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ABSTRACT

Helicopters are occasionally used to carry loads hanging below them

on cables. Piloting the helicopter under these conditions is difficult,

particularly when the mass of the load is comparable to that of the heli-

copter, and there are gusty winds. An autopilot logic is designed here

for controlling a helicopter with a hanging load. A 16th order model for

the system is decoupled into four subsystems: (a) A second order system

for yawing motion, (b) a second order system for vertical motion, (c) a

sixth order system for longitudinal motion, and (d) a sixth order system

for lateral motion. A novel measuring scheme, which could be used in

remote areas, is developed and filters are designed to estimate the state

variables from these measurements.

The autopilot can be used to move the load over short distances

without retracting the cables. This is done by automatically shifting

the autopilot modes from position-hold (hover) to acceleration-hold to

velocity-hold (cruise) to deceleration-hold to velocity-hold (near hover)

to position-hold (hover). Use of such an autopilot might save consider-

able turnaround time.

The Sikorsky S-61 helicopter is chosen as an example vehicle. The

performance of the controlled system is studied in the presence of lon-

gitudinal and lateral winds. Satisfactory response is obtained under

design conditions and also with nominal changes in system parameters.
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Chapter I

INTRODUCTION

A helicopter is an ideal vehicle for transporting heavy, bulky

loads over short distances where surface transport is either infeasible

or uneconomical, e.g., in off-loading containers from ships or carrying

transmission towers or prefabricated buildings to remote sites. In

many cases the load is so big that it cannot be carried inside the air-

craft. Therefore it must be transported hanging from cables fastened

to the aircraft. It might be carried in a hanging position to save

loading and unloading time.

The pendulum modes of the hanging load couple into the motions of

the helicopter to form an unstable system. The instability is not

severe and an experienced pilot can still control the helicopter.

However, the pilot work load is so great that it is almost impossible to

add further tasks such as position-hold (precision hover), even in still

air. On the other hand, an automatic control system can stabilize the

system and perform additional tasks such as precision-hover even in

gusty winds.

To simplify the autopilot design and implementation the complete

motion is approximated by four uncoupled motions. A technique is

developed for finding filter and controller gains. The Sikorsky S-61

is taken as the example helicopter.

For this system some changes in parameters are expected during a

mission. Also some parameters may not be known accurately in advance.

The effect of the parameters on system behavior is studied using a

fixed set of filter and controller gains.

Chapter II develops the equations of motion for the system and

describes the measuring technique near hover. The system definition

matrices for the linearized system are given under design conditions.

Chapter III describes the design technique for controller and

filter for the precision hover autopilot. The performance is studied



under design conditions.

Chapter IV suggests a technique for moving the hanging load over

short distances. The load transfer is carried out in four steps involv-

ing speeding up, holding the speed, slowing down and precision hover.

Chapter V makes a study of the effects of changes in system param-

eters. Chapter VI summarizes the problem and the solution.



Chapter II

EQUATIONS OF MOTION

2.1 Introduction

A helicopter carrying a hanging load can be modeled as a system of

three connected bodies: (a) Rotor, (b) Fuselage, and (c) Hanging load.

The rotor can be tilted much faster than the fuselage or the cable carry-

ing the hanging load. Since we are not interested in high frequency

effects associated with rotor states, it suffices to use a quasi-steady

rotor model. In this description it is assumed that the inclination of

the rotor no-feathering plane (NFP) to the fuselage can be changed

"instantaneously" using the cyclic pitch control. The hanging load is

modeled as a point mass. Thus the dynamical system is simplified to one

rigid body and a point mass (the vehicle and the hanging load).*

This mathematical model is of 16th order with four control variables.

The state variables are: Three position and three translational velocity

coordinates of the vehicle center of mass; three angular orientation and

three angular velocity coordinates of the fuselage; two angular orienta-

tion and two angular velocity coordinates of the cable. The control

variables are the longitudinal and lateral inclinations of the rotor

NFP, the collective pitch, and the tail rotor. However, near hover, the

yaw motion and the vertical motion are very nearly uncoupled from the

longitudinal and the lateral motions. This results in a second order

model for yaw motion with tail rotor as control, a second order model

for vertical motion with collective pitch as control, and a 12th order

model for longitudinal and lateral motions with longitudinal and lateral

cyclic pitch as controls. We will later discuss the decoupling of the

longitudinal motions from the lateral motions.

*
In case the size of the hanging load is comparable to the length

of the cable, the hanging load and the cable could be considered as a

compound pendulum. The analysis is very similar and the number of state

variables is the same.
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2.2 Equations of Motion

Figure 2.1 shows the coordinate system used to describe the motions

of a helicopter carrying a hanging load. It is assumed that the load is

carried by several cables attached to the helicopter at a point below

its center of mass. Some important distances are shown in the figure.

Let

x,y,h = longitudinal, lateral, and vertical deviations from a desired
point

u,v,w = three components of linear velocity

$,Q,ty = roll, pitch, and yaw angles

p,q,r = roll, pitch, and yaw rates

R,v,£ = subscripts for rotor, vehicle, and hanging load (or cable)
respectively

V ,V ,V = three components of wind velocity
w w ' wx y z

d, . = aerodynamic damping coefficients
( • )

The kinetic energy of the system is

and the potential energy is

V = mvghv + m^ghg (2.2)

The vertical position of the hanging load can be expressed in

terms of other variables, thus

h,, = h - b cos 6 cos <t> - S, cos fl cos <t> „
£ v v v £ I

(2.3)

for small angles.

Also,

x. = x + b sin Q + & sin Q . *x x + b0 + HQ
Z v v £ v v £



giving (2.4)

(2.5)

Thus the potential energy is

V = (m +m )gh - m g(b+.g)
V ^/ V j>

£['b(02+4>2) +v v

'X.-X -I
0 V

-y.+y -*»•'*»
(2.6)

The independent coordinates are ; ty ; 9 , x , x and

<t> , y , y . Using the generalized Lagrange method, the equations

of motion can be written. The equation governing hy is:

m h + m h + (m +m.)g = T - m d. (h -V )
vv & v v £ v h v w

z

Since the nominal value of vertical acceleration is zero

T = (m +m )g
n v £

(2.7)

where subscript n denotes nominal value.

If

T = T + 6 T
n

(2.8)

and m
Y =

.
v £
m

(2.9)

we have

d
v ~ YnT " ah Y

(2.10)

The equation governing Tfr is:

(2.11)

where T is the torque produced by the tail rotor at the center of

mass and T is the torque of the main rotor
m



5T
(2.12)

The equations governing 9 , x , and x (longitudinal motions)

are:

r <Dy v i (y -vy v w

VR (2.13)

m x + -4- (x -x -b0 )(-!) = -T(0 +0D) + aom 0 - a m (x -V )v v ! , £ v v v R 2 v v 2 v v w
X

- a.m i - a.m (y -V ) - D 0 - D <t>4 v v 4 v v w 3 R 4 R
y

(2.14)

11 £ + -x -b0 ] = -ma (x -V )
I v vj /5 J wx (2.15)

The first term in the generalized force expressions on the right-hand

side of equations (2.13) and (2.14) is due to rotor thrust, the next

four terms represent damping and the last two terms arise from blade

coning, offset distance of flapping hinge, and other effects. Expres-

sions for D , D , D , and D. have been derived by Hall (HI). The
1 ^ o 4

only term on the right-hand side of equation (2.15) is due to air drag

on the hanging load.

