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FOREWORD

The value of microwave scatterometers and radiometers as remote sea wind

sensors has been independently demonstrated by a number of investigators. However,

near-simultaneous observations by a composite radiometer and scatterometer (RADSCAT)

instrument have been judged to have value in making better estimates of the surface

winds beyond the improvement provided by two independent measurements. To demon-

strate this potential a joint effort between New York University, General Electric

Space Division, the University of Kansas and NASA Langley Research Center was

undertaken through the Advanced Applications Flight Experiment program of NASA.

This document reports the investigations performed by the University of Kansas during

the first year of this joint program.

Specifically, this report was prepared by the Remote Sensing Laboratory of the

University of Kansas Center for Research, Inc. under contract NAS 1-10048. The

principal investigator under this contract is Dr. R. K. Moore and Project Engineer

is Dr. A. K. Fung.

The development of various meterological and oceanographic concepts important

to the design of the experiments is largely based on discussions with Dr. V. J. Cardone

and Dr. W. J. Pierson, Jr. of the Meteorology and Oceanography Department of New

York University. Their assistance is gratefully acknowledged.
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I. SUMMARY

The wind stress acting at the air-sea interface locally accounts for the wind-

wave interaction at the ocean surface. It is generally accepted that the small

roughness elements convey the transfer of momentum from wind to sea and that :

these roughness elements are in equilibrium or near equilibrium with the wind. The

fact that scatterometers and radiometers are good roughness s'ensors has led many

, to believe.that the surface winds can be inferred from.remote microwave observations

by these sensors. Since this initial recognition, the value of each of these micro-

:'wave probes as a sea wind sensor has been substantially demonstrated by a number of

investigators. The stronger interpretational basis of near simultaneous observations

by a composite radiometer-scatterometer instrument for remotely sensing sea winds

is currently under investigation. • ' .

This stronger interpretational basis for the composite sensor resides in several

important factors beyond the innate improvement in making a wind estimate based on

observations by two sensors. The primary advantage of the composite sensor lies in Its

"qbility'to sense when measurements-are occurring through cloud covers and potentially

to estimate their attenuation. The attenuation estimate could then be used to correct

.the scatterometric observation to yield a more accurate estimate of wind speed.

Since the radiometer tends to lose contact with the surface and to sense atmospheric

absorption when clouds intervene, it is evident that the advantage of the composite

sensor lies in its ability to operate through more weather situations. This is important

because clouds cover so much of the oceans, especially where storm systems are

developing. Furthermore, it is known that joint radiometric and scatterometric

observations sometimes aid in discriminating surface properties which cannot be

realized by the scatterometer or radiometer alone. Since sea foam changes the

dielectric constant of the surface this capability of the composite sensor may be

quite useful, especially at high wind speeds.

These viewpoints on the composite sensor have been the motivating factors

in proposing the composite sensor. Several studies which are essential to the

execution and interpretation of sub-orbital observations by this composite sensor

are reported herein.



Experiments for the composite sensor have been designed. Important weather

situations found in an extra-tropical cyclone formed the basis for designing exper-

iments through clear, cloudy and rainy skies. The performance of the composite

sensor is to be evaluated in each of these weather situations for a variety of wind

conditions. Although the experiment designs are described in detail in reference

[11], certain important aspects are emphasized in this report. Comprehensive sea

truth and well-coordinated experiments are shown essential to forming a strong

correlative basis for interpreting the microwave observations. Several methods

by which this may be achieved are suggested.
t

The ocean surface is a random process whose geometrical characteristics

vary statistically over scales both larger and smaller than the area observed by

the RADSCAT sensor; this range of.scales affects the measurement technique.

Intensive studies were also performed to delineate meteorological and ocean-

ographic situations which form the bases for many of the experiments and to describe

sea truth documentation methods.

Theoretical investigations were made into three distinct areas: cloud and

rain effects on radjometric observations over the sea, the characteristics of

microwave emissions from the sea, and backscatter from the sea.

The effects of clouds and rain on the radiometer observations were computed

using horizontally stratified model atmospheres. It is shown that clouds and rains

cause the radiometer to lose contact with the surface through the emission and

scattering characteristics of cloudy and raining atmospheres. However, it is shown

that the atmospheric emission effect may yield the basis by which atmospheric

attenuation can be inferred from measurements by the composite instrument. The

measure of atmospheric attenuation may be used to make small corrections to the

scatterometric observations.
! ,

A simple composite surface theory was employed to predict the microwave

emission characteristic of the sea. Better agreement with experimental observations

is demonstrated than with a previous theory. It is also shown that comparison of both

backscatter and emission predictions with measurements forms a stronger basis for

evaluating scattering theories.

A new composite surface theory was also developed and applied to predict

sea returns. These efforts together with new interpretations uf angular behavior

of NRL scatterometric observations arc converging toward a fuller understanding

of the mechanisms and characteristics of sea returns especially at large incident

angles.



II. INTRODUCTION

A. Background

The importance of wind measurements over the sea has been recognized by

the meteorologist and oceanographer alike. An understanding, although incomplete,

of the momentum transfer mechanism from winds to waves has enabled the oceano-

grapher to generate wave development models. With sufficient real time win'd

information over the sea these models could predict sea state on a global basis.

Sea state prediction, in turn, would enable seamen to route their ships with a

saving of travel time and under less hazardous conditions. For the meteor-

ologist the same wind information, when properly interpreted in terms of the wind

structure in the planetary boundary layer, and augmented with the location of the

low pressure centers (from cloud imagery), coastal and island surface pressures,

and a few scattered ship reports would permit recovery of the surface atmospheric

pressure patterns. Combined knowledge of the pressure field and SIRS data would

yield information which can be used for global weather forecasts. '

The wind stress acting at the air-sea interface locally accounts for the wind-

wave interaction. It has been generally accepted that the momentum is transferred

through the small roughness elements of the sea surface. There is .good reason to

believe that these small roughness elements are in equilibrium onperhaps near equi-
[2]librium with the local wind. The fact that microwave scatterometers and radio-

meters are good roughness sensors has led many to believe that the surface winds

can be inferred from these'remote microwave observations. This viewpoint is

further reinforced by the fact that the scatterometric characteristic and therefore

radiometric characteristic are largely responsive to the small .surface structure

especially at incident angles in excess of roughly 30°.



B. Experimental Verification - Status

Since the initial recognition of this potential, the value of each microwave

probe as sea wind sensor has been substantially demonstrated by a number of inves-

tigators. A comprehensive study of the wind speed response of scatteromctric
131

observations has been conducted by Bradley. His studies of NASA scatterometer

data at 13.3 GHz have shown a wind speed dependence w for observations in the

upwind direction given by

<,/<$. = K «/" (i)

where cr oc anc' cr in are scattering coefficients at 35 and 10 incident angles/;*

respectively. This dependence together with the data on which it is based is

illustrated in Figure 1. Bradley interprets the wind dependence in terms of a ratio

of scattering coefficients to assure a measure of wind dependence largely indepen-

dent of the accuracy..and calibration of the scatterometer.

Motivated by Bradley Is ..results and the fact that oceanographers were

beginning to report spectral growth :bf the sea at large wave number (K) over a "

large range of winds, Claassen and Fung in. a rather extensive analysis of NRL upv/ind

scatterometer data* from two missions identified a power law wind depe.n- !'.;

dence in each of the missions. They thereby uncovered systematic biases between

missions. When the biases were removed, the wind dependence remained unaltered

within computational error. Partial results from these studies are shown in Figures
' a '

2 through 5. These graphs indicate power law exponents at 30 of 1.0'± .1 for.

vertical polarization and 1.1 ± .1 for horizontal polarization. Whereas at 60° -

power lav exponents are given as 1.3 ± .1 for vertical polarization and 1 .5 ± .1

for horizontal. The trend in these exponents are believed to be consistent with

the wind dependence inferred from the composite surface theory for backscattcr

when the development of the sea and polarization characteristics are accounted

for. These power law relationships were established without recourse to normaliza-

tion with respect to <> , ~, since an accuracy of 1 2 dB is cited for the NRL

scatterometer (discounting.thc biases).. These adjusted responses (except for a point

""See references [46] and [63].
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from each mission not included in the regressional fits) illustrate good correlation

with their respective power law fits for winds above 8 knots, i.e., the scatter of

data along the curve is small.

Several investigators have reported radiometric observations over wind

driven seas. Hollinger of NRL ' has conducted radiometric measurements at

three microwave frequencies, 1.41 GHz, 8.36 GHz, and 19.34 GHz, from a

tower located in 60 meters of sea. His measurements for horizontally polarized

emissions show (1) a linear rising trend with wind speed, (2) an increasing sensi-

tivity to wind speed with frequency, and (3) a small increasing sensitivity to wind

speed with incident angle. Vertically polarized emissions exhibited little sensi-

tivity to wind speed except at 19.34 GHz and large nadir angles where a declining

trend was observed. ;

The brightness temperature response to wind speed at an incident view angle

of 55 and a frequency of 8.36 GHz is shown in Figure 6. In processing his data

Hollinger removed the effects of foam from the apparent temperature (foam causes

a rise in brightness temperature ). Atmospheric contributions(such as reflected cloud

emissions) were also removed from the measurements, so only surface geometry

affected the measurements since the water temperature was nearly constant.

The reported accuracy in the measurements was + 2°K (+ 0.1 dB at 80°K).
18 91 ~Nordberg and his co-investigators ' have also reported the dependence

of brightness temperature on wind speed at 19.34 GHz. Their observations were

conducted from an aircraft over the North Sea and the North Atlantic Sea. They

report selected data which indicated that the brightness temperature at

nadir increases with wind speed from 7 m/s to 25 m/s at a rate of about 1 .2

K/m/s (see Figure 7). The reported rate at 70 incident angle was 1.8 K/m/s.

The brightness temperature dependence was attributed to the increase in white

water (foam and sea spray) with wind speed. It is interesting to compare Hollinger's

data at the same frequency. The slope dependence at 70 incident angle

was described as 1.3 + .2 K/rr/s which is less than that reported by Nordberg.

The difference may be attributable to the foam, although had Nordberg fitted

his data to include two data points near 10 knots, the slopes may not have differed

significantly.
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C. Discussion of the Present Status

Scatter in the above results may well be primarily due to inadequate

knowledge of the wind speed at the point of radar illumination. Bradley [3]

was able to significantly reduce the scatter of data about the trend line by

using only those runs made quite close to reliable wind sensors read continuously.

