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I. INTRODUCTION AND FUNDAMENTALS

1S).Vith the rapid advances of modern electronic technology, thou-
sands of logic elements can now be incorporated into a single large
scale integrated (L§I) ci:cuit chip. In order to ensure that a LSI chip
fuﬁctions correctlyjacco;ding to its design, it is necessary to test the
chip after it has been ma‘nufactured and, periodically, after it is in
use. Since the number of input and output pins (and hence that of the-
test terminals) on each LSI chip are relatively small and, furthermore,
the behavior of the circuits on most such chips aré sequential in nature,
the diagnostic problem becomes a difficult one. Fault diagnosis of
sequential machines has drawn growing attention lately [1]-[9]. It

has been shown that checking sequences are among the most general

diagnostic sequences for sequential machines under relatively unrestricted
fs{ults. It has also been pointed out [4] that sequential nr;achines, |
which have repeated symbol distinguishing sequences (RDS's), have

short checking sequences. This report is concerned with the furt her
study of these two typés of diagnosabilities, that is, i) the posséséion

of a checking sequence {i.e., '"checkability™) and ii) the possession of

an RDS. In particular, the investigation is concerned with methods of
augmenting the structure of a sequential machine such that the augmen-
tation can realize the behavior of the given machine‘and, in addition,

is diagnosable in the sense of i) or ii).

!



To precisely formulate the concept of a diagnostic test when
faults are unrestricted, we adopt the following notation and terminology
in describing the structure and behavior of sequential machines. M =
{1,Q, Z,5,)) will denote a (Mealy) sequential machine with finite input
Valphabet I, state set Q, finite output alphabet Z, transition function &:
Q X I — @ and output function: XM: QX T —=> Z. (M is finite-state if
Q is finite.) If X is a set, x* will denote the set of all finite, non-null
sequences over X; the set X* = x* U{ A} includes the null sequence A.

If 5 and X are the natural extensions of 6 to @ X I* and A to @ X I', the

state behavior of M in q {q € Q) is the function o:q: [* —> Q where
a q(x) =5(q,x), for all x ¢ I", and aq(A) = q; the (input -output) behavior
of M in q is the function Bq: 1" —>Z where Bq(x) = Alg,x), for alixe .

(Thus Bq(xa) = A(aq(x), a), for allx e I*, a € I}, The behavior of M is

the set BM = {Bq |q €Q}. Ifq,reQ, risreachable from q if there is
an input sequence x e I* such that aq (x) =r, and R(q) will be used to denote

the set of all states in Q that are reachable from q. M is reachable from

q if r is reachable from q, for all r € Q. M is strongly connected if M

is reachable from q, foi' all q ¢ Q. Regarding input ~output behavior, if
q,T € Q, q is equivalent tor (g =r) if Bq = Br (i.e., Bq(x) = Br(x), for
allx ¢ I'). M is reduced if q=r impliesq=r, forallq,re Q. IfqeQ,

we will sometimes refer to the pair (M,q) as an initial state machine

with initial state q, and refer to Bq as the initial state (input-




output) behavior of, (M;q) (M, q) is reachable if M is reachable

from q, and (M,q) is reduced if M is reduced. The .w

able submachine of M from r € Q, denoted (M, ), is the machine

(I, R(r), Z,0 |R(r) x 1,2 ]R(r)x 1), where f|X means the function f restricted
to the set X. | I M and M' are sequential machines over the same input

alphabet I and output alphabet Z, q ¢ Q, and q' € Q' then g is equivalent

toq'(q =q") if 6q =_'B('1,; q and q' are distinguishable if they are not
equivalent; M is equivalent to M'(M = M') if By = BiVI‘

Given a machine M, a state q ¢ Q, and an input sequence x ¢ X+,
the value Bq(x) lof the behavior of M in ¢ is interpreted as the last ouput
symbol emitted if input sequeﬁce x is applied, starting ih state q. In
discussing the diagnosis of machine, it is often convenient to have an expli"-
cit representation of a whole output sequence as opposed to the last sym-

bol. Accordingly, the extended (or sequence-to-sequence) behavior of

. . . A Lot + _
M in q is the functmn Bq. I' ~—>7Z wher¢ ﬁq(alaz. .. an) =By 1)B 2).
Bq(alaz. .. a,n). Note that, since M is a Mealy machine, the length of
A
the output sequence Bq(x) is equal to the length of x, Since Bq uniquely
determinés é\ qQ one should also note that, as functions, Bq = Br if and
io o
only if B_q = @r'
For each sequential machine M = (1,Q, Z, 6,A) we associate with it

a (state) graph whose nodes are the states in Q, having an arc from

state q to state r labeled with a/b, where a e Tand b ¢ Z, if and only if
d{q,a) =r and A(q,a) = b. We will use M]a to denote the autonomous -

machine ({a},Q, Z, 6|Qx{a}, »[Q x {a}), and D, to denote its state graph.



In the state graph of an autonomous machine, the input label on each arc
will be omitted.
Let D be a graph of a sequential machine M. A subgraph of D

congists of nodes and arcs of D. A path in D is a sequence of arcs

Q199 Aplgs - -+ » Gy L1 Y0 such that all the nodes, qi's, are distinct; the
length of this path is k-1 which is the number of arcs in this path. A

cycle in D is a closed path, i, e. it is a path with identical first and

last node. The period of a cycle is the number of arcs in the cycle.

A semipath in D is a sequence of arcs 9199549995 - - - ’qk-lqk’ where

t s -
q,q; 1 means an arc q;9;, 1 °F 95,19y such that all q,'s are distinct.
A semicycle in D is a closed semipath. A graph (or subgraph) is strongly
connected if there is a path from every node to every other node, and

it is weakly connected if between any two nodes there is a semipath.

A graph is disconnected if it is not weakly connected.

Let us now consider the diagnosis of a machine M = (I, Q, Z, 5, A)

relative to the class of machines
MmM) = {M'[M' = 1,Q', 2,8, 1) and |Q] < [Q]}

(where |X| denotes the cardinality of set X).

. Thus, with respect to this class of faulty machines, a fault of
M is any abnormality which can resulf in any machine M' with the same
input' and output alphé,bets as M and no more states than M. The choice
of K (M) is motivated by certain physical assumptions; namely that the

faulty system is representable by a machine and has the same input and



output terminals as the fauit -free system. @ is chosen to represeht

all possible physical stafes of the fault-free system; hence no perman-
ent fault will cause an increase in the number of physical states. (It

is pos_sible, however, that the number of nonequivalent staf.es_ lﬂ_l_}_l
increase since M need nqt be reduced.) Under these assumptions, faults
are; unrestricted in £he sénse that any permanent fault of the system repre-
sented by M results in a system representable by a machine M' ¢ M (M).
The type of diagnostic tests for machines with unrestricted faults afe

mn

"checking sequences' and ''detecting sequences.’ These sequences are

defined formally below.

" Definition 1.1

If M is a machine, g e Qand x ¢ I+, then x is a checking sequence

(CS). for (M, q) if, for all M' ¢ M (M) and all q' e‘Q', é\'q,(x) = )é\q(x)

implies that, for some stater' ¢ Q', r' =q (i. e., B;, = Bq).

- Definition 1.2

IfM=(,Q,%,06,1) is a machine, q e Q, andx ¢ I+, then x is a

detecting sequence for (M, q) if, for all M' ¢ M (M) and all q' € Q',

ﬁél'(x) = é\-q(x) implies q' = ¢ (i.e., ﬁ:il" = Bq),

1t _is ea'sily seen that detecting sequences are speqial cases of
checking sequences. The difference between a checking séquence and
a detecting sequence is that in the latter case, a positive
response to the sequences says that the state of‘ M' just before application

of the seq[uence is a state equivalent to q; in the former case we can only



guarantee that some state of M is equivalent to q. For more detailed

study on properties of checking sequences and detecting sequences of
sequential machines, the reader is referred to [8]. A sequential

machine is checkable (detectable) if it has a checking (detecting) sequence.

Since the checkability or detectability of a machine (M, q) depends
on the behavior ﬁq let us focus our attention, for the moment, on be-
havior, per se. Suppose that 8: I" —> 7 and let us consider all other
~ functions 8': I" —> 7 that can be derived from B by first applying a

fixed sequence y ¢ I*. More precisely,

Definition 1., 3

If 8: I —> Z and y € I'* the derivative of 8 with respecttoy

-is the function By: I" —> Z where By (x) = Byx), for all x ¢ it

The concept of a derivative (although it may go by some other
name Or even remain nameless) is essentially the concept of "'state”
from a behavioral point of view (see [ 12], for example). The name is
borrowed from Brzozowski [13] since his use of the term, if translated
from sets‘ to fﬁnctions, is a special case of the above definition. A
fundamental relationship, that provides a machine interpretation of deri-
vatives, follows directly from the above definition and the definition of

machine behavior, that is:

It {Bq is the behavior of M in g then (Bq)
X
is the behavior of M in aq (x).



In what follows, we will let DB denote the set of all derivatives

of 8, that is
Dg = {Byly e I*}.

Given an arbitrary 8: I — Z, the derivatives of 8 permit an
eaéily coz_;céived construction of a "eanonical’”’ sequential machine that
realizes 8, where the states of the machine are just the derivatives

DB' More precisely, if 38: M- Z, the derivatiVe machine of 8 is

the sequential machine
MB = (I, QB’ Z, GB, AB)
where QB = D3 and for all By € Qﬁ and alla ¢ I,
53(337, 3.) = Bya:
AB(By,_ a) = {ya).

The reader is referred to [ 12] for details as to how the construc-
tion is motivated and for verification of the important properties summar-

ized in the following theorem:

Theorem 1,1

I B: 1" —> Z'then Mﬁ is reduced, reachable from 8, and for
all ' € Dy, the behavior of Mg in 6" is §'.

- Given a machine M. Let q ¢ Q. We will see that the state set
of M,
Bq
Let M' = (1,Q', Z, 3", A"), where

(the derivative machine of Bq), can be expressed in another way.



Q ={ ﬁr[ r ¢ R(q), i. e. the reachable part of M from g},
and &' and A' are defined as, ¥ Br e Q and a €I,

6'(6,,a) = B

ar(a)

and

4 - —
A8, a) =B (@)
Since, by definition, ¥ 8 € Q', 3 x € I* such that ozq(x) =r, the above

definitions for 5" and A' can be rewritten as, VxeI*andael

8'(B , a)=f
aq(X) aq(xa)

'é,nd
)‘ ! (Baq (X) )

Since, by definitions of ‘Bq and (Bq

a) = ﬁq (xa).

