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COMPARISON OF FINITE-DIFFERENCE SCHEMES
FOR ANALYSIS OF SHELLS OF REVOLUTION

By Ahmed K. Noor* and Wendell B. Stephens
Langley Research Center

SUMMARY

Several finite-difference schemes are applied to the stress and free-vibration anal-
ysis of homogeneous isotropic and layered orthotropic shells of revolution. The study is
based on a form of the Sanders-Budiansky first-approximation linear shell theory modi-
fied such that the effects of shear deformation and rotary inertia are included. A Fourier
approach is used in which all the shell stress resultants and displacements are expanded
in a Fourier series in the circumferential direction, and the governing equations reduce
to ordinary differential equations in the meridional direction.

While primary attention is given to finite-difference schemes used in conjunction
with first-order differential-equation formulation, comparison is made with finite-
difference schemes used with other formulations, These finite-difference discretization
models are compared with respect to simplicity of application, convergence character-
istics, and computational efficiency. Numerical studies are presented for the effects of
variations in shell geometry and lamination parameters on the accuracy and convergence
of the solutions obtained by the different finite-difference schemes.

On the basis of the present study it is shown that the mixed finite-difference scheme
based on the first-order differential-equation formulation and two interlacing grids for the
different fundamental unknowns combines a number of advantages over other finite-
difference schemes previously reported in the literature.

INTRODUCTION

In the past decade a substantial capability has been developed for the numerical anal-
ysis of rotationally symmetric shells., The most widely used numerical analysis proce-
dures for this class of shells are those based on numerical integration, finite elements,
and finite differences. A number of publications exist which review and assess the rela-
tive merits of these three numerical techniques (see, for example, refs. 1, 2, and 3).

*Assoclate Research Professor in Engineering, The George Washington University,
Joint Institute for Acoustics and Flight Sciences.



The large majority of existing finite-difference programs for rotationally sym-
metric shells are based on either the displacement formulation (with the fundamental
unknowns being displacement parameters) (ref. 4), or the Budiansky-Radkowski second-
order differential-equation formulation (refs. 1, 5, and 6). While the advantages of using
a first-order differential-equation formulation have been widely recognized in numerical
integration techniques and in matrix progression method (refs. 7 to 11), only limited use
of this formulation has been made in the case of finite differences (refs. 12 and 13).

The objective of this paper is to assess the relative merits of several finite-
difference schemes used for the linear elastic stress and free-vibration analysis of
rotationally symmetric shells. Primary attention is given to mixed finite~difference
schemes used in conjunction with the first-order ordinary-differential-equation formula-
tion., However, some consideration is given to finite-difference schemes used with the
displacement formulation and with the Budiansky-Radkowski second-order differential
equations.

The term "mixed'" refers to the fact that both stress resultants and displacements
are chosen as primary variables. The analytical formulation is based on the Sanders-
Budiansky linear shell theory. The first-order ordinary-differential-equation formula-
tion of that theory is modified such that the effects of shear deformation and rotary inertia
are included.

SYMBOLS
Ajj i,j=1,2,...9)
dimensionless elastic compliance coefficients of the shell

Bj, G (1,j=1,2,3)
by,bg, . . ,bg,be dimensionless elastic coefficients of the shell
Cij’Fij’Dij (1,j=1,2,3) dimensionless elastic stiffnesses of the shell
60 reference extensional rigidity of the shell
c%{) (i,j=1,2, .. .,5) elastic stiffness of the kth layer of the shell
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elastic modulus for isotropic materials
error index (see eq. (19))

elastic moduli in the direction of the fibers and normal to it,
respectively

shear moduli in the plane of the fibers and normal to it, respectively
local thickness of the shell (see fig. 1)

distance from the reference (middle) surface to the top and bottom
surfaces of the kth layer, respectively

reference length of the shell

finite-difference interval in the meridional direction
moment stress resultants (see fig. 2)

Fourier harmonic in the circumferential direction
direct stress resultants (see fig. 2)

modified (boundary) stress resultant

symmetric stress resultants

number of layers of laminated shells

number of finite-difference intervals in the meridional direction
vectors of external forces

amplitude of load harmonic

intensity of external loading in the coordinate directions (see fig. 2)



Qé:,QOJ transverse shear stress resultants (see fig. 2)

R radius of toroidal cross section

Rl’RZ principal radii of curvature in the meridional and circumferential

directions, respectively

r normal distance from the shell axis to the reference surface
(see fig. 1)

t time

U§ , Uy , W displacement components of the reference surface in the coordinate
directions (see fig. 2)

