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ABSTRACT

The problem of identifying linear dynamical systems is studied. The

approach taken is to consider structural and deterministic properties

of linear systems that have an impact on stochastic identification

algorithms. In particular we consider the parametrization of linear

systems so that the identification problem is well-posed. (i.e. there

is a unique solution and all systems in appropriate class can be re-

presented). Firstly canonical forms for the matrix triple (A,B,C)

under the transformation group, (A,B,C) (TAT
-1

,TB,CT
-1
), (where

T E GL(n)) are discussed and it is shown that numerical difficulties

can occur. Then an alternate set of parametrizations which do not

have these difficulties are given with an associated realization

algorithm. It is then assumed that a parametrization of the system

matrices has been established from a priori knowledge of the system,

and the question is considered of when the unknown parameters of this

system can be identified from input/output observations. It is assumed

that the transfer function can be asymptotically identified, and the

conditions are derived for the local, global and partial identifiability

of the parametrization. Then it is shown that, with the right formu-

lation identifiability in the presence of feedback can be treated in

the same way. Similarly the identifiability of parametrizations of

systems driven by unobserved white noise is considered using the

results from the theory of spectral factorization. Finally the pro-

blems associated with parametrizations admitting multiple representa-

tions of nonminimal systems are explored. This leads to a study of

the geometrical properties of minimal and nonminimal systems (e.g.

the codimension of the set of nonminimal systems in the parameter space).

THESIS SUPERVISOR: Professor Jan C. Willems
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NOTATION

I
n 

nxn identity matrix

0 nxm zero matrix
n,m

GL(n) general linear group = IT 6 Rnxilldet T # 01

Rn n-dimensional Euclidean space

complex plane

A' denotes the transpose of the matrix A

‹.,.> inner product

N(.) null space

R( •) range space

N (x) {x C XI Ilx - XII < C}, i.e. an 6-neighborhood

Ck k-times continuously differentiable functions

0(h
-1

k
) 

0(hk) satisfies lim - 0
11+0 

h
k 

11'11 Euclidean norm

1'1 magnitude

15(T) Dirac delta function

1] 
Kronecker delta = 

10 

i=j

1 iSj

xQ Kronecker product



CHAPTER 1

INTRODUCTION 

In order to apply the considerable advances of modern control

theory it is required to have an accurate system model. Indeed in

situations where accurate models exist (e.g. many aerospace problems)

practical applications of modern control theory have been very success-

ful. However in many applications accurate system models are not known

a priori but must be deduced from observations of the system in oper-

ation. This is the so-called identification problem. The lack of

adequate system models is perhaps the greatest single obstacle to

applying modern control and filtering techniques, especially now that

applications are being attempted in areas other than aerospace where

system models are less well-understood (e.g. chemical processes,

power systems, socio-economic systems). Identification is not only

of use for subsequent control and filtering, but is often an end in

itself, for example to determine whether a new piece of machinery is

performing to specification, or to check the condition of an operating

machine.

In this thesis we are solely concerned withthe identificationof

linear systems, since they are a widely applicable class of systems

and lend themselves to a tractable mathematical treatment. System

identification algorithms can be thought of as being of two types,

namely off-line and on-line. Off-line algorithms are generally given

a finite set of input-output data and from this data give estimates

of the system parameters. On the other hand, on-line algorithms receive



input-output data pairs and update their parameter estimate after each

additional data pair, under the restriction that the complexity of

the algorithm does not increase with time. An on-line algorithm is

therefore a restriction of an off-line algorithm but has the advantage

that it can observe a system over an arbitrarily long time interval

with an essentially constant computational effort per unit time.

The more popular on-line algorithms are, stochastic approximation

(Albert and Gardner (1967), Tsypkin (1972)), least squares (RstrOm

and Eykhoff (1971)), and model reference (Whitaker (1958)), and perhaps

the most famous off-line technique is Astrom's maximum likelihood

method (Astrom and Bohlin (1966)) together with some correlation

techniques (Mehra (1971)) and instrumental variable methods (Wong and

Polak (1967)). The division into on- and off-line techniques is some-

what arbitrary in that it depends on the implementation, and essentially

similar algorithms may be implemented both on- and off-line. An ex-

cellent survey of identification has been given by Astrom and Eykhoff

(1971) and contains some 230 references to which the reader is referred

for further background material.

Desirable properties of identification algorithms are:

(N = number of sample points)

i) unbiased parameter estimates as N co

ii) efficient parameter estimates (i.e., the
is close to the theoretical minimum)

iii) limited computational vequirements at each N. (i.e., fast
convergence if an it tive scheme is used)

error covariance

Property (i) is fairly Atial for any schemes but is not

in fact satisfied for the classical least squares method in all but the



most elementary systems (see Astrom and Eykhoff (1971)). Properties

(ii) and (iii) are generally mutually exclusive, with for example

the maximum likelihood method satisfying (ii) but not (iii), and

stochastic approximation method satisfying (iii) but not (ii).

Essentially any identification algorithm can be considered as

the minimization (by some numerical method) of some cost function

(which depends on the system parameters and the observation) over the

unknown system parameters. Such algorithms have two aspects, firstly

a stochastic aspect which depends entirely on the choice of cost function

and will determine properties (i) and (ii) above, and secondly a deter-

ministic aspect that determines (iii) above and indeed whether there is

a unique solution to the minimization problem. The study of the sto-

chastic aspects is the area where most work on identification has been

done, and this essentially involves producing new cost functions that

have superior properties. This problem has been studied extensively

in the statistics, econometrics and time-series analysis literature

(see for example Box and Jenkins (1970)). Much of this work begins

with scalar difference (or differential) equations representing the

system, and does not take a state space point of view.

For scalar input or scalar output systems many of the structural

problems of linear systems are not manifest because there is a natural

parametrization (i.e. standard controllable or standard observable

form) - However for multivariable systems there are significant

parametrization problems and the study of the parametrization of linear

systems forms the main body of this research. Firstly suppose one
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wishes to model an unknown system with a state space model of a certain

dimension, then what parametrization is appropriate for identification?

Clearly an arbitrary parametrization, for example the system matrices

being completely free, may not be suitable because there are many

distinct state space realizations of a particular input/output response.

This question is considered in Chapter 2 where canonical forms are

discussed and their shortcomings in this context are examined. A pre-

ferable set of parametrizations for identification are then given with

an associated realization algorithm.

When standard parametrizations are used there is no immediate

physical interpretation of the states or system parameters, whereas

in many applications state equations can be derived where there is

a natural interpretation of the states and coefficients but some of

the numerical values of the coefficients will be unknown. In sUch

cases the system matrices will be parametrized by the unknown para-

meters, and a natural question is whether a particular set of unknown

parameters can be identified. This problem is considered in Chapter 3

where local, global and partial identifiability and identifiability in

the presence of feedback, given input/output observations are considered

and straightforward conditions are derived.

When a system is driven by an unobserved white noise process

and the output is observed then the identification problem is more

difficult. This is the spectral factorization problem which has its

origins with Wiener and Masani (1958). Chapter 4 gives some background

material and derives conditions for local identifiability under these

conditions.
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In Chapter 5 the problems associated with nonminimal systems are

considered. Most system parametrizations admit multiple representations

of nonminimal systems and hence at such systems the identification

problem does not have a unique solution. Therefore the geometrical

properties of the minimal and nonminimal systems in the parameter

space is important and is considered in Chapter 5, where it is shown

that at least for single input/single output systems difficulties

with nonminimal systems are likely to be encountered.



CHAPTER 2

CANONICAL FORMS FOR IDENTIFICATION

2.1 Introduction 

In this chapter we first examine the need in identification for

parametrizations of linear dynamical systems. Then two examples of

parametrizations which are canonical forms are given, including some

new results on these. Some disadvantages of using canonical forms are

then given by way of an illustrative example, and an alternate para-

metrization is proposed which avoids these difficulties. Finally a

new realization algorithm is given which is computationally efficient,

numerically robust and gives the resulting matrices in a nice form.

Consider the linear continuous or discrete time dynamical

systems,

dx(t) - 
Ax(t) + Bu(t), y(t) = Cx(t)dt

x(k+1) = Ax(k) + Bu(k), y(k) = Cx(k)

where x E R n, u c R m, y c R 9,

Suppose that it is desired to identify such a system from

(possibly noisy) observations of u and y. Assume that only the input/

output properties of this system can be identified. For example,

i) The Markov parameters, Hk = C A
k 
B, k = 0,1,2,..

ii) The transfer function, G(s) = C(Is - A)
-1
B.

However, in many applications it is desired to identify a state

space realization of a system, so that modern state space design and

-12-
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filtering techniques can be applied directly. It will be shown in

Chapter 3 that in applications with sufficient a priori information a

natural state space realization is available from physical considerations.

However in the present chapter we will assume that little or no a priori

information is available, except perhaps the McMillan degree (or order)

of the system (see Brockett (1970)).

A knowledge of the Markov parameters or the transfer function

of a system does not induce a unique state space realizations. (Finding

a state space realization of a given input/output response is called

the realization problem, see Ho and Kalman (1970)). Indeed all minimal

realizations of a particular transfer function are related by a simi-

larity transformation, T, as follows:

Fact 2.1 (see Brockett (1970)).

If the triples (Ai,Bi,Ci), i = 1,2, represent controllable and

observable systems (i.e. minimal) then

C
1 
(Is - A

1
) IB

I 
= C

2
(Is - A

2
)
-1
8
2
, V s C

if and only if there exists T c GL(n) such that

T A
1 
T
-1 

= A
2

T B
1 
= B

2

C
1 
T
1 

= C
2

Therefore there are infinitely many equivalent realizations of

a particular input/output response. Hence in any identification al-

gorithm which would be minimizing some external cost function over the_

system parameters, if the complete A,B and C matrices are left as free
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parameters there will not be a uni.que solution. This implies that these

minimization algorithms could become ill-posed and in any case they

cannot be expected to converge to the same solution for different con-

ditions. Therefore it is necessary to restrict the system matrices

to a subset so that there is a unique solution, for example the A,B and

C matrices could be parametrized in some way, where,

Definition 2.1: A parametrization of a topological space S is a CI

mapping from 0 C:R q into S.

Canonical forms are one possible solution to the uniqueness

problem, and are now introduced.

The relation E given by (A
1
,B
1
,C
1
)E(A

2
,B
2
,C
2
) if there exists

T E GL(n) such that,

T A
1

1 
T = A2, T B

1
 B2, C

1
T 
1 
, C

2'

is an equivalence relation, which is identical to equivalence of the

transfer functions if the systems are minimal, (Fact 2.1), but for

nonminimal systems equivalence of transfer functions does not necessarily

imply E-equivalence. The set of systems equivalent to a particular

system is termed an orbit in the parameter space (A,B,C). A canonical

form is then a subset of the parameter space which intersects each orbit

exactly once, or more precisely;(see MacLane and Birkhoff (1967)).

Definition 2.2: Let E be an equivalence relation on the set S, then

a canonical form for S under E is a subset C C S such that

1) VsfSthere existscSCsuch thatsE c.

and 2) c
1,
c
2 

E C, with cl E c2 13
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The choice of the set S for the present problem is of importance

and there are four natural candidates. Firstly S could be all matrix

triples (A,B,C) which are both controllable and observable, but this

set is very difficult to parametrize (see Chapter 5). Secondly S could

be the arbitrary matrices (A,B,C), but although this is a well-behaved

space it introduces unnecessary complications which are avoided if one

chooses S to be the set of controllable (or observable) matrix triples

(A,B,C). This latter set is in fact chosen since it includes all the

minimal systems, in which we are primarily interested, and is technically

most tractable.

Canonical forms may therefore be particularly useful in iden-

tification since they overcome the nonuniqueness problems of realization

theory. To illustrate these points we now give some simple examples.

Example 2.1 

Consider the scalar system (a,b,c), n = m = p = 1, with b # 0

(i.e. controllable). Then the orbits are given by b = t b, c = t 3C,

a = a, with t # 0 (see Figure 2.1) . A canonical form for this case

is a c R ,cER ,b= 1 and corresponds to the vertical line given

in Figure 2.1. It will be noted that the canonical form intersects

each orbit once and no orbit twice, as required. 0

Note that the canonical form in Example 2.1 is a very simple

subset of the parameter space, that this is not always the case is

illustrated in the following example.

Example 2.2

Consider the system n = 1, m = p = 2, (a, (b1, b2), (c1 ) )1
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one orbit
bc = constant

canonical
form

Figure 2.1: Orbits in Parameter Space for a Scalar System

with (b
1, 

b
2
) (0, 0). Now the orbits are given by

a = constant

(pl,b2) = t(g1,1%)

1
lc
2
/ t

2
)

In this case a canonical form is given by the set,

, where t c R and t# O.

b2),(c1\\

c
2
/)

a, b2, c
1,

c
2 

c R

/

1),

Col ))( 
2

a, c
1
, c

2 
c

R

The projections of the orbits into (b
1
, b

2
) space are given in

Figure 2.2.
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form

canonical
f orm
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Figure 2.2

orbits

0,01

Note that this canonical form is not a connected subset of the

parameter space. Although a connected subset which is a canonical form

is possible, for example the half circle given by,

l(a, (sin 6, cos e), ic1\\
kc
2))

a, cl, c2 c R , 0 c [0,1-0 

}

the resulting canonical form is not particularly satisfactory since some

continuous paths in the parameter space are represented by discontinuous

paths in the canonical form.

As illustrated by the above examples if a canonical form is

known for systems of a particular dimension, then the identification

problem will have a unique solution if the system matrices are restricted

to be in the canonical form.

■
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Example 2.1 is a special case of the standard controllable form

for single input systems, i.e.

A = 0
n-1,1

a'

B =

—
o

1

C = free.

- —

with a c R n.

However as illustrated by example 2.2 such a nice canonical

form is not always possible. In general for the multi input/multi output

systems there does not exist a single parametrization of the system

matrices that is also a canonical form under the similarity transformation.

Canonical forms that consist of a family of parametrizations have been

derived by many authors (e.g. Popov (1972), Mayne (1972), Luenberger

(1967)), with probably the nicest derivation given by Popov, which is

described in the next section. Related results for transfer function are

in Rosenbrock (1970).

2.2 Popov's Canonical Form 

In this section we summarize the canonical form for multi-

variable linear dynamical systems given implicitly in Popov (1972).

The canonical forms rely on finding a complete set of independent in-

variants for the pair (A,B), assumed controllable, under the trans-

T 
-

formation (A,B) 
1 

(T A T , T 8). An invariant is a property of a

system which does not change under the transformation. Completeness

of a set of invariants means that the set of invariants for any
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particular system is sufficient to specify its orbit. Independence

means that for every set of values for the invariants there exists a

system with these invariants.

Consider the matrix,

W = [bi, b2..bm, Abl, Ab2, ,A
n-1 

b
1 

A
n-1 

b
2
,..,A

n-1 
b
m

th
i(where b. =  column of B), which will have rank n by the controllability

assumption.

Definition 2.3: The 
ith Kroneckerinvariant(orindex),n.,is the

n.

smallest positive integer such that the vector A 
1 

b. is a linear

combinationofitsantececlants(i.e.vectorsAk b.such that

km j < n.
1
m j) .

It can be shown that the set of vectors,

n
1
-1 n -1

• P = [b
1
, Ab

1
,...,A b

1 
,  , b 

m 
, Ab

m 
„A m bm]

to

which are called regular by Popov, are independent and are in fact

the first set of n independent vectors that occur in the matrix W,

when moving from left to right. Clearly,

n
1 
+ n

2 
+   + n

m 
= n.

It is also shown that every non-regular vector is a linear

combination of its regular antecedants. The following theorem is the

main result in Popov (1972).

Theorem 2.2: A complete set of independent invariants for the pair

T
-1

(A,B), under the transformation (A,B) (T A T , T B) where T E GL(n),
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are the Kronecker invariants, (n1, n2,....,nm), and the 
real numbers

aiik defined implicitely (but uniquely) as follows;

n. i-1 min(n.,n.-1)

A 1 b.=I X 1 3 a.. A
k 
b.

3.3k 3
j=1 k=p

m min(n.,n.) - 1
1 1 a.. A b.

