Study of the Technique of Stellar Occultation

by

P. B. Hays
M. E. Graves
R. G. Roble
A. N. Shah

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Contract No. NAS 1 9958

November 30, 1973

THE UNIVERSITY OF MICHIGAN
High Altitude Engineering Laboratory
Departments of Aerospace Engineering
Atmospheric & Oceanic Science
Ann Arbor, Michigan
STUDY OF THE TECHNIQUE OF STELLAR OCCULTATION

By P. B. Hays, M. E. Graves, R. G. Roble and A. N. Shah

Prepared under Contract No. NAS 1 9958 by
The University of Michigan
High Altitude Engineering Laboratory
Departments of Aerospace Engineering
Atmospheric & Oceanic Science
Ann Arbor, Michigan 48105

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

November 30, 1973
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Data Procurement</td>
<td>4</td>
</tr>
<tr>
<td>3. Tangent Ray Geometry</td>
<td>6</td>
</tr>
<tr>
<td>4. Data Processing and Error Analysis</td>
<td>8</td>
</tr>
<tr>
<td>5. Data Analysis</td>
<td>9</td>
</tr>
<tr>
<td>6. Geophysical Results</td>
<td>11</td>
</tr>
<tr>
<td>7. Summary of Study</td>
<td>11</td>
</tr>
<tr>
<td>APPENDIX I.</td>
<td>13</td>
</tr>
<tr>
<td>APPENDIX II.</td>
<td>17</td>
</tr>
<tr>
<td>APPENDIX IIIa.</td>
<td>38</td>
</tr>
<tr>
<td>APPENDIX IIIb.</td>
<td>59</td>
</tr>
<tr>
<td>APPENDIX IIIc.</td>
<td>60</td>
</tr>
<tr>
<td>APPENDIX IV.</td>
<td>96</td>
</tr>
<tr>
<td>APPENDIX V.</td>
<td>101</td>
</tr>
<tr>
<td>APPENDIX VI.</td>
<td>113</td>
</tr>
<tr>
<td>APPENDIX VII.</td>
<td>123</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>136</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>137</td>
</tr>
</tbody>
</table>
Figure Captions

Figure 1. Oxygen and ozone cross sections with OAO filters transmission functions shown.

Figure 2. Schematic view of occultation.

Figure 3. Typical occultation row data.

Figure 4. Geometry of occultation for any stellar object.

Figure Captions Appendix IV.

Figure 1. Tangent ray height error as a function of satellite height error and altitude.

Figure 2. Tangent ray height error as a function of satellite latitude error.

Figure 3. Tangent point longitude error as a function of satellite latitude error.

Figure 4. Satellite tangent ray height error as a function of satellite longitude error.
1. Introduction

This report describes the results of a study of the stellar occultation technique for measuring the composition of the atmosphere. The work reported here was supported by NASA Contract NAS 1 9958.

The stellar occultation technique is based upon classical absorption spectroscopy, utilizing spacecraft-borne photometers as the detector and a star as the light source. During occultation the ultraviolet stellar spectrum of the star shows absorption features which are uniquely related to various atmospheric constituents. In particular, the spectral region between 1200Å and 2000Å is related to absorption by molecular oxygen and the region between 2000Å and 3500Å is related primarily to absorption by ozone. This is illustrated in Figure 1 where the photo absorption cross sections of both molecular oxygen and ozone are shown.

The intensity of starlight was monitored during the occultation using the Wisconsin stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-A2). A schematic diagram of an occultation is shown in Figure 2 where the change in intensity at a given wavelength is illustrated. The vertical projection of the attenuation region is typically 60 km. deep for molecular oxygen and 30 km. deep for ozone.

Intensity profiles obtained during various occultations were analyzed by first determining the tangential column density of the absorbing gases, and then Abel inverting the column densities to obtain the number density profile. Errors are associated with each step in the inversion scheme and have been considered as an integral part of this study.
Figure 1. Oxygen and ozone cross sections with OAO filters transmission functions shown.
Figure 2. Schematic view of occultation.
Most of the work carried out under this contract has been published in the open literature, thus, we include these papers in this report where appropriate. A general description of this study and the results were published by Hays et al. (1972) and is included as Appendix I of this report.

2. Data Procurement

The data used in this study were obtained through the courtesy of the O. A. O. Wisconsin Experimenters and N. A. S. A. Goddard Space Flight Center. The principle difficulty associated with the data procurement centered on obtaining intensity information at high rates. It was possible to sample the stellar photometer accumulator at high frequency, but only bits 1 through 14 of this register were available in this mode of operation. During this procedure the photometers continued to accumulate for 128 periods of 0.54080 seconds. Upon completion of this process the register was locked until a new command was received, at which time the cycle was repeated. Unfortunately, a finite period of time was required for the new command to be sent and a gap appears in the data every 128 samples. This caused many occultations to be rejected due to re-set blanks appearing in the middle of the attenuation period.

A typical data record is shown in Figure 3, we note that the bottom of each record corresponds to 64 accumulated counts and the top to 16,384 accumulated counts. The overflow within this sub-set is obvious. The data analyses utilized differences between individual samples and a smooth interpolation to determine the overflow and count accumulated during a sample period. The record labeled Channel 44 in Figure 3 is from the 1500 Å filter used to measure molecular oxygen.
Figure 3. Typical occultation row data.
The stellar photometers have broad band filters which typically cover a 200Å wide region in the spectrum. The relative transmission of these filters are shown at the bottom of Figure 1. Due to the broad spectral band of these filters it was necessary to measure the spectrum of all stars used in the study. This was done prior to the occultation using the O.A.O. spectrometer.

In addition to intensity and spectral information it was necessary to determine the altitude of the tangent ray. This requires an accurate knowledge of the spacecraft positions as well as the coordinates of the star. We acknowledge the considerable effort of the NASA Goddard Space Flight Center who carefully re-checked the satellite ephemeris in order to achieve the accuracy required for our study.

3. **Tangent Ray Geometry**

Throughout an occultation period, the tangent ray point follows a curved path above the surface of the earth. The coordinates used to describe this path are shown in Figure 4. In this system, the x-axis points toward the First Point of Aries, the y-axis is also in the equatorial plane pointing 90° east of Aries, and the z-axis points toward the North Pole. The time of scan enters into the coordinate system through the Greenwich hour angle of the x-axis, \(\lambda_g \).

To obtain the height of the tangent point, the angle \(\beta \) at the spacecraft between rays to the star and to the center of the earth must be evaluated in terms of the direction numbers of the star,

\[
\begin{align*}
1 &= \cos \alpha \cos \xi \\
m &= \sin \alpha \cos \xi \\
n &= \sin \xi
\end{align*}
\]
Figure 4. Geometry of occultation for any stellar object.
and the direction cosines of the satellite position,

\[a = \cos \lambda_s \cos \phi_s \cos \lambda_g - \sin \lambda_s \cos \phi_s \sin \lambda_g \]

\[b = \sin \lambda_s \cos \phi_s \cos \lambda_g + \cos \lambda_s \cos \phi_s \sin \lambda_g \]

\[c = \sin \phi_s \]

where

\(\alpha = \) right ascension

\(\delta = \) declination

\(\lambda = \) longitude

\(\phi = \) latitude

Subscripts \(s \) refers to the spacecraft and subscript \(o \) will refer to the tangent ray point. Then utilizing the above quantities,

\[r_o = r_s \sin \phi_o \] (1)

where

\[\phi = \pi - \cos^{-1}\left(\frac{a + b \cos \phi_s + c \cos \phi_s}{2}\right) \]

\[\phi_o = \tan^{-1}\left(\frac{z_o (x_o^2 + y_o^2)^{-1}}{x_o (x_o^2 + y_o^2)^{-1}}\right) \] (2)

\[\lambda_o = \cos^{-1}\left(\frac{z_o (x_o^2 + y_o^2)^{-1}}{x_o (x_o^2 + y_o^2)^{-1}}\right) - \lambda_g \] (3)

If \(y_o > 0 \), \(0 \leq \lambda_o \leq 180 \); if \(y_o < 0 \), \(180 \leq \lambda_o \leq 360 \).

The additional formulae needed to evaluate Equations 1-3 are

\[x_o = r_s \left(a + b \cos \phi_s \right) \]

\[y_o = r_s \left(b + m \cos \phi_s \right) \]

\[z_o = r_s \left(c + n \cos \phi_s \right) \]

Stellar refraction is neglected in our analysis due to the low index of refraction at the altitudes considered in this study.

4. Data Processing and Error Analysis

The technique of data processing and the analysis of resulting errors has been reported during this study by Roble and Hays (1972). This paper is included as Appendix II and is a complete description of the
results of this study. A complete description of the computer routine used to evaluate the occultation results obtained in this study is included as Appendix III of this report. The reader is referred to these detailed appendices for further information on the results of our study. A separate discussion of influence of orbital errors is included in Appendix IV.

5. Data Analysis

A very large number of scans have been reduced in the course of this contract period. Table I summarizes these results and includes all orbits which have yielded at least a partial result e.g., a molecular oxygen profile or an ozone profile. To provide information on quality in the individual channels, the following code is used

\[
\begin{align*}
 c &= \text{processing completed} \\
 + &= \text{resulting number density profile, } n(r_o), \text{ acceptable} \\
 - &= n(r_o) \text{ not acceptable} \\
 ? &= n(r_o) \text{ questionable}
\end{align*}
\]

Other information in the table refers to the starting time (GMT and local) of the scan, the location of the ray tangent point, the target star, and the nature of some of the difficulties. Starting times are only approximate, as they vary up to 20 seconds from channel to channel and they must be entered to the nearest half-second for acceptable accuracy in height of ray tangent point.

These results have been analyzed from the point of view of their geophysical information and are to be published in journals during the next few months. All papers are in press at this time. Detailed computer output containing tabular input data and results are available to the contracting agency on request, but are too lengthy to include in this report.
Table I

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Date</th>
<th>GMT hr:min</th>
<th>Local hr:min</th>
<th>Long. (deg)</th>
<th>Lat. (deg)</th>
<th>Star</th>
<th>Ozone</th>
<th>O2 remark</th>
<th>Remarks on data loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>5778</td>
<td>1/13/70</td>
<td>5 28</td>
<td>23 52</td>
<td>-84</td>
<td>48</td>
<td>Ψ Peg</td>
<td>-</td>
<td>+</td>
<td>O3 filter</td>
</tr>
<tr>
<td>5779</td>
<td>1/13/70</td>
<td>7 8</td>
<td>23 51</td>
<td>-109</td>
<td>48</td>
<td>Ψ Peg</td>
<td>-</td>
<td>+</td>
<td>O3 filter</td>
</tr>
<tr>
<td>8884</td>
<td>8/17/70</td>
<td>4 55</td>
<td>5 55</td>
<td>15</td>
<td>4</td>
<td>α Lup</td>
<td></td>
<td>+</td>
<td>O3 reset</td>
</tr>
<tr>
<td>8898</td>
<td>8/18/70</td>
<td>4 19</td>
<td>5 51</td>
<td>23</td>
<td>9</td>
<td>β Lup</td>
<td>?</td>
<td>?</td>
<td>Height</td>
</tr>
<tr>
<td>8899</td>
<td>8/18/70</td>
<td>5 59</td>
<td>5 51</td>
<td>-2</td>
<td>9</td>
<td>β Lup</td>
<td>?</td>
<td>?</td>
<td>Height, O2 evenness</td>
</tr>
<tr>
<td>8913</td>
<td>8/19/70</td>
<td>5 22</td>
<td>5 54</td>
<td>8</td>
<td>11</td>
<td>β Lup</td>
<td></td>
<td>+</td>
<td>O3 reset</td>
</tr>
<tr>
<td>8942</td>
<td>8/21/70</td>
<td>5 55</td>
<td>4 27</td>
<td>-22</td>
<td>24</td>
<td>Τ Sco</td>
<td>+</td>
<td>-</td>
<td>O3 data cutoff, O2 reset</td>
</tr>
<tr>
<td>8943</td>
<td>8/21/70</td>
<td>7 35</td>
<td>4 23</td>
<td>-48</td>
<td>24</td>
<td>Τ Sco</td>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8956</td>
<td>8/22/70</td>
<td>5 18</td>
<td>4 26</td>
<td>-14</td>
<td>24</td>
<td>Τ Sco</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8957</td>
<td>8/22/70</td>
<td>6 58</td>
<td>4 22</td>
<td>-39</td>
<td>25</td>
<td>Τ Sco</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>8971</td>
<td>8/23/70</td>
<td>6 20</td>
<td>4 44</td>
<td>-24</td>
<td>27</td>
<td>δ Sco</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8985</td>
<td>8/24/70</td>
<td>5 45</td>
<td>4 13</td>
<td>-23</td>
<td>24</td>
<td>Τ Sco</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8986</td>
<td>8/24/70</td>
<td>7 25</td>
<td>4 13</td>
<td>-48</td>
<td>24</td>
<td>Τ Sco</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9000</td>
<td>8/25/70</td>
<td>6 47</td>
<td>5 17</td>
<td>-32</td>
<td>27</td>
<td>δ Sco</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9014</td>
<td>8/26/70</td>
<td>6 10</td>
<td>4 30</td>
<td>-25</td>
<td>26</td>
<td>δ Sco</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10795</td>
<td>12/28/70</td>
<td>2 31</td>
<td>21 55</td>
<td>-69</td>
<td>42</td>
<td>ι Her</td>
<td>+</td>
<td>+</td>
<td>Ε Aur spectrum used</td>
</tr>
<tr>
<td>10796</td>
<td>12/28/70</td>
<td>4 12</td>
<td>22 12</td>
<td>-91</td>
<td>43</td>
<td>ι Her</td>
<td>-</td>
<td>-</td>
<td>Ε Aur spectrum used</td>
</tr>
<tr>
<td>10902</td>
<td>1/4/71</td>
<td>13 29</td>
<td>22 38</td>
<td>-223</td>
<td>-16</td>
<td>α And</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>11795</td>
<td>3/7/71</td>
<td>15 59</td>
<td>0 33</td>
<td>128</td>
<td>-34</td>
<td>δ Ori</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12178</td>
<td>4/3/71</td>
<td>6 8</td>
<td>22 33</td>
<td>-114</td>
<td>36</td>
<td>i Ori</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14579</td>
<td>9/17/71</td>
<td>5 42</td>
<td>2 51</td>
<td>-43</td>
<td>26</td>
<td>θ Oph</td>
<td>+</td>
<td>-</td>
<td>O2 reset</td>
</tr>
<tr>
<td>14580</td>
<td>9/17/71</td>
<td>6 22</td>
<td>1 50</td>
<td>-68</td>
<td>26</td>
<td>θ Oph</td>
<td>?</td>
<td>+</td>
<td>O3 values high in bulge</td>
</tr>
</tbody>
</table>

In addition, orbits 13161, 13187, 13189, and 13195 of June 10 and June 12, 1971, provided high quality data which are awaiting accurate satellite position reports.
6. **Geophysical Results**

Interpretations of the results obtained under this contract have been presented in papers published in the open literature. Molecular oxygen results were compared with theory and previous measurements by Hays and Roble (1972b). Ozone results were discussed by Hays and Roble (1972c), Roble and Hays (1972b) and Roble and Hays (1972c). These papers are included as Appendices V through VIII.

7. **Summary of Study**

The present study of the stellar occultation technique of recovering atmospheric composition has led to the following conclusions:

a) Any constituent which causes significant absorption in a stellar spectrum can be monitored by using the ultraviolet occultation technique.

b) The error associated with the inversion of occultation data limits the altitude region for which results of high quality can be obtained. In most cases the high quality data results from regions where the intensity lies between 10% to 90% of the unattenuated flux. Finite difference errors are responsible for limiting the structural detail which can be recovered. Orbital errors are serious and are reflected in the altitude scale of the recovered density profiles.

c) Serious geophysical studies can be carried out using as principal data the density profiles of molecular oxygen and ozone obtained from stellar occultation. The following major geophysical features have been identified during this study:

(1) Molecular oxygen shows a strong solar cycle variation in the lower thermosphere. This probably results from changes in
the constant pressure level surfaces at the base of the thermosphere.

(2) Molecular oxygen in equatorial regions shows strong magnetic storm variations due to large scale dynamic motions resulting from polar region heating.

(3) Ozone in the mesopause region is controlled by wet chemistry and supports modern photochemical theories.
APPENDIX I.

Terrestrial Atmospheric Composition from Stellar Occultations
Terrestrial Atmospheric Composition from Stellar Occultations

Abstract. Stellar ultraviolet light transmitted through the earth's upper atmosphere is strongly absorbed by ozone and molecular oxygen. The stellar ultraviolet photometers aboard the Orbiting Astronomical Observatory (OAO-2) satellite have measured the intensity changes of several stars during occultation of the star by the earth's atmosphere. From the occultation data the nighttime vertical number density profiles of molecular oxygen at altitudes from 120 to 200 kilometers and of ozone at altitudes from 60 to 100 kilometers have been obtained.

In the earth's upper atmosphere, stellar ultraviolet light is strongly absorbed in the Schumann-Runge continuum of O$_2$ and the Hartley continuum of O$_3$. By monitoring the intensity of ultraviolet starlight in these continuum regions from a satellite as the star is occulted by the earth's atmosphere; we are able to obtain information on the number density profile of O$_2$ in the lower thermosphere and O$_3$ in the upper mesosphere (1, 2). In this report we describe the technique used to obtain the number density profiles from stellar occultation measurements. The data were obtained by the University of Wisconsin stellar photometers aboard the Orbiting Astronomical Observatory (OAO-2) satellite. We discuss here the inversion process and also show the O$_2$ and O$_3$ distributions determined from a typical occultation scan.

In the occultation technique classical absorption spectroscopy is used to determine the number density profile of the absorbing species in the upper atmosphere. The star is the source of ultraviolet light, the OAO stellar photometers are the detectors, and the atmosphere between them is the absorption cell. During the occultation process, the ultraviolet light is selectively absorbed in spectral regions for which O$_2$ and O$_3$ have large absorption cross sections. The intensity of the transmitted ultraviolet light is related to the number density along a tangential column of the absorbing species (N_i) by Beer's law

$$I(\lambda) = I_0(\lambda) \exp \left(- \sum_i \sigma_i(\lambda) \cdot N_i(r_0) \right)$$

where $I_0(\lambda)$ is the unattenuated intensity above the atmosphere of the star at wavelength λ, $\sigma_i(\lambda)$ is the absorption cross section of the ith absorbing species, and $N_i(r_0)$ is the tangential column number density of the ith absorbing species at a tangent ray height r_0. The star's spectrum is measured above the atmosphere by the OAO ultraviolet spectrometer. By also knowing the absorption cross section, one can relate $N_i(r_0)$ to the intensity of the transmitted ultraviolet light. In practice, Eq. 1 must be integrated with respect to wavelength because of the finite pass-band of the ultraviolet filter. The best
and the strong atmospheric absorption of spheric absorption. Thus, the stellar occultation technique acquired by the OAO-2 satellite allows determination of detailed structure. The data in the 1500-A channel were inverted, and the results are shown in Fig. 2B where the O₃ number density profile is shown as a function of height. For comparison, the O₃ profile of the Committee on Space Research (COSPAR) CIRA model atmosphere is shown also. These data are only a sample of the approximately 20 stellar occultation scans that have been reduced thus far, but they illustrate the quality of the data obtained from the occultation measurements.

Most of the O₃ scans obtained with the 2390-A and 2460-A filters aboard the OAO-2 satellite have a normalized intensity scan similar to the one shown in Fig. 2A. The intensity of the occulting star decreases as the starlight penetrates into the atmosphere until a slight increase in the intensity curve occurs at a tangent ray height near 70 km. These data, when inverted, give the number density profile of O₃ shown in Fig. 2B. The structure in the measured intensity curve is caused by a bulge in the nighttime O₃ number density profile, with the peak occurring near 82 km and a minimum near 75 km for this particular scan. The stellar occultation measurements clearly define the structure of the nighttime O₃ profile at high altitudes where no previous measurements had been made.

The occultation technique has also been used with the sun as the light source. The measurements, however, are restricted to sunrise and sunset, and a general review of the subject has been given by Link (4).

P. B. HAYS
University of Michigan, Ann Arbor 48105

R. G. ROBLE
National Center for Atmospheric Research, Boulder, Colorado 80302

A. N. SHAH
University of Michigan, Ann Arbor

References and Notes
5. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

0 January 1972

Fig. 2. (A) Normalized intensity of a star as a function of the tangent ray height during occultation of the star by the earth. The curves correspond to the intensity measured in the 1500-A and 2390-A channels of the University of Wisconsin stellar photometers aboard the OAO-2 satellite [22 August 1970, 04 hours 22 minutes (local time), 25°N, 39°E]. (B) Number densities of O₂ and O₃ as a function of tangent ray height determined from the occultation measurements. The solid line is the O₃ number density from the CIRA 1965 model atmosphere.

results are thus obtained when a single species dominates the absorption process, and the OAO filters were, therefore, selected accordingly.

Once \(N_i(r_0) \) is known, it is a simple matter to invert the data and obtain the vertical number density profile of the absorbing species at the occultation tangent point. A simple geometrical argument (Fig. 1) shows that \(N_i(r_0) \) along the ray path for a spherically stratified atmosphere can be written as

\[
N_i(r_0) = 2 \int_0^\infty \frac{n_i(r) r dr}{r_0^4} \quad (2)
\]

where \(n_i(r) \) is the number density of the \(i \)th absorbing species at radius \(r \). Equation 2, the Abel integral equation \((1, 2)\), is easily inverted to give the number density of the absorbing species at a tangent ray height \(r \)

\[
n_i(r) = \frac{d}{dr} \left[-\frac{1}{\pi} \int_0^r \frac{N_i(r_0) dr_0}{r' - r^2} \right] \quad (3)
\]

Thus, the stellar occultation technique can be used to obtain the vertical density profile of any absorbing atmospheric species which can be spectrally isolated.

Hays and Roble (2) have calculated the tangential ultraviolet transmission of the earth's upper atmosphere. Their results show that both the strong atmospheric absorption of O₃ in the Schumann-Runge continuum near 1500 A and the strong atmospheric absorption of O₂ in the Hartley continuum near 2500 A occur in spectrally isolated regions in which the stellar ultraviolet absorption is primarily due to a single species. The absorption cross sections of O₂ and O₃ at these wavelengths have a peak around \(10^{-17} \text{ cm}^2 \). Therefore, we are able to determine the distribution of these species near altitudes at which \(N_i \) is approximately \(10^{17} \text{ cm}^{-2} \). If a spectral region away from the peak cross section is utilized, one is able to observe higher tangential column number densities or, equivalently, to measure the number density at lower altitudes within the atmosphere. The ultraviolet light in the wavelength interval from 1400 to 1600 A is absorbed primarily by O₂ at altitudes from 130 to 230 km. In the wavelength interval from 2400 to 2600 A, the ultraviolet light is absorbed primarily by O₃ at altitudes from 60 to 100 km (2).

The normalized intensity data obtained during one of the many occultations are shown in Fig. 2A for two stellar photometers having filters centered at 1500 and 2390 A. The normalized intensity is obtained as a function of time; however, by knowing the star's position and the orbital elements of the satellite, we are able to relate time to the tangent ray height of the occulting star. Because of high-altitude absorption, the normalized intensity in the O₂ channel at 1500 A decays first. Then the intensity in the 2390-A channel decays rapidly at altitudes where O₃ absorption becomes important. The excellent quality of the data obtained by the OAO-2 stellar photometers allows determination of detailed structure. The data in the 1500-A channel were inverted, and the results are shown in Fig. 2B where the O₃ number density profile is shown as a function of height.
APPENDIX II.

A Technique for Recovering the Vertical Number Density Profile of Atmospheric Gases from Planetary Occultation Data
A TECHNIQUE FOR RECOVERING THE VERTICAL NUMBER DENSITY PROFILE OF ATMOSPHERIC GASES FROM PLANETARY OCCULTATION DATA

R. G. ROBLE
National Center for Atmospheric Research,* Boulder, Colorado 80302, U.S.A

and

P. B. HAYS
Department of Aerospace Engineering, University of Michigan, Ann Arbor, Michigan 48104, U.S.A

(Received 29 March 1972)

Abstract—The occultation technique of determining the properties of the atmosphere using absorption spectroscopy is examined. The intensity of a star, in certain atmospheric absorption bands, is monitored by a satellite tracking the star during occultation by the Earth's atmosphere. The intensity data in certain wavelength intervals, where absorption is attributed to a single species, are related to the tangential column number density of the absorbing species through Beer's law. The equation for the tangential column number density is the Abel integral equation which is inverted to obtain the number density profile of the absorbing species at the occultation tangent ray point. Two numerical schemes for inverting the Abel integral equation for signals of low intensity with statistical noise superimposed are presented; one for determining the number density profile of atmospheric species that decrease exponentially with height, and the second for determining the profile of constituents having a more complex vertical structure, such as ozone. The accuracy of retrieving the number density distribution from occultation data is examined. A theoretical analysis of the errors in determining the number density from occultation data of very low signal intensity is also presented. The errors in retrieving the number density profile are related to the intensity of the source, the number of data points per scan, and the degree of data smoothing required before inversion. As a specific example, calculations are made of the errors in retrieving the molecular oxygen and ozone number density profiles from occultation intensity data in the Schumann-Runge continuum of molecular oxygen at 1450 Å and the Hartley continuum of ozone at 2450 Å.

