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I. INTRODUCTION AND FUNDAMENTALS

With the rapid advances of modern electronic technology, thou-

sands of logic elements can now be incorporated into a single large

scale integrated (LSI) circuit chip. In order to ensure that a LSI chip

functions correctly according to its design, it is necessary to test the

chip after it has been manufactured and, periodically, after it is in

use. Since the number of input and output pins (and hence that of the

test terminals) on each LSI chip are relatively small and, furthermore,

the behavior of the circuits on most such chips are sequential in nature,

the diagnostic problem becomes a difficult one. Fault diagnosis of

sequential machines has drawn growing attention lately [1] -[9]. It

has been shown that checking sequences are among the most general

diagnostic sequences for sequential machines under relatively unrestricted

faults. It has also been pointed out [4] that sequential machines,

which have repeated symbol distinguishing sequences (RDS's), have

short checking sequences. This report is concerned with the furt her

study of these two types of diagnosabilities, that is, i) the possession

of a checking sequence (i. e., "checkability") and ii) the possession of

an RDS. In particular, the investigation is concerned with methods of

augmenting the structure of a sequential machine such that the augmen-

tation can realize the behavior of the given machine and, in addition,

is diagnosable in the sense of i) or ii).
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To precisely formulate the concept of a diagnostic test when

faults are unrestricted, we adopt the following notation and terminology

in describing the structure and behavior of sequential machines. M =

(I, Q, Z,6,X) will denote a (Mealy) sequential machine with finite input

alphabet I, state set Q, finite output alphabet Z, transition function 6:

Q xI - Q and output function: X: Q I -- > Z. (M is finite-state if

Q is finite. ) If X is a set, X + will denote the set of all finite, non-null

sequences over X; the set X* = X + U{A} includes the null sequence A.

If T and " are the natural extensions of 6 to Q x I* and X to Q x I+ , the

state behavior of M in q (q e Q) is the function a : I* -> Q where

a (x) = T(q,x), for all x e I+ , and a (A) = q; the (input-output) behavior

of M in q is the function q :I + ---- Z where jq(x) = X(q,x), for all x e I.

(Thus 1q(xa) = X(a (x), a), for all x e I*, a e I). The behavior of M is

the set BM = { q Q}. If q, r E Q, r is reachable from q if there is

an input sequence x e I* such that a (x) = r, and R(q) will be used to denote

the set of all states in Q that are reachable from q. M is reachable from

q if r is reachable from q, for all r e Q. M is strongly connected if M

is reachable from q, for all q e Q. Regarding input-output behavior, if

q,r e Q, q is equivalent to r (q r) if 0q = pr (i.e., 1 q(x) = Pr (x), for

all x e I+). M is reduced if q r implies q = r, for all q, r e Q. If q E Q,

we will sometimes refer to the pair (M, q) as an initial state machine

with initial state q, and refer to 1q as the initial state (input-
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output) behavior of. (Miq). (M, q) is reachable if M is reachable

from q, and (M,q) is reduced if M is reduced. The reach-

able submachine of M from r E Q, denoted (M, r), is the machine

(I, R(r), Z,6 IR(r) x I, X IR(r)x I), where fIX means the function f restricted

to the set X. If M and M' are sequential machines over the same input

alphabet I and output alphabet Z, q e Q, and q' e Q' then q is equivalent

to q'(q q') if Pq = P/,; q and q' are distinguishable if they are not

equivalent; M is equivalent to M'(M - M') if BM = BM.

Given a machine M, a state q e Q, and an input sequence x e X+ ,

the value q(X) of the behavior of M in q is interpreted as the last ouput

symbol emitted if input sequence x is applied, starting in state q. In

discussing the diagnosis of machine, it is often convenient to have an expli-

cit representation of a whole output sequence as opposed to the last sym-

bol. Accordingly, the extended (or sequence -to-sequence) behavior of
M in q is the function ~: I+ -- Z+ where k (ala2. .. )= (al)q(

aq na2 q an) q(al a24-

Pq(a la2..* an). Note that, since M is a Mealy machine, the length of

the output sequence q (x) is equal to the length of x. Since q uniquely

determines ' , one should also note that, as functions, 3q = r if and

only if /q =r .

For each sequential machine M = (I,Q, Z, 6,X) we associate with it

a (state) graph whose nodes are the states in Q, having an arc from

state q to state r labeled with a/b, where a E I and b E Z, if and only if

6(q, a) = r and X(q, a) = b. We will use M a to denote the autonomous

machine ({aj,, Z, 6 IQx a)}, X Q x Ca}), and Da to denote its state graph.
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In the state graph of an autonomous machine, the input label on each arc

will be omitted.

Let D be a graph of a sequential machine M. A subgraph of D

consists of nodes and arcs of D. A path in D is a sequence of arcs

q 1 q2 ' ,q 2 q 3 ... k-1q k , such that all the nodes, qi's, are distinct; the

length of this path is k-1 which is the number of arcs in this path. A

cycle in D is a closed path, i. e. it is a path with identical first and

last node. The period of a cycle is the number of arcs in the cycle.

A semipath in D is a sequence of arcs q 1 q2' ,q 2 q3 ,... k-1qk , where

qiqi+1 means an arc qi qi+ 1 or qi+lqi, such that all qi's are distinct.

A semicycle in D is a closed semipath. A graph (or subgraph) is strongly

connected if there is a path from every node to every other node, and

it is weakly connected if between any two nodes there is a semipath.

A graph is disconnected if it is not weakly connected.

Let us now consider the diagnosis of a machine M = (I, Q, Z, 6, X)

relative to the class of machines

1I1(M) = { M' IM' = (I, Q', Z, 6', ') and IQ' < [}

(where X [ denotes the cardinality of set X).

Thus, with respect to this class of faulty machines, a fault of

M is any abnormality which can result in any machine M' with the same

input and output alphabets as M and no more states than M. The choice

of M1 (M) is motivated by certain physical assumptions; namely that the

faulty system is representable by a machine and has the same input and
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output terminals as the fault-free system. Q is chosen to represent

all possible physical states of the fault-free system; hence no perman-

ent fault will cause an increase in the number of physical states. (It

is possible, however, that the number of nonequivalent states will

increase since M need not be reduced. ) Under these assumptions, faults

are unrestricted in the sense that any permanent fault of the system repre-

sented by M results in a system representable by a machine M' E J1(M).

The type of diagnostic tests for machines with unrestricted faults are

"checking sequences" and "detecting sequences." These sequences are

defined formally below.

Definition 1. 1

If M is a machine, q E.Q and x e I+ , then x is a checking sequence

(CS) for (M,q) if, for all M' E M(M) and all q' E Q', 'q(x) = (x)

implies that, for some state r' E Q', r' q (i. e., 1', = q).

Definition 1. 2

If M = (I, Q, Z, 6, X) is a machine, q E Q, and x E I+, then x is a

detecting sequence for (M, q) if, for all M' e 'A(M) and all q' e Q',

h,) = (x) implies q' = q (i. e., = ).

It is easily seen that detecting sequences are special cases of

checking sequences. The difference between a checking sequence and

a detecting sequence is that in the latter case, a positive

response to the sequences says that the state of M' just before application

of the sequence is a state equivalent to q; in the former case we can only



guarantee that some state of M is equivalent to q. For more detailed

study on properties of checking sequences and detecting sequences of

sequential machines, the reader is referred to [8]. A sequential

machine is checkable (detectable) if it has a checking (detecting) sequence.

Since the checkability or detectability of a machine (M, q) depends

on the behavior Pq let us focus our attention, for the moment, on be-

havior, per se. Suppose that 0: I+ - Z and let us consider all other

functions P': I+ -- Z that can be derived from 0 by first applying a

fixed sequence y e I*. More precisely,

Definition 1. 3

If Z: I+ 
- Z and y e I* the derivative of / with respect to y

is the function 0y : I Z where 0y (x) = A3(yx), for all x e I .

The concept of a derivative (although it may go by some other

name or even remain nameless) is essentially the concept of "state"

from a behavioral point of view (see [12], for example). The name is

borrowed. from Brzozowski [13] since his use of the term, if translated

from sets to functions, is a special case of the above definition. A

fundamental relationship, that provides a machine interpretation of deri-

vatives, follows directly from the above definition and the definition of

machine behavior, that is:

If /q is the behavior of M in q, then (j3 )

is the behavior of M in a (x).q
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In what follows, we will let D denote the set of all derivatives

of 3, that is

D =y EY I* J.

Given an arbitrary I: 1 - Z, the derivatives of 3 permit an

easily conceived construction of a "canonical" sequential machine that

realizes 1, where the states of the machine are just the derivatives

Dp. More precisely, if 3: I + --4 Z, the derivative machine of 3 is

the sequential machine

M = (I, Qp' Z, 61, A )

whereQ = D and for all y E Q 3 and alla E I,

6 (1y, a)= 1ya'

x (1y a) =:(ya).

The reader is referred to [12] for details as to how the construc-

tion is motivated and for verification of the important properties summar-

ized in the following theorem:

Theorem 1. 1

If 1: I+  4 Z then M is reduced, reachable from 1, and for

all 1' E D p, the behavior of M13 in 3' is 3'.

Given a machine M. Let q E Q. We will see that the state set

of Mq (the derivative machine of Pq), can be expressed in another way.

Let M' = (I, Q', Z, 6', V'), where
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Q' = I r E R(q), i. e. the reachable part of M from q},

and 6' and A' are defined as, V pr e Q ' and a e I,

6'( r , a) = (a)

and

X'(0r, a) = Pr (a).

Since, by definition, V Pr E Q', 3 x E I* such that a q(x) = r, the above

definitions for 6' and ' can be rewritten as, V x e I* and a e I,

a'(fin (x)' a)= O q(xa)
q q

and

A'(Ia (X), a) = q (xa).

Since, by definitions of /q and (fq)x' V x e I* and y E I+,

a q (x) = Oq (Xy)

and

(q)x(y) q (x),

we conclude that

a (x) (q)x

Clearly pa (x) and (Pq)x are states of Q' and q. We can easily see
q qthat 6' = 6 and X' = XA Therefore Mq and M' are actually the same

machine. In our following studies, we will use either (q ) I x e I* }
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or {r I r E R(q)}, whichever is more convenient, to denote the state

set of Mq.