11k 3
j=i k=0

Now using the above set of invariants a canonical form can be

derived as follows.

Corollary 23: A canonical form for the controllable pair (A,B) under

T

the transformation (A,B) (T A T
-1 

T B) is given by the following

family of parametrizations one for each set of indices, (nl, n2
....n

m
),

such that n
1 
+ n

2 
... + n

m 
= n and n. > 0, Vi.

—

A =

where

A
11 Al2 Alm

A
21

A   A
ml mm

13 =

B
11 

B
12 
„. B

lm

B
21

B
ml



A.. =

(nj x n.)

-21-

0
1,n.-1

I
n.-1

0
n.,n.-1
3 1

a . .
110

ot..n.-1
2.1 2.

ijk

0

i

= i

If rank B < m then n. = 0 for some i and

130

0

J1

(n. x 1) 0
0
n. ,1

for j = i.

for j # i

k = min(n
1
.,n.

3
-1),

<

k = min(n.
1
,n.

J
)-1,

n # 0.
i

j < i, n 0 121 n . = 0

> i.

>
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Notice that the canonical form consists of a finite number of

parametrizations, one for each set of Kronecker indices. If rank B = m

(

is assumed, there are in fact n - 1 sets of possible Kronecker

m - 1

indices and hence n - 1 different parametrizations are required to

(m - I

make up the canonical form. Clearly if rank B < m is possible a larger

number of parametrizations are required.

The transformation that is of interest in identification is

T 
-

(A,B,C) 
1 

(T A T , T B, C T 1).

A canonical form under this transformation with (A,B) controllable

is given by A and B in the form of Corollary 23 with C completely free.

This is a canonical form because given any minimal triple (A,B,C) there

is a unique transformation (= P
-1
, see Theorem 2.4) taking the pair

(A,B) to the canonical form, and hence the addition of the C matrix

does not alter this. Note that this canonical form represents non-

minimal input/output responses in a nonunique way, which is because

input/output equivalent nonminimal systems are not necessarily related

by a nonsingular matrix as above.

2.3 Other Canonical Forms 

In this section a slightly different approach to canonical forms

is reported, and is essentially that given in Luenberger (1967), that

is transformations are derived which bring arbitrary matrices (A,B) into

special forms.
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It is shown in Luenberger (1967) that if t
he pair (A,B) is con-

trollable then there exists an ordered set of
 integers,

K = (kl, k , km), such that,

k
1 
+ k

2 
+ + k

m 
= n

and det P(A,B,K) # 0

k -1 m 
b 

k-1
)

where P(A,B,K) = (b1, Abl,...,A 
1 

b
1. m

, Ab 
m
..... A

Now if we assume that such a set of integers, K,
 are given we

can state the following result.

Theorem 2.4: Given the set K = (k1
,

2
...,k

m
), and under the assumption'

on (A,B) that det P(A,B,K) ye 0, the following forms, (A,B), constitute

T

a canonical form for (A,B) under the transformatio
n (A,B) (T A T

-1
,T B).

A
11 Al2 Alm

B
11

B
12 
. B

lm

A
21 21

= B = •

A
ml

B
ml

. B
mm

A.. =
31

(k.
3 

x k.
1
)

0
1,k.-1 1 a11..

0

_ 
k.-1 1

0
k.,k.-1 I

3 1 I

a
ijo

1

j=i
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/

o

o

=

0
k.,1 

j k. 0
_ .J

ijo

=

—
Further the transformation, T, taking any (A,B) to this form is given

by T = P
-1

(A,B,K).

Proof: That the transformation T = P
-1
 takes any (A,B), satisfying

det P(A,B,K) pi 0, to the above form is stated in Luenberger (1967)

and is easy to verify by straightforward manipulation. It is also

easy to demonstrate that for any pair (A,B) in the above form,

P(A,B,K) = T. Now suppose two systems in the above form are

equivalent, say, A
1 
= T A

2 
T , B

1 
= T B2.

 
Then,

/
n 
= P(A

1, 
B
11 

K) = P(A2, B2, K)

= T P(A
1, 

B
1, 

K)

T = I

and (A
1' 

B
1 
) = (A

2' 
B
2
).

That is no two equivalent systems have distinct representations.
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Notice that if we were not restricted to a particular set K

this would not be a canonical form, because a particular system may

have several sets K. for which det 0 which is why the more

complicated forms of Popov etc. are required.

Alsoobservethatiftheinclicesic.r-ltri = 
1,..,m, the

Kronecker indices, then the resulting form will be the same as that

in Corollary 2.3, since-the appropriate entries will be zero.

Now a different canonical form will be derived (also from

Luenberger (1967)) where the transformation is more complex, as follows.

Define: C. = 1 K.
j=1

e.=the a.
th 

row of P
-1

(A,R,K), i = 1,...,n.
1

T=

e
1

e
1
A

•
•
• k

1 
-1

e A
1

e
2

e
m

e
m
A

• k -1

e A 
m

m

A =TAT
-1

B = T 13.
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Theorem 2.5: Using the above definitions the forms of A and B are as

follows.(assumel<.
1 
>0 Vi),

where,

13

(k.
1 

x k.
3
)

1/

lrn

A . . A
ml mm

6k.-1,1 Ik.-1
1 

I

Y11..o • •Yiiki -1

0
k -1,k
i j

110 131 
J 

lik.-1

0
k. -1,k.
1 J

y
ijo 

. y
ijk.-1

0..0
1

1

—
11 o

(k. x 0

0
k.,1

ijkj-1 
-

y

=

B
11 

. B
lm

B
ml 

. . B

=

j k. < k.
J — 1

j ¢ k. > k.
J 1

j k, > k.
— j

j k. < k
3
..
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Furtherif(k."..,km
) are chosen to be the Kronecker invariants,

then for i X j.

B.

and this latter form is canonical.

Proof: 

1) Structure of A 

We have thatTA=AT

i.e.

if k. <

and j > i.

otherwise

e
1
A e

l

e
1 
A
2 e

1 
A

• • k
1

e
1
A

emA

• k

e A 
m

m

=

k -1

e A 
m

m

Since T is non-singular (see Luenberger (1967), Appendix M r

th
the j row of A = [0 0   0 1 0   0]

(if j# ai for any i) (j + 1) position.

L
ettilecr.th 

rows of A = [Yilo
1
-1'Yi2o

m
-1]

th



( * )
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Then {yijk} are specified uniquely by the equation,

ki m

e.A = X 

k.-1

L yi.k A b. i = 1,2,...m
j=1 k=0 3

It just remains to show that,

Yijk 
= 0 for j such that k, > k.

j

and k= 1 1 + 
1,..., - 1.

This is easily proved inductively using the following fact.

Pact:Ifforsomessatisfyingt
3 
-2 > s > k.,

Yijk 
= 0 V j such that k.

3 
> s + 2

anclksuchthatk.-1 > k > s + 1

then 
Yijk 

=0Vjsuch that k.
7 
>s+ 1,

asiksuchthatk.-1 > k > s.
J — —

Proof: Let 2. {1,....,m} be any integer such that kk > s + 1. Take

k -s-1
the inner product of equation (*) with A b to give

* * ) k.1
+k

Y. k - 1 -s-1 s-1 k+k -s-1
e.A bk = yiks ek A b + kX 

0 
1 
y. 

2.k 
A b

= 

m min(s,k,-1) k+k -s-1

+ / i 
3

Yijk 
A 

£
b
kj=1 k=0

j#2.

Nowbydefinitionof&as the a.
th 

row of P
-1 

we have
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1 if i = j, k = ki - 1

e. A
k 
b. = 0 if i = j, k = 0,1 ..... ki - 2

01f7, 3c =0,1,...k. -1

Therefore in equation (**) since i (k > s + 1 > k. + 1), we have
— —

LHS =Osince k.
1 
+k

k 
-s-1<k

k 
- 1

- 

first summation = 0 since k + kk - s - 1< kk - 2

second summation = 0 since k + kk - s - 1 Lk)" - 1

k -1
e A b = 1

Therefore yiks = 0 and this can be repeated for all j such that

kA
7 

> s + 1 proving the result.

2) Structure of g 

We have g = T B and therefore

B..
17

e.

e.A
1

e.A 
1

1

b.

and using the values for e.A
k
b.
7 

given previously the result follows

easily.

If (k
1
,k
2'
...,k

m
) are the Kronecker indices and j is such

that k, < k., then AkiL is not a regular vector if k = k.,k. + 1,..,k.i - 1,
J i 2

and is therefore a linear combination of its regular antecedants. (see



-30-

k.-1
1

section 2.2 for definitions). Therefore e.A
k
b. = 0 unless A b.

1 3 1

isanantecedantofAkb„which occurs only if k = ki - 1 and j >

thus proving the result.

3) Canonical Form 

That the above form is canonical follows from the observations

that for any set of Kronecker invariants, (i) the above form has a

representation of any (A,B) with these invariants, and (ii) this form

and Popov's canonical form have the same number of real-valued free

parameters.

Note that unless all the Kronecker indices are equal there

w
inalwaysbesomezerosinthea..th 

rows of the A matrix. This
1

canonical form is preferable to that of Popov when the effect of

feedback is being studied, since feedback will only alter the U.
th
1

rows of A. However note that when the k. are not the Kronecker indices
1

the parametrization is not as simple as that of Theorem 2.4.

A canonical form for the controllable triple (A,B,C) under the

T
transformation (A,B,C) (T A T

-1
, T B, C T ) is again given by (A,B)

in the above form with C free.
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2.4 Remarks on using Canonical Forms for Identification

Two canonical forms for linear dynamical systems have 
been

derived in sections 2.2 and 2.3. Both of these have parametrized the

pair (A,B) under the assumption of controllability, and made the C

matrix arbitrary, dual canonical forms can be found if the pair (A',C'
)

is parametrized in the same way assuming observability, with the B

matrix arbitrary.

For single input systems the canonical form given in section 2.3

is the well-known standard controllable form, and for single output

systems the standard observable form is given by Popov's canonical for
m

for the pair (A',C'). In both these cases a single canonical para-

metrization is required, as given by the previous canonical forms.

The canonical forms include exactly one parametrization with

nm + np degrees of freedom, the so called generic case, and this para-

metrization can represent "almost all" systems of order n. (This

occurs when the first n columns of (23, AB ..... A
n-1 

B) are independent).

The other parametrizations which will have fewer degrees of freedom

are then necessary to represent the boundary of the generic parametri-

zation, and since this boundary is geometrically unpleasant many extra

parametrizations may be required.

One may be tempted to suggest ignoring the lower order para-

metrizations since they have measure zero in some sense, but this is

a fallacious argument for two reasons. Firstly it is analagous to

saying that almost all square matrices are invertible, so ignore singular

matrices, which is clearly a numerically ill-advised step. Secondly the

non-generic systems are bound to occur in some natural situations, for
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example the following example of two systems connected in parallel.

Example 2.3: Suppose a system is composed of the parallel connection

of two subsystems with distinct inputs,

i.e. Xi = Alx1 + B1u1, k2 = A2x2 + B2u2

y = y
l 
+ y

2 
= C

l
x
l 
+ C

2
x
2

m(i)
where ,C. IE R 

n(i)
, u.

1

Then the composite system has

i = 1,2.

A [A1 0 B [B
1

0 A
2 

0 B
2

and the controllability matrix,

where

W= B
1 
0 A

1
13
1 
0 ... A

1

n-1
B
1 
0

0 B
2 
0 A

2
B
2 

0 
A2

n-1
B
2

n = n
(1) 

+ n
(2)
.

Now in many cases the first n columns of W are dependent,

regardless of the Kronecker indices of the subsystems.

e.g. for n
(1) 

= 3, n
(2) 

= 1 m
(1) 

= 1, m
(2) 

= 1.

Then the fourth column of W is dependent on the second, so the system

cannot be represented by the generic parametrization. IS

In some sense such cases are not likely to occur because we

have assumed zero coupling between the states of the subsystems, which
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will occur almost never if one takes the usual measure on the real line.

However such situations often occur in practical composite systems and

cannot be ignored.

A major disadvantage of using canonical forms for identification

is that the realization of the systems close to the boundary of a parti-

cular parametrization become numerically ill-posed, and this seems to be

inherent in canonical forms of this type. Some difficulties of this

type are illustrated by the following example.

Example 2.4: Let n = 3, m = 2, p = 2. For the Popov canonical form,

there are two parametrizations for this case if B is assumed to have

rank 2.

0 a
110 I 

a
210

1 0

1) n
1 
= 2, n

2 
= 1, A

1
= 1 a

111
a
211

, B
1

0 0

0 a
120

a
220_

0 1

a
110 I °

a
210

1 0

2) n
1 
= 1, n

2 
= 2, A

2
a
120 I °

a
220

B
2
= 0 1

a
121 

I 1 a
221_

0 0

with C arbitrary in both cases.

Now suppose we wish to realize the transfer function,

G(s)

[s 
-2

s 
-2

s
--1

0 with 0 < e < < 1

The realization in the canonical form will be,
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0 0 0 0 0

o
A
l

1 0 C
-1

B
1
= 0 0 C

1 0 E 0

0 0 0 0 1

and as E 0 the c
-1 

in A
1 
tends to infinity compensated by the 6 4- 0

in the C matrix. Hence very small errors in identifying the (2,2) ele-

ment of the matrix C will give large errors in the transfer function.

The above undesirable behaviour is not due to some pathalogical

property of the system which remains of order 3 for all real-valued c,

but is entirely due to the parametrizations we have chosen for the

system. Therefore if one wishes to use a canonical form, and the system

being identified is close to, but not on, the boundary of one parametri-

zation, then there are two possible courses of action. Firstly one

can assume the system is in fact on the boundary and use a parametrization

with fewer degrees of freedom, with the inherent loss in possible

accuracy. Secondly one could use the correct parametrization and endure

the numerical difficulties indicated above. The former approach is

probably preferable, bearing in mind that the data will in general be

imperfect. An approach similar to this has been suggested by Weinert and

Anton (1972) and Tse and Weinert (1973).

Notice that in order to determine the Kronecker indices of

(A,B), it is necessary to verify that certain vectors are dependent,

unless we have the generic case. Such a test is very difficult in a

statistical setting because all determinants will in general be non zero,

and some threshold will have to be established. However the independence
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of a set of vectors is a relatively easy and well-posed statistical

problem, as will be illustrated in the next section. Therefore it is

relatively easy to find a set of integers K = (k
1
, k

2 
..... k

n
) summing

to n such that the matrix P(A,B,x) is clearly non-singular, where

k-1
1
 k -1

P(A,B,K) = [b
1
, Ab

1 
... A b

1" 
b
m' 

Ab
m 

m 
,..., A b

m
1.

This latter observation is the basis for an alternate approach

to the parametrization problem, which avoids all the difficulties men-

tioned above, and is as follows. Once one has selected a set of integers

K = (k
1
, k

2 
..... k

m
) such that the columns of P(A,B,K) are clearly

independent, then one can use the canonical form for this set K given

in Theorem 2.4. This parametrization will then be well-posed for all

systems (A,B) such that the columns of P(A,B,K) are reasonably inde-

pendent. (i.e. all systems in a large neighborhood of the nominal

values for the system). A particular system could have a finite number

of different realizations using this method if several different sets

Ki makedetP(A,B,W D. However this should not be a practical problem

since canonical forms will be used because there is no obvious physical

interpretation for the states, so that the particular realization is

not important. Also if one were comparing the identified parameters of

a system in two situations one can artificially assign the indices for

the second situation to be the same as those in the first, so that the

parameter values can be compared directly. The example 2.4 given earlier

in this section would be realized as follows.
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Example 2.4 (continued)

G(s) [ s-1 0

-2 -2
es s

[C.B CAB
CAB CA2B]

e 1

1000

00e1

0000
0 0

Clearly the columns l, 2 and 4 of the Hankel matrix are inde-

pendent so we will set k
1 
= 1, k2 = 2. Therefore the parametrization

will be,

A =
0

1

where x denotes a free parameter.

[1 0]

B = 0 1 C =
0 0

In fact G(s) is realized by

0 0 0-

A = 0 0 0 B =
e 1 0

which is clearly well-posed for all e.