X{;¥9,Xg curvilinear coordinate system (see fig. 1)

Aohg dimensionless frequencies

v -Poisson's ratio for isotropic materials

VLT Poisson's ratio measuring strain in T-direction due to uniaxial normal

stress in the L-direction

£,0 dimensionless meridional and circumferential coordinates,
respectively (see fig. 1)

Pq density of the kth layer of laminated shells
r N
L
=L
s =
¢ Rq
$ nondimensional geometric parameters
L
Lu@ ——
Ry
_ do/de
Y - J




Per P rotation components (see fig. 2)

{ me} and {Hm} vectors of fundamental unknowns defined by equations (14) and (15)

w circular frequency of vibration of the shell

|_ 1 row matrix

{1} column matrix

[] rectangular or square matrix ~
Subscripts:

i generic finite-difference station

L,T denote the direction of fibers and the transverse direction
m denotes the mth Fourier harmonic

Finite-difference models:

Dw displacement formulation, whole-station scheme
SW second-order formulation, whole-station scheme
MW mixed formulation, whole-station scheme

MHS 1, MHS 2 mixed formulation, half-station scheme, single grid

MHI mixed formulation, half-station scheme, interlacing grid

MATHEMATICAL FORMULATION

Shell Geometry

Figure 1 shows the geometric characteristics of a rotationally symmetric shell as
follows: h is the local thickness of the shell; r is the normal distance from the shell
axis to the reference surface; R1 and R2 are the principal radii of curvature in the
meridional and circumferential directions, respectively. The expressions for R1 and
R2 are given in reference 5.



To cast the problem in nondimensional form, the two dimensionless coordinates
& and 6 are used, where

X
g =1 (1)
L

- INN

(2)

in which Xy and X, are the meridional and circumferential coordinates, respectively,
and L is a reference length.

Also, as in reference 5, the following dimensionless geometric parameters are
introduced:

p=< (3)
L
L
wg = = (4
Ry
L
wg = (5)
R,
and
- Go/ds (6)
0

Reduction to a One-Dimensional Problem

The analytical formulation is based on a form of the Sanders-Budiansky linear
theory modified such that the effects of shear deformation and rotary inertia are included,

If the shell stress resultants and displacements as well as the external loads are
expanded in a Fourier series in the circumferential direction, then

[e90)
LUf W, N, M, Qé“ - Z LUﬁ,m Wt m Nem Me Qg’m] cos mé  (7)
m=0
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in which _l\Té , and M,  are the modified (symmetric) stress resultants defined in

reference 5.
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For free-vibration analysis, the right-hand sides of equations (7) and (8) must be
multiplied by elc‘)t where « 1is the circular frequency of vibration of the shell.

Governing Differential Equations

The stress and free-vibration problems for shells of revolution can be formulated
in a number of different ways. For example, such problems can be formulated in terms
of (1) the three displacement components of the reference surface, (2) coupled second-
order ordinary differential equations in the generalized displacements and meridional
moment stress resultant, or (3) first-order ordinary differential equations in the shell
stress resultants and displacements. In the absence of shear deformation, the governing
equations of the displacement formulation for cylindrical shells are given in reference 14,
and the governing equations of the second-order formulation for general shells of revolu-
tion are presented in references 1 and 5. These equations are not reproduced here. On
the other hand, the first-order equation formulation which has been extensively studied
herein is outlined below. Discussion is focused on the choice of the fundamental unknowns
and the form of governing differential equations in such a way as to enhance the compu-
tational efficiency of the finite-difference discretization,

The fundamental unknowns of the first-order differential-equation formulation used
herein are chosen to be the shell quantities that appear in the statement of the boundary
(or interface) conditions along a parallel circle. These include: the five generalized




displacements Ug, Uz, W, ¢, and ¢4; and the five stress resultants Ng, ﬁg@,

Qs M, and M., (see fig. 2).