To define an important machine structural properties, namely simple

connectivity, we need a few more noticns and terminologies. A subset

R of the state set Q of a machine M is strongly connected if for any

rl, r 2 E R, r2 is reachable from r 1 . A strongly connected subset R of

Q is maximal if no other strongly connected subset of Q includes R as

a subset. A component C of M is a maximal and strongly connected subset

of Q.

For example, for machine M, {ql,q 2 } is

0/0

0/1 2

M: 1/0 0 /0 1/0

strongly connected but not maximal because ql', q 2 } is included in

{ql' q2 ' q 3} which is maximal and strongly connected.

Definition 1. 4

A machine (M, q1 ) is simply connected if it has a state diagram

consisting of unidirectionally and linearly connected components as shown in

Figure 1.1, where Ci's are components of M, each arc represents a~1
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single input induced transition, and U Ci = Q. The states qi
1< i< k

and r. are called respectively the initial state and the end state of C..

C

1 1r

1 1r q222r2 k

Figure 1. 1 A Simply Connected Machine

Another characterization of simple connectedness is given in

the following theorem. Its proof can be found in [8].

Theorem 1. 2

A machine (M, q) is simply connected if and only if any binary

partition of Q into two sets Sl and S2, where q e S 1 , satisfies one

of the following conditions:

(1) There are transitions going both way between S1 and S2.

(2) There is only one transition from S1 to S2 .



II. CHECKABLE REALIZATIONS OF MACHINES

Section 2. 1 Introduction

As our previous investigations revealed [8], many systems are

intrinsically better suited for fault-diagnosis than others. It should be

useful if one knows how to design machines that, besides being able to

perform certain tasks, also have better fault-diagnosabilities than other

machines which can do the same tasks. This chapter concerns the

question of how to improve one aspect of fault-diagnosabilities, namely

the checkability, of a machine. Specifically, the question that we like

to study is: Given a nonchockable machine, can we design a checkable

machine which is capable of simulating the input-output behavior of the

given machine in real-time ?

Intuitively, if a machine M is structurally minimal, then any machine,

if it exists, that can mimic the behavior of M and has an additional

property of being checkable, should have a larger structure than that of

M. This intuition will be shown to be true. Various methods of augment-

ing the machine structure will be examined and the answer to the above

question by each of these methods will be presented.

We begin with the introduction of a formal definition for input-

output simulation in real. time of a machine by another machine. It is

called realization by MYyer and :eigler [14]. Let M' = (I', Q', Z', 6',f')

and M = (I, Q, Z, 5, X) be two sequential machines. Then:
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Definition 2. 1

M' realizes M if there,is a triple of functions ( 1 , 2 ,Oa3 ) where

"1: I+ -4 IC such tht al ( 1)( - I '  , ,2: Q - -  Q', 3 : Z"' --  Z

where Z" C Z', such that, for all q E Q and all x E I+, 3 (x) =

T3 (, 2 (q)(l 1 (X))). M' is said to be a realization of M if M' realizes

M. a 1 and a 3 ,ar-e called the input encoding and output decoding functions.

I . o 1  M' Z. . Z

Figure 2. 1 M' Realises M

It has beei shown by Leake [1E ] that the above behavioral defini-

tion is equivale : to the more structurally oriented definition of Hartmanis

and Stearns [ 16 in terms of an "assignment" of M into M'.

A few easily verified properties of machine realizations are included

in the following L.heorem without giving the proof.
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Theorem 2. 1

A sequential machine M realizes its reduced form M R and vice

versa. If M 1 realizes M 2 and M 2 realizes M 3 then M 1 realizes M3,

i. e. realization is a transitive relation on the class of all sequential

machines.

If (M', q') and (M, q) are initial state machines, then (M',q')

realizes (M,q) if M' realizes M under a triple (al,a2' 3) and 2(q) = q'.

When the state behavior is to be simulated as well as the input-

output behavior, this type of simulation is best described by the notion

of homomorphic realization.

Definition 2. 2

M' homomorphically realizes M if there is a triple of functions

(1, 2' 3) where 771: I+ --- I'+ where 71(I) C I', 72 Q" --> Q (onto)

where Q" c Q', 773 : Z" -- ; Z where Z" c Z', such that, for all q c Q"

and x e I+, i) a 72(q)(X) =q 2 (aq71(x))), and ii) 2(q) 3 ( (x))).

The connection between realizations and homomorphic realiza-

tions can be stated prccisely as follows [14]:

The orem 2. 2

If M and M' are sequential machines and M R is a reduced machine

equivalent to M, then M' realizes M if and only if M' homomorphically

realizies MR.
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Therefore any realization of a reduced machine MR is, in fact,

a homomorphic realization of MR. It simulates both the input-output

behavior and the state behavior of MJ .

Given a nlachine M, two inputs a, b E I are equivalent if V q E Q,

X(q, a) = X(q, b) and 6(q, a) 6(q,b). A machine is transition distinct

if no two inputs are equivalent. Any machine that has equivalent inputs

is redundant in the sense that the inputs in an equivalent class can be

represented by one of its member without affecting the functional capa-

bility of the machine.

We are to show in the following theorem that inputs of a given

machine which maps into the same input of a realizing machine must be

equivalent.

Theorem 2. 3

If M' realizes M under (al,a2' , 3 ) and a, b E I such that al(a)=a2(b)

then a and b are equivalent inputs.

Proof:

Since uI(a) = l(b), we have Vx E I* and V q Q, a2&301(q)Or(ax)))

3 (g2 (q) (al(bX))). Hence, by the definition of realization,

3q (ax) = 3q (bx) V x E I*,

which implies

X(q, a) = X(q, b) and 6(q, a) - (q, b).

Thus a and b :,re equivalent inputs.
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Corollary 2. 3. 1

If M' realizes a transition distinct machine M under (a 1, a 2 , 3)

and JI' = IL, then cl is a one-to-one and onto function.

Proof:

Immediate from Theorem 2. 3.

A similar result for states also holds.

Theorem 2. 4

If M' realizes M under ( 1,u 2 , o 3 ) and r, s E Q such that u2 (r) =a 2 (s),
then r s.

Proof:

Let x be any input sequence in I , then

2(r ) (a 2)((x)).

So

3 ( 2 (r) 1(x)) 3 2(s) (x))).

But by definition M' realizes M under (Cl 2, C'3)

r (x) = 3(2 (r)( (x.

Hence

Fr (X) 3s (x) Vx E I+ ,

or r s.
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Section 2. 2 Checkable Realizations with Enlarged Input Sets

Given a noncheckable machine, can we find a checkable realiza-

tion of the given machine with the same numbers of states and outputs,

and with possibly a larger input set? The following theorem establishes

a positive answer to this question.

Theorem 2. 5

If (M, q) is a noncheckable machine, then it has a checkable realiza-

tion (M',q') with II' = II1 + 1, Q' I=QI, and Z'I = IZI.

Proof:

Let VI, q) be a machine such that I' = I {a}, where a I , and

MI is identical to M. More precisely: Q' - Q, Z' = Z, and,

Vr E Q and bE I, 6'(r, b) = 5(r,b) and X'(r,b) = X(r, b). Let M' ja be

be any strongly connected autonomous machine.

Therefore (M', q) is strongly cotnected, and hence [18]

is checkable. We must also show that (M4', q) is a realization of (M, q).

Let a : I+  (')+, a 2 : Q -; Q', and a3: Z' ' Z all be identity func-

tions. It follows that, U2 (q) = q and, Y r E Q and x e I+,

r (x) =C 3 (fl 2 (r) (al (x))).

Therefore, by definition, (M', q) is a realization of (M, q). Clearly

II' = III + 1, IQ' = JQ , and IZ'I = fZ I . This completes the proof.
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When the given machine is not transition distinct, a checkable

realization can be obtained even without augmenting the structure of the

given machine.

Theorem 2. 6

If (M, q) is a noncheckable machine which is not transition distinct,

then it has a checkable realization with [I' = III, IQ' = IQ[, and

jZ'j = lz.

Proof:

Since M is not transition distinct, these are equivalent inputs,

say a and b (a ~ b), in I. Let M' = (I, Q, Z, 6', X') be a machine such that

M' I - {b} is identical to MI - {b}, and M' jb is any strongly connected

machine. Therefore (M', q) is strongly connected, and hence [18] is check-

able. Let ol: I+ - (I')+ be defined as, V x E I, al(x) = x', where x'

is the input sequence x with every b in it replaced by an a. Let

a2 : Q -- Q' and u 3 : Z' -- > Z be identity functions. Since a and b

are equivalent inputs, by definition, V x I+ and V r e Q, Pr (x) = r (x')=

Or(al(x)). Clearly then, c 2 (q) = q and, V r E Q and x I+,

Or (x) = r I(x))

= ( 3 (G2 (r) (a (x))).

Thus, (M', q) is a checkable realization of (M, q) with tI'[ = III, IQ' I = IQI,
and Z' = !zt.

Therefore structure augmentations are not necessary for obtaining

checkable realizations for machines that have equivalent inputs.
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In the next three sections, the question of realizing a given non-

checkable machine by a checkable machine will be studied in terms of

three means of augmenting the structure of the given machine, i. e.

of augmenting the input set, state set, or output/state sets of the given

machine.
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Section 2. 3 Checkable Realizations with Enlarged State Sets

This section studies the question of whether it is possible to obtain

a checkable realization of a given noncheckable machine by augmenting

only the state set of the given machine. When the situation imposes

more rigid restrictions on the number of input and output terminals than

on the number of states of a system, such as in designing LSI circuit

chips, a positive answer to the above question would be welcomed.

Unfortunately, it turns out that any noncheckable machine which is

structurally minimal does not have any checkable realization with only

a larger state set. That is,

Theorem 2. 7

Let (M, q) be reduced, transition-distinct, and noncheckable.