1. INTRODUCTION

Absorption spectroscopy is an important technique for determining the composition and number density profiles of constituents in the upper atmosphere (Watanabe, 1958; Hinteregger, 1962). Most of the measurements have been made from rockets monitoring the absorption of the solar u.v. flux in certain atmospheric bands (Johnson et al., 1951; Bryam et al., 1957; Kupperian et al., 1959; Jursa et al., 1963, 1965; Carver et al., 1964, 1965; Weeks and Smith, 1968; Opal and Moos, 1969; Wildman et al., 1969; Quessette, 1970; Brannon and Hoffman, 1971). Satellites have also been used to measure the intensity of certain u.v. sources (i.e., Sun, Moon, stars) during occultation of the source by the Earth's atmosphere (Fig. 1). The intensity data measured during occultation are then used to obtain information about the absorbing species in the upper atmosphere (Venkateswaran et al., 1961; Rawcliffe et al., 1963; Miller and Stewart, 1965; Thomas et al., 1965; Fesenkov, 1967; Thomas and Norton, 1967; Norton and Warnock, 1968; Stewart and Wildman, 1969; Hinteregger and Hall, 1969; Lockey et al., 1969; Link, 1969; Reid and Withbroe, 1970; May, 1971; Reid, 1971; Roble and Norton, 1972; Hays et al., 1972).

Basically, the occultation technique is similar to the classical technique of absorption spectroscopy. The Sun, Moon, or a star are used as a source of light and the satellite

* The National Center for Atmospheric Research is sponsored by the National Science Foundation.
photometers as a detector, with the atmosphere between acting as the absorption cell. As
the satellite moves in its orbit, the source ultimately is occulted by the Earth. During the
occultation process, the intervening atmosphere absorbs progressively more of the light due
to the strong photo-absorption features of the atmospheric gases. The occultation intensity
data can be related to the tangential column number density of the absorbing species if the
absorption cross-sections are known. The equation for the tangential column number
density of the absorbing species is the Abel integral equation which is easily inverted to give
the number density profile at the occultation tangent point. The occultation technique
works best for a point source, such as a star, where the vertical resolution at the tangent
point is very sharp (Hays and Roble, 1968b). For a finite-size source, such as the Sun, the
light rays emitted from the upper and lower limb can have tangent ray heights separated by
about 26 km when observed from normal satellite altitudes. This complicates the problem
of relating the transmitted solar intensity to the tangential column number density (May,
1971; Roble and Norton, 1972). However, once the tangential column number density is
obtained, it again becomes easy to invert the Abel integral equation and obtain the local
number density at the tangent ray point. For simplicity, we therefore assume that the light
source is small, such as a star (Hays et al., 1972) or a small portion of the solar disk
(Hinteregger and Hall, 1969; Reid and Withbroe, 1970; Reid, 1971).

In the present paper, we describe a technique for retrieving the number density profile
of the absorbing species from occultation intensity data. The data-reduction procedure is
similar to the method of computing the radial emission distribution of a cylindrical plasma
source, as treated by the plasma physicists. The similarity exists because both techniques
reduce to the problem of solving the Abel integral equation (Hays and Roble, 1968a, b;
Barr, 1962).

In practice, the numerical solution of the Abel integral equation requires special
handling because of its sensitivity to small random errors in the data. Therefore, we
develop two separate techniques of numerically inverting the Abel integral equation to
obtain the number density distribution of the absorbing species. The first utilizes an ex-
ponential approximation for atmospheric species which decrease nearly exponentially with
altitude; the second, a quadratic approximation which works better for atmospheric
species having a more complex vertical distribution such as atmospheric ozone (Hays et al.,
1972). The retrieval accuracy of both schemes is examined, and a theoretical analysis of errors is presented which enables us to determine the accuracy of the measurement in the presence of random statistical errors inherent in light sources of very low intensity. The inversion technique and analysis of errors, although examined with respect to molecular oxygen and ozone, are general and can be used to determine the accuracy of any occultation measurement if the signal level and data-acquisition rate are known.

2. OCCULTATION TECHNIQUE

The intensity of a star, as measured by a telescope aboard a satellite, during occultation of the star by the Earth's atmosphere (Fig. 1) is expressed as

$$F^*(r_0) = \varphi \int T(\lambda)I(\lambda, r_0) d\lambda$$

(1)

where r_0 is the tangent ray height of the light ray passing tangentially to the Earth's surface, $\varphi = AQ_oT_0$, A is the aperture area of the telescope, Q_o is the quantum efficiency of the photo-multiplier, T_0 is the optical transmission of the system, $T(\lambda)$ is the broadening function or transmission of the dispersive element at wavelength λ and $I(\lambda, r_o)$ is the intensity of the star at wavelength λ and tangent ray height r_o.

The intensity of starlight passing through the Earth's upper atmosphere is determined by considering the combined attenuation of all of the absorbing species along the ray path (Beer's law).

$$I(\lambda, r) = I_\infty(\lambda) \exp \left(-\sum \sigma_i(\lambda)N_i(r)\right)$$

(2)

where $I_\infty(\lambda)$ is the stellar intensity above the atmosphere and $\sigma_i(\lambda)$ is the absorption cross-section of the ith atmospheric species. In the case of a spherically stratified atmosphere, the tangential column number density $N_i(r_0)$ is

$$N_i(r_0) = 2 \int_{r_0}^{\infty} n_i(r) r dr$$

(3)

where $n_i(r)$ is the number density of the ith absorbing species at a distance r from the center of the Earth.

Hays and Roble (1968b) calculated the tangential u.v. transmission for the mesosphere and the lower thermosphere. They show that in certain specific wavelength intervals the u.v. starlight is absorbed by a single species. These include a broadband region near 1500 Å where molecular oxygen acts as a single absorber in the lower thermosphere and also a region near 2500 Å where ozone is a single absorber in the mesosphere. In both of these regions, Hays and Roble (1968b) show that refractive attenuation, Rayleigh scattering, and absorption by other minor atmospheric constituents are negligible over most of the altitude range where absorption occurs. In addition, they point out that only the relative intensity is important for the occultation measurement. The stellar occultation data are therefore normalized as

$$F(r_0) = \frac{\int T(\lambda)I_\infty(\lambda) \exp \left(-\sigma(\lambda)N(r_0)\right) d\lambda}{\int T(\lambda)I_\infty(\lambda) d\lambda}$$

(4)

The interference filter used in the occultation measurements is selected so that $T(\lambda)$ includes only a wavelength region where absorption is caused by the single species of...
interest. By knowing the filter-broadening function, the stellar spectra above the atmosphere, and the absorption cross-section, the normalized signal is then only a function of the tangential column number density \(F(r_0) = F(N(r_0)) \). The intensity data can be inverted to give the tangential column number density \(N(r_0) = N(F(r_0)) \). Equation (3) for the tangential column number density is the Abel integral equation (c.f. Hays and Roble, 1968a, b) which is directly inverted to give the number density of the absorbing species at radius \(r \)

\[
n_i(r) = -\frac{1}{\pi} \int_r^\infty \frac{[dN(r_0)/dr_0] dr_0}{\sqrt{r_0^2 - r^2}}.
\]

In the next sections, we develop two separate numerical inversion schemes; one applicable for determining the number density profile of atmospheric species decreasing nearly exponentially with altitude, such as molecular oxygen; and the second for atmospheric species having a more complex number density profile, such as ozone.

3. DATA REDUCTION

(a) Exponential form. The intensity of a star measured by photometers aboard a satellite during occultation is generally weak and usually obtained in digital form (Hays et al., 1972). At low intensities, pulse-counting systems are used with a finite integration time between data points. Therefore, the intensity data are obtained at a series of discrete tangent ray heights \(F(r_0) \). The normalized intensities are converted to the tangential column number density of the absorbing species along the ray path \(N(r_0) \) as described in the previous section. Thus, a set of discrete values of the tangential column number density is obtained as a function of tangent ray height during occultation. We approximate the tangential column number density between data points in the interval \(r_i < r < r_{i+1} \) by

\[
N(r) = a_i \exp (-\beta_i (r - r_i))
\]

where \(r_i \) and \(r_{i+1} \) are the \(i \) and \(i+1 \) tangent ray heights of the data points, respectively. The coefficients \(a_i \) and \(\beta_i \) are determined from a least squares fit to the data in the vicinity of the \(i \)th data point by minimizing the variance of Equation (6) with the data and smoothing \(M \) adjacent points (c.f. Roble and Norton, 1972).

\[
\delta_i = \sum_{j=K_1}^{K_2} (N_j - a_i \exp (-\beta_i (r_j - r_i)))^2
\]

where \(K_1 = i - M/2, K_2 = i + M/2, N_j \) is the tangential column number density at the \(j \)th data point. Then by differentiating Equation (6) and replacing the integral in Equation (5) by a finite sum, we obtain

\[
n_i(r) = \frac{1}{\pi} \sum_{i=1}^{\infty} a_i \beta_i \left(\frac{1}{2 \sqrt{\pi \beta_i (r_i + r_{i+1})}} \right)^{1/2} \int_{r_i}^{r_{i+1}} \exp \left(-\beta_i (r - r_i)\right) \frac{1}{\sqrt{r^2 - r_i^2}} dr.
\]

Expanding the denominator and integrating, we obtain

\[
n_i(r) = \frac{1}{\pi} \sum_{i=1}^{\infty} a_i \beta_i \left(\frac{1}{2 \sqrt{\pi \beta_i (r_i + r_{i+1})}} \right)^{1/2} \left(1 + \frac{1}{2 \beta_i (r_i + r_{i+1})} \right) \left(\frac{\pi}{\beta_i} \right)^{1/2} \times \left[\text{erf} \left(\beta_i (r_{i+1} - r_i) \right)^{1/2} - \text{erf} \left(\beta_i (r_i - r_{i+1}) \right)^{1/2} \right] \exp \left(\beta_i (r_i - r_{i+1}) \right)
\]

\[
+ \frac{1}{2 \beta_i (r_i + r_{i+1})} \left[(r_{i+1} - r_i)^{1/2} \exp \left(-\beta_i (r_{i+1} - r_i) \right) - (r_i - r_{i+1})^{1/2} \right]
\]

where \(\text{erf}(x) \) is the error function of \(x \).
Thus, the number density of the absorbing species at radius \(r \) is determined directly from Equation (9) using the calculated values of \(\alpha \) and \(\beta \).

(b) Quadratic form. When the absorbing constituent has a number density height profile which is not exponentially decreasing with altitude, but varies over the scan altitude, such as for ozone (Fig. 2), then the exponential scheme developed in the previous section may not be best suited for the data-reduction process. In this case, we approximate the tangential column number density in the altitude region \(z_i < z < z_{i+1} \) by the quadratic relationship

\[
N(z) = Az^2 + Bz + C
\]

(10)

where \(z = r - r_e \) and \(r_e \) is the radius of the Earth, 6371 km.

The coefficients \(A \), \(B \) and \(C \) are again determined by minimizing the variance of equation (10) with the data and smoothing \(M \) adjacent points

\[
\delta_i = \sum_{j=K_1}^{K_2} (N_j - (A_i z_j^2 + B_i z_j + C_i))^2.
\]

(11)
Minimizing Equation (11) and solving directly for A_i, B_i and C_i we obtain

$$A_i = \frac{(M(Nz) - (\bar{N}(\bar{z}))\overline{(Mz^2) - (\bar{z})^2}) - (M(Nz^2) - (\bar{N}(\bar{z}))\overline{(Mz^2) - (\bar{z})^2})}{(M(z^2) - (\bar{z})^2)(M(z^2) - (\bar{z})^2)(M(z^2) - (\bar{z})^2)}$$

$$B_i = \frac{(M(Nz) - (\bar{N}(\bar{N})) - (M(z^2) - (\bar{z})^2)A_i}{(M(z^2) - (\bar{z})^2)}$$

$$C_i = \frac{(\bar{N}) - (\bar{z})^2A_i - (\bar{z})B_i}{M}$$

where

$$(-) = \sum_{j=-K_1}^{K_2} \left(\begin{array}{c} \ldots \end{array} \right).$$

As in the previous section, by differentiating Equation (10) and replacing the main integral of equation (5) with a finite sum and then integrating between data points, we obtain

$$n(r_i) = -\frac{1}{n} \sum_{i=1}^{\infty} \left[2A_i((r_{i+1}^2 - r_i^2)^{1/2} - (r_i^2 - r_{i+1}^2)^{1/2}) + (B_i - 2A yr) \log \left(\frac{r_{i+1} + (r_{i+1}^2 - r_i^2)^{1/2}}{r_i + (r_i^2 - r_{i+1}^2)^{1/2}} \right) \right].$$

Thus, the number density of the absorbing species as radius r_i is determined from equation (13) using the coefficients A_i and B_i calculated for each data point.

4. ATMOSPHERIC MODEL

The molecular oxygen number density profile in the lower thermosphere, obtained from the mean CIRA 1965 model atmosphere, is shown in Fig. 2. For mathematical simplicity, we approximate this profile by an atmosphere with a constant scale height gradient (Nicolet, 1960),

$$H = H_s + \beta(r - r_e)$$

where H_s is the scale height of the atmosphere at radius r_e, and β is the vertical gradient of the scale height. The molecular oxygen number density is then represented as

$$n(r) = n_s\left[\frac{H_s}{H_s + \beta(r - r_e)} \right]^{(1+\beta)/\beta}$$

where $n_s = 2 \times 10^{12} \text{ cm}^{-3}$, $r_e = 6471 \text{ km}$, $H_s = 5 \text{ km}$, and $\beta = 0.23$ to give the approximation to the CIRA 1965 molecular oxygen distribution shown in Fig. 2. The tangential column number density of molecular oxygen along the ray path is determined by inserting Equation (15) into Equation (3), expanding the denominator, and integrating to obtain

$$N(r_0) = \left(\frac{2}{r_0} \right)^{1/2} n_s\left[\frac{H_s}{H_s + \beta(r_e - r_0)} \right]^{1/2} \left[\frac{\beta}{H_s + \beta(r_0 - r_e)} \right]^{3/2} B\left(\frac{3}{2}, \left(\frac{1}{2} - \frac{3}{2} \right) \right)$$

$$+ r_0\left[\frac{\beta}{H_s + \beta(r_0 - r_e)} \right]^{1/2} B\left(\frac{1}{2}, \left(\frac{1}{2} - \frac{1}{2} \right) \right)$$

where $\delta = \beta/(1 + \beta)$ and $B(x, y)$ is the Beta function, $B(x, y) = \gamma(x)\gamma(y)/\gamma(x + y)$ and $\gamma(x)$ is the Gamma function. The normalized intensity as a function of tangent ray height is calculated from Equation (2) and is shown in Fig. 3 for absorption at a single wavelength
1450 Å in the Schumann–Runge continuum where the molecular oxygen absorption coefficient is approximately 2×10^{-17} cm2.

Hays et al. (1972) presented a typical night-time ozone distribution determined from occultation measurements made by the Orbiting Astronomical Observatory (OAO-2). The ozone number density profile given in their paper can be reasonably represented as a sum of exponential and Gaussian functions

$$n(r) = n_0 \exp\left(-\frac{(r - r_b)}{H_b}\right) + n_e \exp\left(-\frac{(r - r_e)}{H_e}\right)^3$$

(17)

where $n_0 = 5 \times 10^{10}$ cm$^{-3}$, $r_b = 50$ km, $H_b = 4.34$ km, $n_e = 8 \times 10^8$ cm$^{-3}$, $r_e = 83$ km, and $H_e = 5$ km. The ozone number density distribution obtained from equation (17) is shown in Fig. 2.

The coefficients used in this study give an ozone number density slightly higher than those for a typical night-time ozone distribution determined by Hays et al. (1972). This difference, however, is not important because the profiles are similar and the main features of the ozone analysis are preserved in either case.

The total columnar number density along a ray path is obtained by inserting equation (17) into equation (3), expanding the denominator, and integrating to give

$$N(r_0) = 2n_0 \exp\left(\frac{r_0}{H_e}\right)K_0\left(r_0/H_e\right) + 2n_e \exp\left(-\frac{(r_0 - r_e)}{H_e}\right)^3$$

$$\times \left(2r_0\right)^{-1/2} \left(\frac{2}{H_e^2}\right)^{-3/4} \gamma\left(\frac{3}{4}\right)\exp\left(\frac{(r_0 - r_e)^3}{(2H_e^2)}\right)$$

$$\times D_{-3/8}(2)^{1/2}H_e^{-1}(r_0 - r_e) + r_0 \left(\frac{2}{H_e^2}\right)^{-1/4} \gamma\left(\frac{3}{4}\right)$$

$$\times \exp\left(\frac{(r_0 - r_e)^3}{(2H_e^2)}\right)D_{-1/2}(2)^{1/2}H_e^{-1}(r_0 - r_e)$$

(18)
where \(K_\nu(x) \) is the modified Bessel function of the first kind, \(\gamma(x) \) is the Gamma function, and \(D_\nu(x) \) is the parabolic cylinder function. The normalized intensity as a function of tangent ray height is obtained from Equation (18) and Equation (2), and is shown in Fig. 3 for absorption at a single wavelength in the Hartley continuum of ozone at 2500 Å. At this wavelength, ozone has an absorption cross-section of about \(10^{-17} \, \text{cm}^2 \).

5. SAMPLING ERROR

The accuracy in retrieving the number density profile with the data-reduction scheme depends upon (a) the data-acquisition rate or number of data points per scan, (b) the statistical noise inherent in a signal of low intensity, (c) the smoothing parameter \(M \) used in the inversion process, (d) knowledge of the satellite position during occultation, and (e) departures from spherical symmetry. The first three items are examined in this paper. Item (d) depends on the satellite tracking network and the degree of accuracy of the orbital elements. The intensity of the star is measured as a function of time, but by knowing the star's position and the satellite orbital elements, we can relate the intensity to the tangent ray height of the occulting star. Thus, errors in satellite time and position appear as errors in the tangent ray height and will not be discussed in this paper. The last item may be important for certain atmospheric species which change rapidly with time, as perhaps during sunrise or sunset; however, in this analysis, spherical symmetry is assumed.

The error in retrieving the molecular oxygen number density profile using the exponential data-reduction scheme is plotted as a function of height in Fig. 4 for various data-acquisition rates. The tangential column number density for the analytic molecular oxygen distribution is calculated at the various altitudes using Equation (16). These data are inverted using the exponential data-inversion scheme, and the retrieved molecular oxygen number density is compared to the number density given by the analytic model. The errors in retrieving the number density are then plotted in Fig. 4. The results show that the errors are smallest when a large number of data points per occultation scan are used in the
inversion process. The smoothing parameter M is also a factor in the retrieval accuracy. The smoothing parameter is primarily used to smooth the analytic representation of the tangential column number density through noisy data points and its importance will be evident in the next section. But for noise-free data, an increase in the smoothing parameter decreases the retrieval accuracy for a number density profile having a slight curvature.

At high altitudes, the retrieval accuracy would decrease due to the practical requirement of truncating the inversion integral at an upper boundary. It is difficult to convert the normalized intensity to tangential column number density for the upper part of the scan where the normalized intensity approaches 1.0, especially in the presence of statistical noise.

To reduce this error and extend the upper limit of the occultation scan, it is convenient to utilize a model atmosphere and calculate the tangential column number beyond the uppermost data point for use in the inversion integral.

The error in retrieving the model ozone number density profile using the analytic expression for the tangential column number density given by Equation (18) and also using the quadratic data-reduction scheme is shown in Fig. 5. The retrieval is good for a high data-acquisition rate, but as the data-acquisition rate decreases, the accuracy in defining the vertical structure and in particular the ozone bulge near 83 km also decreases. The lowest data-acquisition rate considered in Fig. 5 shows considerable error in retrieving the ozone bulge. These results were obtained using a smoothing parameter of $M = 2$. As the smoothing parameter is increased, the accuracy of retrieving the vertical structure depends critically on the data-acquisition rate. For a particular application, there is a tradeoff between the data-acquisition rate and the smoothing parameter.

For simplicity, the results presented here assume absorption at a single wavelength.
However, the technique which has been developed is general and can be applied to any broadband filter by including a wavelength integration.

6. THEORETICAL ANALYSIS OF STATISTICAL ERRORS

For occultation scans of very low intensity, the statistical noise which is superimposed upon the basic signal intensity becomes an appreciable part of the signal. The errors in retrieving the number density profile of the absorbing species from occultation data having random statistical noise are considered in this section.

(a) Molecular oxygen. The solid curve in Fig. 6 shows the calculated normalized intensity variation of a star during occultation using Equations (16) and (2). The peak signal level in this example is approximately 1000 counts sec$^{-1}$ and the calculations are made at a single wavelength of 1450 Å. Also shown in Fig. 6 is the basic scan with a superimposed Poisson noise distribution having a standard deviation proportional to the square root of the signal level. The molecular oxygen number density profiles shown in Fig. 7 for the two scans given in Fig. 6 have been retrieved using the data-reduction scheme described in the previous sections. Other statistical noise distributions yield an ensemble of retrieved molecular oxygen number density profiles which can be statistically analyzed.

If we assume that the tangential column number density is $N = N_0 + \Delta N$ where N_0 is the basic tangential column number density without statistical noise and ΔN is the tangential column number density error due to the statistical noise, then in the approximation given by Equation (6) we expand α and β as

$$\alpha = \alpha_0 + \Delta \alpha,$$

$$\beta = \beta_0 + \Delta \beta.$$

Inserting these relationships into Equation (7), expanding the exponential, and subtracting the basic unscattered state, we obtain

$$\delta^* = \sum_{j=1}^{K} \left[\Delta N_j - \Delta \alpha_j \exp (-\beta_0(z_j - z_l)) + \alpha_0 \Delta \beta_j (z_j - z_l) \exp (-\beta_0(z_j - z_l)) \right].$$

$$(20)$$
The coefficient errors \(\Delta \alpha_i \) and \(\Delta \beta_i \) are calculated in the least squares sense from the relationships

\[
\frac{\partial \delta^*}{\partial \Delta \alpha_i} = \frac{\partial \delta^*}{\partial \Delta \beta_i} = 0
\]

and are given in the Appendix.

The intensity of the star, considering single wavelength absorption, is calculated from Beer's law

\[
F_0 = F(\lambda, r_0) = F_\infty(\lambda) \exp \left(-\sigma(\lambda)N(r_0) \right)
\]

where \(F_\infty(\lambda) \) is the signal measured above the atmosphere in counts sect\(^{-1}\). The linear variation in tangential column number density due to a signal with statistical noise \(F = F_0 + \Delta F \) is obtained by introducing the value of \(N \) into Equation (22) and expanding the exponential to obtain

\[
\Delta N = -\frac{1}{\sigma(\lambda) F(\lambda, r_0)} \Delta F.
\]

If a Poisson random noise with a standard deviation for \(\Delta F \) proportional to the square root of the basic signal \((F_0)^{1/2} \) is introduced into the expressions for the coefficients \(\Delta \alpha_i \) and \(\Delta \beta_i \), the mean square errors for the coefficients \(\langle \Delta \alpha_i \rangle \) and \(\langle \Delta \beta_i \rangle \) are determined using the propagation of statistical errors theorem and they are presented in the Appendix.

The errors in the number density of the absorbing species at the tangent ray point are determined from the integral

\[
\Delta n(r_i) = -\frac{1}{\pi} \int_{r_i}^{r_o} \frac{[d \Delta N/dr] dr}{\sqrt{r^2 - r_i^2}}.
\]

The tangential column number density of the absorbing species is determined by inserting Equation (19) into Equation (6). The noise in the number density of the absorbing
species at the tangent ray point is obtained by expanding the exponential, subtracting the basic state, and differentiating the tangential column number density error ΔN to give

$$\Delta n(r) = \frac{1}{\pi} \sum_{i=1}^{\infty} (\beta_{ii} x_i + \alpha_{ii}) \int_{r_i}^{r_{i+1}} \frac{\exp(-\beta_{ii} (r - r_i))}{\sqrt{r^2 - r_i^2}} dr$$

$$- \frac{1}{\pi} \sum_{i=1}^{\infty} \alpha_{ii} \beta_{ii} \int_{r_i}^{r_{i+1}} \frac{(r - r_i) \exp(-\beta_{ii} (r - r_i))}{\sqrt{r^2 - r_i^2}} dr.$$ \(25\)

Integrating, we obtain

$$\Delta n(r) = \frac{1}{\pi} \sum_{i=1}^{\infty} (R_i \Delta x_i + S_i \Delta \beta_i)$$ \(26\)

where R_i and S_i are coefficients given in the Appendix. The standard deviation of the number density error at the tangent ray point due to statistical noise is calculated using the propagation of statistical errors theorem

$$\langle \Delta n(r) \rangle = T_i F^{-1/2}$$ \(27\)

where

$$T_i = \frac{1}{\pi} \left[\sum_{i=1}^{\infty} (R_i X_i + S_i Y_i)^2 \right]^{1/2}$$

and X_i and Y_i are given in the Appendix.

