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Abstract

We investigate the dynamic behavior of the H-rich envelope (0.101 M )

of an evolved star (1.1 M ) as the luminosity rises to 19000 L9 during the

second ascent of the red giant branch.

For luminosities in the range 3100 < L < 19000 L the H-rich envelope

pulsates like a long-period variable (LPV) with periods of the order of a

year. As L reaches 19000 L , the entire H-rich envelope is ejected as a shell

-l
with speeds of a few 10 km s- . The ejection occurs on a timescale of a few

LPV pulsation periods. We connect this ejection with the formation of a

planetary nebula.

Our computations are based on an implicit hydrodynamic computer code.

T- and P -dependent opacities and excitation and ionization energies are

included. As the H-rich envelope is accelerated off the stellar core, we

approximate the gap between envelope and core by a vacuum, filled with

radiation. Across the vacuum we conserve the luminosity and we take into

account the anisotropy of the radiation as well as the solid angle subtended

by the remnant star at the inner surface of the H-rich envelope. We assume

spherical symmetry and the diffusion approximation.
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I. Introduction

We are continuing our theoretical investigation of ejection of planetary

nebulae. In Studies of Hydrodynamic Events in Stellar Evolution. II (Sparks

and Kutter 1972, hereafter referred to as Paper II) we showed that the H-rich

envelopes of red giants become dynamically unstable when the luminosity exceeds

a limiting value L . For a constant opacity, Lo 0 10 3.3((M/Mo)/Cj)L . When

L>Lo, the envelope expands as a shell with final velocities of a few

-I -5 -4 -l
km s and rates of mass flow of 10 to 10 M yr. This mass ejection is

driven by transfer of momentum and energy from the radiation to the gas. We

suggested that, depending on the structure of the envelope and the value of

the luminosity, these instabilities may be responsible for the pulsation of

long-period variables, the ejection of planetary nebulae, and the formation of

some infrared objects. Further, planetary nebula ejection seems to be always

preceeded by long-period variability (Sparks and Kutter 1971).

This mechanism for long-period variables was first proposed by Paczynski

and Ziokkowski (1968 a,b) and thoroughly explored by Keeley (1970)and by

Wood (1973). The connection with planetary nebulae ejection dates back to

Jeans (1923). Kutter, Savedoff, and Schuerman (1969) revived this possibility

and included the contribution of gas pressure in their analytical treatment.

In Paper II we continued this work, using an implicit hydrodynamic computer

code (Kutter and Sparks 1972, hereafter called Paper I). We assumed (1)

spherical symmetry, (2) diffusion approximation, (3) constant opacity, and (4)

complete ionization.

In order to investigate the dynamic behavior of red giant envelopes under
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more realistic conditions, we next included T- and e -dependent opacities

and ionization and excitation energies (Sparks and Kutter 1973). We found

that the ejection of the H-rich en.elope is qualitatively the same as in Paper

II. However, there exists no simple formula for L . For a 1.1 MO star, the

envelope is ejected for luminosities exceeding 1.4-104 L .

In none of our investigations up to this point did we allow the H-rich

envelope to actually separate from the stellar core. Thus, as the H-rich

envelope expands, its innermost Lagrangian zone and the outermost Lagrangian

zone of the stellar core are stretched out to widths comparable to their

radii. Under these circumstances, both the mathematical (replacement of

differentials by differences) and the physical descriptions become invalid.

In the present investigation we correct for these defects by introducing a

vacuum, filled with radiation, between the stellar core and the H-rich envelope

whenever the inner surface of the H-rich envelope is accelerated faster than

the outer surface of the core. Across the vacuum we conserve the luminosity

(instead of the radiation flux) and we take into account the anisotropy of

the radiation as well as the solid angle subtended by the remnant star at the

inner surface of the H-rich envelope. We still keep assumptions (1) and (2)

above.

As in Paper II, we raise the luminosity of our stellar model to the range

observed for planetary nuclei. In one of the evolutionary runs we include the

-4 -3 2 -1
opacity of water vapor, which sets a lower limit between 10 to 10 cm g

and, thus, raises the optical thickness of the H-rich envelope when its tem-

perature drops below about 2500 OK.