And let the range of X be Z, i. e. X(Q, I) = Z. If (M', q') is a realization

of (M, q), Ii'I = IlI, and IZ' = IZ , then (M',q') is also noncheckable.

Proof:

Let (M', q') realize (M, q) under (T1' a2', 3 ). Then U2(q) = q' and

r () = U3 2(r)( 1(y))) V r E Q, y 6 I+ . Since M is transition-distinct

and II' = II, by Corollary 2. 3. 1, a1 is 1-1 and onto. Hence, for

each u E I, there exists a unique input sequence in (I')+, denoted u',

such that u' = cr(u). Since IZ'I = IZI and X(Q,I)= Z, o3 is also

1-1 and onto.
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Since a 3 is 1-1, this implies

A A

( 2)q (X')=

By assumption M is reduced, hence IQ'i > QI. Furthermore,

IQ 2 1 = IQ1 I IQI. Therefore IQ2 I< Q'I and thus, by the con-

struction of M2, M2 E Wil(M'). Now since x' is a checking sequence for

(M',q'), M 2 E l(M'), 2s (x') = (x'), it follows from the definition

of checking sequences, 3 r 1  2' (c 2 )r = 13',. Accordingly,

11

or r, which says that is a checking sequence f

OF

A

3( 2) r  l(y))) = 3 2(q) ( 1)

Thus

01l)rl = q(Y) Y E 1+ ,

or r I c Q1 and r - q, which says that x is a checking sequence for

(M, q), a contradcliction.

As a consequence of Theorem 2. 7, the only remaining alternative

to obtain a check&l.ble realization of a machine without augmenting the

input set v.ould be to augment the output set.
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Section 2. 4 Checkable Realizations with Enlarged Output/State Sets

In this section, we will study the existence of checkable realizations

of a given machine with enlarged output sets and possibly enlarged

state sets.

First note that a simply connected machine is detectable if all its

transitions have distinct outputs.

Theorem 2. 8

If (M, q) is a simply connected machine such that all its transitions

have distinct outputs, i.e., X(q, a) / X(r, b) V q, r E Q (qA r) and V a, b

E I(a*b), then (M,q) is detectable.

Proof:

If (M, q) is autonomous then it is detectable from [ 18], so

let III > 2. We will construct a checking sequence for (M, q). Let

(M, q) be simply connected with k components C 1' C2 , . Ck' For each

component C., let qi and r. denote the initial state and the terminal state ofi

Ci respectively. Hence q1 
= q and rk does not exist. Let ai denote

the input associated with the transition from r. to qi+l" By assumption,

(M, q) is simply connected, so there is at most one transition leaving

Ci, and since III >2, 3 a E '3 (r, a) Ci V r c Ci. An input sequence

xi can be constructed so that (1) xi includes yr, b = aurba for all r E Ci,

b E I, and (r, b) : (ri, ai), where ur is a transfer input sequence which

brings M to r, (2) ai(Xi) = ri, and (3) lihen xi is applied to (M, qi),

M will be in the same state of Ci just before yr,b for all b E I.
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Suppose, contrary to the theorem, that (M', q') has a checking

sequence x'. We will prove the theorem by showing that x(x t'=l(x))

must be a checking sequence for (M, q), a contradiction.

Let (M 1, q 1 ) be a machine such that M 1 e TZ (M) and (p l)q(x) =

tq(X). Let (M2 , q 1) be a machine such that 12 = I', Q2 = Q 1' 2 
= ',

and 62 and X2 are defined as, V s e Q2 and a' e I '),

652(s, a') = 6 1 (s, a)

and

3 2 (s, a')) = X 1 (s, a).

(X2 can be uniquely defined in this way because a 3 is 1-1 and onto).

Clearly then, for alls e Q and y (II ) 
+

1s (y) = 3 2

Thus (M2 , ql ) realizes (M 1, q 1) under (u 1 , 1, o 3 ), where 1 stands for the

identity function. Hence

0 q 1(x) =q (x')),

and, since (31)q1(x)

1 (x) = (x

A A
Aq() = o3((12)ql(x,)).

But 3 q (x) =3( x')) Thus

o3()q(X') = a3()qW))
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The ur mentioned in (1) always exists because the state of M

before yr,b is in Ci, as required by (3), and thus the state of M between

the u and the ur of yr, b as well as the state r are both in C..

We claim that x = x 1 alx2 a2 ... ak-lxk is a detecting sequence for

(M,q). Let (M ' ,q') be a machine, where M' e 1. (M). If A ,(x) =
q

a (x), then because there are IQI distinct responses to the same input,

say b, after the ur or yr, Vr E Q, IQ'I> IQ . But M' E M(M)

implies IQ' < IQ . Hence IQ'I= IQI and M' is reduced. Further-

more, ,(x) = (x) implies that, for each r E Q, the responses to

aur's in yr, b are identical, hence the states of M' after aur's are the

same. Let r' denote the state of M' after each ur. For each b E I,

Yr,b together with the corresponding response of (M', q') uniquely

determine the output and the terminal state of the transition from

r' to 6'(r', b) induced by b. This output is clearly identical to that of

the transition of M from r to 6(r, b) induced by the same input b.

Hence k components, denoted C', C2,... , Ck, can be constructed from

the responses of (M',q') to x 1 ,x 2 ... ,xk in x. For each i, the terminal

state r! of Ci' the output X'(r i , a.), and the initial state qi+1 of C'i+1

can be determined from the responses of M to xi, ai and xi+1 respectively.

Clearly M' M and q' q, hence x is a detecting sequence for (M, q),

and the theorem is established.

Example 2. 1

All the transitions of the machine (MV, q) as shown in Figure 2. 2

have distinct ouputs. (M, q) has three components C1, C 2 and C 3 . As
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b/5 a/7, b/8

C1 C2  C3

Figure 2. 2 Machine (M, q) for Example 2. 1

for C1 , it is clear that a E I is such that 6(r, a) e C1 , V r e C1 . Hence

we may choose the following sequences:

y = au aaq,a q

Yq,b = au ba, where u = A,
qq

Y r,au aa, whe e ur = b,ra r r
q

and

x 1 = aaababaab

q, aq q,

Yq, b

Yr, a

where each arrow indicates the state of M at the time before the next
input symbol, i. e., the next one on the right, is applied. As for C2 ,

since 6(s, b) E C2 , V s E C2 , we may choose the folloving sequences:

SYs, b us b b, us =
,5
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and

x2  bbb

s s, bs

As for C3 , since it is strongly connected, we may choose the following

sequences:

Yt = au aa

Yt, b = autba, where ut = A

t

and

x 3 aaaba

t,a
t t

Yt, b

The interested reader is urged to verify that the sequence x = x 1bx 2 ax3

is indeed a checking sequence for (M, q).

It is clear that only the reachable portion of an initial-state machine

plays a role in the normal operations of the machine. Hence in the

following investigations we will concern mainly on realizing machines

that are reachable.

Theorem 2. 9

Let (M, q) be a reachable and transition distinct machine. If

(Mq, q3 ) is simply connected then (M, q) has a checkable realization

(M',q') such that I' = II and Q' IJ =k, for any k> Q qI.
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Proof:

Since all autonomous machines are checkable, this theorem is

trivially true for autonomous machines. So suppose (M, q) is reachable,

transition distinct and I 2. We will construct a machine (M', q') in

the following steps:

1) Set (M', q') = (M q, q). Since (M', q') is simply connected,

let C 1 , C 2 ,... , C be its linearly ordered components. Since

C, is a strongly connected submachine of M and III > 2, we

can [18] add j = k - IQ I states rl, r 2 ,...,r to C to obtain

a (IC, + j)-state strongly connected machine C' which is equi-

valent to C2 . After this is done, clearly, (M', q') is still simply

connected and its initial-state behavior is unchanged.

2) Reassign outputs on all transitions of (M', q') so that they are

all distinct.

Clearly, by Thorem 2. 8, (M', q') is checkable. We need only

to show that (M', q') is a realization of (M, q).

Let (al' 2' ( 3 ) be defined as follows:

01.: I -> I' be an identity function;

02: Q - Q' be such that

Vr E Q, a 2 (r) = Pr E Q';

and 3 Z' -- Z be such that

V b a Z' (where bra denotes the output on the

transition of M' from the state s to the state a's(a)
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induced by the input a),

a (bs) = '(a).

Now, Vx EI+ (let x = yc, c E I) and V r E Q,

3 2 (r)(x)) = 3 2 (r)(

-- op (x))
r

= (83 s(c)), where Ps = a' (Y)

= 3 (bs c )d

= PS(c)

= Ir(X).

Clearly u2 (q)= q = q'. Therefore (M',q') realizes (M,q) under ( 1,a 2 , a 3).

This completes the proof.

Example 2. 2

The machine (M, q) as shown in Figure 2. 3 is transition-distinct and

reachable. The canonical machine (M , /qq) of (M, q) is simply connected

and noncheckable. Following the procedure stated in the proof of Theorem

2. 9, a five -state checkable realization of (M, q) is obtained as the machine

(M', Fq).
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a/c
a/d, b/c

(M, q): - d b/

a/c b/c

a/c a/c a/d, b/c

b/d b/c

a/c a/c2  a/d b/c4  r

(MI, 3 q b/d 1t a/d3, b/c5

a/d 4

b/c 6 r2

a 1 : I (I') is an identity function,

2: Q--Q' is defined as, VYr E Q,

a 2 (r) =

3: Z' .---- Z is defined as

U3 (c1) = ( 3(b a) M ' (a)= 0 (a)= c
3 3q 3q q

Similarly, 0 3 (ci ) = c Vc

and au3 (dj ) =d V d

Figure 2. 3 M-lachines for Example 2. 2
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Thus when the canonical form of a given reachable and transition

distinct machine is simply connected, Theorem 2. 9 says that we can

always find a checkable realization for the given machine with no more

inputs and virtually any specified number of states. Since the existence

of such a realization is the focal issue in Theorem 2. 9, we have made

no attempt to minimize the number of outputs.

Our next aim will be to study the converse of the Theorem 2. 9.