By properly ordering the fundamental unknowns, the governing differential equa-
tions for the mth Fourier harmonic can be arranged to yield a symmetric coefficient
matrix of the fundamental unknowns as follows:

st s|(H 0 i1,/ (du m? ! 0 |(H P
S P . 6 RO 19 i 1S PR B [ D e D (a7 < Y 6 )
sT1s2] (Ym Iy 0 (¥ 0 ' mP| ("m Pz,m
where
a-94 (13)
d¢
T_ pr,m ) ng,m, U@,m, Wi .
H b b b ’¢ (14)
m N ~ L L om
C, LC,
T _ |Ysm . PNeom . PQem . Mgy
{L/J m} = ’ ¢é_' m’ ’ ’ (15)
L ’ o ¢ LC
o) o) Y

The term C o is a reference extensional rigidity of the shell. The shell stiffnesses and
compliances are given in appendix A. The [Sa], [Sb] , and [S] are 5 X 5 matrices, the
first two matrices are symmetric; superscript T denotes transposition; the matrix [Il]
is a diagonal matrix; [ma] and [mb] are symmetric mass matrices; and {P1 m} and
{Pz,m} are vectors of external forces. The formulas for the coefficients of the afore-

mentioned matrices are given in appendix B. For stress-analysis problems « =0 and
-Vi ti =[P = 0.
for free-vibration problems {Pl,m} { 2,m}

The choice of the fundamental unknowns shown in equations (14) and (15) is similar
to that suggested by Goldberg (ref. 7); however, the present formulation utilizes the geo-
metric parameter , (¢) in defining the unknowns for stress resultants. This particular
choice allows casting the governing equations in a symmetric form and minimizes the
number of nonzero terms in the matrix [S]




FINITE-DIFFERENCE DISCRETIZATION

The finite-difference models used with the displacement and second-order
differential-equation formulation were based on the whole-station approximation. These
two models will be referred to subsequently as DW (displacement, whole-station) and
SW (second-order, whole-station) schemes. The latter model, SW, was first suggested
by Budiansky and Radkowski (ref. 5) and developed into an operational program "SALORS"
in reference 15. Since the DW and SW schemes have been discussed in references 14 and
15, the discussion is confined here to the discretization of the first-order differential
equations, To this end, it is convenient to express equations (12) as follows:

[s7] {Hm} * [S] {v m) * 1] {dwm} ) _wz[ma] {Hm} } {Pl,m} (16a)

[Sb] {w m} * [S]T {Hm} - [Il] {de} = -2 [mb] {w m} - {P2,m} (16b)

Four finite-difference models have been used for the discretization of equations (16).
These models differ by the difference-quotient expressions used for approximating the
first derivatives and by the location of the points at which the difference equations are
applied. The four models can be identified as mixed whole station (MW), mixed half-
station, single grid (MHS 1 and MHS 2), and mixed half-station, interlacing grid scheme
(MHI). The two schemes MHS 1 and MHS 2 differ one from the other in the difference-
quotient expressions used for approximating the first derivatives, For shells with con-
stant elastic and geometric characteristics, the discrete models obtained by these two
schemes are identical.

The characteristics of the four finite-difference models MW, MHS 1, MHS 2, and
MHI along with those of the two models DW and SW are summarized in table 1. While
three of the four schemes used with the first-order equation formulation, schemes MW,
MHS 1, and MHS 2, have been reported previously in the literature, the fourth scheme
(MHI) which was developed by the authors represents the prime thrust of the present
work and is described in detail below. It should be noted, however, that other inter-
lacing grids have been suggested and used previously by others (e.g., refs. 4 and 16).

The basic idea of the mixed half-station interlacing-grid scheme (MHI) used in the
present study is to define the first derivatives of each of the fundamental unknowns at
points lying midway between the points of definition of the same unknowns. This can be
accomplished by using two sets of interlacing grids for the two groups of fundamental
unknowns {Hm} and {L,u m}‘ The quantities {w m} and {de} in equations (16) are
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defined at points lying midway between the points of definition of {Hm} and {dnpm}.
For convenience both {H m} and {ap m} are defined at the boundaries and interfaces.

The finite-difference equations which simulate the governing equations (eqs. (16))
are obtained by replacing the first derivatives in these equations by an appropriate
difference-quotient expression, depending on the order of approximation desired (see
ref, 17).