II. Mathematical Formulation

Our stellar model is taken from Paper II. It is a red giant of 1.1 ME

with a He shell of 0.075 Mg and a H-rich envelope of 0.101 Mg surrounding a
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core. The core is replaced by boundary conditions specifying r, u, and L.

2 -1
The He shell is assumed to be completely ionized, with ~, = 0.19 cm g

(electron scattering). The H-rich envelope consists of the Aller mix (X = 0.596,

Y = 0.384, Aller 1961). Tables of opacity, internal energy, and excitation,

ionization and molecular binding energies come from A. Cox and his collabor-

ators at the Los Alamos Scientific Laboratory. Their opacity tables do not

include the contribution of H20, although below 2500 OK water becomes the

dominant opacity source (Auman 1966). We take the H20 opacity from Auman and

Bodenheimer (1967), but we neglect the H20 binding energy.

We begin our model computations with the age zero model of Paper II.

In steps we increase the luminosity at the base of the He shell to 1.9 - 104 L .

The radius at this base is kept at 2-10 cm. This simulates the evolution of

the outer part of the star during its second ascent up the red giant branch.

The high luminosity originates in the He shell, due either to quiescent nuclear

burning (Kutter 1971) or to a thermal runaway (Rose and Smith 1970), as well as

by gravitational contraction of the core.

To save computer time, we use the two-timing method in the He shell: the

term ('L/ m in the equation of conservation of energy is multiplied by 1000

(Talbot 1971a, b). This increases the radiative diffusion timescale through

the He shell to roughly the evolution timescale of the H-rich envelope. After

every time step we compute the acceleration at the outer surface of the He

shell, ra (see Section III), and at the inner surface of the H-rich envelope,

rb.  When ra < rb, the H-rich envelope separates from the He 
shell and we

introduce the vacuum.

Unless otherwise specified, the computing method and the notation are

those used in Paper II and described in Paper I. At any given time step, we

iterate until the results { ui. Bi. R.i Wi+1 /2, Zi+1i 2 i satisfy the 5
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difference equations (Paper I, equ. 8 - 12) to within 0.01 % for all Lagrangian

zones. The parameter 9 (Paper I) is set equal to 1. In convective zones we

set the mixing length equal to the pressure scale height. The stellar model

is divided into 100 Lagrangian zones, with the first 17 belonging to the He

shell.

III. The Vacuum

The code described in Paper I has, per Lagrangian zone, 5 first-order

differential equations and 5 dependent variables, ui, Li, ri, Pi+1/2, Ti+1 /2.

Introducing the vacuum requires 7 first-order differential equations and 7

dependent variables. Let j refer to the composition discontinuity. Upon

separation let a refer to the outer surface of the He shell and b to the inner

surface of the H-rich envelope:

j-1 j-1/2 a b j+1/2 j+l
I I I I I

He shell vacuum H-rich envelope

The 7 dependent variables are u a ub, La = Lb r rb, Pj+1/2' Tj+ 1/2

The 7 differential equations are those described in Paper I except (1) there

are two difference equations for momentum conservation, one between j-1/2 and

a, the other between b and j+1/2; (2) the velocity is defined at points a and b;

and (3) the radiative luminosity becomes a function of r.j_/2, r , rb, rj+1/2

P j-1/2' Pj+1/2, Tj- 1 /2, Tj+ 1 /2

The expression for L is derived from the radiative transfer equation

where in general the intensity, I, and source function, S, are functions of
where in general the intensity, I, and source function, S, are functions of
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position, direction (s), and time. In the present work we neglect the term

1 I because of the relatively slow variation of the radiation flow. We

c t
assume spherical symmetry, a gray atmosphere, and isotropy for S. Across the

vacuum, we conserve the luminosity and we assume that the radiation has two

components, I and Ib which are emitted isotropically at a and b, respectively.