We note first of all that:

Theorem 2. 10

If (M', q') realizes (M, q) under (al' 2 ,a 3 ) then (Me , Pq,) realizes

(M,q), the reachable machine from q, under (al', , a3 ) such that

S(r) = r V r cR(q) .
2 2 (r)

Proof:

Let M2 = M , = (I, Q ,, Z, 62' 2 ), (M3 , q) = (M q and
q q

M3 = (I, 3 , Z, 63' X3 ). Hence Q3 = R(q), 63 3 X = Q3x I.

Now V x I+

a ((3 2) (al(x)) = 3 (P2)/' (al (x)))
U2(r) C2(r)

= a3 (t2(r)((x)) ).

But r(x) = 3 2(r) ( (x)))

hence a3( ( 2)a(r)(l(x))) = r()
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= (/33)(x) Vr E Q3'

Thus (Mq, ,) realizes (M,q) under ( 1, o2, 3)'

Corollary 2. 10. 1

If (M', q') realizes (M, q) then (M,, q,) realizes (M
q q q

Proof:

Follows immediately from Theorem 2. 2 and Theorem 2. 10.

If M' realizes M under (al, a2, a 3 ), then, V r c Q, 2 (r)

of Q' simulates r. It is possible that, in Q', there are other

states that also simulate r. In order to describe precisely the relations

among such states, we define a relation Ton Q' x Q' as T = ((r,t)EQ'xQ'I

o 3 (/r( 1 (x))) = 3 t(al(x))) Vx c }. We will use r t to denote (r, t) E T.

It can be easily verified that 7 is an equivalence relation, and that

V sl, s2 E Q, a 2 (s1 .r 2 (s 2 ) implies s1  s2'

Theorem 2. 11

If M' realizes M under (al',a2 , 3 ) then for each transition r 1a r 2

of M there exists a transition r' ( r' of M' such that r' 2(rl),

a3(b') = b and r27a 2 (r 2 ).

Proof:

Let r' = 2 (rl), b' = (a)), and r = a )(1e c l 1 P(r) /b' - 2 1
Then, clearly r r'2 is a transition of M'. We claim

that this transition satisfies the theorem. Since 7 is an equivalence

relation, r' Tr' and hence r T u2(r). Ty the definition of b',Sdeiito of b',
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a 3 (b') = a3 (rl)((1(a))). It follows from the definition of realization

that a3(' 2 (rl)(a l (a ))) = rl(a). Hence a 3 (b') = irl(a) = b. It remains

to be shown that r2-7 2 (r 2 ). Since, by the definition of input-output be-

havior functions, V x E I+,

1(3
r l(ax)) = P,1 (a))1()) = (l(x)).r (a

Thus

a3(' (r (ax))) a 3 P (13, ()))

And, :by the definition of realization and the fact that r'1 = a 1(r l),

3 (p~ (ax))) = r (ax),

hence

r1 (ax) = W3(3 ( (x))),

or

2 (x) = 3 i (j l (x))),

which means r 7a 2 (r2). Thus the proof is complete.

When a realization mnachine is reachable and the input encoding

function is onto, a theorem which is the converse of the above theorem

can be established.

Theorem 2. 12

If (M', q') realizes (M,, q) under ( 1,' 2' 3 ) such that a 1 is onto

and (M', q') is reachable, then for each transition r r of M1 'ofM'
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there is a transition ra/b r2 of M such that 2(rl)r, al(a) = a',

b = u 3 (b') and o 2 (r 2 )7-r

Proof:

Since (M', q') is reachable, let y' c (I')* be such that a' ,(y') = r?.

The fact that (M', q') realizes (M, q) implies 0r(X) = 3 1 ( ))),

V r E Q and x ( I+, and u2(q) =q'. Furthermore, u 1 is onto, so

3 ye 3l(y) =y'. Let r =a (y) . Then

r 1 (x)= q (yx)

= 3 ( 2 (q)(U 1(YX))

= 13( q'(l(yx)))

= 3 ' r , (x)) Vx E I+ .
1

Hence

a2(rl)7 r-

Since ao is onto, let a E I be such tha (l(a) = a', then

b = /r (a) = ()3 ( (a)))

=o 3 q3, (a'))

= 3 (b').

It remains to be shown that a2( 2)Tr2. For all x e I+ ,
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r2(x) = P (yax)q

a3c (, (c(r(ax)))

3aq, (a I (y a))

= c3 a', (y'a') (l(X))
q

=U3 (ir , (a (x)))
2

Thus a 2 (r 2 )7r..

Before we show how the simple connectivity of a machine is

implied by the simple connectivity of its realizations, let us note this:

Theorem 2. 13

Let (M', q') be a realization of (M, q) under (al' 2,9 3) such that

01 is onto. Furthermore, let (M', q') be reachable and (M, q) be reduced.

If (s1 , s2) is a binary partition of Q then (s;, s.) is a binary partition of

Q' , where

s = s' E Q' 3 s E S1 such that s' r 2 (s)} and

s= {s' E Q' 3 s S2 such that s' 7 2()}.

Proof:

We must show that S nf = and Q' = S ' U S 2 . Suppose

S, nS f , let r' E S1 ns 2 . Then there exist s E S1 and s E S2

such that r' ra 2 (s 1) and r' 7r 2 (s 2 ). Hence 0 2 (s 1) T02 (S2) or s 1  s2 .

But (M, q) is reduced, so we must have sI = s2 or s , E S1 n S2 which
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contradicts that (S1 , S2 ) is a binary partition of Q. Thus S' n S =

Clearly S' uS < Q'. Now let r' E Q', we will show that r' S U S, and

hence establish that Q' = S' U S. Since (M', q') is reachable, 3y' E (I')*

such that aq,(y') = r'. Because cr1 is onto, there exists a y E I* such

that al(y) = y'. Moreover, since (M', q') is a realization of (M, q) under

(cra,(2' a3), by definition, a 2 (q) = q'. Therefore Pa (yx) = q(yx) =

q
o3 a 2 (q) 31 q(yx))) = 3q(y'1(x))) = c 3 r'1(x))), or q2(aq(y))7 r'.

Since a (y) E Q, r' must be in either S or S, or r' c S US .

Applying the Theorems 2. 11, 2. 12, and 2. 13, we are able to

show the following:

Theorem 2. 14

Let (M, q) be a reduced, reachable, and transition distinct

machine. If (M', q') realizes (M, q) under (a 1' a 2, a 3 ), then (M, q) is

simply connected if (M', q') is.

Proof:

Suppose, contrary of the theorem, that (M, q) is not simply

connected. Then by Theorem 1. 2, there is a binary partition (S1, $2}

of Q such that q c Q and there is more than one transition from Sito

S2 but none from S2 to S1 . Let r a/l - r2 and t1 c/I2 be two such

transitions, so r 1 t I or a c. Let S']_={s'e Q' J3 sE S 1 such that a 2 (s)T s'}

and S'2 ={s' E Q'I 3 s E S 2 such that cr (s) r s'}. Since M is transition

distinct, it follows from Corollary 2. 3. 1 that o 1 is one-to-one and onto.
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Then by Theorem 2. 13, {Si, S2} is a binary partition on Q'
Oa (a)/b

By Theorem 2. 11, (M'q') has two transitions r'1 -- : > r and
a 1(c)/d

1t1 2 such that r' Ta 2 (rl), rT272(r 2 ), t'ra2(t1 ) and ta(t2).

Clearly then r' and t'1 are in S1, and r' and t' are in S'. Furthermore,

since r 1 t 1 or a A b, M is reduced and transition distinct. By Theorem

2.3 and 2.4, we conclude that r'1 A t'1 or a l(a) a (b). Therefore there

are two transitions from S'1 to S'. There can be no transition from S2

to S', for if there were then, by Theorem 2. 12, there would also be a

transition from S2 to Slwhich is not true. But this contradicts the hypothesis

that (M', q') is simply connected. Hence (M, q) must be simply connected.

We are ready to show one of the major results of this section,

which is stronger than the converse of Theorem 2. 9.

Theorem 2. 15

Let (M, q) be a transition distinct machine. If (M, q) has a checkable

realization with the same number of inputs then (M, q) is simply

connected.

Proof:

Let (M', q') be a checkable realization of (M, q) such that II' = III.

Then (Mq, , 0q,) realizes (M , f3 ) as implied by Corollary 2. 10. 1.

Also, from [ 8], (Mq,, i ,) must be simply connected. Since (M, q)

is transition distinct, (Mp , 0 q) should also be transition distinct. More-

over, I, = I' and = I, hence 1I, I= I . By Corollary 2. 3. 1,
I  q q q

a1 is therefore an onto function. In addition (M and (M1 q q d(M q%
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are reduced and reachable. Recalling that (Mp,, 1 O,) is simply

connected, we can apply Theorem 2. 14 and conclude that (Mq, /q) is

also simply connec:t ed.

If a given initial-state machine is both transition distinct and

reachable, a necessary and sufficient condition as to when the given

machine has a checkable realization with no more inputs can be obtained

readily from Theorem 2. 9 and Theorem 2. 15.

Theorem 2. 16

Let (M, q) be a transition distinct and reachable machine. Then

(M, q) has a checkable realization with no more inputs if and only if

(M, P, ) is simply connected.
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Section 2. 5 Summary

In this chapter, we have investigated the problem of improving

one aspect of the diagnosability, i. e. the checkability, of machines by

machine structural augmentation and machine realization. The existence

of checkable realizations for a given machine has been studied in three

finer categories: they are checkable realizations that have (1) a larger

input set, (2) a larger state set, and (3) a larger output set with possibly

a larger state set (all relative to that of the given machine). The answer

to the existence of such realizations has been found to be positive for

the case 1) and 3), and negative for the case 2). More specifically,

for a given machine M, there always exists a checkable realization M'

such that M' has one more input symbol than M. If (M, q) is transition

distinct and reachable, then there exists a checkable realization (M', q')

with the same number of inputs if and only if (M , P ), i.e., the canoni-

cal realization of (M, q), is simply connected.
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III. MACHINE AUGMENTATIONS WITH REPEATED SYMBOL
DISTINGUISHING SEQUENCES

Section 3. 1 Introduction

Traditional system diagnosis often involves placing input and/or

output test leads at various interconnections of the system in order

to facilitate and speedup the testing process. However, interconnections

of system components are not usually accessible; even if they are access-

ible, test points are hard to select and thus make system diagnosis

a difficult feat. One way to overcome this difficulty is to design the sys-

tem so that, using (only) the system input/output terminals, efficient

diagnostic tests can be performed without adding any extra test leads.