)x’ Vxel*andy e I+,

o ) ®) = gl
and
(B &) = B 659),

we conclude that

B =@B) -
o
Clearl \ _
y 3aq(x) and (Bq)x are states of Q' and Qﬁq. We can easily see
that &' = 53 and A' =2 B Therefore MB and M' are actually the same

q q
machine. In our following studies, we will use either {(ﬁq)xlx e I*}



or {Br [ r ¢ R{q)}, whichever is more convenient, to denote the state
set of M, .
ﬁq

To define an important machine structural properties, namely simple

connectivity, we need a few more notims and terminologies. A subset

R of the state set Q of a machine M is strongly connected if for any

TysTy € R, Ty is reachablé from ri. A strongly' connected subset R of

Q is maximal if‘no other strongly connected subset of Q includes R as

a subset, A component C of M is a maximal and strongly connected subset
of Q.

For example, for machine M, {ql,qz} is

strongly connected but not maximal because {ql, qz} is included in

{ql, Ay q3} which is maximal and strongly connected.

Definition 1. 4

A machine (M, ql) is simply connected if it has a state diagram

consisting of unidirectionally and linearly connecfedcomponents as shown in

Figure 11, where Ci*s are components of M, each arc represents a
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single input induced transition, and U C. = Q. The states Q;
I<i<k
and r, are called respectively the initial state and the end state of Ci'

Figure 1.1 A Simply Connected Machine

Another characterization of simple connectedness is given in

the following theorem. Its proof can be found in [ 8].

Theorem 1, 2

A machine (M, q) is simply connected if and only if any binary
partition of Q into two sets S1 and SZ’ where q € Sl’ satisfies one

of the following conditions:

(1) There are transitions going both way between S, and 8,,.

(2} There is only one transition from S, to SZ'
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1I. CHECKABLE REALIZATIONS OF MACHINES

Section 2,1 Introduction

As‘our previous investigations revealed [ 8], many systems are
1ntr1ns1cally better suited for fault- dl:lgnOSlS than others. It should be
useful if one knows how to design machmcs that, besides being able to
perform certain tasks, also have better fault-diagnosabilities than other
machinres whi.c;h can do the same tasks. This chapter concerns the
question of how to improve one aspect of fault -diagnosabilities, namely
the checkability, of a machine. Specifically, the question that we like
to study is: Giveln a noncheckable machine, can we design a checkable
machiﬁe which is capable of simulating the inpu£-0utput behavior of the
given machine in real-time ? |

.Inttiitively, if a machine M is structurally minimal, then any machine,
if it exists, that can mimic the behaﬁor of M and has an additional
property of being checkable, should have a larger structure than that of
M.‘ This intuition will be shown to be true. Various methods of augment-
ing the machine structure will be examined and the answer to the above
queStion by each of these methods will be presented.

We begin with the infroduction of a formal definition for input-
oufput simulation in real time of a machine by another machine, It is
called realfzation by Meyer and Zeigler [14]. Let M' = (I',Q', 2', 8',A")

and M = (I,Q, Z, 5, x) be two sequnntlal machines. Then:
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Definition 2.1

M' realizes M if there is a triple of functions (01',02,03) where

gy 1" —> 1'" such that 01(1)_(_'_.1'+ y Oy Q —> Q' Oyt AL

where 2" C 27, such that, for allqe Q and all x ¢ I+, Bq(x) =

08" @,(x))). M'is said to be a realization of M if M' realizes
30,1 —

M. 0y and 0g are called the input encoding and output decoding functions,

w2

I

W

Q
-y

k

=

if

i e S—TT

Figure 2.1 W' Realizes M

It has beeu shown by Leake [ 18] that the above behavioral defini-
tion is equivale:l to the morve structurally oriented definition of Hartmanis
and Stearns [ 16} in terms of an Yassipgnment' of M inlo M.

A few easily verified properties of machine realizations are included

in the following theorem without giving the proof.
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Theorem 2.1

A sequehtial machine M realizes its reduced form MR and vice

versa. If M1 realizes M2 and M:‘3 realizes M3 then MI realizes M3,

i. e. realization is a transitive relation on the class of all sequential

machines.

If (M',q'") and:(M,Q) are initial state machines, then (M',q")

realizes (M, q) if M' realizes M under a tfiple (01-,02,03) and 0‘2(q) =q".

When the state behavior is to be simulated as well as the input -

. output behavior, this type of simulation is best described by the notion

- of homomorphic realization.

Definition 2. 2

M' homomorphically realizes M if there is a triple of functions

(’?1-’772’ 173) where 7, : 1" > I'" where 'ql(I) cr, 7y Q' —> Q (onto)

where Q" C Q', Nyt 2" —= 7 where 2" € Z"', such that, for allq ¢ Q"

, +
d I " - 1} - - v . = T

anad x € s 1) anz(q)(X) nz(aq(r)l(}‘))): and 11) B,nz(q)(x) 7?3(f3q(7?1(x)))-

-The connection hetween reazlizations and homomorphic realiza-

tions can be stated preciscly as follows [14]:

Theocirem 2. 2

If M and M' are sequential machines and MR is a reduced machine
equivalent to M, then M' realizes M if and only if M homomorphically

realives MR'
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Therefore any realization of a reduced machine MR is, in fact,
a homomorphic realization of MR It simulates both the input-output
behavior and the state behavior of MR'

Given a machine M, two inputs a, b € I are equivalent if ¥ q € Q,

A, a) = Alq,b) and 6(g,a) = &(q,b). A machine is transition distinct

if no two inputls aré equivalent. Any machine that has equivalent inputs
is redundant in the sense that the inputs in an equivalent class can be
represented by one of its member. without affecting the functional capa-
bility of the machine. |

We are to show in the following theorem that inputs of a given
machine which maps into the same input of a realizing machine must be

cquivalent.

Theorem 2. 3

If M' realizes M under (01,02,(r3) and a, b € I such that crl(a) =02(b)

then a and b arc equivalent inputs,

Proof:

i = v * ! : =
Since 01(:1) ol(b), we have Vx ¢ I* and ¥ q € Q, 03(802(q)(01(ax)))

03@02(q)(01(b>\))). Hence, by the definition of realization,
ﬁq(ax) = Bq (bx) V¥ xel*
which implies
Ag,a) = Mg, b) and 6ig a) = 6(q, b).

Thus a and b sre equivalent inputs.
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Corollary 2, 3.1
| If M' realizes a transition distinct machine M un‘de'r (01,02-,03)

and ]I'[ = [I[, then oy is a one-to-one and onto function,

Proof:

Immediate from Theorem 2. 3.
A similar result for states also holds.

Theorem 2. 4

If M' realizes M under (01,02,03) and r, s ¢ Q such that cz(r) =02(s),
then r = s,

Proof:

Let x be any input sequence in I', then

02(1,)(01(::)) = Bc',z(s)(cl(X)).

So

7350100 =058, (60,6

But by definition M' realizes M under (01,02,03),
— 1
BI‘ (x) = 03 (Bgz (1,)(01 G
Hence

&) =B (x) Vxel,

or r=s.
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Section 2,2 Chackable Realizations with Enlarged Input Sets

Given a noncheckable machine, can we find a checkable realiza-
tion of the given machine with the same numbers of states and outputs,
and with possibly a larger input set? The following theorem establishes

a positive answor to this guestion.

Theorem 2.5

If (M,q) is a noncheckable machine, then it has a checkable realiza-

tion (M',q") with [I'[ = [1] + 1, [Q'[ = [Q], and [2'] = |2].

Proof:

Let 01, g) be a machine such that I' =T U {a}, where a £1 , and
M|I is identical to M. More precisely: Q' =@, Z' = 7, and,
VreQandbel 06'(r,b)=0(r,b) and X'(r,b) = A(r,b). Let M' |a be
be any strongly connected awtonomous machine,

Therefore (M’',q) is strongly cornected, and hence [18]
is checkable. We must also show that (M, ) is a realization of (M, q).
Let 0y I —> (.T.')+, PE Q@ —=Q", and Ogt Z'—> Z all be identity func-

tions. It follow: that, g @ =qgand, YreQandxe I,

B.(x) = P U C I EI )

@)
Therefore, by definition, (M',q) is a realization of (M, q). Clearly

v =]1] +1, [2'] = |Q], and [2'] = |Z]. This completes the proof.
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When the given machine is not transition distinct, a checkable
realization can be obtained even without augment‘ing the structure of the

given machine,

Theorem 2.6

If (M, q) is a noncheckable machine which is not transition distinet,

then it has a checkable realization with [I'] = [I[, IQ‘[ = |Q], and
|2'] = 2]
Proof:

Since M is not transition distinct, these are equivalent inputs,
sayaandb (@ #b), in. Let M'=(I,Q, Z, 6", A') be a machine such that
M"fI - {b} is V_identicai to MII -~ {b}, and M'|b is any stromgly connected
machine. Therefore (IM',q) is strongly connected, and hence [1§ is check-

able, Letlol: r— ("7 be defined as, ¥xel 0‘1(}{) =x', where x'

is the inpu{ sequence X with every b in it replaced by an a. Let

PE Q — Q' and o' Z' —= Z be identity functions. Since a and b

are equivalent inputs, by definition, ¥x ¢ I" and ¥ r € Q, Br(x) = Br(x')=

8

r(crl(x)). Clearly then, o5(q) =g and, ¥reQandxe I+,

Bl;(X) =80, &)

=048\, ().

2(r)
Thus, (M',q) is a checkable realization of (M, q) with [I'[ = [Il, [Q’ [ = ]QL

and [z'] = |z].

Therefore structuvre avgmentations are not necessary for obtaining

checkable realizations {or machines that have equivalent inputs.
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In the next three sections, the question of realizing a given non-~
checkable machine by a checkable machine will be studied in terms of
three means of augmenting the structure of the given machine, i.e.
of augmenting the input set, state set, or output/statc sets of the given

machine.
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Section 2.3 Checkable Realizations with Enlarged State Sets

~ This section studies the question of whether. it is possible to obtain
a checkable realization of a given noncheckable machine by augmenting
onlj the state set lof the given machine. When the situation imposes
more rigid restrictions on the number of input and output terminals than
on the number of states of a system, such as in designing LSI circuit
chips, a positive answer:to the above que:stion would be urelcorﬁed.
Unfortunately, it turns out that any noncheckable machine which is
structuralljr minimal does not have any checkable realizat-ion with only

a larger state set. That is,

Theorem 2.. 7

Let (M, q) be reduced, transition-distinet, and noncheckable.
And let the range of A be Z, i.e. MQ, 1) =2Z. If (M',q'") is a realization

of (M,q), |I'] = [I], and [7'] = 1Z], then (M', q") is also noncheckable.