Earlier data obtained both by NASA MSC and by NRL involved flights near

weather reporting ships, but not as near as would be desirable; furthermore these

ships sample the wind only once per hour. Hence scatter in the points is to be

expected both because of non-simultaneity of wind measurements and because

the wind measurements were made, at least in part, at some distance from the

surface track of the radar. The wind speed in each observation cell is a difficult

parameter to document, especially when the measurements are conducted miles from

an anemometer. Future experiment efforts should emphasize even greater effort

to obtain simultaneous wind and radar measurements at the same place. In addition

it would be highly beneficial to document other parameters such as sea spectrum,

foam and spray coverage, air and sea temperatures, swell, wind variability,

wind gradients, surface pressure, surface humidity, etc.

Scatter in the trend with wind speed is also evident in the radiometric

observations. The scatter in Hollinger's data, even though a strong trend with

wind was shown, may be attributable to radiometric contributions from clouds

for which compensation was inadequate. Another possibility may be associated

with the fact that the effects of the wind profile inthe planetary boundary layer

were not interpreted in terms of the wind gradient over a rough surface which is

governed by wind speed and the air-sea temperature differential.

D. Program Objectives

Experiments under well documented sea and wind conditions are clearly

warranted. Under this contract suitable experiment configurations have been

studied to permit good correlation between microwave observations and sea and

13



wind conditions. Selected aspects of the experiments are described in

Section III of this report. Various meteorological and oceanographic

situations which form the background for RADSCAT missions are also described.
These situations represent an assortment of sea and wind conditions important to

wave and weather forecasts. In addition, methods for implementing sea truth

documentation are described. For a more comprehensive treatment of these

experiments the reader is referred to "The Design of the RADSCAT Experiments,"

University of Kansas Center for Research, Inc., Technical Report 186-2, February,

1971. The above mentioned report treats the design of several special experi-

ments to observe the effects of clouds and rain on the scatterometric and radiometric

observations. It also develops certain design requirements for the RADSCAT

instrument to achieve certain experimental objectives.

A strong sea truth correlative basis is not the only objective of these

experiments. The experiments and RADSCAT instrument have been designed to

exploit the benefits of near simultaneity in measurements by the composite instru-

ment. The joint measurements will provide a stronger interpretative basis for sea

roughness and therefore wind. The measurements through clouds will afford an

opportunity to assess the capability of inferring atmospheric attenuation from the

composite sensor data and thereby correcting the scatterometer data. The

experiments were also designed to determine the optimum frequency (within

the RADSCAT band), polarization, and view angles for each sensor.

Other efforts under this contract have theoretically investigated the effects

of clouds and rain on the observed microwave temperature. Various cloud and rain

models have been employed to determine the rise in the microwave temperature when

viewing downward through these model atmospheres. The effects of scattering on

the radiative transfer process have been considered for heavy rain-fall rates.

Emphasis has also been placed in correlating the temperature rise resulting from

clouds and rain with atmospheric attenuation. These efforts are reported in Section

IV.

14



A theory for microwave emission has been developed based upon a two
1381

scale roughness model for the sea surface. A non-coherent assumption has

been assumed to simplify the theory and consequently the numerical evaluation

of the temperature values becomes quite feasible. These results are reported in

Section V.

Backscatter theories were also considered to'predict the backscatter charac-

teristic of the sea. A new composite surface theory based on an equivalent surface

field was developed. This theoretical model is simp'er to interpret and reduces

more readily to special cases than a previous theory. Results from this theory

are compared with measured backscatter from the sea. These results are described

in Section V|.

These theoretical efforts form a strong interpretationa! basis for the existing

scatterometric and radiometric observations as will be evident in the text. These

findings are also converging to a better understanding of scatterometric and radio-

metric characteristics of the sea and their wind response.

This report describes the general approach and the specific results from

these theoretical efforts. The detailed derivations may be found in the appropriate

references listed below. Other reports and papers prepared under this contract are

also included in the listing.

Technical Reports and Memorandum

Technical Report 186-1, "The Meteorological Effects on Microwave Apparent
Temperatures Looking Downward Over a Smooth Sea," Steve Wu,
October, 1970.

Technical Report 186-2, "Interim Report, Design of RADSCAT Experiments,"
J. P. Claassen, February, 1971.

Technical Report 186-3, "A Non-Coherent Model for Microwave Emission and
Backscattering from the Sea," Steve Wu and A. K. Fung, July, 1971.

Technical Report 186-4, "Backscattering from a Two-Scale Rough Surface with
Application to Radar Sea Returns," H. L. Chan and A. K. Fung,
August, 1971.

Technical Report 186-5, "The Wind Response of Radar Sea Returns and its
Implication on Wave Spectral Growth", J. P. Claassen and Mike funq
September, 1971. a/
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Technical Memorandum 186-], "Accuracy Criterion for Estimating the Mean
Squared Signal," John P. Claassen, December, 1970.

Open Literature

Fung, A. K. and H. L. Chan, "On the Integral for Bdckscattering from a
Randomly Rough Surface," Proc. of IEEE, vol. 59, no. 8, pp. 1280-1281,
August, 1971.

Symposiums

Fung, A. K. and H. L. Chan, "On Backscatter from Two-Scale Rough Surface,"
AGARD IXVIIEPP Technical Meeting, June.21-25, 1971, Colorado
Springs, Colorado.

Moore, R. K., J. -P. Claassen, A; K. Fung, S. Wu and H. L. Chan, "Toward
RADSCAT Measurements and Their Interpretation," AAFE Principal
Investigator's Review, NASA Langley, October 4 & 5, 1971.
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III. CERTAIN ASPECTS OF THE RADSCAT EXPERIMENTS

A. Introduction

In previous aircraft missions over the sea, microwave observations were

often conducted over long traverses in the vicinity of a weather ship. In some cases

the observations were conducted at distances actually remote from a weather ship.

Most often the wind observations were documented by visually integrating an ane-

mometer reading for short periods.at widely spaced intervals. Wave conditions

were also interpreted by a human observer, in some cases by untrained observers.

To circumvent the probllems associated with correlating the wind and wave obser-

vations by these methods with the microwave sensor data it is,essential that well

instrumented-well coordinated experiments be considered. JOSS I and JOSS II

were attempts at such experiments.

In addition to the realization that coordinated remote and surface obser-

vations are essential, it is important to regard the ocean surface as a random

process whose geometrical characteristics vary statistically over scales of distances

both larger and smaller than the area observed by the RADSCAT sensor. The

different scales of randomness are thought to be induced by inhomogeneities in

the local wind field. This effect is especially prevalent at low wind speeds where

the variations in the wind speed may be comparable to the average wind speed.

To derive an average scattering coefficient and an average apparent temperature

(and as a consequence an average wind effect) from this spatial random process

will therefore require that the RADSCAT scan over distances which will sample

the surface for lengths much longer than the largest local scale* of randomness.

This implies that the number of independent samples.of this random process could

be dictated by the sea surface rather than the microwave bandwidth.

These random features of the surface have influenced the design of the

RADSCAT instrument to include various mode sequences which provide different

degrees of spatial averaging. But in addition, the above viewpoints dictate cer-

tain requirements in the execution of tho RADSCAT experiments. These requirements

are described below. Also, since the ocean surface is a random process which

varies both spatially and temporally, various wind and wave conditions which

As opposed to global scales.
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dictate important measurement situations are also described in a subsequent section.

These situations are also important to the oceanographer and meteorologist.

B. Suitable Experiment Configurations

To achieve well coordinated aircraft and sea truth observations, it is pro-

posed that repeated flights be conducted in the vicinity of an instrumented site.

There are several modes of the RADSCAT instrument which are well suited to

measurements synchronized with surface instrumentation. The alternating scan

angles mode with all of its options arid fixed scan angle mode with its option can

be employed for coordinated measurements. These mode sequences are shown in

the diagrams of Figure 8. There are trade-offs among spatial average, coordination,

and simultaneity of measurements for each mode and option. When the alternating

scan angles mode is flown from 10,000 feet, nearly simultaneous measurements

are realized for all submode conditions (©., VV, HH, f, S, R) from a common area

of sea. For measurements coordinated with surface instruments, the mode may be

initiated when directly over (near) an instrumented site. Subsequent measurements

at other angles will occur on the same sea surface. At the time the mode is

initiated the surface instruments could be cued either automatically from the aircraft

or manually by sea based personnel.

Such coordinated measurements may be conducted at a weather ship, such

as Weather Ship Hotel, or at a pre-designated site that is occupied by the Wallops

Island ship, Range Recoverer. The measurement area should be staged a thousand

yards or so from the lee or weather side of the ship. Repeated passage in the upwind,

downwind, and diagonal-wind directions will document the directional character of

the remote measurements. The experiment configuration is illustrated in Figure 9.

When different mode options are employed different spatial coverage will be

realized. Table I indicates the scatterometric linear surface coverage at each view

angle for each option of the alternating scan angles mode when the aircraft flies

at 140 knots.
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TABLE I

SCATTEROMETRIC SURFACE COVERAGE

UP-TRACK COVERAGE

MULTI-FREQUENCY FIXED FIXED
0 MULTI-POLARIZATION FREQUENCY POLARIZATION

(Degrees) (Feet) (Feet) (Feet)

0 1560 2090 2320
12.5 1730 2160 2380
24.5 1840 2340 2580
34.8 2120 2670 2930
43.7 2530 3160 3440
51.1 3100 3820 4020

More spatial coverage is, of course, realized in the fixed scan angle

mode. An experiment configuration similar to that shown in Figure 9 may be

employed; however, an illumination track about 7000 feet long will be sampled

at roughly 1/2 second intervals. From records of this type variability in the

RADSCAT observations may be compared with the variability in the wind field.

In addition, the number of equivalent independent samples from the sea surface

may be ascertained for various wind conditions. The remote measurements should

be synchronized (cued) with the anemometer recording. The wind must be referred

in time and space to the measurement track under the Taylor hypothesis which

roughly asserts that the statistical moments of the wind speed in time are

representative of those in space. Because of the difference in speed between

aircraft and the wind a few minutes of RADSCAT measurements are equivalent

to many minutes of anemometer record. The mean wind speed should be based

on this long record which must be centered on the flight path by appropriately

translating the anemometer record in time. A linear array of anemometers along

the track would circumvent this interpretational problem, but almost certainly

is not feasible.
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C. Sea Truth Documentation

As indicated in Section II, extensive documentation is required to

develop a fuller understanding or the influence of winds and seas on the RADSCAT

measurements. In this regard it is extremely important that a recording anemometer

be installed on board the ship.* Both-wind speed and direction should be recorded

during the experiment. It is also important to verify the calibration of the anemo-

meter. It is highly beneficial to board a representative on the ship to observe,

interpret, annotate, and operate the anemometer recorder during the course of the

experiments. The initiation of a RADSCAT measurement sequence should be indi-

cated on the anemometer record. A marker channel on the recorder would be

helpful in this respect (the Brush Mark II recorder, for example).**

In addition to the wind speed and direction measurements, sea surface

temperature, surface air temperature, surface pressure and humidity, should also

be documented from the ship. The sea surface temperature is essential to the inter-

pretation of the radiometric data. The air surface temperature and humidity are

required to correct radiometric observations for atmospheric absorption. For more

accurate correction (for atmospheric absorption), radiosondes may be launched

during the experiment flights to profile temperature, humidity, and pressure. The

air-sea temperature differential is necessary for deducing the wind profile over the

sea. The air-sea temperature differential is extremely important to the proper

interpretation of the wind dependence of the RADSCAT observations. The wind

profile over the sea is sensitive to the air-sea temperature differential AT as

illustrated in Figure 10. The graphs indicate that the wind stress on the sea is

identical, even though the winds measured at anemometer heights are different

(after Cardone [10]). The wind measurement and the air-sea temperature differen-

tial must be employed to compute an equivalent neutral wind at a given height.