Also, due to the coupling between {y 1} and {d¢m} in equations (16a) and be-
tween {H_} and {dH_ )} in equations (16b) (i.e., due to the presence of the matrix
[S]), the values of {xp m} in the first equation and {H m} in the second equation have
to be obtained through interpolation between their values at their respective control
points, As will be shown subsequently, the accuracy of solutions is less sensitive to this
interpolation than to the averaging of the difference-quotient expressions, which is used
in conventional schemes (with all the fundamental unknowns and their derivatives defined
at the same set of points),

In order to maintain the number of unknowns equal to the number of equations, only
the five equations (16a) are applied at the boundary, the other five equations are replaced
by the five boundary conditions. The accuracy of the modified scheme presented herein,
however, was found to be insensitive to the particular choice of the five equations to be
applied at the boundary. A summary of the equations applied at the different nodal points
is given in figure 3. Central differences are used at interior points and backward (or for-
ward) unsymmetric differences are used at points lying on or near the boundaries (or
interfaces). The number of such specialized unsymmetric difference formulas is de-
pendent on the order of the interior discretization error used in the finite-difference
scheme (see ref. 17).

As an illustration, the difference equations are shown for the MHI scheme. These
difference equations of order O(%z), where 4 is the finite-difference interval, at generic
interior points i and i+1, are given by

By (s + [ 2 [1] #2005 {ombin +[ 2 [1) <5 (81| {omd 1
-2 [m?], {Hin}t - {Py,m)s (17)

[Sb] i+1 {‘/“ m}i+1 + [% [11] +

1+1

T [ 2 ] {tliee

= - [mb]i+1{‘/’m}i+1 B {Pz,m}p,l (17b)
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The resulting finite-difference field equations can be represented in the following
compact form:

K] {Zm} = -8 {Zpy} - {Ppn) (18)

where [Km] and [fM] contain the generalized stiffness and mass distribution, {Zm}
is the vector of unknowns composed of thf: subvectors {Hm}1 and {¢ m}i 41 at the
various finite-difference stations and {Pm} is the vector of external forces and thermal
effects, Equations (18) are banded and their bandwidth depends on the orders of the in-
terior and boundary approximations. The use of interlacing grids results in reducing
both the interior discretization error and the bandwidth of the resulting finite-difference
equations and, therefore, the computational efficiency of the scheme is improved. That
this is indeed so can be seen from figure 4, where a schematic representation is given of
the finite-difference equations corresponding to the four schemes MW, MHS1, MHS2, and
MHI.

The four finite-difference schemes MW, MHS 1, MHS 2, and MHI have a number of
advantages also shared with other numerical approximation techniques based on the first-
order equation formulation. These include the simplicity of the form of the governing
differential equations, the absence of the derivatives of the elastic characteristics of the
shell in these equations, and the simplicity of numerical discretization and of handling the
boundary and interface conditions. As a result of the cited advantages, the effort required
in the computer implementation of these difference schemes (coding, debugging, and veri-
fication) has been found to be significantly reduced.

EIGENVALUE EXTRACTION TECHNIQUE

For free-vibration problems, a variant of the inverse-power method with shifts
similar to that presented in reference 1 is used for the determination of the natural fre-
quencies and mode shapes. In the present study, advantage was taken of the banded form
of the matrix [Km and a direct, Gaussian elimination procedure was used for each
iteration to evaluate the new trial vector {Zm}.

NUMERICAL STUDIES

In an attempt to assess the relative merits of the different finite-difference schemes,
a large number of stress and free-vibration problems of homogeneous isotropic and layered
orthotropic shells of revolution were solved using the aforementioned six finite-difference
schemes.

11



The various finite-difference models are compared with respect to simplicity of
application, convergence characteristics, and computational efficiency. The results of
four typical problem sets representing different shell geometries and wall construction
are discussed with respect to convergence characteristics herein. These problems are:

a. Free vibrations of isotropic cylindrical shell

b. Asymmetric stresses in isotropic toroidal shell subjected to a uniform normal
pressure

c. Asymmetric free vibrations of layered orthotropic toroidal shell

d. Free vibrations of layered orthotropic spherical shells

The four difference models based on the first-order equation formulation (MW,
MHS 1, MHS 2, and MHI schemes) were applied to all four problems, and the second-order
equation model (SW scheme) was applied to the first two problems., Comparison was made
with the results obtained using the displacement model (DW scheme) for the first problem
(ref, 14).

In the first two problems in order to provide a meaningful comparison with finite-
difference schemes SW and DW, the tracing constants kr and k, (where « =1,2)in
the appropriate equations in appendix B, were set equal to 0 and 104, respectively. This
resulted in dropping the rotary inertia terms and suppressing the shear deformation in
these problems.