[1 o

0 1
0 0

C
[1 0 0]

0 0 1

The family of parametrizations suggested here is thus a series

of parametrizations, with each one representing "almost all" systems,

and a particular one is chosen by finding the most appropriate set of

integers K = (k1 ..... kw) such that det P(A,B,K) # O.

The assumption that K is known is only a slightly greater

assumption than knowing the order, in that in order to determine the

order of a system one has to essentially find a set K.



-37-

2.5 A New Realization Algorithm

Here we use the ideas presented in the previous two sections

to derive a realization algorithm,(i.e. to find (A,B,C) satisfying

CA
k
B = H

k 
for some given H

k
, k = 0, 1, 2,..). It has the pleasing

property that it produces A and B matrices in the special form given

in Theorem 2.4 and uses no more computational effort than other methods

(e.g. Ho and Kalman (1967)). We first give a preliminary lemma proved

in Luenberger (1967).

Lemma 2.6: If (A,B) is controllable the following algorithm generates

n independent vectors, P(A,B,S(n)).

Let S(r) = (s1(r), s2(r),..., s
m
(r))

where s.(r) > 0 for all j = 1, 2, ... m
—

and 1 s.(r) < n.

j=1

Let P(A,B,S(r)) be as defined in Section 2.3.

Algorithm 

1)Setr=0,s.(0) = 0, j = 1,....m.

2) pick any j E (1, 2,... m), say j, such that

st(r)

A 7 bt
is independent of P(A,B,S(r))

rr) 1

Set s.(r + 1)

s.()

3) increase the index r by one.

if j = j

if

4) if r < n then return to 2), otherwise stop.
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The above lemma produces a basis for the matrix

= [13,103,--An-III]ofaparticulartyp"Le"fAkiLis 
in the

basisthensoarelib.for t < k), and the integers s.(n) are such

s.(n)-1 s.(n)

that A 3 b. is in the basis and A J b. is not in the basis.

The following realization algorithm produces such a basis for

the columns of the Hankel matrix (see Brockett (1970)) in the same way

as Lemma 2.6.

Theorem 2.7: Given that the rank of the infinite Hankel matrix

HO H1 
H2.

H
1 

H
2

H
2

is less than or equal to N, the triple (A,B,C) as given by the following

algorithm is a realization of i.e. CA
k
B = H

k 
for k = 0, 1, 2,...

Firstly define h as the 12
th 

column of the finite Hankel matrix

N 
=

Algorithm 

H
O 

H
1 
. . . H

N-1

H
1

H
N-1 
 H

2N-2

Step 1: initialization r = 1

s.(1) = 0

f.(1) = h.

j = 1,2,..m.

j = 1,2,..m.
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Step 2:

^
a) Chooseisuchthati=ms.(r) + j for some 3 E {1,2,...,m} and

Ilfi(r)11 2 lift(r)112, V 2. > i and t {ms.(r) j}T
)=1

> lifi(r)112 1 2.<1„andits{ms.(r) + j}T)=1

b) Set ei = fi(r), t
r+1 

= R.

c)Fork.=ms.
3
(r) + j, j = 1,2 ..... j - 1, j + 1,..m.

set

Y

< hR, ei >

< ei, ei >

ft(r+1) = fz(r) - yi jei

d) For q = 1,....,r + 1 set

q

< h^ e >
t+m s

q

< e 
'
e >

q q

r+1

set fi+m(r+1) = - y et
q=1 q q

e) Set /1s.(r) + 1

s.(r+1) =

(r)

Step 3: Increase the index r by one.

=

Step 4: If lifk(0112 = 0 for all 2, = ms.(r) + j, j = 1,2,...m, then

go to Step 5, otherwise return to Step 2.

Step 5: Set n r - 1, k, = s.(r) - 1 j = 1 , 
3 3
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Set
Sil

1

Yt2Z1 
TR
3
2,
1 

° • 'Tit
n 1

Yk
i 1

Si2
0 1

/2,
3
2,
2 

• Ik
2

0 1

/2.
n n-1

Sin
  0 1

YQiQn

Then for i= 1,2,—.11 k=

Set a
i
. = O where q is such that km + j =
jk i q

Set(A,MinthefonnofTheorem2.4giventheaboveik.and
aijk.

p
Step 6: Let C = [cl c2 on] c.

1 
e

Set
OM(
j

= [I :0
p. p,p(N-1)

h
(k-1)m+74-1

for j = 0,1,..m-1; k = 1,2,...ki+1

Remarks:

1) The above algorithm produces a sequence of independent columns of

the Hankel matrix, ez , q= 1 ..... r+1, which will be of the form

q

M Ak b., where
3

M=

C

C A

N-1
C A
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according to the rule given in Lemma 2.6. Since the realization will

have dimension n, (which equals the rank of 11C), the rank of M is n.

Therefore any linear dependence or independence of the columns of HN

will be exactly the same as for the columns of W = [B, AB...A
N-1

B].

The set of independent columns of H is represented as an

orthogonal set by a Gram-Schmidt type procedure, and the vectors

s.(r)
eligible to join this basis at the rth step (i.e. M A 3 b

3
.,

j = 1 ..... m) are represented in terms of this basis and a component

orthogonal to it, and hence if the orthogonal component is non zero it

is independent. The orthogonalization procedure also produces Y ..I3

s.(r)
which give the dependence of the vectors M A 3 b.

3 
on the basis,

then the a
ijk 

required in the A (and perhaps B) matrices can be found

by inverting an upper triangular matrix, which is computationally

very easy.

Once the basis is found the C matrix follows immediately since

P(A,B,K) = In. A formal proof of the algorithm is not given but it

is clear from an understanding of Theorem, 2.4.

2) The rule for selecting the new vector to enter the basis is to

take that vector, of those eligible, with the greatest component

orthogonal to the basis. This rule is chosen because it ensures that

the basis has a determinant far from zero. Further if the data is

noisy the chosen basis will remain independent for comparatively large

variations in the parameters.
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3) In the stochastic case such a method would be well-suited for finding

a parametrization and approximate values for the parameters, to be used

subsequently in a more efficient identification method, (e.g. maximum

likelihood). The selection procedure for the basis works best if the

inputs are of similar magnitude and the outputs are observed with similar

accuracy.Ideallyonemightwanttochooseabasis,K.,with the least

probability of becoming ill-posed. For example if TI(Ki) is the largest

probability such that in the n(ci) confidence region det P(A,B,Ki) # 0,

then one might choose the set Ki with the greatest n(Ki).



CHAPTER 3

PARAMETER IDENTIFIABILITY FROM INPUT/OUTPUT OBSERVATIONS 

3.1 Introduction 

In this chapter we consider the identification of systems de-

scribed by linear differential or difference equations;

or

dx(t) 
Ax(t) + Bu(t),

dt

x(k+1) = Ax(k) + Bu(k),

where x E R

Also define Di = -n(m + m + p) + mp, the-total number of elements -of the

matrices-.

The problem is to identify these system matrices from input/output

observations. As explained in Chapter 2 there is no unique solution to

this identification problem because there are infinitely many equivalent

realizations of a particular input/output response. In Chapter 2 it

was shown how canonical forms can be used to overcome the non-uniqueness

-problem. In the present chapter it is assumed that the system equations

are derived from physical knowledge of the system. That is, the elements

of the A,B,C, and D matrices are either,

- y(t) = Cx(t) + Du(t).

y(k) = Cx(k) + Du(k)

or

1)
2)

3)

n, UE R m,yE R P, A E R nxn-, B s R nxin, c R Pxn, D E R Wan.

zero,
known physical constants,

known functions of some unknown parameters.

Thus if the unknown parameters are denoted a E S2 C. R q, then the matrices

may be written as A(a), B(a), c(a), and D(a) where A:0 1- 
R nxn;

-43-
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B:0 R nxm; c:0 R pxn;
and D:g -4- R Pxm. That is the system matrices

are parametrized by the tmknown parameters, a.

In practice it is very often the case that such equations can

be postulated with relatively few unknown parameters and this is a

very useful way of incorporating one's a priori knowledge, (e.g. in

aerospace problems). The identification problem is then to find esti-

mates of the unknown parameters based on the observed data.

When such a model can be formulated it has two main advantages

over using canonical forms (as given in Chapter 2). Firstly the para-

meters being identified have a physical interpretation and secondly

for multiple input/multiple output systems, the canonical forms have

the disadvantage that a set of integers (e.g. the Kronecker invariants)

must be determined before the real valued parameters can be identified.

A natural question that arises in the context of such identi-

fication problems is whether or not the unknown parameters, a, can be

identified from observations of the system. This is the so-called

identifiability problem and will be the subject of this chapter. Firstly

we will give some simple examples to illustrate the main concepts.

Example 3.1 

Consider the two parametrizations of a single input/single output,

second order system.

[ -1 a
11 B(a) [

et
2

0 -2 

This will have transfer function, G(s) = 
a
1
a
2

C(a) = [1 O]

(s+1)(s+2)



[a
1 

1

0 a
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Here only the product ala2 can be identified and neither a
1

nor a
2 
can be identified individually. (This system would thus be

said to be not locally or globally identifiable).

2) A(a) =

2_
, 13(a)

This will have transfer function, G(s)
(s-a

1
)(s-a

2
)

= C(a) = [1 0]

1

In this case if a
1 

a
2 

then a
1 

and a
2 

can be uniquely identified

in a neighborhood of their nominal values. However if a
1 

and a
2 
have

their values exchanged then the transfer function is not altered, and

therefore the parametrization would be called not globally identifiable.

If however a
1 

and a
2 

are restricted to be in the set

{(al'a2) 6 R21a1 1 a2}'

then a
1 

and a
2 

are globally identifiable.

Example 3.2 

Consider the system withn=m=p=land a,b,c arbitrary

real numbers, then the transfer function G(s)
cb

a

and clearly (a,b,c)
s-a

is not identifiable. However if cb 0 then a can be identified inde-

pendently from b and c. This parametrization will be called partially

identifiable in a, independent of b and c.

The above examples illustrate that the identifiability of a

particular parametrization is not obvious and has several aspects to it.
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In the following section the solutions to most of these identifiability

questions will be given.

3.2 Local Identifiability 

Identifiability of parameter means roughly that parameter esti-

mates can be determined which are asymptotically exact. Identifiability

will thus depend on the data available, and in this chapter we will

assume that we could obtain asymptotically consistent estimates of the

transfer function and nothing else, which is assured by the following

assumptions;

A1) Both the input and output are observed, perhaps with observation

noise.

A2) The input is independent of the observations and is persistently

exciting (that is the input excites all the system modes, see

AstrOm and Bohlin (1966)).

A3) The observation noise statistics are such that the system transfer

function, or Markov parameters, can be identified asymptotically.

A4) The system was either started an arbitrarily long time before

identification was started, or that the initial condition was zero.

The assumptions imply that if noise is present on all the ob-

servations then the system must be stable, since otherwise A2 implies

that some outputs would tend to infinity with increasing time. The

correct way to identify unstable systems in the presence of noise is

to insert a known stabilizing feedback system and identify the resulting

composite system, from which the open-loop system could be deduced.

Assumption A4 is included so that no more than the transfer

function can be identified. For reachable systems there is no dif-

ference between the cases with the initial condition zero and non-zero

but unknown, since in the latter case the initial condition can be re-

placed by an equivalent input. However for unreachable systems the
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initial condition response gives additional information that is not

available from an input/output test, but such information will only be

finite if the observation noise covariance is positive definite.

Under the above assumptions the following definition for local

identifiability of a system parametrization, as given in Section 3.1,

is natural if one has nominal values for the unknown parameters, (e.g.

wind tunnel tests on an airframe).

Definition 3.1 

Let (A,B,C,D)(a) : E.) C:R qN (N = n(n+m+p) + mp), be a

parametrization of the system matrices (A,B,C,D) of a linear dynamical

system. This parametrization is said to be locally identifiable (from

the transfer function) at a = a c 2 if there exists an e > 0 such that

(i) Ila - all< c,lio - all< C I a, S E

and (ii) C(a)A
k
(a)B(a) = C(S)A (13)B(0), k = 0,1,2..

imply a = S. 13

In other words, in a neighborhood of a, there are no two systems

with distinct parameters, which have the same transfer function. This

definition is similar to the definition of "non-degeneracy" as given by

Kalman (1966). Definition 3.1 is equivalent to requiring that the map

from the parameters, a, into the Markov parameters is locally one-to-one.

A standard result on injective maps is given by the following lemma.

Lemma 3.1 (Rank Theorem, see for example Narasimham (1968) page 18).

Let El be an open set in R n and f : 2 -4- R m be a Ck map. Suppose

that rank
af(x)

3x
= r for all x in Q. Then there exist open neighborhoods
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U of a and V of b = f (a) , cubes Q,Q 1 in R n i R m respectively and C
k

diffeomorphisms u : Q.Uand u' :V+ such that if = u' o f o u

then has the form

0(xl,x2,...,xn) = (xl,x2,..xr, 0,0,...0)

(Note: acubeinrisasetoftheform -b0L - a. I < r.}, and o

denotes composition).

An immediate consequence of the Rank Theorem is;

Corollary 3.2 

Let Si be an open set in

af(x)
k > 1. Then if —
— ax

R n and f : 0÷ R m beaC
k 

map with

has constant rank r in a neighborhood of x,

f is locally injective if and only if r= n. 13

We can now obtain an identifiability condition as follows.

Theorem 3.3 

Let (A,B,C,D) (a) C R q 4 RN (with Q an open set in R ci)

be a c' parametrization of the system matrices (A,B,C,D). Then if rank

3G(a)
@a

= r (see below) for all a in some neighborhood of a, then the

parametrization is locally identifiable at a, if and only if r = q.

In here G : R
(2n+l)mp

is given by,

G' (a) = [D' (a) ,( c (a)B(a)) ',( c (a) A (MB (a)) 
..... (a)A2n-1(a) B (a)) , 3 ,

Further the Jacobian of G can be written as,
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0 1 0 1 0 I 0 I
P m

I
0

c (DB'

I

i

C 6.01— m 1 190B,

CA ® I II 0 WA'

o

0m 
I P:

2(0) _
aa k I • .14(a)

I CAk-r0B'A'
r-1

r=-1

:

CA
k 0 I 

m It
P 
On'

k

I •

0

•
2n-1

r-1
I CA

2n-l-r 
OB'A'

r=1

. I •
CA
2n-10 I II OB'A'2n-1

m p

I

0

— —

where the dependence of (A,B,C,D) on a is understood. And

M(a) =

Di(a)
Da

313(a)
Da

DE(a)
Da

DE(a)
Da

where if X is an nxm matrix given by X' = [xl,x2,...xn], with xi E R
m
,

then X is the nmxl vector given by R, [x1',x2',...,xn']. Also 0

denotes Kronecker product (see Appendix I).

Proof: If a system has order less than or equal to n, the set

(D,CB,CAB , CA
2n-1

) is sufficient to determine all subsequent Markov

parameters. Thus G is locally injective if and only if the function

from a into all the Markov parameters is locally injective. Therefore

the result follows immediately from Corollary 3.2, and it only remains

to show that the Jacobian of a is as given above.
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lin

h

lim

h 4

0

0

(II

1 1,
—
lh

(C + hAC) (A + hAA)k(B + hAB) - CAkB]l

[hACA
k
B + hCA

k
AB + h CA

k-r
LAA

r-1 
B

r=1

+ 0(h2)]

,
= ACA

k
B + CA

k
AB + X CA

k-r 
aAA

r-1 
B

r=1

0)
= (Ac c) A

AA A

and the expression given for
@G

3a,
is obtained by ordering the elements

of AA, AB, Ac, and AD as given for M(a).
CI

The expression above reduces to the evaluation of a q x q

determinant. It is however unnecessarily complex if we know that a

system is of minimal order, in which case we know that all equivalent

systems are related by a similarity transformation as explained in

Chapter 2.

The following theorem gives conditions for the local identi-

fiability of minimal systems.

Theorem 3.4

Let (A,B,C,D) (a) : S2 c R
N 

(with an open subset of R q)

be a C' (i.e. continuously differentiable on 0) parametrization of the

system matrices (A,B,C,D) and suppose (A,B,C,D) (a) is minimal. Then

1) (A,B,c,D) (a) is locally identifiable at a = a if and only if

F GL(n)x0± R N is locally injective atT=Ianda=a, where

-1 -1F(T,a) = (TA(a)T , TB(a), C(a)T , D(a)).



