y) is a function
only of the difference scheme chosen.

Completely analogous arguments may be made for all of the other formulations
presented in chapters 2 to 7, in that the transverse velocities at the plate leading
edge, beginning of the boundary layer, jet mouth, channel or tube entrance, etc.,
are not true boundary -conditions but may have to b(e specified in order to apply
the suggested finite difference scheme. In all of these cases these transverse
velocities - may be specified as zero without noticeably affecting the solution.

A notable exception to the discussion given in this appendix occurs for the
second-approximate model for the velocity solution in a rectangular channel (sec-
tions 8.1.2 and 8.1.4). In these models, three momentum equations are employed,
.and the first axial derivatives of the transverse velocity components are present,
indicating that values must be specified for the transverse velocity components
V(0,Y,Z) and W (0,Y,Z) as true mathematical boundary conditions. These ve-
locity components at the channel entrance have been rather arbitrarily specified
as zero in chapter 8 since in order to specify any other values we would have to be
able to describe in detail the upstream conditions prior to the channel entrance.
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