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1.0 INTRODUCTION, SUMMARY AND CONCLUSIONS

1.1 GENERAL

Components which must operate over a long period of time have been the

concern of designers for many years. Better designs have evolved through

natural selection of materials based on operational results and because of

examination and investigation of the failure process. In most cases real-

time testing is simply the exposure of the equipment to its service

environment. Now engineers are faced with designing equipment which must

operate in the space and planetary environments over long mission durations

without the benefit of real-time test support data. Long-term space

missions presently planned include the unmanned planetary exploration

missions of up to 15 years duration. The manned earth orbiting space

shuttle is planned for 10 year service life.

There is a significant difference between these missions. In the

case of the unmanned planetary missions the component cannot be examined,

maintained or repaired during its operational life. The space shuttle,

on the other hand, will return to an earth base periodically allowing

equipment to be examined, maintained and repaired prior to the next launch.

The problems with insuring long service life for components used in the

planetary mission equipment are therefore more severe. One possible

solution is the development of teleoperators which can perform certain

maintenance, repair and replacement functions aboard the unmanned space-

craft. Other solutions include developing new techniques for determining

the long-term performance of equipment. The latter approach is the

subject of this document.

1.2 PURPOSE OF PROGRAM

The purpose of this program is to explore the application of existing

and new technology to the problem of determining the long-term performance

capability of liquid rocket propulsion feed system components. Results

of this work should also enhance the understanding of the mechanisms

contributing to component deterioration and thereby provide an improved

datum for evaluating present and future component designs, and should

provide the basis for techniques which could be utilized to verify
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the long-term performance capability of hardware.

Probably the most failure sensitive feed system components are

the valves. The use of reactive propellants such as liquid flourine

are planned for future propulsion systems and only metal seats are

suitable materials under these extreme conditions. The most critical
-7

requirement is maintaining zero leakage (10 scc/sec) using metal

valve seats. Therefore the major effort of this program is investi-

gating the long-term performance of metal to metal valve seats.

1.3 TECHNICAL APPROACH

Two main approaches were taken. One approach was simply that of

advancing the technology of characterizing components through the de-

velopment of new or more sensitive measurement (signature) techniques.

This approach is based on the premise that one cannot further the

understanding of something without being able to measure it. The

second approach is directed toward improving the understanding of the

physical process of degradation.

The first approach should lead to improved methods for quali-

fying or acceptance testing of components. The second approach

should evolve knowledge of failure processes which can be used to de-

sign and build better components. Both approaches are intimately

linked, for it is detection and knowledge of the failure mechanism

which leads to the better design, and conversely, the more reliable

the hardware, the more sensitive the degradation detection method must

be to determine its unreliability.

A mechanical part can fail its intended function by either a

failure in the bulk material or by failure of a surface. A relativ-

ly large amount of technical study has been focused on the bulk pro-

perties of materials, while little effort has been devoted to the

understanding of surfaces. Surface degradation probably represents

the most frequent cause of service failures in mechanical components.

Therefore, this study was devoted to the behavior of surfaces and

their influence on performance degradation. Determining degradation

of a surface was examined in a specific application to a metal-to-

metal valve seat.
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Laws describing the aging mechanisms must be evolved before

prediction of component performance can be made. Hopefully developing

better measurement techniques and better understanding physical

degradation mechanisms will lead to achieving these goals. An appa-

rent problem is how to use the information that is generated. The

flow diagram of figure 1-1 illustrates how test information might be

used in characterizing valve performance.

The diagnostic and characterization plan depicted in figure 1-1

is not greatly different from presentlyused qualification testing

methods. The component is cycled, measurements made and the per-

formance noted. The feedback portion of the flow diagram depicts the

input of aging stimuli similar to the present method of imposing thermal

and vibration environments on a component and noting a change in

performance.

The important developments to be made lie in three of the areas

represented by the block diagram of figure 1-1. These are l)signa-

ture analysis, 2) accelerated aging stimuli, and 3) understanding the

aging mechanisms and their affects on the component performance. For

example, increasing temperature has been used as an aging stimuli;

however neither the affect of temperature on the aging mechanism or

the time/temperature correlation is well known.

ACTUATION AGING ACCELERA
TED

MECHANISMS AGING STIMULI

VALVE TIME, CYCLESCOMPONENT SIGNATURE LONG TERMCOMPONENT TIME Y LES. TE NT RATE PROCESSES SIGNATURE NALYSIS & MODEL PERFOR NCECPT OUTPUT DEVELOPMENT H CHARACTERISTICS

FLUID

Figure 1-1 Component Diagnostic and Characterization Flow Diagram
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Some progress has been made in evaluating and predicting perfor-

mance by the technique of characterization (signature) of the component,

exemplified by the recent application of acoustic signature analysis.

By recording component signatures, noting and evaluating any changes

in the signatures and correlating these changes to normal operating

signals, the condition of the component is measured. For example

the optical tracking of a fluid segment moving through the inlet tube

on valve opening and closing can be used to characterize valve

transient performance. Any change in the flow transient signature

is caused by a change in some part of the valve component or actua-

tion unit. This optical technique was developed under this program

and is reported in Section 6.0. Other measurements may be necessary

to determine the cause of the change, such as the measurement of

actuator voltage.

One study made by the military, after World War II, indicated

that 43% of equipment failures were due to poor design, 20% were

traceable to manufacturing errors, 30% were the result of field

conditions and only 7% were due to wearout and other failures. A

study of automotive recalls concluded that over 60% of the defects

were traceable to faulty design (Ref. 1). This information suggests

that any long-term performance evaluation technique will be more

effective if it is oriented heavily toward determining the efficacy

of the design. Unfortunately only a few design criteria for long-

term components are presently available. An effort was made in

this program (see Section 2.0) to establish design criteria in

a selected area and show how this criteria was used to design

a long life metal valve seal.

One such long life design criteria relates to the rate of cor-

rosion. Material compatibility with liquid chemical rocket pro-

pellants is of major concern, but an extensive treatment was out-

side the scope of this program. Results of a limited effort in

characterizing surfaces for corrosive degradation is reported in

Section 7.0. The reader is referred to work by Boeing (Ref. 2.0)

for a more extensive investigation of materials compatiblity for

long life components.
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1.4 INTERIM REPORT

This final report represents a continuing effort under NASA

Contract NAS 7-782 during the period February 1972 to March 1973.

Results of the program study from May 1970 to February 1972 are re-

ported in the Interim Report (Ref. 3). The interim report contains

the results of a survey and review of technologies, valve leakage

studies, diffusion tests, acoustic signature study and surface

compatibility studies.

The survey and review of technologies provided information on

which the efforts of this program was based. Currently used methods

of testing components were identified, including accelerated testing

techniques and several signature techniques.

A mechanisms effects study was also performed for the purpose

of defining the mechanisms which may cause component failure, with

emphasis on valve seat leakage. An analysis of valve seat leakage

as a function of surface finish was made and a correlation between

surface finish and wear theory was attempted.

Accelerated diffusion testing was made at elevated temperature

between beryllium copper and inconel. The results of the diffusion

tests indicate this method to be a promising one for determining

metal interface degradation of valve seat surfaces which are to

be in contact for long durations.

An acoustic signature study was undertaken to determine its use for

measuring real contact at a metal interface. The results of this effort

led to the thermal contact study reported in Section 4.0 of this report.

1.5 SUMMARY

The results of the efforts reported herein represent four areas

of study. A major effort was devoted to developing techniques to

characterize component performance and some efforts were made

toward understanding physical and chemical mechanisms. Analytical

techniques were investigated which could be useful in evaluating and

predicting component performance. A major development in the program

was the analysis, design, fabrication and test of a zero leakage metal

valve seal for long life use. Following is a brief summary of each

section topic.
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Metal Valve Seal Design For Long Term Performance

The-long term performance of a zero leakage metal
valve seat configuration was studied and the re-
sults showed that increasing roughness of the
metal surfaces by wear would result in leakage
increasing to unacceptable limits. A new tech-
nique in metal valve seat design was developed
which avoided the normal primary failure mech-
anisms of wear, fatigue, contamination and stress.
A metal valve seal designed to refurbish its metal
surface while preventing material strain along each of
the three axes was fabricated and tested. Zero
leakage (10-8 scc/sec He) after 30,000 cycles
successfully demonstrated this method for
achieving long term performance.

Methods of Analysis, Correlation and Prediction

Current analytical methods used to evaluate
and predict the performance of components were re-
viewed. Time correlation and dimensional analysis
methods were investigated. A Wiener analysis of
signatures was reviewed in detail and appears to
offer a valuable technique in characterizing the
performance of components. Two examples of this
technique are given. The first is the identification
of the process dynamics involved in a steel cold
rolling mill. A second example describes the use
of the Wiener analysis of a neuron chain, a complex
highly nonlinear system and compares the procedure
to characterizing valve flow transient signatures.

Thermal Contact Resistance

The dependence on thermal contact resistance of
the surface roughness of two flat surfaces in
contact was investigated. One of the degrada-
tion parameters of a valve which can be detected
using this measurement technique is the surface
roughness of the valve poppet and seat. The
valve leakage is a function of the surface
roughness of the poppet and seat surface.
Analysis and test results indicated that the
thermal resistance measurement can be employed
to determine the valve seat/poppet surface
degradation on a real time basis. The method
would require built-in thermal sensors within
the valve. A roughness change as small as 2 rms
was detected using this technique.
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Coherent Optical Signature of Material Surfaces

The feasibility of an optical signature to
characterize surface roughness was demonstrated.
The optical technique is based on the use of a
coherent wavefront which is diffracted by the
material surface. The defracted light strikes
a photocell and an electrical output is recorded
on an x-y plotter. A HeNe laser was used as
the source light. Surface rms roughness measure-
ments as small as 0.5 rms are believed possible.
A surface roughness of 2 rms was monitored using
this technique in support of the long term per-
formance metal valve seat development study.

Flow Transient Signature Studies

A highly accurate flow transient signature
technique was developed and used to characterize
a high response shutoff valve. This was accom-
plished using an Optron electro-optical strain
monitor to measure the movement of a light-dark
fluid interface upon valve opening and closing.
Data acquisition at the rate of 500 bits during
a 2 millisecond transient is contemplated.
Valve leakage measurement also was demonstrated
using the same optical tracking methods; leakage
resolution as low as 7.5 x 10-8 scc/sec alcohol
was demonstrated in the laboratory setup.

Surface Studies

Surface studies were conducted through a univer-
sity grant with the objective to examine the use
of contact angle measurements for monitoring
changes of surfaces exposed to specific environ-
ments. The results of this research indicate
that the technique of contact angle measurements
can be useful in determining the reactivity of
various liquids with metal surfaces. Also the
use of contact angle and adsorption measurements
were examined as a possible method of determining
the work of adhesion in a two material system.
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1.6 CONCLUSIONS

The technical efforts expended under this program resulted in the

development of several new measurement techniques and an exploratory

examination of analytical and research methods. A unique design

approach avoiding the more common failure mechanisms proved highly

successful in the development of a zero leakage, long life, metal

valve seat.

These efforts, however, do not represent a conclusion to the

problems of long term performance prediction. The technology of com-

ponent performance prediction is far from the level of maturity

required for general application.

Current investigations of long life prediction techniques

represent more a probing rather than a decisive technology. De-

signing to avoid failure such as exemplified in Section 2.0, will

most likely remain the more common approach to the long life problem.

Developing aging laws and gaining more insight into the physics

of failure mechansims should play an important role in future studies

directed toward determining the long term performance of components.
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2.0 METAL VALVE SEAL DESIGN FOR LONG TERM PERFORMANCE

2.1 INTRODUCTION

Liquid rocket propulsion system requirements for long term (to 10 years)

missions dictate extremely low leakage requirements. The use of highly

reactive propellants restricts the material choice to all metal systems.

The major impact of the metal seat design constraint is in meeting the

zero leakage (10-6 scc/sec He) requirements. The major objective of this

task is to determine the long term performance of metal valve seats devel-

oped within the present technology and to evolve new technology in metal

sealing techniques which will enable the valve components to meet the long

term requirements.

2.2 TECHNICAL APPROACH

Failure of metal valve seals to meet zero leakage is possible by one

or more of the following mechanisms.

a. Wear

b. Contamination

c. Fatigue

d. Stresses (tension, compression, shear)

e. Corrosion (long term compatibility with propellants)

f. Material Transport (adhesion, diffusion)

Metal valve seals are typically finished to approximately a 2 rms (-.05

micron) surface and for the flat configurations to better than 1/4 (-.20

micron) wavelength of monochromatic light. A major factor in degradation

of the finish is wear which can roughen the surface after repeated cycles.

Contamination is also a serious failure mode especially because metal seals

cannot envelope particles where elastomers can. Fatigue and stress failures

are not usually serious where sufficient cyclic testing can be accomplished

within reasonable time constraints. However, fatigue and stress failures

may occur due to synergistic effects; mainly corrosion (oxidation/reduction).

These effects are time dependent and are not easily accounted for in cyclic

testing typically conducted over a period of only a few weeks or less.
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The approach normally taken for proving component capability for

long term requirements is to test to failure within short durations

by accelerated testing. Long term performance is then based on

judgment of the test results. Cyclic testing fits this method of

determining performance. The more complex failure modes which are

time dependent are not easily recognized or tested for. Possibly

the solution to the problem is understanding the failure mechanisms

followed by a more creative design approach.

The simplest solution may be to eliminate the failure mechanism.

For example, if a structural tension member is subject to failure, how can

failure be avoided? In prestressed members (in compression) tension is

indeed eliminated within the compression prestressed range.

The scope of the effort reported in this section will concentrate

on elimination of the major failure mechanisms of a metal valve seat;

that is, the effects of wear and contamination, fatigue and the primary

stresses. The reader is referred to work performed by Boeing under

NASA Contract NAS 7-789 regarding long term material compatibility

(Ref. 1) and the work carried out under this program on metal interface

diffusion and reported in the Interim Report (Ref. 2).

2.3 PERFORMANCE PREDICTION OF A METAL VALVE SEAT

The derivation of the leakage area of a flat annular interface

is reported in the Interim Report (Ref. 2). The leakage equation is based

on a perfectly rigid flat surface which is in contact with a deformable

surface having random surface irregularities.

The equation for the average leakage area is:

AL = C i(2w)-1/2 h2  +Tg- [1 + erf (2-1)

where: AL  = leak area

a = circumferential length of contact area

S= rms surface asperity height

h = gap height between mean surface level and contacting
surface

erf = error function
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and:

RMS Surface

Asperity Height AAL  Mean Surface Level

SL Mean

fh = Gap
_'Y''Y Height

This equation is plotted in Figure 2-1 in terms of a dimensionless leak

area as a function of a dimensionless gap.

The limiting value for A/Az of Figure 2-1 as h/C approaches zero is

due to the constraint that the approach and contact cannot exceed the mean

surface level. Figure 2-2 is a plot of the leak rate of helium as a

function of the differential pressure across the two surfaces for a given

surface finish and gap height. The valve seat diameter was chosen as 0.050

inch as representative of valves used on small engines. Molecular flow

with a small path entrance was assumed as the dominating leak mechanism.

For other seat diameters the leakage values must be multiplied by D/.05

where D is the diameter of the other seat.

Equation 2-1 and its representation in Figure 2-1 and 2-2 are based on

analytical techniques; however, the data appears to be representative of

current metal seal leakage. The curve of Figure 2-2 then gives the leakage

value at the first cycle. What is the leakage after 10 cycles or 1000

cycles? To answer this question the change in h and as a function of

cycles must be known.

One approach to determining the change in E is to relate the

surface asperity height to the wear particle size which is character-

istic of the material in a given environment. Wear particle
generation is a function of certain properties of the materials in

contact and their surface finishes.
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Figure 2-1. Dimensionless Area Vs. Gap

The relationship between wear particle size and adhesive energy has been

developed by E. Rabinowicz (Ref. 3) at MIT and is given by the following

equation:

d = 60 E Wab/6y p
2  

(2-2)

where: d = the average diameter of the wear particle

E = Young's modulus

6 = yield stress of the material in compression

Wab = the work of adhesion of the materials a & b in
contact and is further defined as:

Wab = Ya + Yb - Yab (see Section 7.3.1.2)

where: ya = surface free energy of material a per unit area

Yb = surface free energy of material b per unit area

Yab = interface free energy per unit area.
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It has been found that 6 is about one-third the hardness P and that

6yp/E is about 3X10 for many materials, then:

d = 60,000 Wab/P (2-3)

Experimental results showing the relation between material and the

average wear particle diameter obtained by E. Rabinowicz are presented in

Table 2-1.

Table 2-1. Average Wear Particle Size Under Ambient
Atmosphere for Different Materials

Metal P dyn W e- d cm
cm cm

Lead 4 x 108 440 270 x 10-4

Tin 6 540 120

Bismuth 12 375 50

Cadmium 23 600 320

Aluminum 30 900 140

Zinc 30 750 440

Copper 60 1100 - 250

Brass 120 700? 180

Mild Steel 200 1000 60

Iron (Oxide) 2000? 600? 1 "

Aluminum (Oxide) 2000 900 1 "
Teflon 4 15? 90

Nylon 20 30? ? "
Silver 80 920 330

Nickel 260 1650 35

Glass 550 200? 1 "
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Another assumption made is that the wear particle size generated at

any given cycle is equal to the surface finish or mean asperity height

characterized by the surface of the softer material.

The wear particle size d given by the above equation is the equil-

ibrium size. That is, the particle tends to a certain size and remains

at that size. Also the surface finish will generate to a finish equal

to the equilibrium size. This equilibrium surface is then the final

surface characterized after "wear in", independent of the initial

surface condition. In most cases, a valve seat finish is initially,

when fabricated, very fine, ranging about 2 rms. If we assume an

initial surface finish of .05 microns (2 rms) and using an iron oxide

surface model it can be seen the average wear particle will eventually

"wear in" to 1.0 micron. The corresponding finish will be 40 rms. For

a valve seat this is a severely rough surface and leakage would be con-

sidered gross. Conversely if the surface finish is coarser than the

average equilibrium wear particle size the surface will become less

coarse during wear-in.

What needs to be known is the change in wear particle diameter

as a function of cycles. The loss of a tolerable surface may occur

due to a cycle "wear in" of too few a number relative to the life use-

fulness of the valve.

It is important to consider the effect of the reactivity of the

environment on the wear particle size. Indications are that the more

reactive the environment the smaller will be the equilibrium wear

particle. This effect is illustrated in Table 2-2 with copper-copper

surfaces and wear particles developed in various environments. In

vacuum the wear particle would be expected to be quite large. For a

reactive propellant such as fluorine or oxygen difluoride the wear

particle should be smaller than those listed in Table 2-1. However, for

the fuels such as diborane the wear particle size should be greater, in-

dicating a better leakage performance characteristic of metal valve

seats for the oxidizer over the seats used with the fuel.

The design implications of the foregoing analysis are apparent.

The use of harder seat materials will result in smaller wear particles

and subsequently the wear process will ultimately result in less coarse
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finishes. By selecting a seat material with a characteristic small wear

particle size it should be possible to predict the final surface finish

after N cycles.

Table 2-2. Effect of Environment on the
Average Wear Particle Size

Average Particle Diameter
Copper-Copper Surfaces

Environment Micrometers _)

Nitrogen 480

Helium 380

Carbon Dioxide 300

Dry Air 224

Oxygen 201

Laboratory Air 177

Wet Air 144

Cetane 12

Silicone DC 200-100 cst. 9.5

Ucon Fluid LB-70X 9.5

Palmitic Acid in Cetane 8.0

If the surface finish is approximately equal to the wear particle size for

a given seat material combination then prediction is easily obtained.

However, it appears that surface roughness can be much smaller than the

average wear particle size reported in Table 2-1. Therefore, the initial

performance of the valve seal should be better than at "wear-in." It

remains to develop a relation between wear particle size as a function of

cycle life. In addition, the equilibrium wear particle size of a material
exposed to the propellant needs to be determined.
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Surface roughness and wear particle generation criteria are valid

for the leakage model only when the surfaces at the interface conform

in curvature (or flatness) within the dimensions of the minimum

surface roughness. If the non-conformity is greater than the surface

roughness,the dominant leakage path will be the gaps produced by the

non-conformity and the leakage will undoubtedly be much higher than

predicted by the model. This design implication favors the use of flat

surface geometry for seats which can be most easily fabricated to a

high degree of conformance with present day fabrication techniques.

Thin elastic seats such as the lip seal can appear to conform to the

poppet, however, the conformity on a micro level is not well known.

An example of the analyses that may be applicable to predicting

surface roughness vs number of cycles is given in the following.

An expression for the number of cycles to equilibrium would

relate the number of asperity junctions (point of contact) which must

be destroyed (or created) to equal one junction of the same area at

equilibrium. This analysis assumes the real area of contact is

always constant.

2 2

Ar = Ne (2-4)
r -4 i 4 Ne

N e N (2-5)
1 d 2 e

where N is the number of junctions and d is the average diameter of the
loose particles generated. The subscripts i and e represent the ith cycle
and equilibrium state, respectively.

The total adhesive energy for a given set of junctions is:

dPW = 6 N (2-6)60,000

The adhesive energy required to change Ni junctions of average diameter

di to Ne junctions of average diameter de is:

diP de deP
W - e N - e
AW -60,00 d 2  e 60,000 e (2-7)
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Assuming only one junction at equilibrium, then:

AW P e (d - d.) (2-8)
60,000 d. e 1

Further assuming that an equal adhesive energy is used to create a

single wear particle per cycle, then:

d-e (de - di) de

d d =, - 1 (2-9)
e  di1 1 1

where Ce is the number of cycles to create an equilibrium wear particle.

Taking de to be 2.0O and di to be .05u

C = 40(39) = 1,560 cycles

The reader is cautioned that this analysis is based on gross assumptions

that have not been verified by test and is intended to be illustrative

of methodology only.

It is useful to plot a relationship between wear particle diameter

and cycles. Figure 2-3 is a plot of these parameters based on the above

analysis, however, Ce and de are now taken to be Cn and dn where:

Cn = number of cycles to develop dn and

dn = diameter of wear particle at n cycles

From Figure 2-2 and Figure 2-3 the initial (Ist cycle) leakage can be

determined by relating di to 5. The equality of d to E is admittedly crude;

however, any difference between the two quantities cannot be great since the

creation of a wear particle must under equilibrium conditions be closely

representative of the surface finish. An important variable is the gap

height h of Figure 2-2. h will depend on the interfacial bearing stress

applied between the two surfaces. It is conceivable h may be as small as

.1 to .5 of 5 depending on the bearing stress. The bearing stress will

also determine the real area of contact or number of asperity junctions

formed which will influence the effect of equation 2-9 on the cycle life

vs. leakage.
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C, in Cycles

Figure 2-3. Estimated Wear Particle Diameter
As a Function of Cycle Life

Assuming all asperities at the valve seat interface are in contact,

then it is estimated from Figures 2-2 and 2-3 that leakage will degrade

from about 10- 5 to <10-3 (AP : 10 ATM) within a few cycles corresponding

to a surface finish degradation from 2 microinches to about 4 micro-

inches.

Minimizing surface finish degradation during wear based on wear

particle size, suggest selecting hard materials which have the smallest

equilibrium wear particle size. As can be seen from Table 2-1 the

hardest material particles are about 1 micron (:40 X 10-6 inches) in

ambient air, which at equilibrium result in rough surfaces. The effect

of the liquid propellant on the size of the particle is a decrease in

size in oxidizers and an increase in size in reducihg fuels.
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2.4 DEVELOPMENT OF A LONG LIFE METAL VALVE SEAL

2.4.1 Requirements

A multicycle isolation valve exhibiting zero leakage was selected for

the long life study. The valve is to be used on a liquid rocket engine

and must operate reliably for up to 10 years. Leakage requirements are

10-6 scc/sec of the propellants which are Flox/MMH or fluorine/hydrazine.

This valve is presently being developed by JPL in support of an outer

planetary mission program.

The actual cycle requirement of the isolation valve is less than 50

cycles. It is desirable, however, to obtain 1000 cycles in test for

purposes of assuring a reliability margin.

The analysis performed in Section 2.3 would indicate that zero

leakage cannot be sustained for the required number of cycles. In addition,
the effects of time dependent mechanisms such as fatigue, stress and
propellant compatibility are unknown.

The valve seal design and design requirements provided here are taken
from Reference 4, which reports the results of the isolation study program
conducted for JPL.

