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SECTION 1

INTRODUCTION

A Composite Two-Frequency Radiometer-Scatterometer (RADSCAT) has

been designed and developed to infer the earth-surface wind and sea state

through remote measurements and analysis of both the radar differential

scattering cross section and the microwave emission of the sea surface

using active and passive microwave sensors. Both the scatterometer and

the radiometer are complex sensors requiring extensive testing and evalua-

tion of the test data. Models of the earth's surface must also be developed

and analyzed. To date, at least eighty-six papers and reports on the subject

of the ocean surface have been compiled by Tomiyasu . This compilation

is not considered to be comprehensive nor all inclusive but serves to illus-

trate the wide variety of thought and areas to be analyzed in considering the

models of the ocean surface alone.

The Advanced Applications Flight Experiment (AAFE) RADSCAT was

designed to collect radiometer and scatterometer data over the ocean in a

quasi simultaneous manner, the following being the parameters of interest:

* Frequency

* Antenna Polarization

* Altitude (Antenna footprint)

* Incidence Angle

* Wind direction
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Such data, once acquired, would then be used by NASA and its contractors to

(1) serve as data in existing models of the ocean surface and (2) serve to

provide more information for the formulation of new or improved models of

the sea and wind relationships.

(2)As a specific example, the University of Kansas has earmarked the use

of RADSCAT for wind measurements and precipitation sensing in the area of

Meteorology. In Oceanography, wave forecasting and arctic ice movements

will be measured. In Hydrology, soil moisture content, snowfield mapping,

and freeze-thaw line detection are to be sensed and measured. The Univer-

sity of Kansas experiment objectives are three in number:

* Determine the accuracy of wind speed estimates from joint micro-

wave observations.

* Determine operational characteristics for a spacecraft-oriented

wind measuring system with regard to frequency, view angles and

polarization.

* Determine cloud and rain effects on radiometer data, scatterometer

data with respect to path attenuation, rainfall rate and areas, and

the effects of rain impact on the measured surface.

From the RADSCAT experiment and data collection a composite theory

of microwave emissions and backscatter is to be developed.

The RADSCAT instrument, Figure 1-1, is a composite radiometer and

scatterometer sharing a common antenna, RF front end and IF strip, but
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having two separate signal processors. The antenna is a mechanically

scanned, pencil beam, dual polarization device with high beam efficiency

and low side lobe levels. Sharing a common antenna allows RADSCAT to

perform radiometric and scatterometric measurements in sequence on the

same ground cell without the problem of the alignment of two separate

antennas. Mounting the sensitive RF receiver components on the rear of

the antenna and allowing only the high level IF signals to cross the moveable

interface eliminated the need for flexible waveguides or rotary joints at

points in the system (such as the receiver input) where those devices could

introduce variations in signal strength which would degrade the performance

of the instrument. A prime example of the possible degradation in perform-

ance is in the radiometer where any change in loss before the Dicke switch

introduces a direct error to the measured brightness temperature.

The receiver consists of three independent (two used currently) front

ends and downconverters. The microwave input is channeled to the proper

amplifier-downconverter chain by a triplexing device and the proper IF is

selected by a channel selection switch. Separate processors are used to

convert the IF signal to radiometer and scatterometer data outputs. A

digital controller (mini computer) controls all timing and operational

sequences as well as digitalizing and formating the data.

The radiometer subsystem of RADSCAT is a very sensitive radiometer

using two reference loads. The two reference loads are used to continuously
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calibrate and stabilize the radiometer by means of an AGC loop. The
/3\

radiometer is a form of the Dicke radiometer, i.e. , it alternately

switches a sensitive receiver between the antenna and a reference tempera-

ture (Dicke temperature). However, the RADSCAT reference temperature

consists of two reference terminations at different temperatures which are

alternately switched into the role of the Dicke temperature. This results in

an equivalent Dicke temperature equal to the average of the two reference

temperatures. With suitable signal processing a signal proportional to the

difference between these two reference temperatures is developed and used

to control the radiometer system gain. The long-term stability of the cali-

bration of this radiometer system is more than one order of magnitude better

than the usual Dicke radiometer, while reducing the sensitivity by only a

factor of two.
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SECTION 2

THE DUAL REFERENCE TEMPERATURE RADIOMETER

The Dual Reference Temperature Radiometer was originally proposed

(4)
by Weinreb using a digital computer for continuous calibration, as well as

gain and noise temperature monitoring by a real-time data analysis of the

radiometer output. Hach proposed a self-contained continuously cali-
f C\

brated radiometer needing no external computer. Both Hach and

Louapre have constructed such radiometers with good results.

By sequentially switching a low noise receiver between the antenna and

reference terminations and detecting the resulting receiver noise power by

means of a square law detector a waveform whose peak levels are propor-

tional to temperature results. Synchronously detecting these peak levels

derives a measure of the antenna brightness temperature as well as a mea-

sure of the system gain. Using a feedback loop, the measure of system gain

is applied to an AGC amplifier to maintain a constant system gain. Once the

gain of the system is made constant, the radiometer calibration does not

change, i .e., a continuously calibrated radiometer results.