-51-

DF(I,a)
2) if rank = r for all a in some neighborhood of a, then

p(T,a)

(A,B,C,D)(a) is locally identifiable at a = a if and only if

r = n
2 
+ q, or equivalently det[x'(a)X(a)] 0, where

X(a)
1 @a

I
n 
x A'(a) - A(a) x

n

I
n 

x W(a)

C(a) x I
n

0
mp,n2

F is a reordering of F given by

F(T,a) =

TA(a)T

TB(a)

C(a)T 
-1

M(a)

0(a)

M(a) and ---- notation are as defined in Theorem 3.3.

Proof 

1) Necessity 

If F is not locally injective then for all C > 0 there exist

(Teue),(Sc,(36) C N (I,a) such that F(T
C 
,a ) = F(SC 

,0
C 
) and therefore

S
E 

-1
T 
E
A(a C)T 

C

-1
S
E 
= A(S )

S 
C 

-1
T B(a ) = S(13 )

WC )T
C

-1
C 

S
E 
= C(0 )

0(a ) = D(Rc
)
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Therefore there are equivalent systems in an arbitrarily small

neighborhood of a, and the parametrization is not locally identifiable.

(Note that the fact that GL(n) is an open subset of R 
nxn

is used)

Sufficiency 

First note that since (A,B,C,D)(a) is minimal there exists a

neighborhood W C Q of a such that (A,B,C,D)(a) is minimal for all a e W.

(Since minimal systems form an open set in parameter space and the

parametrization is assumed to be continuous). Therefore when restricted

to W all equivalent systems are related by a similarity transformation.

Therefore the parametrization is locally identifiable if F is injective

when restricted to GL(n) x V, where VC W is any open set containing

In order to prove the result we will prove the contrapositive.

Assume therefore that the parametrization is not locally identifiable,

then for all E > 0 there exist T 
e 
,S
e 

E GL(n), a 6 e N (a) C W

such that F(T
C 
,a

E 
) = F(S ,a

E
). Therefore we have that

S 1T = W(6
e
)14 1(a MW(a

e
W(a )]

-1
e E

where w(a) = [B(a),A(a)B(a) ..... An-1(a)B(a)]

e
T is therefore a continuous function of (a 

E 
,6 
E
) since w(a)

has full rank for all a E W by the reachability assumption. Therefore

IIS
E
-1T

C
- III can be made arbitrarily small by taking E sufficiently

small and F(S 
E
-1 
T 
C 
,a 
E 
) = B(I,6

e
). Hence there does not exist a neighbor-

hood of (I,a) in which F is injective, and thus F is not locally injective.
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2) To prove this we use part (1) above, and Corollary 3.2. First we will

compute the Jacobian of F or equivalently F, which is given by,

lim 1
h .4. 0 (F(T + h6T,a) - F(T,a))

lim 1
= h I; ((T + h6T)h(a)(T + hdT)-1 - TAMT 1,

(T + hIST)B(a) - B(a), C(a)(T + hoT)
-1 

- C(a), O)

h

l 

0 h

im 1 ,
(hoTA(a)T 1 - hTA(a)T 1(STT 1 + o(h2),

+ hdTB(a), - hC(a)T 16TT
-1
 + 0(h

2
), O)

= (6TA(a)T-1 - TA(a)T 16TT 1, &IBM, - COOT-16TT 1, O)

Therefore using notation of Appendix I,

aF (T , a)
aT =

IOTT -1A ' (a) - TA (a)ar). ® T-11
I (DB' (a)

- C(a) T
-1 ® T 1 

Similarly .1.••

T 
0

T
- 1 0 1 0 1 0

0 T 1 0 1 0

3F(T,a)

aa o 0 1I0T-11 1 0
M(cx)

o o 1 o 1I0I

and thus

[DF(T,a) DF(T,a)]

DT ' Da

T T
-111 

0 1 0 I 0

o T T I 0

_ _0_ _ 4.. _ _o_ (.2)1. _ 4. _o_.
0 I 0 II®I

T
-1 

I 1qi) 
X (a)

0

0

I
q
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Therefore since T e GL(n) the rank of the Jacobian of F at

(T,a) is equal to the rank of X(a), hence the assumption that rank

@F(T,a)
X(a) = r for all a E N 

B(T,a)
(a) implies that rank = r for all

A
(T,a) in some neighborhood of (I,a). Therefore the assumptions of

Corollary 3.2 are valid and the result follows immediately.

Remarks

1) If rank X(a) = n
2 
+ g then rank X(a) = n

2 
+ q in some neighborhood

of a, and hence the condition for identifiability is simply

det[r(a)X(a)] # O. Requiring that the rank x(a) is constant in a

neighborhood of a is specified so that unidentifiable parametrizations

can be found from the test. Those systems which have rank X(a) < q at

A
a = a but not in a neighborhood of a may or may not be locally identi-

fiable, however it can be said that the sensitivity of the input/output

response to certain small changes in the parameter values is zero.

This situation is analogous to trying to estimate a from noisy observations

of a
3 
, in a neighborhood of a = O.

2) Theorem 3.4 gives a comparatively simple test for the local

identifiability of a parametrization, with the unknown parameter

entering in a straightforward manner. It is significantly simpler

than the methods based on the information matrix (see Section 3.6),

and more elegant than the condition of Theorem 3.3. The computational

comparison between the tests of Theorems 3.3 and 3.4 is not clear, in

that although Theorem 3.3 reduces to evaluating a q x q determinant,

whereas the condition of Theorem 3.4 involves a determinant of dimension



-55-

2 
+ q (can be reduced to n

2
n ), the precomputinq required in Theorem 3.3

is considerable. The test of Theorem 3.4 allows some unknown parameters

to be left as free parameters and the determinant evaluated as a function

of them, so that regions of local identifiability can be deduced. How-

ever in Theorem 3.3 such calculations could be exceedingly tedious.

3) If a parametrization is locally identifiable, this ensures that

any well-conceived algorithm which minimizes some cost function over

the parameters will be well-posed and have a unique solution in some

neighborhood of the nominal values. Further if a parametrization is

locally identifiable for all values of a E 0 then an algorithm will

always be well-posed but may converge to one of several solutions

depending on the initial parameter estimates and the actual data re-

ceived. This is the problem of global identifiability which will be

discussed in the next section. First we will give some examples to

illustrate the local identifiability theorems.

Example 3.1 (continued)

(i) For the parametrization of example 3.1 (i),

X(a)

o 0 1 a I1

a -1 1 0 ci I 1 0
1 

11 

o o 1 o 1 o o

o o la 0 1 001 1

1 

o I'2

0 0

O 0 1 0 0

o a
2 

I 0 1

-1 0

0 -1

o 1

• o 1 o o
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The last 3 columns are clearly dependent for all (al,a2) E R 2,

and hence the parametrization is not locally identifiable for any al

and a2.

(ii) For the parametrization of Example 3.1 (ii)

0 0 I -1 0 1

1 a
2
-a
1

0 -1 0

I

0 o l a1
-a
2

o o

0 o I 1 0 0

X(ct) =
1

o I 0 1 0

-1

-1

0

0

0

0

1

And det[r(a)X(a)] = (a1 
- a

2
)
2 

and so it is locally identifiable

A
if a

1 
a
2
, however the region of local identifiability is small when

A
a
l 
z a

2
. The fact that it is not locally identifiable at a1 

= a
2 
is

true but cannot be deduced from the theorems.

aa

For comparison using Theorem 3.3 for this parametrization gives

0 0 0 0 1 0

0 1 o o ct
1 

1

1 
al a2

0 1 i a
1

2
a
1
+a
2

2
+ + 

2 2
+ + 

2

1 2 1

3

al
2a
1
+a
2 al ala2 a2 

1 a +2a a 
ala2 a2



0 1 1 0

0 0
1 a 0 0

2
0 I

al+a2
2

a
0 0

2 0 0

2 2 3
0 0

+
al 

+ 
alal a2

a
2

0 0

0

0

1

2a
1
+a
2

0

0

1

2a
2
+a
1

and det E )1 RH = (a
1
-a
2
)
2 ei

Example 3.3

A simple minded extension of the standard controllable form

for single input systems is given in the following proposition, and

it is shown that except when all the indices are equal the parametri-

zation is not locally identifiable anywhere.

Proposition 3.5 

Consider the set (kl,k2,...,kn) summing to n, then the para-

metrization of the system matrices (A,B,C) given below is never locally

identifiableanywhereunlessthek.are all equal in which case it is

locally identifiable for all a E R n(11").

C is completely free.

A and B are block matrices

A = (A. .). . B = (B. .).
1 

.
1) 1,)=1,..m 1) ,)=1,..,M.
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0
k.-1,1 k.-1

1 

1 x x... x

(k.

ij

x k
j
)

0

x x  x x

B.
ij

=

0

o

o
1

i = j

(k.

0
k.,1

where x's are free parameters.

Proof

to,

(*)

i = j

The local identifiability condition of Theorem 3.4 is equivalent

Q A(a) - A(a)Q = LA

Q B(a)

- Q(a)

= AB

= Ac

Q = 0

where (AA, AB, AC) represent admissible local variations in (A,B,C).

(i.e. if the implication holds at some a then local identifiability

results, and if the implication does not hold for all a in some neighbor-

hood of a then it is not locally identifiable).

Now because of the structure of (AA, AB, Ac) (*) is equivalent to
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/

E(Q A(a) - A(a)Q) = 0
Q 
= 0

QB=0

1k
1
-1 Ok

1
-1
'
1

II
k
2 
-1 

o
k
2 
-1 1 I

l ikm
-1 

o
k
m
-1,1

Let Q =
4211 Q12 Qlm

Q21

Qml mm

with 41J a. . (k. x k.) matrix.
1

Then Q g = 0 Q. Q.,
13 

B
1
., = 0, orthet,k.th element of

Q''' 

ij 
= 0 for =

13 ,k.
7

The i-j th block of (**) gives

m
[I

k.1

_1, Oki_1,31.1 
d 
v.1

Qik
A_ (a) 

k 1 ik 
A (a)Qk3 ) == 

And since q
ij 

. = 0 this becomes
t,k3

[1
ki-1 1 ki-1,1] I QijAjj(a) kii(a)Qij I =

that is for i,j = 1,...,m,
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.1••••

ij 0
. .
1]

° qll q12 • • • ql,kj-1 q21 q22 • • -42,k.-1
3

0
q21

431
0

• •

•

° clk.
1
-1,1 • • cl -1,k.-1 k.,1 k.,k.-1

0

3. 3 1 1 j

••••••••

Therefore there are (k.
1
-1)k.

3 
equations in (k.

3
-1)k.

1
unknowns, and

if k. < k. there are more unknowns than linear equations and a non-zero
1 J

solution exists. If k. > k. there is a unique solution for 
Q13 
—(i.e.

1 J

zero) and this can be verified recursively, 
(clia = qt+1,2

= 0

= 2,3,..,ki and qz,k = 0 qfl
L-1

11(

_2 = 0 ... = 1,2,..,ki-1).

J 3

Therefore the parametrization is not locally identifiable for

anyaifk.
1 
#k. for some i and j, and it is locally identifiable for

all a if k. = k.
3 
for all i and j. (In fact it is globally identifiable

in this case by Theorem 3.6 , see next section).

Some authors imply that the above parametrization is useful

(e.g. Jordan and Shridar (1973)) but the above proposition shows that

it is rarely identifiable, and hence there will not be a unique repre-

sentation of a particular system response. The correct extension of

the standard controllable form is given by Theorem 2.5. 113

Example 3.4 

We now give an example of a parametrization which is locally

identifiable for all a 6 R but is not globally identifiable.
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[-1 

0]
B(a) 

=[2 1+2a -5 1

which has transfer function,

s(2-a
2
) + (2a

3
-2a+10) 

(s+1)(s+5)

and Markov parameters,

G(a) =

2 -a
2

-2 - 2a + 6a
2 

+ 2a
3

2 + 12a - 31a
2 
- 12a

3

-2 - 62a + 156a
2 
+ 62a

3

Therefore as in Theorem 3.3

aG(a) _
au —

-2a

-2 + 12a + 6a
2

12 - 62a - 36a
2

-62 + 312a + 186a
2

C(a) = [1 - a, a]

which is clearly of full rank for all a E R , and hence by Theorem 3.3

the parametrization is locally identifiable for all a E R . However the

systems with a = 1 and a = - 1 have the same transfer function

s + 10 
(s+1)(s+5) 

and therefore the parametrization is not globally identifiable.

The variation of the transfer function with a is shown below in

Figure 3.1.
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Figure 3.1

a
2
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3.3 Global Identifiability 

As remarked in section 3.2 from a practical point of view local

identifiability has the disadvantages that a nominal value for a is

required, and that given local identifiability the extent of the region

of identifiability is not easily found. Hence the concept of global

identifiability is now defined.

Definition 3.2 

Let (A,B,C,D) (a) : QC: R ci ÷ R N be a parametrization of the

system matrices (A,B,C,D). This parametrization is said to be globally

identifiable (from the transfer function) if, for all a, S E Q,

(i) D(a) = D(S)

(ii) C(a)A
k
(a)13(a) = C(a)A

k
(a)C(a), k = 0,1,2,...

and (iii) (A,B,C,D)(a) is minimal

imply a = B.

Condition (iii) in the above defimition could be deleted, but

then the definition would be very restrictive since most useful

parametrizations admit multiple representations of non-minimal systems.

The following proposition gives a sufficient condition for

global identifiability when the parametrization is affine. (i.e.

f : is affine if f(x) = c + i(x) where t is linear and c

is a constant). Affine parametrizations occur frequently in practice,

for example all the standard canonical forms are affine.

Theorem 3.6 

An affine parametrization (A,B,C,D)(a) QC R q

globally identifiable if for all a, f3 c Q,

R (z (ct, (3) ) n R (z ((3,a) ) fl R (DO = {0)

N
, Is
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and this is implied by det[r(a,S)Y(OL,(3)) # 0 for all a, S E Q. In here

z(a,S)

I OA' (a) - A(0) ED
I ® B. (a)

- c(S) I
o

M is as defined in Theorem 3.3.

ra,S)Y(a,$)
z(S,a) m

Proof 

Since we are only concerned with minimal systems, global

identifiability is implied if the following equations have a unique

solution for all a, S e n,

or

T A(a) = A(S)T

T B(a) = B(S)

C(a) = c(S)T

D(a) = D(S)

Let Q1 = T - I and Q2 I - T
-1
 then (*) is equivalent to,

Z(a,S) 6.1 = M(S-a)

z(13,06) QZ = M(S-a)

Which will have a unique solution if

R(z(a,S))(112(z(S,a))(1R(14) = {O. Finally the condition on Y(a,S)

is immediate.

Remarks:

= =
1) The condition is not necessary since (Q

1
',Q

2
I, a -S) e N(Y(a,S))

does not imply that (Q
1 
+I)

-1 
= I - Q2 or that a - S= a - S which
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are required for a system not to be globally identifiable.

2) A somewhat more restrictive sufficient condition for global identi-

fiability is that R(z(a,(3))nR(M) = {0} for all a, S E O. We remark

that this condition is in fact satisfied by the canonical forms given

in Theorems 2.4 and 2.5 and the former case is proven in the following

proposition.

Proposition 3.7 

Let the set of integers (so,si,..,s
m
) satisfy

0 = so < sl < s2 < sm..1 < sm = n.

Then the following parametrization satisfies det((z(a,13),M) 1(z(a,0),M)] 0

for all a, 0
n(m+p)

A =

a. =

... a
n 

B = [101, b2, b
m
]

freeifi=s.j= 1,...m.

otherwise

b. = e
s.+1
i

C = free

wheree.=1
th
 unit vector.