Proof:

Let (M',q") realize (M, q) under (01,02,0’3). Then Gz(q) =q' and
Br(y) = 03([3éz(r)(61 GN ¥reQ, yel. Since M is transition-distinct
ar;_d ]I‘[ = II[, by Corollary 2. 3.1, o4 is 1-1 and onto. Hence, for
each' u ‘é‘ I+_, there exists & unigue input sequence in (I’)+, denoted u',
such that u' = ¢, (u). Since [z'] = |Z] and A(Q, 1) = Z, G4 is also

1-1 and onto.
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Since 04 is 1-1, this implies

A " Al

(B )= Bpter
By assumption M is reduced, hence IQ'[ > [Qf Furthermore,
'le = IQll |Q]. Therefore lel < |Q'| and thus, by the con-

struction of M, M, ¢ M(M'). Now since x' is a checking sequence for

(M, q"), M, € JM'), (»82) (x') = B ,(x"), it follows from the definition

qq q
of checking sequences, 3 ryeQy, ({32)1_1 = B'q,. Accordiggly,
Vy'e (I')'{',
A 1 — AT T
03((52)1,1(5’ ) —03(Bq1 \AD))
or
Thus

B e O =R®  vyel
orrq e Ql and Y1 ¥q, which says that x is a checking sequence for
(M, q), a contradiction.
As a conscquence of Theorem 2.7, the only remaining alternative
to obtain a checksble realization of 2 machine without augmenting the

put set would be to augment the output set.
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Section 2.4 Checkable Realizations with Enlarged Qutput/State Sets

In this section, we will study the existence of checkable realizations
of a‘given machine with enlarged output sets and poésibly enlarged
state sets,

First note that a s'i‘mply connected machine is dete.ctable if all its

transitions have distinct outputs.

Theorem 2.8

If (M,q) is a simpljr ccnnected machine such that all its transitions
have distinct outpﬁts, i.e., Alg,a)#A{r,b) ¥q,r e Qq#r)and ¥ a,b

€ I{a+b), then (M, q) is detectable.

Proof:

It (M, q) is autonomous then it is detectable from [ 18], so

let II[ > 2. We will construct a checking sequence for (M,q). Let
(M,q) be simply connected with k components C 1,-C-2, v+, Cp. For each
component Ci’ let 9, and ridenote the initial state and the terminal_ state of
C_i respectively. Hence q =4 and Ty does not exist. Let 2 denote
Vthe input asscociated with the transition from r, to qi+1.' By assumption,
(M, g) is simply connected, so there is at most one transition leaving
C, and s:ince 1] >2, daeld 8(r,a)e C; ¥reC. Aninput sequence
X, can be constructed so that (1) X, includes yr, b= aurba for all r e Ci,
b eI, and (r,b) # (ri, ai), where u, is a transfer input sequence which
brings M to r, (2) aq‘(xi) =T, and (3) wh’enxi is applied to (M, qi),

i
M will be in the same state of Ci just beiore Yr b for alib e I.
. ¥
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Suppose, contrary to the theorem, that (M',q') has a checking
sequence x'. We will prove the theorem by showing that x(x':(rl(x))
must be a checking sequence for (M, q), a contradiction,

)ql(X) =

%q(x). Let (My,q,) be 2 machine such that I, = T', Q, =Q,, Z, = 2,

M
Let (Ml’ ql) be a machine such that M, € M (M) and (Bl

and 62 and )0.2 are defined asl, ¥ s¢ Q2 and a' ¢ Iz(=I'),
bo(s,2') = 6,(s,a)

and

03(?L2(s, a')) = }Ll(s, a).

_ (Az can be uniquely defined in this way because g is 1.1 and onto).

Clearly then, for all s ¢ Qandye (Il)’+

(B ) 6) =05(By) 6.
Thus (MZ’ ql) realizes (MI, ql) under (o v 1 03), where 1 stands for the

identity function, Hence

H fA t
(5 l)ql(X) = 03(\Bz)ql(x D,
_ A A
and, since (Bl)ql(x) = Bq(}f),
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The uy mentioned in (1) always exists because the state of M

before Yr-‘k-) is in Ci’ as required by (3), and thus the state of M between

the u and the u, of Y, p 28 well as the state r are both in Ci'
, , 2

We claim that x = X2 Xolg. . 8y X is a detecting sequencé for
(M,q). Let (M',q") be a machine, where M' ¢ ‘317(M). If B' () =
% {x), then because there are fQ[ dlstmct responses {o the same input,
say b, after the u_ or Yr,b VregQ, IQ ’2 [Q[ .But M' e (M)
implies [Q'| < lQ]. Hence Q'] = |Q| and M" is reduced. Further-
moi'e, ﬁ' (%) {3 (x) implies that, for each r € Q, the responses to
a.ur s in Y., b are 1dentlca1 hence the states of M' after au | 's are the
same. Let r' denote the state of M'" after each u. For each b ¢ I,
Yr.b together with the c‘orresponding responée of (M',q") uniquely
determine the output and the terminal state of the transition from
r'to 6'(r',b) induced by b. This output is clearly 1dent1ca1 to that of
the trzmsxtmn of M from r to 8(r,b) induced by lhe same input b,
Hence k components, denoted C', '2, - ,Cl’{, can be constructed from

the responses of (M',q') to x pX¥g -+ X, Inx. For each i, the terminal

state r of C' the output A'(r! 5, ) and the m1L1 al state q o1 of C'1 i

~ can be determined from the responses of M to x. P and X1 respectively.

Clearly M'= M and ' =q, hence x is a detecting sequence_ for (M, q),

and the theorem is established.

Example 2. 1

All the transitions of the machine (M, g) as shown in Figure 2.2

have distinct ouputs. (M, q) has three components Cy C, and Cs. As
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Figure 2.2 Machine (M, q) for Example 2. 1

for Cl’ it is clear that a e Iis such that 6(r,a) ¢ Cl’ Vre CI‘ Hence

we may choose the following sequences:

= au_aa
yQ: ) 4
) yq,b = auqba, where uq = A,
q
*Yr’ I auraﬂ, where ur = b,
q

and

Xy = aaababuaab

ty %
g 2 v

yq, Iy

——— e

Vi a

where each arrow indicates the state of I at the time before the next

lnput symbol, i. e,, the next one on the right, is applied. As for Cz,

since 6(s,b) e Co ¥se Cq, we may cheose the folloving sequences:

'?ys,b:bus b b, ‘us =A

5
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and

4 4
¥y
s $Dg

As for CS’ since it is strongly connected, we may choose the following

sequences:
Zyt,a =autaa
" yt,b = autba, where u = A
t

and

x3= aaaba .

The interested reader is urged to verify that the sequence x = xlbxzax3
is indced a checking sequence for (M, q).

it is clear tﬁat only the reachaﬁale portion of an initial-state machine
plays a role in the normal operations of the machine. Hence in the
following i;westigations we will concern mainrly on realizing machines

that are reachable.

Theorem 2.9

Let (M, q) be a reachable and transition distinct machine. If
(Mﬁ E Bq) is simply connecied then (M, q) has a checkable realization

q |
(M',q") such that |[I'[ = [I| and [Q'] =k, for any k > [Qﬁ, [
g
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Proof:

-Since all autonomous machines are checkable, this theorem is
trivially true for autonomous machines. So suppose (M, q) is reachable,
transition distinct and 1] > 2. We will construct a machine (M',q") in
the following steps:

1) Set (M',q') = (Mﬁ ,Bq). Since (M',q') is simply connected,
let C CZ’ Ceay Cﬂqbe its lincarly ordered components. Since
Cﬂ is a strongly connected submachine of M and [I] >2, we

can [18] addj =k - [QB | states Ty Tgreees Ty to C, to obtain

g

a ([C l + j)-state str onnly connected machine C} which is equi-

¢
valent to Cy- After this is done, clearly, (M',q") is still simply
connected and its initial-state behavior is unchanged.
2) Reassign outputs on all transitions of (M',q") so that they are
all distinct.
Clearly, by Theorem 2.8, (M',q'") is checkable, We need only
to show that (M',q') is a realization of (M, q).

Let (Ul,rr2,03) be defined as follows:

04 I ——=T1"  be an identity function;

% Q —> Q" be such that
¥reqQ, az(r) =B, €Qf

and g Z' —> 7 be such that

V b5'1 ¢ Z' (where bra denotes the output onthe

i«

transition of M' from the state s to the state a"s(a_)
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induced by the input a),

US(bSH.) = B'S(a-)-
Now, ¥ x € If letx=vye, ceDand ¥r ¢ Q,
03(19:}2&)(0'1(}()) = 0'3 (.B;_z(r) (x))
| =0,(8, ()
. | 3 Br
= 03(}3;38(0)), where )SS = a'Br(y)

= UB(b‘BsC)

Cléarl,y oz(q) = Bq =q'. Therefore (M',q") realizes (M, q) under (01,02,03).

This completes the proof.

Example 2.2

The machine (M, g} as shown in Figure 2.3 is transition-distinct and
reach:fs..ble. The canonical machine (MB ,ﬁq) of (M, q) is simply connected
and noncheckable. Following the procec?ure stated in the proof of Theorem
-2.9, a five-state checkable realization of (M, q) is obtained as the machine

(', ﬁq)-
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a/d, b/c

| a/c a/c a/d,b/c
b/d b/c
oy )0 B, ><35>

7y I —_— (I')Jr is an identity function,

Oy Q——= Q' is defined as, Vr e Q,
oz(r) = B,

Og: 2 —_— 7 is defined as

03((: l) = 03(b3(,3~) = B'ﬁ (a) = f3q(3-) =C
Similarly, 0‘3(Ci) = ¢ Ve,

aindd o,{d.) =d V d.
3@ j

Figure 2.3 Machines for Example 2. 2
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T hus when the canonical form of a given reachable and transition
distinct machine is simply connected, Theorem 2. 9 says that we can
always find a checka;tile realization for fhe given machine with no more
inputs .an'd virtually any specified number of states. Since the existence
of such a realization is the focal issue in Theorem 2.9, we have made
no attempt to minimize the number of outputs.

| Our next aim will bé to study the converse of the Theorem 2. 9.