This chapter concerns how to cdesign machines with efficient check-

ing sequences. In particular, the question of how to find an economical

realization that has a repeated symbol distinguishing sequence (RDS)

is studied. This problem is approached via a formal notion of machine

augmentation. An augmentation of a machine is a realization such that

its input, state and/or output set include that of the given machine. In

particular, an input augmentation is an augmentation such that its input

set properly includes that of the given machine. Similar meanings are

linked to the state, output, or state-output augmentations. With res-

pect to augmenltations; with RDS, input augmentations exist for any machine

[10], [11] and it will be shown that state-augmentations do not exist for
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any reduced machine that does not have a distinguishing sequence. On

the other hand, output augmentations generally result in corresponding

circuit realizations having an excessive increase in the number of out-

put terminals. This is undesirable because a limited number of output

pins are allowed for each LSI chip. Therefore this study is devoted

wholly to state-output augmentations, in which moderate enlargement

of the output set is attained at the expense of an enlarged state set.
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Section 3. 2 Machines with Repeated Symbol Distinguishing Sequences

In this section, we will derive an upper bound on the length of

an RDS and a characterization of the ma.chine which possesses an RDS,

both in terms c(f some structural properties of the state graph of the

machine. Since an RDS of a. machine is determined by a single-input

submachine, we shall examine some properties of autonomous machines.

It can be seen that the graph of an autonomous machine consists

of one or more weak components. Each of these weak components

consists of exactly one semicycle, which in fact is a cycle, and some

(or none) paths which terminate on the nodes of this cycle. We will

call each such weak component of (the graph of) an autonomous machine

a flower. In a flower, each node of the cycle which has paths (other

than that of the cycle) terminating on it will be called a root. The sub-

graph that consists of all the paths (other than that of the cycle) termina-

ting on a root of a flower will be called an ii-tree. It can be easily seen that

each node in an in-tree has a unique path to the root, and that an in-tree does

not contain any semicycle. Summing up, the graph of an autonomous ma-

chine is a set of disconnected flowers, each flower consists of exactly one

cycle (and no other semicycle) and some (or none) in-trees. For each

node r in an in-tree T, the branch in--tree at r is a subgraph of T which

consists of all nodes (and arc s) that ca ii reach r.

As an illustration, in Figure 3. 1i, Do is the graph of M. Since

inputs are all lhe same, they are elimi::ated from I)1 0
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Q 0

q1 q 1/0

q2 q 4/0 0
q3 q 4/1
gq4 q 3/0

q5  6/1

44
M 0

q2

D

Two cycles An in-tree with q4 as its root

The branch in-tree
at q6

Figure 3. 1 The Graph for an Autonomous Machine
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Let M be a sequential machine. We will use Da to denote the

graph of M(a, where a E I; C q(a) to denote the cycle of the flower (in

Da ) which contains q; d q(a) to denote the length of the path from q to

the nearest node of C q(a), hence d q(a) = 0 if q is on the cycle Cq (a);

p (a) to denote the period of C (a). When the input a is known, C (a),

d q(a) and p q(a) will be abbreviated as Cq, dq and pq.
In the graph of an autonomous machine, a cycle, a flower, or

the graph itself will be viewed as the machines they correspond to.

Hence a cycle is reduced if the autonomous machine it corresponds

to is reduced . Two cycles are equivalent if their corresponding

machines are equivalent. Two cycles are similar if they are equivalent

and have the same period.

We will derive an upper bound on the length of an RDS of any

given autonomous machine expressed in terms of machine

graphical properties. We recall first of all that if q and r are non-

equivalent states of an n-state machine, then they can be distinguished

by a sequence of length < n.

Based on this, it has been shown that an autonomous machine

has an RDS if and only if it is reduced [ 10]. Hence the characteri-

zation of reduced autonomous machines will be basic for our later

study on finding realizations with RDS's.

Let Da denote the graph of an autonomous machine with the input

a.
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Theorem 3. 1

If q and r are states in two nonequivalent cycles C and C of
q r

Da , then there is an integer j < pq + pr such that q and r can be dis-

tinguished by a .

Proof:

Let M' =(I,Q', Z, 6 Q' x I, XIQ' x I) where Q'= {(qq is in C or

Cr}. Since 0q 7 Pr' there is a sequence x = aj such that j = k(aj)< IQ'I =

Pq + Pr'

In the event the period of. one cycle divides that of the other cycle,

then states of nonequivalent cycles can be distinguished by a shorter

input sequence.

Theorem 3. 2

If q and r are in nonequivalent cycles Cq and Cr of Da , Cq is

reduced, and pr IPq, i. e., pr divides p q, then q and r can be distin-

guished by an input sequence a where k < p .
-q

Proof:

Letpq = kp, ip and j = p. Suppose q (aj ) = r(a j ) =

bllb 1 2 ... bib21. 22... b2i. ... ki... bki. Since i is the period of Cr,

we must have but = bvt, for all l < u, v < k and 1 < t < i. Let

q' =q (a). Then ^ ,(a) . . b 2 .... .. . . bkiSa (a). Then (a = b 2 1 b2 2 . b2i bklbk 2  bkib11bl 12 . bki'

hence q,(a ) = wq(a ), which implies q' q. But clearly q' # q. This

contradicts that C is reduced.q
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Applying Theorem 3. 1 and Theorem 3. 2, an upper bound on the

shortest lenogth of RDS's can now be derived.

Theorem 3. 3

If M = ({a}, Q, Z, 6,X) is reduced, then M has a RDS of length

k< max d + 1 + 2 - 1, where pl is the period of the largest cycle
-qQ

in D, the graph of M, and p 2 is either the period of the second largest

cycle in D such that p2  1 p1 or is equal to 1 if no such cycle exists.

Proof:

Let q and r be any two distinct states of Q. Let d = max{dq, dr} ,

q1 = a (ad) and r' = a (ad). Clearly q' and r' are states on C and
q r q

Cr respectively. Assume without loss of generality that pq -Pr

There are two cases to be considered.

Case 1: If 1pq pr, then clearly pl Pq and P2  r' hence

max d + + ~ - 1 d + f + k - 1. Since C and C are reduced
qQ - q r q r
and nonequivalent cycles, by Theorem 3. 1, q' and r' can be distinguished

by an input sequence of length q + r -- 1. This implies that q and r can
d+2 +P -1

be distinguished by a q r

Case 2: If pr 1Pq, then by Theorem 3. 2, q and r can distinquished
d+p q

by a . Since, in this case, max d + + - 1 > max d+ 1 >
qcQ q 2 - ~Q q 1-

d + pq , the theorem is true.
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A set of states S of a machine M converges under a e I if

6(q, a) = 6(r, a) and A(q, a) = X(r, a), V q, r E S. A k-convergence at

q E Q is a set S of size k that converges to the state q(under the same

input a).

The necessary and sufficient condition for a flower to be reduced

will be shown next.

Theorem 3. 4

A flower F is reduced if and only if F is convergence-free and the

cycle of F is reduced.

Proof:

(Necessity) Obviously true.

(Sufficiency) Suppose q, r E F and q r but q 4 r. Since the

cycle, denoted C, of F is reduced, q and r cannot both be on C. Let

xa e I+ be an input sequence such that a (xa) 6 C, a (xa) E C and a (x)

or a (x) ' C. If a (x) a (x), then, since q- r implies a (xa) a (xa)
r q r q r

and 3q(xa) = Pr(xa) and since C is reduced, we must have a (xa) =a (xa)

and a (x)(a ) = W (x)(a). Equivalently, a (x) and a (x) converge under

a, which contradicts that F is convergence -free. On the other hand, if

a q(x) = a x), let yb be the shortest prefix of x such that aq (y) * ar(Y)

and a (yb) = a (yb). Since q - r, (y)(b) = ()(b). Then a (y) and

ar(y) converge under b, again contradicts the fact that F is converg-

ence-free. Hence no two states of F are equivalent and so F is reduced.
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We are ready to establish a necessary and sufficient condition

for an autonomous machine to be reduced.

Theorem 3. 5

Any autonomous machine M with input a is reduced if and only if

its graph D is such that

i) D has no equivalent cycles,

ii) D is convergence-free, and

iii) all cycles in D are reduced.

Proof:

(Necessity) Obviously true.

(Sufficiency) By Theorem 3. 4 condition ii) and iii) ensure that

all flowers in D are reduced. Hence we need only show that states

on distinct flowers are distinguishlabe. Let q and r be two states on

distinct flowers F 1 and F2 of D respectively. Let d = max{d q, d r}.

Then aq(a d ) and a (ad ) are states on Cq and Cr respectively since C

and Cr are reduced and nonequivalent-. From Theorem 3. 2, a (ad )

a (ad); hence q / r and M is reduced.



47

Section 3. 3 Machine Augmentations

A machine specification given to a designer is usually a behavioral

description which is equivalent to the description of an irredundant

machine. Hence we may assume without loss of generality that, in our

study to improve machine diagnosability, all machines under consideration

are reduced and transition distinct. It can be shown easily that realizations

for reduced and transition distinct machines have the same or larger

input, state and output sets as that of the given machine. Hence such

a realization can always be transformed into another realization whose

input, state and output sets includes that of the given machine as sub-

sets. One attraction about this type of realization is that when it is

used to simulate the given machine only simple or trivial translations

of the inputs and outputs are necessary. Thus devices that are used

to perform translations are simple, and consequently, the cost of

building one such realization is reduced. More importantly, the pro-

bability of failures in these devices is also smaller. To precisely

describe such realizations, let M' and Mbe two sequential machines. Thus:

Definition 3. 1

M' is an augmentation of M if M realizes M under (a 1,' 2' o 3)

such that IC I', Q CQ', Z c Z', and al and IZ are identity functions.