2.4.2 Sealing Stress Requirements

One method of eliminating the influence of wear on surface finish
would be to refurbish the seat surface at each cycle. This could be
accomplished by coining, using a hard poppet impacting a softer seat.
The problem with repeated coining is the flow of the softer material at
the edges of the interface. This is avoided by containment of the soft
seat material. Containment also restricts plastic strain.
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Empirical design practice for hard on hard metal valve seats and

static metallic gaskets commonly dictates a seating stress of two to

three times the compressive yield stress of the softer material to

achieve low leak rates (Ref. 5, p. 6.3.2-6). Plastic metal working

theory was applied to the problem of forcing a soft plastic material

into the microscopic asperities of a hard elastic material. These

stress models were originally developed by the metalworking industry

to predict the pressures required to force blanks into hard dies, but

should apply as well on the microscopic level as the geometric parameters

they contain are non-dimensional. Cyclic work hardening and oxide

and fluoride films might increase the effective yield stress of the

soft material at its surface, which would be of interest in predicting

asperity conformance. In metal working practice the material is de-

formed a distance equal to many times the thickness of surface films,

so the yield stress of the bulk material may be used.

The predictions of two separate plasticity models are summarized in

Figure 2-4. Here a random asperity contour is idealized to a sawtooth

pattern of opening angle 2a. When the two sealing surfaces are brought

into light contact, the hard material has asperities of effective depth

of 2hNO LOAD.

As the mean contact stress is increased to several times the compressive

yield stress of the soft material, the soft material is forced into the

asperities of the hard materials. The decrease in effective height of still

unfilled asperities is indicated on Figure 2-4. The solid curve shows the

prediction of a coining model (Ref. 6) in which a flat soft blank is forced

into a depression in a hard die. By this model, the required contact stress

is not affected by the angle of the sawtooth and must be very large to fill

the last 10 percent of the die depth. The dashed curves of Figure 2-4

represent the prediction of a punching model (Ref. 7) in which a single

sharp punch is indented into a soft blank. It can be seen that at applied

stresses between two and four times the yield stress the predictions are

similar, but the punching model predicts a dependence on asperity sharpness

as well as depth. This dependence is shown in Figure 2-5. Consideration

of limited data on the asperity angles encountered in practice indicates that

at worst real surfaces would be on the relatively flat portion of this curve.
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Figure 2-4. Relation of Mean Surface Height to Applied Seating
Stress by Plastic Coining and Indentation Theory
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Figure 2-5. Effect of Asperity Sharpness
on Required Seating Stress

In an actual soft/hard contact the soft material, as well as the

hard will have a significant surface roughness. None of the plastic

models in being treat a non-flat soft blank, but presumably very little

increase in the contact stress should be necessary to crush down peaks

and valleys in the soft surface if it is already being forced into the

hard surface at several times yield.

In addition to the soft and hard surface contours, wear particles

composed of soft material, hard material and/or their compounds will be

trapped between the seats. An upper limit on the depth such particles

will be indented into the soft surface can be found with another punching
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model, in this case a blunt radiused punch. Figure 2-6 shows the indenta-
tion depth versus contact stress for this case. Of particular interest
is the stress necessary to indent an approximately spherical wear particle
a distance equal to its own diameter into the soft surface.

2.4.3 Analyses of Contained Metal Seal - Bulk Compression

The problems encountered with coining metal is the extrusion of the
softer metal at the edge of the interface. This can be prevented by
containment of the softer metal. An additional concern is strain hardening
as a result of repeated loading. Tension compression and fatigue are also
possible failure modes.

By containment of the metal, plastic strain of the metal is

eliminated over the cyclic life of the metal seat. Without plastic
strain, work hardening and failure due to stress cannot occur. Under
bulk compression (tri-axial stress) fatigue failure is eliminated.
However, extrusion between the clearances of the poppet and seat is
of concern. Also, adhesion between the metal couple is a potential
problem.

Figure 2-7 shows the dimensional requirements on gaps between adjacent
parts surrounding a soft metal seal according to plastic extrusion theory.
For a seal width dimension of 0.100 inch and a seating stress of four times
yield, the curve indicates that such a gap should be kept narrower than
0.003 inch.

2.4.4 Metal Seat Design Configuration

The metal poppet and seat design test fixture is illustrated in
Figure 2-8. This fixture is attached to a hydraulic actuator capable of
automatic cycling. The detailed drawings of the poppet and seat are
depicted in Figure 2-9. All dimensions of Figure 2-9 are nominal. The
poppet and seat were installed in the test fixture of Figure 2-8 allowing
less than .001 inch extrusion gap between the poppet and seat housing.
The soft aluminum (1100) was installed requiring a light press fit to the
housing. The initial average surface roughness on the stainless steel
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Figure 2-9. Hard and Soft Valve Seat Configuration

poppet (15-5 PH) was about 0.5 microinches and about 2.0 microinches for

the soft seat. Flatness of both specimens were held to 1/4 wavelength

of monochromatic light. The choice of materials for the poppet and seat

were based on 1) low yield strength of the seat material at cryogenic

temperatures, 2) compatibility with Flox, and 3) anti-adhesion properties.

2.4.5 Testing Apparatus

The hard or soft seal test fixture is illustrated in Figure 2-8. The

fixture was mounted in the TRW Load Control System (Research, Inc. Model

900.02). A photograph of the system is shown in Figure 2-10. The loading

machine can achieve up to 50,000 pounds load and is capable of a cyclic

rate of up to 10 cps. The ram load is produced by hydraulic pressure and the

load is measured by a Ormond Inc. Double Bridge 50,000 lb Transducer Model

No. WTL-PM25-CD-50K.

A Hewlett Packard 680 strip recorder is used to record load and cycle

rate.
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Figure 2-10. Loading Frame and Operating Panel Used
for Cyclic Testing Metal Valve Seal

2.4.6 Test Description and Test Results

The procedure employed in the testing program consisted of the

following:

1. Inserting the test surfaces into the mechanical loading
fixture

2. Opening and closing the valve seat a specified number
of cycles

3. Measuring the leakage rate at selected stages of the
cycling process

4. Removing the test surfaces for measurement using the
coherent optical technique at selected stages of the
cycling process.

The beginning of the test series concerned the establishment of the

initial conditions of the hard and soft surfaces. These surfaces were

not handled directly at any time since they were very sensitive to any

form of contact. Following the final polishing operation, they were
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cleaned and placed in the coherent optical setup (see Section 4.0) for

their first roughness measurement. These measurements, recorded as the

cycle number 0, showed that the soft aluminum surface had an average

roughness of 2.3 microinches and the hard stainless steel surface had a

value of .5 microinches. It was noted that the variability of roughness

around the circumference of the sealing faces was greatest on the soft

aluminum seat while almost no variation was noted on the stainless steel

surface.

The first major contact between the two surfaces occurred when the

soft aluminum seat was pressed into the fixture holder (Cycle No. 2).

A maximum interfacial pressure of 12.7 ksi was developed during this

operation and was the first coining of the hard surface features into the

soft seat. The leakage rate during the second cycle was measured at

different loading levels. The fixture containing the soft seat was then

removed and inserted into the optical setup where the new surface rough-

ness was found to be 1.9 microinches average. Thus the second cycle of

valve operation produced a reduction in average surface roughness of .4

microinches on the soft aluminum seat.

The results of the second cycle are illustrated in Figure 2-11 which

depicts the coining or wear-in process as a function of increasing seat

bearing stress. The leakage showed a dramatic decrease from about 10-3

scc/sec He to approximately 10-6 scc/sec He between 10,000 and 12,000 psi

bearing stress. The third and successive cycles were maintained at a

loading of 19,100 psi; with leakage decreasing to about 10-8 scc/sec on

the 9th cycle. The helium applied across the seat was by the blanket

method. At the 10th and successive cycles the helium differential was

increased (see Table 2-3).

Successive cycling continued to improve surface quality and decrease

the leakage rate as predicted from the "coining" theory analysis. On the

277th valve cycle, the measured leak rate had decreased to 1.2 X 10-9 scc/sec

while the surface roughness of the aluminum valve seat decreased .85 microinch

to 1.25 microinch. It can be seen that along with the reduction in surface

roughness, the variation in roughness around the seal circumference also
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Table 2-3. Compilation of Long Life
Metal Valve Seal Test Data

Load Cycle Leakage Leakage Seat Interface Load Cycle Leakage Leakage Seat Interface
Run No. lbf No. scc/sec He AP, psi Bearing Stress Comments Run No. Ibf No. scc/sec He AP, psi Bearing Stress Comments

1 0 1 10- 3  14.7 Blanket 0 Fixture Weight Only 16 3,000 280 1.26 X 9  45 19,100 Decreasing Load

785 2 7 X I 16 3,000 280 1.26 X 109 45 19,100 Decreasi
2 785 2 7 X 10-4 5,000 Increasing Load 2,600 1.26 X 10- 16,500

1,630 6 X 10- 10,400 2,200 1.26 X 10 14,000

1,820 4 X 10-5 11,600 1,800- 2.5 X 10_ 11,450-
2,000 7 X 10-6 12,700 2,000 12,700

3 ,6 
1,300 3.8 X 10-  8,300

3,000 3 1.45 X 10- 6  14.7 Blanket 19,100 1,000- 1.75 X 10-  6,370-
-61.56 X 7,000

1.65 X 10 600- 1.3 X 10-6 3,800-
700 4,450

4 3,000 4 1.38 X 10-6  14.7 Blanket 19,100 300 1.26 X 10-4 1,910
1.03 X 10 6  500 4.0 X 0-  3,180 Increased Load
1.25 X 10 y y

17 3,000 281 4.8 X 10 45 19,100
5 3,000 5 19,100

6 3,000 6 189 X -8 18 3,000 281- - - 19,100 .9 CPS Load Cyclic Rate

3,000 6 1.89 X 10-8 14.7 lanket 19,100 1281
2.02 X 10-8
2.02 X 108 19 3,000 1282 1.26 X 10-9  45 19,100

7 3,000 7 4.79 X 10-8 14.7 Blanket 19,100
4.28 X 10_ 20 3,000 1283- - 19,100 .935 CPS

3.66 X 10-8 4642
4.54 X 108 -9
4.79 X 10O8  21 3,000 4643 1.26 X 10 45 19,100

8 3,000 8 1.26 X 10-8 14.7 Blanket 19,100 22 3,000 4644 1.26 X 10-9  50 19,100
1.39 X 10-8
1.26 X 10-8 23 3,000 4644- - - 19,100 .935 CPS

1.39 X 10-8 9644

9 3,000 9 1.51 X 10-8 14.7 Blanket 19,100 24 9645 1.26 X 10-  50 19,100
1.39 X 10 8
1.51 X 10-8 25 9645- - - 19,100 .935 CPS

1.39 X 10"8 14,645

10 - - - - - No Measurements 26 3,000 14,646 1.26 X 10-9  50 19,100

11 3,000 11 1.26 X 10- 25 19,100 27 3,000 14,646- - - 19,100 3.2 CPS

2.52 X 10 9  35 19,446
*9

3.04 X 10- 45 -9
8.82 X 10- 55 28 3,000 19,447 1.26 X 10 50 19,100
1.38 X 10- 8  65 -9

2,000 3.59 X 10-7 25 12 700 Decreased Load 29 3,000 19,448 1.29 X 10-  50 19,100

3.59 X 107 45 Increased AP He
3.59 X 10-  65 30 3,000 19,448- - - 19,100 3 CPS

34,208

12 1,000- 12- - 6,370- Random Loading Resulting From -9
6,000 276 42,000 Setting Machine to 1 cps 31 3,000 34,209 1.29 X 10 50 19,100

13 3,000 277 1.26 X 10-9  25 19,100 VariedAP He 32 3,000 34,209- - - 19,100 3 CPS - Extrusion

35 72,004

455 33 3,000 72,005 =1.29 X 10-9  50 19,100 Leakage Not Steady

65 4.9 X 10-  115
-Gross

14 3,000 278 1.26 X 10 65 19,100

15 1,000 279 3.02 X 10-8 20 6,370 Decreased Load
3.14 X 10-8 25
3.5 X 10-8 35
3.75 X 10- 8  45 2-244.0 X 10- 55
4.0 X10-8 65



decreased, indication that the statistical properties of the sealing

interface had become more uniform and isotropic.

Surface roughness and leakage data is recorded in Table 2-4. The

data of Table 2-4 is taken from Section 4.0 which describes in more

detail this new surface optical signature technique.

Table 2-4. Surface Roughness and Leakage
Recorded by Valve Cycles

Orientation Surface Roughness Average Leakage in
Cycle No. Angle e a in Microinches <a> Scc/Sec He

0 00 3.0
30 2.7 2.3
80 2.0
130 1.3
340 2.5

2 00 1.3
115 2.5 1.9 7.59 X 106
209 1.6
303 2.3
355 1.9

277 00 1.4
65 1.4
82 1.4

182 1.4 1.25 1.26 X 10-

201 1.6
292 1.3
303 0.8
320 1.2
330 1.3

72,000 10 1.4
77 1.6

100 1.4
160 1.4 1.82 4.9 X 10-9

175 1.6
206 3.0
216 2.0
218 1.4
234 2.0
251 1.6
256 2.0
292 1.4
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On the 280th cycle the effect on leakage due to relaxing the

seat load was tested. The results are plotted in Figure 2-12. Leakage

increased at a load of about 1800 lbs, but only slightly. The major

change in leakage began around 1000-600 lbs load and continued in-

creasing with lower loads. At 300 lbs, load was increased to 500 lbs

and leakage decreased as would be expected.

Cycling was again continued with measurements of leakage made at

periodic intervals. The leak rate remained constant (1.2 X 10-9 scc/sec)

when checked at 34,000 cycles. At 72,000 cycles leakage increased

slightly but unsteady. The helium pressure was increased to 115 psi

across the seat at which time the leakage exhibited wide fluctuations

and finally gross leakage occurred. The test surface was again re-

moved and inserted in the optical roughness measurement setup where

the surface roughness of the soft seal was found to be 1.82 microinch.

This increase in surface roughness was paralleled with an increase

in variability of roughness around the seal circumference.

Compilation of the test data is included in Table 2-3.

Extrusion of the aluminum through the outer diameter clearance was

noted. The test program was terminated.

The photograph of Figure 2-13 clearly depicts the extrusion flashing

around the outer circumference of the soft aluminum seat. At 7:00 o'clock

a spot appears to be due to material transfer which is also visible on

the stainless steel poppet of Figure 2-14 ( 5:00 o'clock). Small embedded

particles were also noticed on the aluminum seat in addition to craters

which were probably due to loose particles or contaminants which were

impressed in the soft aluminum. Several large adhesive wear particles

(aluminum) were seen on the stainless surface in addition to numerous small

particles which characterized the surface. The particles did not appear to

be strongly adhered to the stainless surface. Upon wiping the surface with

a tissue, most of the particles were removed and some smearing indicative of

soft aluminum was noticed. The surfaces overall were in relatively good

condition after the 70,000 cycles. Except for the extrusion there were no

indications of surface degradation that would impair the integrity of the seal.
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Figure 2-13. Soft Aluminum Seat After 72,000 Cycles Magnified 5x.

Figure 2-14. Stainless Poppet After 72,000 Cycles Magnified 5x.
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3.0 METHODS OF ANALYSIS, CORRELATION AND PREDICTION

3.1 INTRODUCTION

The more common techniques used for assessing long life potential of

components, subsystems and systems in today's aerospace technology range

from elementary to the most sophisticated. Among the elementary techniques

are such fluids as fluid compatibility, fluid leakage, spring/mass degrada-

tion as a function of time of application, fluid viscometry, test of materials

properties (physical, chemical, metallurgical, etc), and other observational

types of tests. Results are either compared with results of similar,

historical tests from which conclusions are drawn regarding the longevity

of the current item or, if sufficient data are available, curves or "trend"

lines are plotted to estimate future behavior by observing parametric changes

with time. In the first instance acceptability of the item is usually

"go-no-go" oriented because accept/reject criteria are specified as a single

value or range of values. In Quality Control terminology this is referred

to as attributes testing. Disciplines have been evolved utilizing quality

control charts which are based on this form of testing.

The analysis of trends is another recognized technique involving a

highly developed discipline. Variables testing is amenable to this approach.

A common factor for both of these is the need for a significant sample size

of the parameter or item being evaluated. A less sophisticated, although

perhaps more realistic technique, at least at the component level, is simply

to test one or two of a kind for a particular condition, hoping that its

presence (or absence) will be sufficient evidence to validate a capability

or else eliminate a failure mode from further concern. It must be remembered

that testing costs are high at this level (and is even more expensive as

configuration complexity increases) so there is an economic reason for

minimal testing.

More sophisticated techniques* include such mathematical and statistical

Refer to the following article for a description of some of these techniques
"Some Statistical Techniques Useful in System Aging Studies," E. L. Welker,
TRW Systems, Proceedings, 1973 Annual Reliability and Maintainability Symposium,
P. 10
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treatments as regression analyses, Markov chains, experimental test design,
mapping, etc. In TRW's Minuteman Program, for example, the regressing
analyses are extensively used to evaluate equipment aging processes where
the phenomenon is assumed to be linearly related with time. Higher forms
of polynomial expression have been investigated, but these are not conclusive
at the present time. Some accelerated aging studies have been performed,
although it is difficult to relate the process to the loading factors
involved with the process. There simply isn't sufficient data available
to correlate aging effects with the process mechanics. A computer program
called "LMTAB" has been developed at TRW for extrapolating failure rate
and probability over a long period of time using limited statistics obtained
in the near-time environment from either controlled or actual use sources.
This technique suffers from the scarcity of data which is typical of current
long-term investigations.

In a recent proposal, for example, it was necessary to estimate success
probability many more times than there was data suitable for this estimate.
Coupled with this dearth of data was the fact that zero failures had been
observed. The best solution would have been to initiate a test program to
simulate this particular mission requirement. This approach was feasible
but uneconomical. The immediate solution was to evaluate the thruster
failure modes, and hypothesize the inherent capability based on these
results. Hopefully, data from this and similar programs will be judiciously
analyzed in a time frame to provide dependable aging statistics which can
be correlated with the thruster failure mechanisms.

A similar problem exists at higher levels of complexity. Subsystems
are tested often for the same characteristics as at the component level.
The results are not as well defined because of the interactions both among
the various equipments and environments being imposed on these equipments.
Thus, for example, valve leakage may be the result of a contaminant particle
eminating from the tank. Techniques used at this level tend toward the
elementary because of the difficulty in obtaining meaningful measurements.
Frequently at this level mission simulation is employed either with or
without combining the environments. Thus, thermal vacuum is frequently
tested because experience has shown it to be a reliable barameter regarding
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the incipiency of failures. Vibration, usually three-axes, may be imposed

during thermal vacuum, but generally is not imposed because of the added

testing complexity costs. Shock, temperature exposure testing (fungus,

humidity, etc.), acoustic, radiation, and some of the more exotic, discrete

types of tests may be imposed at the component level.

Mission simulation in a reliability testing sense is sometimes per-

formed to evaluate process characteristics. For example, maintenance and-

repair plans are established and evaluated based on hypothetical failure

densities of the hardware configurations. In a sense these models study

the aging or wearout process, especially if time-variable rates are used.

Such computer techniques as Monte-Carlo, GPSS, SIMSCRIPT or some other

programmed algorithms are generally exercised to accomplish their analysis.

Hardware failures obviously are descriptive in this form of testing and

therefore do not add to one's knowledge of failure mode history.

Real failures resulting from physical mission testing, on the other

hand, are too often insufficiently analyzed, and inadequately resolved.

Unfortunately, there is often too much emphasis on schedule, and too little

on the tests itself. There are many failures that are closed out whether

with a relaxation of a procedure requirement or a confession of ignorance

coupled with a general disinterest in the problem.

Real-Time Analysis is frequently used during this level of testing

using small or mini-computers with suitable data conversion and electronics.

Test parameters can be monitored or sampled, and the results either analyzed

immediately, or else stored for later analysis. Feedback and correction is

a necessary adjunct of this technique. Test results can be plotted as in

"trend analysis" for off-site interpretation, tabulated as required for
"regression analysis", and/or digitized for Analysis of Variance associated

with Experimental Test Design.

Predicting long life capability is frequently accomplished using

statistical inference techniques. Considerable theoretical mathematics

regarding life-testing has been reported in recent years by such authors

as Epstein and Sobel, et al. These theses hypothesized probability
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distributions based on component test which were then extrapolated to
future expectancy. The TRW "LMTAB" computer program, referred to earlier,
is an outgrowth of this technique. These mathematical approaches are
characterized by the failure event being generalized rather than being
made specific to a particular mode of failure. Thus, although there
have been many life tests conducted on various components by various

vendors, test laboratories and contractors, much of the work has never
been reported, or if it is reported it is so general as to be of little
use in failure mode studies.

In a more positive vein, there is some good basic general failure
physics being performed by a few agencies. There needs to be more work
performed of this nature, particularly since longer space missions are
being planned. It is TRW's position that what has been accomplished thus
far has been adequate for short (in a time relative sense) spacecraft
missions; however, for longer planetary probes, existing knowledge of
hardware capability to meet the long-term requirements of space flight
simply will not do.

Some of the methods proposed to evaluate long-term or aging character-
istics of existing components are presented in the following section. It
must be kept in mind that there are discrete hardware analysis techniques
not intended for complex mission evaluations. The field is fertile for
advancing the state of the art and the rewards are limitless.

3.2 TIME CORRELATION METHOD

This method is developed for correlating operating component test data
with impending component performance anomalies malfunction or failures.
The method would provide a means of tabulating data points, calculating
relative changes in measured parameters and determining influence coefficients
which may be used to predict possible failure or identify incipient failures.

In operation, the program would consist of the following operations:

* Recording component signatures for parameters taken simultaneously
with time.
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* Correlate changes in signature data points per unit time

and identify changes which fall outside of specified bands.

* Calculate influence coefficients (AX1/AX2) where AX1, AX2
are the changes in parameter X, and X2 in one time interval.

* Printout influence coefficients and slope of data values

for evaluation.

Following the program reduction and evaluation of the test data, if

failure mode criteria were not available, evaluation would be made to

correlate the performance parameters and influence coefficients with

possible component malfunction. The evaluation and correlation method

relies on the premise that the measured parameters or signatures at a

given time are related to the measured parameters or signatures at another
time. Each measured set of data at any given time is a calibration point.

In initial use, it may be necessary to conduct component tests of the

specified components (valves, regulators, etc.) in which components are

cycled to failure, in order to establish a correlation (failure criteria)

between specific performance parameter influence coefficient shifts with

specified malfunctions.

3.3 DIMENSIONAL ANALYSIS METHOD

Dimensional analysis is one method which appears particularly

promising as a means of predicting failure modes and operational degrada-

tion of components. This method was studied in detail and several dimen-

sional relations were evolved and are reported in the Interim Report

(Ref. 1). While correlation with actual test data will be required to

verify this method, the general logic of the method appears reasonable.

As a demonstration, a simplified dimensional analyses of a valve poppet

assembly has been described to illustrate the correlations which could be

made.
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Example

Defining an electrically actuated valve assembly as shown in the
schematic of Figure 3-1

Figure 3-1. Schematic

and selecting response time of the poppet to an electrical command as the
dependent parameter of interest, the controlling relationships may be defined
by dimensional analysis as follows:

(1) Establish all relevant parameters

Thus, we say

T = f (M, C, K, B, D, i)

where: T = response time

M = poppet assembly mass

C = viscous damping coefficient

K = spring constant

B = magnetic flux density

i = current

The techniques outlined in Reference 2 were used to define a unit
matrix in the mass, length, time, permitivity system, therefore:
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M C K B D i

M 1 1 1 1/2 0 1/2

L 0 0 0 -3/2 2 3/2

t 0 -1 -2 0 0 -2

e 0 0 0 -1/2 0 1/2

also T = KMaCbBdDeif

or, T = K(M)a (M/t)b() C M1 2  d (L2 2 M1/2L3/ 2 E1I/2f

Solving for the dimensional coefficients

(3) T = K /2 C a K b

S M1/21/12il/2 1/2i /2

Now, if we define a response time degradation coefficient TD by

T = TD M 1I /2

equation (3) now becomes

TD = f( C )a K )b = f (Na, Nb)
D  f M1/2B1/2i 1/2 B1/2i/2

and response time is essentially reduced to a problem involving three

dimensional groups,

TD, Na, Nb
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Correlation of Dimensional Groups

Correlation of these relationships to establish predictive trends

must be made with empirical data. However, a logical projection of the

method for establishing the correlative data would be as follows:

1. Test a specified valve to define empirical data for TD, M, C,

K, B, i as a function of cycle life.