We note first of all that:

Theorem 2, 10

I (M',q") realizes (M, q) under (01,02,03) then (MB' ,B(‘q,) realizes
| q’
(M,q), the reachable machine from q, under (0‘1,0'2,03) such that -

0“2(1_') ~ B‘;g'(r) ¥V r eR(g).

Proof:

Let N-[z = MBI ' = (I: QB! J Z, 625 kz)’ (M3: (I) = (M7 q) and
My = (I, Qg, %, 03, A5). Hence Q; = R(q), 04 = 6[QgXI, Xg = A|Q3>< L .

Now V x ¢ I

= 0-3(5(1]'2&')(01(){)))'
But B.x) = 03(B‘0,2(r)(01(}<))),
hence ' 03((132302(1,)(01(3{))) =B, (x)
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= (Bg) () Vre Qg
Thus (MB, ',621,) realizes (M, q) under (o 1,0:,3,03).

Corollary 2.10, 1

If (M',q") realizes (M, q) then (Mﬁ' ,B;l,) realizes (Mﬁ ,Bq).
1

Proof:

Follows immediately from Theorcem 2. 2 and Theorem 2. 10,

If M' realizes M under (01,02,03), then, Vr e Q, 02(1-)
of Q' simulates r. It is possible that, in Q', there are other
-states that also simulate r. In order to describe precisely the relations

among such states, we define a relation Ton Q' X Q' as 7 = {(r, t)eQ'x Q' [

048, (0, () = 0303;:(01(}{))) ¥xecI}., We will use r7t to denote r,t)er
It can be easily verified that 7 is an equivalence relation, and that

V51185 €Q, 0,(s;'70,(s,) implies s, = 5.

Theorem 2. 11

If M' realizes M under (01, ) then for each transition r —gr

)/b

- of M there exisis a tranéition r1 —«——-——--} r2 of M' such that rl'rcz(rl),

" —~
03(1) ) = b and 12702( 2)

Proof:

g

(Gl(a-))-
(jl d Ajr 2( 1)

Then, clearly 1_.__..._.._3 2 is & transition of M', We claim

. ' ancd 1! = !
Let11 =0 (r ), = B (, )(Ul(a)}, and vy =af

that this transition satisfies the theorem. Since 7 is an equivalence

reiation, r‘l'rra and hence 1"1, ';‘0'2(1*1)'. By the definition of b',
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Oqlb') =0, (8 (©,(a))). It follows from the definition of realization
3 3 0‘2(1‘) 1 .

t
that o 3 (ﬁo

1 .
)(ol(a,))) = Br (a). Hence 0"3(b') = Brl(a) =b, It remains

2(ry 1 )
" to be shown that 1"2702(r2). Since, by the definition of input-output be -

havior functions, ¥ x ¢ I+,
3;.i(clfa.x)) = ﬁé;"l(gl’ (a!))(ol(x)) = %,2(01(:{)).
Thus
And, .by the definition of realization and the fact that r'1 =0 1(1" 1);
03By © 1)) = B (e,

henée

Brl(aX) =038 o, &),

2

or

31_2(}:) = 03(3;'2(01&))), .

which means ré 'rcz(rz). Thus the proof is complete.

When a realization machine is reachable and the input encoding

function is onto, a theorern which is the converse of the above theorem

czin be established.

Theorem 2,12

If (M',q") realizes (14, q) under (01,02, 03), such that o, is onto
a'/b

= 1l of M'

and (M', q') is reachable, then for each transition r'1 5
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a/b

there is a transition ry > 1, Of M such that Gz(rl)'rr'l, o @) =a',

b = 03(b') and 0‘2(r2)'r1-2.

Proof:

Since (M',q") is reachable, let y' ¢ (I')* be such that aé,@') = r'l.

The fact that (M', q") realizes (M, q) implies §_(x) ==03({3' o, &),
‘ T 0‘2\1”) 1
¥VreQandxe I, and Gz(q) =q'. Furthermore, o, is onto, so

3 yel _acrl(y) =y'. Letr= aq@) . Then

B )= ﬁq(VX)

1
= 0‘3(3:],2((1)(01(3’3()))
= 053(8 (0, 6x))
= (ﬂf 1 ( )) v I+-
aq S X X €
Hence
02(1’1)1‘ ry

Since 9y is onto, let a € I be such thal crl(a) = a', then
b = BI‘ (Zl) :Us(ﬁ;,t (Ul(a)))
1 1
= 0-3 (Bf.f (3,'))
k
1
= 03(13‘).

It remains te be shown that 0'2(]‘9)?'th. For all x ¢ I+,
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B, &)= ﬁq(an)

2

= 03 ([3('1'(01 (YFLX)))
. = 0'3(13:1(;{' (UI(YEL)) (0'1 )
= US(ﬁEZgl,(Y'a')(Ul(X))
= 0’3(ﬁ;,2(0'1(){))).
Thus Uz(rz)'rr'z.

Before we show how the simple connectivity of a machine is

implied by the simple connectivity of its realizations, let us note this:

Theorem 2. 13
Let (M',q') be a realization of (M, q) under. (01,02,03) such that
0, is onto. Furthermore, let (M',q') be reachable and (M, q) be reduced.

t t

) is a binary partition of

if (sl, sz) is a binary partition of @ then (sl, s,
Q', where |
s} ={s' € Q| Is ¢ 5; such that s'704(s)} and
sy = {s'eQ'| Ise S, such that s'70,(s)}.
Proof: |

We must show that S'1 n S'2 =dand Q' = S'1 u S'z. Suppose

S] N8, #¢, let r' e 8} NSL. Then there exist s, €8; and s

1 1 18 2 € 5y
- g . =.
such that 1 'rcrz(sl) and r 702(32). Hence 02(51) 702(52) Or 8 = 8,.

But (M, q) is reduced, so we must have Sy = 8g OI 8y € S1 n 52 which
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'contradicts that (81, Sz) is a binary partition of Q. Thus S'1 i S‘2 = ¢.
Clearly S'1 US'2 < Q'. Nowletr'e Q', we will show that r' ¢ S' U SZ’ and
hence establish  that Q' = Si U Sé; Since (M', q") is reachable, Jy'e (I')*
such that «',(y') = r'. Because 0, is onto, there exists a y € I* such
that cl(y) =y'. Moreover, since (M',q') is a realization of (M, q) under
(01,02, 03), by definition, o (q) =q'. Therefore B W B (yx) =

(e (q)(c yx))) —03(ﬁ‘ ') ) =048, (X))), or Uz(aq(y))'r r'.

" t .o '
Since « (y) € @, r' must be in either §] or 2, or r' ¢ 8} Usz.

Applying the Theorems 2. 11, 2.12, and 2.13, we are able to

show the following:

Theorem 2. 14

Let (M,q) be a reduced, reachable, and transition distinct
machine. If (M',q") realizes (M, q) under (o 02,03), then (M, q) is

simply comnected if (M', q') is.

Proof:

Suppose, contrary of the theorem, that (M, q) is not simply
connected. Then by Theorem 1, 2, there is a binary partition {Sl’ 82}
of Q such that q ¢ Q and there is morc than one transition from Slto

to 8

oa/b c/d .
9 1° Let ry -—----> 12 and 1:1 - t2 be two such

transitions, sor #t or afc. Let Sy :{s‘e Q' |Fse S, such thatoz(s)rs'}

82 but none from 8

and S' ={s'e Q' | Ise S, such that ¢ 5'}. Since M is transition

distinct, it follows from Corollary 2. 3. 1 that 04 is one-to-one and onto.
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Then by Theorem 2.13, {s!,S! } is a binary partition on Q.

o {(a)/b
By Theorem 2. 11, (M'q') has two transitions r'1 = r and
oeid '
1—-——-—-%>t2 such that r' 702(1'1), rzroz(rz), tlroz( ) and t2 2(t2)

. Clearly then r'1 and t'1 are in SY, and ré and t:.z are in S_'z. Furthermore,
since r 1 # tl oraZb, M is‘ reduced and transition distinct. By Theorem
23 and 2, 4,‘ we copclude that £ ty or A0' 12) # oé(b). Therefore there
are two traﬁsitions_fr(mdl 8% to 8. There can be no transition from 85
to S'l, for if there were then, by Theorem 2. 12, there would aiso be a
transition from 82 to Slwhich isnot true. Butthiscontradicts fhe hypotheSis
thé.t (M',q") is simply connected. Hence (M, q) mustbe simply connected.

We are ready to show one of the major results of this section,

which is stronger than the converse of Theorem 2. 9.

Theorem 2. 15

Let (M, q) be a transition distinct machine.  If (M, q) has a checkable
realization with the same number cf inputs then (MB , Bq) is simply

connected.

‘Proof:

Let (M',q") be a checkable realization of (M, q) such that [I'[ = [1].

“Then (M /3' ,B .} realizes (M ,Bq) as implied by Corollary 2. 10, 1,

B
a
Also, from [8], \MB, ,Bq ) must be simply connected. Since (M, q)
1 .

is trausition distinct, (MB , Bq) should also be transition distinct. More- |

over, I, =I"andI, =1, hence |I, [ =]1 [ By Corollary 2. 3. 1,
! ﬁq B B
o, is therefore an onto function. In addltxon ( g B ) and (M q)

q q
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are reduced and reachable. Recalling that (Mﬁ' ’Bl'l') is simply
1
connected, we can apply Theorem 2. 11 and conclude that (Mﬁ ,Bq) is
q
also simply counect ed.
If a given initial-state machine is both transition distinct and
reachable, a necessary and sufficient congition as to when the given

machine has a checkable realization with no more inputs can be obtained

readily from Theorem 2. 9 and Theorem 2. 15.