*On Weather Ship Hotel an anemometer is already installed; provisions for recording
its output in a calibrated fashion must be considered.

**A directional reference for the anemometer must also be established.
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13 14

Wind Speed (m/sec)

Figure 10. Theoretical wind profiles in the marine surface boundary layer for
a surface stress of 1 dyne/cm^ and neutral (N), unstable (U), and
stable (S) stratification.
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The spectrum of the ocean waves should be determined if at all possible.

In deep oceanic waters there are two methods by which wave spectra may be

measured, viz., with a laser profilometer or with special buoy systems which have

velocimeters or accelerometers mounted on them. The laser profilometer is flown

from an aircraft and its performance and effectiveness have been described by
[ 121

Ross, et al. Of these two methods, the laser profilometer is the superior method

since it can be easily transported to any experiment site. .The' records may not

only be used to measure the wind induced spectrum but may be used to detect the

presence of swell. The presence and magnitude of swell should also be documented by
[131the wave hindcasting techniques developed by Pierson, et al. In this method,

ship reports in the form of wind speed and direction throughout the North Atlantic

over a long period prior to the experiments are employed to estimate swell height

and direction during the experiments.

If possible, capillary wave structure should be obtained by the Sti l lwell

technique. Foam and spray should be measured from vertical photographs. The

I DECS at the University of Kansas can be used for automatic area measurements on

the photos.

D. Choices of Weather and Wave Conditions

It is highly beneficial to conduct the experiments under carefully selected

wind and wave conditions important to the oceanographer and meteorologist. The

.wind and wave conditions should also be chosen to differentiate a number of effects

which can be potentially influence the RADSCAT measurements. The extratropical

cyclone affords many of the important measurement opportunities. '

(1) Low Wind Measurements

Several missions should be conducted under low and medium winds (summer

winds) where significant variability in the wind amplitude and perhaps direction is

anticipated. Close correlation of the wind measurements with the RADSCAT mea-

surements should indicate the influence of variability in the local wind .field on the

measurements. The fixed angle mode is particularly adapted to observe the spatial
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scale of wind variability. The results of the experiments should yield (1) the

scatterometric and radiometric response to the small structure induced by the local

wind field, (2) the importance of the large structure on the measurement, (3) the

spatial coverage necessary to yield an indicator of the average wind field for given

variability scales, and (4) the RADSCAT response to moderate wind conditions.

It is preferable to conduct these measurements under cloudless skies to

assure that the radiometric measurements can be easily interpreted. This condition

is preferred since direct and reflected cloud emissions will contribute to the radio-

metric observations. If the cloudless constraint cannot be realized, then the cloud

contribution can be compensated for with some degree of accuracy if radiometric
191

measurements are conducted above and below the clouds or if opacity measure-

ments are made. These methods will undoubtedly be restricted to well stratified

cloud conditions (horizontally homogeneous). However, when radiometric obser-

vations are conducted in this fashion, the cloud contribution may cause a scatter

in the results which will make it difficult to interpret the radiometric response to

the surface condition. As noted previously, this undoubtedly accounts to some

extent for the scatter in or the selection of reported radiometric data. Most cloud

conditions will not affect the scatterometric observations. As a consequence the

influence of the surface conditions on the scatterometric response can be studied

under less restrictive sky conditions.

(2) Wind and Wave Conditions Associated with Extratropical Cyclones

Similar measurements should be conducted under high wind conditions in

either or both modes. A passage of an extratropical cyclone will afford measurement

conditions to study high winds under a variety of wind speeds, wind direction,

duration, fetch, etc, A cloud image of an extratropical cyclone located on the

eastern seaboard is shown in Figure 11. The wind field associated with this system

is shown in Figure 12. This isotach analysis was based on ship reports concurrent

with the scene of Figure 11. These'illustrations were prepared under Dr. W. J.

Pierson, Jr., of New York University and appear in a Skylab Proposal jointly

proposed by New York University, The University of Kansas, Colombia University,

and NOAA. An examination of the wind field of Figure 12 indicates a number of

weather and wave situations of particular interest to these experiments.
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ESSA Spacecraft Cloud Mosaic for March 10, 1969

1800 GMT

Figure 11. A Cloud Image of an Extratropical Cyclone
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The warm sector preceding the cold front exhibits constant winds of about

20 knots over large regions. This condition is indicative of a fully developed sea
' . • - . - . • .

whose spectral growth has attained its maximum under those w'ind conditions. It is

further noted that, although some of this region is covered by a long bank of stratus,

the region to the east of the cloud bank is essentially cloudless. These circum-

stances provide ideal conditions under which to execute RADSCAT observation

'under fully developed sea conditions. Both-well coordinated measurements '

between the RADSCAT aircraft and sea based support and RADSCAT measurements

away from an instrumented site are possible here.- • : " - ' •'" ' * ' • • < ' • • . '•'••

The frontal band of clouds between the warm and cold sector provides a

good opportunity to determine the effects of deep cloud covers on the scattefometric

and radiometric observations. For more detail on these experiments the reader is

referred to Section IV and reference [IT].

The region immediately to the rear of the front affords conditions under

which the development and decay of a confused sea condition may be documented.

In this region the warm sector winds initially drove waves to the north; the cold

front wind impinging on this region will develop waves propagating toward the

southeast. Within a period of several hours after the passage of the front, signifi-

cant waves will be superimposed on those propagating to the north. As a result,

the large sea structure will be rather choppy. These conditions are likely to be

found in the clear region behind the comma shaped stratus. As a'consequence,

radiometer observation will be unaffected by clouds. If, however, the stratus

cloud deck cannot be avoided, corrections of the radiometric readings should be

fairly accurate since the stratus of this type will be roughly horizontally homogeneous

for significant distances. . .

In the high wind region marked by a cover of stratocumulus (Figure 11) there

exists a good opportunity to document the development and decay of the sea under

high winds and high wind gradients. The experiment may be staged at an instrumented

site and the storm permitted to pass over the site. A wide latitude of high winds

under limited fetch and duration can be observed within a six hour mission. Accurate

scatterometric observations can be anticipated beneath or above this cloyd deck;

however, it may be difficult to correct and interpret the radiometric response.
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Embedded within the stratocumulus cover will often occur isolated rain or

snow showers. The upper boundary of these showers usually is beneath 10,000

feet. Occasionally several of these showers will coalesce. This situation is a fine
. [11 ]

opportunity in which to conduct the rain attenuation and surface impact experiments.

A final examination of the cloud cover of Figure 11 and the associated wind

field of Figure 12 indicates that experiments under fetch-limited conditions may be

conducted off the eastern sea board. On a short time scale of several hours some-

what homogeneous, medium intensity winds will occur behind the most intense wind

fields of Figure 12. The development of the sea will be almost totally governed

by a homogeneous wind blowing from the shore out to sea. Measurement downwind

or upwind would yield the effects of sea development on the RADSCAT measure-

ments. It would be advantageous to fly between Range Recoverer and Weather

Ship Hotel when they are separated 100 or more nautical miles as shown in Figure

13. The wind measurements at the two ships would attest to the homogeneity of the

wind field. To.sample the wind field between the two ships it would be highly

beneficial to use.an inertial navigational system which yields the wind speed

and direction as a by-product of its navigational information or to provide a linear

array of anemometers along the flight path. Intermittent flights are necessary at

150 feet altitude between RADSCAT measurements at 10,000 feet when the navi-

gational system is used. The techniques developed by Cardone ^ may be employed

to refer winds to the equivalent 19.5 meter height under neutral conditions. During

these intervals ,the laser profilometer may be operated to obtain sea spectra and as

a consequence wave development information.

i

E. Recommendations

Presently an unpressurized C-54 aircraft is specified as the vehicle from

which RADSCAT observations are to be conducted. The altitude and speed limita-

tions of this aircraft will often restrict the measurements which can be

executed from this aircraft. The aircraft for example will not be capable of mounting
r '

the stratus/cumulus cloud cover found along cold fronts. This represents an important

case in which deep cloud cover obscures (visually) much of the sea surface

experiencing high gusting winds. Cloud attenuation may also be significant in this

condition-. An aircraft with higher altitude capability is recommended to achieve

this objective. The instrument would also have to be modified for operation at

higher altitudes.
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In view of the importance of conducting measurements across cyclonic

structures, it is recommended that segments of flight time be scheduled during the

later winter and early spring months. These cyclonic structures move at about 30

knots and as a consequence during the course of such an event two or three flights

separated roughly by 12 hours can be scheduled. The prediction and detection of

these weather conditions, the flight scheduling and the designation of a probable

experiment site, require the judgment of a qualified meteorologist/oceanographer.

It is recommended that these services be arranged with Dr. Pierson's group of the

Meteorology and Oceanography Department of New York University. His group

has experience in providing these services and has access to cloud imagery, weather

reports, weather radar displays, ship reports, etc. on which to base these decisions.
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IV. THE EFFECTS OF CLOUDS AND RAIN ON THE APPARENT

MICROWAVE TEMPERATURE

A. Introduction

(1) Background

High winds over the ocean are usually accompanied by clouds and rains

(see Figure 11 of Section III and the accompanying text). These meteorological

conditions influence scatterometric and radiometric observations, especially the

latter, primarily because of atmospheric absorption (emission). The radiometric

contributions to the surface brightness temperature by clouds and rains have been

indicated by Singer and Williams at 15.89 GHz. Additional observations at

19.45 GHz were reported by Conaway and Kreiss. On the other hand,

theoretical investigations of cloud effects, except for the efforts of Kreiss, have
117 181

largely been limited to cases in which the sky temperature is computed. '

Other radiometric measurements have documented the effect of clouds and

rains on the sky temperature, i.e., looking upward. For example, Haroules and
[191Brown in a comprehensive set of measurements have measured sky temperature

and inferred atmospheric attenuation. The attenuations and,sky temperatures of

various cloud and rain conditions shown in Table II are an excerpt of their data.