2. Calculate TD, Na, Nb and plot. Thus we may obtain:

T TD Na  Nb

Valve 1 Valve 1

Valve 2 Valve 2

Valve 3 Valve 3 Valve 1 Valve

Valve 2 Valve 2

Valve 3 Valve

TD  Cycle Life Cycle Life Cycle Life

3. Cross plot, TD, Na, Nb

TD TD Valve 1 N a

Valve 2

Valve 1V 3 Valve 1
Valve 2 VValve

Valve 2

alve Valve 3

Na  Nb Nb
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Now, we should be able to establish predicted T, TD, etc. for a new

valve or set of valves by calculating the effective Na, Nb, TD for the

new components before testing or after a specified number of cycles

Valve 1

TD - -TD Valve 2

N NEW VALVE

Nb Predict equivalent
cycle life

TEST UNKNOWN CL

CYCLES

Measure data and calculate Compare to established
T, TD, Na, Nb for new data correlation curves
component

4. Based on correlation with existing data, i.e., (Na, Nb, TD)

AT _ change in response time
predict - number of cycles

Also, testing may reveal a parameter relationship similar to the

fluid dynamic drag, Ne , NMA relationships whereby CD is sensitive to

Reynolds number at low mach numbers and sensitive primarily to Mach

number at high Mach number. Thus, we might find TD primarily sensitive

to Na only at low values of Nb, etc.
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3.4 WIENER ANALYSIS OF SIGNATURES

Signature analysis is widely used in quality assurance programs.

In this technique, the item under test is subjected to a set of well-

characterized stimuli, and certain aspects of its response are recorded.

The item is characterized, to a certain extent, by these responses or

signatures. If the experiments are cleverly designed, it is often

possible to relate the signatures to some of the underlying physical

mechanisms which produce them. If the experiments are performed with

care sufficient to obtain an adequate signal-to-noise ratio, small changes

in the item will produce recognizable small changes in the signatures.

Signature analysis, therefore, is useful both in acceptance tests as an

indicator of concealed flaws and in the detection of gradually developing

internal changes which may eventually lead to malfunction. In previous

portions of this report, it has been show how flow transient signatures

of small fast acting spacecraft valves can be obtained at reasonably good

signal-to-noise ratios, and suggestions.have been made for obtaining

further S/N improvements.

Quite apart from instrumentation problems, signature analysis is

rarely as simple as making a set of well-defined measurements of the systems

response to a set of well-defined stimuli, and comparing the former measure-

ments with each other in a straightforward manner. First, there is the

problem of defining the stimuli. Any desired set of stimuli could be chosen,

and the measured system's response would be a signature; however, the

problem is to characterize the system in a general manner. How does one

define a set of stimuli that are sufficiently rich and varied so that the

system's response set signature is a general characterization rather than

a particular characterization?

Second, there is the problem of comparing the response sets. Rarely

will the response sets be simple sets of discrete scalers which can be

compared with elementary mathematical tests for goodness of fit and

likelihood of belonging to the same classes. More often, the signature

set is a multi-dimensional continuum. In large-scale production line

work, it is often possible for a human QA inspector to obtain enough

"experience" so that the eye-brain data processor can run an ill-defined
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signature "judgement" program well enough to acceptably differentiate

the bad items from the good.. This traditional comparison procedure,

however, is totally unacceptable when relatively few items are involved

or when the item is highly critical, especially when it is only one of many

critical items in a system. For performance assurance of a small run of

deep space components requiring high reliability over a long period, the

traditional procedure is (totally unacceptable). How then, does one

meaningfully compare signatures of a small group of critical components?

The third problem with signature analysis is knowing when you are

right. You may believe that you have an adequate set of stimuli and a

valid comparison procedure; but belief is not enough. How do you prove

whether you are right?

These are the formidable problems that limit the degree of confidence

that can be accorded signature analysis for deep space component performance

assurance.

The combination of small production runs on one hand and unprecidented

reliability requirements on the other call for a new departure in the

signature analysis of components for deep space use. This new departure

can be found in the procedure of Wiener analysis. Wiener analysis is a

very general and powerful technique for the thorough characterization of

non-linear systems. Unlike many approaches which are applicable only to

a statistically large ensemble of components, Wiener analysis can characterize

a single device. At this point, the question must inevitably occur: If

Wiener analysis is so good, why isn't it employed more often? There are

several reasons why most engineers have not heard of this technique. First,

it was developed recently, the first publication being in 1958 in a MIT

graduate school textbook dense with mathematics (Ref. 3). The diffusion

of the technique from the original source has been slow. Second, Wiener

analysis requires a relatively large amount of computer time, hence

applications that are now economic were out of the question several years

ago. Finally, the necessary and sufficient conditions for convergence

are, in general, mathematically unknown. It has taken some time to develop

a corpus of experience sufficient to indicate what sort of problems can be

solved with a practical amount of computation. Two examples of this technique

3-11



will be given, and its application to the valve problem will be discussed.

The first application is the identification of the process dynamics

involved in a five-stand tandem cold rolling mill for steel sheet (Ref. 4).

This complex multivariate system contains significant dead times due to

the finite speed of the steel sheet and the 13-foot spacing between each

of the five pairs of rollers. Although this is not a linear system, its

response to sufficiently small perturbations can be considered linear,

resulting in a simple exposition. (The second example will introduce the

handling of non-linearities of any finite order.)

INTERNAL

INPUT x(t) NOISE OUTPUT y(t)

SYSTEM

NOISE GENERATOR - CORRELATOR CORRELATION POINT

Figure 3-2

A low level random or pseudorandom perturbation signal is applied to

the system under test. The use of white noise ensures that the system

stimulus will be general rather than merely representing a particular case

because any arbitrary particular stimulus can be obtained from the white

noise by simplification. It can be quite properly said that white noise

contains all possible signals. The mathematical justification for these

statements can be found in references 3, 5 and 6. Of course, no physically

realizable noise source is truly white since that would imply an infinite

power level and infinite variances. Experience has shown, however, that

a noise (or pseudonoise) signal with a bandwidth a few times larger than

that of the system under test, is adequate to thoroughly exercise the system

and such noise sources are readily available.

To the extent that a system is linear, it can be modeled in terms of

an impulse response function h(t). The least mean square error value of

h(t) can be found from the auto-correlation and cross-correlation functions

by solving the Wiever-Hopf equation. (Refs. 5, 7 and 8). (See AppendTx'3A)
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Ryx(T) = Jh(T) R (-t)dt

where

Ryx(T) is the cross-correlation between the system input
x(t) and the system output y(t) as a function of
the correlation delay T

R xx() is the auto-correlation of x(t) as a function
of the correlation delay T

h(r) is the impulse function of the system under test

We have chosen the noise bandwidth to be large compared to the system
bandwidth, hence Rxx(T) can be considered a delta function impulse compared
to h(T). With the area under Rxx(T) being, A (a measure of the noise power),
we have

h(T) = (Ry)yx

Ryx(T) can be obtained directly from an on-line correlator (Ref. 9).
Alternatively, the x(t) and y(t) data can be recorded, digitalized, and
Ryx(T) obtained by processing in an off-line general purpose computer.

As with most experiments, there are a variety of practical compromises
involved. The integrated noise power level A must be set low enough so that
it does not grossly interfere with the normal process dynamics (this is due
to the acceptance of the assumption of linear behavior for small perturba-
tions about the normal operating point), yet if it is too low, an excessively
long correlation period will be required to obtain.h(r) with the desired
accuracy. The noise bandwidth should be large enough so thatR xx() is a
good impulse (so that the second equation can be obtained from the first
without excessive error) yet if it is too wide, it will again require an
unreasonably long correlation period to obtain h(r) with the desired accuracy.
The resolution of these compromises will be illustrated with the steel rolling
mill example.
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A five-stand rolling mill is a rather complex system. The control

objectives are to hold the sheet tension and thickness constant at the output

of each stand in spite of changes in the incoming sheet's thickness, tension,

and hardness. The stands (pairs of motor driver rollers) strongly interact

with each other in a complex bidirectional manner, assymetric with respect

to time. Any change in tension between two stands will immediately affect

the thickness coming out of each stand, and any change in thickness will

immediately affect the tension on both sides of the stand. Any change in

hardness will immediately affect both tension and thickness. Thickness

perturbations propagate downstream through the rolling mill with the motion

of the sheet and tension perturbations propagate much more rapidly in both

directions, inducing thickness changes both upstream and downstream. This

system can be considered as a series of instantaneous responses (compared

to actuator response time) connected by time delays. The system dynamics

are limited by actuator response. The study involved characterizing the

effects of the control variables--roll speed, control signal and thickness

screw setting control signal--with the controlled variables of thickness

and sheet tension and roll speed.

A digital correlator (Ref. 9) was used to compare system inputs and

outputs, and pseudorandom noise (Ref. 10) was added to the normal control

signals. The internal system noise was characterized by auto-correlating

the y(t) output with no noise added to the input. Preliminary tests deter-

mined the response times of the actuators, and a 15 Hz bandwidth noise input

was chosen; this is several times the system bandwidth. The input noise

RMS amplitude was set at 1.8 RPM or 0.4% of the full value of the roll speed;

a small enough perturbation so that the quasi-linear behavior assumption

was valid. Figure 3-3a shows the speed deviations from the mean value of

both the control signal and the roll tachometer signal. The pseudorandom

noise perturbations are buried in the system's internal noise. Figure 3-3b

shows the cross-correlation between the output speed and the roll speed

control signal for various delays T. The correlator has pulled the value

of Ryx (T) out of the noise, and has calculated h(T), the roll speed esponse

of the mill to a speed control impulse perturbation. Figure 3-3c is h(T)dT,

the speed response of the mill to a control signal step function. It is

important to note that this could not have been measured directly by applying
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a small control step function since the response would have been buried in

the internal system noise. The speed response to any small arbitrary con-

trol signal can be calculated by straightforward integration with h(T).

These preliminary tests were conducted without steel sheet in the mill.

The mill response was then
SPEED REF. SIGNAL (

characterized with steel sheet passing

through the five stands. The test

STACHOMETER OUTPUT SIGNAL noise signal had a bandwidth of 5 Hz

(a few times the system bandwidth) and

S0 an RMS amplitude of 2.7 RPM (about
TIME (sec)

S0.6% of full speed, and about 1.2% of

the mill speed used in this test.)

S. Figure 3-4a shows -h(T), the roll

31 speed response to a negative speed
L control reference impulse, as calcu-

0 I_ I 1

TIME (O ) lated by the digital correlator. A

comparison of 3-4a and 3-4b shows that

the former has a better signal-to-

noise ratio and the latter has better

time resolution, especially during the

o I i first 40 milliseconds. This is to be
0 0.5 o

TIME (3c) expected since the former was made

with 5 Hz bandwidth stimulus noise

Figure 3-3. Speed Control compared to the latter's 15 Hz stimulus
Actuator noise bandwidth.

Tests with an input signal
having a 15-H z cutoff Figure 3-4b shows a different
a-top) noise signal and
speed output time func- cross-correlation: the reference
tions, b-middle) cross- speed decrease at stand 1 caused by an
correlation between refer-
ence speed and roll speed increase in strip tension between
of stand 1, c-bottom) step stands 1 and 2. Note the bump in the
response, derived by inte-
grating cross-correlation curve due to the resulting thickness

plot. (Taken from Refer- change propagating to stand 2, affect-
ence 4.)

ing its speed and hence the sheet ten-

sion, and hence effecting automatic

control reference speed back at stand 1.
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So.05 ,o
TIME Figure 3-4. Cross-correlations

of rolling process, with an
S Finput signal having a 5-H

cutoff a-top) reference s~eed
W9 and roll speed of stand i,

b-middle) reference speed of
stand 1 and tension between

0o o ID stands 1 and 2, c-bottom)
S TIME (se) reference speed of stand 1

and gauge out of stand 2.
(Taken from Reference 4.)

o 1.0 20 3.0
TIME (sec)

Figure 3-4c shows the cross correlation between the reference speed
at stand 1 and the thickness at stand 2. In this case, the thickness sensor
was four feet from the work rolls, so there was a delay of 0.22 second.
The tension increase caused the thickness to decrease simultaneously at
both stands 1 and 2, causing the two large peaks separated by the 1.3
seconds required for a change in sheet thickness at stand 1 to propagate to
stand 2. The small disturbances at 1.1 and 2.1 seconds on the two main
peaks are due to an interaction with stand 3; when the thickness change
entered stand 2, the tension changed between stands 2 and 3, resulting in
a further thickness change at stand 2. A wide variety of quantitative data
can be obtained from these curves. For example fm  h(T)dT for the curve
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in 3-4b yields 2600 lbs/rpm as the coefficient relating a change in

tension between stands 1 and 2 to a change in speed at the first stand.

Similar processes were used to measure the different types of interactions

between pairs of signals at different points in the five-stand rolling mill,

resulting in a quantitative linear (reasonably valid for small perturba-

tions) mathematical model of the behavior of the mill from which an optimum

linear control program could be developed.

The above systems characterization study has been pedagogically

useful for providing a degree of familiarity with some of the mathematics

and instrumentation used in Wiener analysis. Small spacecraft valves, how-

ever, cannot be reasonably modeled with any small signal perturbation

linear approximation. Small spacecraft valves exhibit extremely nonlinear

behavior. Indeed, in many respects, they resemble a neuron of neuron

chain; for the most part, they are open or closed, on or off. The next

example will consider the successful Wiener analysis of a complex, highly

nonlinear system--a chain of three neurons, each of a different type.11

It must be emphasized that this analysis is of a chain of three oarticular

neurons; it is not some sort of statistical averaging over a large ensemble.

This example was chosen because the system involved is at least as complex

and nonlinear as a small spacecraft valve. In addition, like most biolo-

gical systems, it is extraordinarily noisy, and provides a far poorer

signal-to-noise ratio than can be obtained in our valve studies. Finally,

this study provides an application of the Wiener analysis procedure that is

almost identical to that which will be suggested for the valves. The Wiener

analysis of the neuron chain will be described, followed by a discussion of

its application to valve characterization.

The system that was subjected to Wiener analysis was comprised of a

horizontal cell which stimulates a bipolar cell which in turn stimulates a

ganglion cell, all in the catfish retina. A noise generator injected a

current X(t) into the horizontal cell with a microelectrode, and another

microelectrode measured the output voltage appearing in the ganglion cell.

Y(t) was the ganglion discharge poststimulus histogram. A preliminary

inspection established the experimental parameters. A noise bandwidth of

25 Hz was chosen as being a few times as wide as the system bandwidth. The

system memory was negligible beyond 300 milliseconds, so the Wiener kernels
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were computed for values of their arguments up to 300 milliseconds. The

system signal-to-noise ratio was such that the noise input train should

exceed 30 seconds in order to limit the error in the calculated kernel

values to less than 5%. A noise stimulus record 350 seconds long was used

for X(t).

Wiener has shown that 3

Y(t) = G n[h n,X(t)]
n=o

where t is time,

Y(t) is the system's output

X(t) is a random or pseudorandom input

IG n is a complete set of orthogonal functionals, and

Ih n is the set of Wiener kernels that characterizes the system

h(T) for the steel rolling mill in the previous linear example is a first

order Wiener kernel, hn(T). The DC bias level of the system is the zero

order kernel, ho.  The system's non-linearities are characterized by the

higher order kernels, h2(T1,T2 ), h3(T1,T2,T3), etc. These kernels are

simply higher order cross-correlations between the input white noise and the

system response.

Let us take the power density spectrum of the input noise to be

ixx (f)=P

P is the power spectrum level

f is the frequency

Lee and Schetzen have shown that 12

n-l

h n(T 2 .... n) n p y(t)- Gm[h ,X(t)] X(t-T)X(t-T2 )....X(t-n)
m=o

where T is the cross-correlation delay time.

hi can be obtained with either an on-line correlator or by using a

general purpose computor running a correlation program on the recorded

data. Higher order kernels are generally obtained by off-line computation,

as was the case in this example. Figure 3-5a shows the computed Wiener
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kernel h,(T). It represents the least mean square error value of the

impulse response of the linear portion of the system. Figure 3-5b shows
the computed value of the second order Wiener kernel h2(T1 ,T2 ). Figure
3-5c shows n2(T1 ,T2 ) as viewed from the bottom. h2(T1 ,T 2 ) represents the

non-linear interaction of two portions of the input signal T 1 and T2
seconds in tne past, as it affects the systems output in the present.

25 A

20B h2 C

5

sec
-5

-10-

Figure 3-5. The first (A) and second (B and C) order kernels for the
neuron chain formed by the horizontal cell, bipolar cell, and ganglion
cell in the catfish retina. The first order kernel hl(T) is plotted
as a function of time T, and it is the impulse response of the linear
part of the transfer function of the chain. The second order kernel
h2 (T l ,T 2 ), which describes the nonlinear behavior of the system, is
represented by a three-dimensional solid made of the amplitude of the
kernel plotted against T1 andT2 . As seen from the display, the second
order kernel is symmetric about the diagonal line Tl = T 2 . For a
clear view of the kernel h2, the amplitude axis is reversed in polarity
in (C). View B shows the peaks well while view C permits a good view
of the valleys (appearing as peaks) in h2(Tl, T2). A peak represents
a nonlinear interaction that enhances the response (facilitation),
while a valley is an inhibitory nonlinear contribution to the response.
The grid lines are spaced 8 msec apart. he maximum of h is 53.0 and
the minimum is -18.0 (spike/sec)/(na sec) . (Taken from Reference 11.)

Let us now compare the predicted output from the system with that

which was determined experimentally. Figure 3-6a shows the noise input

stimulus X(t). Figure 3-6b shows the experimentally determined system

output Y(t). (Actually, the data are given for an average over ten experi-

mental runs in order to improve the signal-to-noise ratio.) Figure 3-6c

shows the linear prediction; i.e., only h1 (T) was used. It can be readily

seen that the linear prediction is quite poor, as expected. Figure 3-6d

shows the predicted Y(t) while using hl(T), h2 (T1 ,T2) , i.e., second order

3-19



a V h +20na

-20 na

L 1.0 sec

Figure 3-6. (Trace A) White-noise input current to the hori-
zontal cell. (Trace B) Resulting experimental
response of the ganglion cell [type B cell in
(10)] represented by histograms with a bin width
of 8 msec (average of ten experiments): (Trace C)
First order Wiener model response to the same
white-noise signal (hl only, that is, a linear
model). (Trace D) Second order Wiener model
response (hl and h2, th-t is, a nonlinear model).
(Taken from Reference 11.)

Wiener analysis. The predicted signal is remarkedly similar to the measured

signal, especially when it is considered that the analysis was only carried

to the second order and that the system was a biological preparation.

The Wiener procedure for characterizina non-linear systems is extra-

ordinarily powerful and general. Let us consider its application, for example,
to the valve flow transient signature experiments reported previously under

this program. A series of flow transient signatures Y(t) = flow volume versus
time or Y(t) = flow rate versus time were produced with X(t) = a voltage step
function from 0 to 22, 24, 26 volts. Let us replace, for example, this
solonoid voltage step function with a pseudorandom noise X(t), record Y(t),

and extract hl(r), h2( 1T, 2 ) and perhaps h3 (T 1T 2,T 3 ) with a computer. The

response predicted by the Wiener non-linear model would then be compared to
the measured response.
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How have we handled the three problems of signature analysis men-

tioned in the first part of this report? The first problem was of choosing

an adequate set of stimulii. We solved this problem by using the most

general stimulus possible, a noise stimulus with a bandwidth a few times as

great as the system. The second problem, that of comparing response sets,

has been solved through the use of the rigorous and well-defined mathema-

tical procedures of correlation and the other mathematics of Wiener

analysis. The third problem, that of knowing you are right, is solved by a

comparison of the Wiener prediction of Y(t) and the experimental Y(t)
for a general noise input X(t).

In so far as any form of signature analysis can detect defects of
manufacturing or changes brought about by aging, the Wiener procedures
should provide the most general, sensitive and thoroughly defined technique
of system characterization. Its practical limits will be in the cost of
computer time; the time required to compute a kernel rises expotentially
with its order. On the other hand, due to advances in computer production
technology, the cost per calculation has been decreasing geometrically
with time. The time for cost effective wide spread application of Wiener
analysis has very probably already arrived, or if not, will certainly come
very soon.
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APPENDIX 3A

CORRELATION, AUTO-CORRELATION, AND CROSS-CORRELATION

The process of correlation of two waveforms X(t) and Y(t) to yield

the correlation function Rxx(T) can be described as follows:

X(t) and Y(t) are multiplied by each other ordinate by ordinate and

the products added together to obtain a single number, one value of Ryx
at a particular ordinate. That is to say

n

5 X(t n)Y(t) Rxy(0)

n-o
or more properly,

lim T
T _+ f X(t)Y(t) dt = Rxx(0)

0

to obtain Rxy(T) for T 4 0, the signal Y(t) is time shifted by the amount T

before the ordinate by ordinate multiplication is performed. That is to

say

n

X(tn)Y(tn - T) Rxy(T)

n-o

or more properly,

lim T

T- l f X(t)Y(t-r)dt = Rxy()
T 0xy

Auto-correlation, RXX (T), is the correlation of a function with

itself for various time shifts

Cross-correlation Rxy(T) is the correlation of two different func-

tions for various time shifts T.
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4.0 THERMAL CONTACT STUDY

Thermal resistance techniques were investigated in the area of

surface matching. Of interest is the work in contact thermal resistance

of metal interfaces exhibiting varying flatness and surface roughness.

The contact between two solid surfaces, such as a valve poppet and seat,

occurs at individual junctions. Therefore, the real contact area is a

very small fraction of the apparent area. Investigations and analysis

were performed to establish the relationship of surface conditions and

surface loading, on the thermal resistance of metal interfaces. Thus, if

the thermal resistance of a metal interface (such as a valve poppet and

seat) were measured, the surface conditions (roughness and waviness of

the valve poppet/seat combination) could be obtained.

4.1 RESULTS & CONCLUSrONS

Several methods of detecting surface degradation were investigated.

The test results and preliminary analysis indicate that the transient

thermal resistance technique (TTR) appears to be superior for the

following reasons:

1. It is simpler and less expensive than the other techniques

considered in this report.

2. It can be employed in most valves and performs the real time

degradation measurement unlike optical and stylus techniques.

3. If tested in gases, as shown in the analysis, the void volume

can be determined.

4. There are no restrictions on the surface characteristics as in

the case of the optical technique where the surface is required to

be reflective.

The following table is a performance comparison of the acoustic

and TTR techniques of detecting interface surface degradation.
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COMPARISON OF THE ACOUSTIC AND TTR TECHNIQUE

Parameters Acoustic TTR

Response Time: Less than one second Ten seconds or greater depend-
ing upon the sensitivity and
test configuration.

Sensitivity: Analysis indicates that Tests and analysis indicate
roughness detection of that surface degradation of
the order of microinches one microinch can be detected.
is possible. A very high The sensitivity appears to be
frequency transmission adequate to offset the effect
is required to minimize of other thermal paths.
the effect of other
acoustic paths.

Modifications: Requires greater modifi- Little or no modification
cations to implement in is required to implement in
an existing valve. an existing valve.

Simplicity and Cost: Relatively more complex Relatively simpler and re-and requires costly equip- quires less costly equip-
ments such as high fre- ment.
quency (10 Mega Hz)
amplifier.

Based on the above discussion, the following recommendations are
made:

1. Implement the TTR technique in a selected valve assembly
2. Perform the tests of surface degradation by cycling the valve.

Correlate the test data of TTR measurements and leakage with
the number of cycles.

3. Perform measurements on void volume and correlate with leakage.
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4.2 SUMMARY OF PREVIOUS INVESTIGATIONS

The test results of studies performed by other investigators (Refer-

ence 1 and 2) on junction conductance are summarized in the following:

1. The thermal conductance of the interface joint increases with

pressure. This increase is appreciable at low pressures but

levels off at higher pressures.

2.. At any given pressure level, the thermal conductance of the inter-

face joint generally increases as the root square of the surface

roughness decreases. However, surface roughness alone is not the

dominant parameter in determining thermal conductance of contacts.

Over-all flatness has a more important role in determining the

intimacy of surface matching.

3. The thermal conductance changes with changes in the heat flow.

This is believed due to the changes in the nonlinear stray

thermal conductance.

4. In general, interfaces formed between rough specimens give more

consistent data than those between smooth specimens.

5. For extremely smooth and flat surfaces in contact, the conduct-

ance values are highly sensitive to minute changes in the surface

matching.

6. When all experimental conditions are kept constant, interface con-

ductance increases slowly during long heating periods. However,

the time effect is only a temporary one and the changes are mostly

recoverable after cooling. Therefore, a time-dependent physical

property of the metal surface when in contact must also be involved

in the interface conductance.

Since the above referenced tests were conducted at very high heating levels

(of the order of tens of kilowatts), the resulting high temperature gradients

may have caused a change in the dimensional and thermal properties of the metal.