Let MI be an augmentation of M. Then M' is an input augmentation if

I (C I', Q = Q' and Z = Z', (state augmentation and output augmentation

are similarly defined); M' is a state-output augmentation if I = I', Q 7Q'

and Z 1; Z'.
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For machines that are reduced and transition distinct, the notion

of augmentation is just as general as that of realization. It should

be clear that tlhe problem of adding test input or output terminals to

a sequential michine can be phrased in terms of input or output

augmentation, but not vice versa in general. Various requirements

as well as various diagnosabilities can he posed on augmentations to

yield machines that have certain desired behavioral characteristics.

In the following study, we will investigate the problem of how to find

economical aug:mentations that posse,.;s RDS's.

Input augmentations with RDS's have been investigated previously

and are known to exist [ 10], [ 11], henlce will not be explored here. We will

show that a state augmentation with RDS does not exist for a reduced

and transition distinct machine which does not have an RDS.

Theorem 3. 6

Let M be a reduced and t'ansition distinct machine and M' be

a state augmentation of M under.: (a 1 , r2, 3 ). If, V a E I, M la is not

reduced then, V a' c 1', M' a' is not reduced.

Proof:

Let a E I. If M4 a is not reduced, then there exist q, r E Q (q € r)

such that fq (x) : Pr (x), V x E a}'. Ly the definition of realization,

this implies tht, V x F (a} ,

0 ( ()))= 3 ( r) ( (x))).
2 2
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Since M' is a state augmentation of M, we have I' = I and Z' = Z, and

a1 II and a 3 1Z are identity functions, hence

f,2()(x) = p' (r)(x) Vx E (a}

But since M is reduced, q / r. By Theorem 3. 3, we have a 2 (q) /a 2 (r),

hence M" a is not reduced. Because a is arbitrarily chosen and I' = I,

V ae I', M' la is not reduced.

Since a machine M has a RDS if and only if M a is reduced, from

Theorem 3.6, we immediately obtain:

Corollary 3. 6. 1

Let M be reduced and transition distinct machine. If M has no

RDS then no state augmentation of M has an RDS.

On the other hand, output augmentations with RDS's generally result

in corresponding circuit realizations having an excessive increase in

the number of output terminals. This is undesir:able in designing LSI

circuits because a limited number of output pins are allowed for each

LSI chip. Therefore, our study will be devoted to the state-output

augmentation with RDS, in which the output set need only be enlarged

moderately at the expense of an enlarged state set.
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Section 3. 4 State .-Output Augmentations with RDS's

Since the minimization of output sets is our primary concern in

searching for state-output augmentations with RDS's, the approach we

adop)t is to minimize the output set of the state-output augmentation

while placing no limit on the size of its state set. After the output

set is minimized, we then seek ways to minimize the state set in later

sections.

A cycle C 1 is said to be enlarged k times into another cycle C2

if it is broken at any node into a sequence of arcs, and then joining k

copies of that sequence to form a cycle C 2 with nodes renamed to

avoid duplications. For example, in Figure 3. 2, the cycle on the left

is enlarged twicefold into the cycle on the right.

2 b

q2

a b

1 3 r6 r4

b a
r5

Figure 3. 2 A Cycle Is Enlarged Twice

Note that. the cycle to be enlarged can be broken at any node, andthe

resulting Eclarged cycle will always be equivalent to the original cycle.
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Let Da be the graph of an autonomous machine M with input a.

A node q E Da is a source node if there is no arc terminating on it.

For each source node in Da, we associate with it a subgraph Gq which

consists of the path from q to the cycle C q(a) and the cycle.

We may now establish the theorem that asserts the existence,

for any machine, of a state-output argumentation (with RDS) which

has no more than twice as many output symbols as that of the given

machine.

Theorem 3. 7 (Double -Z Augmentation)

Let M be a sequential machine with no RDS. Then M has a state -

output augmentation M' with RDS such that I Z' < 2 z.

Proof:

M does not have an RDS, so, V a I, Mla is not reduced. We

will construct another sequential machine M' in the following steps.

i) Get Da, where a is any input in I.

ii) (To resolve convergences in in-trees of Da). Skip this step

if there is no convergence in the in-trees of Da

Get S = {G Jqc Q is a source node in D )}q a
u {all flowers in Da that are cycles).

Rename states in S such that, for each q E Q, all q's in S have

distinct names q, qq 2, etc. Let E'(q) =(q, q , ,...}, i.e.

it is the set of all states in S that were q's. Hence, V q E Q,

states in E'(q) are equivalent in S.
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iii) (To force equivalent cycles to be dissimilar)

Construct S' by enlarging cycles in S so that no two

equivalent cycles have the same period. Rename the states

in S' such that, for each q c Q, all q's and q 's in S' have

distinct names, q, ql, q 2 , etc. Let E(q) = (q q, q 2, ...

i. e. it is the set of all states that are split from states of E'(q).

Hence, V q E Q, states in E(q) are equivalent in S'.

iv) (To resolve equivalent and nonreduced cycles)

Let Z = bl,b 2 , ... ,bm} and let Z' = {bTb,..., b'

U Z, where b. g Z, b'! b' if i j. In each cycle of S', if
1 j

b. is the output on the arc terminating on the root, then change

bi to b!; if there is no root, then change the output, say b., on

any arc to b!.

v) (To embed M' la into M')

Let M' be a machine such that (1) the graph of M' la is

S', and (2) V r' e Q' and V C E I (c A a), 6'(r', c) = 6(r, c) and

X'(r', c) = X(r, c), where r E Q and r' E E(r).

As a result of steps iii) and iv), all cycles in S' are reduced and

nonequivalent. Moreover, since the in-trees in S' are all single paths,

there can be no convergence in S' except, possibly, at the root of a

cycle, but this is also ruled out in stop ix) by the changes made on the

output of the arce terminating on the root. Hence, by Theorem 3. 5,

S' is reduced. Now let y 2: Q--- Q' be the idcntity function, and let
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o3' Z' - Z be such that, Vb . Zi' 3(bi) = bi', and, Vb! e Z' - Z,

a3(b!) = b . Clearly /3r(x) = u3(13 (x)) V r E Q, hence M' is a state-

output augmentation of M with RDS.

In step v) of the above proof, the way of. embedding

M' la into M' is certainly not unique. The transition function and

output function can be defined in any fashion, as long as the machine M'

obtained is a state-output augmentation of M including M' ja as a sub-

machine.

It is best to consider an example to illustrate the steps stated

in the proof of Theorem 3. 7. Let M be the machine in Figure 3. 3.

6/

. 0 1

1 2/0 9/0
2 2/0 1/1
3 2/0 4/1
4 5/0 1/1
5 7/1 8/0
6 5/0 1/1
7 5/1 6/0
8 3/0 9/0
9 3/0 8/0

Figure 3. 3

The steps to obtain M' as shown below will correspond to those

in the proof of Theorem 3. 7.

i) Choose 0 E I and get D O.
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ii) Get S ({G 1, G8, G9, G4 , G6} from DO, and renaming states
12

such t!ht, V q € Q, all q's in S have the names q,q , q ,... etc.

0 :G 1

0

8 2

o0

0 1

4 0 5 7
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For i E Q, E'(i) = {i}, except the following

E'(2) ={2,21,22 , E'(3)=(3,31}, E'(5)=(5,51}, E(7)=(7,71

iii) Construct S' by enlarging cycles in S so that no similar cycles

exists; rename states such that, V q E Q, all q's and q 's have

the names q, ql, ' q ;, etc.

T ...

2 2

0 30 0 0
S 1 3 4

0 0 :S'

25

4 0 7

0 1
6 5 7

1 1

7 5
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E (i) = (i} V i c Q except the following

E (2) ={2, 21, 22, 2 , 24,1 25}

E (3) = 3, 31

E (5) = {5, 51, 52

E(7) = {7, 71, 7 2

iv) On each cycle of S', change the output either of the arc which

terminates on the root,or of any one are if there is no root

in that cycle.

1 2

90 23 4

0 : S'

25

0 5 1 7 1

2 52
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v) Embedding process.

6'X'

0

1 2/0 9 /0

2 2/0' 1/1

21 22/0 1/1

22 21/0' 1/1

23 24/0 1/1

24 25/0 1/1

25 23 /0' 1/1

3 21/0 4/1

31 23/0 4/1

4 5/0 I/1

5 7/1 8/0

51 71/1 8/0

52 72 /1 8/0

6 51/ 1 /1

7 5/1' 6/0

7 1 52 /1 6/0

72 51/1' 6/0
8 3/0 9/0

9 31/0 8/0

M' 0 is clearly reduced. It is easy to verify that M'

is a state-output augmentation of M.

To see that the size of the output set Z' of the state-output

augmentation with RDS in Theorem 3. 7 can not be reduced for machines
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in general, let M be a machine such that, V a e I and V b E Z, D con-

tains two cycles with period 1 and output b. Then, in order to eliminate

equivalent cycles in Da, any state-output augmentation of M, say under

(o1' u2' 3) , must have at least two distinct outputs b, b' such that

a 3 (b) = 3 (b') = b, V b E Z. Therefore the output set of the state-

output augmentation must be at least twice as large as that of M.

In circuit terms, Theorem 3.7 says that, for any machine M

that has no RDS, there is a state-output augmentation M' with RDS

such that M' has one more output terminal than M. We will present

one such augmentation M' which does not require any input and

output translations.

Let M' be the state-output augmentation with RDS as constructed

in the proof of Theorem 3.7. Let f binary output terminals be used

for M. If, for each bi e Z, bi is assigned the value (ail, ai2, .. , ai),

where aij c {0, 1 is the value on the jth output terminal, then let M'

have k + 1 output terminals and b. (and b) be assigned the value
1 1

(ail, ai2,.. , ai, 0) (and (ail, ai2,... , a, 1)) as shown schematically

in Figure 3.4. During normal operation, M' simulates M using only the

first f output terminals. But when the machine M' is to be diagnosed,

the outputs of all its f + 1 terminals will be observed so that the machine

will have a RDS. Thus a diagnostic sequence employing this RDS can

be applied to TM'.