With these simplifications, equation (1) reduces to the familiar form

CO S, (2)

where the optical thickness, C ,is measured either from ra toward rj-1 / 2 or

from rb toward rj+1/2

At point a the radiative energy density, flux, and pressure are

-+ -3( erg cm3, (3a)

S- , erg cm2 -1, (3b)

( b)dyne cm-2. (3c)

At point b, they are

S+ + erg cm- 3  (4a)

. ( I)(I " erg cm -2 -1 (4b)

S (:)++X )J dyne cm-2 (4c)

where Xb = (1 - a/rb)1/2 In this section, all pressures with subscripts

j+ 1/2 refer to the sum of gas and radiation pressures; the others (P, Pas Pb)

refer to radiation pressure only.

From equation (3b) we derive

L -
(5)
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Applying the diffusion approximation between points j-1/2 and a, the definition

-- -- I , and replacing differentials by differences, we obtain

OJ L).) (6)

Next we need an expression for L between points b and j+1/2. From

equation (2) we derive

r Y -, L(7)

Integrating by parts and assuming that P and r are related via the expression

c1n P/ l In r = -n, we obtain

_ _ _ _ _ - ? (8)
+ /x S4

Substituting in equation (8) for Ph (equation [4c]) and then for IA (equation

[4b]) leads to V

6 V.

The number n cannot be determined as part of the solution; it is taken from

the previous time step. If L > 0, then n > 2. For f= 4/3, n = 4; while in

the plane parallel case n--4 a .

Finally from equations (5), (6), and (9) we derive our desired expression

for the luminosity, '

j- Y
In the present investigation, j = 18. The numerical solution of these

7 difference equations proceeds via the linearization and Gaussian elimination

scheme presented in Paper I.
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IV. Results

In Section IV.a we summarize the evolution of the stellar model as L --

19000 L . We then describe in detail the ejection of the envelope for the

run including H20 opacity. In Section IV.c we summarize the run without

H20 opacity.

a. Evolution to 19000 L@

As we raise the luminosity at the base of the He shell, the H-rich envelope

pulsates like a long-period variable (LPV). The pulsations are driven by the

exchange of momentum and energy between radiation and gas in the optically

thick part of the envelope, due to the Y- and V.-mechanisms (Keeley 1970,

Paper II, Sparks and Kutter 1973). In table 1 we summarize the physical

conditions at optical depth 1 ( = 1) for several values of L. These results

are consistent with the observational data of LPV's (Allen 1963).

Beyond 8000 Lo, the H-rich envelope becomes progressively more extended

with a sharp discontinuity in the values of the physical parameters at the

composition interface. At 19000 L0, the H-rich envelope separates from the

He shell according to the.condition given in Section III. From here on we

hold the luminosity at the base of the He shell constant, delete the two-

set the age
timing method, equal to zero, and include the vacuum routine in our computations.

b. Ejection of H-rich envelope, H20 opacity

In table 2 we summarize the physical conditions of the H-rich envelope

at age zero. The outward acceleration now begins to dominate the pulsation.

Within a few years the velocity of the entire envelope exceeds escape velocity,

its inner radius surpasses 10 A.U., and eventually it becomes optically thin

in the continuum.
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The main features of the ejection of the H-rich envelope, including H20,

are the following.

1. At age zero the H-rich envelope is optically thin to Q = 0.0235

(Q = 1 - m/Mo, fractional stellar mass exterior to m). During the initial

phase of ejection the point L = 1 fluctuates back and forth somewhat in La-

grangiaL coordinates, although on the average it moves inward. The fluctuation

is caused (1) by very weak, remnant envelope pulsations, which are superimposed

on the expansion; (2) by moderate numerical shocks (artificial viscosity pressure

reaches 0.3 P when shock passes Q = 0.043 ~ 1/2 envelope mass, at age 0.2 yr),

which are introduced by the rapid expansion of the vacuum; and (3) by the growing

importance of the H20 opacity as log T drops below 3.4. In Eulerian coordinates,

the point Z = 1 expands monotonically and its temperature continues to drop.