Also the long duration measurements at high temperature may have increased
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surface corrosion. Thermocouples were used in early tests to measure the

temperature gradients (Ref. 1). Since then the state of the art in temperature

measurements has improved considerably. The accuracy of the early test

measurements could have been improved considerably by employing thermistors.

The stability (8) sensitivity (a) and figure of merit (S) of different

temperature sensor are given below: (Ref. 3)

Note that the figure of merit S is larger for sensors with a greater sensi-

tivity if all have the same stability, also S is larger for sensors which

are more stable (smaller B) given equal sensitivity.

Table 4-1.

Item Sensor a = Sensitivity(T/OC) B = Stability(oC) S = a/B
1 Platinum 0.34 +0.03 11.4

Resistance
Thermometer

2 Thermistor 4.0 +0.05 80.0

3 Silicone 0.7 +0.1 7.0
Resistance

4 Quartz Crystal 0.0035 +0.01 0.35
Resonator

5 Thermocouple 0.00083 +1.0 0.00083

It is apparent from the above data that the use of thermistors would

have improved the accuracy of measurement considerably. Since the sensitivity

of a thermistor is very high, a high heat flux is not required to measure
the temperature gradient accurately.

The dependence of contact thermal resistance on different parameters

is summarized in Table 4-2 (Reference 4). The real contact area, which

is one of the factors determining the contact thermal resistance, is

influenced by the following important factors:

1. Surface geometry which includes roughness and waviness

2. Surface properties which include plasticity, elasticity,

hardness and modulus of elasticity.
3. Load and

4. Surface defects.
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That the real contact area is independent of the surface roughness and

waviness is not inconsistent with the laws of friction, namely

A = L and F = fL
r P

where Ar = Real area of contact

F = Friction force

L = Normal Load

P = Yield stress of the asperities

f = Coefficient of friction

It has been stated (Reference 5) that the friction equation does not

apply when surfaces are very smooth and when shear force is present

along with the normal force. The friction equation is based on plastic

deformation (yielding of asperities). However the contact process for real

surfaces cannot be reduced to purely plastic or to purely elastic defor-

mation of the microscopic asperities. Contact interactions of two solids

are generally of an elastoplastic nature. This is because the initial con-

tact usually occurs between the highest asperities which are few in

number and which will bear all the applied load. There is subsequent

redistribution of the pressures to the other asperities after the first

contacting asperities have been crushed and the total load is finally

supported by the major portions of surfaces of the bodies.

Theory of friction predicts that the real area of contact is

independent of the roughness. However, tests indicate that thermal

contact resistance increases with increasing roughness. (References

1, 4 and 6) This contracidtion may be due to the thermal contact resistance

dependence upon the real contact area and also on the height of the

asperities. However, it should be noted that the influence of roughness

on the thermal resistance is reduced with increasing roughness and

contact pressure (Table 4-2). Also note that the degree of elestic

deformation appears to be determining the dependence of the thermal

resistance to the roughness and waviness of the surfaces in contact.

4-5



Table 4.2. PARAMETERS AFFECTING THERMAL CONTACT RESISTANCE (Ref. 4)

ITEM PARAMETERS IMPORTANT OBSERVATIONS GRAPHICAL REPRESENTATION

(et = Thermal Resistance)

1 Apparent contact C Pc x  t
Pressure (Pc) Fr rough surfaces, xZl (Plastic deformation)

For smooth surfaces x = 0.33 (Elastic deformation)
The pressure cycle indicates memory effect. c

-1 t2 Metal Thermal eo Km where Km = harmonic mean E
Conductivity thermal conductivity

(K) K

3 Surface roughness t c k-(Y) -a for smooth surfaces and light loadin . et
(a) The influence is least where contact pressures

are high and surfaces rougher ' o

4 Surface waviness et c ()Z• Z is a constant. There is an ot
((W) interdependence between a, w, and ot  W

5 Material hardness eo H for rough, flat surfaces over a large o
(H) contact pressure range H

6 Modulus of et 0 E for increasing elastic modulus et
electricity (E) or stiffness) E

7 Interstitial fluid (KF) . t decreases with increasing KF ot
thermal conductivity The linear dependence of e on Kf indicates K

(KF absence of convection effects F

8 Contact temperature et decreases with increasing T * The effect
level (Tc) is predominant above 500 0C. t Tc

9 Interstitial et is essentially independent of Pf for t

pressure (Pf) Pf > one atm pressure and Pf < 10- 5 torr. 1
The transition region is about 100 TORR -.TORR - Pf
wide and it shifts to left for smoother
surfaces, and heavier load.



4.3 DERIVATION OF EQUATIONS USED IN CONTACT THERMAL RESISTANCE ANALYSIS

NOMENCLATURE

a r = The average real area of each asperity contact

Ar = Total area of contact

N = Total number of asperities in contacts

Aa = Total apparent area of contact

w = Thermal power flowing through the contact area

T = Temperature

AT = Temperature gradient

e = Thermal resistance

Kb = Effective thermal conductivity of the two metal
surfaces in contact

L = Sum of the center line average (CLA) readings for
the two test surfaces

a = R.M.S. roughness

L , L = Average roughness of the surfaces 1 and 2
1 2

(F) = Geometric factor dependent on the area ratio

Km  = 2K1K2 , the harmonic mean of thermal conductivity
K1+K2  of solids (1) and (2)

A
2 Real Area A r

- Apparent area a

8l = Maldistribution factor

S = Number of intersections of the profilogram trace
with respect to the baseline per unit length of
the trace

ay = Yield stress of the material

Pa = Apparent contact pressure

c. = Radius of the contact junction

C = Radius of the contour
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In deriving the equation for contact thermal resistance of two

flat surfaces in contact, the following assumptions are made:

* There are no layers of foreign materials such as oil, contaminents, etc.
* The temperature remains constant over the entire real

contact area.

* The waviness of both surfaces is very small compared to
the roughness.

* The steadystate heat flow condition exists.

* There is a hard vacuum and low enough temperatures to
eliminate gas conduction and radiation effects.

* There are no oxide films.

* Every circular contact spot diameter is much smaller than
the radii of curvature of the contacting asperities.

Since the total thermal conductance of the contact between two
surfaces is the sum of the conductances of the individual points of
contact, the total thermal resistance, o, which is the reciprocal
of thermal conductance is:

0= Temperature gradient across the contact area
Power through the contact area

The Fourier heat conduction equation is: (reference 7)

w -KbATAr
L

Therefore = T L/KAr (1)w bAr (1)

L K1K2
Note: Kb L2 K1 + LIK 2  (2)

where L = L1 + L2

a + a  + ....+ a

. A = Nar r

A general expression for thermal contact resistance based on the
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pinching effect (narrowing at asperity contact area) which considers

the number, size and distribution of contact spots rather than the

magnitude of the total real area, has been derived in reference 4:

= 1 802

N (3)
Km  c i  YmC

Note that the first term in equation (3) is due to the surface

roughness, and the second term is due to the surface waviness.

If the maldistribution effect is negligible, Bi = 1, and if the

surface waviness is also negligible, the second term in

equation (3) goes to zero. The summation of the radius of the

circular spots c, can be obtained from the following equation:
i=l

(4)

ci = AaS

i=l 2

The number of intersections of the trace per unit length, 'S'

can be obtained from surface profile data. Equation (4) is

derived with the assumption that the surfaces are nominally

flat and contact spot distribution is the same as for Equation (3).

The geometric factor is defined as: T6 T-

P
where the area ratio e = (5)

3ay

For lightly loaded wavy smooth surfaces, the thermal resistance

component due to waviness will be dominant if the contact function

radii ci are very small compared to the contour radius C and C is

extremely small relative to the apparent area. Then equation (3)

reduces to the following:

2 + 1e 2n + (6)

where B = average maldistribution factor = 1.1
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4.4 DETERMINATION OF CONTACT SPOT RADIUS C:

The shape and size of the asperities depend upon the mechanical

process used to generate the surface. The number, shape and size of

individual contacts therefore will depend upon the geometry and material

properties. Table 4-3 below gives an indication of the maximum height of

asperities a and the radius of curvature p transverse and parallel to

the direction of mechanical preparation.

Table 4-3

p(microns)
Process a(microns) Transferse Longitudinal

Casting 30-120 1000-1500 1000-1500

Shot Blasting 3-12 100-150 100-150

Turning 3-12 20-80 60-120

Milling 6-20 40-100 80-150

Planing 6-20 40-100 80-150

Grinding 1-5 5-20 250-15,000

Lapping 0.08-0.3 15-250 7000-35,000

The average contact size has been calculated employing the classical

theory of Hertz with the following assumptions:

1. The deformation between contacts is elastic.

2. The asperities are hemispherical. For highly polished

mirror like surfaces this assumption is valid (reference 4).

3. The contacting asperities touch at the apex only, and not

at the shoulder. The average contact radius c is:

c = 1.1 F (7)

where: Fc = contact force per each asperity

E = Modulus of electricity

p = Radius of curvature
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Note that the radius of curvature is proportional to the asperity height.

c is computed for aluminum surfaces of roughness 110 pinch RMS employing

the classical theory of Hertz and it ranges from 16.8 to 17.5 microns for

the pressure ranges of 100 to 10,000 psi. The calculation indicates that

c is essentially independent of apparent pressure. The increase in total

real area of contact with pressure is therefore not due to the increase

in c but N, the total number of contact spots.

c is computed for aluminum and steel for different surface rough-

ness of interest, employing equation (7) as shown in Figure 4-1 and

Table 4-4 below.

Table 4-4

Surface Roughness Aluminum Steel

Microinches, RMS c, micron c, micron

1 3.5 2.5

10 7.6 5.4

50 13.0 9.2

100 16.4 11.6

110 17.0 11.9

200 20.6 14.6

The total number of contact points N can be computed from the

following equation:

a (8)
n 7rc = (

It should be noted that c represents the average radius of contact spot

and ci the radius of a particular contact spot. For any particular load

and surface geometry, there will be a spectrum of contact spot sizes.

The average contact spot size represents the largest percentage of actual

contacting asperities.

Equation (8) is based on the assumption that the real contact area

can support only the stress at which the material begins to yield.

The factor of 3 in Equation (8) may be different if the surfaces are

work hardened, or if the RMS slope of the contacting asperities becomes

quite small. Equation (8) therefore is approximate.
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Figure 4-1
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4.5 DETERMINATION OF VOID VOLUME

The thermal conductance of the contact between two surfaces in the

presence of gas is the sum of the conductance of the individual points

of contact and the conductance of the gas layer. The heat transfer in

gas occurs solely by conduction.

The total conductance is:

hT = hs + hg

where: hs = conductance associated with solid contacts

hg = conductance associated with gas medium

Note that Ah W 1
ag At '

A
kg g (9)

Where Aa = apparent areas

kg = gas conductivity

A = Real area through which the power flows across
9 the gas layer by conduction

Lg = Average thickness of the gas layer

Since hT and hs are known from the measurement of thermal contact

resistances (hT in presence of gas and hs in absence of gas), hg can be

found.

A
From the equation Aahg = k g ,

g

the ratio Ag is obtained since all other quantities are known.
L

A Ah
or -L 2

L K

However Ag is known from the following equation:

Ag = Aa - Ar
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where: Ar = N ar
S2

= Nic

K
and Lg = a (Aa - Ar)

00o The void volume V is:

K 2
V = AL = aL g (Aa-Ar)

4.6 REFERENCED TEST DATA ANALYSIS

The test data of Reference (4) are discussed. A stainless steel

416 sample was tested with the following characteristics:

Surface roughness: Co = 42 microinches

a2 = small

Thermal conductivity: Km = 14.6 BTU
Hr-ft-°F

The measured thermal conductance, h, as a function of apparent

pressure Pa and roughness is given in Table 4-5.

The computed contact spot radius, c, and number of contact spots
per square feet are obtained employing equations (7) and (8). The
thermal conductance, h, is related to thermal resistance, e, as follows:

h = 1 (10)
a

The thermal conductance for the different pressures is computed
employing equations (6) and (10).

The second term in equation (6) which accounts for the effect of
waviness, is not computed because of the lack of data on waviness.
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Table 4-5. Measured and Computed Thermal Conductance With
Pressure and Surface Roughness as Parameters

Thermal
Spot TMeasured
Spot Conductivity Computed

Total Contact Yield Area Number C m Thermal Percent
Roughness RMS Spot Contact Stress A ensty K Ther C onductance Deviation

Rouhes R BTU BTU
v inches Radius Pressure o a B dcn BTU From Measured

Material 1 02 pinch pin/pft Pa - Psi Psi ft A Hr-ft F h= Hr-ft -oF Conductance

-9
SS 416 42 0 42 360/30 131 110,000 2.85X10 1.41X10 14.6 113 158 -28.5

950 1.02X10 800 1080 -24.9
3800 4.08X10 6  3200 3280 - 2.5

- SS 303 190 0 190 568/47.2 131 114,000 7.1XlO 5.38X104  10.0 46.8 100 -52.8
-n 395 16.2X10 140 200 -30.0

1100 45.2X104 394 410 - 4.0

SS 303 132 76 152 540/45 131 114,000 6.4X10-9  5.97X104  10.0 49.0 140 -64.0
400 18.2X10 148.5 255 -41.5
1050 47.8X10 392.0 610 -35.8

SS 416 131 108 170 560/46.6 131 110,000 6.8X10 9  5.92X10 4  14.6 73.5 170 -56.5
500 2.26X10 5  280 326 -14.2

1359 6.14X10 5 760 510 +49.0



Note that the computed conductance (Table 4-5) is smaller than the

measured conductance. If the waviness effect had been included, the

deviation would have been larger. However, the effect is insignificant

if the waviness term in Equation (6) is small.

The computed conductance can be obtained by employing Equation (4)

instead of Equations (7) and (8). A difficulty arising in computing

the thermal conductance employing Equation (4) is that there is no way

to compute thermal conductance with contact pressure as a parameter.

Also Reference (4) did not provide the parameter 'S', the number of

intersections of the profilogram trace per unit length of the trace.

Therefore, Equation (8) is used in the sample computation below:

Sample Computation of thermal conductance

01 = 42 micro inches RMS

2 = 0 T = 12 + 22 = 42inches

Km = 14.6 BTU/Hr-Ft 2-oF
-2

Contact Spot Area = ec

= 7(36)2/1012 inch 2

= 2.85 x 10-9 ft2

- 2 Pa
3y

For Pa = 131 psi from the ist line of Table 4-5,

Pa 131 2
N = Pa = 131 number per ft2

3ay -e 3 x 110,000 x 2.85 x 10"9

= 141,000 lb/ft2

Thermal Conductance h = (10)

2 Km E N
4-16
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2 X 14.6 X 30 ft x 0.141 x 106

= 113 Btu/Hr-ft2-OF

4.7 MORE RECENT THERMAL RESISTANCE MEASUREMENTS

The important objectives of the thermal resistance measurement

test are to confirm the test results with those obtained from the analysis

and determine if the thermal testing method is practical.

4.7.1 Description of Test Specimens

Sets of Jo blocks were selected as test specimens for the

thermal resistance measurement test The specifications of the

Jo blocks are as follows:

Dimensions: 0.500 X 1 3/8" X 0.375

Surface finish of surfaces 0.50" apart: 0.51 in RMS

Contact surface dimension: 3/8" X 1 3/16"

Contact surface flatness: less than 3.0p inches

Material: Steel

The required roughness of the surface of each test specimen

is obtained by employing diamond grit of 3 to 10 micron size.

The measured roughness and waviness of each specimen is given in

Table 4-6.

The roughness and waviness of each prepared surface were

measured on a Bendix profile recorder.

The charts are shown in Figures 4-la through 4-1p, Appendix

4-a.
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TABLE 4-6 CHARACTERISTICS OF TEST SPECIMENS

Width Data Length Data

Test Specimen Waviness Roughness Waviness Roughness
Identification Peak to Peak Peak to Peak Peak to Peak Peak to Peak

Item Number Microinches Microinches Microinches Microinches

1 1-7
(Reference block) 5.0 0.75 5.0 0.75

2 1-9 2.0 0.75 5.0 0.75

L 3 1-1 2.0 0.75 5.0 0.75
00

4 10-4 - 25.0 10.0

5 50-8 80.0 70.0 80.0 50.0

6 50-5 80.0 125.0 80.0 125.0



Note that the surface roughness was obtained as desired.

However, the waviness was difficult to control in spite of the fact

that the lapping was performed under very tightly controlled conditions.

The original Jo blocks did not always pass the manufacturing

specification of flatness (waviness). However, the effect of flatness

may be minimized by applying large loads.

4.7.2 Sensors

Twelve thermistors, Fenway part number Gb31L4, were selected.

Nominal data on each thermistor is as follows:

Nominal resistance at 250C: 1000 + 20% ohms

Assembly description: Glass coated bead

Bead diameter: 0.043"

Lead diameter: 0.004"

Dissipation constant: 0.70 milliwatt/oC in free air

Time constant: 2.0 seconds

Resistance ratio (Resistance at zeroC to that at 500): 7.3

The thermistors were aged by subjecting them to temperature

cycles for two weeks. Each temperature cycle consisted of approxi-

mately twelve hours at 250 0C and four hours at 250C. The resistance

of each thermistor was measured at 250C + 0.020C in an oil bath

with ten micro-amps current flowing through the thermistors. The

resistance bridge employed was ESI 242B.
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The temperature difference AT across the interface is measured

with a temperature sensor consisting of two matched thermistors having

essentially the same resistance/temperature characteristics.

The criteria of the temperature sensor design are:

o Two bead thermistors should be in as close contact to
the mating surfaces of the Jo blocks as possible so
that the thermistor will attain essentially the same
temperature as the Jo block surfaces.

o It should be convenient to mount the sensor so that
each thermistor is symmetrically located across the
interface and close to the interface.

o The sensor should be mechanically rugged.

One sensor was constructed with the detail shown in Figure 4-2.

WIRING THERMISTORS
PINS PAIR

JO BLOCK "B" JO BLOCK "A"

Figure 4-2 Temperature Sensor Configuration

4.7.3 Test Setup Description (Preliminary Tests)

To determine thermal resistance across the interface, the

knowledge of accurate heat flow rate through the interface along with

temperature difference AT is required. The electrical heater (Dale

Ohm 450/25 watt) is mounted such that thq heat leakage through the stray

thermal resistances are small and almost all the thermal power flows

through the specimen interface.
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The test setup schematic is shown in Figure 4-3 and the

photographs of Figures 4-4 and 4-5.

F F

BRASS BLOCK LOADLOAD
CELL
POWERLOAD CELL SUPPLY

HEATER

SUPPLY LOAD CELL
s---JREADOUT

ESI o - -- TOP TEST SAMPLE

2428 BOTTOM TEST SAMPLE

--. AT SENSOR BOARD

F F

Figure 4-3. Test Setup Schematic
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Figure 4-4. Photograph of Test Setup

A heat barrier constructed of phenolic blocks and steel plates

is inserted between the load cell and the specimens. A machinist

vice is used to generate the pressure across the interface.

Since the phenolic is slightly plastic the drop in the load was

observed as a function of time. However, the drop was less than

5% in a period of 12 hours.

The instruments employed in the test setup are as follows:

Load cell: Bytrax JP-lKD/1000 lbs full scale

Load cell power supply: Hewlett Packard/Harrison 865

Load cell readout: Digital voltmeter, Cimron 9300

Heater: Dale ohm, 45 ohms/25 watts

Heater power supply: Hewlett Packard 6271A

Temperature sensor power supply: Fluke 332 Voltage Standard

Sensor readouts: Differential voltmeter Hewlett Packard 3420

ESI Bridge 242B
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(a)

(b)

Figure 4-5. Photographs of Test Setup in Vacuum
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I

V (c)

(d)

Figure 4-5. Test Setup - Closeup in Vacuum
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4.8 PRELIMINARY TEST RESULTS

The preliminary test was conducted employing two specimens.

The range of load across the interface was varied from 20 to

500 pounds. The thermistor resistance was measured at 0.45 watt

and 11.2 watts heater power levels.

The temperature difference AT is obtained from the slope of the

resistance-temperature curve (Figure 4-6). The thermistor resistance-

temperature curve is expressed mathematically as follows:

-R Exp l - I

0 0

where: Ro is the resistance at ambient temperature TO
R is the resistance at any other temperature T

B is the constant dependent on the thermistor material

!000

900

0 800

700

600

500

400
25 0 C 30 35 40 45

TEMPERATURE- OC

Figure 4-6. Thermistor Resistance Vs. Temperature Curve
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Note that for these bead thermistors, the ratio of

R
resistance =  7.3 where To = 273 0K

and T = 323 0K

R
Substitution of T, TO and - gives the value of B= 3500.

The preliminary test data taken in air is shown in Table 4-7.

The average temperature difference AT obtained from the slope
of the resistance-temperature curve for a thermal power, W, of 11.2
watts is:

AT = 1.30C

The apparent interface area = 1.19" x 0.375"

= 0.445 in2

Assuming all the thermal power flows through the interface the
thermal conductance

h 1 _ W

11.2 watts x 3.41 Btu/hr/watt x 144 in2/ft2

1.3 c x 1.8 F/ cx .44 in

5300 BTU
Hr-°F-Ft

It should be noted however that not all of the thermal power flows
through the interface. Therefore, the actual thermal conductance is
less than 5300 BTU/Hr-oF-Ft2

The measured thermal conductance value in Reference 6 for 1.6
micro inch surface roughness for stainless steel is in the range of
2500 to 3000 BTU/Hr-oF-Ft2
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Table 4-7. Preliminary Thermal Resistance Test Results

Thermistor Resistance AR
Heater AT =-

Load Current R1  R2 R Slope
Lbs Amps Ohms Ohms Ohms 0C

220 0.500 461 485 24 1.4

320 0.500 423.2 445 21.8 1.3

458 0.500 412 433 21 1.24

The average slope at R at 450 ohms is 17 ohms/°C.

4.9 MODIFICATION OF TEST SETUP

The thermal resistance measurements were conducted employing the

setup described in previous pages. It was observed that the temperature

difference AT across the interface increased with increasing pressure

across the interface. However, the analysis predicts that for a constant

heat flow through the interface, the AT will decrease with increasing

pressure. Therefore the test setup was examined carefully. It was

determined that the assumption of constant heat flow was not valid as

explained below:

Though the heat generation was unchanged with pressure the heat flow

through the interface was increasing with pressure. This is apparent from

the following equation:

AT = Wl

where: W1 = heat flow through the interface

91 = thermal resistance

For a constant W, 9 decreases with increasing pressure (see

Table 4-2). Therefore, AT is expected to be decreasing with increasing
,pressure. The conclusion that W1 was not constant is based on the

following simplified thermal circuit diagram (Figure 4-7).
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T W21 > WO = W1 +W 2

W = (Tl - TO)

W ) 11 0-T1wo 81 +

W1 T2 9C 9R B

9H

TO  Figure 4-7

9C = thermal resistance due to the convective heat flow (for tests in air)

R = thermal resistance due to the radiative heat transfer to the
surroundings

9B = thermal resistance of the heat barrier introduced between the top Jo
block and the load cell

81 = thermal resistance of the two Jo blocks interface. The AT is measured
across this junction

9H = thermal resistance of the junction formed by 
the Jo block and the

heat sink.

Assuming that 9B',  C and 9R are constant, increasing pressure decreases

91 and @H. As a result W1 increases and W2 decreases.

The effect of pressure on W1 was minimized by the following steps:

* Insulate the sample completely with insulating material
(Dow Corning Sealant 731 RTV). This will increase 9 9
and 9B and reduce W2. As a result, the effect of prtsure
on W is reduced.

* Minimize 9 by cementing the lower sample to the heat sink
under pressure. This minimizes 9H and makes it essentially
independent of the pressure.

The corrections stated above gave the desired results. The tests

were conducted on five different.types of surface roughnesses (0.75 to 125

microinches P-P) in the load range of 10 to 200 pounds. The power level was

maintained constant at 1.25 watts. The roughness of each specimen was measured

on the Bendix profile recorder (Figure 4-1, Appendix 4-a) and the results

tabulated in Table 4-6.
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4.10 THERMAL TIME CONSTANT

The analog of the thermal resistance measuring setup can be represented

by an electrical circuit consisting of thermal resistances and thermal

capacitances.

In the absence of radiation and convection the conductive heat transfer

is considered to estimate the thermal time constant. An approximate thermal

time constant, T, defined as the time required to attain 63.3 percent of

the final value of temperature is given as follows:

= Cth gth

where: Cth = total thermal capacitance

= total mass mT x heat capacity Cp

mT = the sum of the masses of the Jo blocks, the
brass block and the heater

9th = total thermal resistance

= 3 9B1 + 3 9

9B1 = thermal resistance of each Jo block

Gj = thermal resistance of each junction

mT = volume x density = (3 x 1.375 x 0.375 x 0.5) x (0.283)

+ (2.75 x 0.75 x 0.75) x (0.310)

= 0.75 lbs

Cp = 0.1 Btu/lb - OF for carbon steel and brass.