Proof 

det[(z(a,(3),m).(z(a,$),M)] # 0 V a,0 is implied if

Q A(a) - A(0)Q = AA

Q ri(u) = AB

CW)12 = AC

Q = 0

where (AA, AB, AC) are admissible variations in (A,B,C).
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= ci2 
q
n
]

QA(a) = (P1 P2 ... Pri]

A(0)Q = [r1 r2 rs].

r. = A(8)cli

if i = s., j = 1 ..... m.

otherwise

(*) Q B = lq q
1 S +1 

. . . 
qs +11 = 6B =

1

Q A(a) - A(S)Q = 6A implies

mr-r.foris.j= 1 ..... m.

Seti=s.+1 then
3

s.+2 
= A(0) q

s.+1
3 3

but 
-s +1 

= 0 by (*) and hence a
s +2 

= 0 and hence recursively
a 

until qs = O. Hence Q = 0 and the result is proven.
j+1

Example 3.5 

The following is an example of a globally identifiable para-

•

metrization

A(a)

which fails

[a

1 
1 + 2a

2]

the conditon,

B(a)-

0

R(Z(a,S))r1R(H) = {0} for all a,O.

, C(a) = [1 0].
0 a

1
+a
2

1

1+ 2a
Now, the transfer function - 

2

s
2 
- (2a

1
+a
2
)s + a

1
(a
1
+a
2
)
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and the parametrization is globally identifiable, since for (al,a2)

such that the system is minimal, the three coefficients of the transfer

function can be identified, and a2 can be determined from the numerator

and a
1 

can then be determined from the coefficients of s.

Now in this parametrization det[(B(a,$),M) 1(Z(U,6),M)] = 0

if and only if

r

2 iJ

in which case A(6) =

and setting Q

(1
I 0

1 1 a
1

0 -I a
2-

+ a
1 
+

2 
-(1 + 2a2))

0 a
2

gives

Q A(a) - A(6)Q = (1 + 2a
2
)I
2

Q B(a) = 0

- C(6)Q = 0

which are all admissible variations in A,B and C. Thus we have constructed

a non-zero element in R(2(a,6)) and R(M).

If the better condition of Theorem 3.6 is used instead of the

more restrictive one above, no non-zero solution exists verifying that

the parametrization is globally identifiable. It is also noted that

the parametrization satisfies the sufficient condition for local identi-

fiability given in Theorem 3.4 for all parameter values.
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Remarks on Global Identifiability 

Finding conditions for global identifiability has been the

major time consumer of this research and is perhaps the least productive

in its results. It is the purpose of this section to outline the

mathematical problems in determining global identifiability.

Definition 3.2 of global identifiability removes non-minimal

systems from consideration. (see remark following the definition).

Therefore define U to be the largest subset of (2 such that

(A(a), B(a), C(a)) is minimal for all a E U. Then global identifiability

is exactly equivalent to any of the following three conditions.

1) (Markov parameters) G restricted to U is injective (see Theorem 3.3

for definition of G).

2) (Transfer function) H restricted to U is injective, where H(a) is the

set of coefficients of the transfer function, i.e. the coefficients of

det(Is - A(a)) and the coefficients of

det(Is - A(a)) x [C(a)(Is - A(a))
-1
B(a) + D(a)].

3) (Similarity transformation) F restricted to GL(n) x U is injective

(see Theorem 3.4 for definition of F).

The restriction of these functions to U makes any analysis

intractable in all but the simplest cases, since U is not easily

described and most useful results in global analysis require that the

function's domain is well-behaved.

Assuming that the above conditions are indeed intractable in

practice, sufficient conditions can be obtained if the functions F,G, or

H are injective without the restriction to U. However such modified

conditions may be too strong. G will never be injective if multiple
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representations of non-minimal systems are possible. H will not be

injective in many cases; for example in any parametrization with the

C matrix completely free and more than n free parameters in the A and

B matrices combined, H cannot be injective since when C is zero the

only non-zero coefficients in the transfer function are the n coefficients

of det(Is - A(a)) and hence since we assumed greater than n free

parameters in A and B, there will be infinitely many values of a with

the same image under H. Requiring H to be injective would thus seem

to be overly restrictive. The function F will not be injective for a

globally identifiable parametrization, only if two non-minimal systems

are related by a similarity transformation. This is in fact much less

restrictive than with the two other functions G and H but there exist

examples where F is not injective but the parametrization is globally

identifiable, as in

Example 3.6

the following example.

1)

A(a)

(a
1
,a
2
)

F(T,a) =

(0 

B (a) C(a)
0 0 (

e R 2

(TAM 
1

T ,TB(a),C(a)T
1
,D(a))

= (a
2

0)

and F 0
(F(1 

, (1)) ((

0

0 1 

0 

0

' 1 '
(0 , 0) ,

for all t / 0 so that F is not injective at a2 = O. Notice that

a
2 
= 0 corresponds to the unobservable systems so does not affect

global identifiability, which is ensured if we look at the transfer
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a
2
(1 + a

1
s)

, and assume a
2 
/ O. For this system the

s
2

functions G and H are also not injective at a
2 
= O. •

We can thus conclude that a reasonable sufficient condition for

global identifiability is that F GL(n) x R N is injective. Such

a question is in general exceedingly difficult to answer without some

additional assumptions. The general mathematical problem of determining

whether a map from a subset of one Euclidean space into another is

injective is non-trivial. Clearly a necessary condition is that it is

locally injective everywhere, however this is not sufficient. If the

image space is of higher dimension than the domain the functions which

are locally injective everywhere but not globally injective are very

easy to construct. (see for example Example 3.4), and general results

are very restrictive.

If the domain and image spaces are of the same dimension then

better results are available. For example Palais' Theorem (see

Palais (1959), Wu and Desoer (1972), Ortega and Rheinbolt (1970)) which

states that : If f is a Ck map (k > 1) from R n into R n, then f is

af(x)a Ck
 
diffeomorphism if and only if, (i) det — /0 VXE R n and

(ii) lim

11 31 11
Ilf(x)11 = m . (Note, a Ck diffeomorphism is by

definition a bijective C
k 
map whose inverse is also C

k
). This is a very

strong and also surprising result in that the conditions are both

necessary and sufficient. However we are only interested in maps being

.4.co
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injective and do not require them to be surjective. Palais' Theorem

could be applied to single input/single output systems with 2n degrees

of freedom, to show that H is bijective.

General conditions for a map just to be injective tend to be

very restrictive and hard to verify. For example in the related control

area of the global observability of nonlinear dynamical systems it is

required to have the map from the initial condition into the output

sequence injective, and this has been considered in some detail by

Fitts(1970), who did not find any sufficient conditions for maps to be

injective, that were not too restrictive for our present purposes.

The global identifiability problem is complicated considerably

by the domain of F being GL(n) x Q. However the condition that

det a(T a) (T,a)] # 0 for all T and a can be replaced by

det [T(r,a) (1,a)] 0 for all a. (see proof of Theorem 3.4). Also

if we assume that (A,B,C,D)(a) is affine then F is a highly structured

function. We now make a conjecture for which no proof or counter

examples are known to us.

(Open)Conjecture

Let (A,B,C,D) (a) 
R nm+np+mp n N

N be an affine parametrization,

then it is globally identifiable if det 
[D(T (1) ' 
2E

(I a)] # 0 for all

a 6 N nm+np+mp
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If the dimension of a is allowed to be less than (nm+np+mp)

then counter examples to the conjecture can be found (see Example 3.4).

Further if the affine restriction is not made counter examples can

be found (see below).

Example 3.7 

Consider the parametrization,

A(a) = a
1 
, B(a) = (a

2
, 1 - a

2 ' 
2
) C(a) = a

3
, D(a) = (0 , 0) then

det 6aF(I,a),a) det

=

However if a
2 
# 0

1

then

+ a
2
2 
11

1
a
2'

a ) =F-
2 ' 

(a
1
,

a
2

0 1 0 0

a
2 

0 1 0

1-a
2

2
0 -2a

2 
0

-a
3 

0 0 1

V a c R 3

a
3I

(
'- a

2 
' 
1-

C12

-2 ' 

cc2

2)

F 1, (a
l' 

- a2 - a
3
a
2
2
)

So that F is not injective (even if restricted to minimal

systems) and so the parametrization is not globally identifiable. al

In conclusion it would seem from the above discussion that the

sufficient condition for global identifiability given in Theorem 3.6

is a good condition, but that if the number of degrees of freedom is

(nm+np+mp) then the better condition of the Open Conjecture may be true.
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3.4 Partial Identifiability 

An interesting question that arises in some practical applications

is: given a parametrization (A,B,C,D)(a,a) : Qi R N. can a be

identified independently from 13? The implication here is that we are

only interested in a and are not concerned if B is not identified uniquely.

For example S could represent the feedback gains and a some open loop

parameters. This motivates the following definition.

Definition 3.3

ql
A parametrization (A,B,C,D) (a,f3) : 1 

x QC: R x R q2 -4- R N

is said to be locally partically identifiable in a at a = a and $ =

if there exists an E > 0 such that

(i) - a l I < CI I I 6i I < C

(ii) D(a
1

16
1
) = E(a

2' 2
)

1,2.

and (iii) c(a
1, 
0
1 
)A
k
(a
1
43
1
)13(a

1
,0
1
) = c(a

2
,0
2
)A
k
(a
2
,0
2
)B(a

2
,0
2
)

k = 0,1,2,...

imply al = a2. 
131

The following Theorem gives conditions for local partial identi-

fiability.

Theorem 3.8

Let (A,B,C,8)(a,S) : 01
N qi
(with . open subsets of R

i = 1,2) be a C' parametrization of the system matrices (A,B,C,D), and

^
assume that (A,B,C,D)(a,f3) is minimal. Suppose

1) rank [Z((a,S),(a,(3)); mo(a,0)) = r2 
for all (a,0) in some neighborhood

of (aA.
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2) rank (Z((a,0),(a,(3)), M , , (a f3) M
a
(a,8)] = r

1 
+ r

2 
for all (0:,) in

A A
some neighborhood of (a,S).

Then (A,B,C,D)(a,S) is locally partially identifiable in a at

if and only if r1 = ql.

In here Z((a,), (a,a)) is as defined in Theorem 3.6 and

M
a
(a,(3) and M

R 
(pa,) are derivatives of the parametrization with respect

to a and 6 respectively (see Theorem 3.3).

The proof relies on the following lemma.

Lemma 3.9

ml
Let Q

1 
and Q

2 
be open sets in R and R

m2 
and f: R

1 
x Q

2 
4- R n

be a C
k 

map with k > 1, thus f maps (x,y) into f(x,y), with x e 01 and

y e Q2. Also assume

A A
1) rank af(x,Y) = r

1 
V(x,y) in some neighborhood of (x,y).ay 

A A
2) rank IL,

y 
(x,y) r

1 
+ r

2 
V (x,y) in some neighborhood of (x,y).

axd 

Then, there exists a neighborhood of (x,y), say W , such that

f(xl,y1) = f(x2,y2) and (x1,Y1),(x2,y2) FW

imply xl = x2, if and only if r, = ml.

Proof of Lemma 3.9 

We will now use the rank theorem (Lemma 3.1) to find f (f(x,y))

for any (31,Th in some neighborhood of (x,y).

From Lemma 3.1 there exist neighborhoods U of x and V of y such that

f(x,y) =uoto u'



-75-

for all (x,y) C U x V, where u and u' are C
k 
diffeomorphisms and

(1)(x
1
,x
2
,...,x

m+m2
) = (x

1
,x
2
...x

r +r 
, 0 ... 0)

l 1 2

and further

f(X,y) = v- o o v'- for all y C V and any fixed X C U.

where v- and v'- are C
k 

diffeomorphisms and

11)(x
1
-,x

2 
,..x ) = (x

1
,x
2
,...x

r
, 0 ... 0)

m
2 2

Therefore

s
1 

= f-1(f(Li;))n(U x V)

= (U x V)Il 
n 1
u (u'

1 
(f(X,Y)) ..... u'

r +r 
(f(X,Y)),z

1'
z
k
1

1 2

wherez.
1 
c12 for i = 1,2,...k, and k = m

l 
+ m

2 
- r

l 
- r

2
.

also f (f(x,y)) :3 S
2
(X i) = {(X,y)lf(X,y) = f(X,i), y E V}

= (U x V) n 
1

x 
v- (v1

R 1 
(f(X,i)),...,vT (f(Z,i)),z

1 
,...zz)

2
, 

where z. C R,
1

i = 1,2,...t, and = m2-r2.

Hence for all (X,i) C U x V,

S
1
(XM is homeomorphic to a neighborhood in R

S2(x,y) is homeomorphic to a neighborhood in R t

and S
2
(X
'

c7) c: 5
2
(X,S;) and therefore S

1
(X,Y) = S

2
(X
'

cf)

if and only if r1 = ml.

Clearly if S1(X,Y) = S2(X,i) the implication that x2 = x
1 
in the

theorem statement holds and otherwise the implication is false since there
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will always be x2 
# xl such that f(x

1,
y
1
) = f(x

2
,y
2
) no matter how

small a neighborhood of (x,y) is taken.

Proof of Theorem 3.8 

Define P(T,ct,0) = (TA(ct,0)T
1
,T13(a,0),c(c,0)T

-1
,D(a,$)) then

the result holds if and only if there exist neighborhoods U of a and

V of 0 such that

F(T,Œ,0) = F(F,1415

and a,Ei c U and 0,T E V and T,TI C GL(n) imply a = a.

Now by an exactly analagous argument to that of Theorem 3.4

we can restrict T to be in a neighborhood of T = I. Therefore Lemma

3.9 applies and the result follows immediately.

An application of this result is given in Corollary 3.10.

Example 3.2 (continued)

n = m = p = 1 and a,b,c are free parameters. Now referring to

Theorem 3.8, let a = a and 0 = (D,c) then conditions 1) and 2) become

0 0 0

1) rank b

[

1 0

]

= 2 = r
2 

for all (a,b,c) e R 3

-c 0 1

0001

2) rank b

[

1 0 0

]

= 3 = r
1 
+ r

2 
for all (a,b,c)c R3

-c 0 1 0

Thus r
1
= 1 = q

1
= dimension of a, and local partial identifi-

„ A
ability of a results if (a,b,c) is minimal.
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3.5 Identifiability in the Presence of Feedback 

As pointed out by RstrOm and Eykhoff (1971) identification in

the presence of feedback can cause significant problems. Consider

RstrOm's example given in Figure 3.2.

w

Figure 3.2

In this example a simple-minded identification algorithm would

be to ignore H
F
, observe e and y and assume that

H
p e

but —= (H
F
)
-1 

and therefore such estimates would be completely false.

The feedback can enter quite subtly as for example an aircraft pilot's

response to external disturbances. The correct way to model a system

with feedback is to write down the state space equations in open-loop

form with the feedback matrix modifying the system matrices. Then the

identifiability questions can be asked and answered as in the previous

sections of this chapter.
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For the general problem when the system and feedback matrices

are all parametrized by some unknown parameters, and it is desired to

identify some of the parameters and not others then the conditions of

Theorem 3.8 would have to be used.

Two particular situations have been worked out by way of

example in the following Corollary (a direct consequence of Theorems

3.4 and 3.8)

Corollary 3.10 

Consider the linear feedback system,

dx(t)

dt = A(a)x(t) + B(a)u(t)

y(t) = C(0)x(t), u(t) = -Fx(t) + v(t)

with F E R rum where (A,B,C) (a) R R 
n(n+m+p)

 is a C' para-

metrization of (A,B,C). Assume

B(a) (DI
1) rank [14(0c,F); 0 = r2 in a neighborhood of a. And

B(a) COI A
2) rank [W(a,F); 0 ; Ica) = r

1 
+ r

2 
in a neighborhood of a.

I(D(A(a) - B(a)F) I - (A(a) B(a)F) QI
where W(a,F) = IC)B. (a)

- C(a) co

Then the parameters a and F are locally identifiable if and

only if + r2 = nm+ q.