Theorem 2. 16

Let (M, q) be a transition distinct znd reachable machine, Then
(M, q) has a checkable realization with no more inputs if and only if

M, ,8 )} is simply connected.
ﬁq q
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Section 2, 5 Summary

In this chapter, we havé investigated the problem of improving
one aspect of the diagnosability, i.e. the checkability, of ‘machines by
maf:hine structural augmentation and machine realization. The existence
of checkable realizations for a given machine has beeﬁ studied in three
finer categories: they are checkable realizations that have (1) a larger
~input set, (2} a larger sté,te set, and (3) a larger output set with possibly
a larger state set (all relative to that of the given machine). The answer
to the .existence of such realizations has been found to be positive for
thé case 1) and 3), and negative for the case 2). More specifically,
for a gi\‘ven machine M, there always exists a checkable realization M' .
-sﬁch that M' has one more input symbol than M. I (M, c_{) is transition
distirict and reachable, then there exists a cheékable realizatioﬁ (M', q'").
with the same number of inputs if and only if (Mﬁ , Bq), i.e., the canoni-

q
cal realization of (M, q}, is simply connected.
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III. MACHINE AUGMENTATIONS WITH REPEATED SYMBOL
DISTINGUISHING SLEQUENCES

Section 3.1 Introduction

Traditional syslem diagnosis often involves placing input and/or
output test leads at various interconnections of the system in order
to facilitate and speedup the testing process. However, interconnections
of system components are not usually accessible; even if they are access-
ible, test points are hard to select and thus make system diagnosis
a difficult feat. Oune way to overcome this difficulty is to design the sys-
tem so that, using (only) the system input/output terminals, efficient
diagnostic tests can be performed withoqt adding any extra test leads,

This chapter concerns how to Cesign machines with efficient check-
ing sequences. In particular, the quastion of how to find an economical
realization that has a repeated symbol distinguishing sequence (RDS)
is studied. This problem is approached via a formal notion of machine
augmentation. An augmentation of a machine is a realization such that
its input, state and/or output set include that of the given machine. In
particular, an input augmentation is an gugmentation such f;hat its input
set properly includes that of the given machine. Similar meanings are
linked to the state, output, or state -output augmentations, With reg-
pect to augmentations with RIS, input augmentations exist for any machine

[10},[ 11} and it will be shown that state-augmentations do not exist for
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~ any reduced machine that does not have a distinguishing sequence. On
~ the other hand, output augmentations generally result in corresponding

circuit realizations having an excessive increase in the number of out-

put terminals. This is undesirable because a limited number of output
pins are allowed for each LSI chip. Therefore this study is devoted
wholly to state-output aﬁgmentations, in which moderate enlargement

of the output set is attained at the expense of an enlarged state set.
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Section 3.2 Machines with Repeated Symbol Distinguishing Sequences

In this section, we will derive an upper bound on the length of
an RDS and a characterization of the machine which possesses an RDS,
both in terms ¢f some structural properties of the state graph of the
machine. Since an RDS of a machine is determined by a single -input
submachine, we shall examine some properties of autonomous machines.

It can be seen that the graph of an autonomous machine consists
of one or more weak components, Each of these weak components
consists of exactly one semicycle, which in fact is a cycle, and some
{(or none) paths which terminate on the nodes of this cycle. We will |
call each such weak component of (the graph of) an autonomous machine
a flower. In aflower, cach node of the cycle which has paths (other
than that of the cycle) terminating on it will he called a root. The sub-

graph that consists of all the paths (other thanthat of the cycle) termina-
eachnode inanin-tree hasaunique path tothe root, andthat an in-tree does
ﬁot contain any 8e111icycle. Summing up, the graphof an autonom oué ma-
chine isa set of disconnectedflowers, cachflower consists of exactly one
cycle (andno otlier semicyele) and some (or none) in-trees. For each
noder inanin-tree T, the branchin-tree atr isa subgraphof T which
consistsof allnodes (andarcs) thatcan reachr.

As an illustration, in Figure 3.1, D*0 is the graph of M. Since

inputs are aull the same, they arc elimirated from DO.
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8/x
I

1Q °
ql ql/o
q2 ' , Q4/0
qs CI4/1
44 Q3/0
A q5 q6/1

M
0

TWO cycles An in-tree with Q4 as its root

‘The branch in-free
at dg

Figure 3.1 The Graph for an Autonomous Machine
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Let M be a sequential machine. We will use Da to denote the
graph of M|a, where a € I; Cq(a) to denote the cycle of the flower (in
Da) which contains q; dq(a) to denote the length of the path from q to
the ngarest node of Cq(a), hence dq(a) = 0 if q is on the cycle Cq(a);
pq(a) ‘-tto denote the period of Cq (2). When the input a is known, Cq(a),
d,(@) and p, (a) will be abbreviated as Cy 9y and Py

In the graph of an autonomous machine, a cycle, a flower, or
the graph itself will be viewed as the machines they correspond to,
Hence a cycle is reduced if the autonomous machine it corresponds
to is reduced . Two cycles are equivalent if their corresponding
machines are equivalent. Two cycles are similar if they are equivalent
and have the same period.

We will derive an upper bound on the length of an RDS of any.
given autonomous machine expressed in terms of machine
graphical properties. We recall first of all that if g and r are non-
equivalent states of an n-state machine, then they can be_: distinguished
by a séquence of length < n.

Based on this, it has been shown that an autonomous macﬁine
has an RDS if and enly if it is reduced [ 10]. Hence the characteri-
zation of reduced autonomous machines will be basic {or our later
study on finding realizations with RDS's.

Let Da denote the graph of an autonomous machine with the input
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Theorem 3.1

If g and r are states in two nonequivalent cycles Cq and Cr of
Da.’ then there is an integer j < pq + P such that q and r can be dis-

‘tinguished by a’.

Proof:

Let M' = (I,Q", Z,6|Q' X LAlQ" X I) where Q' = {q]q is in Cy O
Cr}. ‘Since Bq # Br, there is a sequence x = al such that j = E(a})< IQ' l =

P

q+p.

T
In the event the peried of one cycle divides that of the other cycle,
then states of nonequivalent cycles can be distinguished by a shorter

input sequence.

“Theorem 3. 2

If g and r are in nonequivalent cycles C‘:l and Cr of Da’ Cq is
reduced, and pr ]pq, i.e., pr divides pq, then q and r can be distin-

guished by an input sequence aﬂwhere < pq.

Proof:

N
Let pql = kpr, i= P, and j = pq' Suppose ﬁ (a.]) = Br(a]) =

|
b11b12' e blib21b22' .. b2i' .. bki’ . 'bki‘ Since i is the period of Cr’

we must have but = bvt , forall 1 <u, v <kandl <t<i, Let

_— i A iy _
q' =a (). ThenB (') =byibyo...by.. b b .. by byge by
hence 3q,(a]) = ﬁq(a]), which implies q'=q. But clearly ' # q. This

contradicts that Cq is reduced.
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Applying Theorem 3.1 and Theorem 3. 2, an upper bound on the

shortest length of RDS's can now be derived.

Theorem 3.3

If M = ({a},Q, Z, 5,)) is reduced, then M has a RDS of length
k< max dq + P+ Dy - 1, where py is the period of the largest cycle
T qeQ

in D, the graph of M, and Py is either the period of the second largest

cycle in D such that Pqy ¥ e Py or is equal to 1 if no such cycle exists.

Proof:

Let ¢ and r he any two distinct states of Q. Let d = ma.x{dq, dr}’

'

q' = aq(ad) and r' = a (ad). Clearly g' and r' are states on Cq and

Cr respectively. Assume without loss of generality that pq _>_pr.

There are two cascs to be congidered,

Case 1: if pq } P, then clearly Py qu and Py 7 P hence

max d+ £+ 0, -1>d+2 +¢ -1 Since C_and C_ are reduced

and nonequivalent cycles, by Theorem 3.1, ' and r' can be distinguished

by an input sequence of length &+ ﬂr ~ 1, This implies that ¢ and r can

d+¢ +¢ -1
be distinguished by a T

Case 2: If P, ]pq, then by Theoremn 3,2, ¢ andr can distinquished
d+p
by a q, Since, in this case, max d+ £, + £, -1 >maxd+£, >
e @ 172 T=gQ g 1=
d -+ pq, the thecorem is true.
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A set of states S of a machine M converges under a € I if

6(q,a) = 6(r,a) and A(g,a) = A(r,a), ¥q,r € S. A k-convergence at

q € Q is a set § of size k that converges to the state g{under the same
input a).

The necessary and sufficient condition for a flower to be reduced

' wﬂl be shown next,

Theorem 3. 4

A flower F is reduced if and only if F is convergence -free and the

cycle of F is reduced.

Proof:

(Necessity) Obviously true.

(Sufficiency) Suppose g,r € Fandq =r but q # r. Since the
cycle, denoted C, of F is reduced, q and r cannot both be on C. . Let
xa € I be an input sequence such that aq(xa) € C, a (xa) € C.and aq(x)
or al;(x) £ C. If aq(x) # ar(x), then, since q = r implies ozq(xa) =a, (xa)
and Bq(xa) = SI‘ {(xa) and since C is reduced, we mgst have afq(xa) =a (xa)

ar(x)(a). Equivalently, o:q(x) and @ (x) converge under

and Ba.q (x) {a) =B
a, which contradicts that F is convergence-free. On the other hand, if
aq(x) = a_(x), let yb be the shortest prefix of x such that aq(y) * a ()
anda yb) = a @b) Since q =, B, (y)(h W) (b). Then a (y) and

o ﬁ/) converge under b, again coutradlcts the fact that F is converg-

ence-free. Hence no two states of F are edquivalent and so F is reduced.
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We are ready Lo establish a necessary and sufficient condition

for an autonomous nuichine to be reduced.

Theorem 3. 5

Any autonomous machine M with input a is reduced if and only if
its graph D is such that

i) D has no equivalent cycles,

ii} D is convergence-free, and

iii) all cycles in D are reduced.

Proof:

(Necessily) Obviously true.

(Sufficiency) By Theorem 3. 4 condition ii) and iii) ensure that
all flowers in D are reduced. FHence we need only show that states
on distinct flowers are distinguishable. Let q and r be two states on
distinct flowers F1 and F2 of D respaciively, Let d = max {dq, dr}'
Then aq (ad) and a (a.d) are stales on Cq and Cr respectively .since Cq
and C, arc reduced and nonequivalent. From Theorem 3. 2, aq (ad) =%

d . \
a (a7); hence q # r and M is reducec,
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Section 3.3 Machine Augmentations

A machine specification given to a designer is usually a behavioral
description which is eduivalent to the description of an irredundant
machine. Hence we may assume without loss of gener:il'ity that, in our
study to improve machine diagnosability, all machinesunder consideration
are reduéed andtransition distinct. It canbe shown easily that realizations
for reduced and transitidn distinct machiﬁes have the same or larger
input, state and output sets as that of the given machine. Hence such

Ia, realization can alwa,ys-be transformed into anéther realization whose
input, state and output sets includes that of tﬁe given machine as sub-
sets. One attraction about this type of realizatibﬁ is .that when it is
used {o simulate the given-machine only simple or trivial translations
of the inputs and outputs are necessary. Thus deviceé that are used

to pe;:form translations are simple, and consequently, thercost of
building one such realization is reduced. Moré importantly, the pro-
bability of failures in these devices is also smaller, To precisely

describe suchrealizations, let M' and M be two sequential machines. Thus:

Definition 3.1

M' is an augmentation of M if M realizes M under (01,0'2,03)

such that T EI', o EQ’, ZC Z', and 9y and Oq [Z are identity funetions. -,

Let M be an augmentation of M. Then M'is an inpﬁt augmentation if

IGI, Q=Q and Z = 7', (state augmentation and output augmentation

are similarly defined); M' is a state-output augnientation if I = I' Q¢ Q'

and Z ¢ 7',
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For machines that are reduced and transition distinct, the notion
of augmentation is just as general as t'ha.t of realization. It should
be clear that the problem of adding test inpul or outpgt terminals to
a sequential muchine can be phrased in terms of input or output
augmentation, but not vice versa in general. Various requirements
as well as various diagnosabilitics can be posed on augmentations to
vield machines that have certain desived behavioral characteristics.
In the following study, we will investigate the problem of how to find
economical aupmentations that possess RDS's.