.'.Cth = 0.75 x 0.1 = 0.075 Btu/oF

= 143 Joules/oC

3 x 0.5
3 Bl = 27 x 0.375 x 1.375

= 0.11 OF/Btu/hr = 0.2.oC/Watt

where thermal conductivity k = 27 Btu/hr-ft-oF for carbon steel
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Assume that the maximum 9. = 0.50 C/Watt

.th = 3 9j + 3 9B1

= 1.5 + 0.2 = 1.70C/Watt

. = 1.7 x 143.0

= 255 seconds

The measurement readings should be stable after several thermal time

constants. Each measurement was taken after approximately 45 minutes.

It was observed during the test that after 45 minutes from the time the

power was switched on, the readings were reasonably stable.

It should be noted that because of the distributed nature of the

thermal circuit having many thermal time constants, there is always

going to be a slow and steady temperature rise of the test setup,

and therefore the change in thermistor resistances with time.

4.11 TEST RESULTS

The temperature difference AT across the solid Jo block was measured

at the power level of 1.25 watts. The purpose of this data is to deter-

mine the thermal resistance of the slice of a Jo block of thickness equal

to the distance between the two thermistors. It is apparent that the

AT measured across the solid slice of a Jo block must be smaller than

AT measured across the interface of the two Jo blocks having flattest

and smoothest surfaces.

Jo block #7 was used as a reference surface, and the waviness

of each Jo block is within 4.0 microinches. The AT was computed by

dividing AR with the slope of the thermistor resistance-temperature

curve at the point of thermistor resistance. The slope in ohms per

degree centigrade as a function of thermistor resistance obtained from

Figure 4-6 is given in Table 4-8.
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It should be noted that-the data was taken with increasing load.

A hysteresis in AR was observed with the load decreasing. This appears

to be due to the yielding of asperities, however small the yielding may be.

TABLE 4-8 THERMISTOR TEMPERATURE-RESISTANCE VALUES

AND THE RESISTANCE-TEMPERATURE SLOPE

Thermistor
Temperature Resistance Slope

OC Ohms Ohms/°C

25.0 1000 40.0

26.2 950 37.5

27.5 900 35.0

29.2 850 32.0

31.0 800 30.0

32.5 750 28.5

34.0 700 27.0

36.0 650 26.0

38.0 600 24.7

40.0 550 22.5

42.0 500 19.4

Sample Calculation

Per Table 4-8 the slope of the temperature-resistance thermistor

curve at 695 to 697 ohms is 27 ohms/oC. AR at 14.7 psia is 2.0 ohms.

. =AR ohms 2.0Slope = - 0.07400
T Slope 27

0.0740C
S0.074C = 0.0590C/WattS Slice 1.25 Watt

Repeating the above calculation for the data in Table 4-9,

0.059 + 0.059 + 0.084 + 0.0290
Average gSlice 4 = 0.059

1 Watt 2.413 BTU/hr 1.8°Fand Average Thermal Conductance h = 015a9 xX WattU/hr .80F

3.58 1 ft = 8977 BTU/hr-oF-ft2

34-31.58 X ft2
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TABLE 4-9 MEASUREMENT OF AR ACROSS A SOLID JO BLOCK
(NO INTERFACE) WITH HEATING CURRENT OF
50 MA (1.25 WATTS)

Atmospheric R R AR AT 9
Pressure 1 2

Psi Ohms Ohms Ohms OC oC/Watt

14.7 695 697 2.0 0.074 0.059

0.0 752 755 3.0 0.105 0.084

0.0 736 737 1.0 0.036 0.0290

0.0 707 709 2.0 0.074 0.059

4.12 DISCUSSION OF TEST RESULTS

The AR measurements as a function of surface roughness and load as

a parameter are presented in Table 4-10.

The following is evident from the test data

1. AT across the solid slice of Jo block is smaller than At

across an interface of two smoothest surfaces and a load

as high as 200 lbs. This is a good check for the sensor

and the technique of measurement.

2. AR and therefore AT decreases with pressure. This confirms

the analysis given in previous pages (Table 4-2).

3. AT increases with increasing surface roughness at a constant load

in vacuum given constant heater power and approximately the same

thermistor resistance as shown in Table 4-11 below.

The necessity of having the same thermistor resistance when comparing

AT as a function of roughness is important. The thermal circuit as men-

tioned earlier consists of many thermal resistance capacitances. The

temperature of each Jo block increases with time until a thermal equili-
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Table 4-10. AR and AT Across an Interface of Pairs of Jo Blocks*

Thermistor
Resistance

Surface Roughness Bottom Top AR = Test Conditions

Jo Block Peak to Peak R R R R - R2 Load Atmosphere Slope At, O
Part # Microinches ohms ohms ohms lb ohms/0e C

1-9 0.75 746.2 741.5 4.7 19.3 vacuum 28.4 0.166

737.5 733.4 4.1 72.5 28.1 0.156

728.9 726.5 3.4 109.0 27.8 0.122

738.4 740.3 2.0 130.0 28.2 0.072

-----------------------------------------------------------------------------------------------------------

1-9 0.75 730.2 724.7 5.5 28.0 Air, Unclean 27.8 0.192

726.7 721.5 5.2 104.0 27.7 0.188

726.2 721.2 5.0 130.0 27.7 0.180

733.1 722.3 10.8 47.0 Air, Unclean 27.7 0.390

720.5 732.0 11.5 90.0 Disassembled & 27.9 0.400

then assembled

746.2 741.5 4.7 20.0 Air, Cleaned 28.4 0.165

737.5 733.4 4.1 73.0 28.1 0.146

728.4 726.5 3.4 110.0 27.8 0.122
----------------------------------------------------------------------------------------------

10-4 10 698.6 681.9 16.7 69.0 Vacuum 26.9 0.620

701.3 686.2 14.1 104.0 27.0 0.530

858.5 846.6 13.9 110.0 Vacuum 32.0 0.430

858.7 845.4 13.3 146.0 2nd Run 32.0 0.415

861.0 847.9 13.1 241.0 32.0 0.400

................................------------------------------------------------------------------------------

50-8 50 889.2 870.0 19.2 28.0 Air 33.0 0.580

891.0 872.0 18.8 98.0 Ist Run 33.0 0.570

883.7 866.0 17.7 131.0 32.9 0.535

50-8 50 892.6 871.0 21.6 7.0 Air 33.0 0.655

889.0 869.8 19.2 98.0 2nd Run 32.0 0.580

887.8 869.4 18.4 129.0 33.0 0.560

886.4 869.4 18.0 232.0 33.0 0.545

754.0 733.2 20.8 22.0 Vacuum one 28.1 0.740
month later

739.4 723.0 16.4 36.0 27.8 0.590

744.5 736.5 10.0 47.0 28.1 0.450

739.5 730.9 9.6 80.0 28.1 0.340

750.0 742.6 7.5 113.0 28.4 0.265

50-8 50 712.1 690.5 21.6 17.3 Vacuum 26.8 0.810

745.9 733.2 12.7 82.0 28.1 0.450

755.2 742.6 12.6 120.0 28.4 0.445

653.0 634.0 19.0 20.0 25.2 0.744

675.2 663.3 11.9 76.0 26.3 0.465

669.2 680.4 11.2 100.0 26.6 0.420

----------------------------------------------------------------------------------------------

50-5 125 854.0 833.0 21.0 42.0 Air 31.3 0.670

847.8 830.6 17.2 112.0 31.2 0.560

846.1 828.8 17.3 136.0 31.1 0.560

845.3 828.7 16.6 230.0 31.1 0.535

709.3 690.1 19.2 19.0 Vacuum 26.8 0.72
717.0 701.5 15.5 75.0 1st Run 27.0 0.575

707.7 686.5 21.2 18.0 2nd Run 26.7 0.795

714.4 699.3 16.1 76.0 27.0 0.595

708.8 692.8 16.0 98.0 26.9 0.592
693.4 674.1 19.3 20.0 3rd Run 26.5 0.730

688.6 676.6 12.0 75.0 26.5 0.450

649.9 677.5 27.6 20.0 26.5 1.040

696.5 677.5 19.0 75.0 4th Run 26.5 0.715

700.9 683.9 17.0 111.0 26.7 0.640

696.6 683.6 13.0 140.0 26.7 0.405

*NOTE: Part # 1-7 was used as a reference Jo block. The heater power was 1.25 watts. The waviness of every Jo

block is less than 4umicroinches.
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brium is reached. This may take tens of hours. Therefore a time interval

based on the most significant thermal time constant was estimated in the

previous section. However, the measurements are made intermittently with

various test conditions, thus the resistance of each thermistor varied

from 860 to 600 ohms indicating a different thermal state of the thermal

circuit. The test results therefore should be compared so that the test

conditions and the thermal state of each element of thermal circuit

are identical. This is accomplished by taking test data and comparing

them at the same thermistor resistance. This is essentially the same as

having the same thermistor resistance for the same load and power but

different surface roughness.

The test results, when compared with the required test condition as

discussed above, demonstrate that the thermal resistance technique can be

employed to detect surface roughness of the order of a few microinches

(Table 4-11).

TABLE 4-11 AT FOR DIFFERENT SURFACE ROUGHNESS AT
APPROXIMATELY THE SAME LOAD AND THERMISTOR
RESISTANCES OBTAINED FROM TABLE 4-10

Approx. Top Approx. Surface Roughness
Thermistor Load Range Peak-Peak

Part No. Resistance In Vacuum of AT Microinches

Solid SliceSolid Slice 0.36 to 0.10 -
No Interface

1-9 740 20 0.166 0.75
0.122

10-4 690 100 0.153 10
850 110 0.43

20 0.75 to 0.81 50
50-8 750 0 0.4550100 0.45

20 0.73 to 1.04
100 0.590
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4.13 MODIFICATION OF THE THERMAL CONDUCTANCE EXPERIMENT USING THE
TRANSIENT THERMAL RESISTANCE (TTR) MEASUREMENT

As stated earlier, the thermal circuit consisting of thermal resis-

tance and thermal capacitances has many thermal time constants. Therefore,

the measurement of aparticular thermal resistance in a thermal circuit

(Figure 4-7) for different test conditions requires a control of the time

which determines the state of the thermal circuit elements. In a steady
state thermal resistance (SSTR) measurement, it was assumed that the

error in the thermal resistance measurement after the time interval of

the order of several significant thermal time constants is insignificant.

The time intervals during the cooling cycle were not measured. The TTR

measurement does not depend on the above assumptions, since the TTR

measurement method requires only that the thermal state of each element

of the thermal circuit be the same before the start of the test.

The important advantage of the TTR over SSTR method is that the

former is a much faster method and gives more information than the

latter. The disadvantage of TTR is that the method is slightly more

complex and requires additional instrumentation.

The preliminary transient AT measurement was performed under the

following conditions:

o The test setup was in an enclosed volume containing air (no vacuum)

o The load was varied from 1 pound to 40 pounds. This was accom-
plished by introducing a helical spring in the test setup.

o Different thermistors were cemented on each test Jo block em-
ploying silicone rubber (Dow Corning 731 RTV, Figure 4-8).

o Each measurement was taken at different loads and at the same
starting temperature. The reason for having the same starting
temperature of the setupis to minimize the effect of the non-
linearity of the thermistor resistance-temperature curve. This
was accomplished by cooling the test samples with a blast of
liquified freon and a blower.
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LOAD CELL

HEATER

TOP TEST SAMPLE
WITH CEMENTED
THERMISTER

BOTTOM TEST
SAMPLE WITH
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THERMISTER

HELICAL SPRING

F F

Figure 4-8 Test Setup Schematic for Transient
AT Measurement
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The test setup and the electrical schematic are shown in Figure

4-9. The temperature sensor bridge output plotted on an X-Y plotter

is a direct function of AT. Note that there is no additional unnecessary

mass as in the case of the steady state AT measurements due to thermal

isolation of the load cell and vise from the test specimens. It was

expected that the bridge output would increase 
as the roughness and

waviness of the test specimens increases.

10K 10K VOLTAGE 1 LB

40 LBS

10VO LTS 
,Ir0-

TIME

RT = 1K RT 
= 1 K X-Y RECORDER

Fig. 4-9 Electrical Schematic for Transient AT Measurement

The transient output voltage of the thermistor bridge obtained 
on

an X-Y plotter are shown in Figure 4-10. The steady state output showed

some instability most likely due to the natural convective air 
currents.

The value of each thermistor resistance at 240 and 300 centigrade tem-

peratures are shown in Table 4-12. The slope (dR/dT) and correction

factor with reference to the thermistor cemented on the Jo block 
#1-7

are also shown in the same table. The correction factor A(dR/dT) is

employed to account for the difference in (dR/dT) 
of different ther-

mistors.
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Sample Computation for the Test Specimens Pair 1-7 and 10-4

The observed output voltage of the bridge e0 is:

ARV
e = RV volts = AR millivolts

where: AR = the net difference in the thermistor resistances
due to the AT across the interface

and V = bridge bias voltage = 10 volts

The corrected output voltage eo  is:

e = e0 + A (dR/dT) AT

The AT during the test is obtained from the observed output voltage eo

as follows:
eo

AT =
(dR/dT)

The slope dR/dT of the reference Jo block thermistor (1-7) is 30.6

ohms per oC. The thermistor bridge voltage eo at 4.0 lbs load is

24.5 millivolts.

AT = 24.5 = 0.8000 C
30.6

ec = 24.5 - 0.80

= 23.7 millivolts
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TABLE 4-12 CORRECTION FACTORS FOR THERMISTORS WITH
RESPECT TO-THE ONE CEMENTED TO THE
REFERENCE BLOCK #1-7

Thermistor Thermistor AR = dR/dT = a(dR/dT) With
Part Resistance Resistance (R 4-R30) (R24-R30 ) Respect to
No. at 240 C,ohms at 300C, ohms ohms 6 #1-7

1-7 1009.9 825.4 184.0 30.75 0

1-9 972.1 793.6 178.5 29.75 -1.0

10-4 1050.8 861.3 189.5 31.58 +0.83

50-8 982.6 804.6 178.0 29.67 -1.08

50-5 932.1 763.0 169.1 28.18 -2.57

Note that for positive (dR/dT), the correction term is subtracted from
the observed bridge output.

For the test specimens, the output voltage at the end of a 120

second period for a given range of load and the voltage corrections

are given in the Table 4-13.

TABLE 4-13 CORRECTED THERMISTOR BRIDGE OUTPUTS FOR
DIFFERENT TEST SPECIMENS

B
A(dR/dT) Corrected

Observed Bridge A Correction -AXB Bridge
Test Output Voltage AT Voltage -A(dR/dT)AT Output
Block No. m Volts 0C m Volts m Volts m Volts

1-9 Load High 11.75 0.345 -1.0 0.395 12.145

Low 13.75 0.462 -1.0 0.462 14.21
10-4 High 22.25 0.705 +0.83 -0.585 21.66

Low 24.5 0.776 +0.83 -0.644 23.86
50-8 High 20.1 0.677 -1.08 0.731 20.961

Low 25.0 0.843 -1.08 0.910 25.91
50-5 High 20.0 0.71 -2.57 +1.82 21.82

Low 30.0 1.06 -2.57 2.72 32.72
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Note that the output at load extremes essentially increases with the

surface degradation with one exception. The output of the specimen #10-4

at high load is higher than that of specimen #50-8 at the same load.

The specific cause of the above anomally was difficult to determine;

however, the transient thermal resistance measurement needed the following

improvements.

o The TTR test in vacuum will improve the sensitivity of measurement

and avoid any instability due to air currents caused by the

convective heat transfer.

o The thermistors, though very sensitive detectors of temperature,

are not linear devices. As a result the bridge output is also a

function of the ambient temperature of the.test setup. The

dependence of ambient temperature can be minimized by employing

linear devices, such as platinum or nickel-iron resistance

thermometers.

o The data would be more reliable if the same pair of temperature

detectors were used for all different pairs of specimens.

The improvements mentioned above were incorporated by the following

steps:

o A pair of nickel-iron resistance thermometers were employed for

all specimens. Each thermometer was cemented on the test specimen

with Eastman 910 cement and removed after the test was completed.

o The test setup was installed in a vacuum chamber.

To prove the thermal resistance increased with only roughness and

was not due to the waviness, the test specimens #1-9 and 1-1, without any

surface preparation, were tested. The surface of the test specimen #1-9

was then roughened by liquid bead blasting for 3 to 4 seconds. The sur-

face roughness increased from 0.75 microinches p-p to 5.0 microinches p-p.

The waviness was unchanged (Figure 4-2a - 4-2Z, Appendix 4-a)
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The surface of test specimen #1-1 was roughened by gently rubbing the

surface with steelwool a few times longitudinally. The pattern of roughness

was obviously different for both cases, and, the test indicated that ther-

mal resistance changed substantially with change in roughness only

(Table 4-14).

Conclusions

The following observations of the TTR tests are made:

1. Transient thermometer bridge voltage output increased with

increased roughness and waviness simultaneously (item 1 to 3

of Table 4-14).

2. The measurement repeatability without removing the specimen

#10-4 from the test setup was 2 percent (Figure 4-2b, Appendix 4-a).

3. The measurement repeatability at different times, for test

specimen #1-9 (specimen #1-9 was removed twice from the test

setup) was 7.7 percent and 20.0 percent (items 4 thru 7 of

Table 4-14).

4. Transient thermometer bridge voltage output increased with

increased roughness while maintaining the same waviness

(items 4 to 11 of Table 4-14).

The measurement sensitivity of roughness for test specimen 1-9 is:

_ 1.05-0.60
6.75-0.75

= 75 microvolt per microinch
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THERMAL CONDUCTANCE VS. ROUGHNESS AS MEASURED USING THE TRANSIENT THERMAL RESISTANCE TECHNIQUE

USING NICKEL-IRON THERMOMETERS

TABLE 4-14

Nickel-iron Avg.
Test Specimen Thermometer Thermal Thermal

ID # Roughness Waviness Bridge Output Conductance Conductance
Ref. Specimen p-p p-p m Volts at h,BTU hBTU Date Applicable

Item #1-7 Microinches Microinches 45 lbs load hr_-F-Ftz  hr-oF-Ft4 Tested Figure

1 1-9 0.75 5 0.51 1569 10/4/72 4-2c

2 10-4 10.0 25 0.54 1482 1 10/4/72 4-2a

3 50-8 50.0 80 1.95 410 1 10/6/72 4-2d

4 1-9 0.75 5 0.65 1230' 10/11/72 4-2e

5 1-9 0.75 5 0.60 1333' 10/11/72 4-2f

6 1-9A* 5.0 5 1.05 762- 10/13/72 4-2g
> 851

7 1-9A* 5.0 5 0.85 941' 10/19/72 4-2h

8 1-1 0.75 5 0.675 1185 10/16/72 4-2i

9 1-1 0.75 5 0.675 1185 10/19/72 4-2k

10 1-1A** 5.0 5 1.45 552', 10/20/72 4-2m

11 1-1A** 5.0 5 1.90 421- 486 10/21/72 4-2n

*The test specimen surface was liquid bead blasted before the TTR test.

**The test specimen surface was roughened with a steel wool before the TTR test.



Test Data Analysis

The value of thermal conductance is determined from experimental data

and then compared with that obtained from the analysis.

The thermal resistance and conductance are given by the following

equations: (Sect. on 4.3)

S=  1. (6) assuming that the waviness has insigni-
2KmNC ficant effect

2KmCN
h= 1.1

N = Pa/ 330 ,00 (C2)

Test specimen area A = 0.5156 in2

= 3.58 x 10 ft2

The radius of contact junction c is obtained from equation 7, Section 4-3.

Equation 7 can be simplified to the following:

c = 2.5 (a) I/3

Where a is the rms roughness

The value of thermal conductivity Km is obtained from the test data
in Section 4-9, Table 4-9.

The thermal conductance of a 0.1 inch thick test specimen slice is
estimated to be 8977 BTU

hr-OF-Ft 2

0
00 Km = h x thickness of the slice in feet

= 8977 x 1

= 74.8 BTU
hr-°F-ft
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The thermal conductance of the contact junction is:

2 x 74.8 cN
1.1

= 136 cN

The values of h for the different junctions are computed in Table 4-15.

Thermal conductance is obtained from measured test data presented

in Table 4-13 as follows:

Note that the computations are made for the load of 45 lbs.

10 VOLTS

e. = eI - e2

10K <10K

ARe = R00 10, volts

100K eo

= AR millivolts
IK

dT dT
AT = - AR =dT e =dR UR o dR

/ dT
THERMISTORS

thermal conductance h = where

W is the heater power (1.25 watts) expressed in BTU/hr

A is the apparent area of the junction.

The values of h for different test specimens based on the test

data from Table 4-13 are computed in Table 4-16.

4-47



ANALYTICAL DETERMINATION OF THERMAL CONDUCTANCE, h, FOR THE SPECIMEN JUNCTIONS

TABLE 4-15

Test Surface Roughness A, Ft2  N for 2km cN
Specimens Microinches, RMS c, Micron c Microinches c, feet n 45 bs h 1.1

1-9 0.30 1,8 72 6x10-6  113.1x10- 1 2  2338504 1908

1-9 1.79 3.03 121.2 1O.1x10 -6  320x10-12  826515 1135

1-1 0.30 1.8 72 6x10 -6  113.1x10- 12  2338504 1908

1-1 1.79 3.03 121.2 1O.1x10 -6  320x10-12  826515 1135

10-4 3.5 3.8 152 12.7x10-6  507x10-12  521666 9010

50-8 28 7.6 304 25.3x10 -6  2011x10-12  131519 452.8

50-5 28 7.6 304 25.3x10-6 2011x10-12 131519 452.8



COMPUTATION OF THERMAL CONDUCTANCE, h, FOR THE TEST SPECIMEN JUNCTIONS

BASED ON EXPERIMENTAL RESULTS USING THERMISTORS

TABLE 4-16

hermistor e '
Part # M Volts 0 dR oAT BT

Item Ref. to 1-7 at 45 lbs dT' C (0C) br-oF-Ft

1 1-9 12.145 29.75 0.408 1623

2 10-4 21.66 31.58 0.686 965

3 50-8 21.0 29.67 0.708 935

4 50-5 21.8 28.18 0.774 855

The thermal conductance is obtained from measured test data presented

in Table 4-14 as follows:

The bridge output voltage e° = (el - e)

00 + AR 100
000 5000 V

AR5K 5 K 500 x 10 volts

-v o o = 2AR Milli volts

where AR is in ohms

and e 0 is in milli volts
10OR 100R o

dTAT = -R AR

NICKEL/IRON THEMOMETERS dT eo
AT = dR 2
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For Nickel-iron resistance thermometers at 250C temperature, the

measured slopes dR/dT are:

dR 113.56 - 99.66
dTi ) 23.22

= 0.59863 ohms/ 0C = 0.3326 P/OF

dR
(c = (114.16 - 100.08) ohms

2 23.220c

= 0.6064 ohms
- 0.3369 n/o

oC

Average (dR) = 0.335 ohms/oF

AT o 0 o
2 dR/dT 2 x 0.335 F

= 1.493 e o

Thermal conductance h = 1.25 watts 3 2
1.49 e 0 F 3.58 X 10-  Ft

800 BTU

eo  hr-OF-Ft 2

The values of thermal conductance as calculated from equation (6),

as determined from the test data presented in Table 4-14, and as

determined from the test data presented in Table 4-16, are presented

in Table 4-17.

4-50



COMPARISON OF CONDUCTANCES AT 45 LBS. LOAD

TABLE 4-17

Thermal Conductance h is BTU/hr-OF-Ft 2  Percent

Test Specimen Test Specimen hml Obtained hm2 Obtained Deviation
Test Specimen p-P p-p he Obtained From Measured From Measured hc - h Om2ID # Roughness Waviness From Equation Data of Table Data of Table h m2

Item Ref. Spec. 1-7 Microinches Microinches 4-6 4-16 4-14 hm2
(Thermistor data) (Nickel-iron

Thermometer)

1 1-9 0.75 5.0 1908 1623 1377* 27.8
2 1-9A 5.0 5.0 1135 - 851* 33.4
3 1-1 0.75 5.0 1908 - 1185 61.0
4 1-1A 5.0 5.0 1135 - 486* 135.0
5 10-4 10.0 25.0 901 963 1482 39.2
6 50-8 50.0 80.0 452.8 935 410 10.5
7 50-5 25.0 80.0 452.8 855 - -

*From Table 4-14, average h



Review of Table 4-17 indicates the following:

1. Thermal conductance obtained from analysis is in good agreement

with that obtained from test data in spite of the fact that the

waviness effect and the variations in the roughness scratch

pattern were not accounted in the analysis. It should also be

noted that the repeatability of the test data at different times

taken with the same pair of test specimens and the same test

conditions, but dismantling and assembling the test setup was

of the order of 8 to 20 percent. The unpredicted results ob-

tained with specimen 1-1 appear to be due to the large waviness

effect and the variations in scratch pattern. The difference in

the profile recordings of specimens 1-1, 1-1A, 1-9 and 1-9A

should be noted (Figure 4-3 , Appendix 4-a). If the test data

of specimens 1-1 (items 3 and 4) are discarded, the range of

deviation of the computed conductance h from the measured con-

ductance hm2 is from 10 to 39 percent.