Further the parameters a are locally partially identifiable if

and only if r1 = q.
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When considering systems under feedback the analysis of invariants

has been an active area of research. (see Popov (1972), Morse (1972),

Wang and Davison (1972), Wolovich and Falb (1969)). Therefore if one

had a completely unknown system and wanted to identify as much as possible

in the presence of an unknown state feedback matrix it would be natural

to use a canonical form under the transformation

n mxn(A,B,C) (T(A - BF)T
-1
, TB, CT

-1
) with F E K and T E GL(n). However

such an analysis seems more suited to the design rather than the identi-

fication problem, since it is unlikely that only the invariants under

feedback are required to be identified.
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3.6 Comparison with the Information Matrix and Sensitivity Analysis

Previous work on identifiability has been of two types. Firstly

there has been work on deterministic single input systems with the (A,B)

matrices in standard controllable form and the question answered is what

inputs will enable the unknown parameters in the (A,C) matrices to be

identified. (see Stanley and Yue (1970), Fisher (1965), Lee (1964)).

Secondly there has been work in the statistics and stochastic

control literature on the type of observation noise statistics, control

inputs and system parametrizations that enable the system matrices to

be identified asymptotically. This work is generally based on the so-

called (Fisher) Information Matrix, and needs knowledge such as the

conditional probability density of the present observations given all

previous observations and the parameters. (see Rothenhurg (1971), Tse

(1973), Mehra (1972), AstrOm and Bohlin (1966)). The information matrix

is a quite general approach, and indeed also gives approximations of the

covariance of the parameter estimates, however for the problem that has

been considered in this chapter it gives computationally difficult

tests.

The present work is complementary to the above work in that it

assumes the inputs and observations are sufficient to identify the trans-

fer function and then determines the identifiability cf the system para-

metrization. The equivalence of the two approaches will now be shown

for a particular situation.

Example 3.8 

Consider the linear discrete time dynamical system

x(k + 1) = Ax(k) + Eu(k), x(0) = 0
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z(k) = Cx(k) + w(k)

where w(k) is a Gaussian white noise sequence with E(w(k)) = 0 and

E(w(k)w(j)) = R
jk
. (with R = R' > 0).

written

The evolution

as

z (1)

z(2)

equation for s

HO
 

0 . . . 0

• 
•H

1 
H 

•

sample points

u (0)

u(1)

(in time),

w(1)

w(2)

can be

• •

• • • •

• 6

z(s)
Hs-1

H
1
• H u(s-1) w(s)

where H
k 
= C A

k
B

Now if (A,B,C) are parametrized as (A,B,c)(a) the equation can

be written as,

z = E (a) +
s s s

with the obvious interpretation of the symbols.

For such a system Schweppe (1973) shows that the information

matrix at a = a is,

M(a)
Da

where R
s 
= I

s 
OR

Now let h
s
(a) =

h (a)

h
1 
(a)

h
s -1

(a)

—1 ( ah (a))
R
s Da
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k

where h
k
(a) = H (W u(j)

kj
j=0

ahk(a) k 311
k-) 

.(a)u(j)
Then = Iaa 

3() 
Ba.

= 

ah
k
(a) k ax

and I (I Oui(j)) aa
9a 

j=0 P

vector by rows). Hence

and H
k
(a) = C(a)A

k
(a)8(a).

(where H
k 
is H

k 
listed as a

DR (a)

uo 0 . . . 0 Da

ah(a) _
Ul u

0
3171
1 (a)

= U K(a) say.Da
pa

0

U
s-1 1

U
0

s-1(a)

Da

where U
k 
= I

p 
e..(k) and hence

s(a) = 1V(a)U'R 
1 
U K(a)

Now M
s
-1

(a) gives a lower bound on the covariance of any unbiased 

estimator of a. (Cramgr-Rao lower bound.) Therefore to asymptotically

identify a exactly with an unbiased estimator we need that all the

values of M
s
(a) tend to infinity as S CO. This is a condition on both

the parametrization and the input sequence. It is clearly necessary that

K(a) must be of full rank for the information to tend to infinity as

s oo, in which case inputs will exist to ensure this is so. (This is

similar to the persistant excitation required by RstrOm and Bohlin

(1966)). The condition that the rank K(a) = q is an identical sufficient
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condition for local identifiability as that given in Theorem 3.3, how-

ever this condition is only necessary if rank K(a) is constant in a

A
neighborhood of a. Indeed it is not necessary for identifiability that

the Cramer-Rao lower bound tend to zero as s , because biased

estimators can sometimes improve on the Cramer-Rao lower bound. For

example the maximum likelihood estimator (see Box and Jenkins (1970))

is in general biased for any fixed sample length, s, but as s 00

the estimates tend to the true values. For maximum likelihood estimators

the Cramer-Rao lower bound will only be tight when Ms
(a) > 0 and when

s co. If M(a) is singular for a - a but not in a neighborhood of a,

then Cramer-Rao lower bound does not give meaningful results, since

in this case no linearization is valid near a.

In a very similar manner to the above analysis for the noise

free case, the sensitivity of the outputs with respect tothe parameters

given the inputs, can be produced. (see for example KokotoviC and

Rutman (1965)). Identifiability will then result if the sensitivity

of the outputs is of full rank. Such a result would depend on the

inputs, but given that the input sequence is satisfactory, a condition

equivalent to that of Theorem 3.3 will be obtained for the identifiability

of a parametrization. One can also consider the sensitivity of the trans-

fer function or Markov parameters with respect to the unknown system

parameters, and then this would be equivalent to Theorem 3.3.



CHAPTER 4

IDENTIFIABILITY FROM OUTPUT CORRELATION 

4.1 Introduction 

In this chapter we consider the identifiability of linear system

parametrizations when the system is driven by white noise and only the

output is observed. This is in general a significantly more difficult

problem than when input observations are also made, and is referred to

variously as the spectral factorization problem and the inverse problem

of covariance generation. Before the identifiability problem can be

approached characterizations of indistinguishable systems in these

situations are required. Sections 4.2 and 4.3 give the appropriate

background material for the continuous time and discrete time situations

respectively. Then in Section 4.4 the identifiability problem is

considered.

4.2 Continuous Time Systems 

In this section we consider the system,

dx(t) = A x(t) + B u(t)
dt

Y(t) = C x(t) + D u(t)

with x(.) e R n, u(•) e R m, y(.) E R ID and the following assumptions.

A1. The input u(t) is not observed directly but is assumed to be a

white noise process normalized such that E(u(t)u(T)) = I6(t-T).

A2. The matrix A is asymptotically stable (i.e. the eigen values of A

are strictly in the left half plane).

-84-
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A3. The system has reached steady state when the observations begin

(i.e. the output process y(t) is a stationary random process).

A4. The system to be identified is globally minimal, i.e. the dimension

of the state is less than or equal to that of any other system with the

same output spectral density when driven by white noise. (Anderson

(1969)).

Under these assumptions the most information that may be ob-

tained from output observations is the output spectral density,

(Ns) = G(s)G'(-s), where G(s) = C(Is - A)
-1 

B + D.

The identification problem is thus, given observations of

0(s) find a system G(s) such that 4a(s) = G(s)G'(-s). This is the

so-called spectral factorization problem. It has been extensively

studied, and a general solution in the frequency domain has been given

by Youla (1961). A general time domain treatment of this problem has

been given by Anderson (1969). Since we are primarily concerned with

state space representations the results of Anderson are most useful

for our purposes, and are restated here for easy reference.

Let Z(s) be a positive realmatrix of rational functions

such that

(1)(s) = Z(s) + Z.(-s) (sum decomposition)

Z(s) is in fact the Laplace transform of the correlation

function R (T) for T > O.yy

Now let (A,G,C,J) be a minimal realization of Z(s). Then we

have the following result.
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Lemma 4.1 (Anderson (1969))

Consider the matrix equation

(ME)

[AP + PA' PC' - G i B[] E.,
D.]

CP - G I

,

-J - J.

in the unknown matrices P(nxn), B(nxm), and D(pxm). Then every

globally minimal solution, G(s) to 4)(s) = G(s)G I(-s) has a state space

realization (A,B,C,D) with B and D satisfying (ME) together with some

P = P' > O.

Conversely if B,D and P = P I > 0 satisfy (ME),

G(s) = C(Is - A)
-1 

B + D is a globally minimal solution to

0(s) = G(s)G'(-s).

Lemma 4.1 essentially characterizes all equivalent state space

solutions to the spectral factorization problem, and is used in the

following corollary.

Corollary 4.2 

If (A
1
,B
11
C
1
,D
1
) and (A

2
,B
2
,C
2
,D
2
) are globally minimal systems

then

G
1
(s)G

1
1(-s) = G

2
(s)G

2
1 (-s)

(where G.(s) = C.(Is - A.
1
)-1B. + D., i = 1,2.)

if and only if there exists T e GL(n) and Q = Q' such that

A
l 
= T A

2
T
-1

C
I 
= C

2
T
-1

QA
1 

+ A1Q = - B
1
B
1 

+ TB
2
B
2
'T

QC1' = - B1D1' + TB2D2'

D
I 
D
1 
' = D

2
D
2
'
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Further if D
1
D
1
' is nonsingular the above is equivalent to

there being a similarity transformation between the Kalman filters of

the two systems.

Proof 

We know from global minimality and Lemma 4.1 that if

Cs) = Z(s) + Z'(-s)

with Z(s) positive real, then a minimal realization of Z(s) is given

by (A
1
,G,C

1
,J) where

G = P
1
C
1 

+ B
1
D
1
'

and J + JI = D
1 
D
1 

,  ' and where P = P' > 0 satisfies

P1A1
' + A1P1

 
= - B

1
B
1
'.

Also Lemma 4.1 implies that there exists a unique similarity

transformation T e GL(n) between (A2,C2) and A
1
,C
1
), i.e.

-1 -1
Al = T A2T C

1 
= C

2
T

Therefore (A
2' 
T
1
G C

2
,J) is also a minimal realization of

Z(s) and there exist P
2 
= P

2 
> 0 such that

{
P2A2' + A2P2 = - B

2
B
2
'

T
I
G = P

2
C
2
' + B

2
D
2
'

J + J' = D
2
D
2
'

Simple manipulation of the above equations gives that

(P
1
-TP

2
T')A

1
' + A

1
(P
1
-TP

2
T') = -B

1
B
1
' + TB

2
B
2
'T'



-88-

G = TP
2
T'C

1 
+ TB

2
D
2 
= P

1 
C
1 
' + B

1
D
1

Hence, setting Q = P1 - TP2T' the 'only if' statement follows.

The if statement can be verified by direct substitution.

The equivalence of the condition with the equivalence of the

system Kalman filters is proved as follows. (That two systems with

equivalent Kalman filter's are indistinguishable is essentially shown

in Geesay and Kailath (1969)).

The Kalman filter is realized by

d x(t)
= A x(t) - K V(t)

dt

Y(t) = C x(t) + v(t)

where v(t) = C x(t) y(t)

and

K = (EC' + BD')(E)01)-1

,EA' + AII + BB' - (11C + BD 1 )(D131)
-1 
(aC' + BDI)' = 0

Now defining E = P - if, and using Lemma 4.1 we get

(*) EA' + AE (G - EC')(J + J')-1(G - E C')' = 0

for which there is a unique minimal solution for E.

Thus two Kalman filters are equivalent if there exists

T C GL(n) such that

-a
= C2T

-1
A = TA

2
T K

1 1 
= TK

2

and the covariance of V
1 
= covariance of v

2 
i.e.

'D1D1 
=

2
D
2
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Hence the only equation to prove is that K1 = TK2.

Consider (*) for system (1), then substituting for A1 and C1

and setting E = T-1E T 1 , gives

E A
2
' + A

2 
E - (T G - E C

2
1)(J + 

J-, -1 
) (T G - E C

2
') = 0

but (*) for system (2) gives

E
2 
A
2
' + A

2 
E
2 
- (T G - E

2 
C
2

1)(J + J 1)-1(T G - E
2

Hence since there is a unique minimal solution

Thus

E
2 
=E=T E

1 
T
-1
'

K = (E C ' + B D I)
-1

1 1 11 11

= (P
1
C
1

1 + 
B1D1

' - E
1
C
1
')(D

1
D
1
')
-1

= (G - T E
2 
C
2
') (D

2
D
2

1)

= T (T 
1 
G - E

2 
C
2 
') (D

2
D
2

1)
-1

= T(P
2
C
2
' +

2
D
2
' - E

2
C
2
') (D

2
D
2
')-1

=T K
2

as desired.

= 0

Conversely that the equivalence of the Kalman filters implies

the existence of Q= Q' can be established analagously.

This relationship between the solutions to the spectral

factorization problem will be used in Section 4.4 where we discuss

the identifiability problem stated earlier.
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4.3 Discrete Time Systems

In this section analagous results to those of Section 4.2 are

derived for the discrete-time case. The results presented are probably

equivalent to other work discrete time spectral factorization (e.g.

Mehra (1970 and 1971) and Motyka and Cadzow (1967)) but the particular

form of the results does not seem to have appeared in the literature.

Consider the discrete-time linear dynamical system:

x(k+1) = A x(k) + B w(k)

y(k) = C x(k) + D w(k)

where w(-) is white Gaussian noise with E{w(k)w 1(j)} = I 
(Skj 
. Now

assume that the output spectral density, 0(z) (= the z-transform of

EtY(k)y'(k-i)} is known then the (discrete-time) spectral factorization

problernistofirldanasIrrnptoticallystables) < 1) transfer

function G(z) such that

(1)(z) = G(z)G 1(z 1)

Any state space realization of G(z) will then give possible values

for the parameters (A,B,C,D).

Since 0(z) is a spectral density matrix we can assume without

loss of generality that:

A1. 4:(z) = 40(z-1)

A2. $(eje) is Hermitian nonnegative definite for -Tr < 0 < 71.

Further we will assume that,

A3. rp(z) is analytic for z = e with -7 < e < 71 i.e. rp(z) has no poles

on the unit circle.
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From the partial fraction expansion of cp(z) one can decompose

0(z) = Z(z) + ZI (z 1)

where the poles of Z(z) are strictly inside the unit disc. Z(z) is

essentially the one-sided z-transform of Efy(k)y l (k-i)). We are

thus looking for a factorization of the form:

(SF) 0(z) = Z(z) + ZI(z 1) = G(z)G I(z 1)

Assume that Z(z) has a minimal realization (A,G,C,J), then the

following Lemma characterizes all solutions to (SF).

Lemma 4.3 

(mE)'

Consider the matrix equation

[

APA' - P, APC' - G

_
CPA' - GI, -J-J I + CPC'

= -
B1

[BI Dq

D

in the unknown matrices P(nxn), B(nxm), and D(pxm). Then every

globally minimal solution, G(z) to flz) = G(z)G I(z
-1
) has a state

space realization (A,B,C,D) with B and D satisfying (ME)' together with

some P = P' > O.

Conversely if B,D and P = P' > 0 satisfy (ME)',

G(z) = C(Iz - A)
-1
 B + D is a globally minimal solution to

CD(z) = G(z)G'(z 1).

Proof

z1
We will make the transformation s - ;TT and reduce the

problem to the continuous time case. First we note an observation

about this transformation which is easily verified by direct substitution.
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Fact 4.4

If (A,B,C,D) is a minimal realization of G(z) (with X.(A) < 1)

l+s
and W(s) = G( -) then the McMillan degrees of W(s) and G(z) are

equal and further

(-(I-A)(I+A)-1, fi (I+A)-1B, IT C(I+A)-1, D - C(I+A)-1 B)

is a minimal realization of W(s).

Conversely if (F,G,H,J) is a realization of W(s) and

z+1
G(z) = W (----) then

z 1

,
( (I-F)

-1 
(I+F), (I-F) 1G, 72- H(I-F)

-1 
, J + H(I-F)

-1 
G)

is a minimal realization of G(z).

Now define

then

W(s)
= G (1+s\

11-s/

T(s) 
= (l+s\

11-s 1

Y(s) 
il+s\

11-s/

Y(s) = T(s) + T'(-s) = W(s)W'(s)

and T(s) is positive real.

Since G(z) is globally minimal as a solution to G(z)G t(z
-1
) = (1)(z),

W(s) is globally minimal as a solution to W(s)W 1(-s) = Y(s). Using

Fact 4.4 T(s) has a minimal realization

-1 
v2 
r- ,(I+A) (I+A)-1G, v/i C(I+A)

-1
, J - C(I+A)

-1 
G)

and using Lemma 4.1 W(s) will have a realization of the form
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(-(I-A)(I+A)
-1 r-
, Y2 (I+A)

-1 
B, VT c(I+A)-1, D - C(I+A)-1 B)

where B and D satisfy the following equations for some P = P I > O.