(b) Ozone. The errors in the ozone number density caused by statistical noise superimposed upon the basic signal are determined from the quadratic data-reduction scheme. The signal intensity variations are related to the tangential column number density variations through Equation (23) and the number density error of ozone at the tangent ray point is obtained from Equation (24). The tangential column number density with superimposed variations caused by statistical noise is $N = N_0 + \Delta N$. The coefficients in Equation (10) are assumed to have a variation $A_i = A_{oi} + \Delta A_i$, $B_i = B_{oi} + \Delta B_i$, and $C_i = C_{oi} + \Delta C_i$. Introducing these variations into Equation (11) and subtracting the basic state, we have

$$\delta_i = \sum_{j=1}^{K_1} (\Delta N_j - \Delta A_j z_j^2 - \Delta B_j z_j - \Delta C_j)^2.$$ \(28\)

Solving for the coefficients ΔA_j, ΔB_j, and ΔC_j, we obtain relationships similar to Equation (12) with the exception that N_j is replaced by ΔN_j

$$\Delta A_i = \sum_{j=K_1}^{K_3} Q_{ij} \Delta N_j$$

$$\Delta B_i = \sum_{j=K_1}^{K_3} Q_{ij}^* \Delta N_j$$ \(29\)

where Q_{ij} and Q_{ij}^* are given in the Appendix. The number density error at the tangent ray point is obtained by inserting Equation (29) into Equation (24) and integrating to give

$$\Delta n(r) = -\frac{1}{\pi} \sum_{i=1}^{\infty} \left[\sum_{j=K_1}^{K_3} \left((2 W_{1ij} - 2 r_i W_{2ij}) Q_{ij} + W_{3ij} Q_{ij}^* \right) \frac{\Delta F_i}{\sigma F_i} \right]$$ \(30\)

where

$$W_{1ij} = (r_i^2 - r_{i+1}^2)^{1/2} - (r_i^2 - r_{i}^2)$$

$$W_{3ij} = \log_e \left(\frac{r_{i+1} + (r_i^2 - r_{i+1}^2)^{1/2}}{r_i + (r_i^2 - r_{i}^2)^{1/2}} \right).$$
The standard deviation of the number density error at the tangent ray point is calculated using the propagation of statistical errors theorem and assuming that the standard deviation of the noise is proportional to the square root of the basic signal

\[
\langle \Delta n(r) \rangle = E_{\infty} F^{-1/2}
\]

where

\[
E_i = \frac{1}{\pi} \sum_{j=1}^{K_s} \sum_{l=1}^{j-1} \left[(2W_{3i} - 2r_i W_{4i})Q_i + W_{5i}Q_j^* \right] \frac{1}{\sigma} \left(\frac{F_{\infty}}{F_i} \right)^{1/2} \]

7. ANALYSIS OF STATISTICAL ERRORS

The error in retrieving the molecular oxygen number density from occultation scans having a random statistical noise superimposed upon the basic signal is defined as

\[
e(r_i) = \frac{\langle \Delta n(r_i) \rangle}{n(r_i)}
\]

The numerator is the standard deviation of the retrieved number density, given by equation (27) for molecular oxygen and equation (31) for ozone, and \(n(r_i) \) is the number density at radius \(r_i \). The standard deviation of the retrieved number density is inversely proportional to the square root of the unattenuated signal level for both molecular oxygen and ozone. Therefore, in Fig. 8 \(T_i(n(r_i))^{-2} \) is plotted as a function of altitude for various smoothing parameters \(M \). The error in retrieving the molecular oxygen number density for

![Fig. 8. Theoretical analysis of errors in retrieving the molecular oxygen number density from occultation scans with random statistical noise superimposed. The retrieval error is obtained by dividing the parameter \(T_i(n(r_i))^{-2} \) by \(F_{\infty}^{-1/2} \), the square root of the unattenuated basic signal level. The circles represent the results of a numerical analysis of errors for \(M = 4 \).](image)
any signal level is obtained by dividing the parameter \(T_i(n(r))^{-1} \) by \(F_{1/2} \). An increase in the smoothing parameter \(M \) decreases the error in retrieving the molecular oxygen number density. However, as discussed earlier, the accuracy of retrieving the basic molecular oxygen number density profile from unscattered occultation scans decreases as the smoothing parameter \(M \) increases. Therefore, there exists a value of \(M \) which gives a minimum in the overall error in retrieving the molecular oxygen number density profile at a given data-acquisition interval. The results of a numerical analysis of errors are shown in Fig. 8 for 100 occultation scans with different randomly scattered noise distributions. There is general agreement between the results of the theoretical and numerical analysis of errors. Also shown in the figure are arrows indicating the altitudes of the 0.1 and 0.9 normalized intensity points. The retrieval of the molecular oxygen number density is best for data lying between these normalized intensity ratios.

The standard deviation of the retrieved ozone number density is also inversely proportional to the square root of the unattenuated signal level. Therefore, in Fig. 9 the parameter \(E_i(n(r))^{-1} \) is plotted as a function of height for various smoothing parameters. In general, the error in retrieving the ozone bulge and the number density below about 70 km is low. However, in the region of the ozone minimum near 75 km the retrieval error increases. The data-acquisition interval in this case is 1 km and an increase in the smoothing parameter \(M \) decreases the error in retrieving the ozone number density. As the data-acquisition interval increases, the error in retrieving the ozone number density increases.

Fig. 9. Theoretical analysis of errors in retrieving the ozone number density from occultation scans with random statistical noise superimposed. The retrieval error is obtained by dividing the parameter \(E_i(n(r))^{-1} \) by \(F_{1/2} \), the square root of the unattenuated basic signal level. The circles represent the results of a numerical analysis of errors for \(M = 4 \).
For a given data-acquisition interval, there also is a value of the smoothing parameter M which gives a minimum in the overall error in retrieving the ozone number density. The circles in Fig. 9 again are the results of a numerical analysis of the errors for 100 ozone occultation scans with different randomly scattered noise distributions. The general agreement between the theoretical and numerical analysis of errors enables us to theoretically calculate the error coefficients and thus determine accuracy of an occultation scan for any signal intensity.

8. DISCUSSION

We have presented a numerical technique for retrieving the number density profile of absorbing atmospheric gases from planetary occultation data having random statistical noise superimposed upon the basic signal. Because of the sensitivity of the Abel integral equation to random noise, some smoothing is required before evaluating the inversion integral. An exponential technique was developed for atmospheric species whose number density profile decreases exponentially with height, whereas the quadratic scheme works better for atmospheric species having a more complex vertical profile. These techniques have been used to reduce the OAO-2 stellar occultation data and obtain the night-time molecular oxygen and ozone distribution in the upper atmosphere (Hays et al., 1972). With a modification to account for the finite size of the solar disk, these techniques have also been used to reduce the SOLRAD-8 solar occultation data (Roble and Norton, 1972). The retrieval errors are determined by knowing the approximate signal level and acquisition rate of the occultation data. For each specific case, there is a minimum in the retrieval error determined by the degree of smoothing for the appropriate data-acquisition rate and basic signal level. Generally, the best accuracy is achieved between the normalized intensity limits of 0.1-0.9 where the derivative in the numerator of the Abel integral equation changes rapidly. Figure 2 shows that by selecting the appropriate spectrally isolated wavelength interval, the number density distribution at practically any altitude may be obtained in the region where the tangential column number density is approximately equal to the inverse of the effective cross-section.

The analysis was performed for single wavelength absorption, whereas measurements are made for some finite passband determined by the characteristics of the monitoring spectrometer or photometer. In this case, an additional integration over wavelength is required in the analysis, but it does not fundamentally alter the results as long as the absorption process is spectrally isolated. Actually, a wavelength interval selected to cover a continuum region where the absorption cross-section is smoothly increasing or decreasing allows deepest penetration into the atmosphere. The altitude range of the occultation data is greater in this case than for a constant cross-section over the selected wavelength interval.

Acknowledgments—We are grateful for the assistance of Messrs. K. Hansen, J. Hastings and M. Graves who provided the numerical calculations and plotting. A. Lundberg typed the manuscript.

REFERENCES

1742

R. G. ROBLE and P. B. HAYS

Several of the coefficients discussed in the text are presented in this Appendix.

\[
\Delta \alpha_i = \sum_{i=K+1}^{K+1} \frac{\exp(-\beta_0(z_j - z_i)) - (z_j - z_i) \exp(-\beta_0(z_j - z_i))}{\{z_i^1\}} \Delta N_j
\]

\[
\Delta \beta_i = \frac{1}{\sigma \beta_0} \left(\frac{\sum_{i=K+1}^{K+1} \exp(-\beta_0(z_j - z_i)) - (z_j - z_i) \exp(-\beta_0(z_j - z_i))}{\{z_i^0\} \{z_i^1\}} \right) \Delta N_j
\]

where

\[
\{z_i^0\} = \sum_{i=K+1}^{K+1} \exp(-2\beta_0(z_j - z_i))
\]

\[
\{z_i^1\} = \sum_{i=K+1}^{K+1} (z_j - z_i) \exp(-2\beta_0(z_j - z_i))
\]

\[
\{z_i^2\} = \sum_{i=K+1}^{K+1} (z_j - z_i)^2 \exp(-2\beta_0(z_j - z_i))
\]

\[\langle \Delta \alpha_i \rangle = \frac{X_i}{F_0^{1/2}}\]

\[\langle \Delta \beta_i \rangle = \frac{Y_i}{F_0^{1/2}}\]

where

\[X_i = \left[\frac{\exp(-\beta_0(z_j - z_i)) - (z_j - z_i) \exp(-\beta_0(z_j - z_i))}{\{z_i^1\} \{z_i^2\}} \right]^{1/2}\]

and

\[Y_i = \left[\frac{\exp(-\beta_0(z_j - z_i)) - (z_j - z_i) \exp(-\beta_0(z_j - z_i))}{\{z_i^0\} \{z_i^1\}} \right]^{1/2}\]

\[R_i = \beta_0 e^{-1/2} \left\{ \left(1 + \frac{\Delta}{e} - \frac{1}{4\beta_0 e} \right) \left(\frac{\pi}{\beta_0 e} \right)^{1/2} \left[\text{erf}((\beta_0 \gamma)^{1/2}) - \text{erf}((\beta_0 \Delta)^{1/2}) \right] \exp(\beta_0 \Delta) + \frac{1}{2\beta_0 e} \left[\gamma^{1/2} \exp(-\beta_0 \eta) - \Delta^{1/2} \right] \right\}\]

where \(\Delta = r_i - r_i\)
\(\gamma = r_{i+1} - r_i\)
\(\varepsilon = r_i + r_i\)
\(\eta = r_{i+1} - r_i\)
\[S_i = \left(\frac{\pi}{\beta_0} \right)^{1/2} \left[\text{erf} \left((\beta_0 \Delta)^{1/2} \right) - \text{erf} \left((\beta_0 \Delta)^{1/2} \right) \right] \left[a_0 e^{-1/2}(1 + \frac{1}{4} \Delta \varepsilon^{-1} - (4\beta_0 e)^{-1}) \right. \\
\left. - a_0\beta_0 e^{-1/2}((4\beta_0)\Delta(2 + \Delta \varepsilon^{-1}) - \frac{1}{2} (2\Delta + \Delta \varepsilon^{-1}) - \frac{1}{2} \beta_0^{1/2} e^{-1}) \right] \right] \\
\exp(\beta_0 \Delta) + (2\beta_0 \Delta)^{1/2} \exp (-\beta_0 \Delta) - \Delta^{1/2} \\
\left. [a_0 e^{-1/2} + a_0\beta_0 e^{-1/2}(2 + 2 \Delta \varepsilon^{-1}) \right] \\
- a_0\beta_0 e^{-1/2}((4\beta_0)\Delta(2 + \Delta \varepsilon^{-1}) - \frac{1}{2} (2\Delta + \Delta \varepsilon^{-1}) - \frac{1}{2} \beta_0^{1/2} e^{-1}) \right] \\
\exp(\beta_0 \Delta) + (2\beta_0 \Delta)^{1/2} \exp (-\beta_0 \Delta) - \Delta^{1/2}(2\beta_0 \Delta + 3)] \\
Q_1 = \left[\left(\frac{P}{K} \right) \left(\frac{\bar{z}}{z} \right) - \frac{L(z)}{K} \right] + \frac{LM}{K} z_s - \frac{PM}{K} z_f \\
Q_1^* = \left[\left(\frac{E}{P} \right) \left(\frac{\bar{z}}{z} \right) - \frac{L(z)}{K} \right] + \left\{ \frac{M}{P} - \frac{LM}{PK} \right\} z_i + \frac{LM}{K} z_f \\
L = (\bar{M}(\bar{z}) - (\bar{z})(\bar{z})) \\
P = (\bar{M}(\bar{z}) - (\bar{z})(\bar{z})) \\
K = [(\bar{M}(\bar{z}) - (\bar{z})(\bar{z}))(\bar{M}(\bar{z}) - (\bar{z})(\bar{z})) - (\bar{M}(\bar{z}) - (\bar{z})(\bar{z}))(\bar{M}(\bar{z}) - (\bar{z})(\bar{z}))].
Appendix III a.

This Appendix gives some details of data processing which is employed to obtain molecular oxygen profiles and ozone profiles from occultation data. The details are divided into three parts, or processes, dealing with (1) the computation of tangential column number density for molecular oxygen, \(N(O_2, r_o) \); (2) the computation of tangential column number density for ozone, \(N(O_3, r_o) \); and (3) the retrieval of number density of either gas. Computer programs with accompanying notes are included.

Process 1

To obtain \(N(O_2, r_o) \), the raw modulus 256 occultation data on the strip chart or digital printout are converted to normalized signal intensity by a program filed in "PLOT". The input to this program is the sequence of counts taken at an interval of \(\frac{1}{2} \) sec spacecraft time. The measure of intensity which is used is the difference between successive counts. The output consists of a graph of normalized signal intensity \(v \) time and the corresponding punched cards.

Following the conversion of the data to normalized intensity, a program filed in "OAOPR" is activated to complete the process. First, the ray tangent point location is computed. Then an interpolation table is formed consisting of normalized signal intensity \(v \) tangential column number density. The table is then used to find \(N(O_2, r_o) \) corresponding to the normalized, measured signal intensity.

Process 2

To obtain \(N(O_3, r_o) \), the raw occultation data on the strip chart or digital printout are converted to normalized signal intensity by the "PLOT" program, and the "OAOPR" program is activated as for \(O_2 \). However, in this case corrections to \(N(O_3, r_o) \) are made for the effects of the \(O_2 \) Herzberg bands and Rayleigh scattering upon ozone.
Process 3

Once the tangential column number density, \(N \), is computed for all \(m \) data levels, a parabolic fit is forced upon \(N(h) \) and the smoothed values are then inverted by the finite differencing scheme,

\[
n(r_j) = -\frac{2}{\pi} \frac{d}{dr} \int_{r_o}^{r} \frac{r}{r_o} (r_o^2 - r^2)^{-\frac{1}{2}} N(r_o) \, dr_o
\]

\[
= -\frac{2}{\pi} \int_{r}^{\infty} (r_o^2 - r^2)^{-\frac{1}{2}} \frac{dN(r_o)}{dr_o} \, dr_o
\]

Details of the smoothing technique and inversion for various species is given in the attached paper on inversion techniques.
DIMENSION AY(150), Y(150)
2 DIMENSION BY(150)
2.05 DIMENSION YINT(150)
2.1 READ (5, 861) (BY(K), K=1, 80)
2.15 PRINT 861, (BY(K), K=1, 80)
3 READ (5, 894) N, MAX
3.5 PRINT 894, N, MAX
4 READ 893, (AY(I), I=1, N)
4.1 LMT=5
4.2 PRINT 893, (AY(I), I=1, N)
5 DO 882 K=1, LMT
6 882 Y(K) = AY(K)
6.1 JA=LMT-1
6.2 DO 1 K=1, JA
6.3 1 YINT(K) = Y(K) - Y(K+1)
7 J=N-LMT
7.1 WRITE(6, 861) (BY(K), K=1, 80)
8 WRITE (6, 899)
9 899 FORMAT(20X, 8HEXPECTED, 9X, 6HACTUAL, 14X, 10HDifference, 10X, 18HRECORDED, 12X, 9HINTENSITY, /, 22X, 5HVALUE, 9X, 5HVALUE, 35X, 25HVALUE/)
11.1 PZ=0.15*MAX
12 DO 883 K=1, J
12.1 Y(K) = AY(K)
12.2 DO 2 MP=1, JA
12.3 Y(K+MP) = Y(K+MP-1) - YINT(K+MP-1)
12.4 YB= (Y(K) + Y(K+1) + Y(K+2) + Y(K+3) + Y(K+4)) * 0.2
12.42 AI= (Y(K) - 2.*Y(K+1) + 2.*Y(K+3) - Y(K+4)) / (-12.)
12.43 BI= (4.*Y(K) + Y(K+1) + Y(K+3) + 4.*Y(K+4) - 10.*YB) / 14.
12.44 CI= (Y(K) - 8.*Y(K+1) + 8.*Y(K+3) - Y(K+4)) / 12.
12.45 B= (-9.*AI) + BI
12.46 C= (27.*AI) - (6.*BI) + CI
12.47 D= (-27.*AI) + 9.*BI - 3.*CI - 2.*BI + YB
12.5 P= 16*AI + 36*B + 6*C + D
12.52 L=K+2
13 A= (Y(L) - 2.*Y(L+1) + Y(L+2)) / 2.
14 B= (-5.*Y(L) + 8.*Y(L+1) - 3.*Y(L+2)) / 2.
15 C= 3.*Y(L) - 3.*Y(L+1) + Y(L+2)
20 P= 1b. * A + 4. * B + C
20.2 P= (P+P1) / 2.
21 X=AY(K+LMT)
22 L=0
22.1 PRINT 3, K, J, X, P, P1
22.2 3 FORMAT(T2, 2TS, 3P20.6)
23 886 IF (ABS(X-P)-160.) 884, 885, 885
24 884 IF ((P-X) .GT. 100.) X=X+MAX
24.2 PW=0.08*YINT(K+LMT-2)
24.4 IF (PW .LT. PZ) PW=PZ
24.42 IF (PW .GT. 160.) PW=160.
24.5 IF ((Y(K+LMT-2) - Y(K+LMT-1)) .GT. (Y(K+LMT-1) - X+PW)) X=X-MAX
24.8 Y(K+LMT)=X
25 B=X-P
26 C=Y(K+LMT-1) - Y(K+LMT)
26.1 YINT(K+LMT-1)=C
27 WRITE(6, 895) K, P, X, B, AY(K+LMT), C
28 895 FORMAT(I5, 5F20.0)
CON NUL
32.05 WRITE (7, 361) (BY(K), K=1, 80)
32.1 WRITE (7, 365) (YINT(K), K=1, J)
33 WRITE (6, 398)
34 398 FORMAT ('1 GRAPH OF INTENSITY VS. TIME'/)
35 READ (5, 860) DY, CY, EY
36 860 FORMAT (3A1)
36.1 PRINT 861, (BY(K), K=1, 80)
37 DO 692 K=1, 12
38 692 BY(K) = 10*K
39 WRITE (6, 681) (BY(K), K=1, 12)
40 681 FORMAT ('3X,12F10.0')
41 DO 690 K=1, 150
42 690 BY(K) = CY
43 DO 691 K=1, 25
44 691 BY(5* (K-1)+1) = EY
45 WRITE (6, 681) (BY(K), K=1, 120)
46 BY(1) = BY
47 DO 870 K=2, 150
48 870 BY(K) = BY(K-1)
49 N=N-1
49.1 JB=1
49.2 DO 741 J=1, N
49.3 IF(YINT(J) .GT. YINT(JB)) JB=J
49.4 741 CONTINUE
50 DO 888 K=1, N
51 BY(1) = CY
52 JA=K/5
53 JA=JA*5
54 IF (JA .EQ. K) BY(1) = EY
54.1 L=YINT(K)*100./YINT(JB)
55 BY(L) = EY
56 PRINT 861, (BY(J), J=1, 120), L
57 861 FORMAT (120A1, I5)
58 861 BY(L) = BY(L+1)
59 888 CONTINUE
60 888 PRINT (12F6.0)
61 888 FORMAT (14F5.0)
62 894 FORMAT (215)
63 894 CALL EXIT
64 RETURN
65 885 L=L+1
66 X=AY(K+LMT)-MAX*L
67 PRINT 4, K, L, MAX, X
68 4 FORMAT(T2,315,F20.6)
69 IF (L<=400) 886, 887, 887
70 886 886, 887, 887
71 END
END OF FILE
Part 1: Line numbers 1-6

In this part, an informative comment card is read (line 2.1), the number of data values (N) and the maximum counts on calibration (MAX) are read (line 3), the raw data (AY) are read (line 4), and the first 5 values are set in Y (line 6). These five values must be monotonic estimates of values on the curve of actual (not normalized) intensity.

Part 2: Line numbers 6.1-12.5

In this part, an allowable departure of a predicted value of intensity from the actual value is established. This departure is ±0.15 (line 11.1). Then the coefficients (AI, B, C, D) for cubic curve-fitting with five points are calculated (lines 12-12.47), and a sixth point is predicted (line 12.5).

Part 3: Line numbers 12.52-20.2

In this part, a parabolic curve-fitting is carried out for the third, fourth, and fifth points, yielding a new prediction of the sixth point (line 20). An average of the two predictions becomes the final estimate (line 20.2) of the sixth point. This procedure continues within loop 883 until the entire set of data points is exhausted.

Part 4: Line numbers 21-29

In this part, the modulo conversion is accomplished, based upon some intuitive conditions regarding signal intensity. The resulting signal intensities (C) are written out (line 27).

Part 5: Line numbers 30-71

In this part, the signal intensities are punched (line 32.1) for the data input to the final processing program. The intensity values are also plotted (line 57) after normalization (line 54.1).
1. Introduction

This is the program for setting star only. ****

This program for setting star only.

2. Program Description

This program calculates tangent ray height point. Input is 5 values of spacecraft long., lat., and alt. in 10 sec. GMT interval, 5 values of GHA of Aries in 10 min. GMT interval, Dec. and R.A. of occulting star. The starting time in H.A., MIN., and SEC., and number of data points needed.

3. Trigonometric Computations Start Here

- **41.** \(\text{DEC} = \text{Y}1 + \left(\frac{\text{Y}2}{60.} \right) + \left(\frac{\text{Y}3}{3600.} \right) \)
- **42.** \(\text{PRINT 71, Y1, Y2, Y3} \)

4. Example Code Snippet

```plaintext
C1 = 1 / 57.2957795131
WRITE (6, 109)
109 FORMAT (/ '10X, ' S/C Position, Long. Lat., and Alt. in 10 Sec.'
 '4 STEPS AND', '/10X,' 'GHA of Aries in Ten Minute Steps')
READ 11, Y1, Y2, Y3, Y4, Y5
PRINT 11, Y1, Y2, Y3, Y4, Y5
CALL SET (Y1, Y2, Y3, Y4, Y5, A4, B4, C4, D4)
READ 11, Y1, Y2, Y3, Y4, Y5
PRINT 11, Y1, Y2, Y3, Y4, Y5
CALL SET (Y1, Y2, Y3, Y4, Y5, A2, B2, C2, D2)
READ 11, Y1, Y2, Y3, Y4, Y5
PRINT 11, Y1, Y2, Y3, Y4, Y5
CALL SET (Y1, Y2, Y3, Y4, Y5, A3, B3, C3, D3)
READ 11, Y1, Y2, Y3, Y4, Y5
PRINT 11, Y1, Y2, Y3, Y4, Y5
CALL SET (Y1, Y2, Y3, Y4, Y5, A5, B5, C5, D5)
READ 11, Y1, Y2, Y3, Y4, Y5
PRINT 71, Y1, Y2, Y3
```