Free Vibrations of Cylindrical Shells

The first problem considered was that of asymmetric free vibrations of isotropic
cylindrical shells with clamped edges. The characteristics of the shells considered are
shown in figure 5. This problem was taken from reference 14 where it was concluded
that the accuracy of the finite-difference method, based on a differential-equation formu-
lation in terms of the three midsurface displacements, deteriorates rapidly as the length
ratio L/R increases or the thickness ratio h/R decreases. Therefore, in order to
assess the accuracy and rate of convergence for the six finite-difference schemes, the
long thin shell shown in figure 5 was selected. For this problem it was found that both
the shear deformation and rotary inertia were negligible and, therefore, the use of
schemes DW and SW is justified.

The nondimensional minimum frequencies obtained by the different finite-difference
schemes are summarized in table 2 and the corresponding mode shapes and modal stresses
obtained by schemes MHS 1, MHS 2, and MHI with 20 finite-difference intervals are shown
in figure 6.

12




As is seen from this figure the three schemes MHS 1, MHS 2, and MHI accurately
predict the mode shape and the modal stress-resultant N, but for the modal moment
M, scheme MHI misses the spike at the boundaries and schemes MHS 1 and MHS 2 give
an oscillatory type of variation.

The results presented in table 2 show that the frequencies obtained by the mixed
half-station interlacing grid finite-difference scheme (MHI) are more accurate than the
corresponding frequencies obtained by other schemes (for the same number of finite-
difference intervals). The error in the frequency obtained by using MHI scheme with
10 finite-difference intervals is only 1.5 percent. On the other hand, the frequencies
obtained by DW and SW schemes (based on the displacement and the four second-order
equations) are considerably less accurate than those obtained by all other schemes based
on the use of first-order differential-equation formulation. Also, the frequencies ob-
tained by DW and SW schemes are identical to four significant digits. This is because
the discretized equations in the SW scheme for cylindrical shells can be reduced to sets
of equations identical to those obtained by direct discretization of the three differential
equations of the displacement formulation, DW scheme (see ref, 17). Similar reasoning
can be used to explain the fact that the frequencies obtained by MHS 1 and MHS 2 schemes
are identical and those obtained by the MHI scheme are identical to the ones obtained by
the MW scheme using twice as many finite-difference intervals (compare the correspond-
ing entries in table 2).

Stress Analysis of a Closed Toroidal Shell

As a second example consider the asymmetric stress analysis of an isotropic closed
toroidal shell subjectéd to a normal pressure which is uniform in the meridional direction.
The characteristics of the shell and loading are shown in figure 7.

Solutions have been obtained using the finite-difference schemes SW, MW, MHS 1,
MHS 2, and MHI for the asymmetric stress analysis for an internal pressure loading which
is uniform in the meridional direction, Only the second Fourier harmonic in the circum-
ferential direction is considered (m = 2). For this shell and loading, the shear deformation
was found to be negligible and therefore the use of scheme SW is justified. Due to sym-
metry of the shell and loading, only half the meridian was considered and the symmetric
boundary conditions at the ends are {w m} = 0.

As a quantitative measure of the relative accuracy of the stress resultants and dis-
placements obtained by the different finite-difference schemes, the following error index
E; (a function of f) has been introduced:

13



n+1 ~ A2
f. - f.
Ef :_1__ E 1 1 (19)
n+l | ‘fmax ‘

where
f stands for any of the stress resultants or generalized displacements

fi and fl are the exact and approximate values, respectively, of the function at
the ith finite-difference station. The exact value is taken to be the converged
solution, and the approximate value refers to the value obtained by each of the
finite-difference schemes.

lfmax‘ is the maximum absolute value of the exact (or converged) function in the
interval of interest (half the meridian of the shell in this case).

n+1 is the total number of finite-difference stations used in the approximate
solution,

In order to simplify comparison with other schemes, the values of the unknowns
{¢ m} in scheme MHI were computed at the same nodal points as the unknowns {Hm}
This was done after obtaining the modified solution. As an example, at the node point i

{¢mhs =§ {'mhi1+ {wm}i+1}

where {w m}i—l and {¢ m}i+1 are the values of {¢m} at points i1 obtained from
the modified solution,

While the error index E; (eq. (19)) is similar to the root-mean-square error, it
has the added advantage that it gives less weight to the smaller values of the function,
which are usually of less practical interest. The smaller the error index Ef, the more
accurate the approximate solution (obtained by the difference scheme) is.