Input augmentations with RDS's have been investigated previously
and are known toexist [ 10}, 11], hence will not be explored here. We will
“show that a stale augmentation with BDS does not exist for a reduced

and transition distinct machine which does not have an RDS.

Theorem 3.6

Let M be: a reduced and transition distinet machine and M' be
a state augmentation of M undey (crl,crz,cs). I, Vael Mlais not

reduced then, ¥ a'el', M'|a'is not reduced.

Proof:

Letael UM [a is not reduced, then there exist a,reQ (q#r)
such that ﬁq (x) = B.G), ¥xefa} . by the definition of realization,

this implies that, ¥ x ¢ { a +,
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‘Since M’ is a state augmentation of M, we have I' =T and Z2' = Z, and

0y!Tand Og IZ are identity functions, hence

Béfz(Q)(X) N Bc;g(r

)(x) vxe{a}’
But since M is reduced, g #r By Theorem 3.3, we have cz(q) %cz(r),

hence M"]a is not reduced. Because a is.arbitrarily chosen and I' =1,

CVael, M |a is not reduced.

Since a machine M has a RDS if and only if M la is reduced, from

Theorem 3.6, we immediately obtain:

Corollary 3.6.1
Let M be reduced and transition distinct machine. If M has no

RDS then no state augmentation of M has an RDS.

On the other hand output augmentations with RDS's generaliy result
in corresponding circuit realizations having an excessive increase in
the number of output terminals. This is undesirable in designing LSI_
circuits because a limited number of output pins are allowed for each
LSI chip. Therefore, our study will be devoted to the state-output
~ augmentation with RDS, in which the output set need only be eniarged

moderately at the expense of an enlarged state set.
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Section 3. 4 State -Outpul Augmeniations with RDS's

Since the minimization of output sets is our primary concern in
scarching for statc-output augmentations with RDS's, the approach we
adopt is to minimize the output set of the state-output augmentation
while placing no limit on the size of its state set. After the output
set is minimized, we then seek ways to minimize the state set in later

sections.

A cycle C1 is said to be enlarged k times into another cycle C2
if it is broken at any node into a sequence of arcs, and then joining k
copies of that sequence to form a cycle 02 with nodes renamed to
avoid duplications. For example, in Figure 3. 2, the cycle on the left

is enlarged twicefold into the cycle on the right.

Figure '3. 2 A Cycle Is Enlarged Twice

Note that the cycle to be enlarged can be broken at any node, and the

resulting cidarged cycle will always be equivalent to the original cycle.
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Let Da be the graph of an autonomous machine M with input a.

A node q ¢ Da is a source node if there is no arc terminating on it.

For each source node in Da’ we associate with it a subgraph Gq which
‘consists of the path from q to the cycle Cq(a) and the cycle.

We may now establish the theorem that asserts the existence,
for any machine, Of a state-output argumentation (with RDS) which
ha_s no more than twice as many output sy‘mbolé as that of the given

machine.

Theorem 3.7 (Double-Z Augmentation)

Let M be a sequential machine with no RDS. Then M has a state -

output augmentation M’ with RDS such that |Z'] < ZIZI.

Proof:

M does not have an RDS, so, Vae I, M[a is not reduced. We |
will construct another sequential machine M' in the following steps.

i) Get D,, where a is any input in L

ii) (To resolve convérgonces in in-trees of Da)' Skip this step
if there is no convergence in the in-trees of D,. |

Get S = {Gq Iq € Q is a source node in Da)}
uqall flowers in Da that are cycles}.

Rename states in S such that, for each q ¢ Q, all q's in S have
distinct names q, ql,qz,etc. Let B'(g) = {q, ql,qz, ceit, i‘.. e.
it is the set of all states in S that were q's. Hence, ¥qe Q,.

states in E'(q) are eguivalent in .



iii)

iv)

o2

(To force equivalent cycles to be dissimilar)

Construct 8' by enlarging cycles in S so that no two
equivalent cycles have the same period. Rename the states
in 8' such that, for each q € Q, all ¢'s and qi's in 8' have
distinct names, q,q;,qy, ete. Let E(g) = {q,ql,qz, coo by
i.e. it is the set of all states that are split {rom states of E'(g).
Hence, ¥V q € Q, states in E{g) are cquivalent in S'.
(To resolve equivalent and nonreduced cycles)

Let Z = {b .,bm}- and let Z‘={b‘,b'2,...,b;n}

1 bz, ..
UZ, where b, £ 7, b; ;ébj' if i #j. Ineach cycle of 8', if
bi is the output on the arc terminating on the root, then change
l:-i to b;; if there is no root, then change the output, say bj’ on
any arc to b}.'.
(To embed M' [a into M)

Let M' be a machine such that (1) the grabh of M'|a is

S, and () ¥r'eQ and ¥ecel (c£a), 6'(x',¢) =06(r,c)and

A'(rt,e) = alr,c), wherer e @ and r' € E(r).

As a result of steps ili) and iv), all cycles in 8' are reduced and

nonequivalent, Moreover, since the in-trees in 8" are all single paths,
there can be no convergence in 8' except, possibly, at the root of a
cycle, but {his is also ruled out in step iv) by the changes made on the
output of the arc terminating on the root, Hence, by Theorem 3. 5,

S' is reduced. Now let 0y Q—= Q' be the identity function, and let
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Ug:Z — 7 be ‘such that, Vbie Zi’ US(bi)_" bi’ and, Vbie Z'- Z,
" - , . _ ' : a t s _
03(bi) = bi' Clearly ﬁr(x) =04 (ﬁr (x)) ¥r e Q, hence M' is a state

output augmentation of M with RDS.

In step v) of the above proof, the way of embedding
M'|a into M' is certainly not unique. The transition function and
output function can be def:ined in any fashif)n, as long as the machine M'
obtained is a state -outputl augmentation of M including M' |a as a sub-
machine.

It is best to consider an example to illustrate the steps stated

in the proof of Theorem 3.7. Let M be the machine in Figure 3. 3.

8/

Q o _ | 1
1 2/0 9/0
2 2/0 1/1
3 2/0 4/1
4 5/0 1/1
5 7/1 8/0
6 5/0 1/1
7 5/1 6/0
8 3/0 9/0
9 3/0 8/0

Figure 3.3

The steps to obtain M' as shown below will correspond to those
in the proof of Theorem 3. 7.

i) Choose 0 ¢ I and get Dy-



ii) Get 8 = {Gl, Ggs Ggy Gy GG} from Dy, and renaming states

such that, ¥ q ¢ Q, all q's in S have the names q,ql, qz, ‘e

:G6

. ete,
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For ie Q, E'(i) = {i}, except the following.
E'@) ={2,2", 2%, B'®) ={3,3%}, £'(5 = {5,5%, B = {1, 7"}

iti) Construct S' by enlarging cycles in S so that no similar cycles

exist8; rename states such that, ¥ q ¢ Q, all q's and ql's have

the names q, PP YRR ete.
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E(i) = {i} ¥ i ¢ Q except the following
E(z) = {23 215 22! 23- 24’ 25}

E(3) = {3, 31}

E(5) = {5,5), 5,

iv) On each cycle of S', change the output either of the arc which

terminates on the root,or of any one arc if there is no root

’

in that cycle.
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v) Embedding process.

5'/R'

a I 0 1

i Qf

11 2/0 9/0
2 2/0" | 1/1
21 22/0 i/1
24 21/0' 1/1
24 24/0 1/1
2, 25/0 1/1
2, 23/0' 1/1
3 2,/0. | 4/1
3, 23/0 4/1
4 5/0 1/1
5 7/1 8/0
‘51. 71/1 8/0
‘52 72/1 8/0
8 51/1 1/1
7 5/1 | 6/0
(A 52/1 6 /0
7, 51/1' 6 /0
8 3/0 9 /0
9 31/0 8/0

M'[0 is clearly reduced. It is easy to verify that M’

is a state-output augmentation of M.

To see that thé size ofl the output set Z' of the state-output

augmentation with RDS in Theorem 3. 7can not be reduced for machines
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in general, let M be a machine such that, V¥ae land ¥be Z, Da con-
tains two cycles with period 1 and output b, Then, in order to climinate
equivalent cycles in Da’ any stale-output augmentation of M, say under
(0'1,0 ,03), must have at least two distinct outputs b, b' such that

03(1:)) =03(b‘) =b, ¥b e Z. Therefore the output set of the state-
output augmentation must be at least twice as large as that of M.

in circuit terms, Theorem 3.7 says that, for any machine M
that has no RDS, there is a state-~oulput augmentation M' with RDS
such that M' has one more output terminal than M. We will present
one such augmentation M' which does not require any input and
output translations.

Let M' be the state-output augmentation with RDS as constructed
in the proofl of Theorem 3.7. Let £ binary output terminals be used
for M. I, for each bi € 7, bi is assigned the value (ail, Bigrene ;am),
where ay; € {0, 1} is the value on the jth output terminal, then let M'
have £ +1 outpul terminals and bi (and b;) be assigned the value
(a'i.l’ Aigre e igs 0) (and (ail, Bigseeesdy) 1)) as shown schematically
in Figure 3.4, During normal operation, M' simulates M using only the
first £ output terminals. But when the machine M' is to be diagnosed,
the outputs of all its £ + 1 terminals will be observed so that the machine
will have a RDS., Thus a diagnostic sequence employing this RDS can

be applied to W',
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At et e e e 4 ————1'.
oMoz
e o ——

|
|

1,
M NIRE: }z'

Figure 3.4 A Double-Z Augmentation Using
neither Input nor Qutput Translations
It will be shown that for scme machines, there exists
state-output augmentations (with RDS) which have less outputs than that
of double-Z augmentations.