5. Conclusion

Trigonometric computations start here.
59 612 FORMAT (3F10.5,15)
60 PRINT 641, T1,T2,T3
61 641 FORMAT (5X,'STARTING TIME ',F5.1,' HR',F5.1,' MIN.',F7.4,' SEC.'
1 ' AND TIME IS INCREASING')
62 T1=T1+(T2+(T3/60.))/60.
63 NPP=NP
64 I=0
65 73 IF (T2 .LT. 10.) GO TO 74
66 T2=T2-10.
67 GO TO 73
68 74 L=T3/10.
69 TA=T2+(L*10./60.)
70 75 IF (T3 .LT. 10.) GO TO 7
71 T3=T3-10.
72 GO TO 75
73 76 3=1.+(T3/10.)
74 C* SPACECRAFT POSITIONS AND GHA OF ARIES ARE CALCULATED AT DIFFERENT
75 C* GMT TIME BY USING THE FUNCTION CAL WHICH USES THE CURVE
76 C* Y=A*T*T + B*T + C
77 PHIS=CAL (S,A2,E2,C2,D2) *C1
78 ALT=CAL (S,A3,B3,C3,D3) *C1
79 ALAMS=CAL (S,A4,B4,C4,D4) *C1
80 IF (ALAMS .LT. 0.) ALAMS=6.28318+ALAMS
81 X=3.+(TA+(T3/60.))/10.)
82 ALAMG=CAL (X,A5,B5,C5,D5) *C1
83 I=I+1
84 M=NP-I+1
85 PA=DCOS (ALAMS)
86 E3=DCOS (PHIS)
87 PC=DCOS (ALAMG)
88 D=DSIN (ALAMS)
89 S=DSIN (ALAMG)
90 DCA=PA*PB*PC-D*PB*E
91 DCB=D*PB*PC+2A*PB*E
92 DCC=DSIN (PHIS)
93 CALL HEIGHT (PHIS,RSAT,RR)
94 13 AS=RSAT*LCA
95 BS=RSAT*DCB
96 CS=RSAT*DCC
97 ZS=RSAT*UCC
98 RS=DSQRT (XS*XS+YS*YS+ZS*ZS)
99 ARG=DCA*DCL+DCB*DCH+DCC*DCK
100 BETA=J. 1415926536-DARCOS (ARG)
101 W=DCOS (BETA)
102 XO=XS+RSAT*W*DCL
103 YO=YS+RSAT*W*DCM
104 IF (YO .LT. 0. AND. ARG .GE. 0.) BETA=6.293186-BETA
105 IF (YO .LT. 0. AND. ARG .LT. 0.) BETA=3.141593+BETA
106 Z0=ZS+RSAT*W*DCH
107 ROO=DSQRT (X0*X0+Y0*Y0+Z0*Z0)
108 PHI0 (S) =DATAN (Z0/DSQRT (X0*X0+Y0*Y0))
109 ALAMO (N)=DARCOS (X0/DSQRT (X0*X0+Y0*Y0)) - ALAMS
110 Q3=DSIN (BETA)
111 DCLS=X0/(RSAT*Q3)
112 DCMS=Y0/(RSAT*Q3)
113 LCMS=Z0/(RSAT*Q3)
114 CPFR=DCLS*DCLS+DCMS*DCMS+DCN*DCN
115 CALL HEIGHT (PHI0 (M),RP,RR)
116 OC=EC-3K
117 ZP (M)=MC*100000.
118 X (M)=RC*100000.
ALAMO = ALAMO * 57.295
PSI = (1.5707933268 - DEXP) / C1
T3 = T3 + (6.2615 / 116.34)
IF (1. LT. NP) GO TO 7
 11 FORMAT (5F10.5)
C* THIS PART TAKES AS INPUT THE FILTER TRANSFER FUNCTION, CROSS SECTION
C* AND STARE SPECTRUM, THEN A TABLE OF TOTAL INTEGRATED NUMBER DENSITY
C* VS. NORMALISED SIGNAL, FNC, IS COMPUTED
 12 FORMAT (5F10.5)
 13 TX = ALAMO(NP) / 15.0
 14 T1 = T1 + TX
 15 IF (T1 .LE. 0.) T1 = T1 - 24.0
 16 T1 = T1
 17 IF (T1 .GT. 24.0) T1 = T1 - 24.0
 18 L = 2
 19 T1 = (T1 - L) * 60.
 20 NTAB = 100
 21 FORMAT(5F10.5)
 22 INPUT DATA
 23 FILTER DATA IN STEPS OF 20A.
 24 READ 351, FX, FY, I02
 25 351 FORMAT (2F15.0, 15)
 26 NLX = 1.001 + (FY - FX) / 20.
 27 DO 302 I = 1, NLX
 28 WLL(I) = FX + (I - 1) * 20.
 29 IF (ICJ .NE. 2) GO TO 1260
 30 ICJ = ICJ + 1
 31 READ 1201, (WLL(I), I = 1, NLX)
 32 1201 FORMAT (8F10.3)
 33 READ 300, (FILT(I), I = 1, MPX)
 34 CROSS-SECTION DATA
 35 READ 600, (SG(I), I = 1, MPX)
 36 CROSS-SECTION IN STEPS OF 20A.
 37 READ 303, (PIO(I), I = 1, MPX)
 38 300 FORMAT (11F5.3)
 39 301 FORMAT (11F5.0)
 40 302 FORMAT (6E10.3)
 41 SUN = 0.
 42 DO 101 J = 2, MPX
 43 101 SUN = SUN + ([FILT(J) * PIO(J) + FILT(J-1) * PIO(J-1)] / 2. * (WLL(J) - WLL(J-1))
 44 C THIS SECTION MAKES A TABLE OF TOTAL INTEGRATED NUMBER DENSITY VS. NORMALISED SIGNAL.
 45 DO 100 IHC = 1, NTAB
 46 READ (3, 12 16) TT
 47 1216 FORMAT (5E16.6)
 48 IF (ICJ .NE. 2) GO TO 1261
 49 READ (2, 1216) (SG(I), I = 1, MPX)
 50 CONTINUE
 51 TN(IHC) = TT
 52 SUM = 0.
 53 DO 1006 J = 2, MPX
 54 1006 SUM = SUM + ([FILT(J) * PIO(J) + DEXP(-SG(J) * TT) + FILT(J-1) * PIO(J-1) *
 1DEXP(-SG(J-1) * TT)) / 2. * (WLL(J) - WLL(J-1))
 55 FNR = SUM / SUN
 56 IF (FNR .LT. 1.0 - 20) FNR = 1.0 - 20
C* INPUT TO THIS PART IS THE MEASURED SIGNAL. THEN NORMALISED SIGNAL
C* FOF IS USED TO DETERMINE TOTAL INTEGRATED NUMBER DENSITY TNO
C* BY INTERPOLATION IN THE TABLE COMPUTED IN PART-2
C***
C
READ 1067, (U(I),I=1,10)
PRINT 1067, (Q(I),I=1,10)
1001 FORMAT (16AB)
1002 FORMAT (13)

C OCCULTATION DATA
READ 760, (DA(I),I=1,NPP)
760 FORMAT (12F6.0)
DMIA=DA(1)
DO 857 I=1,NPP
IF(DA(I).LT.DMIA) DMIA=DA(I)
857 CONTINUE
DO 861 I=1,NPP
861 DA(I)=DA(I)-DMIA
SUC=0.
DO 761 I=0,NMXY,NPP
761 SUC=SUC+DA(I)
DAO=SUC/5.
DO 762 I=1,NPP
762 FOF(I)=DA(I)/DAO
WRITE(6,1004)
1004 FORMAT (//"MODIFIED INPUT DATA")
PRINT 1005, (FA(I),I=1,NPP)
1005 FORMAT (10F8.0)

C THIS SECTION CALCULATES TOTAL INTEGRATED NUMBER DENSITY;
C USING MEASURED SIGNAL AND PREVIOUSLY COMPUTED TABLE.
DO 611 J=1,NTAB
Z(J)=LOG(FNO(J))
XN(J)=DLOG(TN(J))
611 CONTINUE
609 FORMAT (5S,2D15.6)
M=4
NP=NTAB
CALL EAFAB(M)
DO 630 L=1,NPP
IF(FOF(L).LE.0.) YOF(L)=1.D-5
DO 792 I=1,NTAB
IF(FOF(L).GE.FNO(I) .AND. FOF(L).LT.FNO(I+1)) GO TO 613
792 CONTINUE
613 J=1
X=DLOG(FOF(L))
TNO(L)=A(J)*X*X+C(J)
614 FORMAT (5S,2D15.6)
630 CONTINUE
632 1 IF(IO2.NE.0) GO TO 2501
C**
C* IN THIS PART, THE OZONE COLUMN DENSITY IS CORRECTED FOR
C* HERZBERG AND RAYLEIGH SCATTERING
C**
C* THIS PART FITS A PARABOLA THROUGH TANGENT HAY HEIGHT ZP COMPUTED
C* IN PART-1 VS. TOTAL INTEGRATED NUMBER DENSITY TNO COMPUTED IN PART
C* -3. THEN USING LEAST SQUARE COEFFICIENTS, INVERSION IS CARRIED ON
C* TO COMPUTE THE NUMBER DENSITY. THIS NUMBER DENSITY IS, THEN, USED
C* IN THE CALCULATION OF MOLECULAR OXYGEN TEMPERATURE.

C***
C PART-4
C***
THIS SECTION OBTAINS THE COEFFICIENTS FOR LEAST SQUARE PARABOLA

WRITE (6, 21) M
21 FORMAT ("*I=", N, "I")

WRITE (6, 123)

CALL PARAB (M)

123 FORMAT ("I", I3) IGNORE TEMP. IN OZONE RESULTS")

DO 12 (I = 1, N)

12 FORMAT (5X, 6E12.4)

N = NP - 1

DO 4 J = 1, N

DEN (J) = 0.0

DO 5 I = J, N

12 = A(I) + B * (DSQRT (R(I+1)**2 - R(J)**2) - DSQRT (R(I)**2 - R(J)**2))

14 = (I) + 2 * A(I) * R(I) * DSQRT ((R(I+1) + R(I)**2 - R(J)**2))

15 = (I) + R(I) * DSQRT (R(I)**2 - R(J)**2)

DEN (J) = -DEN (J) / PI

4 CONTINUE

WRITE (6, 201) L1, L2, T1

691 FORMAT (5X, LOCAL STARTING TIME, I6, HOUR, I6, MINUTE, 1P7.3, SECONDS *)

WRITE (6, 23)

N1 = N1 - 1

DO 977 J = 1, N

T(J) = 0.0

A2 = DEN(I+1) / (R(I+1)**2)

A1 = DEN(I) / (R(I)**2)

A2 = A2 - A1

160 T(J) = (3.8033D-4) * T(J) / DEN(J)

977 WRITE (6, 22) T(J), DEN(J), T(J), PHI(J), ALANO(J), XN(J), FOF(J), CO2

22 FORMAT (4X, 6E15.6, 6E18.6, 6E19.6)

STOP

978 DO 911 J = 1, N

UJ = DEN(J)

911 IF (UD(J) .LE. 0.0) UD(J) = 1.0E01

UYMIN = 7.0

UXMIN = 40.0E 05

UDX = 20.0E 05

IF (L02 .EQ. 0) GO TO 1531

CALL PLOT OFS (100.0, 100.0, UXMIN, UDX, 1.5, 1.0)

UPX = 100.0

UPDX = 100.0

CALL PAXIS (1.5, 1, 16) TEMP. IN DEG. K., -16, 10, 0., UPX, UPDX, -1.

CALL PAXIS (1.5, 1, 15) ALTITUDE IN CM., 15, 8, 90., UXMIN, UDX, -0.5)
CALL PLOT2(1.5,1.0,0.9,0.0,0.5,20,11)
CALL PLOT2(UT(1),02(1),N1,1,1,1,2,1)
CALL PSYMA(1.5,9.5,-0.1,0(1),0.0,80)
IF (CM-60.E-6) GO TO 1530
CALL PSYMB(1.5,9.25,-0.1,3HM=3.0,0.3)
GO TO 1912
1910 CALL PSYMA(1.5,9.25,-0.1,3HM=4.0,0.3)
1912 CALL NEXTEND
1531 CONTINUE
CALL PLOOPS (UYMIN,VYEX,UXMIN,UDX,1.5,1.0)
CALL PLAAGS (1.5,1.0,14(Number Density,-14,10.0,0.0,UYMIN,-UY2X)
CALL PIALS (1.5,1.0,15HAltitude in cm,15.8.0,90.0,UYMIN,UDX,-0.5
CALL PIPRED (1.5,1.0,1.0/UYEX,10.0,8.0,0.0)
CALL PGRID (1.5,1.0,10.0,0.5,1.5)
CALL PEGS (2)
CALL PLINE (UT,1),02(1),N1,1,1,1,2,1)
CALL PIAGS
CALL PSYMA(1.5,9.5,-0.1,0(1),0.0,80)
IF (CM-EC=4) GO TO 912
CALL PSYMB(1.5,9.25,-0.1,3HM=8.0,0.3)
GO TO 913
912 CALL PSYMA(1.5,9.25,-0.1,3HM=4.0,0.3)
913 CALL NEXTEND
6 CONTINUE
CALL EXIT
END

C***
C* PART-5
C***
C* SUBROUTINE SET TAKES 5 EQUIDISTANT VALUES AND FITS A LEAST SQUARE
C* PARABOLA Y = PX*X + Q*X + R. COEFFICIENTS P, Q AND R ARE RETURNED
C***
SUBROUTINE SET(Y1,Y2,Y3,Y4,Y5,P,Q,R)
IMPLICIT REAL (A-H,C-Z)
COMMON a(200),x(200),b(200),c(200),alt,wll(100),filt(10
1f10(100),sg(100),sg0(100),sgn(100),csm(200),np,mpx

Q = ((-146.*Y1)-(46.*Y2)+(120.*Y3)+(74.*Y4)-(92.*Y5))/140.
R = ((166.*Y1)-(56.*Y2)-(42.*Y3)-(42.*Y4)+(42.*Y5))/70.
RETURN
END

C***
C* PART-6
C***
C* SUBROUTINE HEIGHT CALCULATES THE RADIUS OF EARTH RR, AND DISTANT
C* RF OF A POINT FROM CENTER OF EARTH; WHEN LATITUDE PHI, AND ALTIN
C* ALT, OF THE POINT ARE KNOWN.
C***
SUBROUTINE HEIGHT(PHI,RF,RR)
IMPLICIT REAL (A-H,C-Z)
CC:SIGN 2(200),XN(200),A(200),B(200),C(200),ALT,WLL(100),FILT(10
1F10(100),SG(100),SG0(100),SGN(100),CSM(200),NP,MPX
REAL K KAPPA

R =.018202
K =.6378.387
DENOM = DSIGN(1.-(EC*EC*DSIN(PHI)*DSIN(PHI)))

49
**'Return'

END

C** 5 1) R-B C 5 (P!)

419 R-SIN=R*(1-EC*EC)*R-SIN (PHI)/DENOM

420 K=O#S6RI (RCOS*RCOS+R-SIN*R-SIN)

421 PHII=R-A-R-SIN (R-SIN/R)

422 KAPPA=3.1415926536

423 NP=O#S6RI (R*A+N+ALT*ALT-2.*R+ALT*DCOS (KAPPA))

424 RETURN

END

C** 5 1) R-B C 5 (P!)

427 C** 5 1) R-B C 5 (P!)

428 C** 5 1) R-B C 5 (P!)

429 C** 5 1) R-B C 5 (P!)

430 C** 5 1) R-B C 5 (P!)

431 C** 5 1) R-B C 5 (P!)

432 C** 5 1) R-B C 5 (P!)

433 C** 5 1) R-B C 5 (P!)

434 SUBROUTINE PARAB FITS THE LEAST SQUARE PARABOLA THROUGH M POINTS

435 C** 5 1) R-B C 5 (P!)

436 C** 5 1) R-B C 5 (P!)

437 C** 5 1) R-B C 5 (P!)

438 C** 5 1) R-B C 5 (P!)

439 C** 5 1) R-B C 5 (P!)

440 C** 5 1) R-B C 5 (P!)

441 C** 5 1) R-B C 5 (P!)

442 C** 5 1) R-B C 5 (P!)

443 C** 5 1) R-B C 5 (P!)

444 C** 5 1) R-B C 5 (P!)

445 C** 5 1) R-B C 5 (P!)

446 C** 5 1) R-B C 5 (P!)

447 C** 5 1) R-B C 5 (P!)

448 C** 5 1) R-B C 5 (P!)

449 C** 5 1) R-B C 5 (P!)

450 C** 5 1) R-B C 5 (P!)

451 C** 5 1) R-B C 5 (P!)

452 C** 5 1) R-B C 5 (P!)

453 C** 5 1) R-B C 5 (P!)

454 C** 5 1) R-B C 5 (P!)

455 C** 5 1) R-B C 5 (P!)

456 C** 5 1) R-B C 5 (P!)

457 C** 5 1) R-B C 5 (P!)

458 C** 5 1) R-B C 5 (P!)

459 C** 5 1) R-B C 5 (P!)

460 C** 5 1) R-B C 5 (P!)

461 C** 5 1) R-B C 5 (P!)

462 C** 5 1) R-B C 5 (P!)

463 C** 5 1) R-B C 5 (P!)

464 C** 5 1) R-B C 5 (P!)

465 C** 5 1) R-B C 5 (P!)

466 C** 5 1) R-B C 5 (P!)

467 C** 5 1) R-B C 5 (P!)

468 C** 5 1) R-B C 5 (P!)

469 C** 5 1) R-B C 5 (P!)

470 C** 5 1) R-B C 5 (P!)

471 C** 5 1) R-B C 5 (P!)

472 C** 5 1) R-B C 5 (P!)

473 C** 5 1) R-B C 5 (P!)

474 FUNCTION CAL (X,A,B,C,D)

475 RETURN

END
FUNCTION FAT(C03,C02,C M)

IMPLICIT RLAL=8(A-H,C-T,3-Z)

THIS FUNCTION GENERATES THE SIGNAL OF A STAR AS SEEN THROUGH AN
ATMOSPHERE WITH COLUMN DENSITIES C03,CO2,CM AND VIEWED THROUGH
FILTER WITH TRANSMISSION FIL1T(I) AT WAVELENGTH WLL(I)

COMMON E(B,0), XN(200), A(200), B(200), C(200), ALT,WLL(100), FILT(10)
KIO(100), SG(100), SG2(100), SGM(100), CCM(200), NP, MPX
X=SG(1)*C03+SGC2(1)*CO2+SGM(1)*CM
IF(DABS(X).GT.50.) X=50.
X1=FIL1T(I)*F10(I)*DEXP(-X)
FAT=0.0
DO 10 I=2,MP
X=SG(1)*C03+SGC2(I)*CO2+SGM(I)*CM
IF(DABS(X).GT.50.) X=50.
X2=FIL1T(I)*F10(I)*DEXP(-X)
FAT=FAT+0.5*(X1+X2)*WLL(I)-WLL(I-1)
10 X=X2
FAT=LOG10(FAT)
RETURN

END

<table>
<thead>
<tr>
<th>I</th>
<th>FAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.01</td>
</tr>
<tr>
<td>3</td>
<td>0.03</td>
</tr>
<tr>
<td>4</td>
<td>0.05</td>
</tr>
<tr>
<td>5</td>
<td>0.07</td>
</tr>
<tr>
<td>6</td>
<td>0.09</td>
</tr>
<tr>
<td>7</td>
<td>0.11</td>
</tr>
<tr>
<td>8</td>
<td>0.13</td>
</tr>
<tr>
<td>9</td>
<td>0.15</td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
</tr>
<tr>
<td>11</td>
<td>0.19</td>
</tr>
<tr>
<td>12</td>
<td>0.21</td>
</tr>
<tr>
<td>13</td>
<td>0.23</td>
</tr>
<tr>
<td>14</td>
<td>0.25</td>
</tr>
<tr>
<td>15</td>
<td>0.27</td>
</tr>
<tr>
<td>16</td>
<td>0.29</td>
</tr>
<tr>
<td>17</td>
<td>0.31</td>
</tr>
<tr>
<td>18</td>
<td>0.33</td>
</tr>
<tr>
<td>19</td>
<td>0.35</td>
</tr>
<tr>
<td>20</td>
<td>0.37</td>
</tr>
<tr>
<td>21</td>
<td>0.39</td>
</tr>
<tr>
<td>22</td>
<td>0.41</td>
</tr>
<tr>
<td>23</td>
<td>0.43</td>
</tr>
<tr>
<td>24</td>
<td>0.45</td>
</tr>
<tr>
<td>25</td>
<td>0.47</td>
</tr>
<tr>
<td>26</td>
<td>0.49</td>
</tr>
<tr>
<td>27</td>
<td>0.51</td>
</tr>
<tr>
<td>28</td>
<td>0.53</td>
</tr>
<tr>
<td>29</td>
<td>0.55</td>
</tr>
<tr>
<td>30</td>
<td>0.57</td>
</tr>
<tr>
<td>31</td>
<td>0.59</td>
</tr>
<tr>
<td>32</td>
<td>0.61</td>
</tr>
<tr>
<td>33</td>
<td>0.63</td>
</tr>
<tr>
<td>34</td>
<td>0.65</td>
</tr>
<tr>
<td>35</td>
<td>0.67</td>
</tr>
<tr>
<td>36</td>
<td>0.69</td>
</tr>
<tr>
<td>37</td>
<td>0.71</td>
</tr>
<tr>
<td>38</td>
<td>0.73</td>
</tr>
<tr>
<td>39</td>
<td>0.75</td>
</tr>
<tr>
<td>40</td>
<td>0.77</td>
</tr>
<tr>
<td>41</td>
<td>0.79</td>
</tr>
<tr>
<td>42</td>
<td>0.81</td>
</tr>
<tr>
<td>43</td>
<td>0.83</td>
</tr>
<tr>
<td>44</td>
<td>0.85</td>
</tr>
<tr>
<td>45</td>
<td>0.87</td>
</tr>
<tr>
<td>46</td>
<td>0.89</td>
</tr>
<tr>
<td>47</td>
<td>0.91</td>
</tr>
<tr>
<td>48</td>
<td>0.93</td>
</tr>
<tr>
<td>49</td>
<td>0.95</td>
</tr>
<tr>
<td>50</td>
<td>0.97</td>
</tr>
<tr>
<td>51</td>
<td>0.99</td>
</tr>
</tbody>
</table>

51
| OF FILE | 116 | 23.05 | 1.05 |
Part 1: Line numbers 1-125

In this part, the spacecraft position values are entered for use in interpolation. There are five such values for longitude, latitude, and altitude furnished by GSFC several weeks after the occultation. The first of these five values corresponds to the time (given at a 10-second interval) which is less than but nearest to the starting time. The Greenwich hour angle of Aries is then read in for five times spaced ten minutes apart and centered upon the time less than but nearest to the starting time. Star position information is also entered, followed by the starting time and the number of data points. The position of the data point is computed from the above inputs, using subroutines HEIGHT and SET and function CAL. Program comments for Part I give additional details.

Notation

\[
\begin{align*}
\text{DEC} &= \text{declination of star, in radians} \\
\text{RA} &= \text{right ascension of star, in radians} \\
\text{NP, NPP} &= \text{number of data points in scan} \\
\text{PHIS} &= \text{latitude of subsatellite point in radians} \\
\text{ALT} &= \text{altitude of spacecraft, in cm} \\
\text{ALAMS} &= \text{longitude of subsatellite point, in radians} \\
\text{ALAMG} &= \text{Greenwich hour angle of Aries, in radians} \\
\text{RSAT, RP} &= \text{distance of subsatellite point from Earth's center, in cm} \\
\text{ROO, R} &= \text{distance of data point from Earth's center, in cm} \\
\text{HO, ZP} &= \text{height of data point, in cm} \\
\text{RO, RR} &= \text{radius of Earth along a line to the data point, in cm} \\
\text{PHIO} &= \text{latitude of data point, in degrees} \\
\text{ALAMO} &= \text{longitude of data point, in degrees} \\
\text{T1, T2, T3, TX, X, S} &= \text{temporal variables}
\end{align*}
\]
Part 2: Line numbers 126-180

In this part, the filter transmission values, the appropriate absorption cross section, and the star spectrum are entered for the pertinent wave band at a 20 Å interval. A normalization factor for the signal intensity is computed and a table of normalized signal intensity vs. tangential column density (integrated number density) is formed. The latter values are already stored in file CROSSDAT.

Notation

NTAB	number of tabular points
FX	beginning wavelength of band, in Å
FY	final wavelength of band, in Å
IO2	switch for gaseous species and absorption cross section (1:ozone, 2:O₂, 3:O₂ with Hudson's cross section)
MPX	number of wavelength intervals in band
WLL	wavelength
FILT	normalized value of filter transmission
SG	absorption cross section, in cm²
FIO	spectral star intensity, in digital voltmeter counts/time interval
SUN	normalizing factor, in counts/time interval
TT, TN	tabular tangential column density, in cm⁻²
SUM	filtered signal intensity integrated over wavelength, in counts/time interval
FNR, FNO	tabular, normalized signal intensity corresponding to TT

Part 3: Line numbers 181-233

In this part, a comment card is read which identifies the occultation data. The data are then entered, the background noise (minimum signal) is removed, and the data are normalized. Using (m+1) smoothing points, a logarithmic interpolation is performed in subroutine PARAB to get the least squares coefficients for the column densities corresponding to the "modified input data."
Notation

DA = star intensity observed during occultation, in counts/time interval
DMIA = minimum value of DA
FOF = normalized, measured signal intensity
TNO = column density along stellar ray path in cm$^{-2}$
A, B, C = least squares coefficients for a parabolic fit
M = one less than the number of smoothing points taken for a least squares fit

Part 3A: Line numbers 234-288 (for ozone only)
In this part, a correction to the ozone column density is made for the removal of Herzberg and Rayleigh scattering. To accomplish this, a functional inversion of $F(r)$ is necessary, where

$$ F(r) = \frac{\int_0^\infty T(\lambda)I_o(\lambda) \exp\left[-\sqrt{\omega_2}N_{o_2}(r) - \sqrt{\omega_3}N_{o_3}(r) - \sqrt{\omega_t}N_{o_t}(r)\right] d\lambda}{\int_0^\infty T(\lambda)I_o(\lambda) d\lambda} $$

F = normalized signal intensity
T = filter transmission
I_o = spectral stellar intensity
ω_i = cross-sectional value of i^{th} species or of molecular scattering (M), in cm2
N_i = tangential column density of i^{th} species ($N_M = \text{total for all species}$), in cm$^{-2}$

The desired quantity is $N_{o_3}(r)$. To carry out this operation, $\sqrt{\omega_2}(\lambda)$ is read in for the ozone band being considered e.g., 1800-3000 Å, with the Herzberg continuum being included. $\sqrt{\omega_2}(\lambda)$ is then computed for the same wavelength region from Rayleigh's formula,

$$ \sqrt{\omega_R}(\lambda) = 3.981 \times 10^{-28}(10^{-4} \lambda - 4.05) \text{ cm}^2 \quad (\lambda \text{ in Å}) $$
Some representative values of \(O_2 \) tangential column density are read in at a 5-km interval from 10 km to 310 km, and exponential interpolation is employed to find this quantity at each data point height. It is then converted to total tangential column density for all species and the final value of \(N_{O_3} \) is reached through Newton's inerative method. In this method, an initial guess of \(N_M \) is made for the value of \(N_{O_3}^{(0)} \) and function "FAT" produces a signal \(F_1 \) which is depleted by passage through an atmosphere with tangential column densities \(N_{O_3} \), \(N_{O_2} \) and \(N_M \) and through the filter. The second guess \(N_{O_3}^{(1)} \) reduces \(N_{O_3}^{(0)} \) by one quarter, and if the resulting signal \(F_2 \) is close enough to \(F_1 \) we have the \(N_{O_3} \) which is sought. Otherwise, a new \(N_{O_3}^{(j)} \) is computed by the formula

\[
N_{O_3}^{(j)} = N_{O_3}^{(j-2)} + (F_0 - F_{j-1})(N_{O_3}^{(j-1)} - N_{O_3}^{(j-2)})/(F_{j-1} - F_{j-1})
\]

where \(F_0 \) is the sum of the "FAT" functional evaluation for the case where \(N_{O_3} = 0 \) (actually a new normalizing factor) and the log of the signal corresponding to \(N_M \). A second tolerance test is provided by \(|(N_{O_3}^{(j)} - N_{O_3}^{(j-1)})/N_{O_3}^{(j-1)}| \leq \epsilon \) and a limit is placed on the number of iterations. The data points are taken from top to bottom and certain safeguards are included for computational instability encountered at the lowest levels.