2. Thermal conductance obtained from analysis is in general higher

than that obtained from the test data. This is expected be-

cause the computation does not account for the effect of waviness.

The deviation from the above statement is observed in case of

items 5, 6 and 7 of Table.4-17. In case of test specimen 10-4

the computed hc is lower than hm obtained from the test data.

This appears to be due to the matching of waviness; that is,

test specimens 1-7 and 10-4 have the least reduction of real

contact area due to the waviness effect. To account for the

deviation of items 6 and 7 of Table 4-17, it should be noted

that the test data of Table 4-13 had greater accuracy limitations

as discussed earlier.

3. The computed hc and measured hm essentially confirm the pre-

diction that thermal conductance decreases with increasing rough-

ness.
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4. The ratio of conductance of test specimen 1-9 before and after

bead blasting is obtained as follows:

X= - 851 = 0.618
1-9 Measured 1377

Y - 1135 = 0.595

Y =1-9) Computed - 1908

Percent deviation XX 100 = 3.7%

The ratios X and Y are remarkably close. Note that X and Y

are essentially independent of waviness effect; however they

are not independent of the scratch pattern.
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4.14 TTR TECHNIQUE IMPROVEMENTS

The TTR and SSTR techniques employed a DC Wheatstone bridge to

measure the output voltage of the bridge as a function of the temperature

difference AT across the junction of two test specimens. The thermistor

bridge can be employed to detect changes in the temperature as small as

0.0010C. It is questionable whether it is required to improve the sensi-

tivity and stability of the set-up employed in the SSTR and TTR tests.

However, the DC Wheatstone bridge techniques has the following drawbacks:

1. Errors are introduced by fluctuating thermal emfs in the bridge

and connecting leads.

2. A DC amplifier introduces its own baseline drift.

The Wheatstone bridge with an AC bias of frequency 15 Hz minimizes

the errors described for the DC Wheatstone bridge. This is achieved em-

ploying a lock-in amplifier (Figure 4-13). Since the reactive components

of the bridge at 15 Hz are negligible, no phase-shifting arrangement is

required to null the bridge. It is claimed that the random fluctuation

in an AC Wheatstone bridge technique employing a lock-in amplifier can be

reduced by a factor of 50.

OSCILLATOR

REFERENCE F'
ESIGNAL PHASE SENSITIVE LOW FREQUENCY

DETECTOR AMPLIFIER

FILTER RECORDER

LOCK-IN AMPLIFIER
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The TTR technique can be implemented in a valve, where the surface

degradation of the poppet-valve seat is to be measured, as shown in the

Figure 4-14. It should be noted that if the technique is employed in a

valve containing propellant or oxidizer, the sensitivity of the technique

is reduced due to the presen'ce of other thermal paths such as the one

through the liquid in void volume. However, the test results indicate

that the test setup is adequately sensitive to offset the reduced sensi-

tivity. Furthermore, the sensitivity can be improved by any or all of

the following steps:

o Increase the bridge bias voltage

o Increase the heater power

o Employ AC Wheatstone bridge

HEATER

TEMPERATURE
SENSORS

Figure 4-14
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Figure 4-1
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Figure 4-2k Thermocouple Output Voltage vs Time vs Load for Jo
Blocks 1-7 and 1-1A (Steel Wool Roughened (10-20-72)
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Roughened) (10-21-72)

4-72



A P P E N D I X 4-a

Figure 4-3

4-73



Oe roqr~ CVAAAOSV30,,,.,.,,,,,,,.,A.n Arbo-, MidUAN
*7170. AVE. SCALE - "_m_" AM- M A SC L' ,, *010. AVE. SCALE -_

. I ,' *' i _ /i ; 7- , - ... .: ...... - ...---- ... - --- --- --- ---

/ .i /- - - -- 7- .5. .

-c- -- ---.4--- --- - ---';--:-- ... ',---N---- ,-----

-y-~~i __ i ' -- + : - . ..
----------------- --- -

.. --? -- --- s; ....... -- .. '7... -- ; ---iT - '.:- . '. ' . . , ", ' _2_

__Vr__ _____ _ / ''

Figure 4-3a Profile of Jo Block Part #1-9A, Waviness, Length Run

I I

S\Yt i7 \

-. ' L.'J'-._-- _- -. _-- _ _ :_7- . .. . . . .. _ ,. .
, , I _ _ / . .

S1LUS R ' PR- rO. S C. ^ ) R07A 0  . rU--E- UToFF -1 .00 .t .YU R -3 AR

- Figure 4-3a Profile of Jo Block Part #1-9A, Waviness, Length Run

007 .. V. . SCA_ 02-__0 AV- SCALE ___... . .__ - _. _ __, . . 05 .V .
ll ' = / I--- - -° - --'- Y ICi _ .. . ... LYE SCL ,u" ";

Si~~ L±<AA ,00

, ....I! i
L ~~ .oo , .000 OAT /0-(-7- '.. JRD---

cVF .100 SIyLuS R.0 51352 PAR t hIE R0702y @_ _ PA PSfOPILE: IfhoUANESS cUTOFE: 3 .000 STYLUS R2 LI 0/52 P7

Figure 4-3b Profile of Jo Block Part #1-,9A, Roughness, Length Run



RITH. AVE.SCALE I . z . .

- 7-7-- --
20-0

II

..... A S A..L. .. . . . 1 _ . 0. AVE. SCALE -____ _

-m "-- • *.

-............................... -.............................. -------......._.