For small changes we can approximate T by T in the equations
n

above. Thus, using (2.7) and (2.9), we have:



0
(Y-l)mgb

+
v

'y
-I _ ̂ A\

J
Ym ga+D D

= —^- 0n + -= <t> - a'9 + c r 1 ( x - v ) + OL<D + a _ ( y - v )I R I R l v I v w 3 v 3 v w
y y x y

•x +/>_!)* + Y} ge +-^>ix --^>ix,
v X ' £ J v S, v Hi,

D"\ °4 • 're- — 0 - — 4> + a 0 - C T ( X - V )- a.0 - cr ,(y -v )
m / R m R 2 v 2 v w 4 v 4 v w

v/ v x y

x _ Z. ge - s x + f xfl = - (Y- lXr_(x -V )
£ £ v £ v £ £ 5 £ w

X

(2.16)

The equations for 0 , y , and y (lateral motion) can be

written in a similar manner:

(Y-l)mvgb T yv y

V - ftv-l) + Y g* + " y - V" y = Yg + <t> - — 9yv V^ i;7 ^; g v ^ yv ^ y^ \XS ml ^R my R

- aJ> - CT_(y -v ) - a 0 + c r . ( x -v )2 v 2 v w 4 v 4 v wy x

'*£ + I g°v - f yv + ! ^ = ~ ̂  a5 (VVwy>

(2.17)

2.3 Decoupling into Subsystems

The complete system can be divided into three subsystems. They are:

•

(a) Yawing Motion: This is a second order system in which ty and ^T

are state variables and 6r is the control variable.



d
dt -tv-

t
V

"0 1

0 -d
™_

~*
V

*
V

+
0

I/Iz

67,
(2.18)

(b) Vertical Motion: This is a second order system with h and h

as state variables and 6x , related to the collective pitch, as

the control variable.

d
dt

h
V

h
_ V

= 0 1 "

*~ Vi

L Y _

Mv
.
h

\ V
^— _

+ 0

— V —

6T + "o™
v»

—
_Y _

w
(2.19)

(c) Longitudinal and Lateral Motions: These motions are described by a

12th order mathematical model with two controls. The state vector,

x , is
m t

the control vector u = (0 ,4> ) and the noise vector
— R R

w = (V ,V ) . The state equation is
— w w

X V

x - Fx + Gu + Tw (2.20)

Matrices F(12X12) , G(12x2) , and T(12X2) are given in Table II-l.

The models describing the vertical motion and yawing motion are

simple second order systems. It is quite straightforward to design

control laws for these systems. We will focus our attention on design-

ing a control law for the system describing the lateral and longitudi-

nal motions.

2.4 Decoupling the Longitudinal from the Lateral Motions

Referring to Table II-l,.we see that the equations governing the

longitudinal and lateral motions are coupled by cross-damping torques

and forces. If we assume that 0 primarily controls the longitudinal
R

motions and <t> primarily controls the lateral mations, there is an
R

additional coupling in the closed loop system because 4> produces a
R
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small pitching moment and a small longitudinal force (in addition to

producing large rolling moment and lateral force), while 9 produces
R

a small rolling moment and a small lateral force (in addition to pro-

ducing large pitching moment and longitudinal force). However, a

certain linear combination of 0 and <t> produces large pitching
R R

moment and longitudinal force, a small rolling moment and no lateral

force. Another linear combination produces large rolling moment and

lateral force, a small pitching moment and no longitudinal force. If

we take these two linear combinations as control variables, the longi-

tudinal-lateral decoupling approximation is quite good for the purpose

of designing controllers and filters.

2.5 Measurements for Estimating the State Variables

All of the state variables in the system presented in the last

section are observable from measurements of the position of the vehicle

center of mass (or the sling load). However, with these measurements

alone, the errors in the angular orientation estimates are large even

if a relatively accurate position measurement is available. Hence, it

is almost essential to also have measurements of vehicle and cable

angles.

The position measurement technique suggested here consists of a

second cable (a "measurement cable") fastened to a point on the ground,

which passes through a ring mounted elastically in the plane of the

aircraft floor, and is held by a constant tension winch inside the

aircraft (Figure 2.2a). The portion of the cable above the aircraft

floor is parallel to a reference axis fixed in the aircraft. The

forces in the springs are measured using strain gauges, while a poten-

tiometer in the constant tension winch measures the length of the cable.

The nomenclature for the measurement cable is shown in Figure 2.2b. Let

9 and 0 be the inclinations of the rope to the aircraft reference
m m

axis and L , the length of the cable. Then neglecting the small

deflections of the springs

x i + l f - b £ = x i + y j - h £ (2.21)
m m m v v v v

11
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where

L =
m

m
[-tan© , tan* , -l]

V
m m

1+tan fc) +tan *
m m

(2.22)

and the transformation between i , J , £ , and i , j , and C for

small angular inclinations of the aircraft is

t -9

e -*
V V

(2.23)

Using this transformation in equation (2.22),

L =
m

m

Yl+tan 0 +tan *

[-tan® , tan* , -l]m m

m m

1 iff -9v v

1 <J>

0 -* 1v v

(2.24)

Substituting (2.23) and (2.24) in (2.21) and equating components, we get

x = x - b 9 -
v m m v

m

1+tan ® +tan *
m m

(tan® +9 -t tan* )
m v v m

(2.25)

y = b <}> +
v m v

m

Vl+tan ® +tan

(tan* +4> -t tan® )
m v v m

m m

(2.26)

h = b +
v m

m

V o o
1+tan ® +tan $

(1-9 tan® -<}) tan* )
v m v m

m m

At nominal location and orientation

(2.27)

x =y =0 , L =L , 4> =9 =ty =0 ;v v m o v v v

thus

=0 , x =L sin® , h =L co^> +b
o m o o v o o m

o
(2.28)

14



Linearizing (2.25) - (2.27) about these nominal values gives

x = - (b +L cos® )0 - L cos® 0 - sin0 & (2.29)
v m o o v o o m o m

y = (b +L cos® )4> + L cos® <t> - L sin® f (2.30)
v m o o v o o m o o v

6h = cog® £ - L sin® Q (2.31)
v o m o o v

where

£ =L -L , 0 =© -® and (t> =$ -0 (2.32)
m m o m m o m m

Solving (2.29) - (2.31) for 0 , <t> and £ we have,
m m m

£ = sec © 6h + L tan® 0 (2.33)m o v o o v

sec ® b
* = y - (1+ -^ sec 9 )<t> + tan® t (2.34)

m • L v L ov ov
o o

b sec ®
0 S - sec 0 (sec © + -2)0 x + tan® 6h (2.35)

m o o L v L v o v
o o

The angles between the cable carrying the hanging load and the

fuselage reference axis could be measured in the same way using another

elastically mounted ring. Thus

x x
0 = 0-0 = -0 (1+ -?-) - -X + _£
Om 0 v v 0 0 0-v*11 Xs v v X/ £ Xj

(2.36)

0 = <t> -<)> = -<|> (1+ —) + -
£m £ v v £ £ £

The fuselage attitude could be obtained using an onboard vertical

gyro. This gives measurements of 0 and 0

All these measurements contain errors. We model them as additive

white noise. The measurement vector z for the two systems can be

written as

z = Hx + v

where the matrix H for the longitudinal and lateral systems is given

15



in Table II-2*, x is the state vector, and

E[v(t)v1(T)] = R6(t-T) (2.37)

Table II-2

Measurement Distribution Matrix H

Longitudinal System

-sec ® (sec ® +o I o

-1-b/^

1

b xm \
L J
0 /

0

0

0

sec ®o
L
0

-l/t

0

0

0

0

0 0

\/s, o

0 0

Lateral System

-1- -— sec ®L oo
0

0

0

sec 0

0

0

0

0

0

The measurements and the power spectral densities of the additive

white noises are summarized in Table II-3.