Notation

<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SGO_2)</td>
<td>(O_2) cross section ((\hat{\nu}_{O_2})), in cm(^2)</td>
</tr>
<tr>
<td>(SGM)</td>
<td>Rayleigh scattering cross section ((\hat{\nu}_M)), in cm(^2)</td>
</tr>
<tr>
<td>(ITEST)</td>
<td>maximum number of iterations</td>
</tr>
<tr>
<td>(ITT)</td>
<td>iteration counter</td>
</tr>
<tr>
<td>(EPSC)</td>
<td>tolerance</td>
</tr>
<tr>
<td>(MZZ)</td>
<td>number of values in interpolation table for (O_2) column density</td>
</tr>
<tr>
<td>(ZZO)</td>
<td>base height of interpolation table, in cm</td>
</tr>
<tr>
<td>(DZZ)</td>
<td>vertical interval in table, in cm</td>
</tr>
</tbody>
</table>
Part 4: Line numbers 289-383

Using subroutine PARAB, the coefficients are obtained for fitting a curve of total tangential column density against tangent ray height, and the mathematical inversion is performed to get number density. Please refer to the notes on the O₂ error analysis for details on this procedure as well as the computation of temperature.

A STOP statement (line 342) negates CALCOMP plotting. When STOP is removed, the plotter produces number density graphs for two smoothing values. When molecular oxygen is being investigated, it draws two additional graphs for temperature.

Notation

Z = height, in cm
XN = tangential column density, in cm\(^{-2}\)
DEN = number density, in cm\(^{-3}\)
T = molecular temperature, in \(^{\circ}\)K

Parts 5-7: Line numbers 384-499

Subroutine SET returns the coefficients after fitting a least squares parabola through five equidistant points, whereas subroutine PARAB fits any number of points which need not be equidistant. Additional information is available in the program comments and in notes by Mr. A. Shah.
Part 8: Line numbers 500-541

Sample data are listed for an ozone run. They are:

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Longitude of spacecraft at a 10-sec interval, beginning with the value nearest to, but less than, the starting time of the scan, in deg</td>
</tr>
<tr>
<td>501</td>
<td>Latitude of spacecraft, ditto, in deg</td>
</tr>
<tr>
<td>502</td>
<td>Altitude of spacecraft, ditto, in km</td>
</tr>
<tr>
<td>503</td>
<td>Greenwich hour angle of Aries at a 10-min interval, centered around the value which is nearest to, but less than, the starting time of the scan, in deg</td>
</tr>
<tr>
<td>504</td>
<td>Declination of star in deg, min, sec</td>
</tr>
<tr>
<td>505</td>
<td>Right ascension of star in hr, min, sec</td>
</tr>
<tr>
<td>506</td>
<td>Starting time in hr, min, sec and number of data points</td>
</tr>
<tr>
<td>507</td>
<td>Beginning and ending wavelengths, in Å, and species identifier</td>
</tr>
<tr>
<td>508-513</td>
<td>S2F5 filter</td>
</tr>
<tr>
<td>514-524</td>
<td>Ozone cross section, in cm2</td>
</tr>
<tr>
<td>525-530</td>
<td>Stellar spectral values of intensity over the same wavelength intervals</td>
</tr>
<tr>
<td>531-539</td>
<td>Molecular oxygen cross section over the same wavelength intervals</td>
</tr>
<tr>
<td>540-541</td>
<td>Control values for corrections in Part 3A</td>
</tr>
</tbody>
</table>
Appendix III b.

This Appendix explains the procedure of finding a random number from a Poisson distribution as an additive scattering term. The procedure is made necessary by the fact that a Gaussian error distribution with a variance equal to the signal intensity causes negative values to occur at times when the scattered signal is superposed upon a basic signal as low as 5 counts/\(\Delta t\).

The Poisson distribution gives the probability of the number of occurrences of an event within a given time interval, e.g., 1 sec, and it is quite pertinent to the present case. A Poisson distribution, as described by the expression

\[
p(n) = \exp \left[-t \right] \frac{t^n}{n!}
\]

has the values shown in figure when \(t = 10, 1, \) and 0.1. \(n\) must be an integer, but \(t\), the mean signal intensity, is a real number. Since we seek a random number from a Poisson distribution to be added to the signal as random noise, an inversion of the formula is desired. In lieu of this difficult inversion, we can search for a random number, \(y\), \(0 < y < 1\), which will permit an \(n\) to be generated such that \(p(n) < y < p(n+1)\). When the inequality succeeds, \(n\) is accepted as the simulated signal intensity.

The procedure is employed successfully when the signal is between \(10^{-1}\) and 10 counts/\(\Delta t\). At lower values of the basic signal, the computer search for Poisson random variables becomes too time-consuming so the signal is then left intact.
Appendix IIIc.

This Appendix uses a simple flow chart and copies of error analysis programs with notes to give the details of the numerical error analysis for each of the species studied. Both single wavelength and broad waveband cases are considered.

The first flow chart applies to molecular oxygen, which is assumed to have a monotonically decreasing number density with increasing height. Following this figure is a program, "THREE", which handles the broadband filter case. Explanatory notes may be found at the end of the program.

The second flow chart applies to ozone, which is assumed to have a Gaussian-peaked feature superimposed upon a monotonically decreasing number density with increasing height. Following this figure is a program "OZNUM", which applies to the broadband filter. Explanatory notes for this program terminate the Appendix.
1. NUMERICAL SIMULATION

A. SINGLE WAVELENGTH

\[N_0 = 2m^* e^{-\frac{r^2}{2H}} K_1 \left(\frac{r}{H} \right) \]
\[\frac{\partial T}{\partial \theta} = 0 \]
\[100 \leq r \leq 180 \text{ km} \]

\[m'_o = \frac{-1}{n} \frac{d}{dr} \int_{r_0}^{r} N(r_0) (r_0^2 - r^2)^{-\frac{1}{2}} dr_0 \]

\[m_0 = m_2^* \frac{r}{H} \]
\[100 \leq r \leq 180 \text{ km} \]

B. BROADBAND

\((T_s)_{1280-1920} \)

\[N_0 = 2m^* e^{-\frac{r^2}{2H}} K_1 \left(\frac{r}{H} \right) \]
\[\frac{\partial T}{\partial \theta} = 0 \]
\[80 \leq r \leq 260 \text{ km} \]

\[m'_o = \frac{-1}{n} \frac{d}{dr} \int_{r_0}^{r} N(r_0) (r_0^2 - r^2)^{-\frac{1}{2}} dr_0 \]

\[m_0 = m^* e^{-\frac{r}{H}} \]
\[80 \leq r \leq 260 \text{ km} \]

\[F_0 = \phi I_s e^{-T_m} \]
\[80 \leq r \leq 260 \text{ km} \]

\[N_0 = A (ln \frac{T}{T_0})^2 + B (ln \frac{T}{T_0}) + C \]

\[m'_o = m_0 \frac{\Delta T}{m_0} (\lambda) \]

\[\text{MEAN, STD. DEV. } 32 \text{ CASES, } \Delta F_0 \]

\(T \) = TEMPERATURE

\(I_s \) = STELLAR RADIATION INTENSITY

\(\phi \) = FILTER FACTOR

\(\Delta \) = ABSORPTION CROSS-SECTION

\(\Delta \Phi \) = COEFFICIENTS FOR LEAST SQUARES FITTING
Molecular Oxygen Numerical Error Analysis: Broadband Filter

When \(N = \infty \), the program computes mean and standard deviation of percentage error at 2 nm spacing for \(N = 1 \) cases. When \(N = 3 \), the program computes percentage error and temp at various spacings with random error (NN=2) or without random error (NN=1).

When \(A = 0 \), the program computes mean and standard deviation of percentage error at 2 nm spacing for \(A=1 \) cases. When \(A = 3 \), the program computes percentage error and temp at various spacings with random error (NN=2) or without random error (NN=1).

Input C2 cross section \((SG) \), wavelength interval \((WL(J)) \), S41 filter transmission \((FILT) \).

Read C0, \((SC(1)) \), I=1,32

Format(6L1c,2)

CC \(300 \) I=1,32

Format(11DE.2)

Complete blackbody staff spectrum and adjust to get desired maximum count rate.
C
C CONTINUE NORMALIZATION FACTOR
C
SUM=0.
DO 501 J=2, N
501 SUM=SUM+(FILT(J)*FID(J)+Filt(J-1)*FID(J-1))/2./((WL(J)-WL(J-1))
502 SUM=SUM/(((WL(J)-WL(J-1))
503 FORMAT(F10.4)
504 X=210.05*(N**(-1))
C
C FROM A TABLE OF COLUMN DENSITY(TT) VERSUS SIGNAL INTENSITY
C (SUM) BASED UPON AN INTEGRATION OF THE FORMULA FOR TT WHICH
C ASSUMES SPHERICAL STRATIFICATION AND AN ISOTHERMAL ATMOSPHERE
C
C DO 800 IH=1,NP
C SUM=0.
C SUM=SUM+0+P0+((IH+1)*P0
C 20=P0-P0
C IF(IH.EQ.182) XMC=5.013
C IF(IH.EQ.183) XMC=5.013
C IF(IH.EQ.184) XMC=1.013
C DO 701 I=195,210
C XK=(1-184)/2.
C IF(IH.EQ.1) XMC=1.013/1.01**XK
C TT=XMC*O*EXP(-Z0-0.05/JH)*OSORT(1.57079*SH*RO)
C J0=(1+3.*SH*/(H*RO)-15./32.*(SH*RO)**2+315./216.*(SH*RO)**3)
C IF(IH.EQ.211) TT=1.0-16
C 701 IFX=1)TT=TT
C Do 1000 J=2,32
C 1000 SUM=SUM+((FILT(J)*FID(J)*DEXP(-SG(J)*TT)+Filt(J-1)*FID(J-1)*
C 1.0*DEXP(-SG(J-1)*TT))/2./((WL(J)-WL(J-1))
C FHN(IH)=SUM/SUM
C FHN(IH)=SUM
C CONTINUE
C IF(XN<.EQ.2)GO TO 307
C
C LOOP FOR NP RANDOM ERRORS IN SIGNAL INTENSITY AND VARIOUS
C DATA POINT SPACINGS
C
C DO 120 JNZ=1,JNZ/MAX
C DO 102 IH=1,NP,NP
C FHN(IH)=FHN(IH)
C 202 IFTE(6,501)IH,1,W(IH),FHN(IH),FHN(IH)
C 106 FORMAT(T2,15,3015.6)
C 107 CONTINUE
C 108 GO TO 306
C 109 CONTINUE
C IF(4.ME.NET/NW)GO TO 803
C
C LOOP FOR ACCRUING ERRORS IN O2 DENSITY RESULTING FROM
C RANDOMLY SCATTERED SIGNAL INTENSITY; FOR MANY CASES,
C WITH A SINGLE DATA POINT SPACING
C
C DO 18 JIX=1,MM
C
CONTINUE

SET UP FOR GAUSS SSD AND RANDU SSD

DO 120 J=2,NMAX
 IF(M.EQ.JM)IX=261
 IA=IX
 IF(IA.EQ.1)M=0.
 IF(M.EQ.MM)GO TO 304

LOOP FOR RANDOM ERRORS IN SIGNAL INTENSITY AND VARIOUS
DATA POINT SPACINGS

DO 28 JY=1, JYMAX
 ON 310 IH=1,NPP,NH
 SUM=FSUB(IH)
 IF(SUM.LT.10.)GO TO 9
 SD=OSQRT(SUM)
 CALL GAUSS(IX,SU,AM,V)
 FGF(IH)=(SUM+V)/SUN
 IF(FGF(IH).GE.1.)FOF(IH)=1.-1.D-5
 IF(FGF(IH).LT.FNO(1))FOF(IH)=FNO(1)+1.D-12
 N=100
 GO TO 809
 IF(SUM.LT.1)FOF(IH)=FNO(IH)
 IF(SUM.LT.1)N=0
 IF(SUM.LT.1)GO TO 809

DETERMINE A RANDOM NUMBER FROM A POISSON DISTRIBUTION
WHEN .1<SIGNAL INTENSITY<10.

NMAX=SUM+5.
IF=DEXP(-SUM)
P(2)=SUM*IF
GSUM=IF(2)
CALL RANDU(JX,JY,YFL)
DO 1 N=2,NMAX
1 IF(N.EQ.2)GO TO 10
 U=SUM*#(N-1)*IF
 D=1.
 H=H-2
 3 J=1,II
 IF(J.EQ.H)GO TO 3
 O=(N-J)*D
 GSUM=GSUM+O/D
 P(N)=GSUM
10 IF(P(N).GE.YFL.AND.P(N-1).LE.YFL)GO TO 12
 IF(MM.NE.MM)WRITE(6,91)N,P(N-1),P(N),YFL
 CONTINUE
 13 JX=JY
 GO TO 2
12 JX=JY
 FOF(IH)=(N-2)/SUN
 IF(FOF(IH).LT.1.D-10)FOF(IH)=1.D-10
 IF(MM.NE.MM)WRITE(6,805)IH,FOF(IH),FNO(IH),N,YFL
 CONTINUE
805 FORMAT(15,20D15.5)
809 FORMAT(15,3F12.5)
819 CONTINUE
836 HDF=HDF*2.
1 IF(MM.NE.MM)HDP=2.05
COMPUTE O2 NUMBER DENSITY FROM AN EXponential MODEL ATMOSPHERE FOR LATER COMPARISON WITH RETRIEVED VALUES

DO 801 IHO=1,NPH
RO=RE+HO+(IHO-1)*HDP
CALL ATMOS(RO)
ONUMD(IHO)=XP(2)
RHTO(IHO)=RO
ZKM(IHO)=RHTO(IHO)-RE
801 CONTINUE

INTERPOLATE IN THE TABLE TO FIND COLUMN DENSITY(TNO) FROM A SIGNAL INTENSITY(FOF) WHICH IS A SIMULATION OF THE MEASURED SIGNAL

DO 502 J=1,NP
Z(J)=ZKM(FNO(J))
XN(J)=DLG(TWN(J))
502 CONTINUE

INVERT COLUMN DENSITY(TNO) TO GET O2 NUMBER DENSITY(DEN)

DO 700 J=1,NPH
Z(J)=ZKM(J)
K=J*NPH-(NH-1)
XN(J)=TNO(K)
700 CONTINUE

COMPUTE ERROR AND ACCRUE ERROR SUMS

DERR(J)=(DEN(J)-NUMD(J))/NUMD(J)
DERRSQ(J)=DERRSQ(J)+DERR(J)**2

DEERR(J) = DEERR(J) + DERR(J)
CONTINUE
WRITE (6,85) J12, J14, J16
FORMAT (/315)
IF (NM.EQ.MM) GO TO 18
WRITE (6,24)*NP
FORMAT(/26H NUMBER OF DATA POINTS =,13/)
WRITE (6,25)*NP
FORMAT(/29H NUMBER OF TABULAR POINTS =,13/)
WRITE (6,23)*
COMPUTE TEMPERATURE FROM A FORM OF THE HYDROSTATIC LAW
N1=N1-1
DO 6 J=1,N1
I=0.
DO 7 I=J,N1
A2=DEN(I+1)/(HRTO(I+1)**2)
A1=DEN(I)/(HRTO(I)**2)
A1=ABS(A1)
A2=ABS(A2)
T=(A2-A1)/DLOG(A2/A1)*(ZKM(I+1)-ZKM(I))
T=(3.8038E-4)*T/DEN(J)
T=T*RHTO(I)*HRTO(I)
IF (MM.NE.MM) WRITE (6,22) ZKM(J), T, DEN(J), NUMA(J), DERR(J)
CONTINUE
Nh=NH*2
IF (MM.EQ.MM) NH=2
IF (NN.EQ.1) GO TO 8
IF (MN.EQ.MM) GO TO 18
CONTINUE
IF (NN.EQ.2) AND MM.NE.MM) GO TO 83
CONTINUE
IF (MN.EQ.MM) GO TO 79
CONTINUE
IF (MN.NE.MM) GO TO 80
WRITE (6,82)
FORMAT (/8X,1HZ,10X,10HMEAN ERROR,7X,5HSIGMA,10X,5HSUMSQ, L11X,3HSUM/)
CONTINUE
DO BC J=1,N1
DMEAN(J)=DEERR(J)/(MM*1.)
SIGMA(J)=DSRRT(DERRSQ(J))/(MM*1.)-DMEAN(J)*DMEAN(J)
WRITE (6,81) ZKM(J), DMEAN(J), SIGMA(J), DERRSQ(J), DEERR(J)
CONTINUE
CALL EXIT
FND
SUBROUTINE PARAB(M)
PARAB FINDS THE SECOND ORDER LEAST SQUARES COEFFICIENTS
A, B, AND C FOR INPUT VECTORS Z AND XN, USING M+1 SMOOTHING POINTS
IMPLICIT REAL*8(A-H,O-Z)
COMMON FSUB(400)
COMMON Z(400),XN(400),A(400),B(400),C(400),XP(4),FNO(400),
IEOF(400),TW(400),TNO(400),HO,XNO,RE,NP

L=M/2
DO 2 1=1,NP
IZ=NP+1-L
K=1
IF(1.GT.L.AND.1.LT.IZ)K=1-L
IF(1.GE.1Z)K=NP-M
ZN=0.
ZB=0.
Z4=0.
XNR=0.
ZNB=0.
Z2NB=0.
K2=K+M
DO 3 J=K,2
ZH=ZB+7(J)
7B=7B+7(J)**2
ZH=Z3B+7(J)**3
Z4=Z4B+7(J)**4
ZN=ZNB+7(J)*XN(J)
Z2NB=Z2NB+XN(J)*(Z(J)**2)
3
XNR=XNR+XN(J)
300 J=1
M1=M
N=M+1
Y=(M*Z3B-ZB*7H)*(M*ZH-ZH*ZB)-(M*Z4B-ZB**2)*(M*Z2B-ZB**2)
1
IF(DABS(Y).LT.1.D-40) A(J)=0.
2
IF(DABS(Y).LT.1.D-40) GO TO 1
A(J) = (M*ZNB-XNB*ZH)*(M*ZH-ZB*ZB)-(M*XNB-XNB*ZB)*(M*Z2B-ZB**2)
3
1/(M*Z3B-ZB*ZB)*(M*Z3B-ZB*ZB)-(M*Z4B-ZB**2)*(M*Z2B-ZB**2)
300 D=A(J)
D=Z2B-ZD**2
IF(DABS(D).LT.1.D-40) B(J)=0.
2
IF(DABS(D).LT.1.D-40) GO TO 1
B(J) = (M*ZNB-ZB*ZNB)*(M*ZH-ZB*ZB)-
(1)/(M*Z2B-ZB*ZB)*(M*ZH-ZB*ZB)
330 C(J)=(XNB-D*Z2B-E*ZB)/M
M=M1
335 CONTINUE
RETURN
END

SUBROUTINE ATMOD(RW)

ATMOS FINDS THE O2 NUMBER DENSITY AT ALTITUDE ZW

IMPLICIT REAL*8(A-H,O-Z)
COMMON FSUB(400)
COMMON Z(400),XN(400),A(400),B(400),C(400),XP(4),FNO(400),
IEOF(400),TW(400),TNO(400),HO,XNO,RE,NP
PE=6371.05
1
Z=ZP-RE
XP(2)=.72013*DEXP(-(ZW-80.05)/10.05)
RETURN
END

2.50E-19 5.00E-19 1.50E-18 2.30E-18 8.00E-18 1.30E-17
1.40E-17 1.41E-17 1.42E-17 1.30E-17 1.26E-17 1.10E-17
1.00E-17 4.20E-18 7.00E-18 6.00E-18 4.50E-18 3.50E-18
2.50E-18 1.80E-18 1.20E-18 8.00E-19 5.50E-19 3.50E-19
Part I: Line numbers 1-62

In this part, the initial parameter values are set and the input data are read.

Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH</td>
<td>O_2 scale height for an isothermal atmosphere, in cm</td>
</tr>
<tr>
<td>VM</td>
<td>visual magnitude of star</td>
</tr>
<tr>
<td>WLO</td>
<td>reference wavelength for stellar spectrum, in cm</td>
</tr>
<tr>
<td>TF</td>
<td>Effective blackbody stellar temperature, in 0K</td>
</tr>
<tr>
<td>FOO</td>
<td>adjusting factor for obtaining a desired fictitious count rate at the top of the scan</td>
</tr>
<tr>
<td>RE</td>
<td>average radius of the earth, in cm</td>
</tr>
<tr>
<td>HO, HP</td>
<td>base height of the O_2 profile, in cm</td>
</tr>
<tr>
<td>XNO</td>
<td>O_2 number density at the base height, in molecules/cm3</td>
</tr>
<tr>
<td>NP</td>
<td>number of points in a formulated table of normalized signal v. column density. Note: column density = mass of species in a 1 cm2 channel centered on the stellar ray, also called the total integrated number density.</td>
</tr>
<tr>
<td>NPP, NPH</td>
<td>number of data points in the profile</td>
</tr>
<tr>
<td>HDP</td>
<td>halfstepsize for computing O_2 densities in an exponential atmosphere, in cm</td>
</tr>
<tr>
<td>NN</td>
<td>switch for introducing random error into the signal intensity</td>
</tr>
<tr>
<td>NH</td>
<td>stepsize for computing O_2 number densities, in number of tabular data points</td>
</tr>
<tr>
<td>JIYMAX</td>
<td>limiting value of the number of data point spacings used, with random error in signal</td>
</tr>
<tr>
<td>JIZMAX</td>
<td>limiting value of the number of data point spacings used, without random error in signal</td>
</tr>
</tbody>
</table>
JIX, JIY, JIZ = counters

MM, MMM = switch for selecting one of three paths (see program comments)

SG = \(O_2\) absorption cross sectional values in \(\text{cm}^2\); the values are listed at the end of the program

WL = wavelength in cm

FILT = normalized values of S4F1 filter transmission; the values are listed after the SG values at the end of the program

FIO = stellar spectral intensity, in digital voltmeter counts/sec
Part II: Line numbers 63-96

In this part, a normalization factor for the signal intensity is computed and a table of normalized signal intensity v. column density (see NP under Notation, Part I) is formed. In making the table, arbitrary values of O_2 number density are selected which cover the expected range of values of the species profile. Then the expression for the column density, $n = \int \limits_{\infty}^{0} (r) r (r^2 - r_o^2)^{-\frac{1}{2}} n(r)$ is integrated numerically by an expansion of the modified Bessel function of the first kind, assuming an isothermal atmosphere:

$$n_o = 2 \pi r_o \int \frac{e^{-\frac{r_o - r_o^*}{H}}}{r_o} \left(\frac{r}{H} \right) = 2 \pi e^{-\frac{r_o - r_o^*}{H}} \left(\frac{\pi H n_o}{2} \right)^{\frac{1}{2}} \left(\frac{3}{4} \frac{H}{r_o^*} \right)$$

n_o = number density
r_o = distance to the earth's center
H = scale height
K_1 = modified Bessel function of the first kind

Superscript * refers to the reference height, which is 80 Km in this case.

Then the signal intensity corresponding to N is computed from the expression,

$$I = \int \limits_{0}^{\infty} \frac{T(\lambda)}{I_{\infty}(\lambda)} e^{-\sigma(\lambda) N} \left[\int \limits_{0}^{\infty} T(\lambda) I_{\infty}(\lambda) d\lambda \right]^{-1}$$

T = filter transmission
λ = wavelength
σ = species cross section
$I_{\infty} = \int_{0}^{\infty}$ integrated stellar spectral intensity without atmospheric attenuation

Complete notes on the derivation of the formula for N are included on the pages preceding Part III. There are some minor differences in notation.
Notation

SUN = integration factor, or the integrated stellar spectral intensity, in counts/sec

HD = stepsize for altitude of the ray's tangent point used in the calculation of the column densities, in cm

IHO = counter and altitude setter; in lines 81-89 it is used to arbitrarily reduce the column density to near zero at the upper end of the scan

SUM = filtered signal intensity integrated over wavelength, in counts/sec

RO = distance from the center of the earth to the ray's tangent point, in cm

ZQ = altitude of the ray's tangent point, in cm

TT, TWW = column density for the table, computed at altitude ZQ, in cm$^{-2}$

FNO = integrated, normalized signal intensity corresponding to TT

FSUB = storage vector for the integrated, unnormalized signal intensity corresponding to TT, in counts/sec
Part III: Line numbers 97-174

In this part, the simulated signal intensity is obtained. If no random error is to be admitted, lines 98-108 select certain tabular values of the integrated, normalized signal intensity as the simulated signal intensity. If random error is to be introduced, there are two possibilities: (1) scatter the signal values with a set of random numbers from a Gaussian distribution with its mean = 0 and its variance = the signal intensity; (2) find positive integral values of the signal from a Poisson distribution having its parameter = signal intensity.

A Poisson distribution is characterized by the probability function,

\[P(n) = \begin{cases} 0, & n \text{ not an integer} \\ \frac{n^n e^{-I}}{n!}, & n = 0, 1, 2, \ldots \end{cases} \]

I = mean signal intensity, the Poisson parameter in this case

To find an n which belongs to a Poisson distribution, the procedure employed (lines 123, 125, and 145-171) is this:

1. Seek a random number (YFL) between 0 and 1 which permits a random variable, n, to be found such that \(P(n) < YFL < P(n+1) \).
 a. The search begins with \(n = 0 \) and proceeds with increasing integral values. This permits the probabilities to be cumulated, i.e.,
 \[P(3) = \frac{I^3 e^{-I}}{2!} + P(2) + P(1). \]
 b. An upper limit on n of \(I + 5 \) is imposed for computing economy.
 c. If \(n = 0 \) is the outcome, substitute a small positive value for 0 (\(n = 10^{-10} \)) to allow subsequent computation to continue.
2. Assign n as the value of the signal.