A cycle C of a flower G is said tobe 1 - peeled at the sf:ate'r1

if the state ryis split along with the in -tree, if any, as shown in Figure

3.5, Clearly every state q in the peeled flower is equivalent to the

state q in the unpeeled G and ri =T In general, C is k-peeled at the

state rlif C is 1-peeled at the state Tys and then k-1 peeled at the state
ro It is obvious that if C is k-peeled (at any node of C), k 2 {the period
of C) - 1, then the flower containing C will have only one in-tree.

Let Z be the set of outputs of Da' A cover S for cycles in Da

is a subset of Z such that for each cycle C in Da there is a b ¢ S such

that b is an output on an arc of C. Clearly ]S[ < ]Z ]
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Figure 3.5 The Cycle CIs 1-pecled at ry

Corollary 3.7.1 |

If M is a machine then there exisis a state ~output augmentation

M' with RDS in a € I such that |7

= [SI (U l?{ where S iz a minimum

cover for cycles in D’l‘
[ 4

Proof:

The proof of this theorem is identical to that of Theorem 3.7

except in step ii) the cycle in cach Gq of 5 is i-peeled at the root, for
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some integer i, such that the last arc peeled from the cycle carries

an output in S.

Although the method suggested by Corollary 3. '7 1 uses less out-
put.syrnbols,‘ it usually ﬁeeds more additional states than double -7
augmentations. Furthermore, adding outputs in augmentation, regard-
less of how few they are,a‘: often means that at least one extra output
‘terminal will be needed. Since double-Z augmentations can also be
implemented with one more output terminal, we will stick to double-Z
augmentations in the following studies on how to _miﬁimize the number of

states in augmentation with RDS.
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Section 3. 5 Minimization of the State Sct in a Double-2 Augmentation

To facilitate the process, we will consider a slightly restricted
double-Z augmentation: M' is a double-Z augmentation for M under
(01,02,03) such that ¥ be Z, b, b' € Z' for which(r3(b)=03(b’)=b. Hence
each symbol in Z corresponds to two symbols in Z'. We will try to
minimize the number of states in double -Z augmentations by minimiz-
ing the additional stales required to resolve convergences and to re-
solve equivalent and/or irreduced cycles in two separate processes.
Since convergences can only occur at the in-tree part of a flower, we
need only to consider in-trees in minimizing the number of states to

resolve convergences.
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3.5.1 Minimization of the State Set in Resolving Convergences

Let us consider first of all how a k-convergence in a flower G
can be resolved (by double-Z augmentations) usi.ng the least number of
_ additional states. Let S be a k-convergence at ry in G as shown in
Figure 3.6, where only the convergence and the ensuing path of length
i+ 1, wherei= [10grkj i (L%} is the largest integer >x), are shown,
Let us aséume tha.tiall rj='s are states in an in -Eree of G. The number

k can be expressed as

i i-1 1.0
k-a02 +a12 Foane +ai_12 +ai2 (3.1)

Figure 3.6, A k-Convergence and the Ensuing Path
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Figure 3.7 Resolve k- Convergence When k Is a Power of 2

where aj e {0,1}, v1 <ij <1, and 3, = 1. I kisa power of 2, then
a k-convergence can be resolved using a double-Z augmentation as
shown in Figure 3,7, where the in-tree containing this convergence
s expanded,
The total number of states in IMigure 3.6 can be easily counted
to be 2k-1. On lhe cther hand, if k is not a power of two, let {jl,jz, cee ,js}

be the set of integers such that 8 1<t <s, in (3. 1) equals 1, i,e.
¢ =
3 ]1
2", (3.2)
. . jt jt
Then, for each T the 2 ° states in the k-convergence is a 2 -convergence,

k =

o

t=1
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which can be resolved as illustrated in Figure 3.7. Thus the k-
convergence can be resolved as shown in Figure 3. 8.
The total number of states in Figure 3.8 is therefore equal to k',

where

g | j
k' < il (2-3t)+(jl -js"l) (3.3)
= | _

Since jp=i= [logzkj, jS 20, and (3. 2), we obtain

k' <2k + [logzkj -1 . (3. 4)

We will later refer to the method in Figure 3.8 as the expanded

in-tree method.

Convergences with different outputs at the came state can be
resolved by the same expanded in-tree as demonstrated in Figure 3.9,

12 jy  dgtl iy il

—
_—
——

. Qe -
TP Lo |
2]1 DR o=
e 6"‘-—- . \\\
M—-—-@""*& ‘0'\,’;\:-): '
. -
) . @\@ ‘ \Q\_ /0
i, \e“““@*-u‘ (3 .
2 ' : -"‘_:.{-)\e’(f //
——-"'"_- L It
- .—-‘0‘- \ \' \W’
a8~ *o-\’;_/
. -
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. e
]s . &\@\_e‘ ///
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Figure 3.8 Resolve a k-Convergence Where k Is
Not a Power of 2
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Figure 3.9 Resolving Two Couvergences at the Same Node

‘Therefore a smaller convergence can always be resolved by the
expanded in-tree which resolves a larger convergence that occurs
at the same state.

It should be noted that, as in Figure 3.8, whenever a k-conver-
gence at a state ry is resolved using the expanded in-tree method,
then any convergence at rj, V¥ 2 <j < i+1, will get an additional incoming
arc with the ouiput bj'. For example, in Figure 3.10, if the 3-convergence
{1, 2, 3} at the state 5 is resolved as shown, then the stale 8 gets a new
incident arc from the state 5, which has the oulput bé. This implies

that the 2-convergence {5, 6} at the s.iaic 8 can no langer be resolived
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simply by assigning a new output bé to the arc from the state 6 to the
state 8. In fact, we have to resolve the convergence af the state 8 as
a 3-convergence {5, 5 6}. This type of added incoming arcs to a node
as a result of resolving a convergence at a preceding node can

create new convergences as well as enlarge convergences at some
successive nocie s. Re sohlfing these newor enlaréed convergences may a-
gainturnup other new con\}ergence S. This process may go onfor afew

iterations before it stops. Asaresultof such phenomena, this methodfor

resolving convergence does not always employ a minimum number of states.

Figure 3. 10 An Enlarged Convergence As a Result of
Resolving a Preceeding Convergence
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Accordingly, convergences in it {lower should be resolved
startiug from those which are farthest {rom the root and then those
next farther and so on, However, convergeuces of the same dis-
tance from the root can be resolved in any order. Furthermore, con-
vergences in a set of flowers, such as Da of a machine, can be resolved
by consider_ing cach flower independently. Although the expanded in-tree
method provides us a way to minimize the number of states in resolving
convergences, a bound on the number of states required in general
should help us to decide whether this method is feasible in a given situ-
ation. Since using the cxipanded in-tree method may generate new con-
vergences in a few iterations, which causes some complexities in

deriving a better bound, o different strategy will be used.
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3. 5.2 An Upper Bound on the Number of States for Resolving Convergences

Let T be an in-tree in the {lower G with the node t as its root.
For any node r in T, let Pr denote the path from r to t, If S is a con-

vergence at r, then S is separated at r if the branch in-tree at r

together with a duplicated path P;_ are separated (except the root) from
T as illustrated in Figure 3.11. Note that a new convergence will be
created at the root after a convergence is separated. Let s be a node

in T such that s has an arc to the root t. Then the branch in-tree TS

at s is said fo be l-eiongated if a path, which is equivalent to the path
of the cycle C of G starting {from t with a length equal to the period of
C, is inserted i)etween s and t as shown in Figure 3. 12, The operation
"k-elongated' can be defined similarly as the 1-clongation except the
inserted path between the branch in-tree and the root is a cbnsecutive
connections of k coi)ies of the cycle.

| We would like to point out here'that all the operations we defined
so far, namely k-peelings, in-tree expansions, convergence separations,
and branch in-tree k-elongations are all state splitting operations.
‘Hence, for a. state q, any newly created states which are split from q
as a result of these operations will be taken as a member of the set
| E(g) (sée the proof of Theorem 3. 8 for the meaning and use of E(g)),
andrthe embeddihg process can always be performed properly to pro-
duce a state -oufput augmentation with RDS. Hereafter we will

merely describe how a reduced autonomous machine can be obtained
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with these operations and proper outputs assignments without further

discussions on embedding procedures.

Figure 3,12 T, Is 1-Tlongated
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Let C be the cycle of a flower G and p be the period of C. Let

{81, S -

. ,Sj} be the set of all convergences in the in-trees of G

let q; denote the state to which Si converges. To obtain a bound on the

number of states, the new strategy to resolve convergences in G is

described in the following steps:

1)

2)

3)

4)

C is k-peeled, for some k, at any ndde of C so that G contains
only one in-tree. Clearly k < p-1. Let t be the root.

Each counvergence S.l is separatedat q; inthe follo.wing order. That .Si
which is farthest from the root t is separated first (conver-

gences which are of the same distance may be separated in

“any order), then a convergence that is next farthest is separated,

and so on. Consequently, in the resulting flower each branch

in-tree TS at S where 5, has an arc to the root t, contains
i _
at most one convergence. Let this convergence be denoted

asSi, and let qi be the state at which Si converges. As a
result of separations of j convergences in Tt’ there is a j-
convergence at the root t,

For each TS , if dq,, i.e. the distance from q; to the root t, |
i i
is smaller than [logzlsi'“ + 2 then T _ is £-elongated, where

2 is the smallest integer such that £ > (|logy|8}[] +2) - dy -
| i

The in-tree Tt is ¢'-elongated, where {'is the smallest

integer such that £'p > Llogzjj + 2,
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Let G' be the {lower resulted from executing the above four
steps on G. First note that [S{] < [Si]. Since the distance from q;
to the root t is larger than [log2 [S; ]j + 2 as a result of step 3), and .
gince therec is only one convergence on TS_, we may apply the expanded
in-tree method on all Si-convergences wit;mut creating any new con-
vergences.