The values of the error index Ef for each of the stress resultants and generalized
displacements obtained by the different finite-difference schemes using 10, 20, 30, and
40 intervals in half the shell meridian are summarized in table 3. Also, figure 8 shows
plots for the stress resultants and displacements obtained by schemes SW, MW, and MHI.
Also shown are the essentially exact results (converged solution) for this problem. Solu-
tions obtained by schemes MHS 1 and MHS 2 are not shown in order to avoid complicating
the figure. To provide a reasonable comparison among the three finite-difference solu-
tions shown in figure 8, the total number of algebraic equations for each method was made

14




comparable, This was achieved by using 10 finite-difference intervals in half the shell
meridian in schemes MW and MHI and 20 intervals for scheme SW. Note that if the shear
deformation is neglected, the governing differential equations used in schemes MW and
MHI reduce to eight and the total number of algebraic equations for each method will
almost be identical. Figure 8 and table 3 clearly show the high accuracy of the predic-
tions of the proposed scheme (MHI) and that this accuracy occurs for both displacement
and stress quantities in this case.

Moreover, it was found that the accuracy of the solutions obtained by scheme MW
was very sensitive to the particular choice of the five equations applied at the boundary,
The best accuracy was obtained when the boundary conditions were applied in a manner
similar to that used in finite-element method, wherein the 10 equations (eqs. (12)) are
applied at the boundary, then the boundary conditions replace the equations with the
specified boundary quantities (in this case displacement, rotation components, and stress
resultants) appearing along the diagonal. The results shown in table 3 for scheme MW
were obtained for the aforementioned choice. On the other hand, the accuracy of the
solutions obtained by scheme MHI was found to be insensitive to the choice of the 5 equa-
tions to be applied at the boundary.

Asymmetric Free Vibrations of Laminated Orthotropic Toroidal Shell

In order to study the effect of material orthotropy of the shell on the accuracy and
rate of convergence of the different finite-difference schemes, the free-vibration problem
of an eight-layered, graphite~-epoxy composite shell was studied. The shell had the same
dimensions and total thickness as that of the isotropic shell considered previously (see
fig. 7). Both shear deformation and rotary inertia were accounted for and consequently
scheme SW was not used.

An indication of the accuracy and rate of convergence of the minimum frequency
obtained by schemes MW, MHS 1, MHS 2, and MHI is shown in figure 9. The results ob-
tained by schemes MHS 1 and MHS 2 were almost identical. As shown in figure 9 the
frequencies obtained by all schemes converged to the same value, but those obtained by
scheme MHI had a faster rate of convergence.

Free Vibrations of Layered Composite Spherical Shell Segment

As a final example consider the free vibrations of an eight layered, graphite-epoxy
spherical-shell segment with clamped edges. The fibers of the different layers alternate
between the circumferential and meridional directions, with the fibers of the top layer
running in the meridional direction. Shells with different rise ratios, ranging from
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shallow to deep shells, have been studied. The characteristics of these shells are shown
in figure 10, For all these shells solutions were obtained using the first order difference
models (schemes MW, MHS 1, MHS 2, and MHI).

The solutions obtained using the different schemes are summarized in table 4. As
can be seen from this table scheme MHI is superior to all other schemes. The accuracy
of the solutions obtained by this scheme does not deteriorate as the shell becomes
shallower.

CONCLUDING REMARKS

A comparison is made between a number of finite-difference schemes for analysis
of shells of revolution. Primary attention is given to finite-difference schemes based on
the use of first-order ordinary differential-equation formulation; however, some consid-
eration is given to both the displacement and the second-order differential-equation models.
The various finite-difference discretization models are compared with respect to simplic-
ity of application, convergence characteristics, and computational efficiency.

On the basis of the present study it is shown that the mixed finite-difference schemes
have a number of major advantages in common with other numerical approximation tech-
niques based on the first-order differential-equation formulation. These include the sim-
plicity of the form of the governing differential equations, the absence of the derivatives
of the elastic characteristics of the shell in these equations, and the simplicity of numeri-
cal discretization and of handling boundary and interface conditions. A proper selection
of the fundamental unknowns and a proper ordering of the governing equations can lead to
further simplifications which produces a symmetric coefficient matrix in the governing
equations. Of all the finite-difference schemes used with the first-order equation formu-
lation, the scheme presented herein, which is based on the use of the two interlacing grids
for the different fundamental unknowns, leads to the minimum bandwidth of the finite-
difference field equations and the maximum accuracy of the solution and, therefore, is
computationally most efficient,

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., September 19, 1973.
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APPENDIX A
ELASTIC COEFFICIENTS OF LAMINATED SHELLS