In table 3 we summarize the physical conditions at Z = 1 as a function of time.

2. The conditions across the vacuum are characterized by an increasing

discontinuity in the physical parameters. The details are summarized in table

4. Until age 0.5 yr, ub has negative values, reflecting the final envelope

pulsation. Then it becomes and remains positive, reaching values well in excess

of Uesc. The ratio (I/g)b also becomes large. On the other hand, ua and (r/g)a

remain negligible. The He-shell remains bound and becomes the surface of a hot

star with R f 1.5 Re (see 4. below).

3. The optical depth at point b is initially large (tables 3, 4). It

drops and reaches a minimum of 4 = 1.9 at 0.7 yr. Then it rises again as

the temperature of the envelope falls below 2500 °K and the H20 opacity begins

to dominate, first in the outer layers and then throughout the envelope. At

2.0 yr, 1b reaches a maximum and begins to decrease again because of the drop in

density. Beyond approximately 5 yr the entire envelope is thin in the continuum.
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2 -1
4. At age zero, the opacity is 0.19 cm g in the He shell and about

2 -1
1.0 to 20.0 cm g in the lower half of the H-rich envelope. This discon-

tinuity in the opacity is responsible for the initial acceleration of the H-rich

envelope and the retention of the He shell. Transfer of momentum and energy

from radiation to gas is more efficient in the H-rich material than in He.

Beyond age 0.7 yr, the opacity throughout the H-rich envelope is lower

than in the He shell; still the differential acceleration continues. The

reason is this. The H-rich envelope has become a highly expanded shell whose

inner radius now exceeds 21013 cm. The space between this shell and the

central star is filled with radiation, most of which originates from the

inner surface of the envelope (see equations 4a, c as Xb---1l). It is this

trapped radiation which pushes on the H-rich envelope.

It is interesting to estimate the acceleration due to this push by

applying equation 2 of Paper I to the lower, optically thick part of the H-rich

envelope:

-- . - -

1 A x(11)

For instance, from the data given in table.5 we find that at age 2.7 yr the

average value of r/g between Q = 0.0921 and 0.0388 is 1.4.

5. The velocity and mass flow rate, m = 4-ir 2  u, are illustrated in

figures land 2 as functions of Q and t. The mass flow rate is especially

sensitive to the physical and numerical fluctuations discussed under heading

1 above. At age 3 yr, the curve m vs. Q has reached a smooth profile. The

negative slope implies the formation of a shell (rather than immediate dis-

persion), since 'n/am = -e 1- tr. Beyond age 2.5 yr, the entire

shell travels escat nearly constant velocity. At ages 2.7 and 3.9 yr the velocity

equals escape (u = 16 km s- 1 ) and twice escape velocity (u = 24 km s-1 ) re spec-
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tively. The physical conditions of the H-rich envelope at 2.7 yr are sum-

marized in table 5.

6. Although convection is generally present in the H-rich envelope out

to beyond -( = 1, it carries very little energy. The reason is twofold. The

low density (P < 10 g cm ) makes convective energy transport very in-

efficient, while the low value of the opacity (I 5 -10 cm2 g ) enhances

the radiative energy transport. The ratio L /L remains always less than 0.01.
cv

The ratios ucv/Usd and P cv/P become of the order of 0.1 beyond age 2.7. We

did not include the pressure due to convection in our computations.

7. To determine the sources and sinks of energy during the ejection, we

integrate the equation of conservation of energy (Paper I, equation 15) over

the H-rich envelope:

J C * + +E )
r + Dv  (12)

The terms in this equation express the rate at which kinetic, gravitational,

etc. energies are transferred among each other. These rates are summarized

for several ages in table 6. In general, the gravitational, kinetic, and

photon terms are energy sinks, while the other terms are energy sources.

The dominant energy source is the mechanical term: radiation trapped in the

vacuum is pushing on the envelope. Until about age 3.5 yr, electron recom-

bination and molecule formation contribute more energy than thermal cooling..