-1 -1-1
(I-A') B B.(I+A l)

-1

{

P(I+A')
-1 c. VT - /T (I+A)-1 G = - 1/5- (I+A)-1 B(D' - 13 1(I+A.)-1 C')

-J + C(I+A)
-1 

G - J' + W(I+A')
-1
c' = - (D-C(I+A) 113)(D-C(I+A)

-1 
B)'

z+1
Now since G(z) = W and using Fact 4.4, G(z) will have

z1

a realization (A,B,C,D) satisfying the above equations. Straight

forward manipulation then gives the result.

The converse is easily established by direct substitution.

Lemma 4.3 shows that if the sum decomposition can be identified then

the spectral factor satisfies a relatively simple matrix equation.

The following corollary uses Lemma 4.3 to derive a relationship

between the solutions to the spectral factorization problem.

Corollary 4.5 

If (A1,131,C1,D1) and (A2,B2,C2,D2) are globally minimal discrete

time systems then

G
1
(z)G

1
(z
-1
) = G

2
(z)G

2
(z 1)

-1
(where G.(z) = C.(Is-A.) B. + D., i = 1,2.) if and only if there

exists T C GL(n) and Q = Q' such that

A = TA
2
T
-1

1

C
I 
= C

2
T
-1

A
1
QA
1 

- Q = - B
1
B
1 

+ TB
2
B
2
'T'

A1QC1' = TB2D2' - B1D1'

C
1 
QC
1 
' = D

2
D
2
' - D

1
D
1
'
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Further if DILI' is nonsingular the above conditions are equivalent to

there being a similarity transformation between the Kalman filter of

the two systems.

Proof 

The proof is analagous to that of Corollary 4.2. The equivalence

of the Kalman filters is also shown by Tse and Weinert (1973) by

different techniques.

Comments on the Correlation Identification Technique due to Mehra (1971). 

To illustrate how the previous results can be applied, the

correlation technique of Mehra (1971) is now considered by way of

example.

This algorithm estimates the system parameters from estimates

of output correlation function,

Now

C. = Ely(k)1,1(k-i)}

N
N 1 r

C: = 
(N-i) 

L y(k)y 1(k-i)

ki

co cc

(1)(z)=C.
1
z i+Cj

1
zi + C

o
1 1

= Z(z) + ZI(z
-1 
) (see Lemma 4.3)

= C(Iz-A)
-1 

B + J + G'(Iz
-1 

- A')
-1 

C' + J 1

cc co

. I CA1-1
G z-i

+ I G'A'
i-1 

C' zi + J + J'

1 1

(A,G,C,J) can be a realization of the sum decomposition, Z(z), of 43(z)
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byLemma4.3.FurthertheC.will now be estimates of the Markov

parameters of Z(z). Hence the matrices A and C can be estimated using

a standard realization algorithm (e.g. Bo and Kalman (1967)). Finally,

the B and D matrices will be the solution to the algebraic equations

given in Lemma 4.3.

In order to obtain a unique solution for (A,C),(A,C) could

be put in a canonical form such as those of Chapter 2, but still B

and D will not be uniquely determined even if a minimum phase assumption

is made (unless m=p=1). This problem is pointed out by Mehra (1971)

where he suggests identifying the Kalman filter instead, whose transfer

function will indeed be identifiable by Corollary 4.5. The identi-

fiability problem will now be discussed in more detail in the following

section.

4.4 Identifiability from Output Observation 

The question considered in this section is when a parametrization

is identifiable from output observation alone.

Definition 4.2 

Let (A,B,C,D)(a) OcR q 
R n(n+m+p)+mp 

be a parametrization

of the system matrices (A,B,C,D). This parametrization is said to be

locally identifiable from its output spectral density ata=ae0

if there exists an E > 0 such that

(i) Ila ei IIS - ;II < e, E Q.

and (ii a) (continuous time),

G(s,a)G'(-s,a) = G(s,a)G 1(-s43) for all s eC

(ii b) (discrete time)

-1 -1
G(z,a)G'(z ,a) = G(z,13)G 1(z ,(3) for all s ET .
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imply a = 6

(where G(s,a) = C(a)(Ie-A(a))
-I 

B(a) + D(a).

A condition for local identifiability in this sense can be obtained

via the characterizations of all globally minimal solutions to the

spectral factorization problem given in Corollaries 4.2 and 4.5. Thus

local identifiability from the output spectral density is implied if

the following equations have a unique solution a = 0, T = I, P = 0

for all a,S e Ne(a).

1. Continuous Time 

Q = A(a) = TA(S)T-1, C(a) = C(S)T-1

A(a)Q + QA'(a) - B(a)B l(a) + T B(S)131(S)T 1

Q Cl(a) = - B(a)D'(a) + T B(S)D 1(S)

D(a)D 1(a) = D(8)W(S)

2. Discrete Time 

Q = Q', A(a) = T A(S)T-1, C(a) = 0(S)T 1

A(a)Q h'(1.) - = B(01-1'(fl) + T WW(P)TI

.;=1 t-;

C(a)Q c'(a) = - D(u)D 1(a) + DWW(3)

The following theorem can be proved in an analagous manner to Theorem 3.4.

Theorem 4.6 

Set (A,B,C,D) (a) (2C Rq 4-
gn(n+m+p)+mp 

(with Q an open set

in R q) be a C' parametrization of the system matrices (A,B,C,D) of

continuous time system satisfying (A1) - (A4) of Section 4.2. Then

this parametrization is locally identifiable from its output spectral

density at a 6 Q, if the following linear equations in (d6,613,6D,6T,6Q),
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have a unique solution (i.e. zero).

(i) dQ = (512 1

(ii) (IUSQ + dlaB' - dTBB') + (RdQ + dBB' - dTBB')' = 0

(iii) = - dial31 - BdIP + dTBD I

(iv) + DOD' = 0

(v)

STA - Aft

SB

- CST

dD

where M(a) is

The analagous

defined in Theorem 3.3, and (A,B,C,D) =(A,B,C,D)(a).

equations for discrete time systems are

(i)' SQ = 6Q'
A A AA

(ii). AdQA' - (512 = - 6BB' - TAB' + &TSB' + BB'ST 1

(an' A6QC' = - dBD' - BISD' + &PIZ'

(iv)' adgE' = -6DD' - D(5D 1

(v)' as (v) above.

The above condition is equivalent to a nonzero determinant

condition of dimension [ (3n + 2m + 1) + pm].
2

Notice that although the theorem uses implicity the matrices

P,G,J of Lemmas 4.1 and 4.3 only the nominal values of the system

matrices (A,B,C,D) are required.

In general fewer parameters can be identified than when input

observations are allowed. In fact the number of identifiable parameters
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p(p+

2

1) 
is bounded by [2np + ], which if m - p is 

p(p 1) 
less than

2

the [2np + mp] identifiable parameter when input observations are

permitted.



CHAPTER 5 

GEOMETRICAL PROPERTIES OF MIIIIMA SYSTEMS 

5.1 Introduction
t

In this chapter we examine some geometrical properties of minimal

systems which are of interest in identification and also in theirlinear

own right.

Ls mentioned in Chapters 2 and 3 many useful parametrizations

admit multiple representations of nonminimal systems. This implies that

in such cases if the system being identified with such a parametrization

is not minimal then the identification problem no longer has a unique

solution, and many minimization algorithms will become ill-posed. Now

in on-line algorithms where new estimates of the unknown parameters are

made after each new data point, a cost function is essentially minimized

at each point in time and there is no reason to suppose that after re-

latively few data points the estimates will represent minimal systems.

Whether estimates become nonminimal or nearly nonminimal depends on the

nature of the set of nonminimal systems in the parameter space.

In this chapter the following problem is considered, "given

a parametrization of a linear system which may represent both minimal

and nonminimal systems does the set of nonminimal systems separate the

minimal systems into unconnected regions?" For single input/single

output systems the natural parametrization of the standard controllable

t I would like to acknowledge that many of the original ideas for

this chapter are due to Professor R.W. Brockett of Harvard University.
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(or observable) form is considered and indeed the minimal systems do

not form a connected subset of the parameter space. However for multi-

input/multi-output systems there is no "natural" parametrization and

the problem is more complex, but in general it would seem that the mini-

mal systems form a connected subset of the parameter space, and this is

proven for certain examples.
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5.2 Single Input/Single Output. Systems 

The following unpublished result of Brockett (private communi-

cation) shows that for single input/single output systems the set of

minimal systems does not form a connected subset of the parameter sp
ace.

The proof that the space is disconnected is the same as that of Brockett,

but the proof that each region is connected is new.

Theorem 5.1 (Brockett)

Given the rational function

g(z) -

B sn-1
n-1 r PO

s
n 
+ a s

n-1 
+ + a

n-1 0

n 2n,
Then the parameter space, K is divided into (n+1) connected

regions in which there are no pole/zero cancellations. Each such region

is characterized by the Cauchy index of g(z) (or the signature of the

corresponding Hankel matrix) and these disconnected regions are separated

by rational functions of lower order.

cc
Note: Cauchy index of g(z) = I (g(z))

= (number of times g(z) changes from

-co to +03) - (number of times g(z)

changes from + C° to -00) as z goes

from to co on the real line.

If 5 S' then the signature of s, a(s)= (number of positive eigen

values of S) - (number

of negative eigen

values of S).
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Proof 

1) The regions are separated 

Let (A(a),b,c'(S)) be the standard observable realization of

g(z) and let

Define

S
r 
=

s.(a,S) = cl(S)Ai(a)b

s
o 1 r -1

s
1

•
•

s
r -1 
 s

2r -2_

There are no pole/ezero cancellations if and only if

det S
n
(a,0) # O.

Now it is shown in Gantmacher (1959) that the Cauchy index of

g(z) = signature of S
n 
and that if two symmetric matrices have different

signatures then every continuous path in the space of symmetric matrices

that connects them passes through a singular matrix. Therefore it is

not possible to continuously connect two rational functions with different

Cauchy indices without passing through a pole/zero cancellation. (This

is clear since if the signature changes,the eigen value must change

sign and if the path is continuous it must pass through zero (since the

matrix is symmetric) when the matrix is singular.)

2) Each region is connected 

To prove connectedness we must exhibit a continuous path con-

necting any two rational functions with the same Cauchy index and degree.
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Firstly we show that it is sufficient to find a path in the space

= 1,...,2n-1. (Lemma 5.2). Then it is shown that any Hankel

matrix with a particular signature can be continuously deformed into

a standard form without its determinant becoming zero. (Lemma 5.3).

Lemma 5.2

n 1
Foranycoriti"Cnisfunctionsjt) : [0 , 1] R

1

i = 0,...,2n-1 and such that det Sn(t) # 0, there exist continuous

furictiorlso 1 
and 
 ) : [0 , 1] R 1 i= 1,2,...,n

such that for each t

Sn(t)
n-1
 + + 00(t) s

0 
(t) s

1
(t) s

2n-1
(t)

z
n 
+

n-1
(t)z

n-1 
+ + a

o
(t) z

2 z2n

+ 
s210.itt)

i=0 z
2n+i+1

n

where s
2n+i

(t) = - a 
n-g 

(t)s
2n+i-g 

(t) i = 0,1,... and S
n
(t)

g=1

is defined in Theorem 5.1.

Proof (See Gantmacher Vol. II, page 207)

If det S
n
(t) # 0 then

a
0 
(t)

a
1
(t)

s
n
(t)

s
n+1

(t)

- S 
-1
(t)

s
2n-1

(t)
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WA.

so(t) 0 . . . 0

s
1
(t) s

0 
(t) 0 . 0

•
. 0

s
n-1

(t) . .s
1 
(t) s

0 
(t)

and the result follows immediately.

1

a
n-1

(t)

a
o
(t)

Lemma 5.3 

Any Hankel matrix Sn of a particular signature and rank,n, can

be continuously deformed into a standard form without reducing its rank.

Proof (outline)

The proof defines some standard forms for S
n
, one associated

with each possible signature, and then perturbs an arbitrarily Sn of a

particular signature and R rank n into the standard form without allowing

rank S
n 
< n, as follows.

1) Perturb S
n 

very slightly so that D
r 

0 for r = 1,2,..,n.

(see proof for definition of D
r
).

2) Perturb S
n 
so that (D

r
I = 1 r = 1,2,..,n.

3) Perturb S
n 
such that the order of the + l's and -1's in the

sequence (1,D1,D2,..,D
n
) is in a standard form.

Jacobi's Theorem which determines the signature from the number of sign

changes in the sequence (1,D1,...Dn) is used.

Proof

Let — -s
0 

s
1 
. . . s

r-1
.s

1 
.

S
r 
= . . . D

r 
= det S

r. .
s
r-1 

• • • s
2r-2
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Then there are (n+1) possible signatures for 5n namely, n,n-2 ..... -n+2,-n.

Consider now the following standard forms, 5
(n-2V)

V = 0,...,n given by,

s21.1.1 = 0 j = 0,1,...,n-2

and s2j j = 0,1,..n-1 is implicitly defined by,

= (-10 j = 0,1,...V
"

and D, = (-1)
v 

j = V + 1,...n.

This does indeed define s
2j 

since using the formula for the

determinant of a partitioned matrix we get,

D
r+1 

= D
r 
(s

2r 
- (s

r 
. . . s

2r-1
)5

r
-1
(sr \\ )

s
2r-1,

/

D
r+1 -1

therefore s
2r 
- 

(sr • • s2r-1)SrD 
/sr

r

\\s2r-

and since s
2r-1 

= 0, s
2r 

is fixed by the above formula as a function

of D1, D2, .. Dr+1.

We will now show that there exist continuous deformations of

(s0,...,s2n_2)suchthatThare as given above and s2j+1 
= 0, j = 0,1;;n-2.

Firstly consider (1,D1,D2,..,Dn), we know that Dn 
# 0 by assumption.

If any Di = 0 i = 1,..,n-1 then vary (s0,s,.•
.s

2n-2
) continuously so

* 
'that the new values (s0 
s
l'
...s

2n-2 
) satisfy D* / 0 r = 0 
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andin tleprocessofvariationnoflo rLbecomes zero. Such a

variation is always possible since(to quote from Gantmacher page 354

Vol I), in the space of parameters (s s ....s
2n-2

) an equation of

theformE).=0 determines a certain algebraic hypersurface. If a

point lies in some such hypersurface, then it can always be approximated

arbitrarily closely by points not in these hypersurfaces. Then since

the rank does not change its signature does not change, and hence the

signature is given by Jacobi's Theorem (Gantmacher Vol. I, p. 303),

0(sn) = n - 2V(1,01,D2,..Dn)

Let V = V(1,01,..,Dn) = number of variations of sign in the

sequence 1,D1,...,D
n
. Now since D

r
* 0 for r = 0,1,...n, we can make

the following perturbation.

1) D
r
(t) = (1-t)D

r 
+ t sgn D

r
* r = 0,...n

2) s
2r+1

(t) = (1-t) s*
2r+1

r = 0,1,...,n-1.

3) s2
r
(t) = 

r+1 
(t) + (g

r 2r-1
(t))S

r
 1(t) ifg

r
(t)

D
r 
(t)

\\:g. (t)//
2r-1

for r = 1 ..... n-1 and go(t) = D1(t).

The third equation is well-posed since g2r(t) only depends on

i.(t) for i < 2r and 15.(t) for i = 1,...,r+1 and
r
(t) # 0 for all t.

Also equation 3) is consistent with 1).



-107-

Let D
r
(1) = D

r 
r = 1,2,...n and

r
(1) = s

r 
r = 0,..,2n-2.

, Thus ID
r

I = 1 r = 1,...n and s
2r+1 

= 0 r = 0,1 ,  n-2.

This is in the standard form except that the signs of Dr are not

necessarily in the desired order, and a perturbation to change the signs

is now given. Consider the following partition of Sr+2

s0 
s
1 
  s

r-1 
s
r 

s
r+1

s
1

Sr+2 =

s
r-1 

s
2r-2 1 s2r-1 s2r

s
r

s
r+1

s
2r-1 

s
2r 

s
2r+1

s
2r I 

s
2r+1 

s
2r+2

Using the formula of the determinant of a partitioned matrix assuming

D
r 

0 it is easy to verify that

D
r+2 

= -1D
r+1 

[s
2r+2 

- (s
r+1. 