It is assumed that tir and h are determined accurately bv
v v J

separate measurements or another filter.

16
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2.6 System Definition Matrices for the Example Helicopter

To illustrate the technique of designing the control system, we

have taken a 6000 kg Sikorsky S-61 as the example helicopter. It

carries a 2000 kg hanging load on a 20 m long cable, attached to a

point 1.5 m below its center of mass. The measurement cable is 35 m

long and is offset 25 m in the longitudinal direction from the refer-

ence point on the ground. The state definition matrices F , G ,

and r are given in Table II-4 for the longitudinal-lateral motions

of this system. Values of stability derivatives for this vehicle are

taken from Hall and Bryson (H3). The drag coefficient on the hanging

load is estimated assuming a reasonable size and drag coefficient and

taking secant slope between zero and 7.0 m sec wind velocity*.

The control vector is redefined so that its two components are

linear combinations of 0 and <t> as explained in section 2.4. If
R R

u = (0 +.03<J> , <t> -.030 ) the control distribution matrix is
— R R R R

modified from G to G as shown in Table I1-4.
o

The decoupling approximation is made. The control u affects

the longitudinal motion and u the lateral motion. The state defi-
£t

nition matrices for the longitudinal and the lateral system are the

appropriate portions of the matrices in Table II-4. Table II-5 gives

H , the measurement distribution matrix.

Figure 2.3 shows the eigenvalues of the uncontrolled longitudinal

and lateral systems. Also shown are the corresponding eigenvalues from

the coupled 12th order system. The eigenvalue identification is done

using the eigenvectors. The eigenvalues from the coupled and the

decoupled system are very near to each other showing that the decou-

pling approximation is valid.

*
The drag on a body depends on the square of the velocity. The slope

of the drag vs. velocity curve at zero velocity is zero.

18



•o
03

3
d
•H

C
cs

BC

.M
o
o
0
eg
«

c
•H

£
d
O

i— i
to

1
C/J

_*^
(fl

0

-H
CO

o
co
•H
W

...

J;,

d)
5
o

<H

tn
CD
0
•H

4J
rt
S

C
o
•H
-p
•H
C

<H

Q

0)
•p
-p
w

o

c
0 c"

c
o

o
o

o
o

c c
c

c
c

o
c

o
o

c
c

c
c

c
c

o
o

c
c

o
0

o
c

c

c.
o

* c.,"

X
n
00

X

8
o

1

_-

ĉ
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Table I1-5

Measurement Definition Matrices for the Longitudinal System

X

T

0
V

0
V

X
V

X
V

T
H :

-1.537 -1.075

0.0 0.0

-.0348 -.05

0.0 0.0

0.0 +.05

0.0 0.0

1.0

0.0

0.0

0.0

0.0

0.0

i • CB», \ 9v]

Measurement

X

i

0
V

0
V

yv

Definition Matrices for the

T
H :

-1.052 -1.075

0.0 0.0

. 0348 . 05

0.0 0.0

0.0 -.05

0.0 0.0

Lateral System

1.0

0.0

0.0

0.0

0.0

0.0

z = r <t> 0 <t> i
- » An V
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FIG. 2.3 Poles of the Open-Loop System
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Chapter III

DESIGN AND PERFORMANCE OF A PRECISION HOVER AUTOPILOT

3.1 Introduction

The control logic for the longitudinal-lateral motions is designed

using quadratic synthesis and neglecting the cross-coupling of these two

motions, The wind velocities are modeled as exponentially correlated,

i.e., as first order continuous Markov processes. To test the decou-

pling approximation, the control logic is used with the cross-coupled

system model; the eigenvalues of this closed loop system are quite close

to those predicted when neglecting the cross-coupling, though the eigen-

vectors are strongly coupled.

The performance of the system is first determined in the presence

of winds assuming perfect state information (ideal case).

Next, optimal filters are designed for the longitudinal and lateral

systems using the measurements shown in Table I1-3. The root-mean-square

(RMS) values of state and control variables are found using the filters

combined with the control logic designed before. The transfer functions

of the filter-controllers (compensators) are determined and are shown to

be non-minimum phase.

If there is a steady wind disturbance the use of the control system

above results in a steady state error. This steady state error can be

avoided by using integral control, i.e., by adjoining a new state

variable to the longitudinal system and another to the lateral system.

For the longitudinal system the new state variable £ is defined as

i = *fi (3.1)

This leads to zero error in the position of the hanging load in the

presence of a steady wind. !
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3. 2 Controller Design for Exponentially Correlated Wind

The correlation time of the wind velocity changes is usually

comparable to or larger than the time constants associated with the

controlled system. Therefore the wind disturbances cannot be modeled

as "white noise". Hence, we model the head wind and crosswind as ex-

ponentially correlated with a 5 sec time constant, i.e.,

w
+ n T = 5 sec

'x > c

Therefore,

= - . 2V + TI
W W X
X X

(3.2)

is white noise. If the RMS value of V is 7 m sec
w

the

required spectral density of r) is
X

R, = ̂ - = 19.6 m2 sec~3 (3.3)

There is, of course, another equation like (3.2) for the crosswind

disturbance.

If (3.2) is adjoined to the longitudinal dynamics equations the

system is modified to

dt

X

Vw
X

~F ; r

_°i-1 / rc

~ X

V
w

X
ta. -^

1
T

G~

0

U i
*T

~(T

1

(3.4)

where x , u , F , r , and G are defined in Tables II-4 and II-5.

We choose a control law such that u is a linear combination of x and

Vw , i.e. ,
x

u = Cx + c V
- - w w

X X

(3.5)

u is a scalar in this case; hence, C is a row vector and c is a
x

scalar. Substituting for _u in (3.4) we have
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dt V
X

F+GC ! T+Gc
' w-x

0 -1/T
(3.6)

Notice that the closed loop eigenvalues depend on state definition

matrices and the gains C and do not depend on gain c We can

choose gains C and c independently; C to obtain the desired
w

dynamics of the closed loop system, and c to achieve good perform-
wx

ance in the presence of wind.

In the design procedure adopted here gains C are chosen using

the quadratic synthesis procedure, i.e., by minimizing a performance

index, J which is quadratic in state and control variables. The gain

c can be chosen in several different ways. We have tried two of
wx
them here:

(1) Using the augmented state model with the desired perform-

ance index, quadratic synthesis gives the gain c in the

same way as gains C . Quadratic synthesis strikes a com-

promise between the amount of control required and state

variable deviations.

(2) In this procedure c is chosen to minimize the steady

state RMS value of a desired linear combination of state

variables (in this case the error in position of the hanging

load). Thus, the control on wind can be tightened without

making the closed-loop system too "fast". This procedure is

described in detail in Appendix C.

The feedback gains on the state variables and wind velocity are shown in

Table III-l for both longitudinal and lateral systems. The gains on wind

velocity are computed using both procedures.

The closed loop eigenvalues of the longitudinal and lateral systems

are compared with the closed loop eigenvalues of the coupled longitudinal-

lateral system (using gains from the decoupled systems) in Table III-l.