Other extensive measurements of this type have been reported by Strickland,
1211 [221 [23]Otsu, Yuichi, Crane, and Ippolito in conjunction with the ATS~V

communication satellite experiments. From these results the apparent temperature

when looking downward may be qualitatively described.

Radiometric measurements conducted downward over'clouds and rains will

observe a slightly attenuated surface brightness temperature plus a cloud/rain

contribution in excess of the sky temperature reported by the investigators above.

In effect the radiometer loses contact wfth the surface when clouds or rain

intervene.*

k The scatterometer, however, retains contact with the surface except under
moderate to heavy precipitation, as a study of the entries of Table II will indicate,
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TABLE II '

ATTENUATION AND BRIGHTNESS TEMPERATURE OF CLOUDS AND RAIN

One-Way Attenuation

Cloud Type

High Level

Medium Level

Low Level

Light- Rain

Medium. Rain

Heavy Rain

8 GHz
dB

.02-. 05

.03-. 12

• -I.10-. 25

. . 15-.25-

< .80

. 1.5

15 GHz
dB

.03-. 07

.08- .13

.17-. 40

. .20-. 60

3.2

5.4

sky

8 GHz
oK

7

10

14

16

20.

70

15 GHz
°K

15

21

30

' .38

43

140 .

( 2 ) Objectives i n Summary - . . - . .

The primary reason for proposing addition of a radiometer to a scatterometer

for oceanic wind determination was the greater sensitivity of the radiometer to cloud

and precipitation. Because of this, the combined instrument can use the radiometer

to correct scatterometer measurements for small attenuation and to determine that

scatterometer data should be discarded when heavy rain is indicated. Although

t,he relation between attenuation and brightness temperature has been extensively

studied for upward-looking radiometers, and measurements have shown that the

expected temperature enhancements do indeed occur for downward~pointed

radiometers, this is believed to be the first study aimed specifically at determining

the relation between brightness temperature and attenuation for the downward-

pointed radiometer. Computations have been made of the brightness temperature

for.a variety of meteorological conditions based on various models postulated by

meteorologists. Comparison of the.calculated temperature with attenuation has

verified the general idea of the use of radiometer to calibrate scatterometer (see

also Section V). These calculations have used a simplified ocean surface model,

and further .refinements are in order using a more representative description of ocean

scatter. ' •" '
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B. Theoretical Approach

(1) Introduction

For a rough surface in thermal equilibrium the natural radiated power

emitted by the surface is given by

where

K = Boltzmann's Constant

Ti = Brightness temperature

B = Equivalent bandwidth

The brightness temperature of the rough surface is dependent on the ability of

surface to emit natural radiation and is given by

where

e>(©) = emissivity in direction © for j polarization

T = surface temperature

, j = vertical or horizontal polarization :

The emissivity of a rough surface is dependent on the dielectric and geometrical

properties of the surface and is given by

(4)

where % ..(0,0') is the bistatic differential scattering coefficient for j incident

polarization and i reflected polarization for the 0 direction when illuminated from

the ©' direction. The integration is performed over a hajf space with respect to

the primed variable.
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... I
The above expression for a quiet sea can be related to Fresnel reflection

coefficient R-(9) by

The evaluation of the Fresnel coefficient was based on the dielectric properties of
(241

sea water as given by Saxton and Lane. Although this emissivity does not typify

the sea well, it is adequate in indicating meteorological effects. The extension

to realistic emissivity conditions for a rough sea can be based on the efforts

reported in Section V .

(2) Theoretical Basis Excluding Scattering Effects

Measurement of the surface brightness temj:. jrature through a realistic atmos-

phere is affected by the emission, absorption and scattering characteristic of the

atmosphere itself. The apparent surface temperature will contain direct and indirect

contributions from the atmosphere. Under clear skies, cloudy skies, and light to

moderate rains, the effects of scattering by the atmospheric constituents may be

neglected for observations in the RADSCAT band. When scattering by atmospheric

constituents is neglected, the observed (apparent) temperature at altitude z and nadir

angle 0 will be given by

where

r>
.•'O

cv(z) = atmospheric absorption coefficient at height z

T . (z) = atmospheric temperature profile

(7)

(8)
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• «pt-«c»;;«(>')d», (9)

In the above expressions T (0,z) denotes the sky temperature as observed in the

interval (0,z), T .(0) the sea reflected sky temperature, and r(Q,z) the atmos-
rd

pheric transmittance in the interval (0,z).

To describe atmospheric effects the atmosphere was considered to be

horizontally stratified and the total absorption coefficient was described as

(10)

a (z) is the absorption profile associated with clear skies and is composed of a sum

of absorption components resulting from various oxygen and water vapor absorption

bands. The absorption coefficient <y is temperature and pressure dependent. As

a consequence, the temperature profile was assumed to be given by

Tw - 6.46}. °K -for o *> < II

£ 17 °K "for >> II kw

and the pressure profile by

- o. 1-43 y
- 1-33 Pw e ml, (12)

where P is the sea surface pressure.

The absorption coefficient for clouds was based on a model suggested by

03)
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where

M = liquid water content

v = propagating frequency

b(z) = frequency index

a(z) = temperature coefficient

[O/.1

The empirical expression proposed by Gunn and East was employed to specify

rain attenuation

where p(z) is the precipitation rate and c and d are frequency dependent parameters.

A thorough treatment of this theoretical basis is described in reference [27],

The apparent temperature was numerically computed for various cloud and rain

models. These models and their apparent temperature characteristics are described

in Section IV. C below.

(3) Theoretical Basis Including Scattering Effects^17'28' 29'30^ •" •

Under heavy precipitation a larger percentage of precipitation particles

exhibit diameters comparable to wavelengths characteristic to the RAD SCAT band.

As a consequence scattering cannot be neglected in considering the transfer of

radiation through heavy precipitation. The physical effects are clear. The radiation

from the surface not only encounters absorption but also scatters in all directions

on its upward course. The addition of "collisions" on its upward course,, as a conse-

quence, attenuates the surface radiation and reflections more effectively. Similar

physical processes describe the propagation of the inherent radiation of the atmosphere.

A decrement in the apparent temperature can therefore be anticipated. The solution

technique for radiation transfer through a scattering atmosphere is presented below.

In a precipitating atmosphere, the source of emission in the medium consists

of two terms: the unpolarized thermal radiation and the emission induced by

scattering. The basic equation of radiative transfer becomes an integral differen-

tial equation; it is given by
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cose ^ | v ( e , 4 > ) -

where
I (©,<?>) = radiation intensity of the system in direction (©,<?>) at frequency

v. For a fixed frequency, the subscript is usually ignored to

simplify the notation.

0 ,<b = direction of the scattered radiation.

P ,(3 ,(3 I = the extinction, the scattering, and the absorption coefficients,

respectively. These can be calculated using Mie's theory for a

specific rain model. The values used in this investigation are

shown in Table III.

)^ scattering phase function subject to

5 desd<fs = I
'

c -* r

J J O

cos(R) = cosQcosQ + sin©sin© cos((* -
"̂̂

= Pla

- 2

B (T) = Planck's function at microwave frequencies

c* '

K = Planck's constant

c = velocity of light

T . = air temperature in the precipitating atmosphere.

Equation (15) can be expressed in terms of microwave temperature by the formula

i _ K 7/2 T
c e (16)

Prior to this conversion, it is necessary to consider the polarized characteristics of

microwave radiation. The unpolarized thermal radiation in the medium may be

decomposed into equal components for horizontal and vertical polarization, but
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the emission induced by scattering is a polarized radiation which contributes to the

two polarizations in a random fashion. As a result it is conceivable to assume, that

the emission induced by scattering has equal probability for horizontal and vertical

polarization. With this assumption in mind, the coupled polarization equation can

be decoupled and the equation of radiative transfer becomes:

"t" I ab I cclr ( \ ) ,, ̂

= K or v ;' '

oo

Introducing the optical depth T = f p dz, and defining co = P /p (albedo of
» 6X SC 6X

scattering), u = cos©, p = cos© , Equation (17) can be rewritten as follows:

(18)

where

COS

The scattering phase function, 7(cos(R)), can be represented in a finite series of

Legendre polynomials:

N
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where Pi is the Legendre polynomial of order /. Additional simplification will

result when the following identity is employed. . . .

2-2 cos

where

P = Associated Legendre polynomial of order / degree m.

We have

(20)

y(cos©;> = y

mCfs

(21)

where

A1" = ( 2 - 50^ ) ( Z r^ ) j (22)

6 = I if m = 0
o,m

= 0. otherwise

m = (/-m)!

1 ~Vm)!
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Equation (21) suggests that we expand T.(T,p,(f>) in the form
3

M» ^—r _ \ ft

j ^'^ "^o J^ '^ C°5 m < f (23)

When Equations (21) and (23) are substituted into Equation (18), the following

independent equations result: . ,

(24)

The boundary conditions for a plane surface bounded below and the atmosphere

extended to infinity are

(25)

where T is the total optical depth of the precipitating atmosphere. e-(u) is the

plane surface emissivity and T is the surface temperature.
y

Since the plane surface is isotropic, and since there are no sources above

the atmosphere, and since the thermal radiation in the medium is also isotropic in

nature, the solution of Equation (24) consists of one term (m = 0) only and it

becomes a function T, u,, and independent of A.-

In order to obtain the function T.(T,|J) numerically, the approximate

problem is formulated by confining ourselves to (N =) 5 terms in the expressions

shown in Equations (21) and (23) and requiring that Equation (24) and boundary

condition (25) be fulfilled at the points u^Up, • . ' /MKJ °f *ne interval (0, 1) and
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(u. i,u jf*i\i KI) 'n *ne interval (0,-1). The integrals are here replaced by

quadrature summations.