Figure 2-1 is the radiometer subsystem block diagram showing the key

components and interfaces found in the RADSCAT instrument. Table 2-1 is

a list of symbols and abbreviations which are used in the general description

and analysis of the radiometer.
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Table 2-1. List of Symbols and Abbreviations

AGC Automatic Gain Control

BPF Bandpass Filter to define radiometer's bandwidth

Cl Reference termination switching circulator (AT switch)

C2 Dicke circulator (Dicke switch)

C7 Transmit Receive (T-R) circulator

C Power coupling coefficient between m and n polarization
in antenna subsystem, m polarization selected

CCR Continuously Calibrated Radiometer

DC Directional Coupler

f, , f 2 , f Frequencies of operation, or frequency channel

FET Field Effect Transistor

GATE Range gate and channel selection switch

GAGC AGC amPlifier Sain

IF Intermediate frequency amplifier

IRF Image Rejection Filter

L. . Loss of the i component

L Antenna loss with respect to m polarization

LIM Power limiter for TDA protection

OMT Orthogonal Mode Transducer'

P Polarization switch or circulator
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Table 2-1. List of Symbols and Abbreviations (Cont)

Power reflection coefficient at i reference plane or of i

(n)

LAe
(m)

T.

T

To

TDA

th

component

Antenna power reflection coefficient with respect to m
polarization

Root mean square

Temperature of reference termination No. 1

Temperature of reference termination No. 2

Effective temperature of reference termination No. 1 referred
to receiver input

Effective temperature of reference termination No. 2 referred
to receiver input

Antenna brightness temperature

thAntenna brightness temperature when m polarization is
selected

Antenna brightness temperature when n polarization is
selected

Effective antenna temperature'at input to receiver when m
polarization is selected

Physical temperature of antenna and feed system

Temperature of the i component

Physical temperature of polarization switch

Effective receiver noise temperature

Physical temperature of thermally controlled oven

Tunnel Diode Amplifier

th
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Table 2-1. List of Symbols and Abbreviations (Cont)

TPX Triplexer

VSWR Voltage Standing Wave Ratio

X Mixer

e Blanking period

^ Normalized radiometer output

T DATA period

f Complex reflection coefficient
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The timing diagrams are shown in Figures 2-2, 2-3, 2-4. While the

operation of the Dicke and AT switches are relatively straight forward and

apparent from Figure 2-2 (composite video) the synchronous detection func-

tion in the radiometer processor needs additional explanation.

The radiometer processor is a multifunction assembly whereby the

composite video signal from the RF subsystem is amplified, demodulated,

and applied to an integrate-and-dump filter. Its major components are:

amplifier circuitry, demodulation circuitry, integration-and-dump network.

During normal operation (or antenna modulation) the level set attenuator

shown in Figure 2-1 is used (in conjunction with AGC bias control) to adjust

for the proper signal level in the AGC circuit, and at the DATA integrator

output. Variable gain for AGC purposes is achieved with a field effect tran-

sistor (FET, used as a controllable resistance) as one of the feedback loop

elements of an operational amplifier. Following the AGC amplifier is a

fixed-gain operational amplifier where the composite signal is amplified in

preparation for demodulation. The inverter is used to derive a complemen-

tary signal for full-wave synchronous demodulation. Full-wave synchronous

demodulation is achieved through the use of dual FET switches, both for the

AGC signal and for the DATA signal.

The AGC demodulated signal current is applied to the AGC error ampli-

fier and summed with current from a zener regulated reference voltage

supply. The difference current is sensed by the amplifier which operates
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open loop (high gain) and in a low pass filter (integrator) mode to smooth the

demodulated signal fluctuations. The voltage developed by the error ampli-

fier is the control voltage for the variable gain element. The signal from

the DATA demodulator is applied to the integrate-and-dump filter, with a

dual FET switch performing the sample-hold-dump functions. ~

In the radiometer calibration mode the DATA channel produces a volt-

age proportional to the difference between the two reference load tempera-

tures. In the baseline mode, a composite video waveform is generated such

that after detection by the DATA demodulator a zero output voltage results.

This technique is used to detect any system offset or bias. An intentional

bias" is applied to the DATA integrator so that the baseline is offset from

zero for diagnostic purposes.

A detailed analysis of the three modes of operation of the radiometer

and processor will be covered in Section 5.
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SECTION 3

STATEMENT OF THE PROBLEM AND AN OUTLINE
OF THE SOLUTION

The need to express the system transfer function explicitly stems from

the desire of the ultimate user of the system to relate the output of the sys-

tem to the input parameters. From a pragmatic point of view, the system

is of no use unless it is predictable and accurate to within some predeter-

mined tolerance. Ideally, the output should be directly proportional to the

input with no errors. However, physical systems are not ideal and the

sources of error must therefore be identified. So it is with the dual refer-

ence temperature radiometer. The radiometer transfer function is a com-

bination of many subassembly transfer functions, each with its own sources

of error. Errors combine in random as well as predictable ways when the

subassemblies are integrated. To determine the system error, the individ-

ual transfer functions must be determined, combined, and analyzed.