Initially the greatest energy sink is gravitation, while after 2.3 yr. most

of the available energy goes into the kinetic term. The photon term is

always less than the other sinks of energy.

In figure 3 we illustrate the gravitational, kinetic, and total energies
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of the H-rich envelope as functions of time. The zero point of the contri-

bution of excitation, ionization, and molecular binding energies are set at

atomic neutrality. The entries in table 6 are the slopes of the curves of

figure 3.

Finally, we shall compute the numerical accuracy and self-consistency of

our results by checking the conservation of energy in the H-rich envelope.

In the last column of table 6 we list the per cent error in the time rates

of energy,

(13)

where the summation includes all terms of equation 12. This error is about

0.1 % or less except near age 0, where it is of the order of 5 %.

c. Expansion of the H-rich envelope, without H20 opacity

In table 7 we summarize the results of the run without H2 0 opacity at

age 0.62 yr. The base of the envelope is still optically thick, and the

velocity is roughly 1/3 to 1/2 of escape velocity. The high luminosity in-

side the envelope is due to mechanical compression. Up to this age the results

are qualitatively like those of the run with H 20 opacity. However only 0.1

yr later, the H-rich envelope becomes optically thin because of the rapid

-5 2 -1
decline of the opacity to the order of 10 cm g . Escape velocity has not

yet been reached.

At this point we had to terminate the computations because the diffusion

approximation becomes invalid. We suspect that ejection might still occur,

especially if line opacities were included. A hydrodynamic atmosphere code is

required to test this hypothesis. At any rate, we feel that the ejection

results that include H 2 0 opacity are the more realistic ones and in the next

section we shall base our conclusions on those.
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V. Discussion

We have found that the H-rich envelope of an evolved red giant near

1 M0 is ejected as the luminosity approaches 19000 L . We associate this

ejection with the formation of planetary nebulae. The core and envelope

masses and the luminosity of our stellar model lie in the ranges observed

for planetary nuclei and nebulae. The stellar remnant has an effective

temperature of a few 105 OK and a radius of about 1.5 R . It evolves within

a few 104 yr to a hot blue star and some 105 yr later to a white dwarf

(Kutter 1971). These stellar evolution results agree with the observations

of planetary nuclei (Abell and Goldreich 1966, Osterbrock 1966, O'Dell 1968).

Our ejection results contain a number of interesting features, most of

which are confirmed by observations. The others are predictions (points 1

and 2 below), whose tests depend on observing the actual formation of a

planetary nebula.

(1) LPV pulsation seems to always preceed ejection. This result is

confirmed by Wood's (1973) theoretical investigation.

(2) Ejection occurs on a time scale of a few LPV pulsation periods.

(3) The entire H-rich envelope is ejected. This corresponds to the

"clean separation" suggested by Osterbrock (1966). We suspect, however,

that in reality traces of H-rich material remain on the central star,

because (1) our vacuum, which is void of any matter, is merely an idealization

of the actual case and (2) during the star's earlier evolution some mixing

of H-rich material and He may well have occurred. Still, in some cases the

these traces of

star may appear to be H-poor. The subsequent contraction of A H-rich

material onto the stellar surface might be responsible for the temporary rise

in the luminosity observed in nuclei of young planetary nebulae (Deinzer

and Hansen 1969). This luminosity rise would occur on a time scale equal
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to the diffusion time scale of radiation through the contracting material.

(4) The H-rich envelope is ejected as a shell.
-i

(5) It attains velocities in the range of 20 to 30 km s-1. Ionization,

excitation, and molecular binding energies contribute noticeably to the

final kinetic energy. For instance, in Paper II these energies were neglected

-1
and the final velocities were only about 2 km s

(6) The low temperature of about 1000 'K which our envelope reaches

would be a prerequisite for grain formation. Molecules and grains have been

observed in planetary nebulae (Ulrich et al. 1966; Gillett, Low, and Stein

1967; Zappala 1967). Only after the entire envelope becomes optically thin,

can the ultraviolet radiation from the central star heat the nebula to the

observed temperatures of about 104 .K.