A system of ordinary differential equations of the first order with N boundary

conditions at T = 0 and N at T = T is obtained for the 2N unknown functions
o

T.'(T) = T.(U.,T), (i = 1,2,... ,N,-1 ,-2,.. .,-N) of this approximate problem.
J J •

We introduce a difference net in T iri such a way that the boundaries of the

different substances in the points of discontinuity of the coefficients of Equation (24)

are points of the net. A finite difference system is obtained by integration over

each step of the net (T ,T. i) of the system of differential equations for the func-

tions T.'(T) on the assumption that these functions can be interpolated linearly over

the step. For N - 5, the system of equations with the subscript j removed, is

represented as follows:

-

(26)

(27)
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Note that

du

N

(28)

QI = 0.11846, a2= 0.23931, a3 = 0.28444, a^ = 0.23931, a5 = 0.11846

Ml = 0.04691, M2 = 0.23077, M3 = 0.50000, H4 = 0.76923, MS = 0.93509

where a. 's are the weighting factors and p. !s are elements of the domain of T when

a five point Gaussian quadrature integration technique is employed.u

Equivalent!/ this can be written in matrix form as:

(TA+, '= r (29)

with

' T I*

• 5

^

Ti "

•)

Tl

1 -57* ' ) . • • .
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(30)

otherwise

The boundary conditions of Equation (25) imply: (a) on the plane surface

where

(b) with no incident radiation above the layer L

(c) an invariance principle is based on the general reflection and emission properties

of the layer. ( T^ Ta )

(31)

with

where [I] is the unit vector, e.*-is the emission vector of the plane surface, and

a, ,7Ti are the reflection and emission vector of the layer (T. ,T ). When Equation

(31) is substituted in (28) and solved for a., and ir , we get
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(32)

It is also known from the transmission properties .of the layer that

T£-,= */ Ti% *x (33)

where

•y. = attenuation coefficient of the layer

6, = emission coefficient of the layer

From Equations (33) and (28), the following expressions result

)" (Q, 0)t( 1- 6'jj )

- - (34)

The matrix functional equations shown in Equations (28) to (34) which represent the

original finite difference equation are applied to solve the integral differential

equation with two boundary conditions given in Equation (25).

Computationally, the coefficients a, ,-y. ,TT. ,6, are first found for 1=0,
A t f i ( ( I j

1, .. .,L, using a - [l]~e- , ir = T e. , and the recursive relations given in

Equations (32) and (34). These coefficients do not depend on T. With these

coefficients calculated at every net point, Equations (31) and (33) therefore enable

us to find the solutions T, and T, for all values of /. To increase the accuracy

of the numerical computation, the number of nets for (j. and T. can be increased.
' i

Under the assumption that the emission induced by scattering contains equal

probability for both polarizations, the system of difference equations presented

46



in Equations (28) through (34) is applicable for either horizontal or vertical

polarization; the only difference is the surface reflection and emission character-

istics, namely 2 = [I] - ct, TT = T «rt, where i - "h" or "v".o o g ->

C. Computed Cloud and Rain Effects

(1) Introduction

The presence of clouds and rain as shown above can be expressed as a

change in the absorption coefficient. Even though the absorption coefficient may

•be specified for a given water content or precipitation rate, computation of the

total absorption or emission requires that meteorologically realistic models for

clouds and rain be selected. According to meteorological classifications there are

three basic cloud forms, namely, cirrus, cumulus, and stratus. All cloud forma-

tions consist of these standard forms, a combination of these forms, or a modification

of these forms.

Since cirrus clouds are typically thin layers of ice, their absorption and

emission are relatively insignificant compared to the other cloud types. In the

results reported below only stratus and cumulus cloud formations and various rain

conditions are therefore considered. The sea surface is considered calm and at a

temperature of 290 K. Rain impact effect on the surface is not included.

(2) Clouds

Extratropical cyclones have an assortment of overcast conditions. A

prominent band of clouds is found along the cold front. It may be considered an

overcast condition composed of stratus and cumulus clouds. The cloud structure

is usually deep and may be classified as a heavy overcast. Frequently an overcast

condition can be associated with the warm sector preceding the cold front. When

this overcast is not precipitating it may be classified as a medium or heavy over-

cast condition.
[31]To study these overcast conditions Porter's overcast models were

employed. See Table IV for a description of three overcast situations.
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TABLE IV

PORTER'S OVERCAST MODELS

CLASSIFICATION ALTITUDE EXTENT
(m)

WATER CONTENT
(gm/m3)

Light (sun visible)

Medium (light sky)

Heavy

300-650

400-900

500-3200

0.33

0.67

1.00

This model can be considered a combination of stratus and cumulus. The apparent

temperature characteristic for these overcast conditions are shown relative to a

clear sky characteristic* in Figures 14 and 15 for horizontal and vertical polari-

zation, respectively, for observations at 13.9 GHz. A comparison of these graphs

indicates that horizontal polarization exhibits an increasing sensitivity to the over-

cast condition with view (incident) angle. A 70°K separation between the heavy

overcast and the clear condition can be observed at view angles in the vicinity of

70 degrees. The response for vertical polarization on the other hand shows maximum

sensitivity to clouds at nadir only.

Cumulus clouds are prevalent over the ocean at any season. To typify their
[321

effect Levine's descriptions for cumulus were employed (see Table V below).

TABLE V

LEVINE'S CUMULUS MODELS

CASES ALTITUDE EXTENT
(m)

WATER CONTENT
(gm/m3)

Case 1

Case 2

Case 3

457-1068

457-2590

457-3810

0.5

1.0

1.25

*The clear sky apparent temperature includes the effects of absorption and emission
by oxygen and water vapor in the atmosphere.
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Figure 14. The computed apparent temperature characteristic for three
overcast conditions - horizontal polarization.
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Figure 15. The computed apparent temperature characteristic for three
overcast models - vertical polarization.
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The apparent- temperature responses with view angle for these three cases are shown

in the graphs of Figure 16 for horizontal polarization. Frequency responses in the

RADSCAT band for these cases are shown in the graphs of Figure 17 for two view

angles. The warmth of this cloud condition can be associated with the high moisture

content and depth of these clouds.

Stratus are typified by a thin band of low moisture content clouds. The

apparent temperature response of these cloud conditions are based on Neiburger's
|33]

investigation (see Table VI). The results for horizontal polarization are shown

TABLE VI

NEIBURGER'S STRATUS MODELS

CASES ALTITUDE EXTENT MOISTURE CONTENT
(m) (gm/m3)

Case 1

Case 2

Case 3

30-580

152-520

213-490

.35

.25

.20

in the graphs of Figure 18. It is evident here that stratus do not contribute much

to the rise in the apparent temperature.

(3) Light to Moderate Rains

The extent of precipitation over the world at any time is small in comparison

to the extent of the non-precipitating regions. The frequency of rain over oceans

is known to be even lower than that over land. As a consequence the operation of

the combined radiometer-scatterometer will not be impeded often by rain. It is

important, however, to estimate the effects of rain on the radiometric observation

to attempt to discriminate between precipitating and non-precipitating regions

since the interpretation of the scatterometric output will undoubtedly differ in the

two regions.*

*Also helpful in mapping precipitation over the oceans.
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Figure 16. The computed apparent temperature characteristic for obser-
vations through cumulus clouds.
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Figure 17. The computed frequency response of the apparent temperature
above cumulus.
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Figure 18. The computed apparent temperature characteristic for observations
through stratus clouds.
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The characteristics of rainfall have largely been described over land. No

information regarding vertical rainfall distributions was found for rain over oceans.

In this effort it is presumed that the rain characteristics over land and sea are
f 1A 1

similar. In this respect Valley's rain models were used in describing the radio-

metric response to rain. He describes several cases; however, only one case is

treated here. This case is representative of summer rain in temperate latitudes and,

with a slight increase in temperature, of wide-spread tropical rains as well. This

model typifies widespread uniform precipitation and not showery conditions. The

precipitation and cloud characteristics are shown in Figure 19 and in Table VII,

respectively. As a result of different updrafts, four different precipitation rates

can be described for each case.

TABLE VII

VALLEY'S RAIN MODEL

UPDRAFT

CONDITION

(m/sec)

0.4

0.3

0.2

0.1

RAIN PARAMETERS
Altitude
Extent

(m)

0-3100

0-3200

0-3300

0-3500

Precipitation
at z = 0
(mm/hr)

10.3

7.9

5.2

2.8

CLOUD PARAMETERS
Altitude
Extent
(m)

3100-7000

3200-7000

3300-7000

3500-7000

Water
Conteni
(gm/m3)

0.30

0.25

0.15

0.10

The computed apparent temperature characteristics are shown in Figures 20

and 21. From Figure 20 it-is evident that the sensitivity to rain is greater at

higher angles for small rainfall rates than for larger rainfall rates. Figure 21

demonstrates that sensitivity to rainfall rate is larger at higher RADSCAT frequen-

cies (a result to be expected). The radiometric contributions by rain are notably

larger than those of clouds.
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Figure 19. Precipitation and water content distribution for extensive showers.
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Figure 20. The computed apparent temperature characteristic for observa-
tions through rain.
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Figure 21. The computed apparent temperature response at nadir as a
function of precipitation rate. ,
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(4) Heavy Rains

Based on the theory described in Section I I I .B above, computer techniques

were developed to predict the emission characteristic as would be observed above

heavy rains. The effects of scattering by rain drops in the radiative transfer process

are included and the computed results are compared with the apparent temperature

when scattering is neglected. The results for two precipitation cases, 10 mm/hr

and 30 mm/hr, are shown in Figures 22 through 25 for both polarizations. A decre-

ment in the observed temperature is clearly evident wr.en the scattering effect is

included. At higher observation angles it is apparent that the scattering mechanism

dominates and causes a decrease in the temperature except in the case of Figure 22.

The effect of scattering is very significant at larger rainfall rates.

; An examination of Figures 26 through 29 where the computed sky temperature

is graphed for the same cases indicates that the decrease in temperature at higher

angles must be associated with the loss of surface emission and surface reflections

since the sky temperature exhibits no decrease at higher angles. An interesting

characteristic is evident at higher precipitation rates. The sky temperature differs

for horizontal and vertical polarization. The effect was also reported by Stogryn1

and is attributable to multiple scattering between the surface and the sky. The

surface scattering characteristic introduces the separation. This observation implies

that the ratio of the polarized emissions looking downward will be altered by multi-

scattering between the rain and the surface. This is somewhat evident in Figures

22 through 25.

D. Correlation of the Rise in the Apparent Temperature with Attenuation

The usefulness of the radiometer as an attenuation sensor has been verified

in the ATS-5 communication experiments. In this technique absorption by the

atmosphere is inferred from radiometric observations of the natural radiation of the

atmosphere or the radiation of an exo-atmospheric source such as the sun. The

response of the radiometer to the natural radiation of the atmosphere has led several
F35 361'

investigators ' a.to suggest that it may be possible to infer atmospheric attenua-

tion over the sea with the combined radiometer-scatterometer sensor. The advantage

of deriving atmospheric attenuation lies in the ability to .correct the scatterometric

observation through dense cloud covers where the radiometer senses large contribu-

tions by the atmosphere (as shown above). Efforts under this contract have further

verified the potential to infer atmospheric attenuation with the RADSCAT instrument.
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As a by-product of the theoretical investigation described earlier in this

section, it was possible to correlate the excess temperature

A T j ( 0 ) = Ta:jC0,~ ) - Tb j(9) (35)

as caused by the atmosphere with atmospheric attenuation for various cloud and

rain models. The results for three observation angles are shown in the graphs of

Figures 30 through 32; the correlation is largely independent of view angle.