The eigenvalues are quite close showing that the decoupling approximation

is reasonable.
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Table III-l

Controller for Exponentially Correlated Wind

2 2 2 2

J = E<
longitudinal

lateral

Feedback Gains

9 \ / x \ /x. \ / uv\ / v\ / £ \ I
7-2) *(T) +H *b Is. s.

C0
V

-1.27

C0
V

-.277

c
X

V

.141

c.
X

V

.157

c
X^

-.0296

c.
X^

.137

C<D
V

-.834

C*
V

-.125

c
yv

-.137

c.
yv

-.131

c
yt

.0249

c.
y.

-.14

Feedback Gains on Wind

Technique

1

2

cwwx

.00219

.00239

wy
-.00208

-.00228

Closed Loop Eigenvalues of Coupled and Decoupled.Systems

7th Order Longitudinal
System

[see" ]

-.99 ± 1.8j

-.58 ± l.Oj

-.84 ± .78j

-.2

7th Order Lateral
System

[sec~ ]

-2.2 ± 3.5j

-.82 ± .74j

-.53 ± l.Oj

-.2

Complete 14th Order
System

[see" ]

-.93 ± 1.9j

-.57 ± 1.1J

-.91 ± .62j :

-2.3 ± 3.5j :

-.72 ± .79j '

-.50 ± .98j

-.2*
i

Double root
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FIG. 3.1 Open-Loop and Closed-Loop Poles of

the Longitudinal System
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FIG. 3.2 Open-Loop and Closed-Loop Poles of

the Lateral System
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Table III-2

RMS Response with Perfect State Information

(Wind RMS 7 m sec longitudinal and lateral,
correlation time 5 sec.)

Longitudinal System

System

Decoupled

Coupled

Technique

1
2

1
2

ev
.00290
.00331

.00329

.00366

3v

.00495

.00601

.00589

.00682

xv

.0292

.0383

.0381

.0453

xv

.0251

.0297

.0283

.0324

x£
.0248
.0223

.0367

.0351

*e
.0169
.0183

.0199

.0211

UI(̂ R)

.00943

.00948

.0100

.0101

Lateral System

System

Decoupled

Coupled

Technique

1
2

1
2

*v

.00291

.00338

.00335

.00379

\

.00697

.00873

.00831

. 00984

yv
.0300
.0391

.0389

.0463

yv
.0251
.0299

.0290

.0334

y&
.0209
.0183

.0346

.0330

y&
.0141
.0153

.0177

.0186

U2(=«<t>R)

.00936

.00939

.00989

.00992

LUnits in m , sec ; angles in rad]
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Figure 3.1 shows how the poles of the longitudinal system move when

the feedback gains of Table III-l are used. The poorly damped complex

pole pair becomes better damped and faster. The unstable complex pole

pair becomes stable and the two real poles change into a complex pair.

The pole at -.2 corresponds to the wind model and cannot be moved by

feedback since wind velocity is external to the system. The eigenvalue

identification was done using the eigenvectors given in Appendix A. A

similar graph for the lateral system is shown in Figure 3.2.

The root-mean-square (RMS) response of the system is determined as-

suming perfect state information (Bl, Chapter 15). Table III-2 shows

the RMS values of the state and control variables when procedures (1)

and (2) are used to find feedback gains on wind velocity. Also shown is

the predicted performance when the gains from the decoupled systems are

used with the coupled 14th order system. Procedure (2) gives a lower

RMS value of the deviation in position of the hanging load though at the

cost of higher RMS value of other state variables. The RMS errors are

quite small for this strong gusty wind.

3.3 Filter Design and RMS Response with Filter-Controller

A filter is designed to estimate the state variables from noisy

measurements of Table II-3. The sum of ground plus wind velocity can be

measured by mounting velocity probes on the helicopter. However, it is

not necessary to do so. The wind velocity can be estimated if all other

state variables are observable from the measurements. We assume that

velocity probes are not used and build a filter to estimate the state

variables and the wind. If x is the estimated value of x , then the

estimation equation for the longitudinal system is

d
dt

x

1r
w

X

•— f — »F i r

0 . -1A_ , c

X

V

_ W x_

G

_0 _

u + K [z-Hx]
(3.7)

where ^ and H are defined for the longitudinal and lateral systems

in equation (2.25) and Table II-5. The 7X3 gain matrix K is given

in Table III-3. We define the error in estimate of x thus
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X = X - X (3.8)

The RMS estimation errors and the poles of the estimate error equations,

are shown in Table III-3.

Table III-3

Filters for Longitudinal and Lateral System

X

~ e
V

e
V

X
V

X
V

£

X „
£

V
w

I x

T
z

longitudinal

-.661

-1.61

-17.8

-.626

-16.9

-5.13

257

m

-.482

-1.07

-.494

2.60

3.58

-.142

203

e

X

2.51~

4.49

-35.0

-26.7

-19.5

-9.25

-717
_

"<t>
V

•

V

y
V

y
V

y „y£

y „£
Vw

y

<g iT

lateral

-.670

-1.94

18.6

3.08

16.6

5.47

-204

• t«.

-.733

-1.92

1.42

-1.66

-3.68

.544

-245

®Z

3.37"

7.65

25.0

21.6

11.1

6.12

796
_

\1

Eigenvalues of the Estimate Error Equation (sec )

Longitudinal

Lateral

-1.1 + 2.5j

-1.7 + 3.9j

-.15 + .82j

-.17 + .81j

-.34 + .19j

-.33 + • 23j

-2.3

-3.3

RMS Estimation Error

9
V

.0062

6
V

.0116

X
V

.232

X
V

.099

x

j^

.205

^ 0

.085

V
w

X

3.59

<t>
V

.0072

4>
V

.0246

yJv

.21

•
V

.092

0

.187

.
!L

.083

V
w

y
3.04

[units in m , sec ; angles in radians]
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Figure 3.3 shows how the system may be implemented. The complete

system is divided into four parts: (a) controller, (b) system dynamics,

(c) sensors, and (d) filter.

The filter-controller can be regarded as a multi-input multi-output

compensator. The transfer function matrices of the compensators and the

pole-zero locations are given in Appendix B. The compensators for both

longitudinal and lateral systems have a pole in the right half plane.

Some elements of the transfer function matrices also have a zero in the

right half plane. Hence, these are nonminimum phase compensators.

The RMS response of the system is determined with the filter and the

controller designed above in the presence of . 7 m sec EMS longitudinal

and lateral wind. Table II1-4 summarizes the results for gain on wind

from both techniques and also when the filter and controller gains from

the decoupled systems are used on the coupled system.

RMS

Table III-4

Response with Filter and Controller

(Wind 7 m sec

Longitudinal System

-1
RMS longitudinal and lateral)

System

Decoupled

Coupled

Technique

1

2

1

2

0
V

.0341

.0342

.0355

.0357

0
V

.0736

.0740

.0771

.0775

X
V

.403

.403

.405

.405

X
V

.313

.314

.320

.321

*£

.470

.468

.470

.469

**

.241

.240

.242

.242

v~~v
.0247

.0249

.0253

.0255

Lateral System

System

Decoupled

Coupled

Technique

1

2

1

2

*v

.0327

.0328

.0339

.0341

V

.101

.102

.105

.106

yv

.340

.339

.340

.340

yv

.288

.287

.290

.291

yt

.394

.393

.394

.393

*£

.202

.202

.202

.202

u2(*<DR)

.0182

.0183

.0187

.0188 i

(Units in m , sec ; angles in radians)
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There is considerable increase in RMS deviation of the hanging load

position and control as corrpared to the case with perfect state informa-

tion (see Table III-2). Nevertheless, the errors are still small for

such a strong gusty wind. The coupled system gives nearly the same

response.