(7) The ejection mechanism depends on the existence of a H-rich envelope

surrounding a stellar core and a sufficiently high luminosity. Since interior

studies indicate that such luminosities are attained or exceeded by virtually

all red giants near or above one solar mass as the He shell-burning advances

toward the surface, this ejection mechanism is a common one. Such a common

mechanism is required to explain the high frequency of planetary nebula

formation, 2 1 p.n./yr/Galaxy, which corresponds approximately to the birth

rate of stars in the same mass range (Abell and Goldreich 1966, Weidemann 1967).

There may exist an upper mass limit on the precursor stars; but as long as it

is above 1.5 or 2.0 Me it would not greatly affect the statistics.

(8) We have assumed that a vacuum is created between escaping envelope

and stellar remnant. The same assumption was made by Milne (1930) in his

study of the effect of radiation from a central point source on a planetary

nebula. In reality the space between star and nebula probably contains some

matter, but with a density((nebula density. Most likely, convection would
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be either absent (because P /P is low, Kutter 1970) or inefficient in this

space. Hence, energy will be transported mainly by radiation and thus 
provide

the "radiative piston" required for a shell ejection. These results are in

discord with the view of Joss et al. (1973) who suggest that energy transport

by convection will make radiation ineffective in ejecting the envelope.

In conclusion, we feel that these results and those published earlier

by us and others provide a satisfactory explanation of the basic mechanism 
of

the ejection of planetary nebulae and the evolution of the central stars.

However, many details still need to be answered. In particular, the later

stages of ejection should be studied using the radiative transfer equation.

The stellar core and envelope masses should be varied to determine the range

over which this ejection mechanism applies. Finally, non-spherical effects

such as rotation, magnetic fields, presence of stellar companions, and inter-

action with the interstellar medium should be investigated.
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L/L 0  log r log T period (yr)

3100 13.04 3.55 0.5
6500 13.25 3.54 1.1
9200 13.31 3.53 1.4

12000 13.36 3.53 1.7

Table 1. Time-averaged conditions at optical depth 1 during the

long-period variable phase of the H-rich envelope.



m 2-1
Q 1 log r log T log P log 1(cm2g-l)C

0.0921 11.005 5.585 7.754 -9.203 0.78 1.1 (5)

0.0681 13.366 4.248 3.490 -8.830 4.82 9.1 (4)

0.0464 13.421 3.966 3.267 -8.565 6.75 5.4 (3)

0.0235 13.443 3.535 2.921 -8.364 4.9 (-4) 1.0

0.0119 13.454 3.457 2.592 -8.553 1.5 (-4) 0.26

Table 2. Physical conditions of H-rich envelope at age zero. L = 19000 L . The

envelope is convective to W = 0.19 (Q = 0.0096).



age (yr) Q log r u (cm s- 1) u/ues c  log T log P log e L/L@ L/v

1.00 .0174 13.779 1.04 (6) 0.47 3.335 0.923 -10.112 19222 1.1 (-7)

2.00 .0255 13.947 1.04 (6) 0.58 3.241 0.719 -10.112 19778 4.9 (-4)

3.00 .0360 14.122 1.77 (6) 1.22 3.164 0.978 -9.702 19547 1.0 (-2)

Table 3. Physical conditions at optical depth 1 of H-rich envelope as function of time.



age (yr) log rb ub (cm s-1 )  (U/usound)b (U/Uesc )b (/g)b log Tb log Pb logP8+1/ 2  V18+1/2 Cb
(cm2 g-l)

0.51 13.167 2.25 (5) 3.0 (-2) 5.3 (-2) 0.66 4.510 3.686 -9.205 0.97 9.2 (3)