Depending on view angle, excess temperature associated with rains'lies to the

right of that associated with clouds. This result may serve as a basis for

identifying observations through rain. The correlation of .attenuation with

excess temperature depends somewhat on atmospheric structure, as shown (the

points come from several atmospheric models). The variation from the mean

curve is small enough, however, to verify clearly the postulated ability to

determine attenuation from radiometric temperature.

A close examination of these results and those of Section V indicates a

good potential that the excess temperature may be inferred from simultaneous

scatterometric and radiometric observations. A combination of verified theoretical
/'

models and empirical models could be used to correct the scattering cross-section

for attenuation in an iterative procedure. The technique is based on the ability to

infer an estimate of the surface brightness temperature from the scatterometric data

o°. This a° in turn implies a certain wind (although incorrect since an unknown

attenuation has altered the measurement); associated with this wind speed is an

estimated brightness temperature. The estimated brightness temperature and the

measured apparent temperature are employed to estimate the excess temperature

from which the attenuation is computed. The attenuation is then used to correct the

measured a°. The process is then repeated until no improvement in the attenuation

is observed. The technique is illustrated in the logic diagram of Figure 33. The

convergence of the solution is assured since the error in a° attributable to attenua-

tion is always one sided. This technique, however, must account for the small

variation in <j° associated with scatterometric measurements at different aspect

angles with respect to the wind direction (squint). Correction of this nature may be

possible in an operational system where the wind field is estimated on the basis of

RADSCAT observations combined with scattered ship and shore reports also.
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Figure 33. A Logic Diagram for Estimating Attenuation.
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E. Recommendations

I n view of the radiometric observations of the sea reported recently and

the theoretical fitting of these results as reported in Section VI, extension of the

above efforts to include a realistic sea surface is warranted. These improved

computations should include sensitivity studies to determine the response to clouds

and rains having various temperature and pressure profiles. Meteorological profiles

over Ship Hotel could be used and temperature and pressure profiles of recent

cloud modeling investigations could also be considered. The above refined results

could then be used for developing methods of extracting"atmospheri'c attenuation

from scatterometer-radiometer data. The accuracy of the various methods should

be examined. Other techniques should also be sought. The insensitivity of vertical

polarization emissivity to wind speed also should be considered when seeking

other methods. In view of the good correlation between excess temperature and

attenuation as a result of numerical studies, a better phenomenologica! model for the

theoretical basis for this correlation should also be sought. . •

These refined results should also be examined for features definitive of rafn

and rainfall rate. This investigation would serve as an indication of the precipita-

tion sensing capability of the composite sensor.
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V. A THEORY FOR MICROWAVE EMISSIONS FROM THE SEA

A. Introduction

(1) Background
i

As described in Section II the microwave emission characteristic of the sea>
has been measured by several investigators. These investigators have compared their

observations with predictions from geometric optics theory which uses a single sur-

face model and found some but not satisfactory agreement between predictions and

measurements. The wind dependence of the geometric optics approach was based on
[371measured rms sea slope data reported by Cox and Munk. However, the theory

failed to predict the observed wind dependence at nadir and only loosely fitted the

observed emission characteristic for nadir angles between 30 and 70 degrees. The

failure of the simple geometric optics model to account for wind dependence at

nadir was first reported by Nordberg, et al"., and verified by Hollinger.

(2) Objectives in Summary

In view of the above deficiencies an investigation was undertaken to seek a

more adequate model for microwave emissions from the sea. The emphasis in this

investigation was oriented toward using a composite surface scattering theory which

better describes the roughness characteristic of the sea. The brightness temperature

was, of course, computed from the bistatic scattering coefficient in the standard

way (see Section IV). Since several lengthy numerical integrations are required to

yield the emissivity, a more adequate model was sought among the simpler composite

scattering theories. With this perspective a non-coherent scattering theory of the
[381type described by Semyonov was extended to yield the bistatic characteristic.

An isotropic surface characteristic,although not realistic for the ocean surface was

assumed. A justification for this assumption is based on the observed directional
[391insensitivity of emissions from the sea.

The composite theory yields a scattering coefficient consisting of a sum of

two terms. One term reflects mainly the large structure contribution with an
v
appropriate modification in the Fresnel reflection coefficient resulting from small
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surface irregularities and is described by the geometric optics method. The second

term reflects small structure contributions which are compensated for large structure

tilting effects.

The wind dependence of the surface parameters in the composite model was

introduced in accordance with rms slope data measured by Cox and Munk for the

large undulations and Sutherland's results for the small irregularities. The notable

features of Sutherland's results are that the high frequency portion of the sea spectrum
-4grows over a significant region of wind speeds and varies like K , where K is the

wave number of the sea waves. Details for the theory and the choice of surface para-

meters will be discussed in the Section V.B below.

Comparisons of the computed brightness temperature and backscatter charac-

teristics at two different wind speeds were made with measured data and with pre-

dictions from a single surface model. The results are presented in Section V.C.

B. A Theory for Microwave Emissions from the Sea

The basic theory of surface brightness temperature was developed by Peake.

The relationship between the surface emissivity, the surface temperature and the

brightness temperature is as follows:

where Tg.(Q) is the brightness temperature; e-(0) the emissivity; T0 the surface
i i &

temperature; h denotes horizontal polarization and v vertical polarization. Note

that the azimuthal angle 0 needed together with © to specify a direction has been

chosen to be;zero without loss of generality.

The connection between the emissivity and the bistatic scattering coefficient

of the surface, 7. (0,0 ,<f> ) is

(37J>

I
where ©s,^> are angles .defining the direction of scatter corresponding to a wave

incident at an angle 0.
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The basic formulation of the problem indicated above shows that the bistatic

scattering coefficient is the quantity that defines the angular characteristics of the

brightness temperature of a given surface. Consequently, different brightness

temperature theories are also distinguished by the different models assumed for the

bistatic scattering coefficient.

The bistatic scattering coefficient derived from 'a two-scale rough surface

model with Gaussian surface height distribution and Gaussian surface correlation
[491

for both scales can be'shown to be of the form

y*<6,0s,?0 = $ L ° (0 , f i *»X)4 <2( i
I(«,e s ,<Ps)> (38)

7.0(0,0 ,</> ) denotes the main contribution by the large undulations. For horizontal

polarization

(39)
^ P f - C f r ^ V V f e ^ ' j / J

and for vertical polarization

cos 9 -m*< al +

J

•_ SL7ie<

R. = Fresnel reflection coefficient of a plane surface

cos© = I

a, ; = 1 + cos©cos© - sin©sin© cos j>

a« = sin©cos© + cos©sin© cos$2 s s Ts
q = sin© cos^ - sin ©^x s s
q = sin© si
y s. s

q - cos© + cos©
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k = wave number

m = rms surface slope of the large undulations ,
f\

<Ti ,0 = variance and correlation length of the small irregularities, respectively

(y. (0,0 ,0 )) denotes the bistatic scattering coefficient of the small irregularities

where the averaging occurs over the distribution of the surface normals of the large

undulations. Specifically

'

where -i

P(© , < * > ) = surface slope distribution of the large undulations
n' n'

I exp (--tan2 9^/2 w2)

0 ,^ = tilting and rotating angles of the large undulations.

Also

cos 0' Cos2 0S'

= k

e '

77



e - relative complex dielectric constant

',4 ' - local incident and scattered angles based on the large undulations,

respectively

cos0'= cosQ cosQ-f sinQ-
n n

= -sin©sin<A (1 - cos 0'

cos©,.!= cos© cos© - sin© sin© cos(4 - fa
J Y\ C »-\ r % C r%

sin-" =
s i b n s

The surface parameters appear in the above theory as the rms slope of the

large structures m, the standard deviation of the small structures a-,, and the correla-

tion length of the small structures /. This scattering model can be adapted to predict

sea returns by noting that the rms slope can be based on measurements by Cox and
[371Munk and by noting that the assumed Gaussian spectrum for the small irregularities

can approximate the high frequency portion of the sea spectrum BK where the

Bragg scatter condition applies, i.e., K = 2ksin©. In view of the requirements of

the composite surface theory it is reasonable to choose the oil slick sea measurements

by Cox and Munk, since the small irregularities have been suppressed. The value of

m is thus assigned. The value of k/ was assigned so that the correct angular behavior

of the Gaussian spectrum approximated BK well over the angular range, 30° 4 © 4 70°,
4 2 9

i.e., BK~ was approximated by (CTI/) /IT exp [-(K//2H where K = 2k sin©, the

Bragg scatter conditioni This was achieved by noting t|iat when k/ = 2 similar

behavior was realized. This is demonstrated in the graph of Figure 34. The factor

35.3 appears in the Gaussian approximation to bring the levels into agreement at

60 degrees. The value of B must yet be assigned.
-3

Oceanographic investigations indicate values of B in the range from 4.6 x 10

to 3.26 x 10"2. I37/43'44! This implies that ka, should lie in the range from 0.084
A O

to 0.24 when BK is equated to (CTI/) /IT exp [-(K//2)2] at 60 degrees. These values

of kai are consistent with the assumptions of the small perturbation theory, an

.encouraging result. . :
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C. Presentation and Discussion of the Results

As indicated in the previous section (V.B), the surface parameter m can be

based on results reported by Cox and Munk and / can be estimated by bringing BK

into approximate agreement with the Gaussian spectrum over the domain of K where

the Bragg scatter condition applies. The wind dependence in this model, however,

not only enters through the factor m but also through the factor kai. B which is

known to be wind dependent ' can be related to kai. However, at this writing

the wind dependence of B is not yet available. To circumvent this lack of infor-

mation it was noted that the horizontally polarized emission characteristic for nadir

angles about 30 is very sensitive to kai. So in the interim, the parameter kai can

be estimated by fitting the predicted emission characteristics to the measured charac-

teristics for large nadir angles.* With kai established in this manner, the back-

scatter characteristic may also be computed and compared with reported measurements.

The parameter kai was estimated from horizontally polarized emission

characteristics at 8.36 GHz associated with two distinct wind speeds. The emission

characteristics were based on an average .of several of Bellinger's experiment runs**

under similar wind stress conditions.*** The vertically polarized emission charac-

teristic was then computed from the estimated kai. These results are shown in the

graphs of Figures 35 and 36. The dielectric constant was based on data reported by

Saxton and Lane.