3.4 Integral Feedback

The filter-controller of Sections 3.2 and 3.3 was designed assuming

an exponentially correlated wind. In the presence of a steady wind, it

produces a steady-state error. This steady-state error can be eliminated

by the addition of integral feedback, which makes the position insensitive

to steady disturbances or small changes in system parameters.

We add a new state variable, £ , defined in equation (3.1) to the

longitudinal system giving

dt
i €

r=

F 0

T 0

x
~-

JL
+

G
--
0

u
+

r

0_ _<

Vw

If,

dt

u = G + Cf. t— x 4
,— -,

X

£_ _
=

r- -1
F+GC | Gc.

'_ ._ 2

T I 0i _^

.— -,
x

--

^

+

_ _/

.— -
r

—
0

*_ —

w

(3.9)

(3.10)

(3.11)

The gains can be chosen either by quadratic synthesis or by a mix-

ture of quadratic synthesis and pole assignment. If the closed loop

system is stable and vw, is a constant wind, then x can be brought

to zero in the steady state, by proper choice of c^ .

A filter is designed to estimate the state variable x . The new

state variable, £ > can be estimated by using one of the two methods

given here.

or

(i)

(ii)

(3.12)

(3.13)

With perfect state information the two methods are the same.
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Table III-5

Integral Control for the Longitudinal System

Controller: L
10

C/i9
V

-1.31

c.
Qv

-.273

c
x

V

.156

c.
X

V

.166

c
i>

-.0171

c.
•0

.169

c
£

.01

s.s.

Filter:

T
x = [e §

V V

-.888 -2.64

-.631 -1.69

3.10 7.18

X
V

-17. 8

-.483

-34. 9

x
V

.598

3.31

-29.7

X.g

-17

3.

-18

.1

39

.7

x

-4.

2.

-10

J z

ss"1

24

.7

~g

9

e
L

i
m

^m

V

EMS State and Control

Wind
State

(a)

(b)

PS I*

Filter

PS I

Filter

0
V

.00831

0.344

.0179

.0378

0
V

.0232

.0741

0.0

.0704

x
V

.0476

.401

.0398

.400

x
V

.0651

.337

0.0

.330

^.0571

.481

0.0

.478

*t

.0417

.268

0.0

.264

4

.233

2.42

1.78

2.99

vs<v
.0122

.0268

.00926

.0256

2 -1
(a) Wind with 19.6 m sec spectral density and small

correlation time.
-1

(b) 7.0 m sec RMS steady wind

Perfect State Information
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Table II1-6

Integral Control for the Lateral System

Controller:
n (t* \2 /y

- I Efl— 1 + I —- 2
EU 2; (2

CA<t)
V

-.855

c.
0

V

-.125

cy
V

-.149

c.
v

-.138

c
£

.0120

c.
y

&

-.169

c
T)

-.01

s. s.

Filter:

Tx =

1.30

1.37

5.76

0 yv Jv

-6.12 18.6

-5.99 1.43

23.7 24.9

1.85 16.8 4.85

-2.82 -3.46 -.087

26.2 10.3 8.53

m

Hm.
>
v

RMS State and Control

Wind
State

(a)

(b)

PS I*

Filter

PS I

Filter

O
V

.0127

.0352

.0181

.0373

<t>v

.0602

.116

0.0

.0988

yv

.0492

.345

.0398

.343

*v

.078

.321

0.0

.312

y,e
.0549

.413

0.0

.409

*t

.0411

.233

0.0

.229

1

.0219

2.05

1.67

2.64

v-v
.0128

.0220

.00924

.0201

2 -1
(a) Wind with 19.6 m sec spectral density and small

correlation time.
-1

(b) 70 m sec RMS steady wind

Perfect State Information
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Table II1-5 shows the controller gains (obtained using quadratic

synthesis) and filter gains for the longitudinal system. The filter
2 -1

was designed for a wind with 19.6 m sec spectral density and small

correlation time. This table also shows the RMS state and control in
2 _^

two different wind states: (a) wind with 19.6 m sec spectral density

and small correlation time (approximated "white"), and (b) 7.0 m sec

RMS steady wind. With filter the second method is used to estimate the

augmented state variable.

The response is excellent with perfect state information. In case

(b) the root mean square (RMS) value of deviation in position of the

hanging load is zero. With noisy measurements and a filter the RMS

values of state and control variables increase but are quite reasonable.

Similar data for the lateral systems are given in Table III-6.

With integral control in the presence of steady wind disturbance,

the wind velocity is not required for feedback and is not estimated.

The above filter is designed to estimate other state variables. This

filter is not optimal, since for a system in which the states are

coupled through state transition, noise distribution or measurement

distribution matrix the equations governing optimal state estimates

are coupled.

3.5 Summary

An autopilot was designed for precision hover of a hanging load

over a desired point. Satisfactory performance is obtained using a

reasonable amount of control.

The response is much better using the assumption of perfect state

information (ideal case) than with noisy measurements and optimal filter.

To improve performance significantly, it is necessary to have better mea-

surements. Integral control will prove useful only if better measurements

are available.
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Chapter IV

MOVING THE HANGING LOAD OVER SHORT DISTANCES

4.1 Introduction

In many applications of interest the load has to be carried over

short distances. In such cases the time spent near the terminal

points is large compared to travel time and it is advantageous to

carry the load without retracting the cables even if it requires

traveling only at moderate speeds. We assume that the helicopter

travels sufficiently slowly that aerodynamic instabilities (coupled yaw

and lateral pendulum motions) of the cable-load combination do not arise.

In general the transfer is carried out in four stages: (a) zero

velocity to cruise velocity at approximately constant acceleration,

(b) cruise at constant velocity, (c) cruise velocity to zero velocity

at constant deceleration, and (d) precision hover. For very short

distances the cruise phase may be absent.

In what follows we present a general scheme for tranferring the

system from any state to hover at the origin of the coordinate system.

Autopilot modes are chosen depending on the location of the system in

state space. There are four possible modes: Acceleration, cruise,

deceleration, and hover. At a switch curve the autopilot shifts from

one mode to another and the system experiences a transient. We first

discuss the mode selection logic and then the autopilot logic for each mode.

4.2 Mode Selection

The longitudinal system has six state variables. If one or more

of the state variables 9 , § , 9 , and 6 has large initial

values, the system is placed in a stabilization mode. In this mode

the position and velocity of the helicopter are not controlled but

the pitch angle, the load cable inclination angle, and the corre-

sponding angular rates are reduced to low values. It is necessary to

do this for a simple switching diagram because acceleration or velocity
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commands might otherwise produce unacceptable angular deviations for a

short period of time. Thus as a starting condition we have small

9 , 9 , 9. , and 9 , and any x and x .

The switching diagram is shown in Figure 4.1 in the x , x

space. The cruise velocity is fixed at v and the commanded
niHX

acceleration at -a . Roughly, the reduced state space (x , xmax v v
space) is divided into four regions. The commanded mode is a function

of x and x as follows:
v v

If * I > v.v1 h >X and

2
x sgn(x ) < -2ax and x < v
v v v v max

and x > v
v max

and x = v
v max

2
x sgn(x ) > -2ax and x > -v
v v v v max

and x > -v
v max

Acceleration Mode

Deceleration Mode

Cruise Mode

Deceleration Mode

Acceleration Mode

If and < Hover Mode.