. .s
2r
) S

r
 /s

r+

s
2r

- 
Dr 

[

E2r+1 
- 
(sr ....s2r-1)Sr

-1 , 12
sr+1\

s
2r

and
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D
r+1 

D
r 2r 

- (s
r 
....s

2r-1
)S
r
-1

A

Now assume sgn D
r 
= - sgn Dr+2 and ISr l = Ifir+2 = 1

Let 
sOms2r-1 

be fixed, this implies Dr is fixed then s
2r 

can

Abe continuously varied so that D
r+1 

becomes - D
r+1

, and as D
r+1 

varies

we can vary s
2r+2 

and s2r+1 continuously so that D
r+2 

remains fixed.

(Since sgn D
r+2 

= - sgn D
r 
and D

r 
0) Note that if sgn Dr = sgn Dr+2,

sgn Dr+i cannot change without making Dr+2 = 0 at some point.

Using the above continuous deformation, if the sequence

1,D
1
,D
2'
..D

n 
contains the triple 1,1,-1 it can be continuously deformed

to 1,-1,-1 or a sequence -1,-1,1 can be changed to -1,1,1. That is the

variation in sign can be moved one place to the left.

Therefore in summary we have continuously deformed S to Sn n

suchthatID.I= 1 for i = 1,..n and then we can "concentrate" all

the changes in sign in the sequence (1,D1,...D
n
) at the left and hence

have the standard form given initially.

Implications of this result are given in Section 5.4.
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5.3 Multi-input/Multi-output Systems

For multi-input/multi-output systems the questions one would

like to answerare"when is the set of minimal systems a connected

subset of parameter space?" and "when is the set of nonminimal systems

of codimension 1?" The codimension of a p-dimensional hypersurface in

R n is r-p. Hence a surface with codimension greater than 1 cannot

separate any points, whereas a surface of codimension 1 can form a

barrier.

One method of approach is to consider the codimension of the

nonminimal systems as follows. Suppose (A(a),B(a),C(a)) is an affine

parametrization of the system matrices then the set of nonminimal systems

is given by,

N ={alrank Dna), A(a)13(a),...,An-1(a)B(a)] <n/

U { a I rank [C1(a),A 1(a)C 1(a),...,A'n-1(a)C1(a)] < n}

That is the class of nonminimal systems is the union of the set of

uncontrollable and unobservable systems. Referring back to Chapter 2

let

where K

k
1 m 
-1 k -1

P(A,B,K) = [b
1
,Ab

1 
b
1 m

,Ab
m
,...A b

m

= (k
1
,k
2 
..... k

m
) and y k. = n with k. > O.

i=1

Therefore the pair (A(a),B(a)) is uncontrollable if and only if

det (A(a),B(a),K) = 0 for all k. The solution of each equation such

as this will be an algebraic variety of codimension > 1. Now if two

such surfaces can be found which are independent then their intersection

will be of codimension > 2 and hence the set of uncontroltable systems
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has codimension > 2 . For two such independent surfaces to exist it

is clearly necessary that n > 1 and (A(a),B(a)) is not controllable for

some a. This is a completely general approach but verifying that two

such surfaces are independent is not easy for any arbitrary parametrization.

The following theorem considers some particular parametrizations by

explicitly constructing paths connecting arbitrary minimal systems.

Theorem 5.2 

Systems that are controllable and observable form a connected

subset of the parameter space for the following parametrizations of

the (A,B,C) matrices.

(i) A,B, and C arbitrary matrices with m > 1, p > 1.

(ii) C arbitrary and (A,B) given by any affine parametrization

(A(a),B(a)) (a e R q) such that,

(a) (A(a),B(a)) is controllable for all a C R q.

(b) A(a) is such that there exists C C exn such that

(A(a) ,C) is observable for all a C el, and

(c) there exists .6 e R and a e R q such that (A(&),C)

is observable.

[For example all the controllable canonical parametrizations

given in Chapter 2 with p > m satisfy (a),(b) and (c) above].

Proof

(ii) We will construct a perturbation of ar arbitrary (A(a),B(a),C)

that is minimal to a standard form namely (A(0),B(0),C), as follows.

(1) perturb C•and a very slightly to C1 and a
1 

so that

1 1
(A(a ),c

1
) is observable. This is possible by the same
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arguments as in the proof of Theorem 5.1 and by assumption (c).

(2) perturb c
2 
..... c to c

2
,...,c

p
.

(3) perturb c
2 
to c

2
2 

and a to a
2 
arbitrarily close to c

2

and a
1 

such that (A(a
2
),c2

2
) is observable. Make c

2

2

sufficiently close to c
2 
so that (A(a

2
), c

1

c
2

c3

c
p

is observable for c
2 
= Xc

2

2 
+ (1-X)t

2 
and X C [0 , 1].

(4) perturb c
1 
to c

1
.

(5) perturb c
2 
to c

2 
by c

2 
= X c

2 
+ (1-X)c

2
2
' 

X E [0 1].

(6) perturb a to zero.

It is clear that during this perturbation observability is preserved.

(i) We will construct a continuous perturbation of any (A,B,C) which

takes (A,B,C) while preserving minimality to a particular parametrization

that satisfies the assumption of (ii). Assume that p > m (if not

consider (A',C 1 ,13') in exactly the same way) we will perturb an arbi-

trary system to the canonical form of Theorem 2.4 for some K =

We know there exists K such that det(P(A,B,K)) 0 by controllability

assumption.

(1) Perturb (A,B) very slightly to (A
1
, B

I
) so that

det(P(A,B,K)) # 0 for some K# K.
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(2) By Theorem 2.4 there exists a similarity transformation, T,

between (A
1
,B
1
) and (A

2
,B
2
) where (A

2
,B
2
) are in the

canonical form associated with K. If det T > 0 then I

and T can be continuously connected in GL(n), so perturb

(A
1
,B
1
,C) to (A

2
,B
2
,C
2
) continuously by a sequence of

similarity transformations in GL(n). If det T < 0 then let

S 
0\

10-1/ 
and perturb continuously in the same way to

(S
-1
A
2
S, S

-1
B
2
,C 5), which will be in a canonical para-

metrization similar to Theorem 2.4.

(3) Perturb (A,B,C) in the canonical parametrization avoiding

unobservable systems as in (ii) above until

det(P(A,B,K)) > O.

(4) Take similarity transformation as in (2) (which necessarily

has positive determinant) to obtain (A,B,C) in the canonical

parametrization for K.
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5.4 Implications of Theorems 5.1 and 5.2 

Theorem 5.1 has implications in the following situations for

single input/single output systems.

1) Any on line algorithm where minimality of the estimates is required

if the algorithm is to be well-posed may have problems of the type

mentioned in Section 5.1. Namely if the initial data implies that the

system is in the wrong region of the parameter space then the only way

that the successive estimates can tend to the correct solution is for

the parameter estimates topass through a surface of nonminimal systems, ,

when the algorithm will become ill-posed. A simulation example of this

type is given in Section 5.5.

2) Consider the following adaptive stochastic regulator. The output

is passed through a Kalman filter to estimate the state and the input

is obtained by the solution of the infinite-time Ricatti equation.

Further the gains in the Kalman filter and the solution of the Ricatti

equation are based on the present best estimates of the system parameters

(sometimes this is referred to as open-loop feedback). Now if

stabilizability is lost then the Ricatti equation's solution becomes

infinite and if detectability is lost the Kalman filter gains become

infinite. Such an algorithm will thus become ill-posed when detect-

ability or stabilizability are lost, moreover the surfaces of undetect-

able (unstabilizable) systems has local codimension 1 for the standard

controllable (observable) form, and thus such surfaces are likely to

be encountered as the algorithm progresses if the system is unstable and

the initial data estimates the system to be on the wrong side of a non-

minimal surface of codimension 1.
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Theorem 5.2 implies that problems such as those that are

outlined above are unlikely to occur for multi-input/multi-output

systems because the.set of nonminimal systems forms a surface

of codimension greater than 1 and if it is encountered one can rea-

sonably blame this on "bad luck" rather than on almost inevitable

consequence of bad initial data as with the single input/single output

case. However for particular parametrizations difficulties may occur,

for.example if the Hankel matrix is symmetric for all a.

5.5 Simulation Results 

We now present the results of a computer simulation of an identi-

fication algorithm which exhibits difficulty due to the phenomena mentioned

in the preceeding sections of this chapter. The algorithm chosen for

this simulation is the output correlation method due to Mehra (1971)

that has been discussed in Chapter 4, for single input/single output

systems. In order to illustrate the difficulties it was only necessary

to estimate the A matrix when (A,C) is in standard observable form.

The system simulated

(xl(k+k))

was,

[0 1 [x1(1c)] [o]
u(k)

x
2
(k+2) a

0 
a
1_

x
2 
(k) 1

Y(k) = [1 0] i(ki + d v(k)

x
2
(k)

r

where u and v are independent Gaussian white noise sequences with unit

covariance. The steady state was reached before any observations were

used.

Estimates of the output correlation function, y (k) y (k+j ) }

are given by
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E.14 
1 

N

y(k)y(k+j)
k=1

Then the coefficients in the A matrix are estimated by,

N AN AN
-1

a
o 1

C
2

C
3

N AN AN N

1
C
2

C
3

C4

Now the indicated inverse will only exist if the corresponding

system is second order. However the inverse will not necessarily exist

for the estimated correlation coefficients, indeed if for the true

correlation coefficients the above determinant is negative and the initial

estimates of the determinant are positive then as better estimates are

made the determinant must pass through zero and the parameter estimates

in this region will become arbitrarily large. This behaviour was indeed

manifested in several examples one of which is now given.

True parameter values (10 = - 0.24, al = 1.0 d = 0.1. With

these parameter values the pulse transfer function ,

g(z) 
(z-01

4)(z-0.6) 
. Typical sample paths are given in Figures 5.1,

. 

5.2 and,5.3whichshows the difficulties encountered. Further if the

matrix inverse is evaluated by some recursive scheme then large numerical

errors may accumulate if the determinant becomes very small.

If however the alternate method suggested by Mehra (1971) given by,
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where

H =

A " 1 Aao
A
a
l

(II'H) H' c3

c
4

c
2 

c
3

c
2+k 

c
3+k

c
4+k

for some k > 1

does not have these difficulties because the surface

{A c R mxn, m > n I det(A I A) = o} has codimension > 2 and hence

cannot separate any regions of the parameter space.
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5.5 Other Geometrical Properties 

If one could parametrize linear systems so that all the systems

of a given order were represented but none of a lower order were rep:ce-

sented, then all the problems outlined previously would be avoided. For

the single input/single output case one would require (n+1) parametri-

zations one for each of the regions of Theorem 5.1. Referring to the

proof ofLemma 5.3 one can see that each region is characterized by the

number of changes in sign of the principal minors of the Hankel matrix.

Two regions are easily parametrized, that is those with a positive

definite Hankel matrix and a negative definite Hankel matrix, in which

cases all the principal minors are always nonzero. However the other

regions correspond to some collection of minors which may be positive,

negative or zero. This parametrization problem seems very difficult

and has not been solved except when m = 2. One observation which perhaps

illustrates why this parametrization is difficult is that when n > 3

it is possible for two complex conjugate poles to be cancelled by two

zeros and such a cancellation occurs on nonminimal surface of co-

dimension 2. This means that some regions in parameter space wiil have as

their boundaries nonminimal surfaces of codimension 1 and be "punctured"

by surfaces of codimension 2.

The parametrization problem for multi-input or multi-output

minimal systems is even more complex.



CHAPTER 6

CONCLUSIONe

It is hoped that this thesis has pointed out the importance in

identification of some structural properties of linear systems, parti-

cularly the parametrization of linear systems. We would like to conc:Lude

by stating the practical implication of the results in this research by

way of some specific suggestions concerning identification.

1) If it is not required to have a physical interpretation of

the state space realization of a particular system, then standard linear

system parametrizations are appropriate. The discussion of Chapter 2

suggests that for multivariable systems true canonical forms (e.g. Popov's)

are not desirable because of numerical difficulties near boundary points.

An alternate family of globally identifiable parametrizations is then

given that are well-suited for identification.

2) If a natural parametrization of the system matrices is

given by physical considerations, then before any identification is

attempted it is recommended that at least the local identifiability of

the parametrization is checked at nominal values of the unknown parameters.

Then if the parametrization is found not to be identifiable it is

straightforward from Theorem 3.4 to see which parameters need to be

fixed at their nominal values in order to make the remainder identifiable.

3) If feedback is present around a system then it is suggested

that the system equations are rewritten as a linear system without feed-

back, but with the feedback matrix parametrizing the A matrix. Then the

local or partial identifiability results can be used to determine whether

-121-
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the unknown parameters in the open-loop system can be identified, as well

as or independently from the feedback system.

4) If a system is driven by an unobserved white noise process

then special care should be exercised in choosing the parametrization and

the results of Chapter 4 used.

5) If minimality of successive system estimates is required

torenon-line algorithm to be well-posed, then (at least for single input/

single output systems and for certain multivariable parametrizations),

on-line identification should only proceed from initially good parameter

estimates since the set of non-minimal systems forms a surface of co-

dimension one in the parameter space. Further it is recommended that

algorithms should not require the successive system estimates to be

minimal so that these problems will not occur.

A general procedure for determining identifiability that can be

applied to other situations is as follows. Firstly characterize by a

set of equations all systems indistinguishable from one another given the

observations, then determine whether the set of equations has a unique

solution when the systems are restricted to be in some parametrization.

A local result can then be obtained by linearizing the equation.

Open problems that have originated from this research are:

1) Finding good sufficient conditions for the global

identifiability of an arbitrary parametrization.

2) Finding globally identifi,ble parametrizations.

3) Determining whether a parametrization will be troubled

by local minima. This will depend both on the cost function

being minimized and the parametrizatior..

4) Parametrizing linear systems driven by unobserved

white noise, in a similar way to the results of Chapter 2 for

input/output systems.
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5) Parametrizing minimal linear systems, i.e. finding

families of globally identifiable parametrizations that do

not admit multiple representations of nonminimal systems but

represent every minimal system.

6) Further study of the mathematical structure of the

class of linear systems modulo equivalence, to give greater

insight into the nature of the object one is trying to identify.
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APPENDIX I

KRONECKER PRODUCTS

In Chapter 3 it is often required to rewrite linear equations

in an unknown matrix as an equation in an unknown vector so that rank

conditions can be written explicitly. In this section the necessary

background is given (see also Halmos (1958) and Pease (1965)).

Consider the matrix equation

(*) AXB= C

in the unknown matrix X(nxm), with A(pxn), B(mxr) and C(pxr) known

matrices. This is a linear equation in X and thus if X is rewritten

as a vector by some lexicographical ordering then(*) can be written

as a vector equation. Two natural orderings of the elements of X

come to mind, firstly to list X row by row and secondly column by

column. The first ordering has been chosen here arbitrarily.

Letr=[x1 x2 ...xli]withx.elen and define R e Rnm

as the vector,

X' = [x
1
' x

2
' x

n

Also let CI = [c
1 
c
2 
... c ] with c.

1 
e Rr and C' = [c

1 
c
2 

c
p 
'].

Now equation (*) gives for i = 1,...,p

i a. x.' B
1 13

3=1

ail

a.
12

a.
ln
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and hence

a
11 

B a
12
 B . . . a

lm 
B'

a
21
 B a

22 
B. . . . a

2n 
B'

•

a
pl 

BI a
p2 

B' . . . a
pn 

B'

X = C

Now the Kronecker product of two matrices A and B, denoted A x B,

is defined as,

a
11 

B a
12 

B a
lm 

B

a
21 

B a
22 

B a
2m 

B

A 0 B = •

a
pl 

B a
p2 

B a B
Pm

Therefore equation (*) can be written concisely as the vector equation.

(A et B.) R

If the lexicographical ordering by columns is used then letting

x
1

x
2

X = (x
1 
x
2 
... x

m
I and R =

to be

(B. 0 A) R = C

equation (*) is easily shown
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