01v

Figure 4-3d Profile of Jo Block Part #1-AA, Waviness, Length Run

-t : .. -- ii -~', ./ . - 7 - .. . . .. .. ..

- ~~~~~~~~ --- -- ....... F I . .. -- --;-- - .... . - . .. .. .

i----. ;---- v- ...-- - - ... w ---- ] ' . . --..--. -. : .... - .. .-= -- .... . .- ' ! ' _ _ ', \ ' , ' , " ' , '. .

Figure_.~ 4-dPoieo oBokPr IIWvnsLnt u



ARITH. AVE. SCALE di A..IC V. _ ARITH. AVE. SCALE ___ ____

-Ir . ------- 

.. . . / _ _ _ _

T'7 ITA

-- E3 E..,. i I

?R X -.. HNESS C'k- ---- R '--

".- ! - _ _ -- ! , . i -- ---- -.- ---. ----, .. .. . 7 L _~

.18 * A•(* 0 _ ... .... .... NC .. __

0- * 0 1 ! C S C i*CHACS*

Figure 43e Profile of Jo Block Part #1A, Roughness, Length Ru-

--

-i- '- --i ---........... + - i i; _ _ rI _r... +- -- ! .,^ r  - -+Z - -+ - Z . .. ....+ L... . _ _ __. .. . . ..m_ , i"i-I " ...... _ ,.,--r -" -I U " T ' ", ...'r ... ;" - :-, -t -" -'- t- - --I .. .. .....
-- - __ - -, ... --- ---- -, , _, _ ,__ , ....., ; .,_ _ _ -, < -----, __ , _ __-', _c_ _+ _ U__, , -

_._ _i . 7,_ ....~ I *.. .:__ • t t t _ L _ t 1 ' . ! x '

R~i;?* rP~oll. Ri3GHISS N? r LnrrP:IOFIIE: Lj I1I)UHNSL

Figure 4-3e Profile of ao Block Part #1-1A, Roughness, Length Run

I

cn



5.0 COHERENT OPTICAL SIGNATURES OF MATERIAL SURFACES

5.1 INTRODUCTION

The studies described below were initiated to determine the feasi-

bility of making measurements of surface roughness by coherent optical

techniques. The results of these studies illustrate the unique corre-

spondence between the statistical properties of a coherent wavefront

reflected from that surface. It was learned that this unique relation-

ship can be used to produce coherent wavefront signatures of surfaces

which can yield quantitative identification of the surface's random

parameters. These studies can be extended to the measurement of surface

roughness and should prove valuable to the study of corrosion, fatigue,

and wear in mechanical components since these are influenced by the

roughness of surfaces. The essential features of these techniques are

(1) the ability to respond to surfaces with roughnesses from .5 to 50

microinches; (2) the noncontacting, noncontaminating, and hence non-

destructive nature of the techniques; and (3) the ability to determine

a wide variety of statistical parameters for improved surface character-

ization. In addition, these techniques can be used to locate defects

on a surface and to monitor performance degradation of mechanical

components caused by surface-related damage.

Conventional techniques for the characterization of surfaces con-

sist almost solely of profilometry and visual inspection. In profil-

ometry, a mechanical stylus connected to an LVDT or other motion

sensing dev.ice is moved acrossa surface while movement of the stylus

caused by changes in surface elevation are monitored electronically.

This technique and visual inspection have generally themselves been

the limiting factors in many studies of surface roughness phenomena.

For example, the movement of the profilometer stylus as it is drawn

across the surface often causes damage and hence is a destructive

measurement. Other problems relating to the sensitivity to vibration,

delicate design, and general complexity of profilometers limit the use

of such sophisticated instruments.
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5.2 COHERENT OPTICAL SIGNATURES OF SURFACES

Coherent optical measurement techniques, stimulated by the development

of holography, appear to offer new and advanced forms of surface characteri-

zation. Since it only the light beam which actually strikes the surface,

optical measurement techniques are noncontacting, noncontaminating, and

hence nondestructive. By reflecting light from a surface (as shown in

Figure 5-1), it is possible to transfer information about that surface to

the reflected optical wavefront. This information can then be stored or

processed by holographically recording the wavefront or by manipulating it

optically.

The basic equipment used for these studies is illustrated in Figure

5-i. It can be seen in this photograph that the light propagating from a
laser is reflected by the surface to produce the wavefront signature. A

projection screen was used to allow visualization of the diffracted coherent

wavefront. It was the variation in the illumination across this projection

screen that was actually measured to produce the signature of the surface.

A variety of these signatures is illustrated in Figure 5-2 where the
wavefronts reflected from 4, 8 and 16 microinch surfaces are shown projected
on the screen. It is noted that the optical signatures obtained from these
three surfaces are highly distinctive, although the actual roughness of the
surface is less than the wave length of light (approximately 25 microinches).

In particular, it can be seen that the magnitude of the central peak of the
intensity distribution varied inversely with the surface roughness. As the
material surface became smoother, the central peak tended to increase. In
addition, it can be seen that the intensity profile tended to spread out
across the projection screen as the surface roughness increased. It is the
shape of this intensity profile which is determined by the statistical
parameters of the rough surface and serves to form the coherent wavefront
signature used for surface characterization.

The ability of this technique to detect flaws or irregularities on
surfaces was also investigated. Two optical signatures are illustrated in
Figure 5-3 which demonstrate the detection of scratches.
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Surface Roughness
Incident Wavefront Test Gauge

Diffracted Wavefront
(Signature)

Projection Screen

Surfac

Figure 5-1. Detection of Coherent Wavefront Signatures
of Rough Material Surfaces
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a. 411 inch (RMS)

b. 8p inch (RMS)

Figure 5-2. Coherent Wavefront Signatures of Material
Surfaces with Varying Roughnesses

5-4



c. 16p inch (RMS)

Figure 5-2 (Cont'd). Coherent Wavefront Signatures
of Material Surfaces With Varying Roughnesses

The photograph 5-3a shows the coherent signature obtained from a

material surface free of all defects except for the normal irregularities

resulting from machining processes. Comparison of this photograph with

the photo of Figure 5-3b demonstrates the sensitivity with which surface

flaws could be identified through coherent light signatures. Both the

number and direction of the surface flaws can be determined using this

technique which can be automated for fast and accurate surface inspection.
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Normal Surface

Signature of Machinist Marks

Flawed Surface

Signature of Scratch

Figure 5-3. Coherent Wavefront Signatures of Surface
With and Without Defects
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5.3 APPLICATION OF COHERENT OPTICAL SIGNATURE TECHNIQUE TO THE
LONG TERM PERFORMANCE VALVE SEAT DEVELOPMENT (SEE SECTION 2.0)

Surface quality measurements using coherent light were made during

the testing of the valve design reported in Section 2.0. This design

typifies the design concept of a hard/soft metal to metal seal. In principle,

large yielding stresses are applied between the hard and soft faces of the

seal, causing the hard poppet to coin the microscopic features of its surface

into the soft metallic seat. This produces two identical surfaces which

together provide the sealing interface. A metal seated valve based on this

technique could be used repeatedly with low leakage and low wear. The com-

plete description of this valve seat design is given in Section 2.0.

A critical portion of the program designed to test these principles

centered on determining the change in quality with cycles of the two metallic

surfaces. Since two different metals were used for the hard and soft surfaces

of the test valves it would be expected that the initial surface roughness of
the two interfaces would be different. While the interfacial pressures

should be high enough to cause the hard surface to transfer its "topological"

features to the soft surface, the rate at which the transfer could take place

was not known.

The proper measurement of surface roughness is critical to the

characterization of overall valve performance. Any scratch or flaw in the

surfaces can serve to initiate fatigue or crazing and can, therefore, con-

stitute a potential failure site. While data on the surface roughness of

both surfaces is needed as a function of valve cycling, measurements with

conventional profilometers can produce such defects and severely degrade

the valve performance. What is needed for the measurement of surface

roughness during a performance test is a truely nondestructive technique

which can provide surface roughness data without physically contacting the

surface under test.
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The basic principle behind the technique used on the valve seat is

illustrated in Figure 5-4, where the behavior of light reflected from a

variety of rough surfaces has been illustrated schematically. It can be

seen in this figure that light reflected from a very smooth surface tends

to maintain an angle of reflection approximately equal to the angle of

incidence, to the extent that light reflected from a smooth surface

remains concentrated in this single direction. However, as the surfaces

become rougher, more and more light is directed toward other angles so

that the reflected light pattern is less directional and more diffuse.

This directionality varies with the roughness of the surfaces from which

it is reflected and can be recorded by the scanning photometer shown in

Figure 5-4 and used for comparison with other surfaces.

A typical optical signature has the intensity distribution shown in

Figure 5-5. This intensity pattern is characterized by the parameter, w,
defined as the width of the profile at half the peak intensity of the

signature. (The width, w, is measured to the right of the peak to
eliminate the effects of a slightly unsymmetrical profile.)

An initial calibration of the test fixture was made by inserting
surfaces of known surface roughness into the apparatus, recording and
analyzing their respective optical signatures and plotting the results as
shown in Figure 5-6. Three points of calibration were obtained from a
2, 4, and 8 microinch test surfaces, while the fourth point, corresponding

to the width of the laser beam itself, was produced by placing the
traveling photometer directly in the light beam. Thus, it was possible
to calibrate the response of the setup to surfaces of varying roughnesses
in a manner consistent with the procedures of earlier studies. It was
found from this calibration procedure that the range of surface roughnesses
measurable with this optical setup varied from approximately .25 to 5.0
microinches, and was well within the range of values needed for the program.
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(a) Smooth Surface

x

(b) Slightly Rough Surface

x

OPTICAL SIGNATURE INTENSITY VS. x

(c) Very Rough Surface

Figure 5-4. Variations of Optical Signature Intensity
Distribution for Surfaces of Varying Roughness
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5.3.1 Testing Apparatus

The experimental setup used in these studies for optically measuring

surface roughness is shown in Figures 5-7, 5-8 and 5-9. The test valve was

mechanically cycled in the hydraulic machine described in Section 2.0. This

machine permitted the continuous monitoring of valve motion and interfacial

pressure. A mass spectrometer leak detector was connected to the system

for the measurement of leak rate at various stages of the cycling. The

valve seat components could be removed periodically and placed in the optical

setup shown below for the assessment of sealing surface quality. Thus, it

was possible to determine both the leakage and surface roughness changes

as a function of the number of test cycles.

LASER

PHOTODETECTOR

TRANSLATION PHOTODETECTOR OUTPUT (VERTICAL)
TABLE

TEST SURFACE e0

TRANSLATION TABLE OUTPUT (HORIZONTAL)

HOLDING
FIXTURE

ROTARY TABLE

Figure 5-7. Schematic Representation of
Optical Signature Test Setup
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SCANNING
PHOTOMETER

ROTARY
TABLE

Figure 5-8. Fixture and Test Setup for Optical Signature
Measurement of Valve Seat Surface

REFLECTED
OPTICAL SIGNATURE

SCANNING
PHOTOMETER VALVE SEA

TEST SURFAE

LASER BEAM

Figure 5-9. Closeup of the Optical Signature Diffracted
From the Valve Seat Test Surface
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The three basic components of the optical surface roughness setup
shown in Figure 5-7 are 1) a 15 milliwatt HeNe laser, 2) a rotational
specimen holder, and 3) a translating photometer. The specimen was
mounted on the rotary table shown in Figure 5-8 to permit the placement
of all portions of the test surface under the laser beam. In this manner
it was possible to nondestructively measure the surface roughness at all
points on the valve surface, correlated with position. The two outputs
of the scanning photometer were connected to an x-y chart recorder to permit
the immediate observation and recording of the coherent light signatures.
Typical printout data taken from the x-y recorder is reported in Figures
5-10 through 5-13. From these data and the calibration curve of Figure
5-6, the following table was constructed.

Surface Finish (Soft Seat)
Signature Cycle No. e Microinches RMS

Figure 5-10 0 00 3.0
30 2.7
80 2.0

130 1.3
340 2.5

Figure 5-11 2 00 1.3
115 2.5
209 1.6
303 2.3
355 1.9

Figure 5- 12a 277 00 1.4
65 1.4
82 1.4
182 1.4

Figure 5-12b 201 1.6
292 1.3

Figure 5-12c 303 0.8
320 1.2
330 1.3

Figure 5-13a 72,000 10 1.4
77 1.6

100 1.4

Figure 5-13b 160 1.4
175 1.6
206 3.0
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Surface Finish
Signature Cycle No. e Microinches RMS

Figure 5-13c 72,000 216 2.0
218 1.4
234 2.0

Figure 5-13d 251 1.6
256 2.0
292 1.4

5.4 CONCLUSIONS

It was learned in the above studies that the coherent wavefront

diffracted by a surface is uniquely determined by the properties of that

surface and, therefore, produces an optical signature for the purposes of

rough surface characterization and measurement. These coherent optical

signatures varied in accordance with variations in the statistical para-

meters of the surface and, thus, can be used to identify and classify

material surfaces created by various processes. Since these techniques

provide area measurements rather than line tracings, they can be used to
monitor waviness as well as linear root mean square deviation values

analogous to that obtained with the conventional profilometer.

The coherent signatures can be easily recorded with either photographic

or electronic devices to permit the.quantitative characterization of surface

roughness. By projecting the coherent wavefront signature onto photographic

film or by scanning the signature with photoelectric devices, it is possible

to record the coherent signature for comparison with signatures obtained

from other rough surfaces or from the same surface undergoing modification

through some degradation process. Optical surface roughness measurements

can be made which are noncontacting, nondestructive, and sensitive to small

variations in surface roughness. In view of the highly informative,

experimental versatility, and inherently accurate nature of these techniques,

the application of coherent optical surface rough measurements to current

problems of component reliability appears worthy of further consideration.

Such a study could be easily made by coupling these new coherent optical

techniques with conventional wear and aging test equipment.
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6.0 FLOW TRANSIENT SIGNATURE STUDIES

6.1 INTRODUCTION

This section describes the measurement of fluid flow transients. Tests

were made using an Optron electro-optic strain monitor. This system has

high accuracy, a high data acquisition rate (500 measurement during a 2

millisecond transient) and a high test rate. Applications of this signature

technique include measurement of valve flow transients and valve leakage

measurements.

Figure 6-1 is a conceptual presentation of the system. An Optron electro-

optic strain monitor is used to measure the position of a light/dark fluid

interface in a precision bore tube attached to the valve. The contrasting

interface can be formed by the injection of a slug (piston) of opaque dyed

fluid or mercury or a solid slug into the precision bore tube before the

start of the test. The bulk of the test fluid, whether propellant or a

referee liquid, is transparent, or vice versa. The Optron produces an output

voltage proportional to the displacement of the interface. A scope photo

of this voltage versus time characterizes the transient flow properties of

the valve since the displacement voltage is directly proportional to the

flow volume.

The source accumulator is filled with a propellant or referee fluid which

is allowed to fill the precision bore tube, and the valve. A contrasting inter-

face slug (piston) of inert liquid or solid is injected into the precision

bore tube, and recognized by the Optron. The needle valve bypass can be used

to position the interface. The test valve is opened and the scope simulta-

neously triggered. The Optron output voltage is proportional to the instan-

taneous interface position, hence the output voltage versus time is directly

proportional to the flow versus time.

6.2 DESCRIPTION OF APPARATUS

6.2.1 Valve Test Station

Figure 6-2a is a photograph of the valve flow transient signature test

station. This unit is shown in schematic form in Figure 6-2b. The flow
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Figure 6-1. Valve Flow Transient Signature Test Schematic
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a. Photograph of Test Station
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b. Schematic of Valve Test Station

Figure 6-2. Flow Transient Signature Test Station
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tube I.D. and piston O.D. is 2 mm diameter. The supply tank uses a neoprene

bladder accumulator to eliminate pressurant bubbles in the working fluid.

A test run starts with the piston positioned near the left end of the flow

tube. Valves 2 and 3 are open; valves 4, 5 and 6 are closed. The needle

valve is almost all the way open; as it is turned, its stem displaces a

varying amount of fluid so that it acts as a vernier control for the initial

piston position. When the test valve is actuated, the piston is moved by

the pressurized fluid, and this displacement is monitored by an electro-optical

tracking system and recorded with a scope camera.

After the run, valve 5 is opened and valve 3 is closed. Cracking valve 4

moves the piston back to its original position. Fine adjustments of piston

position are made with the needle valve while monitoring a DC voltmeter

attached to the output of the electro-optical tracker. If the piston is

moved considerably too far to the left, it can be repositioned by opening

valve 3, closing valve 5, and cracking valve 6. If there are any gas

bubbles in the system, they will be indicated by anomalous piston motion

during the positioning process.

Figure 6-3 shows the relation of the electro optic tracker head to the

valve test station. Both units rest on a vibration isolated granite table.

The DC voltmeter used in initial piston positioning can be seen in the right

hand corner of this figure.

Figure 6-1 shows the valve test station from a position near the tracker

head. The piston is magnified from a 25 mm diameter x 25 mm long image.

The magnification system is composed of three cylindrical lenses, one of

which being the thick-walled glass flow tube itself. This system provides

magnification only in the direction transverse to the motion of the piston,
and prevents the tracker from losing the thin piston without introducing

errors in measurements of the piston's position.
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Figure 6-3. Relation of the Electro-Optic Tracker
Head to the Valve Test Station

4 16

Figure 6-4. Electronic Instrumentation for
Transient Flow Signature Test
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6.2.2 Electronic Instrumentation

The rather elaborate electronic instrumentation used in this test is shown

in Figure 6-4 and as a block diagram in Figure 6-5. The equipment in Figure

6-4 is identified as follows:

Left hand cart - Tektronix 535A scope with 53/54B plug in, used for

optimizing the adjustments of the electro-optic tracker; next cart, top to

bottom - two HP 467A power amplifiers for driving the valve, HP 8005A dual

pulse generator for supplying both the low level valve driving pulse and

the scope trigger pulse, Optron 810 electro-optic tracker (with 820 scanner,

830 multiplexer,-850 servo, and 890 test panel plug-ins), and Harrison

Laboratories 6267A DC power supply for the test stand illuminator; next

cart - Hughes 105A storage scope and NJE Corp. S-325 high voltage DC supply

for the image dissector tube in the tracker head; left hand cart - Tektronics

555 dual beam scope (with camera) with 53/54C dual trace plug-in for recording

valve voltage and current, and either a 53/54D plug-in for recording piston

displacement or a type 0 operational amplifier plug-in used as a differentiator

for recording flow rate; the Simpson 270 multimeter on the table was used to

indicate piston position when setting up a test run.

The dual pulse generator was used to produce two 15 msec long pulses. One
pulse occurred 2.5 msec before the other, and this leading pulse was used

to trigger the sweeps of the two scope readouts of the electro-optic tracker.

The delayed pulse was amplified by two power amplifiers connected in

parallel, passed through a current measurement resistor, and applied to the
valve solenoid. Both the valve voltage and current were displayed simul-

taneously on beam No. 2 of the recording scope, with a dual trace preamp.
Beam No. 1 of the recording scope displayed either the piston position

(flow volume) signal from the electro-optic tracker or the differentiated

piston position signal (flow rate). A dual trace storage scope was connected
in parallel with the recording scope to minimize Polaroid film consumption

while adjusting the many system parameters. Another scope was AC coupled
at high gain to the tracker output so that tracker servo system signal to
noise ratio could be optimized and to warn of maladjustments in the optical
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system. The image dissector tube high voltage power supply in the tracker

main frame failed during the preliminary tests and was replaced with an

external regulated HVDC supply. A low voltage regulated DC supply powered

the lamps in the illuminator behind the flow tube.

6.3 RESULTS

All tests in this report were performed on a Moog propellant valve of the

type described in the Summary Report of the Propellant Valve Evaluation

Program (15 June 1971, 71-4781.6-165, TRW Systems). The working fluid was

isopropyl alcohol; the valve actuating pulses were 15 msec long; the flow

tube I.D. was 2 mm. Back pressure was one atmosphere.

6.3.1 Flow Volume Versus Time Signatures

The scale factors of the following scope photos are, top to bottom:

Piston position 18 mm/division

Valve current 500 mA/division

Valve voltage 10 V/division

Sweep speed 5 msec/division

Figure 6-6 is a scope photo of the system output with the valve

disconnect from the driver. The driver output was set to produce a 24V

pulse 15 msec long. The current trace remains at zero.

mmmmmmmmmriver Out ut Voltag

o Valve Current Trace

0

Time, 5 msec/cm

Figure 6-6. Driver Output with Valve Disconnected
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Figure 6-7a shows a run made at 72 psig. Valve voltage was set at 26V;

however, the voltage trace shows that a drop of a few volts occurred after

about 8 msec due to driver amplifier limitations when using a single HP

417A. (This effect does not occur in the flow rate (differentiated) series

where two HP 417A's were used in parallel.)

By comparing the piston position trace with the valve current trace, it

can be seen that valve opening coincides with the first current inflection

point after turn-on, and valve closure coincides with the inflection point

after turn-off. The valve opening delay is about 4 msec and the closing

delay is about 5 msec. The damped oscillations in the position trace after

valve closure are due to the elasticity of the plumbing and fluid.

Figures 6-7b, c and d were made under the same conditions as shown in Figure

6-7a to demonstrate reproducibility. The only visible difference is a slight

change in the amount of damping after valve closure.

Figure 6-7e was made at 72 psig and 24V. The voltage reduction results

in a slight opening delay.

Figure 6-7f was made at 72 psig and 22V. The opening delay has become
quite substantial (about one msec compared to Figure 6-7d), and the total
flow volume is noticeably less.

Figure 6-7g was made at 59 psig and 24V. Compared to 6-7e (72 psig and

24V), the flow volume was less. A comparison of the opening and closing
process can best be made using the differentiated position (flow rate)
traces, and will be discussed in the next section.
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a. 26V, 72 Psig b. 26V, 72 Psig

c. 26V, 72 Psig d. 26V, 72 Psig

Figure 6-7. Valve Transient Flow Signature Fluid Position; Voltage & Current Vs. Time



Figures 6-7h through 6-7m were made varying pressure and voltage.

This series of experiments established that the valve current inflections

corresponded to valve opening and closing. Cumulative flow volume (piston

position) is not a very sensitive measure of processes occurring within the

valve. For this reason, the next series of experiments was performed with

the position versus time signal electronically differentiated to yield flow

rate versus time.

e. 24V, 72 Psig

Figure 6-7. Valve Transient Flow Signature Fluid Position;

Voltage & Current Vs. Time (Cont)
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f. 22V, 72 Psig g. 24V, 59 Psig

h. 24V, 46 Psig i. 24V, 36 Psig

Figure 6-7. Valve Transient Flow Signature Fluid Position; Voltage & Current Vs. Time (Cont)



j. 24 V, 32 Psig k. 24V, 21 Psig

1. 24V, 16 Psig m. 24V, 86 Psig

Figure 6-7. Valve Transient Flow Signature Fluid Position; Voltage & Current Vs. Time (Cont)



6.3.2 Flow Rate Versus Time Signatures

When the piston position (flow volume) versus time signal is differen-

tiated with respect to time, a signal representing flow rate versus time is

obtained. It is to be expected that this latter signal would be a far

more sensitive indicator of small changes in valve parameters and function

than would the signal reported in Section 6.2.1.

An operational amplifier was used to differentiate the position versus

time signal. Analog differentiation is always a compromise between signal to
noise ratio and sensitivity to time rates of change in the variable. After

considerable experimentation, the differentiator time constant was set at

27 msec, and high frequency noise was controlled by the use of a 500 Hz

6 db per octave low pass filter in the output of the electro-optic tracker.

The scale factors for valve voltage, current and time are the same as in

the previous series.

Both Figures 6-8a and 6-8b were made at 24V and 81 psig. In Figure 6-8a,

the needle valve was wide open (as is the case unless otherwise stated),

whereas in Figure 6-8b, it was closed. It is apparent that the condition

of the needle valve did not affect the Moog valve signature; however, the

damped oscillations after valve closure had a higher frequency and lower

damping in the needle valve closed state, as would be expected.

The sequence of tests shown in Figures 6-8a and 6-8c through 6-8i

demonstrate the effects of varying accumulator pressure on the Moog valve flow rate

signature. Although there may be very minor differences in valve opening

and closing times, the major changes occur between these two markers.

At 81 psig (Figure 6-8a), there is a flow rate reduction for about 2 msec

after power off, then there is a 3 msec plateau of nearly constant flow

rate before the valve closes completely and the flow rate at the piston

falls to zero in another 2 msec.
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0) a. 24V, 81 Psig, Needle Valve Open b. 24V, 81 Psig, Needle Valve Closed
Ln

c. 24V, 71 Psig d. 24V, 61 Psig

Figure 6-8. Valve Transient Flow Rate; Voltage & Current Vs. Time



e. 24V, 51 Psig f. 24V, 41 Psig

g. 24V, 31 Psig h. 24V, 21 Psig

Figure 6-8. Valve Transient Flow Rate; Voltage & Current Vs. Time (Cont)



at 71 psig (Figure 6-8c), the flow rate reduction after power off occurs

slower, taking about 3 msec, followed by a 2 msec plateau before cut-off.

At 61 psig (Figure 6-8d), the power-off plateau has nearly vanished,

and at 51 psig (Figure 6-8e), it is gone entirely.

Below 51 psig, the flow rate maximum occurs later and later after power off.

It is possible that the Belleville spring loaded poppet is acting like a

pump piston and briefly assisting the flow between power off and final

closure.

A careful study of the valve mechanism would be necessary to explain why

the observed flow changes occur with variations in input pressure.

Figures 6-8j through 6-8n show a series of runs made at 24V and 66 psig to
show the degree of reproducibility obtained in this technique. The signal-

to-noise ratio in these preliminary experiments is such that stochastic

variations in valve action under constant parameters cannot be clearly

elucidated. Improved techniques, such as FM recording of the piston

displacement signal followed by digital data processing could be expected

to improve the S/N by at least an order of magnitude so that the currently

half-buried irregularities could be characterized.

Figures 6-8o and 6-8p show two runs at 26V and 66 psig. Figures 6-8q and
6-8r show two runs at 22V and 66 psig. A comparison of these runs with

the previous five at 24V and 66 psig shows that the valve opening is

slightly accelerated at the higher voltage and delayed at the lower voltage,

whereas higher voltages seem to slightly retard the closing and lower

voltages slightly hasten it.
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Figure 6-8. Valve Transient Flow Rate; Voltage & Current Vs. Time (Cont)
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m. 24V, 66 Psig n. 24V, 66 Psig
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Figure 6-8. Valve Transient Flow Rate; Voltage & Current Vs. Time (Cont)



q. 22 V, 66 Psig

r. 22V, 66 Psig

Figure 6-8. Valve Transient Flow Rate;

Voltage & Current Vs. Time (Cont)
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These preliminary experiments have demonstrated that it is feasible to

measure flow transient signatures in small fast-acting spacecraft valves.

For practical applications, the instrumental signal to noise ratio should

be improved by the use of FM recording of the piston displacement signal

and the subsequent use of digital data processing to perform the differ-

entation. The use of these techniques should improve the S/N of the data

by at least several dB.

A further improvement in signature clarity could be obtained by computer

averaging of the signature over several test runs made under identical

conditions. The improvement in S/N is proportional to V where n is the

number of runs averaged. Averaging 100 runs would yield a 10 dB improvement

in S/N. If the apparatus were rebuilt with the manual valves replaced by

servo valves, between one and ten test runs per second could be performed.

With the afbrementioned improvements, useful data could be gathered on the

change in signature versus voltage, pressure, temperature, presence of

particulates, and most important, number of actuation cycles and time

(involving progressive corrosion, for example). For these high precision

tests, the solid piston should be fabricated so as to have the same density

as the test fluid in order to eliminate inertially driven leakage errors.
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6.4 FLUID LEAK MEASUREMENT

The test stand used for the valve flow transient signature tests was

also used in the leakage test. As pressurized fluid leaks past the valve

seats, a mercury piston moves down the capillary tube, and this movement

is measured by the electro-optical strain monitor. Mercury was used to

replace the solid piston of the previous experiments since both the flow

rates and the inertial forces involved in this application are very small.

The optical system of the electro-optical strain monitor was changed to

one having a 0.15 inch full scale field of view.

With the available system parameters, leak sensitivity of the system

was as follows:

1/2 mm dia flow tube - 1.34 X 105 volts cc

1 inch dia flow tube - 3.36 X 104 volts cc

2 inch dia flow tube - 8.37 X 10 volts/cc

With the tracker electronics set at a 10 Hz bandwidth, the noise

level is about 2 X 10-2 volts, so for a S/N of 10 dB and a measuring period

of one second, we have the following leak sensitivities:

S/N = 10 dB, 1/2 mm dia flow tube - 1.45 X 10-6 cc/sec for 1 sec

S/N = 10 dB, 1 inch dia flow tube - 5.8 X 10-6 cc/sec for 1 sec

S/N = 10 dB, 2 inch dia flow tube - 2.32 X 10-5 cc/sec for 1 sec.

If the measurement is made over a 100 second period, the respective

leak sensitivities are 1.45 X 10- 8 cc/sec, 5.8 X 10-8 cc/sec, and 2.32

X 10-7 cc/sec.

With a 2 mm flow tube, the downstream valves were found to have a

combined leak rate averaging about 7.5 X 10-8 cc/sec at 76 psig. It was

interesting to note that the leak was not steady, but rather exhibited

substantial variations over periods of a minute or so.
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For practical leak testing, the test station would have to be rebuilt
to minimize extraneous leaks and thermal effects. Thermal expansion
effects can be minimized by using:

1) An isothermal enclosure, allowing time for the attainment

of equilibrium

2) A 2 mW collimated laser beam illuminator to replace the

80 W incandescant illuminator used in the test

3) The use of two flow tubes (test and reference) in thermal

contact with each other, with the strain monitor measuring

the differential displacement between the two pistons.

In spite of the unsuitability of the existent valve transient test

station for this test, it was demonstrated that small fluid leaks can be

measured electro-optically. It would be of interest to determine how

helium leak rates correlate with liquid propellant leak rates.
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7.0 SURFACE STUDIES

7.1 INTRODUCTION

Failure of a component can occur either by a bulk change in a material

or by the change or degradation of a surface. A considerable amount of

knowledge exists on the bulk properties of materials. Little is known about

surfaces. The surface studies reported in this section were conducted by

the University of Bradford, England under subcontract during the period

June 1971 to December 1972.

The objective of this work was to investigate the surface character-

istics of metal and solid surfaces, and to examine the use of contact angle

techniques for monitoring changes at surfaces exposed to corrosive environ-

ments and the applicability of the technique to predicting the behavior of

sliding surfaces in contact. Section 7.2 describes the use of the contact

angle technique to examine changes occurring at various metal surfaces after

treatment by corrosive liquids such as hydrazine. Section 7.3 discusses the

use of the concept of critical surface tension, c', in predicting frictional

and wear properties of contacting materials; it is shown that although the

application of the technique is limited, suitable choice of test liquids

will enable the surface energy and hence the other surface properties to be

determined. Section 7.4 gives results obtained using the technique of Auger

Spectroscopy of an investigation of the surface composition of an inconel

valve seat material.

7.2 SURFACE COMPATIBILITY STUDY

One aspect of engineering materials of all sorts which is very poorly

understood is the behavior of their surfaces under various practical

situations. The phenomena of friction and wear are considered in Section

7.3; here we will be concerned with the changes of the surfaces of materials

in corrosive environments.

Of the various corrosion processes which have been studied, electro-

chemical corrosion is best understood, although there have also been studies

of the interaction of metals with corrosive gases, e.g., 02, C12, F2, etc.
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Little is known of the corrosion of metals by reactive liquids such as OF2,
hydrazine, monomethylhydrazine, etc. Earlier work carried out in this

laboratory (Ref. 1) showed that small changes in the conditions of prepara-

tion of polyperfluorobutene films gave rise to large changes in the wetting

behavior of these films. It was therefore tempting to examine the possibility

of monitoring changes occurring on the surfaces of various engineering

materials in corrosive liquids by wetting techniques, i.e., by monitoring

changes in contact angle of the liquid used for treating the surface or

using some other test liquid, e.g., water. In particular, it was hoped that

this would enable a series of tests to be set up for solid - liquid compat-

ibility, which would not require protracted test procedures, i.e., that

changes could be detected occurring at the solid surface which were not

visible to the eye or by other test procedures. This part of the report,

therefore, presents data obtained for changes occurring on a variety of

surfaces (both specially cleaned and "as received") after treatment with

hydrazine.

7.2.1 Experimental

Samples of brass, copper and stainless steel were mechanically abraded

to obtain highly polished surfaces. In addition, copper plates were electro-

polished using a technique described by Trevoy and Johnson (Ref. 1), with

a 63 - 67% (w/w) aqueous orthophosphoric acid solution; and two specimens
of stainless steel plate were electropolished using an aqueous orthophos-

phoric acid/sulphuric acid mixture described by Perryman (Ref. 2). In

addition, two surfaces of an electrolyzed inconel sample (also used for

Auger studies, Section 7.4) supplied by TRW Systems Group were also examined.

This sample was boiled in detergent solution and rinsed in boiling deionized

water before examination. Contact angles were measured using a telescope

fitted with a goniometer eyepiece, and the method of measurement was as

described in previous reports (Ref. 3). All measurements were carried out

with the sample in a dust free container. Hydrazine was freshly distilled

from hydrazine monohydrate (N2H4 ' H20) using chromic acid cleaned glassware.
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7.2.2 Results and Discussion