(4.1)

The figure shows the details of the switching logic. It takes

some time for the system to go into the new mode after mode switching

is commanded. Therefore the system should be commanded to go into

the new mode before it approaches the mode switching boundary of (4.1).

The dotted lines in the diagram are the boundaries where the new mode

is commanded. The switching curves for bang-bang type control have

some dead space around them to avoid the problem of chattering. The

dotted lines around the mode switching curves do not represent dead

space alone. This is the space required for mode change to take

place.
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An example trajectory is shown. At the starting point, A , with

the helicopter standing still, acceleration is commanded, the aircraft

travels to point A* before constant acceleration is achieved. The

Cruise Mode is commanded at B and the helicopter travels to point

B* before the velocity is constant at v . This is followed by
max

the Deceleration Mode (C-C'-D) and the Hover Mode (D-D1) .

For the system under consideration the following parameters are

chosen

v = 15 m sec
max

Av = 2 m sec

-2
a = 1 m sec
max

x. = 1.0 m
h

vh = 1.0 m sec'
1
 (4<2)

4.3 Command Generating Model

The command generating model produces commands to switch mode or

change trim state with acceptable transient response. The desired

changes are smoothed out so that the system can follow them with

reasonable state variable deviations and control. The structure of

the model depends upon the commands desired and the kind of transient

response desired. In the model designed here, constant acceleration

or velocity can be commanded. If a. is the desired acceleration,
d

the command velocity, v , and commanded acceleration, a , are given
c c

by

vc = ac (4.3)

*c = f (Vac) (4'4)
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Follower

For velocity or acceleration commands, we are not interested in

controlling position, so the longitudinal equations of

motion can be written in terms of only five state variables, 9 ,

9 , x , Q , and 9 as shown in Appendix D. The controller can

follow a constant velocity or acceleration command in the "steady

state". In this "steady state", x' (rate of change of acceleration),

5 and 9. are zero. Differentiating the state equations twice and

then once gives

= 0 (4.5)

and

L

.000254 I a

.000262
(4.6)

Now the state variables and the control variable are proportional to

a and v in this steady-state :
c c

" e~
V

9
V

X
Vet

9 na

=

•s

^-.102 -.000254

-.000254 0.0

0.0 1.0

-.102 -.000262

-.000262 0.0

ac

V
_ c

= My— c
(4.7)

u = -.0000158 a -.00132 v = Ny
s c c —c (4.8)

The desired control law is

u = u + C(x - x )
s — s

The gains C are given in Appendix D.

(4.9)
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4.4 Transient Response

The transient response of the system was determined at mode switch-

ing. The following four cases were considered with the time constant of

the command generating filter equal to 2 sec:

(a) Switching from hover to constant acceleration mode

(Figure 4.3)

(b) Switching from constant acceleration mode to constant

velocity mode (Figure 4.4)

(c) Switching from constant velocity mode to constant

deceleration mode (Figure 4.5)

(d) Switching from constant acceleration to constant

deceleration mode (Figure 4.6)

Good response was obtained in all cases as shown in figures (4.3) to

(4.6). The closed loop frequency associated with pitch angle changes is

higher than those associated with changes in inclination of the load

cable or velocities of the vehicle and the hanging load. Thus after a

mode is commanded, the pitch angle starts changing away from its previous

trajectory first. The large transients in the rotor tilt in the begin-

ning are due to fast changes in pitch angle and pitch rate. Notice that

the initial transient response of the longitudinal tilt of the rotor NFP
-2

in figure 4.4 is similar to figure 4.5 (both involving a -1 m sec

change in commanded acceleration) and is "negative" of figure 4.3 (in-
-2

volving a 1m sec change in commanded acceleration).

In all cases the maximum rotor tilt in the longitudinal direction

(control) was less than 2° (the maximum control authority is about 12°),

while the pitch angle never exceeded 8° (the nominal "steady state" pitch

angle in acceleration or deceleration mode is about 5.7°). Switching

from constant deceleration to constant acceleration produced the largest

transient.

4.5 Summary

It is possible to move hanging loads over short distances safely and

efficiently without retracting the cables. The cable-load configuration
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must be designed so that aerodynamic instabilities do not occur at

velocities less than or equal to the cruise velocity. Studies by Gable

and Wilson [Gl] show that most practical hanging loads can be made aero-

dynamically stable up to a reasonable speed. Some thoeretical studies

[Pi] and experiments with one body shape and cable configuration [El]

point to the contrary. However, these latter studies assume that the

aircraft moves at constant speed and neglects the effect of the hang-

ing load on the vehicle. This coupling is not negligible for modern

crane helicopters and heavy lift helicopters, where the mass of the

helicopter is comparable to that of the payload.
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Chapter V

PERFORMANCE UNDER OFF- DESIGN CONDITIONS

5. 1 Introduction

In operation some of the parameters will differ from the values

used in designing the control system, e.g., in off-loading container

ships, all containers may not have the same mass (change in y ) or loca-

tion of the center of mass (change in £) . In addition, the values of

some of the system parameters may not be accurately known. Therefore

it is prudent to study the performance of the system when the gains for

the design condition are used with a different configuration.

We have shown that the decoupling approximation is quite good for

the purpose of^ designing the controller and the filter and is reason-

able for evaluating the performance. Also the behavior of the longi-

tudinal and lateral systems is of the same character. Therefore it is

sufficient to carry out a thorough investigation of the longitudinal

system only.

5. 2 System Definition Matrices

We believe the following four parameters are the most likely ones

to change in normal operation:

(a) mass of the vehicle, because of varying amounts of fuel

(b) mass of the hanging load (or the ratio \ = — - )

(c) the distance between the suspension point and the center

of gravity of the hanging load

(d) drag coefficient on the hanging load

These parameters are changed one at a time and the matrices F , G ,

F , and H are computed. The mass of the vehicle is changed to

5000 kg and 7000 kg (nominal value 6000 kg), the mass of the hanging

load is changed to 1000 kg and 3000 kg (nominal value 2000 kg), the

length of the cable, £, , is changed to 10 m and 30 m (nominal value
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20 m) and the drag coefficient on the load is increased and decreased

by a factor of ten from its nominal value of .0026 sec

The open loop eigenvalues of the longitudinal system are shown in

Table V-l. The character of the eigenvalues is the same. The mass of

the hanging load and the length of the cable seem to be important

parameters.

5.3 Closed Loop System

The nominal controller and filter gains obtained for the design

configuration are used with the system matrices obtained for off-

design conditions. Table V-2 shows the closed loop eigenvalues. The

eigenvalues move but all the closed loop systems remain stable. The

damping of all the roots is good except for one root pair for Y=l-1667

(1000 kg hanging load). Filter eigenvalues are shown in Table V-3.

All filters remain stable and the poles do not move much. It seems that

it is possible to use the design filter and controller gains even with

these wide fluctuations in parameters.