In practice, the Poisson random variables were sought when $0.1 < I < 10$. At the lower limit, $P(n \geq 1) = 0.12$, and the search procedure is quite time-consuming at lesser values of I. Below 0.1, the tabular number is accepted as the simulated signal, but a different smoothing procedure in the interpolation subroutine produces a number density unlike that for the no-scatter case. At the upper limit and beyond, the Gaussian distribution yields a real number which is added to the signal in a rapid computer operation.

Notation

- JIZ = loop counter for no-scattering case
- FOF = simulated (measured) signal intensity, in counts/sec
- JIX = loop counter for any quantity of scattering cases with a single data-point spacing
- IX = GAUSS subroutine argument; it must be changed manually at the start of a run if new random numbers are desired; it is an odd, positive integer
- JX = RANDU subroutine argument; it must be changed manually before each entry to avoid repetition
- AM = GAUSS subroutine argument: the mean of the distribution
- P = probability of a Poisson random variable equalling the integral value of the subscript minus 1
- JIY = loop counter for one scattering case with variable data-point spacing
- SD = GAUSS subroutine argument: the standard deviation of the distribution

* $n-2$ in the program corresponds to the n discussed here.*
\[V = \text{GAUSS subroutine argument: the value returned} \]
\[N = \text{indicator of the program path taken and the Poisson integer} \]
\[N_{\text{MAX}} = \text{upper limit on the Poisson integer} \]
\[U = \text{numerator in the Poisson formula} \]
\[D = \text{denominator in the Poisson formula} \]
Part IV: Line numbers 175-238

In this part, O₂ number densities from an exponential atmosphere pinned at 80 Km are computed (lines 175-191) for later comparison with retrieved number densities. The former values are furnished by subroutine ATMOD.

In order to carry out a mathematical inversion leading to retrieved number density, the column density must first be obtained. This is achieved through a logarithmic interpolation scheme as follows:
1. The table (Part III) is converted to the natural logarithms of signal intensity (FNO) and column density (TNO).
2. Using subroutine PARAB, a least squares parabola is fitted to M + 1 values of ln(FNO). This is done at each tabular value of ln(FNO) to obtain the coefficients (A, B, C).
3. The simulated signal (FOF) is located between tabular values of FNO, its logarithm is found, and the column density (N) is computed by

\[N_i = \exp \left[A \ln I_i^2 + B \ln I_i + C_i \right]. \]

Tests with various numbers of smoothing points indicate that 3(M = 2) is the optimum number for unscattered signal intensities and 9 (M = 8) is optimum for randomly scattered data.

The mathematical inversion is represented by

\[m' = -\frac{2}{\pi} \int R \frac{d}{dr} \frac{N(\varphi)}{r^2} (r^2 - r^2_i)^{-\frac{1}{2}} dr, \]

and the error analysis may be expected to invert \(N(r_0) \) according to an expression such as

\[\Delta m(\varphi) = -\frac{2}{\pi} \sum_{i,j} N_i N_j \int \frac{d}{dr} \left[\frac{N_i}{r_i^2} + \frac{N_j}{r_j^2} \right] \left(\frac{r_i^2 - r_j^2}{r_i^2 + (r_i^2 - r_j^2)^{\frac{1}{2}}} \right)^2 dr. \]

However, as may be seen in the ensuing notes, the random noise being superposed is

\[\Delta m(\varphi) = -\frac{2}{\pi} \int R \frac{d}{dr} N \left(r^2 - r_0^2 \right)^{-\frac{1}{2}} dr, \]
and smoothing of \(\Delta N \) is necessary, i.e.,

\[
\Delta N = A(r-r_o)^2 + B(r-r_o) + C.
\]

The resulting formula is

\[
\Delta n(r_j) = \frac{1}{n} \sum \left[A (r^2 - r_j^2) (r - r_j)^2 + (B - A) (r - r_j) + C \right] \lambda \left[\frac{r - r_j}{r_j^2 + (r + r_j)^2} \right] \]

The coefficients \(A_i \) and \(B_i \) are again supplied by subroutine PARAB, the arguments of the table becoming altitude (ZKM) and column density (TNO).

The error, \((n - n_o) / n_o \), is finally computed at each altitude level and its sums and squares of sums are accrued for multiple cases (lines 232-238).

Notation

ONUMD, XP(2) = \(O_2 \) number density from the exponential model atmosphere, in cm\(^{-3}\)

RHTO, RO = distance of the ray tangent point from the earth's center, in cm

ZKM = altitude of the ray tangent point, in cm

Z = abscissa of the table

XN = ordinate of the table

M = one less than the number of smoothing points taken for a least squares fit in subroutine PARAB

X = entry value for a logarithmic interpolation

DEN = retrieved number density, in cm\(^{-3}\)

DERR = error in number density

DERRSQ = sum of squares of DERRs

DERRA = sum of DERRs

A, B, C, = least squares coefficients for a parabolic fit
Part V: Line numbers 239-288

In this part, the molecular temperature \((T)\) is computed from the expression

\[
T_o = \frac{m_0}{k} \frac{2}{n_2} \int_0^\infty n_c(\sigma) d\sigma
\]

which is derived from the hydrostatic approximation (see the following notes).

If multiple cases are being handled, the mean and standard deviation are then computed for the errors at each altitude level.

Notation

\(T\) = molecular temperature, in °K

MM, MMM = number of cases for error statistics

DMEAN = mean error in number density

SIGMA = one standard deviation of number density error
Part VI: Line numbers 353-361

In this part, the \(O_2 \) scattering cross sectional values are listed at an interval of 20 Å (lines 353-358).

The S4F1 filter transmission values, adjusted to a maximum value of 1.0, are also listed at the same wavelength interval (lines 359-361).
1. NUMERICAL SIMULATION

a. SINGLE WAVELENGTH

\[N_0 = 2n^* e^{-\frac{h}{H_1} \gamma_0} K_0 \left(\frac{r_0}{H_1} \right) + 2n^* e^{-\frac{h}{H_2} \gamma_0} \left(\text{terms in } D_\nu, \gamma \right) \]

\[\frac{\partial T}{\partial T} = 0 \]

\[50 \leq h \leq 100 \text{ km} \]

\[50 \leq r^* \leq 100 \text{ km} \]

\[m^0 = -\frac{1}{\pi} \frac{d}{dr} \int_0^\infty \frac{N(\gamma)}{(r_0^* - r^*)^{-1/2}} \, dr_0 \]

\[m^1 = m^0 - \frac{m^1}{m^0} \]

b. BROADBAND

(\[I_0 \]

\[1800 - 3000 \lambda \]

\[N_0 = 2n^* e^{-\frac{h}{H_1} \gamma_0} K_0 \left(\frac{r_0}{H_1} \right) + \left(\text{terms in } D_\nu, \gamma \right) \]

\[\frac{\partial T}{\partial T} = 0 \]

\[30 \leq h \leq 100 \text{ km} \]

\[m^0 = -\frac{2}{\pi} \frac{d}{dr} \int_0^\infty \frac{N(\gamma)}{(r_0^* - r^*)^{-1/2}} \, dr_0 \]

\[m^1 = m^0 - \frac{m^1}{m^0} \]

\[m^0 = m^1 e^{-\frac{h}{H_1}} + m^1 e^{-\left(\frac{h}{H_2} \right)^2} \]

\[30 \leq h \leq 100 \text{ km} \]

\[F_0 = \phi I_0 e^{-\gamma N_0} \]

\[40 \leq h \leq 210 \text{ km} \]

\[N_0 = A (\ln F_0)^2 + B (\ln F_0) + C \]

\[F_0 + \Delta F_0 \]

\[\frac{m^0 - m_0}{m_0} (\lambda) \]

\[\text{MEAN STD. DEV. 30 CASES } \Delta F_0 \]

\[\lambda' = \text{HEIGHT ABOVE "GAUSSIAN" REFERENCE LEVEL} \]

\[H_1 = \text{O}_3 \text{ SCALE HEIGHT} \]

\[H_2 = \text{O}_3 \text{ " " AROUND THE "GAUSSIAN" ALT.} \]

\[m^*_1 = \text{NUMBER DENSITY AT THE "GAUSSIAN" ALT.} \]

\[D_\nu = \text{WEBER PARABOLIC CYLINDER FUNCTION} \]

\[\gamma = \text{GAMMA FUNCTION} \]

\[\text{REST OF NOTATION SAME AS FOR } q \]
OZONE NUMERICAL ELYCE ANALYSIS

When \(\Phi = \Phi \), the program computes mean and standard deviation of percentage error at one spacing for \(MM \) cases. When \(\Phi \neq \Phi \), the program computes percentage error and temp. at various spacings with random error (\(NN=2 \)) if without random error (\(N=1 \)).

\[\Phi = 10 \]
\[\Phi = 10 \]

INPUT

- \(C \) \(\Phi = 10 \)
- \(\Phi = 10 \)

FORMAT

\[/2 \] \(WINI \) \(STATISTIIC FOR MM=13) \]

FILE

- \(C \) \(C \)
- \(C \) \(C \)

FUNCTIONS

- \(C \) \(C \)
- \(C \) \(C \)

COMMENTS

- **MAURICE GRAVES**
- **LAST SIGNATURE WAS**
- **SAFETY SIGN OFFICE AT**
- **TIME OZNUM**

Additional Information

- **SIGNATURE**
- **DATE**
- **TIME**
- **CNUM**

Variables

- \(C \) \(C \)
- \(C \) \(C \)

Miscellaneous

- **Remarks**
- **Notes**

Code

- **Program Description**
- **Algorithm**
- **Implementation Details**
MAXIMUM COUNT RATE

C 55
C
C IC = 01 I = 1, 61
C
C FIO(I) = DEXP(-(.921*VM + 9.3875))*(WLO**5)/((WL(I)*1.D-8)**5)*(DEX:
C 11.438/((WLC*TF)-1.))/(DEX(1.438/(WL(I)*1.D-8*TF))-1.)*(1.D-7)
C
C FIO(I) = FIC(I) * FOO

C 61
C CONTINUE

C 61.1
C
C COMPUTE NORMALIZATION FACTORS

C 61.2
C
C SUN = 4.
C
C IC 302 J = 2, 61
C
C IC 302 SUN = SUN + ((FILTER(J) * FIC(J) + FILTER(J-1) * FIO(J-1))/.
C 1.*((WL(J) - WL(J-1))
C
C WRITE(6,303) SUN

C 66
C
C IC 303 FCMAT((E15.6))
C
C EC = 170.15/(NP-1)

C 68
C
C FCRA A TABLE OF COLUMN DENSITY (TT) VERSUS SIGNAL INTENSITY
C (SUM) BASED UPON AN INTEGRATION OF THE FORMULA FOR TT WHICH
C ASSUMES SPHERICAL STRATIFICATION AND AN ISOTHERMAL ATMOSPHERE

C 70
C
DC 800 IHC = 1, NE
C SUM = 0.
C RC = RE + HC + (IHC-1)*HL
C ZC = RC - RE
C TT = XNC * DEXP(-2*(ZC-0.155)/SH)*DSQRT(1.57079*SH*RE)
C 1*(1.629*SH/(E*RO)-15./32.*(SH/RO)**2+315./216.*(SH/RO)**3)
C C = 2.1/(SHC*SHCC)
C VA = ZC - ZKCC
C WB = VA + 1.4142/SHC
C IF(CAESL.E.61) TT = 14
C CYL1 = FCMAT(-.5, VB)
C CYL2 = CYL1 + 14
C TTG = 2 * DEXP((VA*VA)/(2.*SHC*SHCC)) * CYL2 + 50/(C1**.25)*1.
C 13
C EXP((VA*VA)/(2.*SHC*SHCC)) * CYL1
C
C 89
C
C 1100 SUM = SUM + ((FILTER(J) * FIC(J) * DEXP(-SG(J) * TW(IHO))+FILTER(J-1) *
C 1* FIO(J-1) * DEXP(-SG(J-1) * TW(IHO)))/2.)*(WL(J) - WL(J-1))
C
C WRITE(6,504) IHC, TLW(IHO), FMC(IHO), TTG

C 98
C
C FORMAT(T12, T15, 4D15.6)
C
C 95
C CONTINUE

C 100
C
C IF(NN.EC.2) GO TO 900

C 101
C
C LCOP FOR NO RANDOM ERRORS IN SIGNAL INTENSITY AND VARIOUS
C DATA INTERVAL SPACINGS

C 102
C
C JC = 2, 61
C
C IC 800 SUM = SUM + (FILTER(J) * FIC(J) * DEXP(-SG(J) * TNOX(IHO))+FILTER(J-1) *
C 1* FIO(J-1) * DEXP(-SG(J-1) * TNOX(IHO)))/2.)*(WL(J) - WL(J-1))
ICF(110) = SUM/SUN
WRITE (0,501) ICF, TNOX (HIC), ICF (HIO)
501 FCMAT (T2, IE, ZC15.6)
CONTINUE
IF (NN.EQ.1) GO TO 8C6
IF (MM.EQ.203) GO TO 803

ICOP FCB ACCUMULATING ERRORS IN C3 DENSITY RESULTING FROM
RANDOMLY SCATTERED SIGNAL INTENSITY, FCB MANY CASES, WITH A SINGLE DATA POINT SPACING

EC 18 JI)=1, MM
803 CONTINUE

SET UE FCB GAUS SSP AND RANDU SSP
IX = 203 + 100*(JI-1)
IF (MM.EQ.203) IX = 201
JX = IX
AM = 0.
F(1) = 0.
IF (MM.EQ.203) GO TO 804

ICOP FOR RANDU ERRORS IN SIGNAL INTENSITY AND VARIOUS
DATA POINT SPACINGS
JIYMAX = 1
DC 28 JLY = 1, JIYMAX
804 GO 810 IE = 1, NPP, NH
SUM = FCF (IH) * SUN
IF (SUM.LT.10.) GO TO 9
SD = DESCR (SUM)
CALL GAUSS (IX, SD, AM, V)
FCF (IH) = (SUM + V) / SUN
503 IF (FCF (IH).GE.1.1) FCF (IH) = 1.1.D-5
IF (FCF (IH).LT.FNO (IH)) FCF (IH) = FNO (IH) + 1.D-12
N = 100
GO TO 8C9

CALL RANDU (JI, JY, YFL)
N = 2, NMAX
IF (N.EQ.2) GO TO 10
U = SUM**2(N-1) * F
D = 1.
II = N-2
DC 3 J = 1, II
2 E = (N-J) * L
GSUM = GSUM + U/D
10 IF (E(N).GE.YFL .AND. F(N-1).IE.YFL) GO TO 12

112 113 WRITE (0,501) ICF, TNOX (HIC), ICF (HIO)
114 501 FCMAT (T2, IE, ZC15.6)
115 CONTINUE
116 IF (NN.EQ.1) GO TO 8C6
117 IF (MM.EQ.203) GO TO 803
118 ICOP FCB ACCUMULATING ERRORS IN C3 DENSITY RESULTING FROM
119 RANDOMLY SCATTERED SIGNAL INTENSITY, FCB MANY CASES, WITH A SINGLE DATA POINT SPACING
120 EC 18 JI)=1, MM
121 803 CONTINUE
122 C
123 C
124 C
125 C
126 C
127 C
128 C
129 C
130 C
131 C
132 C
133 C
134 C
135 C
136 C
137 C
138 C
139 C
140 C
141 804 GO 810 IE = 1, NPP, NH
142 SUM = FCF (IH) * SUN
143 IF (SUM.LT.10.) GO TO 9
144 SD = DESCR (SUM)
145 CALL GAUSS (IX, SD, AM, V)
146 FCF (IH) = (SUM + V) / SUN
147 503 IF (FCF (IH).GE.1.1) FCF (IH) = 1.1.D-5
148 IF (FCF (IH).LT.FNO (IH)) FCF (IH) = FNO (IH) + 1.D-12
149 N = 100
150 GO TO 8C9
151 C
152 C
153 C
154 C
155 C
156 C
157 C
158 C
159 C
160 C
161 2 GSUM = F (2)
162 CALL RANDU (JX, JY, YFL)
163 DC 1 N = 2, NMAX
164 IF (N.EQ.2) GO TO 10
165 U = SUM**2(N-1) * F
166 D = 1.
167 II = N-2
168 DC 3 J = 1, II
169 3 E = (N-J) * L
170 GSUM = GSUM + U/D
171 I (N) = GSUM
172 10 IF (E(N).GE.YFL .AND. F(N-1).IE.YFL) GO TO 12
172 CONTINUE
174 JX=JY
175 CC TC 2
176 JX=JY
177 ECF(1E) = (N-2)/SUN
178 IF (FCT(IH).LT.1.D-10) FOF(IH) = 1.D-10
179 IF (MM.NE.MM) WRITE(6,805) IH,FOF(IH),FNO(IH),N,YPL
180 Format(15,2E15.6,15,F10.5)
181 CONTINUE
182 E06 HEE=HFL*2.
183 IF (MM.EC.MM) HEE=.5DE
184 NPH=(NEH-1)/2+1
185 IF (JIX.EC.1) NPH=141
186 IF (JIX.EC.1) NPH=141
186.1 IF (MM.EC.MM) NPH=261
187 C COMPUTE CZ NUMBER DENSITY FROM AN EXPONENTIAL MODEL
188.1 ATMOSPHERE WITH A SUPERPOSSE GAUSSIAN CURVE FOR LATER
189 C COMPUTER WITH RETRIEVED VALUES
190 C
191 LC 8C7 IHG=1,NPH
192 RC=RE+HC+(IHG-1)*HFL
193 CALL ATMCE(RO)
194 CNUMD(IHG)=XP(2)
195 FHC(IHG)=RO
196 ZKM(IHG)=RI TO(IHO)-RE
197 E07 CONTINUE
198 C INTERPOLATE IN THE TABLE TO FIND COLUMN DENSITY(TNO) FROM
199 C A SIGNAL INTENSITY(FOF) WHICH IS A SIMULATION OF THE
200 C MEASURED SIGNAL
201 C
202 LC 502 J=1,NF
203 Z(J)=LLCG(FNC(J))
204 XA(J)=DICG(TWK(J))
205 502 CONTINUE
206 M=8
207 C
208 IF (NN.EC.1) M=2
209 CALL EAFAB(M)
210 LC 630 L=1,NF,NN
211 IF (FCT(I).LT.FNO(I)) FOF(L)=FNC(1)+1.D-12
212 DC 612 L=1,NE
213 IF (FOF(I).GE.FNO(I) .AND. FCF(I).LT.FNO(I+1)) GC TO 613
214 612 CONTINUE
215 613 J=1
216 X=OLCG(ECF(I))
217 TNO(L)=A(J)*X*X+B(J)*X+C(J)
218 TNO(L)=DEXP(TNC(L))
219 630 CONTINUE
220 C INVENT COLUMN DENSITY(TNC) TO GET O2 NUMBER DENSITY(DEN)
221 C
222 LC 760 J=1,NPH
223 Z(J)=ZKH(J)
224 J=J*KH-(NH-1)
225 700 XH(J)=IKC(K)
226 K=1
227 IF (NN.EC.1) M=2
228 CALL EAFAB(M)
229 A1=NH-1
CC 4 J=1,N1
DEN(J)=C.
LC 5 J=J,N1
E=2.*A(I)
LET=DSQRT(RHTO(I)**2-RHTO(J)**2)
DEN(J)=DEN(J)+LET*(DSQRT(RHTC(I+1)**2-RHTO(J)**2)-DSQRT(RHTO(I+1)**2)
1+(U(I)-2.*A(I)**2)*DLOG((RHTC(I+1)**2-RHTO(J)**2)*(RHTO(J)**2-RHTO(I+1)**2)
2-RHTO(J)**2)/(RHTO(I)**2-RHTO(J)**2)
DEN(J)=-DEN(J)/PI*2.
C COMPUTE ERROR AND ACCRUE EFFECT Sums
C DERR(J)=(DEN(J)-CNUMD(J))/CNUMD(J)
C EERRSQ(J)=DERRSQ(J)+EERR(J)*DERR(J)
C DERRA(J)=DERA(J)+EERR(J)
C CONTINUE
C WRITE(6,85)JIX,JIY,JIZ
C IF(MX.E.GM)NC TO 18
C WRITE(6,24)NP
C FORMAT(/26H NUMER OF DATA POINTS =,I3/)
C WRITE(6,25)NP
C FORMAT(/28H NUMBER OF TABULAR POINTS =,I3/)
C WRITE(6,26)NP
C FORMAT(/18X,1HZ,13X,3HNC3,12X,4HNCN3,12X,4HDERR/)
C M=N-1
C IF(NN.E.E.MN)WRITE(6,22)ZKM(J),DEN(J),CNUMD(J),DERR(J)
C CONTINUE
C IF(MX.E.GM)NC TO 18
C WRITE(6,85)JIZ,JIX,JIZ
C IF(MX.E.GM)NC TO 8
C IF(MX.E.GM)NC TO 18
C CONTINUE
C IF(MX.E.GM)NC TO 79
C WRITE(6,82)
C FORMAT(/3X,1HZ,10X,10HEEAN ERROR,7X,5HMEAN ERROR,7X,5HSUMSQ,11X,5HSUMSQ/)
C COMPUTE STATISTICS FROM ACCRUE Sums
C LC 8C J=1,N1
C DMEAN(J)=DERRA(J)/(ME*1.)
C SIGMA(J)=DSQRT(DERRSQ(J)/(ME*1.)-DMEAN(J)*DMEAN(J))
C WRITE(6,81)ZKM(J),DMEAN(J),SIGMA(J),DERRSQ(J),DERRA(J)
C CONTINUE
C CALL EXIT
C END
C SUBROUTINE PARAB (M)
C PARAB FINDS THE SECCAL COLER LEAST SQUARES COEFFICIENTS
A,B, AND C FOR INPUT VECTERS Z AND XN, USING M+1 SMOOTHING
C
85
ATMOL finds the O3 number density at altitude ZW for an isothermal atmosphere with a superposed gaussian curve

Implicit REAL*8 (A-H, O-Z)

CINITIAL ZW (400), XN (400), A(4CC), B(400), C(400), XP(4), FNO(400),
1FCF(400), TW(400), INC(400), EC, XNO, RE, NP

I = 1/2

LOAD I = 1, K

IF (LG.L. AND. L.T. 12) K = I - I

IF (LG.E. 12) K = NE - M

ZL = 0.

ZB = 0.

Z3 = 0.

XNB = 0.

ZNB = 0.

ZNB = C.

K2 = K + K

LC = 3 J = K, K2

Z2 = ZB + Z(J)

Z2 = Z2E + Z(J) ** 2

Z3B = Z3B + Z(J) ** 3

Z4B = Z4B + Z(J) ** 4

ZNB = ZNE - Z(J) * XNB

Z2NB = Z2NB + XNB(J) * (Z(J) ** 2)

XNE = XNE + XNB(J)

J = I

M1 = M

M = M1

Y = ((M * Z3E - Z2B * ZE) * (M * 3B - ZE * Z2B) - (M * Z4B - Z2B * * 2) * (M * Z2B - ZB ** 2)

IF (LAES(Y).LT.1.D-40) A(J) = 0.

IF (LAES(Y).LT.1.D-40) GO TO TC 1

A(J) = ((M * Z2B - XNB * ZE) * (M * Z3B - ZE * Z2B) - (M * Z2B - ZB ** 2) * (M * Z3B - ZE * Z2B) - (M * Z4B - Z2B ** 2) * (M * Z2B - ZB ** 2))

1 IF (LAES(Y).LT.1.D-40) A(J)

YY = M * Z2E - ZB ** 2

IF (LAES(YY).LT.1.D-40) B(J) = 0.