7.2.2.1 Electrolytically Polished Surfaces

Table 7-1 summarizes the results obtained for the electrolytically

polished copper and stainless steel samples. With copper, the low contact

angles (<50) expected of an .essentially clean metal surface (Ref. 1) were

not obtained if measurements were made immediately after polishing,

[expt. 2(a) - (c)]. Only if the freshly polished surface was washed in

a "Tide" detergent solution did the resultant surface give an angle less

than 50; washing in a "Decon 75" solution did not give the same low angle.

The angle obtained with a freshly electropolished surface was consistently

,400 [expts. 2(a), (b), (c)]; this angle increased considerably after

storing a plate for 72 hours in a vacuum dessicator, indicating that

contamination by vacuum grease vapor may have occurred.

The stainless steel samples gave contact angles of <50 immediately

after polishing,'without the need of a detergent wash. A 0.47% (w/w)

aqueous solution of butanol spread over the surface; after rinsing with

deionized water, water drops again gave angles less than 50. However, after

storing the sample "in vacuo" for 18 hours [expt. 3(b)], the contact angle

for water had increased to 450, indicating contamination of the surface.

This contamination could be removed by a "Tide" detergent solution, and a

chromic acid solution had no effect on this surface [expts. 3(c) and (d)].

After exposure to hydrazine for 20 hours, the contact angle for water

ranged from 19 to 300 . The drops were unsymmetrical and this, together

with the higher angle is good evidence for reaction of the surface with

the hydrazine, although, of course, contamination could have caused the

increase of angle. Stainless steel has been classified as being compatible

with hydrazine.

7.2.2.2 Inconel Samples

The compatibility of the inconel samples was tested as follows:

(a) Rough Surface. Half the face was covered with hydrazine

for five minutes. No reaction could be observed, and yet

the water contact angle on the treated area, 190, differed

from that on the untreated area (35 +80). Before treatment,

the water angle was 100.
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Table 7-1. Contact Angle Measurements for Water on Electrolytically
Polished Copper and Stainless Steel Samples

Description of Treatment of Mean Contact
Expt Metal Polished Surface Polished Surface Angle for Water ew  Remarks

1 Copper Plate Smooth, although (a) Rinsed in 10% 93 + 40 Plate held "in vacuo"
(3 x 3.5 x 0.1 cm) scratches from (w/w) R3P04 and for 72 hours before

abrasion treatment water measurement
just visible (b) Washed in hot <50

detergent ("Tide")
rinsed and dried Immediately after (a)

2 " Smooth and specu- (a) As 1 (a) 39 + 50 Angles measured immed-
lar with shallow (b) " 41 : 40 iately after polishing
pits where 02 was (c) " 39 + 50 in expts (a)-(c); (d)
evolved (d) Washed in hot 24 T 30 -immediately after (c)

detergent (Decon
75) rinsed and
dried

3 Stainless Steel Smooth and specular (a) As 1 (a) 4 + l Angles measured immed-
Plate iately after polishing
(2.5 x 2.5 x 0.1 (b) " 45 + 30 Retained "in vacuo"
cm) for 18 hours

(c) As l(b) using <50
Tide detergent

(d) 15 sec. dip in <50 No apparent reaction
chromic acid (800C) in chromic acid
rinsed and dried

(e) Immersed in freshly 25 + 60 Drops of water were
distilled hydrazine unsymmetrical
for 20 hrs, rinsed
and dried



(b) Smooth Surface. Before treatment, the angle was 26 + 60.

After exposing the rough surface to liquid N2H4 and hence

the smooth surface to its vapor, the angle was 39 + 20.

After five minutes contact with liquid N2H4, the angle

was 40 + 40*

Hence, both surfaces are affected by hydrazine, as either the vapor

or as a liquid. The different angles on each face may be a function of

surface roughness (see Section 7.3) or of the slightly different methods

of preparation.

7.2.2.3 Untreated Mechanically Abraded Samples

Preliminary Results for Brass and Copper. A mechanically polished

brass block gave a water contact angle, ew, of 51 + 30 after washing in "Tide"

solution. A similarly treated copper plate gave an angle of 79 + 40. The

latter, after treatment with hydrazine for three and a half minutes, gave

a slightly lower angle of 70 + 50. The latter result, in particular, shows

that the "as received" material is very different from that of a carefully

produced electrolyzed material, and therefore does not reflect the properties

of the clean metal. On the other hand, it is much closer to the true

engineering situation. The program was therefore extended to allow further

tests on mechanically polished materials, and materials passivated according

to recognized procedures.

More Detailed Results for Untreated and Passivated Metals. Results

were obtained for passivated alumina (prepared according to the procedure

given in SRI Report No. 951581-6, Appendix A, Ref. 4), stainless steel, and the

inconel sample discussed above. Advancing contact angles were measured

for water and for 50% (V/V) aqueous hydrazine solutions on each of these

surfaces. It was found that the advancing contact angles were time dependent,

as shown in Figures 7-5 through 7-7, which are discussed in Section 7.3.

In addition to these results, the advancing contact angles of a silicone oil

(Midlands Silicones, MS704) were measured on the inconel surfaces, and the

effect of a film of this oil was also examined. The advancing contact

angle at zero time is mainly discussed in the following description of the
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results, but it should be noted that the gradients of the plots of e
against time (de/dt) are affected by the various treatments. Aqueous

hydrazine solutions were used for these experiments because anhydrous

hydrazine did not form stable drops on the sLrfaces due to a vigorous

reaction with the moisture of the atmosphere.

Table 7-2 summarizes the results obtained.

(a) Aluminum. Figure 7-1 shows the variation of ew with time

for three drops of water (runs 2, 3, 4) on the passivated

aluminum surface (after a previous experiment on the same

surface, followed by repassivation). The contact angle

for each run decreased steadily with time. The sample was

covered with water between each experiment. The value of

ew increased to a higher value than that of the initial

drop, and then dropped again with time (runs 3 and 4).

These changes of ew with time imply that a change is

occurring at the surface of the aluminum. One possible

explanation of the decrease in angle of each individual

drop is that some contamination is removed from the surface
which lowers the surface tension of the liquid, in turn

lowering the angle. When the drop is replaced by another

one, the underlying surface has now got a lower energy,
and this results in a higher angle, which again decreases

as further contamination is removed from the surface.

The same sequence occurs in run 4. Hence, the results

for the initial value of ew imply that the surface becomes
more passive after contact with water. However, when the
surface is contacted with aqueous hydrazine (run 5), the
passivating layer is removed, leaving essentially a clean
metal surface. This result therefore demonstrates the
power of contact angle measurements in showing the removal

of what is considered to be a passivating layer.
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Table 7-2. Variation of Contact Angle at Zero Time With Surface
Treatment of the Metal for Various Liquids

Contact Angle
Expt Solid Surface Treatment of Surface Liquid at t = 0 Remarks

1 Aluminum Passivated (see text) Water 48.5 - 49.5*

2 " 38.2 - 40.50 Difference from Expt 1 could
be due to the roughness of the
surface

3 After treating surface with water " 62.5 - 66.00 Drop on same place
for 15 minutes after expt 2

4 After further 10 minute water " 72.0 - 74.50 Drop on same place
treatment

5 Freshly passivated surface 50% aqueous <50
hydrazine

6 Stainless Steel 2 minutes in 1% HF, 1% HNO3, 98% Water 48.0 - 49.00
water, rinsed, dried

7 " " 50% aqueous
hydrazine 23.00 Drop gave constant value of

10 - 11* after 7 minutes

8 Passivated and then treated with Water 27.5 - 30.5*
50% aqueous hydrazine for 15
minutes

9 Inconel Surface lightly abraded and Water 940 - 98.5*
treated as in expt 6

10 . 50% aqueous 73.0*
hydrazine Drop on same position on

II 0 Passivated as above and treated Water 87* - 90* surface

with 50% aqueous hydrazine for
2 minutes

12 " 13 minutes hydrazine treatment Water 62.5 - 65.00

13 * As in run 9 Silicone Oil 20.5 - 22.00 Constant angle of 15 - 160
after 7 minutes

14 Silicone oil removed from surface, Water 700 - 72.50 Water apparently displaced
leaving thin film the oil film

15 50% aqueous 56.5* Constant angle of 440 after
hydrazine 7 minutes
solution

NOTE: Advancing drops of the hydrazine solution were in all cases surrounded by a halo which formed at about twice
the diameter of the drop. As the drop evaporated, this halo did not change position.



(b) Stainless Steel. Figure 7-2 shows the results for stainless

steel (expts 6 - 8) passivated as described in the table.

The contact angle of water on the fresh surface (expt 6)

decreased with time, as with aluminum. Expt 7 shows the

angle for a drop of aqueous hydrazine; this decreases to a

constant value of about 10°. A drop of water placed on the

same spot now had a lower contact angle than before,

indicating that the passivating surface layers had been

partly, but not completely, removed.

(c) Inconel. The inconel sample was lightly abraded with "180"

grade emery paper and given the same treatment as the stain-

less steel sample. Figure 7-3 shows the results of four

experiments on this surface. Expt 9 was carried out immed-

iately after the passivation treatment. Several more

experiments (not reported) were then carried out, which

showed, among other things, that the receding angle was

about 100 smaller than the advancing angle. The angle for

a 50% aqueous hydrazine solution was then measured (expt 10)

and found to be somewhat lower than that for pure water and

decreasing more rapidly. Water was then placed on a part

of the surface which had been treated with hydrazine for

two minutes, and the angle (expt 11) was slightly lower

than the initial value, but after 13 minutes treatment

(expt 12) the value was very much lower.

Figure 7-4 shows the results for experiments 13 - 15. Expt

13 shows the result for silicone oil on a freshly prepared

surface. A drop of water placed on the surface after mopping

up the oil (expt 14) gave a lower value than that on the

clean surface (expt 9). Hydrazine treatment (expt 15) then

gave less of a decrease in contact angle than that in expt

10. Thus, treatment of the surface with an oil appears to

cut down the activity of the surface towards hydrazine.
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7.2.3 Conclusions

These results clearly indicate the potential of contact angle measure-

ments in the measurement of corrosion by reactive fuels. Although the

results cannot be considered as quantitative, they can be used to give

valuable qualitative results for a variety of surfaces and reacting liquids,

and the technique could easily be adapted for use in engineering situations.

7.3 SURFACE ENERGY AND WETTING STUDIES OF SOLIDS

7.3.1 Appraisal of the Relationships Between Surface
Energy and the Physical Properties of Materials

One aspect of the work carried out in Bradford has involved an investiga-

tion of the surface properties of various solids using contact angle measure-

ments. The work has involved the surfaces of (a) novel thin film polymers

prepared by the electron bombardment technique and (b) also bulk polymers

(Ref. 5) and bulk metal samples (Ref. 6). In the former work, the critical

surface tensions (yc) of the materials were obtained using a series of pure

liquids and alcohol-water solutions; in the case of the alcohol solutions,

the Yc values were lower than with pure liquids, and this was interpreted

(Ref. 5) in terms of the adsorption of the alcohol molecule on the surface.

The latter work with metals involved a brief study of the feasibility of

using contact angle measurements to study the interaction of clean metals

both with the environment and with corrosive materials such as hydrazine;

although the technique is very sensitive to surface changes, it was shown

that a large number of variables affected the contact angle behavior, and

not the least of these was the atmospheric environment of the specimen

(Ref. 6).

The surface of a solid material takes part in many processes involving

that material, not only in its chemical reactivity but in its mechanical

properties. Recently Rabinowicz (Ref. 7) among other authors, has developed

empirical theories relating the mechanical interactions with the surface

energy of the solids in question. One of the problems in establishing

these relationships more fully and making them available for prediction

of the mechanical properties of a material lies in the problem of measuring
the surface energy. This report therefore presents (a) an outline of
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Rabinowicz's theories and (b) discusses the limitations of using contact

angle measurements to determine the surface energies of solids.

7.3.1.1 Mechanical Interaction of Solids

Apart from the simple case of non-lubricated adhesion between two

solids (Ref. 8), solid-solid interactions are involved in two distinct but

related mechanical processes, namely friction and wear; the latter may be

subdivided into adhesive wear, abrasive wear, corrosive wear, and surface

fatigue wear (Ref. 7).

Friction. The coefficient of friction u between two bodies is

defined by the equation:

F = pL (7-1)

where F is the frictional force and L is the normal force between the two

bodies. Generally, the coefficient of friction is independent of the area

of contact and of the sliding velocity, although there are many cases where

the latter, in particular, does not hold (see Rabinowicz, Ref. 7). However,

the real area of contact will depend on the load, the area becoming larger

as the load L becomes larger because of the flattening of asperities between

the contacting materials. The real area of contact Ar is given by Equation

(7-2).

Ar = L (7-2)

where p is the penetration hardness of the material which is related to the

ease with which the material is deformed. Also, the fractional force is

given approximately by Equation (7-3).

F = S * Ar (7-3)

where S is the bulk shear strength of the softer of the contacting materials.
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Hence, from Equations (7-1), (7-2) and (7-3)

S (7-4)
p

The foregoing theory is relatively well established, although there

have been some criticisms of it, which are dealt with in some length by

Rabinowicz (Ref. 7). The values of v calculated using Equation (7-4) are

sometimes rather low, this ratio generally being of the order of 0.3.

Rabinowicz (Ref. 9) has proposed that the equation should be modified by

the inclusion of a term for the work of adhesion W and a factor C which

depends on surface roughness, etc:

= S/p + ab (7-5)

The value of Wab for two materials a and b is given by Equation (7-5)

Wab = Ya + Yb b (7-6)

It is with the determination of this term Wab that we are concerned, and

we will discuss it more fully below.

It is worth noting that Equation (7-5) gives reasonable agreement

between observed and calculated P values, using a rather empirical method

of obtaining Wab, for a series of metals. A similar relationship (Equation

7-7)

(yc - 15)
= S/p -- i- (7-7)

has been used by West and Senior (Ref. 10) to explain results obtained by

King and Tabor (Ref. 11) for polymer surfaces; here, yc is the critical

surface tension of the solid.

Wear. Economically, wear is a very important process as it is

one of the major ways in which inanimate objects lose their usefulness.

The four main types of wear are often difficult to distinguish. They

will be described in turn:
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(1) Adhesive wear. Here, fragments of one of two surfaces sliding

over one another is transferred to the other; the fragments

may subsequently be transferred back to the original surface

or may form loose wear particles.

(2) Abrasive wear. Here, a rough hard surface, sliding over a

softer surface, carves grooves in it; the material of the

grooves is displaced in the form of wear particles, generally

loose ones.

(3) Corrosive wear. This occurs when sliding takes place in a

corrosive atmosphere. Normally, the corrosion products

would form a passive layer on the surface of the material

in question, but under wear conditions, attack continues.

For example, aluminum is passivated by a thin layer of oxide,

but under wear conditions in oxygen, the whole sample could

become oxidized.

(4) Surface fatigue wear. Fragmentation of the surface occurs

due to repeated sliding over the surface.

Rabinowicz considers each type of wear in turn and discusses methods for

their measurement. However, we are here largely concerned with a

connection of mechanical processes with surface energy, and we will

therefore only summarize some of his conclusions regarding adhesive wear.

7.3.1.2 Quantitative Description of Adhesive Wear

Experimental evidence shows that Equation (7-8)

V = cLx (7-8)

holds for most cases. Here V is the volume of material worn away, L is

the load and p the hardness, and x is the distance slid; c is a dimension-

less constant, whose value can be predicted theoretically.
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Equation (7-8) applies to the case when material is transferred from
one surface to the other. The transferred material may leave the second

surface if the elastic energy stored in the particle exceeds the adhesive

energy which binds it to the surface.

Rabinowicz assumes that the wear particle is approximately hemispherical

in shape, having a diameter, d. Hence, the elastic energy, Ee, stored in

it is of the form

E = (22Ea d3 (7-9)

where v is Poisson's ratio, ay is the normal compressive stress, and E

is the Young's modulus of the material. The adhesional energy Ea acting

over the interface may be written as in Equation (7-10)

E W (-d2) (7-10)a ab 4

A particle can come off if Ee > Ea,

6E Wab
or d > 6E 2 (7-11)

V ay

As long as small particles form and subsequently grow until they can leave

the surface,

6 E Wab
d = 2 2 (7-12)

V y

Noting that v 2 1/10 for most materials a y 1/3p, and a /E r

const 3 x 10- , Rabinowicz (Ref. 4) obtains for the wear particle diameter:

abd = 60,000 ab (7-13)

Hence,. as long as Wab and p can be measured, d may be estimated.
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Rabinowicz derives a similar equation for the minimum load for loose

particle formation:

Lmi =Kx 108 . ab (7-14)min p

The Term Wab. The work of adhesion is given by Equation (7-6),
i.e.,

Wab = Ya + Yb - Yab

Here, ya and Yb are the surface free energies of materials a and b and

Yab is the interfacial tension of the interface ab. Hence, a determination

of Wab requires a knowledge of each of these terms. There is no satisfactory

method of measuring ya or Yb. The method frequently used, and adopted by

Rabinowicz for metals, involves measuring the surface energy of the melt

and assuming that the same value holds for the solid. He justifies this

by saying that although the value increases by an amount of the order of

0.5 erg cm-2 per degree drop from the melting point, the value is decreased

by the presence of surface oxide and contaminant films. The latter effect

is reduced somewhat by the film being broken up during sliding, the value

of y tending back to the clean metal value. Rabinowicz assumes that all

these changes cancel to give an effective value of y close to the melt

value. The determination of yab is even less satisfactory; Rabinowicz

cites work by McLean (Ref. 12) which shows that Yab may be between 1/4 to

1/2 of (ya + Yb). Although reasonable, the arguments are too empirical.

The Connection Between y and YS . For a liquid drop on the surface

of a non-deformable solid (Ref. 4 and 5):

YS '= LV cos e + YSL + r (7-15)

where yS is the specific free surface energy of the solid in vacuum, YLV
the surface tension of the liquid against its vapor, YSL is the specific

free surface energy of the solid liquid interface and w, the surface
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pressure, is (yS - ySV ) where YSV is the specific free energy of the

solid vapor interface. The critical surface tension, c', referred to

previously, is the value of YLV when cos e = 1, i.e., when the liquid

just spreads over the surface. Hence, from Equation (7-15),

YS = YC + YSL + r (7-16)

For low energy surfaces (i.e., yc 1OO dyne cm-l), it is usual to assume

that =rrO. We have however been able to show that this is definitely not

the case for water butanol mixtures (Ref. 5). Also, YSL is unlikely

to be zero, as there is always some interaction between the solid and the

liquid; see, for example, a paper by Owens and Wendt (Ref. 13).

However, assuming that n = 0, Owens and Wendt (Ref. 13) show that YSL
is small, at least for polymeric surfaces. If this assumption is correct

when w = 0, then

YS - Yc + YSL (7-17)

Also, for dilute aqueous butanol solutions, 7 arises almost entirely from

the adsorption of water at the solid-vapor interface, and so

Po

RT r dlnP (7-18)

P=O

which can therefore be evaluated if the water-vapor adsorption isotherm

is known. r is the Gibbs excess concentration per unit area.

We can thus estimate yS for a solid directly from contact angle measure-

ments using aqueous solutions if we are dealing with a case where the

solute is not preferentially adsorbed. This is definitely not the case (Ref. 4

and 5) for butanol solutions on polystyrene (PS), polymethylmethacrylate (PMMA),

and the thin films prepared by electron bombardment techniques (PPFB) but

it may be so for cases where the solute is chosen so that its adsorption

would not result in a decrease in the surface energy. This hypothesis

has been tested using solutions of ethane-diol on surfaces of PMMA, PS
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and Teflon (see 7.3.2). The problem of the f term requires a knowledge

of the adsorption at the vapor interface, and this is also receiving

attention in our laboratories.

The Term yab. The estimation of interfacial tensions between two

liquids, a liquid and a solid, or a solid and a solid is one of the out-

standing problems in surface chemistry. The magnitude of the interaction

depends on the type of forces involved: whether they are purely dispersional,
or involve hydrogen bonding and more complex types of interaction. For

example, Owens and Wendt (Ref. 12) have extended an equation first used by

Fowkes for dispersion interactions between a solid and a liquid:

YSL = YSV YLV - 2 d (7-19)

to include the possibility of hydrogen bonding terms:

2S S d d - 2 h (7-20)
YSL YSV + YLV 2  S YL Y S hY

The superscripts refer to dispersion contributions (d) from the liquid
and the solid and to similar hydrogen bonding contributions (h).

If contact angles are measured for two liquids for which yd and yh are
known, then Equation (7-16) allows y and yS to be obtained. (This

procedure also allows one to estimate YSL to check whether it is neglibible
- see above). Having estimated the contribution to the energy of a surface
from various types of interaction (metallic interactions might be estimated
using mercury drops), it is then possible to use equations similar to
Equation (7-20) to estimate yab. It should be noted that the geometric mean

approach of Equations (7-19) and (7-20) is only approximate, but should prove

more satisfactory than the empirical approach of McLean (Ref. 12).
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7.3.1.3 The Roughness Factor in Metal to Metal Contacts

As indicated above, current theories of solid-solid interaction imply

that the two surfaces are microscopically rough. Several different types

of measurement have been used to show this (see Rabinowicz). It has been

suggested that the advancing angle on a perfectly smooth surface (er) and

that on a rough surface (el) are connected by Equation (7-21), where r

is the surface roughness:

r = cos (7-21)
cos er

However, the theory on which this equation is based considers r to be zero

(Equation 7-15) and so it is not applicable to most cases studied to date.

It is possible that the method might be applicable using non-volatile

liquids (which do not have an appreciable value of w), and this will be

considered at a later date.

7.3.2 Experimental Studies and Some Conclusions

The work described below has been concerned with two separate problems

arising from previous work and which both have some bearing on the present

objectives.

7.3.2.1 Determination of the True Value of Yc Using Solutions

The aim of this work is to prove or disprove the hypothesis that

adsorption of the solute molecules will only occur at the solid interface

if this results in a lowering of yc. Adsorption of butanol from aqueous

solutions has previously been shown to occur on both PS and PMMA surfaces

(see page 7-16); the molecule is thought to adsorb with hydroxyl groups

oriented towards the surface .(Ref. 4 and 5). It was decided to investigate

the use of ethanediol as a solute. If this were to adsorb in the following

manner:

CH2  - C

OH

7-19



Y, would be about 37 dyne cm-l , whereas if the adsorption occurred as:

/CH - CH2

HO \OH

Yc would be about 32 dyne cm

Whether either of these values is obtained will.depend on the surface
-1

used. If the true value of yc is below 32 dyne cm -1; we expect to obtain

the true value from contact angle measurements. On the other hand, if

the true value-is above 37 dyne cm-1; we expect to find a value somewhere

between 32 and 37 dyne cm -, depending on the mode of adsorption. We

report below results for a variety of different surfaces.

Table 7-3 reports results obtained using PMMA (yc 39 - 41 dyne cm-l);

the disks used were prepared from two d.ifferent samples of PMMA, one with

a low average molecular weight and the other with a high average molecular

weight. The experimental data are shown in Figures 7-5 and 7-6. From

the values of yc obtained of 31 - 34 dyne cm-1 , we must conclude that

adsorption of the ethanediol is occurring as predicted, and that two-point

attachment is favored, presumably .as it lowers the surface energy by the

greater amount. Values of eH20 and WH20 are also given, which allow us

to compare our results with literature values. It is seen that the

interaction of water with the low molecular weight material is different

to that with the high molecular weight sample; this may reflect differences

in the preparation technique, and consequent differences in the polymer

surface. Also, results obtained with higher solution concentrations

deviate from the straight line; this may be due to some ordering in the

liquid as the solubility limit is reached.

Figure 7-7 shows results for ethanediol solutions on a PS surface similar

to those used previously. yc is around 34 dyne cm-l , and is, within

experimental error, the same as the value obtained with pure liquids.

It should be noted that the deviations observed with PMMA at high

ethanediol concentrations (nearing the solubility limit) are also observed

here.
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Table 7-3. Characterization of PMMA by Aqueous Ethanediol
Solutions and Pure Liquids

(a) W (b)
Yc(dyne cm-) eH20 WH20

PMMA Use in From Aqueous From Pure
Experiment Ethanediol Liquids (degrees) (dyne cm- )

Low molecular
weight (170 u)a  34.2 38 41 62.5 105.0

High molecular
weight. Washed with 31.0 39 - 41 72.3 93.5
deionized water and
vacuum dried (270 u)a

Literature values - 39.0 75 - 79 90.5 - 85.6

a. PMMA was probably prepared by suspension polymerization. Figure
quoted is the average particle diameter.

b. WH20 work of adhesion between water and PMMA = YH20 (1 + Cos OH 0)
2 2
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Figure 7-5. Zisman Plots for Aqueous Ethanediol Solutions
(Solid Circles) and Various Liquids (Open Circles)
on Low Molecular Weight Poly (Methyl Methacrylate)
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Figure 7-8 shows preliminary results obtained using Teflon (poly-

tetrafluoroethylene). The sample used was not completely flat and so the

results were rather erratic; the work is being repeated at present. It is

clear from Figure 7-8, however, that the y c value obtained with ethanediol
-1solutions is unlikely to be below the value of 18 dyne cm- obtained with

pure liquids and is probably coincident with this value. Hence, it would

appear that the hypothesis that adsorption does not occur on the PS and

Teflon surfaces is correct, and that the ethanediol solutions can be used

to characterize these surfaces. Similarly, it will be possible to use

other solute-solvent combinations to characterize higher energy surfaces.
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Figure 7-8. Zisman Plot for Aqueous Ethanediol Solutions
(X) and Some Pure Liquids (0) on Teflon
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7.3.2.2 Determination of the Butanol Adsorption
Isotherm for the Solid-Liquid Interface

Results have previously been reported for the adsorption of butanol
from aqueous solution at the surfaces of PS and PMMA powders.1* In
order to check the repeatability of these results, and to compare these
results and the technique used with the results of other workers (Ref. 14),
it was decided to repeat the adsorption isotherms using both the GLC
analysis technique used earlier 1 and also the technique used by
Vincent and Ottewill, namely the differential refractometer. The former
technique was used for new samples of PMMA, whereas the latter was used
with the samples of PS in previous work.

Table 7-4 gives the results for the adsorption of butanol on the
powdered polystyrene; a small number of results were obtained due to
limited availability of solid. However, the results showed that the
technique was less sensitive than the GLC technique at the low butanol
concentrations used, as so the method was abandoned in favor of the latter
method. This has been used to check the earlier PMMA results, but will
also be used to confirm the PS data.

Table 7-5 and Figure 7-7 show results obtained using the GLC technique
for PMMA. Initially, the method used earlier1 to obtain adsorption
data, namely to use a different solid sample for each adsorption measurement
was utilized, but this was found to give slightly inconsistent results,
presumably due to changes in surface area of solid from sample to sample.
A simple cell was therefore constructed to allow measured additions of
butanol to be made and samples of the equilibrated solution to be withdrawn.
This technique was found to give much more satisfactory results, and some
of these are shown in Figure 7-9 and Table 7-5. The results are, in general,
in good agreement with those obtained previously; any difference is probably
due to slight differences in the methods of sample preparation.

Once these results have been obtained, it is hoped to attempt adsorption
studies from the vapor phase; this will enable the f-term, discussed above,
to be evaluated, and Equation (7-15) to be verified.

1. M. W. Roberts, et al, Previous Reports to TRW.
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Table 7-4. Adsorption of n-Butanol From Aqueous Solutions
on Polystyrene, as Measured Interferometrically

no AXA (c)

Mol. Fraction * (b) m
An An* (a) X (b) m

A m.moles-1Butanol, XA m.moles g-l

0.00053 0.0002363 0.0002323 0.00052 1.03 x 10-3

0.00096 0.0004293 0.0003818 0.00085 9.70 x 10-3

0.00132 0.0006121 0.0005969 0.00130 2.02 x 10-3

(a) An* = Refractive index change after adsorption

(b) XA  = Mol. fraction of n-butanol corresponding to An*
from calibration.

(c) no = Total number of moles of water and butanol above polymer.

m = Weight of polymer

AXA = XA - XA

7.3.2.3 Conclusions and Suggestions for Further Work

It would appear that in order to examine the importance of surface

energy in solid-solid interactions, the determination of the term Wab is of
paramount importance. It is therefore recommended to examine the applicability

of contact angle and adsorption measurements to determining the values of
the various quantities making up Wab for both metal and polymer surfaces.
This will entail the use of solutions such as ethanediol/water and other
combinations for both contact angle measurements and adsorption measurements.

The use of gas-phase adsorption techniques to determine the i-term should be

developed.
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Table 7-5. Adsorption of n-Butanol From Aqueous Solutions on
Poly(Methylmethacrylate) as Measured Using G.L.C.

Peak Area After(b) N X AX(d)
Mole Fraction Peak Area, A Adsorption A' ( m

XA (arb. units)' (arb. units) XA (c) m.moles g-

0.00045 (a)  0.014 0.00018 0.055

0.00100 ( a )  0.062 0.00070 0.060

0.00139 (a )  - 0.041 0.00048 0.181

0.00148 0.129 0.022 0.00030 0.130

0.00203 ( a )  - 0.126 0.00138 0.126

0.00249 0.238 0.017 0.00020 0.310

0.00395 0.336 0.115 0.00125 0.310

0.00518 0.528 0.049 0.00060 0.540

0.00683 0.724 0.145 0.00160 0.530

a. These results were obtained using a different sample from the
other results, although all results marked (a) were obtained
on the same sample.

b. A' corresponds to XA.

c. XA = mole fraction, as read from calibration curve of A vs. XA,
after adsorption.

d. See footnote (c), Table 7-4 (except AXA = XA - XA)
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Figure 7-9. Adsorption of n-Butanol on Ball-Milled Poly
(Methyl methacrylate). Solid line-data of

Murphy 1 ) 0, X - data of Table 7-5.
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7.4 AUGER SPECTROSCOPIC STUDY OF THE SURFACES OF INCONEL

7.4.1 Introduction and Experimental

It is essential for any proper understanding of the properties of

metal surfaces that they be characterized on the atomic scale. The

technique of Auger Electron Spectroscopy is ideally suited for this

purpose. In brief, this involves an electron beam of energy %2000 eV

impinging on the surface under investigation, which causes the emission

of other electrons from the target. The energy of one group of these

secondary electrons, the Auger electrons, is characteristic of the energy

level of the atom from which they have been ejected. The theory of the

method is described in Ref. 15. In the present work, a Vacuum Generators

Ltd. (England) Cylindrical Mirror Analyzer Auger Spectrometer was used.

The apparatus includes facilities for removing surface layers by bombarding

the sample with Argon ions. The inconel sample used was the same as that

used for compatibility studies (Section 7.2).

7.4.2 Results and Discussion

Figure 7-10 shows the results of examining the surface without any

surface treatment, i.e., "as received". Peaks due to the presence of

common surface contaminants such as sulphur, chlorine, carbon, nitrogen

(trace) and oxygen were observed. A pair of peaks, attributed tentatively

to potassium, were also observed, together with a relatively large group

of peaks due to nickel. The nickel may have been introduced during the

spotwelding process carried out to mount the sample in the spectrometer.

Figure 7-11 shows a spectrum of the same sample after ion bombardment

using Argon ions for 4 hours. The sulphur and chlorine peaks are still

evident, but reduced in size, the carbon peak is increased, and a new set

of peaks, shown conclusively in Figure 7-12 to be due to chromium, were

observed. It would therefore appear that, when the outermost layers are

removed, the atoms exposed to the surface are largely carbon and chromium.

It is clear that important information regarding the atomic composition

of the surface layers of metals, alloys, etc., is possible which can have

an important bearing on the surface behavior. A research program to follow
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this up is clearly desirable. The particular question of how important is

"surface segregation" needs investigating. Some examples of this are

referred to in Reference 15.
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Figure 7-10. Auger Spectrum of "As Received" Inconel
Sample (Unpolished Side)
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C

Figure 7-11. Auger Spectrom of the Sample "As Received" (Figure 7-10)
After Ion Bombardment for 4 Hours by Ar+ Ions

528
493
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Figure 7-12. Detail of Part of Spectrum of Figure 7-11 Showing
Accurate Assignment of the Peaks to Chromium
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8.0 NEW TECHNOLOGY

New technology developed under this contract is reported in the following
subsections:

8.1 ZERO LEAKAGE METAL VALVE SEAT FOR LONG TERM PERFORMANCE. SECTION 2.0

The design of the metal valve seat is shown in Figure 2-8, page 2-19. The
metal seat is designed to avoid failure by wear, stresses, fatigue and contamin-

ation. The effects of wear on the surface roughness is avoided by refurbishing

the seat during each cycle. Leakage was held to less than 10-8 scc/sec He
for more than 30,000 cycles.

8.2 MEASURING SURFACE AND INTERFACE TOPOLOGY BY THERMAL CONTACT RESISTANCE.
SECTION 4.0

Surface degradation is measured by monitoring the thermal resistance
and/or the thermal time constant across an interface. Figure 4-9, page 4-37
is a schematic of the system illustrating the measurement technique. Two
matched thermal sensors, each bonded across a valve poppet/seat interface
are connected in a circuit designed to measure parameters such as load, surface
roughness, corrosion, valve leakage, etc., as a function of time.

8.3 OPTICAL SIGNATURE OF METAL VALVE SEAT SURFACES. SECTION 5.0

The application of a HeNe Laser to a metal valve seat surface proved a
new technique in characterizing valve seat surfaces finished to 2 rms or better.
The diffraction pattern of the seat surface is electronically sensed and
recorded on an x-y plotter.

8.4 FLOW TRANSIENT SIGNATURE TECHNIQUE. SECTION 6.0

The design of the flow transient signature test setup is illustrated

in Figure 6-1, page 6-2. A liquid slug (piston) entrained in the fluid

flowing in a transparent tube is tracked by an electro-optical strain

monitor. During valve opening the liquid slug moves along the inlet tube

and its motion (position) is converted to an electrical output. The

electrical output can be recorded on an oscillograph. Also the slug can

be tracked upon valve closing. The signature is a precise characteristic

measurement of the transient performance of the valve.
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8.5 FLUID LEAKAGE MEASUREMENT. SECTION 6.0

The same technique used in the Flow Transient Measurements using the

electro-optical strain monitor can be used to measure leakages with a

sensitivity better than 10-  scc/sec of any fluid. See pages 6-22 and

6-23.
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