Root mean square (RMS) state and control response in the presence

of a 7m sec RMS exponentially correlated wind (correlation time

5 sec) are shown in Table V-4 with perfect state information (ideal

case) and in Table V-5 with noisy measurements and filter with fixed

gains. Except for the case with increased drag coefficient on the

hanging load, the state and control responses do not deteriorate

appreciably. With increased drag coefficient (last case) the RMS value

of the deviation in the position of hanging load increases from .033 m

to .481 m with perfect state information (PSI) and from .47 m to .77 m

with noisy measurements and filter. We achieve suboptimal performance

by using controller and filter gains which are optimal only under

design conditions. The performance can be improved by choosing a

different set of gains for each configuration but it does not seem

necessary. In some instances this suboptimal performance is superior

to the design case because those configurations are more favorable

than the design configuration.
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5.4 Summary

Satisfactory system behavior is obtained by using a fixed set of

controller and filter feedback gains even though some of the system

parameters vary within wide ranges. It seems unnecessary to use

different gains with nominal changes in system parameters. However,

a new set of gains would be required with a completely new system

configuration or measurement system.
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Chapter VI

SUMMARY

A mathematical model is developed for the motions of a hovering

or slowly moving helicopter carrying a hanging load. Autopilot logic

is designed for position-hold (hover), velocity-hold, and acceleration-

hold.

It is shown that the longitudinal-lateral decoupling approximation

is satisfactory for the purpose of autopilot design, except when a very

tight control system is desired.

The root mean square (RMS) response of the controlled system is

quite satisfactory in the presence of steady and gusty longitudinal and

lateral winds. Further improvements in hovering accuracy could be at-

tained by using a better measurement system, since substantially better

performance is obtained using the assumption of perfect state informa-

tion (ideal case) under design conditions.

The stability and performance of the system is examined for

reasonable variations in system parameters. In no case does the system

become unstable. The RMS response does not change appreciably except

with a tenfold increase in drag coefficient on the hanging load. The

behavior is satisfactory in all cases.

It is possible to move the hanging load over short distances

rapidly without retracting the cables. This involves controlling the

oscillations of the load while moving at a low velocity. In case of

failure of the automatic control system the pilot can still control

the system. Some load shapes and cable arrangements are aerodynami-

cally unstable (Gl, PI, El). These instabilities are caused by aero-

dynamic forces on the hanging load and usually produce coupled oscil-

lations involving yaw and lateral pendulum motions. Gabel and Wilson

show experimentally that most hanging loads are aerodynamically stable

over a wide speed range with a proper choice of cable configurations.

58



Before a load is moved, one should make sure that no aerodynamic

instabilities exist up to the desired cruise speed. Some insta-

bilities could probably be actively controlled if their nature were

known in advance. However, it seems easier to avoid them in the

speed range of interest.

Further work is required into the nature of these aerodynamic

instabilities. Then, autopilot logic to eliminate these instabilities

could be developed, and, with adequate redundancy in the control

system, it would then be possible to carry hanging loads at even

higher speeds without retracting the cables.
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Appendix A

EIGENVALUES AND EIGENVECTORS OF THE OPEN-LOOP AND CLOSED-LOOP SYSTEMS

A.I Open-Loop Systems

Eigenvalues and eigenvectors of the open-loop coupled and decoupled

systems are given in Table A-l in units of m , sec and radians .

Table A-l

OPEN-LOOP EIGENVALUES AND EIGENVECTORS

(a) Longitudinal System

Eigenvalue

-1
sec

-.11 + 1.7J

.095 + . 26j

-.40

0.0

-.20

e
V

.028 =F .llj

.0060 T .0044j

-.11

0.0

.0028

Eigenvector

X
V

-.040 T .59j

.87 + .llj

.75

-.71

-.72

X^
.025 + .16j

1.0

.55

-.71

-.66

|

Vwx

0.0

0.0

0.0

0.0

.13

(b) Lateral System

Eigenvalue

-1
sec

-.67 + . 2.8j

.096 + .27j

-.46

0.0

-.20

4>
V

-.095 + .17 j

-.0065 + .0044J

.014

0.0

-.0028

Eigenvector

yv

-.078 T .33j

+.86 + .llj

.75

-.71

-.71

y&

.013 + ,033j

1.0

.51

-.71

-.66

s
0.0

0.0 !

0.0

0.0 ;

.14

[Units m , sec ; angles in rad
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A.2 Closed-Loop Systems

Table A-2 shows the eigenvalues and the corresponding eigenvectors

of the decoupled and coupled longitudinal-lateral systems.

Table A-2

CLOSED-LOOP EIGENVALUES AND EIGENVECTORS

(a) Longitudinal System

Eigenvalue

-1
sec

-.99 + 1.8j

-.84 + .78j

-.58 + l.Oj

-.2

Eigenvector

9
V

.11 T .063j

.066 T .028j

.058 =F .040j

.00026

X
V

-.24 T .43j

-.64 =F .60j

-.42 =F .74j

-.0043

*t

.064 + .020j

.13 =F .26j

.34 =F .076J

.0013

V
0;0

0.0

0.0

1.0

(b) Lateral System

Eigenvalue

-1
sec

-2.2 + 3.5J

- .82 + .74j

-.53 + l.Oj

-.2

Eigenvector

0
V

-.20 + .097J

-.063 + .032j

-.050 + .043j

-.00026

yv

-.1ST . 20 j

-.67 + .6lj

-.40 =F .77j

^
.0074 + .0087J

.12 =F .29j

.39 T .048j

-.0043 : .0013

vwy

0.0

0.0

0.0

1.0

[Units m , sec ; angles in rad ]
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Appendix B

TRANSFER FUNCTIONS OF COMPENSATORS FOR PRECISION

HOVER IN THE PRESENCE OF CORRELATED WIND

B. 1 Introduction

As indicated in Chapter 3, a filter-controller can be considered to

be a multi-input multi-output compensator. A possible implementation is

shown in figure B.I. In general this compensator has as many poles as

the order of the system (except with pole-zero cancellations) and each

term has at least one less zero than the number of poles. The compensa-

tor transfer function matrix is

A = C{sl - (F+GC-KH)]~1K (B.I)

and is the transfer function between the measurements and control.

B.2 Compensators for Longitudinal and Lateral Systems

The transfer function matrix of the compensator for both the

longitudinal and the lateral systems is a 1X3 matrix. Each term has

seven poles and six zeroes. The poles of the three terms are, of course,

the same. The pole-zero location of the terms in the longitudinal system

are shown in figures B.2 to B.4 and of the lateral system are shown in

figures B.5 to B.7. All elements in the transfer function matrices of

the two systems have poles in the right half plane. Some elements have

a pair of zeroes also in the right half plane. Such compensators are

said to have non-minimum phase.

It is clear that the closed-loop system has fourteen poles, seven of

them can be identified with the controller and the remaining seven with

the filter. All these fourteen poles lie in the left half plane and the

closed-loop system is stable.
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These compensators cannot be tested directly since they are

"unstable". One way to test them is to close the loop by using a

simulation of the system. The response of the closed-loop system to

initial errors and random disturbances can then be checked.
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Appendix C

A TECHNIQUE FOR FINDING FEEDBACK GAINS FOR

CORRELATED DISTURBANCES

C.I Introduction

Consider a system

x = Fx + Gu + Tw (C.I)

in which u is an m control vector and w is a p disturbance vector

obeying the equation

w = Ew + T) (C. 2)

r\ is white noise. If we choose

u = Cx + C w (C.3)
— — w—

in the steady state we have

FX +x F T + r x T + x r T = o (c.4)
C XX XX C C XW XW C

F X + X E T + T X = 0 (C.5)
C XW XW C WW

where

With noisy measurements and optimal filter (See (C.6) for definition)

X = X/x/\ + X̂ ,̂
xx xx xx

where x is the estimate of x and x is the estimation error. X
— ' — — XX

depends on state and measurement noise. Choice of gains C only

changes X^~ . The equation governing x is
xx
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X = E(abT)
ab