IF (LAES(YY).LT.1.D-40) GO TO TC 11

E(J) = (M * ZNB - XE * XNE) - (M * Z3B - ZE * Z2B) * D) / (M * Z2B - ZB * ZB)

E = B(J)

E = B(J)

C(J) = (XNE - D * Z2B - E * ZB) / M

M = M1

2 CONTINUE

RETURN

END

SUBRUTINE ATMOL(RW)

...
356 IF (X-2.C) 50, 50, 15
357 10 IF (X-2.C) 110, 110, 15
358 15 X=X-1.0
359 IF (X<0.1) CC TO 1C
360 IF (X<1.0) 60, 120, 110
361 IF (X<ERR) 62, 62, 8C
362 Y=FLCAT (IDINT (X)) X
363 IF (CAES (Y)-ERR) 130, 130, 14
364 IF (1.-Y-ERR) 130, 130, 70
365 IF (X-1.) 80, 8C, 110
366 8C GX=G/1X
367 X=X+1.
368 GC TO 7C
369 110 Y=X-1.
370 GX=1.0+Y* (-0.5771017+Y*(0.9685840+Y*(-0.8764218+Y*(0.8328212+
371 1Y*(-0.5771017+Y*(0.8482051+Y*(-0.05149930)))))
372 G)=GX*GY
373 120 RETURN
374 130 IER=1
375 RETURN
376 END
377
378 FUNCTION ECFA (V, X)
379 IMPLICIT EXAL*5 (A-H, 0-Z)
380 SQRTP=2.72187569065359
381 SQRT2=1.41421356237309
382 FAC=2.0**(-.5*V-.5)*SQRTP*DEXP (-.25*X*X)
383 CALL GAMA (.5*V+1., GAM1, IER)
384 CALL CAMEA (.5*V+.5, GAM2, IER)
385 FAC2=CFHC (.5*V+.5, .5*V+.5, 5*X*X)/GAM1-SQRT2*X*CFHG (.5*V+
386 111.5, .5*X*X)/GAM2
387 ECFA=FAC1*FAC2
388 RETURN
389 END
390 FUNCTION CFHC (A, C, X)
391 IMPLICIT EXAL*5 (A-H, 0-Z)
392 SUM=1.
393 TERM=1.
394 S=1.
395 1 TERM=TERM*(A+S-1.)/(S*(C+S-1.))
396 SUM=SUM+TERM
397 S=S+1.
398 IF (S<.0) GC TO 1
399 IF (CAES (TERM/SUM) .GE. .00001) GO TO 1
400 CFHG=SUM
401 RETURN
402 END
403
404 END
<table>
<thead>
<tr>
<th></th>
<th>7.8E-19</th>
<th>7.5E-19</th>
<th>7.00E-19</th>
<th>6.5E-19</th>
<th>5.80E-19</th>
<th>5.20D-19</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.7E-19</td>
<td>4.30D-19</td>
<td>3.80D-19</td>
<td>3.40D-19</td>
<td>3.20D-19</td>
<td>3.20D-19</td>
</tr>
<tr>
<td>3</td>
<td>3.30D-19</td>
<td>3.60D-19</td>
<td>4.30E-19</td>
<td>5.20D-19</td>
<td>6.60D-19</td>
<td>8.80D-19</td>
</tr>
<tr>
<td>4</td>
<td>1.10E-18</td>
<td>1.40D-18</td>
<td>1.80E-18</td>
<td>2.20D-18</td>
<td>2.70D-18</td>
<td>3.20D-18</td>
</tr>
<tr>
<td>5</td>
<td>3.90E-18</td>
<td>4.50D-18</td>
<td>5.20E-18</td>
<td>5.80D-18</td>
<td>6.60D-18</td>
<td>7.40D-18</td>
</tr>
<tr>
<td>6</td>
<td>8.00E-18</td>
<td>9.00D-18</td>
<td>1.00D-17</td>
<td>1.01D-17</td>
<td>1.10D-17</td>
<td>1.20D-17</td>
</tr>
<tr>
<td>7</td>
<td>1.20D-17</td>
<td>1.15D-17</td>
<td>1.10D-17</td>
<td>1.08D-17</td>
<td>1.05D-17</td>
<td>1.00D-17</td>
</tr>
<tr>
<td>8</td>
<td>9.80E-18</td>
<td>9.00D-18</td>
<td>8.20D-18</td>
<td>7.60D-18</td>
<td>6.80D-18</td>
<td>6.00D-18</td>
</tr>
<tr>
<td>9</td>
<td>5.00E-18</td>
<td>4.50D-18</td>
<td>4.00E-18</td>
<td>3.40D-18</td>
<td>2.70D-18</td>
<td>2.30D-18</td>
</tr>
<tr>
<td>10</td>
<td>1.90E-18</td>
<td>1.50D-18</td>
<td>1.20D-18</td>
<td>5.00D-19</td>
<td>7.00D-19</td>
<td>5.40D-19</td>
</tr>
<tr>
<td>11</td>
<td>3.20E-18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>.020</td>
<td>.021</td>
<td>.022</td>
<td>.024</td>
<td>.026</td>
<td>.030</td>
</tr>
<tr>
<td>13</td>
<td>.070</td>
<td>.080</td>
<td>.090</td>
<td>.100</td>
<td>.130</td>
<td>.160</td>
</tr>
<tr>
<td>14</td>
<td>.620</td>
<td>.740</td>
<td>.840</td>
<td>.940</td>
<td>.950</td>
<td>1.000</td>
</tr>
<tr>
<td>15</td>
<td>.780</td>
<td>.740</td>
<td>.680</td>
<td>.640</td>
<td>.600</td>
<td>.500</td>
</tr>
<tr>
<td>16</td>
<td>.170</td>
<td>.140</td>
<td>.120</td>
<td>.100</td>
<td>.080</td>
<td>.060</td>
</tr>
<tr>
<td>17</td>
<td>.033</td>
<td>.030</td>
<td>.028</td>
<td>.025</td>
<td>.023</td>
<td>.020</td>
</tr>
</tbody>
</table>

END OF FILE
Part I: Line numbers 1-61

In this part, the initial parameter values are set and the input data are read.

Notation

SH = O_3 scale height for an isothermal atmosphere, in cm
XNOO3 = O_3 number density at Gaussian peak, in molecules/cm3
ZWOO = altitude of Gaussian peak, in cm
SHOO = half-depth of Gaussian layer, in cm
VM = visual magnitude of star
WLO = reference wavelength for stellar spectrum, in cm
TF = effective blackbody stellar temperature, in °K
FOO = adjusting factor for obtaining a desired fictitious count rate at the top of the scan
RE = mean radius of the earth, in cm
HO, HP = base height of the O_3 profile, in cm
XNO = O_3 number density at the base height in molecules/cm3
NP = number of points in a formulated table of normalized signal intensity v. column density. Note: column density = mass of species in a 1 cm2 channel centered on the stellar ray, also called the total, or integrated, number density
NPP, NPH = number of data points in the profile
HDP = halfstepsize for computing O_3 densities in an exponential atmosphere, in cm
NN = switch for introducing random error into the signal intensity
NH = stepsise for computing O_3 number density, in number of data point intervals skipped
MM, MMM = test for selecting one of three paths (see program comments)

SG = O₃ absorption cross sectional values, in cm²; the values are listed at the end of the program

WL = wavelength, in cm

FILT = normalized values of S2F5 filter transmission; the values are listed at the end of the program

FIO = stellar spectral intensity, in digital voltmeter counts/time interval
Part II: Line numbers 61.1 - 99

A table of normalized signal intensity v. column density is formed in the same way as for O₂ (p. 10 of O₂ notes). The reference height is now 50 Km.

In addition, a representation of the mesospheric O₃ peak is obtained by use of the Weber cylinder function. To avoid data roughness at the altitudinal limits of the superposed Gaussian curve, the cylinder function is forced between 40 Km and 130 Km.

Notation

SUN = integration factor, or the integrated stellar spectral intensity;
in counts/time interval

HD = stepsize for altitude of the ray's tangent point used in the
calculation of column density, in cm

IHO = counter and altitude setter; in lines 90-91 it is used to arbitrarily
reduce the column density to near zero at the upper end of the scan

RO = distance from the center of the earth to the ray's tangent point,
in cm

ZQ = altitude of the ray's tangent point, in cm

TT, TWW = column density for the table, computed at altitude ZQ, in cm⁻²

VB = parameter for Weber cylinder function

C1, CYL1, CYL2 = parameters for column density in Gaussian superimposed
curve

TTG = column density in Gaussian contribution, in molecules/cm³

TNOX = total column density, in molecules/cm³

SUM = filtered signal intensity integrated over wavelength, in counts/time interval

FNO = integrated, normalized signal intensity corresponding to TT
in the table
Part III: Line numbers 100 - 181

This part is essentially unchanged from the O_2 program.

A signal is computed from

$$I = \int_0^\infty \tau(\lambda) I(\lambda) e^{-\int_0^\infty \tau(\lambda) N d\lambda} \left[\int_0^\infty \tau(\lambda) I(\lambda) d\lambda \right]^{-1},$$

which has the Gaussian superimposed column densities incorporated in "N".

If the signal is scattered, a Poisson distribution is available at the lower end of the scan ($0.1 < I < 10.$) If the signal intensity is less than 0.1, the scattering is bypassed.

Notation

$JIZ, JIZMAX = $ loop counter and its limiting value for no scattering case

$FOF = $ simulated (measured) signal intensity, in counts/time interval

$JIX = $ loop counter for MM scattering cases with a specific data point spacing

$IX, JX, AM, P, SD, V, N, NMAX, U, D = $ GAUSS and RANDU subroutine arguments; Poisson parameters as in O_2 program

$JIY, JIYMAX = $ loop counter and its limiting value for a scattering case with variable data-point spacing
The procedure and notation are identical to those used in the O_2 error analysis. However, subroutine ATMOD yields the model O_3 through solution of the expression

$$n(O_3) = n^* \exp\left[\frac{-(h-h^*)}{H}\right] + n' \exp\left[\frac{-(h-h')}{H'}\right]^2$$

where

- $n = \text{number density, in molecules/cm}^3$
- $n^* = \text{number density at a reference altitude, in molecules/cm}^3$
- $h = \text{altitude, in cm}$
- $h^* = \text{reference altitude, in cm}$
- $H = \text{scale height of } O_3, \text{ in cm}$
- $n' = O_3 \text{ number density at Gaussian peak, in molecules/cm}^3$
- $h' = \text{altitude of Gaussian peak, in cm}$
- $H' = \text{half-depth of Gaussian layer, in cm}$

Numerical values are inserted into ATMOD for the above parameters.
Part V: Line numbers 246 - 283

Temperature computations are omitted.

If multiple cases are being handled, the mean and standard deviation are computed for the error at each altitude level.

Notation

\[\text{MM, MMM} = \text{number of cases for error statistics} \]
\[\text{DMEAN} = \text{mean error in number density, in percent} \]
\[\text{SIGMA} = \text{one standard deviation of number density error, in percent} \]
Part VI: Line numbers 1 - 17

O_3 cross sectional values are listed row by row at an interval of 20 Å (lines 1 - 11).

S_2F_5 filter transmission values, adjusted to a maximum value of 1.0, are also listed at the same wavelength interval (lines 12 - 17).
Appendix IV. Orbital Errors

The effects of the uncertainty in satellite position have been traced by imposing small input errors upon the satellite coordinates and mapping the error departures of the ray tangent point. The symbols used are as in Section 3, with the addition of star-superscripts to denote reference, or zero-error quantities. A special case is assumed, for convenience, which places the spacecraft and the stellar ray in the equatorial plane, and the source star at the First Point of Aries in the same plane.

Tangent ray errors are shown in Figures 1-4 which have distance scales on the abscissae to supplement degree indicators of longitude and latitude. They disclose that altitude errors in tangent ray point nearly match vertical satellite displacements; they amount to a few meters when a satellite is displaced latitudinally 10 Km; and they reach magnitudes of a few Km when a satellite is displaced longitudinally 10 Km. Thus, as expected the tangent ray heights are quite sensitive to the longitudinal accuracy of spacecraft positioning.
Figure 1. Tangent ray height error as a function of satellite height error and altitude.
Figure 2. Tangent ray height error as a function of satellite latitude error.
Figure 3. Tangent point longitude error as a function of satellite longitude error.
Figure 4. Satellite tangent ray height error as a function of satellite longitude error.
APPENDIX V.

Stellar Occultation Measurements of Molecular Oxygen in the Lower Thermosphere
STELLAR OCCULTATION MEASUREMENTS OF MOLECULAR OXYGEN IN THE LOWER THERMOSPHERE

P. B. HAYS
Departments of Aerospace Engineering, Meteorology and Oceanography, University of Michigan, Ann Arbor, Michigan 48105, U.S.A.

and

R. G. ROBLE
National Center for Atmospheric Research, Boulder, Colorado 80302, U.S.A.

(Received in final form 8 August 1972)

Abstract—Stellar ultraviolet light near 1500 Å is attenuated in the Earth's upper atmosphere due to strong absorption in the Schumann-Runge continuum of molecular oxygen. The intensity of stars in the Schumann-Runge continuum region has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the Earth's atmosphere. These data have been used to determine the molecular oxygen number density profile at the occultation tangent point. The results of 14 stellar occultations obtained in low and middle latitudes are presented giving the night-time vertical number density profile of molecular oxygen in the 140-200 km region. In general, the measured molecular oxygen number density is about a factor of 2 lower than the number densities predicted by the CIRA 1965 model. Also, the number density at a given height appears to decrease with decreasing solar activity. Measurements taken at low latitudes during the August 1970 geomagnetic storm showed a decrease in the molecular oxygen number density at a given height several days after the peak of the storm followed by a slow recovery to pre-storm densities.

1. INTRODUCTION

The first attempt at determining the molecular oxygen concentration in the upper atmosphere by u.v. absorption spectroscopy was made on a V-2 rocket experiment in 1949 (Friedman et al., 1951). The molecular oxygen concentration was obtained from the solar u.v. absorption measurements made at various altitudes by a spectrometer aboard the rocket. Since then, numerous rocket flights have been made to examine the molecular oxygen distribution and its variations, in addition to determining the u.v. spectra of the Sun (Byram et al., 1955; Kupperian et al., 1959; Jursa et al., 1963; Hall et al., 1963; Hinteregger et al., 1965; Week and Smith, 1968; Opal and Moos, 1969; Quessette, 1970; Brannon and Hoffman, 1971).

The molecular oxygen distribution in the altitude range 100-200 km has also been determined from mass spectroscopic measurements (Schaefer and Nichols, 1964; Nier et al., 1964; Hedin and Nier, 1966; Schaefer, 1968; Krankowsky et al., 1968; von Zahn and Gross, 1969). In addition to molecular oxygen, the other major and minor constituents of the upper atmosphere are likewise determined as a function of altitude during the rocket flight.

More recently, satellites have been used to determine the properties of the upper atmosphere from u.v. absorption measurements. The satellites have monitored the attenuation of solar u.v. radiation in various isolated wavelength intervals during occultation at orbital sunrise and sunset. These data have been used to retrieve the neutral air density (Thomas et al., 1965; Kreplin, 1965; Venables, 1967; Landin et al., 1965; Landin et al., 1967) and the molecular oxygen distribution in the lower thermosphere (Thomas and Norton, 1967; Norton and Warnock, 1968; Link, 1969; Stewart and Wildman, 1969; Lockey
et al., 1969; Reid and Withbroe, 1970; May, 1971; Roble and Norton, 1972). These measurements, however, are limited only to sunrise and sunset.

Hays and Roble (1968a) suggested that u.v. stars may be used as source for occultation measurements to determine the night-time distribution of molecular oxygen and ozone in the lower thermosphere and upper mesosphere. Their calculations showed that in the spectral region near 1500 Å attenuation is primarily due to absorption by molecular oxygen, and that Rayleigh scattering and absorption by other minor constituents can be neglected.

During the past few years, we have used the Orbiting Astronomical Observatory (OAO-2) to obtain u.v. stellar occultation data in various spectral intervals. These data have been used to obtain the night-time molecular oxygen number density and neutral gas temperature in the lower thermosphere from about 140–200 km. The purpose of this paper is to describe the experimental technique and discuss the results which were obtained during quiet and disturbed geomagnetic conditions.

2. EXPERIMENTAL TECHNIQUE

The general details of the stellar occultation technique (Fig. 1) have been described by Hays and Roble (1968a, b), Hays et al. (1972) and Roble and Hays (1972). Here we describe the specifics of the occultation measurements made by the OAO-2 satellite.

The OAO-2 satellite has one 16 in. dia u.v. telescope, four 8 in. dia u.v. telescopes, and an u.v. spectrometer having a resolution of approximately 5 Å. The University of Wisconsin optical package, used in conjunction with the telescopes, consists of a series of u.v. filters which are used for stellar photometry. Filter (4–1) shown in Fig. 2 has a broadband transmission function centered near 1450 Å in the Schumann continuum region of molecular oxygen. This filter was used to obtain the molecular oxygen distributions from the stellar occultation measurements. The detection systems of the u.v. telescopes have a variable time integration range. The data shown in Fig. 4, which is typical of the high data rate occultation scans, has approximately a 1.5 km altitude resolution between data points.

Prior to occultation of the star by the Earth, an unattenuated u.v. spectrum of the star is obtained from the spectrometer. As an example, the spectrum for a typical bright u.v. star is shown in Fig. 3 for the wavelength region of the molecular oxygen u.v. filter. Although only a measurement of the relative change of the u.v. stellar intensity is required during occultation (Hays and Roble, 1968a), the spectral distribution of the star's energy
STELLAR OCCULTATION MEASUREMENTS OF MOLECULAR OXYGEN

Fig. 2. Absorption cross sections for molecular oxygen and ozone in the spectral region extending from 1000 to 3500 Å. Dashed curves are the O.A.O. stellar photometer transmission curves used in this study.

Fig. 3. Typical spectrum of a star used as an occultation light source.

_flux is required to determine the transmission through the broadband filter. Thus, a detailed stellar spectrum covering the spectral passband of the filter is necessary for data reduction.

A schematic diagram of an occultation of a star by the Earth is shown in Fig. 1. The satellite acquires the star in its telescopes prior to occultation above the absorbing atmosphere. As the satellite moves in its orbit, the source is ultimately occulted by the Earth's atmosphere and the geometry at two satellite positions is illustrated schematically in Fig. 1.
FIG. 4a. NORMALIZED STELLAR INTENSITY AS A FUNCTION OF TANGENT RAY HEIGHT DURING OCCULTATION.

FIG. 4b. MOLECULAR OXYGEN DENSITY VS. HEIGHT FROM DATA SHOWN IN FIG. 4a.
The intensity of the star is measured as a function of time during occultation by the Earth. By knowing the satellite position as a function of time and the star’s position, we can relate the star’s intensity to the tangent ray height of the star during occultation. By also knowing the position of the star, satellite, and the time, we obtain from geometry the geographic position of the tangent ray point.

The intensity data are normalized to the intensity of the star above the atmosphere and the normalized data are related to the tangential column number density of the absorbing species, here O₃, by the integral relationships expressing Beer’s law

$$I(r) = I_\infty T(\lambda) I_\infty (\lambda) \exp \left(-\sigma_{O_3}(\lambda) N_{O_3}(r) \right) \left(\int T(\lambda) I_\infty (\lambda) \, d\lambda \right)^{-1} \quad (1)$$

where from the geometry in Fig. 1, assuming a spherically stratified atmosphere

$$N_{O_3}(r) = 2 \int_{r_1}^{r} \frac{n_{O_3}(r) \, dr}{\sqrt{r^2 - r^2}} \quad (2)$$

Here $I(r)$ is the photometer count rate at tangent ray height r, and I_∞ is the photometer count rate of the stellar signal above the atmosphere. $T(\lambda)$ is the filter transmission and $I_\infty (\lambda)$ is the intensity of the star at wavelength λ above the atmosphere determined by the spectrometer; $\sigma_{O_3}(\lambda)$ is the absorption cross-section of molecular oxygen shown in Fig. 2 (Ditchburn and Young, 1962; Hudson et al., 1969; Ackerman, 1970) and $N_{O_3}(r)$ is the tangential column number density of molecular oxygen at tangent ray radius r; and $n_{O_3}(r)$ is the local number density at the radius r.

Molecular oxygen is the sole absorbing species in the wavelength interval determined by filter 4-1, therefore the normalized intensity data are converted to tangential column number density data using Equation (1). The basic measurements are thus converted to data giving the tangential column number density of molecular oxygen as a function of tangent ray height. Equation (2) for the tangential column number density is the Abel integral
equation (cf. Hays and Roble, 1968a, b) which is inverted to obtain the local number density at the tangent ray point assuming spherical symmetry,

\[n_{O_2}(r) = \frac{1}{2\pi} \frac{d}{dr} \left(\int_r^\infty \frac{r}{\sqrt{r^2 - r'^2}} N_{O_2}(r') dr' \right) \]

(3)

The actual numerical techniques for accomplishing this inversion are described in detail in a paper by Roble and Hays (1972).

The neutral gas temperature is derived by assuming diffusive equilibrium above 130 km for the \(O_2 \) number density. Thus,

\[T_{O_2}(r) = \frac{m_{O_2}}{k n_{O_2}(r)} \int_r^\infty g(r') n_{O_2}(r') dr' \]

(4)

where \(m_{O_2} \) is the mass of molecular oxygen, \(k \) is Boltzmann's constant, and \(g \) is the acceleration of gravity.

3. RESULTS

A relatively large number of absorption profiles were obtained during the time period extending from January 1970 to August 1971. Of these, command errors and tracking errors have caused serious question about many profiles. The final result of carefully selecting only those profiles where altitude is accurately known and where there are no command interrupts during the occultation yields 14 useful occultations. Of these, approximately 6 are in geomagnetically quiet periods and one series of 8 profiles was obtained during the magnetic storm of August 1970. Almost all of these profiles were obtained in low latitudes due to the low inclination of the orbital plane of the OAO-2 satellite. In addition to the molecular oxygen occultation scans, measurements were also made with a filter located in the Hartley continuum of ozone. (Filters 2-5 and 3-2 shown in Fig. 2). A single nighttime ozone number density profile was presented by Hays et al. (1973) and the results of the other scans are presented by Hays and Roble (1973).

(a) Molecular oxygen profiles during geomagnetically quiet periods

The geographic position, date, and local time of all of the scans analyzed are given in Table 1. Six of these were taken during geomagnetically quiet conditions. The normalized intensity measurements obtained on orbit 8884 on 17 August 1970 are shown in Fig. 4a. In Figs. 4b and 4c the retrieved molecular oxygen number density and temperature are shown and they are compared with \textit{CIRA} 1965 (model 3, 06:00 hr.). In general, the retrieved molecular oxygen number density distribution in the 140–180 km region is about a factor of two lower than the number densities predicted by the \textit{CIRA} 1965 model atmosphere at the same local time as the measurements. The composite of all of our quiet time data is shown in Fig. 5 along with the results of Krankowsky \textit{et al.} (1968), Weeks and Smith (1968), and Roble and Norton (1972). The envelope encompassing the ozone number density profiles obtained from Hays and Roble (1972) and the molecular oxygen number density given by the mean \textit{CIRA} 1965 atmosphere are also shown. The small number of stellar occultation profiles makes detailed seasonal variations difficult to discern. However, there does appear to be a marked decrease in the molecular oxygen number density corresponding to the decrease in solar activity during the period from the beginning of 1970 to late 1971. The monthly mean of the solar F10-7 flux during this period decreased from 153 to 120 \((\times 10^{-29})\) W cm\(^{-2}\). The daily solar F10-7 emission for each of the individual
Table I

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Date</th>
<th>Universal time (hr)</th>
<th>Universal time (min)</th>
<th>Local time (hr)</th>
<th>Local time (min)</th>
<th>Long.* (deg)</th>
<th>Lat. (deg)</th>
<th>Daily solar F10-7 emission ($\times 10^{-9}$ W cm$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5778</td>
<td>1/13/70</td>
<td>5</td>
<td>28</td>
<td>23</td>
<td>52</td>
<td>-84</td>
<td>48</td>
<td>172.9</td>
</tr>
<tr>
<td>8884</td>
<td>8/17/70</td>
<td>4</td>
<td>55</td>
<td>5</td>
<td>55</td>
<td>15</td>
<td>4</td>
<td>151.6</td>
</tr>
<tr>
<td>8998</td>
<td>8/18/70</td>
<td>4</td>
<td>19</td>
<td>5</td>
<td>51</td>
<td>23</td>
<td>9</td>
<td>149.0</td>
</tr>
<tr>
<td>8913</td>
<td>8/19/70</td>
<td>5</td>
<td>22</td>
<td>5</td>
<td>54</td>
<td>8</td>
<td>11</td>
<td>145.4</td>
</tr>
<tr>
<td>8942</td>
<td>8/21/70</td>
<td>5</td>
<td>35</td>
<td>4</td>
<td>27</td>
<td>-22</td>
<td>24</td>
<td>142.8</td>
</tr>
<tr>
<td>8943</td>
<td>8/21/70</td>
<td>7</td>
<td>35</td>
<td>4</td>
<td>22</td>
<td>-39</td>
<td>25</td>
<td>141.7</td>
</tr>
<tr>
<td>8957</td>
<td>8/22/70</td>
<td>6</td>
<td>38</td>
<td>4</td>
<td>22</td>
<td>-39</td>
<td>25</td>
<td>141.7</td>
</tr>
<tr>
<td>8971</td>
<td>8/23/70</td>
<td>6</td>
<td>38</td>
<td>4</td>
<td>22</td>
<td>-39</td>
<td>25</td>
<td>141.7</td>
</tr>
<tr>
<td>8985</td>
<td>8/24/70</td>
<td>5</td>
<td>45</td>
<td>4</td>
<td>13</td>
<td>-23</td>
<td>24</td>
<td>140.2</td>
</tr>
<tr>
<td>8986</td>
<td>8/24/70</td>
<td>7</td>
<td>25</td>
<td>4</td>
<td>13</td>
<td>-48</td>
<td>24</td>
<td>140.2</td>
</tr>
<tr>
<td>9000</td>
<td>8/25/70</td>
<td>6</td>
<td>47</td>
<td>5</td>
<td>17</td>
<td>-32</td>
<td>27</td>
<td>135.5</td>
</tr>
<tr>
<td>10902</td>
<td>1/4/71</td>
<td>13</td>
<td>29</td>
<td>22</td>
<td>38</td>
<td>-223</td>
<td>-16</td>
<td>140.2</td>
</tr>
<tr>
<td>11795</td>
<td>1/1/71</td>
<td>3</td>
<td>39</td>
<td>0</td>
<td>33</td>
<td>128</td>
<td>-34</td>
<td>105.2</td>
</tr>
<tr>
<td>14580</td>
<td>9/17/71</td>
<td>6</td>
<td>22</td>
<td>1</td>
<td>50</td>
<td>-68</td>
<td>26</td>
<td>116.5</td>
</tr>
</tbody>
</table>

* Measured positive eastward from Greenwich.

![Stellar Occultation](image)

Fig. 5. Composite molecular oxygen density results for quiet times.