Comparison of the predictions of this emission model indicates a significantly

improved agreement over that predicted by a single surface model. Better level and

trend agreement is evident for both horizontally and vertically polarized emissions.

Sensitivity to wind speed is evident at nadir which was not noted with the single

surface model. The sensitivity at nadir is carried by the modified Fresnel coefficient

(see Equation 41 ).

*lt appears that the wind sensitivity of B may be assigned by this technique.
However, this is left as future effort.

**The authors are indebted to Dr. J. P. Hoi linger of NRL for making his radio-
metric measurements available to us.

lr**The authors are also grateful to Dr. V. J. Cardone of NYU for interpreting
Hollinger's wind speed measurements under comparable wind stress conditions.
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Figure 35. Comparison of Computed and Measured Emission Characteristics
for Horizontal Polarization.
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The adequacy of the composite surface theory is further demonstrated when

the predicted backscatter characteristics are compared with measured characteristics.

Data at 8.91 GHz reported by Daley, et al .*, at similar wind stress conditions

were chosen as a basis for comparison. The dielectric constant was changed to reflect

the influence of the slightly different frequency. The comparison of predicted and

measured characteristics are shown in Figures 37 through 40. These results indicate

reasonable agreement with measurements and improved agreement over the predictions

of the simple geometric optics approach (single surface model). It is noted that the

best agreement with measurements occurs primarily at larger angles and for vertical

polarization. There is some uncertainty in the accuracy of the measurements near

nadir so lack of agreement may be anticipated there. The discrepancy at large

angles for horizontally polarized cross sections may be attributable to receiver noise

at these small cross sections. This statement is, however, speculative.

In the above composite theory, the same set of parameters (m,a-i, /) has

been employed at a given wind speed to predict both the scattering and the emission

characteristics for both polarizations (see Figures 35 through 40). Much improved

agreement with measured results (especially the scatterometric measurements) over

a single surface theory indicates that the sea surface is better modeled by a compo-

site rather than a single surface. It also indicates that the adequacy of a scattering

model is best exemplified when it is used to predict both the scattering and the

emission characteristics.

The level of NRL data which are based on the statistical median had to be
[47]raised by 6 dB to realize the agreement. Valenzuela indicated that the average

cross section was about 4.6 dB above the median based on exponential statistics

assumed for the returns. As a consequence, 1.4 dB remains unaccounted for.

.Perhaps the remaining 1.4 dB may be partially associated with the biases disclosed

by Claassen and Fung.

*The authors are indebted to Mr. N. W. Guinard of NRL for making these back-
scatter data available to us.
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Figure 37. Comparison of Computed and Measured Backscatter Characteristics
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Figure 38. Comparison of Computed and Measured Backscatter Characteristics.
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Figure 39. Comparison of Computed and Measured Backscatter Characteristics.
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Figure 40. Comparison of Computed and Measured Backscatter Characteristics.
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D. Recommendations • •

The simplified composite model'was shown to predict scatterometric and

radiometric responses of the sea with reasonable accuracy. The use of an isotropic

surface model, however, has completely ignored the anisotropic characteristics of

the sea surface. The cross wind response, for instance, cannot be distinguished

from that of the upwind. Also, the evaluation of the scattering integral by the

stationary phase approximation results in a wind speed dependence of the large

undulations only through the rms slope of the large structures and not the specific

shape of the surface spectrum. It remains to be seen as to whether,or not such a

simplification is acceptable. Future efforts should, therefore, be directed towards

developing a two dimensional sea scatter theory which employs'the two dimensional

sea spectrum proposed by oceanographers. Complete anisotropic characteristics of

the sea surface as well as the wind dependence of sea surface should be embodied

in such an approach. This approach may, however, be too involved for microwave

emission theory due to the many lengthy numerical integrations required for a

number of multiple integrals, but is certainly feasible for radar sea scatter with the

present computer capabilities (see reference [62] for a composite theory based on an

anisotropic surface).
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VI. BACKSCATTER THEORY FOR A COMPOSITE SURFACE

WITH APPLICATION TO SEA RETURNS : -•-

A. Background

' ' ' *
 J

 ' ? ' " " • * < " *1 • J " \ l ' " ; ' , ' ' ' * ' * ' , ' ' ' " \ • • • ' ' ' • • ' .',.• ' '

; Many theories have been developed for predicting radar" returns from 'the sea

surface during the last two decades, the theoretical models treated varied rather
•>:-K.-' •:; •'.. •'-• • : • • ? . < ! • . - ; , • : • : • • • • • - ' . - ;,.• . . ... •.; -.<;^.. , .,r>;... .... „. ....... , . . ; , . . . . . . •., ...

,1 .widely but in general four different types of models may be identified, namely,
'"' n\ i- U4.i' ';:i'"' "il'" '"•?•'• '• [i48y49/50] >J

0\' ;' r- ;vi • , ' -:-(V *<V-' :•;.,.• ,(1) a slightly rough surtace, U; a surface made up ot a collection ot
' ' ': ' "' '• : ^ ' " "'•'•" ' :"' ' •" • \5-} 52] ' , v ; fi „ ' , < ' • . • ..-.•.•"-•'.: •' ;.[48 53]---:

..... randomly oriented facets, t ' (3) a smoothly undulating surface, ' and

,,,(4) a two-scale composite surface consisting of small irregularities superimposed
! ' '"Y'"": 'i? ';j V ' * - ' " "[54f,55;5"6,57,5Bl'-.-'> ^'- '•''-• ,"-' • • • , , ; .:•'..-, -.:,upon .large, gentle undulations. In the past most theories were

•" 'r;: - • • ' ? ' , -••:"--:..w' • • < : . - : • : • . . • -•. • ;. . . ;•--. . ! , . - • , - ' • ; • ( • • ^ -; • -T. - , , .' v< ;- [52 53; 591- •-.- •
, ^concerned ,with predicting returns either close to the vertical ' ' or away

' ' ' • ' ' " " ' ' " •'•'' • • • • ' * ' • ' 5 [50" 5iri •-'• • • • ^ ' • - ••. / ! . ."; ' . • • . • • • • • • - . • ; . . . • - , • • . , . ' • • . . • • , . • . . - .
frpm the vertical, ' but not both.' They all fall under categories'(l) to (3).

More .recently two-scale models have been proposed to account for the radar returns

over the entire angular range. It is generally believed 'that such models'rhay serve

.. ;as a good approximation to the true sea surface (in so far as predicting the return

signal is concerned) so that some practically useful results can be derived '.'

As a justification for the two-scale model, it has been observed experi-

mentally that the polarization dependence is small for small incident angles

(less than about 30 ). This suggests a quasi -specular type return which is typical

for structures at least several wavelengths in size. It has also been observed that

at larger incident angles vertically polarized returns are in general significantly

higher than the horizontally polarized returns. This indicates that structures of the

order of the incident wavelength or less are effective. ' Consequently, the

two-scale model appears to be a very reasonable model for sea scatter. Another

significant point about the two scale theory is that it predicts greater wind speed

dependence for large incident angles, especially for horizontal polarization. This

follows from the fact that the larger the incident angle the greater is the enhance-

ment of the return signal from the small structures by the large undulations. Such

an indicationvis again confirmed by available experimental data (see Figures 2

through 5). On the other hand if a single surface theory is used, say, the pertur-

bation theory, then the wind speed dependence would be uniform for all incident
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angles where the theory is applicable. this again indicates that a two-scale

model is needed to account for sea scatter. ,

The general two-scale model applied to sea scatter is typified by a large

undulating surface on which small irregularities are superimposed. More specifically

two types of composite surface models may be identified: (1) the large undulations

are larger in dimension than the illuminated area and thus within the beam of illumi-

nation the surface appears as a tilted perturbed plane and (2) the illuminated area

contains at least several large undulations. For model (l),the problem remains

essentially the same as a small perturbation problem since the effect of any tilt can

be accounted for by a change in the cngle of incidence and by resolving the inci-

dent plane wave into horizontally and vertically polarized components. Such a

simple treatment is not possible for model (2) for which two different approaches are
[381

in existence: (1) the "non-coherent" assumption method and (2) the "coherent"

approach (where the non-coherent assumption is not made). '

In the past, most studies were restricted to either a one-dimensional sea

model or an isotropic sea model. It is well known that the wind induces a non-

isotropic characteristic in the surface. As a consequence a realistic treatment of

sea returns should consider the two-dimensional character of the sea. Thus, studies

to date are capable of providing at most an estimate of sea return for some specific

cases. To obtain a more satisfactory theory for sea scatter it is necessary that the

theory (1) handle at least two scales of roughness, (2) be general enough for a two-

dimensional non-isotropic surface, and (3) incorporate an adequate two-dimensional

sea model. A theory which achieves the first two objectives has been developed and
[ioi

is described in detail elsewhere. A simplified version of this theory is presented

in Section VLB below. Secfion VI.C describes the results of this simplified theory

when applied to sea returns.

B. A Scattering Theory for A Composite Rough Surface

i A backscatter theory for a two-^scale rough surface has been developed for a

rwo-climensional, non-isotropic surface without using the non-coherent assumption.

The approach reduces the composite surface problem to a single surface problem by

applying the concept of the equivalent surface field. This can be achieved by

!

90



modifying the surface fields on the large undulations Z(x,y) to include the effects of

the small irregularities s(x,y). Once this equivalent surface field is obtained, the

Stratton-Chu integral may be employed to calculate the far zone scattered field. It

can be shown that the backscattering cross section, a , obtained by this technique

may be expressed as a sum of two terms, i.e.,

(45)

where a, is identical with that obtained by the classical Kirchhoff's method.*
• • IPP ' ,• • .

a0 is a term that represents the interaction between the larger undulations and
•?PP . ' . • • • I

the small irregularities. It vanishes, if the small irregularities are absent. On the

other hand, if the larger undulations should be absent, o^ will reduce to the small

perturbation results.

Completely general results for a have been derived for a two-dimensional
r PP ,

anisotropic composite surface. Expressions for both the horizontally and the vertically

polarized scattering cross-sections were developed. The derivation of these very
f621 '

complicated expressions may be found in reference. To assess the capabilities

of this new composite theory the general results were reduced under the assumptions

that the rough surface was isotropic and had a Gaussian height distribution for both

scales of roughness. In addition the autocorrelations of the two types of roughness

were assumed to be Gaussian. Under these assumptions the general expressions for

either polarization (pp = hh or vv) reduce to

and

a£pp

? -2

(47)

V

*An equivalent reflection coefficient as discussed by Rice should really be used in
place of the Fresnel reflection coefficients. ^Such a correction, however, is minor
for the entire cross section.
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where Re means "the real part of" and ,.