F = F + GC (C.6)
c

r = r + GC
c w

We choose gains C first to obtain the desired closed-loop

dynamics. The gains C can subsequently be chosen to reduce the

effect of wind as much as possible, i.e., if Tx are q independent

linear combinations of the states we are interested in, C could be
w

chosen to minimize

rp rn

L = Tr E{ (Tx) DTx}s.s. = Tr{ T DTX } (C.7)
~™ °"~ XX

where D is qXq positive definite weighting matrix. Thus the

Hamiltonian is

r~

L
rp rp rp

[F x +x F + r x +x r }AC XX XX C C XW XW C

+ [F x + x ET + r x }\\ (c.s)
C XW XW C WW

Here A and X are Lagrange multiplier matrices. The required opti-

mization equations are

(a) (C.4) and (C.S)

(3) £-£ = 0 =» FTA + AF + TTDT = 0 (C.9)
xx c

Jl = 0 =* 2AP + FTX + XE = 0 (C.10)
ox c cxw

(y) ^5 = o =* 2G
TAX + GTXTX = 0 (C.ll)

o C xw ww
w

Comments on solving the optimization equations:

1. Equation (C.9) can be solved for A .

2. Equation (C.4) can be solved in the end since no other equation

involves X
xx
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3. (C.5), (C.10) and (C. 11) are (2n+m)p equations in (2n+p)m

unknowns X , X and C
xw w

4. These equations assure a solution for well posed problems (i.e.,

negative definite F and negative semidefinite E , positive

definite X and finite, nonzero G ). However, the solutionwnv
may not be unique. Any nonuniqueness can be resolved by minimizing

u Bu .

5. If the space spanned by vectors in C contains the space spanned

by vectors in T , then one solution is to choose C such that
w

T + GC is zero, in which case L = 0 .
w '

C. 2 Random Bias Disturbance

For bias disturbances the matrix E is zero and T] = 0 . Then

since F is negative definite and hence invertible, equations (C.5)
c

and (C.10) can be solved directly.

x = -F~IP x
XW C C WW

X = -2F"1ATT (C.12)
c c

Substituting (C.12) and (C.9) in (C.ll) gives

MCw + N = 0 ' (C.13)

where
T -T T -1

M = G F T DTF G
c c

T -T T -1
N = G F T DTF T (C.14)

c c

The solution is unique if M has rank m , i.e., if

rank(M) = rank(GTF~TTT) = m (C.15)
c

The rank of M cannot exceed m , which is the rank of G . If there

are exactly m disturbances and M has rank m

-1 -1 -1
C = -(TF G) TF T (C.16)
w c c
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C.3 Independent Disturbances

The design procedure is simplified when the p disturbances are

independent, i.e., E and X are diagonal (this generalizes to the
VrW

case where E and X are block diagonal with the same block sizes).
ww

Then the gains on each disturbance can be chosen independently. To

find gains on any particular disturbance we proceed as follows.

In our general formulas, we consider p equal to one and E and

X scalars. (C.5) and (C.10) becomeww

(F +EI)X + F X = 0
c xw c ww

(F +EI)TX + 2AT = 0
c c

or

X = -(F +EI)~1T Xxw c c ww

X = -2(F +EI)"TAT (C.17)
c c

Substituting in (C.11) we have

MC + N = 0 (C.18)
w

where

M = GTF T (TTDT - 2EA)F G
ce ce

N = GTFT (TTDT - 2EA)F T
ce ce

and F = (F + El)"1 (C.19)
ce c

Nonuniqueness can be resolved as in section (C.I).
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Appendix D

VELOCITY HOLD AUTOPILOTS FOR LOW SPEED

D.1 Design

A velocity-hold autopilot maintains the vehicle speed near a desired

value. With no constraint on time, we are not interested in errors in

horizontal position. Thus the state equations of Chapter II can be re-
rp

written in terms of the state variable vectors, (0 ,0 ,x ,0 ,0.)

and (4> ,4> ,y >4> »$») • Now in addition to the measurements of four

angles 00*0 ,<t> and <f we need measurements of longitudinal and
•w " */ V

lateral velocities. Noise in measurement of velocity is assumed to be
2 -1

white with power spectral density .005 m sec . The state definition

matrices and the measurement distribution matrices are shown in Table

D-l. We estimate that in the speed range of interest the drag coefficient

terms on the vehicle and the load do not change substantially. Small

changes will not deteriorate the performance very much as has been shown

for the precision hover autopilot.

The lateral velocity is usually maintained at zero while the

longitudinal velocity is held at the desired cruise speed.

Both longitudinal and lateral systems are augmented with a state

variable corresponding to wind velocity. The control systems are

designed using quadratic synthesis. The feedback controller gains

are presented in Table D-2. Also shown are the open-loop and closed-

loop eigenvalues. All modes of the closed-loop system have adequate

damping.

Filters are designed based on the measurements given above in the

presence of wind with RMS intensity 7.0 m sec and correlation time

5 sec . Filter gains and characteristic roots of the estimate error

equation are given in Table D-2.
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Table D-2

Controllers and Filters for Velocity Hold Autopilots

J = { 100 02 + x2 + 200 02 + 100 u, )
long. •• v v i, 1 s.s.

J, . = { 100 <t>2 + y2 + 200 <J>2 + 100 u2 )
lat. L v 'v b 2 ' s.s.

Feedback Gains

C6v

-1.70

C0v

-.431

C.
X
V

.0981

\
-.714

c°e
-.901

C
w
X

.00174

°*v

-1.39

\

-.242

C.yv
-.0981

\
-.912

%
-.824

C
wy

-.00172

K
long.

K

.0192

3.19

-.0600

-.0190

4.11

.0493

-.0166

5.68

-.0914

-.0802

8.85

.0580

-.872

-19.6

.908

.793

16.1

.834

.260

.0770

-.0107

.263

-.076

.0097

.0392

.541

-.0315

.0391

.145

.0302

29.0

-886

20.4

-45.2

985

11.8
lat.

Eigenvalues (sec )

Longitudinal

System

Lateral

System

Open- Loop

Closed-Loop

Estimate Error

Open-Loop

Closed-Loop

Estimate Error

-.11 ± 1.7J

-1.5 + 2.3j

-.95 + 2.3j

-.67 + 2.8j

-.34 + 4.4J

-1.5 + 3.7J

. 098 ± . 26 j

-.40 + .64j

-.25 + .79j

.098 + .27j

-.38 + .63j

-.24 + .77j

-.41

-1.6

-1.9

-.46

-1.45

-2.9

-.20

-.20

-.70

-.20

-.20

-.67

(Units in m , sec ; angles in rad )
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D.2 Performance

The performance of the system is computed with perfect state

information (ideal case) and with noisy measurements and filter. Table

D-3 shows the results. The performance is satisfactory. Major improve-

ments in RMS response can be affected only by improving the measurements.

Table D-3

RMS Errors for the Longitudinal
and Lateral Systems

Perfect State
Information

Noisy Measurement
and Filter

e
V

.00173

.0143

6
V

.00148

.0379

X
V

.0171

.136

9,
.00197

.0095

°t

. 00085

.0094

Ul

.00931

.0189

Perfect State
Information

Noisy Measurement
and Filter

<t>
V

.00173

.0140

•

4>
V

.00217

.0566

yv
.0166

.119

^.00194

.0081

*e

. 00085

.0093

U2

.00928

.0146

(Units in m , sec ; angles in rad )
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