Elastic Stiffnesses of the Layers

The stiffness coefficients of the kth orthotropic layer of the shell are given by:

L ) -
A A
5 (k) LT 5 (k)
(k)
Sk} i =123} (a
[cu < ®) <]=1,2’3) (A1)
Symmetric G(Il,{')I‘
and
i) 0
ik (1288) o
o Gg‘,}_

where subscripts L and T denote the direction of fibers and the transverse direction,
vy is the Poisson's ratio measuring the strain in the T-direction due to a uniaxial
normal stress in the L-direction,

(A3)

A=1- LTYTL

and superscript k refers to the kth layer.
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APPENDIX A - Concluded

Elastic Coefficients of the Shell

The dimensionless elastic stiffnesses of the shell are given by:

5 g |, %3 x5
= —_— A —_ v 1=1,2,3
Lci]. Fyj Di;' . Z S A |t T 5| 9 <j=1,2,3> (A4)
Co k=1 “Ni-1 L
and
1 T (M (k) 4,5
_ 1 K i=
Cij = = Z jh cij dxg <j=4js> (A5)
C_ k=1 “Mk-1
(6]
where

NL = total number of layers of the shell

hi and hy._{ are the distances from the reference surface to the top and bottom
surfaces of the kth layer, respectively

60 is a reference extensional rigidity of the shell

The dimensionless elastic compliances of the shell Aij’BijaGij (i,j =1,2,3) and
Ajj (i,j =4,5) are obtained by inversion of the matrix of the elastic stiffnesses as follows:

W on

------ S o N R (249

The elastic stiffnesses and compliances of the shell are functions of the meridional
coordinate £,
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APPENDIX B

FORMULAS FOR COEFFICIENTS IN GOVERNING
DIFFERENTIAL EQUATIONS

The independent nonzero terms of the submatrices [Sa], [Sb] , and [S] in equa-

tions (17) are given by:

s?. = e
11 = 7
s?, = )
1277
gd  _ mbch
13 0
a _ -
ST4 = “oPcbg = ¢
s? - mbcb4
15 -
b
a _ 5
Sgp = =~
Sa _ mbch
23 p
a
Sgq = «yb.bg
Sa _ mbcb7
25 p
2
@ __ TPl reoky
33 ~ 0
Agg
k
Sa = -Mwy | b G + _2
34 < 29 Ass
mzb B oe -k
g2 c 22 FPrgK2
35 =
? Ags
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APPENDIX B -~ Continued

Ay

rKkq

1 2

e wy)"Agg (v - w;) Bgg + Ggg
ye

b.rbg
b cyb 4
berbg
b cyb,?

-mby Gy

mbey By

-'y(we - wé)
b 2rGgg ey
bc/O'YBzza;@

mbcyB22

= ~mbyyAga
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where b1 to by

with

=2
|

and kl and k2

The matrix

1] =

The nonzer
given by:
a
m33
a
M35

22

= By

= =BygBgoy + Gyg

APPENDIX B — Continued

are dimensionless coefficients given by:

= A11+ P {'Alz (A12G22 - B12Bag) * Bya (A19Bas - A22B12)}

Bi1 - {AIZ (B12Ga2 - BaaG1a) * Bya (A53G1; - B12322)}

= A19Ggg - ByyByy

= =A,,Bqgq + AysB

12722 22712

=Gy - b, {Blz (B12G2a = BaGig) + Gya (Ag9G1g - BIZBZZ)}

Gyo - ByoG

22 22712

Agg

-1
= (Ag9G9; - Bjy)

are tracing constants (shear coefficients).

[11] is a 5 x 5 diagonal submatrix given by:

o terms in the symmetric mass matrices [ma] and [mb] are

=km0




a
and
b
b
m12 = kr k ml
m22 = kr k mz
where
2
k =pL—
CO

k,. is a tracing constant and

- M ®
_ k
[momyma] =)0 f° 8|1
k-1
k=1

APPENDIX B — Concluded
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LL2

2
3

dx

with »® being the mass density of the kth layer of the shell.