= a-2

vz = 2

* G = (

w =

rRA for horizontal polarization
' : R = • • ' " ' . • • - • • : : . • " • - ' — ; •• : - -

-;• ? [R» for vertical polarization ; ., .' , -.. >

R1 = derivative of T with respect to Z ':
, . , ,_ . . . P.,, . _• . . . P . . . x , . . . . • • .

0 = angle of incidence , .

In particular, for horizontal 'polarization it is required that ;

ALL = 2 Rj. COS 0

.. ...
•" .. ••.,:. I '- .- '.'.../'.:• '•.:.!':.::.- (48)

. . . . . . . . . . . . . . . . . , , : . ; . , :

"•*(- b-^V^ .t- ;k,c. .+ t u V b c ) cos e J.

- Q

Whereas for Vertical polarization it is required that

= - 2(R „ s-<u 6 f R,, cos
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,, C V V

= T,,

u (b t-k

- kc^-f-bO) c°sf A- },,

DIMT -Qfso t f l C k'u sine f '(. U.*c. - V8b -c,k*) cos <f /«'

-<• k2s<:«.0cos0 fcosS <fu-2c - v * f e - e k ? ) - k C

- a
9 2In the above expressions <ji and cr are the variances of the small irregu-

larities s(x,y) and the large undulations Z(x,y), respectively; p is the correlation

coefficient of Z(x,y); W(K) = // 2 exp [~(K^/2)2] is the roughness spectrum of s(x,y)

related to its correlation coefficient by the Bessel transform; is the correlation

length of the surface, s (x,y); p"(0) is the second derivative of p evaluated at zero.

This simplified scattering model was adapted to predict sea returns in the

same manner as described in Sections V.B and V.C where m was determined from1 • ' • . "i ' ii
slick sea rms slope data and o-, from measured horizontally polarized emissions.

C. Presentation and Discussion of the Results

(1) Comparison with Experimental Results

The surface parameters were chosen by the method discussed in Sections V.B

and V.C and the backscatter characteristics at 8.91 GHz and 1.228 GHz were

computed on this basis for twp different wind speeds. These results were then com-

pared with the backscatter data reported by Daley, et al., ^from JOSS I mission,

(see Figures 41 through 48). The scattering characteristics at L band were based

on the same parameters as used for X~band predictions. JOSS I data were raised

6 dB to be consistent with level adjustments used in Section V. Reasonable

agreement is observed in trend over all angles. See Section II. B and V.C for

a discussion on the discrepancies in the level. It is noted that the value ktr,

increases with increasing wind speeds. This observation is in agreement with

recent observations of the sea spectrum. '
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Figure 42. Comparison of Computed and Measured Backscatter Characteristics.
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(2) Comparison with Other Theories

A comparison of this "coherent" backscatter theory with the "non-coherent"

theory of Section V and the classical small perturbation theory was made with

a common set of surface parameters. The results are shown in Tables VIII through X

for a domain of angles in which the theories may be compared. The cases shown in

the tables reflect progressively rougher sea conditions. It is noted that the compo-

site surface theories yield larger returns than the classical small perturbation theory

which is a single surface model with the effect more significant for horizontal polari-

zation. The "coherent" composite surface theory as one would expect, yields a

slightly larger cross section than the "non-coherent" theory. The separation between

the two composite surface theories becomes more significant as the sea surface be-

comes rougher and as the angle of incidence increases.

D. Recommendations

. • . • t ' .
When enough scatterometric and radiometric data become available it will

be possible to calibrate the surface parameters m, a and / and thus establish an

experimentally calibrated sea scatter model. As indicated in Sections V.B and V.C

radiometric data are important to estimating cr,. If good scatterometric observations

near the vertical become available it may also be possible to determine m. These

observations should be considered in implementing the RADSCAT experiments. The

value of composite sensor together with an adequate scattering theory may as a

consequence also lie in its ability to assist the oceanographer in verifying the spec-

tral characteristics of the sea and its wind dependence.

In view of the above results, it will now be advantageous to further examine

and evaluate the general expressions for scattering from a non-isotropic two-

dimensional composite surface from which these results were attained under,certain

simplifying assumptions. In future efforts means of incorporating the non-isotropic

sea spectrum proposed by oceanographers should be considered.
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VII. CONCLUSIONS

A. Introduction

The significant features of the various efforts are described below. The

experiment designs are essential to the specification of the system requirements of a

satellite oriented sea wind sensor. The theoretical efforts are essential to the proper

interpretation of existing scatterometric and radiometric data and the near-simultaneous

observations to be soon taken by the composite sensor at sub-orbital altitudes.

B. The Designs of the Radscat Experiments

Certain aspects of the experiment Designs were treated in this report. Other

details of the experiments may be found in reference [11]. It was specific.ally

emphasized that well-instrumented, well-coordinated experiments are required to

interpret the measurement by the composite microwave sensor (or a single sensor

for that matter). In this respect the incorporation of calibrated recording anemo-

meters into the sea truth documentation plan is shown to be essential. The anemo-

meter^) should be located near the observational cell for well coordinated measure-

ments. An instrument mode sequence which accomplishes this objective is indicated.

Other sea truth requirements and collection methods are also discussed.

Another approach to RADSCAT measurements over the sea emphasizes the

random geometrical characteristics of the sea surface. This viewpoint dictates that

for an average wind effect, microwave measurements should be performed over

distances much larger than the largest scale of randomness.

Intensive studies were also performed to delineate meteorological and oceano-

graphic situations which should form the bases for many of the experiments. It was

shown that the extra-tropical cyclone offers many types of measurement situations.
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C. Cloud and Rain Effects on the'Ap'parent Microwave Temperature

Computer based techniques based on meteorological models and radiation

transfer theory were developed to determine the cloud and rain.emission contributions

to the observed (apparent) temperature when looking downward over a quiet sea. At

heavy rainfall rates the effects of scattering were incorporated into the radiation
. . . - . . . . *

transfer model.1 It was shown that stratus, cumulus, overcasts, and rains all affect

significdnt'contributions to the observed temperature. Large sensitivities to clouds

and rains were observed for horizontally polarized emissions at large nadir angles

whereas relative insensitivity was observed for vertically polarized emissions at large

nadir angles.

Under heavy rainfall rates the effect of rain scattering on the radiation

transfer was observed. It was shown that scattering introduced a decrement in the

observed temperature. The sky temperature (looking upward) was observed to be

polarization dependent when scattering effects by heavy rai'ns is accounted for. The

separation is induced by multiple scattering between the rain and a surface having a

polarization dependent reflectivity.. This observation implies that the ratio of the

polarized emissions where looking from', above will be altered by the multiple

scattering between the rain and the surface.

The meaning of these results as they apply to the interpretations of surface

roughness and therefore windspeed, is that the radiometer loses contact with the

surface brightness temperature through cloud and/or rain contributions. The ability

to compensate the radiometric observations alone for cloud effects is problematic

since in general cloud covers (as well as rains) are highly non-homogeneous. It is

shown, However, that a potential exists in inferring atmospheric" attenuation from

(joint) observations by the composite sensor. This potential is based on numerical

analyses which indicated tHat the excess temperature exhibited good correlation with

attenuation. Extrapolation to (realistic) non-homogeneous cloud covers must await

experimental verificatibn. Nevertheless theoretical insight into the potential is

evident. ' i
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D. Microwave Emissions from the Sea

(381A scattering theory developed by Semyonov was extended to yield a

bistatic scattering theory for a two-scale rough surface. Expressions were derived

forpolarized emissivities using a non-coherent assumption. The theory assumed

Gaussian surface height distributions and Gaussian correlation functions for both

scales of roughness. The scattering characteristic was shown to be dependent on the

rms slope of the large undulations, m, the standard deviation of the small irregularities

a-,, and the correlation distance of the small irregularities^. The wind dependence
- • ' ' • • • ' . • • . , .

of the first two parameters was associated with m through slick sea measurements by
. r 07! • ' . " " ,

Cox and Munk and with cr, through the sea spectrum. The value of JZ/ could

be determined by the slope of the high frequency sea spectrum. The wind

dependence of sea spectrum is not yet available; however, it was shown that / ,.
»A •

could be reasonably chosen by fitting the sea spectrum BK to the assumed Gaussian

spectrum. It was then noted that the emission characteristic for horizontal polari-

zation derived from the bistatic cross section in the standard way, was a very

sensitive measure of cr . Thus, cr was established by fitting the emission

characteristics to measured characteristics for different wind speeds. The parameters

chosen in this way were then used to compute the vertically polarized emission

characteristic. Good agreement with measured characteristics and better agree-

ment than a simple surface model were demonstrated.
The same set of surface parameters at each wind speed was then used to

• '! •

compute the backscatter characteristics. The results except for level were shown to

agree reasonably over all angles with NRL backscatter data under similar wind

conditions. Comparison of these characteristics with a single parameter surface

model demonstrated better results.

These findings have proven that the validity of scattering theories is better

demonstrated when both the predicted backscatter and the emission characteristics

are compared with measurements. They have further shown that the measured emission

and scattering characteristics with the aid of a reasonable composite surface theory

may aid the oceanographer in identifying the wind dependence of the sea spectrum.
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E. Microwave Backscatter from the Sea

A backscatter theory for a two-scale rough surface was developed without

using a non-coherent assumption. The theory was based on a two-dimensional non-

isotropic surface. Expressions for horizontally and vertically polarized cross

sections were derived (they appear in reference [62]). To evaluate this new theory,

the general results were reduced under certain simplifying assumptions and adapted

for application to sea returns. In this simplified version the radar cross section was

also shown to depend on the rms slope of the large undulations, the standard devia-

tion of the small irregularities and the correlation distance of the small irregularities.

The primary difference between this theory and that used in the microwave emission

investigation is in the manner in which the large structures influence the scattering

coefficient associated with the small irregularities. In applying this model to the

sea the above parameters were chosen from the results of the microwave emission

investigation.

It was shown that this composite surface scattering theory demonstrated

reasonable agreement with measured backscatter characteristics reported by Daley

et al., over all angles with poorer agreement at small incident angles.

However, the accuracy of NRL data at these small angles is uncertain as indicated by

Daley, et al. Comparisons were made at L and X band. Better agreement was

observed at X band. However, this may be attributable to the fact that a.small

structure parameter was based on X band emission characteristics. The composite

surface scattering theory also demonstrated better agreement with measured

characteristics over all angles than does the simple geometries optics approach

(a single surface model). Although not shown it is clear that the composite surface

theory will show better agreement than any of the single parameter models known to

the authors. Finally, it was shown that this "coherent" approach to scattering from

composite surfaces yields a slightly larger cross section at large incident angles

(nominally several dB) than the "non-coherent" approach adapted in Section V.
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