Similarly, the j-convergence at t can be resolved without creating
any new convergeuceé. Let the number of states for resolving all
convergences be m'. | Then, from (3. 4),

m' < i

L [2]8j]+11ogy [s{[) -1] + 25+ {10gyi] -1, (3. 5)

Let m = t fSi[, Le., the number of all states in the conver-
i=1 -
gences in the in-trees of G. Since [logzxj <x-~1, and ]S;] < ]Si’,

(3. 5) can be reduced to
m' < 3m 4. (3. 6)

After all the convergences are resolved, the total number of states in
the in-tree of G', denoted ni,, should include the nun}ber of all the other.
unaccounted states which is no more than (n1 - m) + El (d +p)+(p-1)
where ny is the number of states in the in-tree of G._ Henée (nl- m) is
the number of states in the in-tree of G that is not in any convergences;
(dqi + p) is larger than the number of extra states in 'I‘Si {as the results

of Step 1) and 3) which have not yet been counted in (3. 6), Similarly

the last term (n-1) is larger than the number of states uncounted (as
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a result of Step 4). Hence

n! <3m+j+ -rn)+i (@ +p)+(p-1) (3.7)
1= 1 i=1 4 |

Clearly dq < (n1 -m)}, hence (3.7) becomes
=

n}. < n +2m+j(111-m+p+1)+(p-1). (3. 8)

1
Let n denote the number of states in the flower G. Then clearly
n= rl1 +p - 1. Since each cdnvergence involves at ieast two states,

i < m/2. Hence, from (3.8), we obtain
ni <n+mfn - m + 5)/2. | (3.9)

If a Da; instead of a single flower is considered, let nt':, n,, m,
_ have the following meanings:

L

the total number of states in the in-trees of Da after re-

o
solving all convergences.

n,: the number of states in the flower'GQ of D,.

m, the number of states that are in a convergence in the

in-trees of Gﬁ.

Then, by (3.9)

n:: < %:[n£+mﬂ(n£-m£+5j/2]. (3.10)

Let n and m be, respectively, the mumber of staies in Da and the num-

ber of convergences in the in-trees of Da‘ Then since n = Z n, and
£

m, <m, (3.10) becomes
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n‘;: <n+ ‘m}_:(nﬂ -m, + 5)/2

0 4

=n+mn-m+ 5/2. (3.11)
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i& 3 Minimization of the State Set in Resolving Cycles

As noted before, any number of equivalent or noureduced
cycles with different periods can be resolved by assigning a new
output symbol to one arc of each cycle. Similar cycles can also be
resolved with double-Z augmentation by assigning one of two output
symbols fo each arc of a cycle and by enlaré;ing some cycles so that
mlore cyclés can be resolved. | |
After the convergences in a Da are resolved, in some flower of .
Da the outputs on the two arcs (one of the eycle and the other of the
in-tree) whiéh terminate on the root may haveto be assigned different
outputs, e.g. b]. gnd bé, to resolve the convergencg at the root. Henée
the output 6n such an arc of a cycle should not be changed during output
assignments in resolving cycles, otherwise a convergence at the root-
resolved before would reappear. In order to minimize fhe number of-
states in resolving cycles in a Da’ the output assignments should start
with the class of similar cycles which has the smallest period; Assign
outputs bi dr b{ on each arc of cycles in this class if the output of that
arc was bi, SO thét as many nonequivalent and reduced cycles can be
"produced. If after doing this there are still some similar eycles left
unresolved in this class, then enlarge these unresolved cycles once.
‘Repeat the above procedure on a class of similar cycles with

smallest period, and so on until all similar cycles are resolved.



76

3. 5.4 An Upper Bound on the Number of States in Resolving Cycles

From our previous discussion, it is clear that the enlargement of
some cycles may be necessary only during resolving similar cycles.
Furthermore, less similar cycles can be resolved by a fixed
output set if the period of those cycles is smaller. If the out put on
one arc of the cycle is not allowed to be changed, e. &., when it is
fixed from resolving the convergence at the root, then the number of
similar cycles that can be resolved is further reduced. Therefore the
worst case for resolving cycles in a Da is when all the cycles in Da, are
similar with a period equal to one and, in each cycle of Da’ th1e output
of the arc that terminates on the root is fixed. Let us assume that Da ‘
is s0. Thus if a cycle in Da is enlarged p times then only the outputs
on p -1 arcs of the cycle may be assigned either one of two values,

Let Jp denote the number of nonequivalent and reduced cycles with

period p, where the outputs on p-1 arcs of cach cycle have the values

in, say, {b,b'} and, for all cycles, the output on the remaining (one)

arc isfixedtobe, say, b. Letthe number of eycles in Da be N, Since all

the eyclesare similar with period 1, n, is alsothe number of statés incyclesof
Da" Lef D;l be the Da with all its cycles resolved. Let n(': be the num-
ber of states in the eycles of D;l, and let ¢ be the largest period of

cycles in Dz'f Theun the smalles! possible ¢ must satisfy the inequality,
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£-1 g |
2, Ji<n, < ) a3 (3.12)
i=1 =1 :
Clearly then
£-1 £-1 (3. 13)
T i e . - i . oL
nl = E - I+ e- (o Z i-J)
i=1 i=1
£-1 | i . '
where Z Q. Ji)is the number of reduced and nonequivalent cycles with
i=1 . -1 ' ‘ -
period £ ~ 1 or less, and ¢ - (n, - ), i- J,) is the number of reduced

i=1
and nonequivalent cycles with period £.

For small values of nc's, the corresponding values for ¢'s and

: (n(':) 's are shown in Table 3. 1.

n, 4 n(': '
1 1 1
2 2 3
3 3 6
4 3 9
5 4 13
R 4 17
7 4 21
8 5 26
9 5 31
10 5 36
11 5 41
12 5 46
13 5 51
14 6 57
Table 3,1

Small Values of n, , Mmd n’.
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Recall the Mbius formula [17 ],

I (k) =L 2 ) kP/d (3.14)
p P4 D ,
where
1 if d=1
u(d) = (- 1)J if d is the product of j distinct primes

0 if d contains any repeated prime factors.

Ip(k) is the number of all irreducible polynomials with degree p over

a finite field of k elements. FEach irreducible polynomial of degree p
over a finite field of k elements corresponds uniquely to a cyclic genera-
tor, and the sequence generated by each such cyclic generator is

just the output sequence of a reduced cycle with period p and with

the output of each arc one of k values. Therefore Ip(2) is equal

~to the number of reduced and nonequivalent cycles with period p and
with the output on each arc one of two values. Even though the

output on one of the arcs in each cycle is fixed in our case, obviously
the output sequences of at least one hall of the cycles counted by IP(E)

can be used as output assignments tc a cyele in Da with period p. Thus

1
Tp 2 5 L,@) (3.15)

We will use Ip as an abbreviation for Ip(2; .

If £" is the integer such that

1 £-11_1 1 ff__\' . (3 16)
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Then, because Ji > —é— Ii’ comparing (3. 12) and (3. 16), we have
L'> 1. (3.17)

From (2.14), I. can be expressed as

I =2 (2 (2 - Z a2 - (3.18)

wherea €10,1,-1}, a1_1 b >b 1f]1>32, and

I 19
= 1/2 - if 1is even ‘
‘ (3.19)
b1 g i/3) if iisodd.
Let us define I{ as
1 b1+1 :
1;——1-(2 -2 ). : (3.20)
- s_ -1
Since 2° = ) ot 1, comparing (3.18) and (3. 20) and noting the
: t=1
value of b1 as shown in (3.19), it is clear that
Ii > I{ . (3.21) -

It is seen that both Ii and Ii‘ are “monotonically increasing functions

of i. Thus let p be the smallest integer such that
| p-1 -~
+ 2 4 <n <4 § 1. (3. 22)
i=1 i=1 |

Thenp > ¢'. From (3, 20) and (3. 22}, we obtain
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1 P [p/2) +1
2 gy (2 - 2 )

1 p~1
m 2 . (3. 23)

It can be shown that

>

Wi > Vi g
hence from (3. 23)

1 .
nc}f‘?(p"l) Vp> 5,

Substituting this into ( 3. 23), we obtain

n o> 1 21)-1.
C = 4n
C
. 2 p-3 .
Thus n; > 27 ", Take log2 on both sides then
2logzllc > (p-3)
or
p < 2Iog2nC + 3 Vp> 5. (3. 24)

Recall that ¢ is the largest period of cycles in DE’1 and p > ¢° > £, hence
' 3.25
n, < pn . ( )
Substituting (3. 24) into (3. 25, we obtain an upper bound

! P )
n, < nc(3 + 2105,2110, V> 5. (3. 26)

By careful examination on Tabls 2. 1, we found that /3. 26) is also

true for ¢ <4, hence

! 3+ Zlog.n ). 3. 2%
nc < I‘lc( 4 )1.0b2 (:) ( )
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3.5.5 An Upper Bound on the Number of States Requlred for Double-Z
Augmentations

Combining (3.11) and (3.27), an upper bound on the number of
states required for a double-Z augmentation, denoted n' , for any n-state

machine can be obtained as

nr;S n + m(n_ -m+ 5)/2 + n, (3 + Zlogznc)- | (3. 28)
Since m, i.e. the nurnbe} of convergence:s, at worst can be of the 6rder
n, n'is, in g.eneral, of the drder nz. In circuit terms, it says that a |
doﬁble-z augmentation needs at most  double the number of

memory elements of the original machine.
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Section 3. § Summary

Various properties of state graphs have been extracted to estab-
lish, firstly, an upper bound on the length of an RDS, ihen a necess-
ary and sufficicnt condition for a machine to possess an RDS. The latter
has served as a base from which methods to construct state -output
.a.ugmentations with RDS's have been devised.

Various augmentations of machines have been defined. Augmen-
tations with RDS's have been viewed as a way to improve the diagnos-
ability of a sequential machine. After an evaluation of advantages
al.ld disadvantages of various augmentations, input augmentations with
RDS's and state -output augmentations with RDS's have been selected ag
candidates. Since the former have been studied by other re scarchers,
our major effort has been devoted to investigating state -output agumentations
with special atlention to minimizing the size of the output set of an aug-
mented raachine. 1t has been found that as few as twice the number of
outputs of the given machine is sufficient for constructing a state -out -
put augmentation with RDS. This is called the double-Z augmentation.
It has been denionstrated that there exists an efficient way to imple -
ment a double-%7 augmentation which does not require any input/output
translations to simulate the given machine. Techniques for minimiz-
ing the number of states in resolving convergences and in resolving
equivalent and nonreduced cycles have been developed. 4n upper bound

on the nuwmber of states required in each case has been derived, and the
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sum of them results in an upper bound on the number of states required
for double-Z augmentations. This bound reveals that, in worst cases,
we have to double the number of memory elements of a machine to

obtain a double-Z augmentations.
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