59

I I
x M 2 Z

1

I : : M' Z Z'
1+1 J

Figure 3.4 A Double-Z Augmentation Using
neither Input nor Output Translations

It will be shown that for some machines, there exists

state-output augmentations (with RDS) which have less outputs than that

of double-Z augmentations.

A cycle C of a flower G is said to be 1 - peeled at the state r1

if the staterlis split along with the in-tree, if any, as shown in Figure

3. 5. Clearly every state q in the peeled flower is equivalent to the

state q in the unpeeled G and r' r 1. In general, C is k-peeled at the

state r, if C is 1-peeled at the state r 1 , and then k-1 peeled at the state

r 2. It is obvious that if C is k-peeled (at any node of C), k > (the period

of C) - 1, then the flower containing C will have only one in-tree.

Let Z be the set of outputs of Da. A cover S for cycles in D
a a

is a subset of Z such that for each cycle C in Da there is a b E S such

that b is an output on an arc of C. Clearly ISI < IzI.



60

rTr

Corollary 3.7. 1

If M is a machine then there exists a state-output augmentation

M' with RDS in a c I such that I z =s U 1z[ where S is a minimum
cover for cycles in 3

ab

Proof:

The proof of this theorem is identical to that of Theorem 3. 7except in step ii) the cycle in each ycle of S is i-peeled at the root, for
except in step i i) the cycle in each G qof S Is i-peeled at the root, for
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some integer i, such that the last arc peeled from the cycle carries

an output in S.

Although the method suggested by Corollary 3. 7. 1 uses less out-

put symbols, it usually needs more additional states than double -Z

augmentations. Furthermore, adding outputs in augmentation, regard-

less of how few they are, often means that at least one extra output

terminal will be needed. Since double -Z augmentations can also be

implemented with one more output terminal, we will stick to double-Z

augmentations in the following studies on how to minimize the number of

states in augmentation with RDS.
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Section 3. 5 Minimization of the State Set in a Double-Z Augmentation

To facilitate the process, we will consider a slightly restricted

double-Z augmentation: M' is a double-Z augmentation for M under

(al', U2 , 3 ) such that V be Z, 3 b, b' Z'for whichou3 (b) o 3 (b')-b. Hence

each symbol in Z corresponds to two symbols in Z'. We will try to

minimize the number of states in double-Z augmentations by minimiz-

ing the additional states required to resolve convergences and to re-

solve equivalent and/or irreduced cycles in two separate processes.

Since convergences can only occur at the in-tree part of a flower, we

need only to consider in-trees in minimizing the number of states to

resolve convergences.
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3.5. 1 Minimization of the State Set in Resolving Convergences

Let us consider first of all how a k-convergence in a flower G

can be resolved (by double-Z augmentations) using the least number of

additional states. Let S be a k-convergence at rl in G as shown in

Figure 3.6, where only the convergence and the ensuing path of length

i + 1, where i = [log k] ([xJ is the largest integer >x) , are shown.

Let us assume that all r.'s are states in an in-tree of G. The number

k can be expressed as

k=a2 +al 1 +... +a i - 1 2 +ai2 0  (3.1)

q1

b2  b3 b 1b

1

Sk

Figure 3. 6. A k-Convergence and the Ensuing Path
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2 r b

1b' 2 
b i- 1"q. bi_

1 1

b

qk

Figure 3.7 Resolve k-Convergence When k Is a Power of 2

where aj c {0, 1}, V 1 < j < i, and a = 1. If k is a power of 2, then

a k-convergence can be resolved using a double-Z augmentation as

shown in Figure 3. 7, where the in-tree containing this convergence

is expanded.

The total number of states in Figure 3. 6 can be easily counted

to be 2k-1. On the other hand, if k is not a power of two, let {j 1 ,2',. .. ,j s

be the set of integers such that a. , <t <s, in (3. 1) equals 1, i.e.

k = 2 .  (3.2)
Sthe 2 states in the konvrgnce is a 2

Then, for each jt, the 2 states in the k- convergence is a 2 -convergence,
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which can be resolved as illustrated in Figure 3. 7. Thus the k-

convergence can be resolved as shown in Figure 3. 8.

The total number of states in Figure 3. 8 is therefore equal to k',

where

k' < (2. 2 t) + (il- J- (3.3)
t=1

Since j1 = i = [log2 kj, js >0, and (3. 2), we obtain

k' < 2k + [ log 2 kJ - 1 (3.4)

We will later refer to the method in Figure 3.8 as the expanded

in-tree method.

Convergences with different outputs at the same state can be

resolved by the same expanded in-tree as demonstrated in Figure 3. 9.

1 2 js j 2  j2+1 j 1  j1 +1

1 1b 2  I

6
2s2 1---1Q-_ I

2 is-

Figure 3.8 Resolve a k-Convergence Where k Is
Not a Power of 2
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2 8

6 9 10
b'

3 b 1

b 81

Figure 3.9 Resolving Two Convergences at the Same Node

Therefore a smaller convergence can always be resolved by the

expanded in-tree which resolves a larger convergence that occurs

at the same state.

It should be noted that, as in Figure 3.8, whenever a k-conver-

gence at a state r 1 is resolved using tleo expanded in-tree method,

then any convergence at r., V 2 <j < i+T, will get an additional incoming

arc with the output b. For example, in Figure 3. 10, if the 3 -convergence

{1, 2, 3} at the state 5 is resolved as shown, then the state 8 gets a new

incident arc from the state 5, which has the output b. This implies

that the 2 -converence { 5, 6} at the ,,.- 8 caii no longer be resolved
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simply by assigning a new output b 3 to the arc from the state 6 to the

state 8. In fact, we have to resolve the convergence at the state 8 as

a 3 -convergence (5, 51, 6}. This type of added incoming arcs to a node

as a result of resolving a convergence at a preceding node can

create new convergences as well as enlarge convergences at some

successive nodes. Re solving these new or enlarged convergence s may a-

gain turn up other new convergence s. This process may go on for afew

iterations before it stops. As a re sult of such phenomena, this methodfor

re solving convergenc e doe s not always employ a minimum number of state s.

b

b 
b3 

b5

2

1 b b 3 b 5

Figure 3. 10 An Enlarged Convergence As a Result of
Resolving a Preceeding ConvergenceResolvin- a Preceeding Convergence
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Accordingly, convergence s in a flower should be resolved

starting from those which are farthest from the root and then those

next farther and so on. However, convergences of the same dis-

tance from the root can be resolved in any order. Furthermore, con-

vergences in a set of flowers, such as D of a machine, can be resolved

by considering each flower independently. Although the expanded in-tree

method provides us a way to minimize the number of states in resolving

convergences, a bound on the number of states required in general

should help us to decide whcther this method is feasible in a given situ-

ation. Since using the expanded in-tree method may generate new con-

vergences in a few iterations, which causes some complexities in

deriving a better bound, a different strategy will be used.
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3. 5. 2 An Upper Bound on the Number of States for Resolving Convergences

Let T be an in-tree in the flower G with the node t as its root.

For any node r in T, let Pr denote the path from r to t. If S is a con-

vergence at r, then S is separated at r if the branch in-tree at r

together with a duplicated path P' are separated (except the root) from

T as illustrated in Figure 3. 11. Note that a new convergence will be

created at the root after a convergence is separated. Let s be a node

in T such that s has an arc to the root t. Then the branch in-tree T
S

at s is said to be 1-elongated if a path, which is equivalent to the path

of the cycle C of G starting from t with a length equal to the period of

C, is inserted between s and t as shown in Figure 3. 12. The operation

"k-elongated" can be defined similarly as the 1-elongation except the

inserted path between the branch in-tree and the root is a consecutive

connections of k copies of the cycle.

We would like to point out here that all the operations we defined

so far, namely k-peelings, in-tree expansions, convergence separations,

and branch in-tree k-elongations are all state splitting operations.

Hence, for a state q, any newly created states which are split from q

as a result of these operations will be taken as a member of the set

E(q) (see the proof of Theorem 3. 8 for the meaning and use of E(q)),

and the embedding process can always be performed properly to pro-

duce a state-output augmentation with RDS. Hereafter we will

merely describe how a reduced autonomous machine can be obtained
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with these operations and proper outputs assignments without further

discussions on embedding procedures.

5 b b

1 b 2 4 b 6 b 8 G

b 4 b 7

4 6 8

1 2 2 5b 6

b2 41 61

Figure 3. 11 The Convergence {2, 3} in G Is Separated at 4

b 2
Ts D D

p t t

Ts b 1  2 bp t_ b b

P /bp1

Figure 3. 12 Ts Is t-ElongatedS
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Let C be the cycle of a flower G and p be the period of C. Let

{S 1 , S2 '...' Sj} be the set of all convergences in the in-trees of G;

let qi denote the state to which Si converges. To obtain a bound on the

number of states, the new strategy to resolve convergences in G is

described in the following steps:

1) C is k-peeled, for some k, at any node of C so that G contains

only one in-tree. Clearly k < p-i. Let t be the root.

2) Each convergence Si is separated at qi in the following order. That Si

which is farthest from the root t is separated first (conver-

gences which are of the same distance may be separated in

any order), then a convergence that is next farthest is separated,

and so on. Consequently, in the resulting flower each branch

in-tree Ts. at s., where s. has an arc to the root t, contains

at most one convergence. Let this convergence be denoted

as S!, and let q' be the state at which S' converges. As a

result of separations of j convergences in Tt, there is a j-

convergence at the root t.

3) For each Ts, if d ,, i.e. the distance from q! to the root t,
s. q

is smaller than [log2 1S j + 2 then T is k-elongated, where
1

k is the smallest integer such that > ([logS S!J + 2) - d

4) The in-tree Tt is '-elongated, where ' is the smallest

integer such that 'p > 1log 2jJ + 2.
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Let G' be the flower resulted from executing the above four

steps on G. First note that IS!< I Si. . Since the distance from q!

to the root t is larger than [ log 2 IS IJ + 2 as a result of step 3), and

since there is only one convergence on Ts., we may apply the expanded

in-tree method on all S'-convergences without creating any new con-

vergences.