1.00 13.689 1.11 (6) 0.28 0.48 -0.57 3.429 2.274 -8.844 9.2 (-5) 2.2

2.00 13.916 1.31 (6) 0.34 0.73 1.2 3.376 1.821 -9.246 6.8 (-4) 3.1

3.00 14.115 1.78 (6) 0.46 1.3 3.4 3.242 1.421 -9.405 1.7 (-3) 2.1

3.99 14.298 2.52 (6) 1.2 2.2 7.7 3.119 1.055 -9.586 2.7 (-3) 1.5

-l
Table 4. Vacuum conditions. The following parameters remain approximately constant: log ra = 11.005, ua -0.1 cm s-1

(r/g)a ' 10-10, log Ta = 5.591, log Pa = 7.465, log 18-1/2 = -2.678, Las Lb = 19000 L .



age (yr) grav/L0 kin /L0  phot/L0 mech/LO therm/L0 Eex,ion,mol/L % error

1.00 2516. -857. 457. -1528. -90. -503. 0.1

2.00 1057. 721. 872. -1796. -99 -756. 0.02

2.68 774. 1448. 750. -2274. -68. -632. 0.03

3.00 673. 1824. 519. -2474. -53. -491. 0.03

3.86 455. 2918. 39. -3392. -23. 1. 0.03

Table 6. Time rate of change of gravitational, kinetic, photon, mechanical, thermal, and sum 
of excitation, ionization,

and molecular energies of H-rich envelope as function of time. At age 2.68 yr, the envelope reaches escape velocity. The

last column is the quantity 100 7 J/ 11.



Q log r u/usound i/g i(MEyr - ) log T log P log cv/L 
(cm2g - )

0.0921 14.0552 1.8 1.1 1.8 3.283 1.541 -9.357 0.0 1.4 (-3) 2.32

0.0658 14.0585 1.8 1.0 1.6 3.255 1.434 -9.409 8.2 (-3) 1.6 (-3) 1.81

0.0388 14.0623 1.7 1.9 1.3 3.210 1.245 -9.512 7.5 (-3) 1.9 (-3) 1.21

0.0126 14.0678 6.0 2.4 0.7 3.097 0.823 -9.790 5.5 (-6) 3.0 (-3) 0.5

Table 5. Physical conditions of H-rich envelope at age 2.68 yr. The following parameters are nearly constant:

u = 16 km s , U/Uese = 1.0, L = 19000 L , pressure scale height = 6.0-10 cm. The photon diffusion time scale

between Q = 0.0921 and 0.0126 is of the order of 0.01 yr.



Q log r u (cm s- 1 ) U/usound U/Uese m(Myr-) log T log P log P L/L L/Lcv )(cm g )

0.0921 13.244 1.21 (6) 0.17 0.31 4.3 (-2) 4.438 3.459 -9.309 19005 0.0 0.93 2.7 (3)

0.0891 13.312 1.23 (6) 0.49 0.34 4.4 (-2) 4.296 3.080 -9.434 23059 0.34 1.27 1.4 (3)

0.0834 13.417 1.72 (6) 1.5 0.54 6.2 (-2) 3.636 1.792 -9.608 85793 0.13 4.0 (-4) 1.4

0.0780 13.493 1.57 (6) 2.6 0.53 5.9 (-2) 3.588 1.604 -9.748 83013 0.0 2.3 (-4) 1.0

0.0729 13.554 1.75 (6) 3.0 0.64 7.3 (-2) 3.565 1.558 -9.771 81244 0.0 1.9 (-4) 0.85

Table 7. Physical conditions of H-rich envelope, not including H20 opacities, at age 0.62 yr.

log r = 11.005, u = -0.199 cm s-1, log T = 5.591, log P = 7.465, log 18-1/2 = -2.678, La =19000 L .



Captions of Figures

Figure 1. - Velocity as function of Q and time.

Figure 2. - Eulerian rate of mass flow as function of Q and time.

Points at optical depth 1 are indicated by vertical line.

Figure 3. - Gravitational, internal, kinetic, and total (Egrav

+ Eint + E kin) energies of H-rich envelope vs. time. Internal

energy is sum of thermal, excitation, ionization, and molecular

contributions, with zero point set at atomic neutrality. Solid

curves are positive, dashed curves are negative. Points at

optical depth 1 are indicated by vertical line.
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