... Krankowsky et al., 1968.

scans are given in Table 1. The apparent decrease in the thermospheric molecular oxygen at a fixed height probably implies that there is a general decrease in the altitude of the constant pressure surface at the base of the thermosphere as well as a decrease in the thermospheric temperature. This suggests a solar cycle influence in the lower thermosphere.

(b) Molecular oxygen profiles during geomagnetically disturbed periods

A series of observations was obtained during the magnetically disturbed period at the end of August 1970. These data are presented in Fig. 6 where density and temperature at
fixed heights are shown as a function of time. For comparison, we show the daily sum of magnetic K_p index on this same figure and give the latitude and longitude of the tangent ray point and local time of each occultation scan in Table 1. We note the marked decrease in the molecular oxygen number density following the storm at a time when the temperature was significantly enhanced. This is obviously in disagreement with the concept of a diffusively stable atmosphere. The decrease in the molecular oxygen density is apparently due to

![Graph showing molecular oxygen density and temperature variations during the magnetic storm of August 1970.](image)

Fig. 6. Molecular oxygen density and temperature variations during the magnetic storm of August 1970.

the existence of a global-scale circulation system which upwells over the polar regions and subsides in the equatorial zone. Such a large horizontal scale overturning causes air with more atomic than molecular oxygen to move downward over the equator resulting in a change in the composition of the lower thermosphere. This result is consistent with the observation that energy deposited in the polar thermosphere is redistributed globally resulting in a global thermospheric temperature enhancement at low latitudes following a large magnetic storm (Hays et al., 1972b). The daily solar F10-7 emission for the days on which occultation scans were made is given in Table 1. During the period the daily solar F10-7 emission decreased from 151.6 to 136.5 ($\times 10^{-22}$ W cm$^{-2}$). However, the molecular oxygen number density during this period first decreased, but then returned to pre-storm levels several days after the storm. This behavior also suggests an atmospheric response different from that expected from short term solar e.u.v. changes.
4. SUMMARY

The stellar occultation technique for measuring molecular oxygen in the Earth's thermosphere has demonstrated the following general behavior: (a) Thermospheric molecular oxygen decreases with decreasing solar activity. This may result from a general cooling of the lower thermosphere in addition to the cooling observed in the upper thermosphere.

(b) Magnetic storms result in strong global circulation systems which upwell in the polar regions and sink in equatorial regions. This results in a temporary decrease in the molecular constituents in the equatorial thermosphere.

Acknowledgement—We wish to acknowledge the support of Dr. Houk, and the O.A.O. Wisconsin and NASA experimental team.

REFERENCES

APPENDIX VI.

Observation of Mesospheric Ozone at Low Latitudes
OBSERVATION OF MESOSPHERIC OZONE AT LOW LATITUDES

P. B. HAYS
Departments of Aerospace Engineering, Meteorology and Oceanography, University of Michigan, Ann Arbor, Michigan 48104, U.S.A.

and

R. G. ROBLE
National Center for Atmospheric Research, Boulder, Colorado 80302, U.S.A.

(Received in final form 21 August 1972)

Abstract—Stellar ultraviolet light near 2500 Å is attenuated in the Earth's upper atmosphere due to strong absorption in the Hartley continuum of ozone. The intensity of stars in the Hartley continuum region has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the Earth's atmosphere. These data have been used to determine the ozone number density profile at the occultation tangent point. The results of approximately 12 stellar occultations, obtained in low latitudes, are presented, giving the nighttime vertical number density profile of ozone in the 60- to 100-km region. The nighttime ozone number density has a bulge in its vertical profile with a peak of 1×10^8 cm$^{-3}$ near 83 km and a minimum near 75 km. The shape of the bulge in the ozone number density profile shows considerable variability with no apparent seasonal or solar cycle change. The ozone profiles obtained during a geomagnetic storm showed little variation at low latitudes.

1. INTRODUCTION

The first measurement of the ozone concentration in the upper atmosphere was made by Johnson et al. (1951) using u.v. absorption spectroscopy. The ozone number density distribution was determined from the u.v. absorption measurements made at various altitudes by a spectrometer aboard a rocket. Since then daytime measurements of the ozone number density distribution have been made from rockets using the Sun as the u.v. source (Van Allen and Hopfield, 1952; Johnson et al., 1952; L'vova et al., 1964; Poloskov et al., 1966; Nagata et al., 1967; Weeks and Smith, 1968; Krueger, 1969) and nighttime measurements have been made using the Moon as a source of u.v. light (Carver et al., 1967; Carver et al., 1972). The high altitude ozone number density distribution has also been determined from solar occultation measurements made from a satellite (Rawcliffe et al., 1963; Miller and Stewart, 1965). These measurements have determined the ozone number density up to an altitude of about 70 km.

Several other techniques have been used to obtain the ozone number density distribution in the upper atmosphere which include (a) satellite eclipse photometry (Venkateswaren et al., 1961; Fesenko, 1967), (b) nighttime airglow spectral photometry (Reed, 1968), (c) spectral analysis of backscattered solar radiation as observed from a satellite (Rawcliffe and Elliot, 1966; Anderson et al., 1969), (d) chemi-luminescent ozone sondes (Hilsenrath, 1971) and (e) rocket and ground based observations of the molecular oxygen emission $\text{O}_2(^1\Delta g)$ at 1.27 µ (Evans and Llewellyn, 1970; 1972; Evans et al., 1970). In the latter technique, the ozone number density profile is calculated from the measured altitude profiles of the $\text{O}_2(^1\Delta g)$ emission at 1.27 µ using photochemical theory. Their results give the ozone number density profile at twilight up to 100 km and preliminary observations indicate a strong seasonal variation of the upper ozone layer at high latitudes. The peak ozone number density at 85 km varied between 1×10^8 cm$^{-3}$ in midwinter to less than 0.3×10^8 cm$^{-3}$ in midsummer.
Hays and Roble (1968a) suggested that the nighttime distribution of ozone in the upper mesosphere may be obtained from satellite measurements of the intensity of u.v. stars during occultation by the Earth's atmosphere. During the past few years, we have used the Orbiting Astronomical Observatory (OAO-2) to obtain u.v. stellar occultation data in various spectral regions. The data from the u.v. filters centered at 2390 and 2460 Å have been used to obtain the nighttime ozone number density distribution from 60 to 100 km at low latitudes. In this paper we describe the experimental technique and present the results which were obtained during quiet and disturbed geomagnetic conditions.

![Absorption cross sections for molecular oxygen and ozone in the spectral region extending from 1000 to 3500 Å. Dashed curves are the OAO-2 stellar photometer filter transmission curves used in this study.](image)

Fig. 1. Absorption cross sections for molecular oxygen and ozone in the spectral region extending from 1000 to 3500 Å.

Dashed curves are the OAO-2 stellar photometer filter transmission curves used in this study.

2. EXPERIMENTAL TECHNIQUE

The general details of the stellar occultation technique have been described by Hays and Roble (1968a, b; 1972), Hays et al. (1972) and Roble and Hays (1972). Here we describe the specifics of the occultation measurements made by the OAO-2 satellite as they apply to the determination of the nighttime ozone number density.

The OAO-2 satellite has one 16 in.-dia u.v. telescope and four 8 in.-dia u.v. telescopes and an u.v. spectrometer having a resolution of approximately 5 Å. Filter 2-5 and 3-2 shown in Fig. 1, are the two filters in the University of Wisconsin optical package that are used for the ozone stellar occultation measurements. The transmission function of these filters is located in the Hartley continuum of ozone (Fig. 1) with the peak transmission at 2380 and 2460 Å. The detection systems of the u.v. telescope have a maximum data acquisition rate of 1/15 sec time integration resulting in a high altitude resolution at the tangent point. The intensity data are obtained as a function of time, and by knowing the star's position is orbital elements of the satellite, we can relate the intensity to the tangent ray heights during occultation by the Earth's atmosphere. Figure 2 shows the normalized intensity data as a function of tangent ray height for a typical occultation scan. Hays and Roble (1972) describe the technique used to relate the normalized intensity
data to the tangential column number density of the absorbing species along the ray path. This technique allows for the broadband characteristics of the u.v. transmission function and can be used as long as absorption is due to a single species. Hays and Roble (1968b) have calculated the u.v. transmission of the Earth's upper atmosphere and have shown that the stellar light in the wavelength regions covered by the filter transmission functions, shown in Fig. 1, is primarily absorbed by ozone. However, at altitudes below about 70 km the stellar ultraviolet light is also absorbed by molecular oxygen in the Herzberg continuum. The absorption contribution in the Herzberg continuum is calculated using the molecular oxygen number density distribution obtained from the CIRA 1965 model atmosphere. This absorption contribution is removed from the stellar intensity data and the corrected normalized intensity is related to the ozone tangential column number density (Hays and Roble, 1972). Once the tangential column number density is known as a function of the tangent ray height, the data are inverted, using the technique described by Roble and Hays (1972), to obtain the local number density at the tangent ray point.

3. RESULTS

Stellar occultation measurements using the two filters centered in the Hartley continuum of ozone were made during the period extending from January 1970 through August 1971. From these data we have obtained 12 orbits on which one or both of the filters could be used to determine the ozone density in the mesosphere. These results, corrected for molecular oxygen absorption in the Herzberg continuum, and Rayleigh scattering are presented in Figs. 3-5 where four separate profiles are illustrated in each figure. According to the analysis of Roble and Hays (1972), the ozone number density is best retrieved from the occultation data between tangent ray heights of 55 to 95 km. The retrieved ozone number density data above and below this altitude interval are less reliable.
Fig. 3. Altitude profiles for atmospheric ozone obtained using the stellar occultation technique.

Geographic position refers to the tangent ray point of the occultation measurements (time as LMT; longitude measured positive eastward from Greenwich).

Fig. 4. Same caption as in Fig. 3.
A careful examination of these ozone profiles in the mesosphere does not show any striking systematic seasonal or diurnal pattern in the equatorial regions. There does appear to be a systematic increase in the altitude of the high altitude ozone bulge with increasing latitude. However, due to the small number of scans, which were made at nearly random local time, season, and latitude, it is difficult to place great weight on the slight variations observed. The major conclusion is that ozone varies very little between 55 and 100 km during the course of the night at low latitudes. The main feature is the expected bulge in density which occurs at approximately 85 km and the depletion of ozone just below that altitude. This behavior is predicted by most recent theoretical studies which incorporate the hydrogen chemistry in their model.

Numerous theoretical studies of the chemistry of ozone in a moist atmosphere have followed the early discussion of Bates and Nicolet (1950) of the influence of hydrogen compounds (Hampson, 1964; Hunt, 1966a; Hunt, 1966b; Hesstvedt, 1968; Leovy, 1969; Bowman et al., 1970; Hunt, 1971; Shimazaki and Laird, 1972; Strobel, 1972). The result of these studies is somewhat confusing due to the large number of choices of possible rate coefficients, photodissociation rates, boundary conditions, and eddy mixing rates used by these authors. The theoretical results do indicate the general features observed in the OAO-2–A2 stellar occultation measurement. This is illustrated in Fig. 6 where three representative theoretical profiles (Hesstvedt, 1968; Shimazaki and Laird, 1970; Hunt, 1971) are compared with our envelope curve. Hunt (1971) appears to agree best with the observations, but it is difficult to assess whether this is fortuitous or the result of a correct choice of the multitude of possible variable factors.
It should be pointed out that during the period of time in which these observations were taken one series of measurements was made while the large magnetic storm of August 1970 was in progress. There does not appear to be any significant correlation between the ozone density in the mesosphere and storm in agreement with the prediction of Maeda and Aiken (1968). This is not surprising, but relatively large variation in O_3 at higher altitudes was observed (Hays and Roble, 1972) at the same time.

SUMMARY

The stellar occultation measurements of ozone in the mesosphere indicate the following conclusions:

1. Mesospheric ozone varies by as much as a factor of 4 at high altitudes, but does not show any clear seasonal or diurnal nighttime pattern. A slight increase in the altitude of the 85 km bulge appears to be associated with increasing latitude.

2. The observations are generally in agreement with results of theoretical predictions which utilize a moist atmosphere in which hydrogen compounds are considered in the chemistry.

3. There is no apparent relationship between mesospheric ozone and geomagnetic activity at low latitudes.

Acknowledgement—This work was supported by NASA Grant NGR 23 005-360 and NASA Contract NAS 1 9958. The National Center for Atmospheric Research is sponsored by the National Science Foundation. We wish to acknowledge the helpful support of Dr. Houk, and the O.A.O. Wisconsin and NASA experimental team.

REFERENCES

OBSERVATION OF MESOSPHERIC OZONE AT LOW LATITUDES 279

APPENDIX VII.
The Nighttime Distribution of Ozone in the Low-Latitude Mesosphere
THE NIGHTTIME DISTRIBUTION OF OZONE
IN THE LOW-LATITUDE MESOSPHERE

R. G. Roble
National Center for Atmospheric Research
Boulder, Colorado 80302

P. B. Hays
Department of Atmospheric & Oceanic Science
University of Michigan
Ann Arbor, Michigan 48104

1The National Center for Atmospheric Research is sponsored by the National Science Foundation.

ABSTRACT

The intensity of stars at wavelengths in the Hartley continuum region of ozone has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the earth's atmosphere. These occultation data have been used to determine the ozone number density profile at the occultation tangent point. The nighttime ozone number density profile has a bulge in its vertical profile with a peak of $1 \text{ to } 3 \times 10^8 \text{ cm}^{-3}$ at approximately 83 km and a minimum near 75 km. The ozone number density at high altitudes varies by as much as a factor of 4, but does not show any clear seasonal variation or nighttime variation. The retrieved ozone number density profiles define a data envelope that is compared with other nighttime observations of the ozone number density profile and also the results of theoretical models.

Calculations are also presented that illustrate the difference in retrieving the bulge in the ozone number density profile from stellar and solar occultation data.
1. Introduction

Stellar intensity measurements, in certain ultraviolet atmospheric absorption bands, made by a satellite during occultation of the star by the earth's atmosphere, can be used to obtain the local number density of the absorbing species at the occultation tangent point (Hays and Roble, 1968a;b). During the past few years the Orbiting Astronomical Observatory (OAO-2) has been used to make these occultation intensity measurements using bright ultraviolet stars (Hays, et al., 1972). The occultation technique is based on classical ultraviolet absorption spectroscopy. The star is the source of ultraviolet light and the stellar photometers aboard the OAO-2 satellite are the detectors. The atmosphere between the star and the detectors acts as the absorption cell. During the occultation process, the stellar light passes through progressively denser regions of the atmosphere and the ultraviolet light is absorbed due to the strong absorption features of certain atmospheric gases. The basic measurement is thus the stellar intensity as a function of time, but by knowing the star's position and the satellite orbital elements, the intensity is related to the tangent ray height of the occulting star. If absorption is due to a single species, the normalized stellar intensity is directly related to the tangential column number density of the absorbing species through Beer's Law (Hays and Roble, 1972a). The data giving the tangential column
number density as a function of tangent ray height are directly inverted, using the technique described by Roble and Hays (1972) to obtain the local number density profile of the absorbing species at the occultation tangent point.

Occultation measurements made in the Schumann–Runge continuum of molecular oxygen near 1500 Å have been used to obtain the molecular oxygen number density profile in the lower thermosphere. These measurements have been discussed by Hays and Roble (1972a). The nighttime number density profile of ozone in the mesosphere has also been determined from stellar intensity measurements made in the Hartley continuum region of ozone near 2500 Å. The results of these measurements are discussed by Hays and Roble (1972b).

In this paper, we compare the results of the OAO-2 ozone measurements with theory and other nighttime ozone measurements. We also present the results of a single occultation scan and discuss the difference in retrieving the ozone number density bulge near 80 km from solar and stellar occultation data.
2. Stellar occultation scan

The ozone and molecular oxygen absorption cross sections and the transmission function of the various ultraviolet filters used with the OAO-2 stellar photometers for the occultation measurements are shown in Fig. 1. Filter (4-1) is located in the Schumann - Runge continuum region of molecular oxygen and is used to obtain the molecular oxygen number density in the lower thermosphere. Filters (2-5) and (3-2) are in the Hartley continuum region of ozone and are used to obtain the ozone number density profile in the mesosphere. Filter (1-4) is used to measure the ozone number density in the stratosphere.

The results presented in this paper were determined from occultation data obtained by the OAO-2 stellar photometers using filters (2-5) and (3-2). Hays and Roble (1968b) have shown that stellar ultraviolet light near 2500 Å is primarily absorbed by ozone in the earth's atmosphere and stellar occultation measurements within this wavelength region can be used to obtain the ozone number density profile in the 60 to 100 km altitude interval. In the lower portion of the altitude interval rayleigh scattering and molecular oxygen absorption in the Hertzberg continuum have small contributions to the total attenuation. These contributions are eliminated from the data as discussed by Hays and Roble (1972a).

The intensity spectrum of the star above the earth's atmosphere
is measured by an ultraviolet spectrometer aboard the OAO-2 satellite. A typical star spectrum, obtained on orbit 12178 on April 3, 1971, is shown in Fig. 2. The solar spectrum is also shown in Fig. 2 for comparison. The normalized signal of this star, measured during occultation using the OAO-2 stellar photometer with filter (3-2), is shown in Fig. 3a. Below 100 km the signal decreases due to absorption by ozone. The decrease in the signal continues until an altitude of about 83 km, then a slight increase in the signal occurs reaching a maximum around 75 km. Below 75 km the signal decreases again until occultation near 45 km. The ozone number density profile at the occultation tangent point is obtained from the intensity data using the inversion scheme described by Roble and Hays (1972) and Hays and Roble (1972a) and is shown in Fig. 3b. The dip in the normalized intensity curve near 80 km, shown in Fig. 3a, is due to a bulge in the ozone number density distribution at that altitude. The peak ozone number density at the bulge is $3 \times 10^8 \text{cm}^{-3}$ at 83 km. The minimum occurs near 73 km, however the magnitude of the number density at that altitude is difficult to determine. A complete discussion of accuracy of the inversion scheme and an analysis of errors in the occultation measurements have been given by Roble and Hays (1972).
3. Stellar vs. solar occultation

The ozone number density profile has also been determined from solar occultation measurements made from a satellite (Rawcliffe et al., 1963; Miller and Stewart, 1965). If the intensity from the entire solar disk is used during occultation, the effect of the finite size of the sun must be considered in analyzing the data. In this section we examine whether the bulge in the ozone number density near 80 km can be determined from solar occultation measurements when the entire solar disk is used as the source. For simplicity a model of the ozone number density profile is used in these calculations. The ozone profile is approximated by a sum of gaussian and exponential functions (Roble and Hays, 1972) and the profile is shown in Fig. 3b. The normalized intensity calculations for a stellar occultation, using OAO-2 filter (3-2), are shown in Fig. 3a. The intensity calculations for the broadband filter require a wavelength integration over the effective passband of the filter (Hays and Roble, 1972a). Therefore, we use the stellar spectrum, shown in Fig. 2, the ozone absorption cross-section and the filter transmission functions, shown in Fig. 1, to calculate the normalized occultation signal for the model ozone number density distribution. The calculated normalized intensity profile is shown in Fig. 3a and it has approximately the same shape as the OAO-2 occultation data. The dip in the intensity curve defines the bulge in the ozone number density profile.
For a solar occultation, the finite size of the sun must be considered because the solar energy emitted from different portions of the solar disk is transmitted through the earth's atmosphere at different tangent ray heights. The normalized intensity for a solar occultation is calculated using the technique of Roble and Norton (1972) and is shown in Fig. 3a. For these calculations, we used the solar energy spectrum, shown in Fig. 2, the ozone cross-section and the filter (3-2) transmission function shown in Fig. 1. The dip in the intensity curve that occurs in the stellar occultation case does not appear in the solar occultation case. From normal satellite altitudes the tangent ray heights of the upper and lower limb of the solar disk are separated by approximately 25 km. Therefore, a smearing of the intensity variation caused by the bulge in the ozone number density profile occurs when the entire solar disk is used during occultation and a dip in the intensity profile is not evident. The calculated normalized intensity variation across the solar disk at a tangent ray height of 83 km for the center of the solar disk is shown in Fig. 4. The tangent ray height of the upper limb is 95 km and the lower limb is 70 km. The intensity variation caused by the bulge in the ozone number density profile at 83 km occurs near the center of the solar disk. The intensity structure across the solar disk
is not evident when the overall intensity from the entire solar disk is measured during occultation. In theory, the structure in the ozone number density profile can be retrieved from solar occultation data using the entire solar disk, with an iterative technique. However, in practice, the iterative scheme is difficult to use especially in the presence of statistical noise. Better results would be obtained if a small portion of the solar disk is used for the solar occultation measurements.
4. Comparison of results

The ozone number density profiles from 12 stellar occultations have been presented by Hays and Roble (1972b). The measurements indicate that mesospheric ozone has a variation of as much as a factor of 4 at high altitudes, but does not show any clear seasonal or nighttime variation. A slight increase in the altitude of the bulge in the ozone number density profile appears to be associated with increasing latitude. These measurements plus a few additional ones are used to define an envelope representing the ozone number density profiles determined from the OAO-2 stellar occultation measurements. The envelope is shown in Fig. 5 along with nighttime and twilight ozone profiles determined by other experimenters. At high altitudes there is good agreement with the ozone number density profiles determined by the OAO-2 satellite and the profiles deduced by Evans and Llwellyn (1970; 1972). Between 60 and 75 km, the data of Evans and Llwellyn (1970; 1972), Evans et al. (1970), Weeks and Smith (1968), Miller and Stewart (1965), Tisone (1972) and Rawcliffe et al. (1963) are clustered along the upper limb of the OAO-2 ozone data envelope. Below 60 km, the OAO-2 ozone data envelope does not agree with the results of Carver, et al. (1967; 1972), Reed (1968) and Hilsenrath (1971). This departure from the other observations is probably due to the difficulty of retrieving the ozone number density at low signal levels in the presence of statistical noise.
Roble and Hays (1972) show that the ozone number density is best retrieved between normalized occultation data values of 0.1 - 0.9. Therefore, the ozone number density profile determined from the OAO-2 occultation measurements are limited to the 60 - 95 km altitude interval. In Fig. 6 the OAO-2 ozone data envelope is also compared with the ozone number density profile determined from various theoretical models. In general, there is a large variation between the various theoretical models. However, the general features of the OAO-2 ozone measurements appear to be present in the results of theoretical predictions which utilize a moist atmosphere in which hydrogen compounds are considered in the chemistry.
ACKNOWLEDGMENT

We thank K. S. Hansen for programming assistance and A. N. Shah for obtaining the data. This work was supported in part by NASA Grant NGR 23 005-360 and NASA contract NAS 19958. We wish to acknowledge the helpful support of Dr. Houk and the OAO Wisconsin and NASA experimental team.
REFERENCES

FIGURE LEGENDS

Fig. 1. Absorption cross-sections for molecular oxygen and ozone. The dashed curves give the transmission functions for the filters used with the OA0-2 stellar photometers. Filter (4-1) is used to obtain the molecular oxygen number density in the lower thermosphere and Filters (2-5), (3-2) and (1-4) are used to determine the ozone number density in the mesosphere.

Fig. 2. Solid curve is the stellar intensity as a function of wavelength measured by the OA0-2 spectrometer prior to occultation on orbit 12178. This star was used to obtain the occultation data shown in Fig. 3. The dashed curve is the solar spectrum obtained from Ackerman (1970).

Fig. 3. a) The dots give the normalized intensity as a function of tangent ray height measured by the OA0-2 stellar photometers using the 2460 Å filter. The geographic position of the occultation tangent point is 35°N, 114°W and time is 22:33 LMT on April 3, 1971. The solid and dashed curves are the calculated normalized intensities for a stellar and solar occultation respectively using the model ozone profile in Fig. 3b. b) The dots give the retrieved ozone number density profile from the OA0-2 occultation data shown in Fig. 3a. The solid curve is the model ozone number density profile used to calculate the stellar and solar intensity profiles in Fig. 3a.
Fig. 4. The calculated normalized intensity distribution across the solar disk at a tangent ray height of 83 km. The satellite altitude at occultation is 715 km. The OAO-2 filter transmission function for the 2460 Å filter is used in the calculations. The tangent ray heights for the upper and lower solar limbs are also given in the figure.

Fig. 5. Comparison of the OAO-2 ozone data envelope with the nighttime ozone number density profiles determined by various observers.

Fig. 6. Comparison of the OAO-2 ozone data envelope with the ozone number density profile determined from various theoretical models.
Figure 1.

Schumann-Runge Continuum (O_2)

Hartley Continuum (O_3)

Hergott (O_2)

Huggins Bands (O_3)

Cross Section, cm2

Wavelength (\AA)

10$^{-17}$

10$^{-18}$

10$^{-19}$

10$^{-20}$

10$^{-21}$

10$^{-22}$

10$^{-23}$

10$^{-24}$

1000 1500 2000 2500 3000 3500
Figure 2.
Figure 3a.

Figure 3b.
Figure 4.
Figure 5.

OZONE NUMBER DENSITY (cm$^{-3}$)

HEIGHT (km)

107 108 109 1010 1011 1012

- OAO-2 MEASUREMENTS (RANGE)
- RAWCLIFFE ET. AL. (1963)
- REED (1968)
- CARVER ET. AL. (1972) (RANGE)
- MILLER AND STEWART (1965)
- HILSENRATH (1971)
- EVANS AND LLEWELLYN AM 3-28-69 (1970)
- EVANS AND LLEWELLYN PM 3-28-69
- TISONE (1972)
- WEEKS AND SMITH (1968)
- SEASONAL VARIATION HIGH LATITUDES EVANS AND LLEWELLYN (1972)

(*) TWILIGHT, 0° SOLAR ELEVATION ANGLE)
Figure 6.