Similarly, the j -convergence at t can be resolved without creating

any new convergences. Let the number of states for resolving all

convergences be m'. Then, from (3. 4),

m' < { [2 SI + log2 S Ij -1] + 2 j+[l1og 2jj-1. (3. 5)
i=1

Let m = IS i 1, i.e., the number of all states in the conver-
i=l

gences in the in-trees of G. Since [log 2 xj < x -1, and IS'I < IS i l ,

(3. 5) can be reduced to

m' < 3m + j. (3.6)

After all the convergences are resolved, the total number of states in

the in-tree of G', denoted n,. should include the number of all the other

unaccounted states which is no more than (n1 -m)+ (d + p) + (p -1)

where n1 is the number of states in the in-tree of G. Hence (n 1 - m) is

the number of states in the in-tree of G that is not in any convergences;

(dql + p) is larger than the number of extra states in T (as the results

of Step 1) and 3) which have not yet been counted in (3. 6). Similarly

the last term (p - 1) is larger than the number of states uncounted (as
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a result of Step 4). Hence

n' < 3m +j +(n -m) + (d + p) + (p -1). (3.7)
i=1 i

Clearly d < (n -m), hence (3.7) becomes
q.

n ' < n + 2 m + j (n -m+p+1)+ (p -1). (3.8)

Let n denote the number of states in the flower G. Then clearly

n = n1 + p - 1. Since each convergence involves at least two states,

j < m/2. Hence, from (3. 8), we obtain

n' < n +m(n - m + 5)/2. (3.9)

If a Da instead of a single flower is considered, let nt , n,, mp

have the following meanings:

nt: the total number of states in the in-trees of Da after re-

solving all convergences.

n : the number of states in the flower Gp of Da

m Q the number of states that are in a convergence in the

in-trees of G .

Then, by (3. 9)

n < [n, + m (n -mp + 5)/2]. (3.10)

Let n and m be, respectively, the number of states in D and the num-
a

ber of convergences in the in-trees of Da . Then since n = n and

mk <m, (3.10) becomes
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n'i n+m (n -m + 5)/2

= n + m(n - m + 5)/2. (3.11)
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3. 5. 3 Minimization of the State Set in Resolving Cycles

As noted before, any number of equivalent or nonreduced

cycles with different periods can be resolved by assigning a new

output symbol to one arc of each cycle. Similar cycles can also be

resolved with double- Z augmentation by assigning one of two output

symbols to each arc of a cycle and by enlarging some cycles so that

more cycles can be resolved.

After the convergences in a Da are resolved, in some flower of

Da the outputs on the two arcs (one of the cycle and the other of the

in-tree) which terminate on the root may have to be assigned different

outputs, e. g. bj and b, to resolve the convergence at the root. Hence

the output on such an arc of a cycle should not be changed during output

assignments in resolving cycles, otherwise a convergence at the root

resolved before would reappear. In order to minimize the number of

states in resolving cycles in a Da, the output assignments should start

with the class of similar cycles which has the smallest period. Assign

outputs b. or b! on each arc of cycles in this class if the output of that

arc was bi, so that as many nonequivalent and reduced cycles can be

produced. If after doing this there are still some similar cycles left

unresolved in this class, then enlarge these unresolved cycles once.

Repeat the above procedure on a class of similar cycles with

smallest period, and so on until all similar cycles are resolved.
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3. 5. 4 An Upper Bound on the Number of States in Resolving Cycles

From our previous discussion, it is clear that the enlargement of

some cycles may be necessary only during resolving similar cycles.

Furthermore, less similar cycles can be resolved by a fixed

output set if the period of those cycles is smaller. If the output on

one arc of the cycle is not allowed to be changed, e. g., when it is

fixed from resolving the convergence at the root, then the number of

similar cycles that can be resolved is further reduced. Therefore the

worst case for resolving cycles in a Da is when all the cycles in Da are

similar with a period equal to one and, in each cycle of Da, the output

of the arc that terminates on the root is fixed. Let us assume that Da
is so. Thus if a cycle in Da is enlarged p times then only the outputs

on p -1 arcs of the cycle may be assigned either one of two values.

Let J denote the number of nonequivalent and reduced cycles with

period p, where the outputs on p-1 arcs of each cycle have the values

in, say, {b, b' and, for all cycles, the output on the remaining (one)

arc is fixedto be, say, b. Let the number of cycles in D be n . Since alla c

the cycles are similar with period 1, no is also the number of states in cycles of

Da. Let D' be the D with all its cycles resolved. Let n' be the num-a a a c

ber of states in the cycles of D'a and let k be the largest period of

cycles in Dt . Then the smallest possible k must satisfy the inequality,
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SJi < n < J.. (3. 12)
i=- i= 1

Clearly then

i=l i=l

f-1
where , (i • Ji)is the number of reduced and nonequivalent cycles with

i=l 1-1
period 2 - 1 or less, and k - (nc - i . Ji) is the number of reduced

i=l
and nonequivalent cycles with period f.

For small values of nc'S, the corresponding values for i's and

(n') 's are shown in Table 3. 1.c

n n n'
c c

1 1 1

2 2 3

3 3 6

4 3 9

5 4 13

6 4 17

7 4 21

8 5 26

9 5 31

10 5 36

11 5 41

12 5 46

13 5 51

14 6 57

Table 3. 1
Small Values of nc, 2, And n'.

c c
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Recall the Mbbius formula [17 ],

I (k) = I (d) k (3.14)

where

1 if d= 1

[L(d) = (-1) if d is the product of j distinct primes

0 if d contains any repeated prime factors.

I p(k) is the number of all irreducible polynomials with degree p over

a finite field of k elements. Each irreducible polynomial of degree p

over a finite field of k elements corresponds uniquely to a cyclic genera-

tor, and the sequence generated by each such cyclic generator is

just the output sequence of a reduced cycle with period p and with

the output of each arc one of k values. Therefore I (2) is equal

to the number of reduced and nonequivalent cycles with period p and

with the output on each arc one of two values. Even though the

output on one of the arcs in each cycle is fixed in our case, obviously

the output sequences of at least one half of the cycles counted by I p(2)

can be used as output assignments to a cycle in D a with period p. Thus

J > p(2). (3. 15)

We will use I as an abbreviation for I (2).

If P' is the integer such that

1 i
< n 1 (3.16)
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Then, because Ji > - Ii' comparing (3. 12) and (3. 16), we have

a' a. (3. 17)

From (3.14), I i can be expressed as

1 2b.
i (2 - a. 2 ), (3.18)

j=1

where a E 0, 1, -1,a 1, b. >b. if il >j2, and
31 32

b1 = i/2 if i is even

b (3. 19)
b1 < [i/3J if i is odd.

Let us define I! as
1

1 T ( 2 i  2bl1) (3.20)
s-1

Since 2s = 2 + 1, comparing (3. 18) and (3. 20) and noting the
t=l

value of bl as shown in (3. 19), it is clear that

Ii> II . (3.21.)

It is seen that both I. and I1 are monotonically increasing functions1 1

of i. Thus let p be the smallest integer such that

Sp-i <n < I. (3.22)
2 c 2

Thenp > £'. From (3. 20) and (3. 22), we obtain

1 -1 1 (2 i  bl2 + 1

i=1

1 p-1i b1 +1
- 2(p-1) (2 )

i= 1
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2(1 (2 - 21 p/ 2J + 1
2 (p- 1)

2p- 1- (3.23)

It can be shown that

2i/i > i Vi> 4,

hence from (3. 23),

n> 1

c - 1(p-) VP > 5.

Substituting this into ( 3. 23) , we obtain

n1 21P-1
c 4n

C

Thus n2 > 2p''3s n 2 p Take log 2 on both sides then

210g2n c > (p-3)

or

P 21og 2nc + 3 V p > 5. (3.24)

Recall that e is the largest period of cycles in D' and p > ' > j, hencea

c -- c (3.25)

Substituting (3, 24) into (3. 25), we obtain an upper bound
n' < n (3 4 2locn u

c c 210 )  Y > 5. (3.26)

By careful examination on Table 3. 1, we found that (3. 26) is also
true for k < 4, hence

n' < n(3 + 210 ' (3.27)c - c2



81

3.5. 5 An Upper Bound on the Number of States Required for Double-Z
Augmentations

Combining (3.11) and (3.27), an upper bound on the number of

states required for a double-Z augmentation, denoted n', for any n-state

machine can be obtained as

n' < n + m(n - m + 5)/2,+ nc(3 + 2 1og 2 nc). (3. 28)

Since m, i. e. the number of convergences, at worst can be of the order

n, n' is, in general, of the order n2 . In circuit terms, it says that a

double-Z augmentation needs at most double the number of

memory elements of the original machine.



82

Section 3. 6 Summary

Various properties of state graphs have been extracted to estab-

lish, firstly, an upper bound on the le ngth of an RDS, then a necess-

ary and sufficient condition for a machine to possess an RDS. The latter

has served as a base from which methods to construct state-output

augmentations with RDS's have been devised.

Various augmentations of machines have been defined. Augmen-

tations with RDS's have been viewed as a way to improve the diagnos-

ability of a sequential machine. After an evaluation of advantages

and disadvantages of various augmentations, input augmentations with

RDS's and state-output augmentations with RDS's have been selected as

candidates. Since the former have been studied by other researchers,

our major offort has been devoted to investigating state-output agumentations

with special attention to minimizing the size of the output set of an aug-

mented machine. It has been found that as few as twice the number of

outputs of the given machine is sufficient for constructing a state-out-

put augmentation with RDS. This is called the double-Z augmentation.

It has been demonstrated that there exists an efficient way to imple-

ment a double -Z augmentation which does not require any input/output

translations to simulate the given machine. Techniques for minimiz-

ing the number of states in resolving convergences and in resolving

equivalent and nonr'educed cycles have been developed. An upper bound

on the number of States required in each case has been derived, and the
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sum of them results in an upper bound on the number of states required

for double-Z augmentations. This bound reveals that, in worst cases,

we have to double the number of memory elements of a machine to

obtain a double-Z augmentations.
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