S

The components of the load vectors are given by:

T L
{P1m) =P
(0]

T_ L
{sz} iy
0

—
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TABLE 2.- CONVERGENCE OF MINIMUM NONDIMENSIONAL FREQUENCY i
OBTAINED BY DIFFERENT FINITE-DIFFERENCE SCHEMES

[Clamped isotropic cylindrical shell with h/R = 0.002,

L/R=10, v=0.3,and m=4; x=100R /o (1 - u2)/E]

n Values of » for -
SW and DW MW MHS 1 and MHS 2 MHI
10 2,101 1,398 1.549 1,485
2(1.393) (0.665) (1.027) (0.985)
20 1.689 1.485 1.517 1,506
(1.120) (0.985) (1.006) (0.999)
30 1.593 1.501 1,512 1.508
(1.056) (0.995) (1,003) (1.000)

ANumbers in parent

[
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TABLE 3.- ERROR INDEX FOR STRESS RESULTANTS AND
GENERALIZED DISPLACEMENTS OBTAINED BY
DIFFERENT FINITE-DIFFERENCE SCHEMES

r

Closed toroidal shell problem, Ef =

28

n+l

Values of Ef X 100 for -
! mw | wMest | MHS2 MHI
f= N§
10 6.935 1.043 1.275 1.121
20 .339 .186 .250 .179
30 132 .068 .093 .065
40 .065 .033 .046 .031
f=Me¢
10 26.369 6.683 5.248 2.320
20 3.990 1.420 1.056 .459
30 1.232 .536 .392 167
40 571 .265 .193 .081
f=Megp
10 35.352 6.956 5.813 2.369
20 4,602 1.620 1.288 515
30 1,426 .652 .531 .250
40 .675 .359 .308 .184
f= U(}
10 47.157 8.385 7.760 1.524
20 5.301 1.838 1.663 .294
30 1.610 .692 .623 107
40 742 .341 .307 .052
=W
10 42.524 7.737 6.769 2.096
20 5.112 1.744 1.444 .355
30 1.550 .664 .543 129
40 .716 .329 .268 .062
f=Ue¢
10 37.404 6.221 5.590 1.390
20 4,256 1.470 1.277 .270
30 1.320 .581 .503 115
40 .622 .307 .269 .096
f=0e
10 43.012 7.804 6.896 1.326
20 4.939 1.703 1.426 .231
30 1,492 .641 .531 .084
40 .687 .316 .261 .040
f= Pe
10 30.989 6.778 5.355 2.806
20 4.548 1.621 1.221 .549
30 1.384 .667 .520 .223
40 .648 .376 311 .162




TABLE 4.- CONVERGENCE OF MINIMUM NONDIMENSIONAL FREQUENCY

OBTAINED BY DIFFERENT FINITE-DIFFERENCE SCHEMES

[:Clamped graphite-epoxy spherical shell with h/R = 0.002; m = 2; A o= Vphz/ET]

Values of >\1 x 103 for —

Converged
n MW MHS 1 MHS 2 MHI solution
6= g(hemispherical shell)

10 2.7962 2.7830 2.8614 2.8403 2.8217
20 2.8099 2.7909 2.8302 2.8257
30 2.8146 2.8095 2.8266 2.8239
40 2.8166 2.8136 2.8246 2.8231

_ v

6

10 3.4550 3.6456 3.7724 3.6489 3.6644
20 3.6140 3.678 3.6882 3.6614
30 3.6411 3.6704 3.6760 3.6634
40 3.6508 3.6666 3.6713 3.6640
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Figure 1.- Shell geometry.

0 MG&

Right-hand rule
is used for rotations
and moments,

M,

6

Figure 2.- Sign convention for stress resultants and displacements.
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Boundary
conditions

. [S]x 1
[S ]1 1 [11] n [1]
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(a) MW scheme.

External
force
vectors

Boundary
effects

Boundary
effects

Figure 4.- Schematic representation of the finite-difference equations

obtained by the first-order equation schemes.
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Figure 4.- Continued.
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Figure 5.- Characteristics of isotropic cylindrical
shell used in the present study.
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Figure 6.- Mode shapes and modal stress resultants obtained by MHS 1, MHS 2,
and MHI schemes for isotropic circular cylindrical shell.
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Figure 6.- Continued.
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Figure 6.- Concluded.
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Figure 7.- Characteristics of toroidal shell and loading.
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Figure 8.- Accuracy of stress resultants and displacements obtained by
different finite-difference schemes for a toroidal shell with a uni-

form internal pressure p.; m= 2.
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Figure 9.- Convergence of minimum frequency obtained by different finite-
difference schemes based on the first-order equation formulation
(graphite-epoxy toroidal shell with h/R = 0.02; m = 2).
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Figure 10.- Eight-layered graphite-epoxy spherical shell with clamped edges.
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