As the case in point, the radiometer relies upon timing, reference

terminations, antenna, detection, and processing subassemblies to accom-

plish the task of measuring radiometric temperature. Because the RADSCAT

instrument was a dual-purpose, multi-frequency unit with a compact design,

the losses and VSWR's in the system were higher than if individual single

function instruments were constructed. Predicted instrument performance

estimates prior to construction did not take into account the higher losses

and VSWR's which were realized in the construction of the instrument.
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As a result, the radiometer as finally configured did not meet its pre-

dicted performance. The radiometer prediction model had been based upon
//?\

an analysis similar to Hach's . However, as noted before, the low loss-

low VSWR constraints of that analysis were violated. Therefore a more

general solution for the dual reference temperature radiometer transfer

function and the expressions for sensitivity, accuracy and resolution had to

be found.

The solutions to these problems, the topic of this thesis, will proceed

from a simple model of a noise measuring system to the more complex

model of a switching radiometer. A model of the RADSCAT radiometer will

be developed and a solution based upon the internal (continuous) calibration

will be found for the general case. Expressions for the resolution, accuracy

and sensitivity (Figure of Merit) will be developed. The quantities are to be

expressed as RMS estimates as a function of antenna brightness temperature.
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SECTION 4

GENERAL SOLUTION

4. 1 SIMPLE MODEL

For the analysis of a radiometer we shall assume a uniform spectral

noise power density from the noise sources across the bandwidth of interest

so that the measuring system's bandwidth is the bandwidth limiting element

in the measurement analysis.

(8 9^The available power ' ' from a network is

P = KTB (1)

where K is Boltzmann's constant, B is the effective bandwidth, and T is the

available temperature. For the purpose of simplifying the radiometer

analysis, "temperature" will also be used synonymously with "noise power"

though it is a sloppy but common notation. It should also be remembered

that a device may have an equivalent noise power, T, not directly related to

its physical temperature, i. e., active devices may have noise temperatures

of many thousands of degrees Kelvin yet be no warmer than room tempera-

ture. Figure 4-1 is a simple radiometer. A noise source, T , is connected
o

to the input of a sensitive receiver via a lossy two-port (a, T ). Using the
O Li

analysis from Appendix A, it is possible to express the power delivered, NT,

across reference plane 2 to the receiver.
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NOISE SOURCE
WITH

AVAIL. POWER Ts

1

1

1
1

TWO-PORT
WITH as

TEMP. T^

1

1
I

RECEIVER

G , T R , V

1 ' 1 " • "

I I N T
I

Figure 4-1. Simple Radiometer

In general,

NT = Mr) T0 + N T_ (1 - a )
O LJ O

With a matched output, (N = 1),

T = TS "S + TL

and if lossless, (a = 0),
b

T = T

(2)

(3)

(4)

(5)

As can be seen from equation 3, both output mismatch and device loss

affect the amount of available noise power transferred to the receiver and,

as will be shown later, are direct sources of error in radiometric measure-

ments .

Carrying the analysis through the receiver, the output of the radiometer

may be expressed as,
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OUT TR) (6)

where

K is Boltzmann constant
NT is defined by equation 2

B is the receiver bandwidth
G is the receiver gain
y is a constant embodying detector constants

T_ is the receiver noise temperature
K

The output of such a radiometer will be greatly influenced by any varia-

tions in G, B, y, T . Such problems led Dicke to develop the switchingK

radiometer.

4.2 SWITCHING RADIOMETER

Figure 4-2 is a generalized switching radiometer. Again applying the

analysis of Appendix A,

[Tg a - ag,

T>X = N2

(7)

(8)

STANDARD
NOISE SOURCE

« —

UNKNOWN
NOISE SOURCE

1
I
1
1
1

- rx
1

1

1

a S| T

S2
Ox TL

1
1
1
1

(N,T)S

RECEIVER
G.TR,7

Figure 4-2. Switching Radiometer
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The receiver is alternately switched between the known and unknown

sources and, with suitable processing, the receiver output is proportional to

the difference in the source temperatures.

The receiver output may be expressed as

'OUT = KGByC^TJg-^T)^

= .KGBy .[Nj (Tg^s + TL (1 - ag))

- N2 (Vx + TL (1 - Q
X» ] (9)

= KGBy [NI Tg ag - ̂  TX ^

+ T L ( N 1 - N 2 + a x N 2 -a s N 1 ) ] (10)

If N = N = N , then
i. u

IOUT = KGB'/N <TS as - TX «x + TL (^ - ag) ] (11)

and also if a - a = a 9 then
o A.

JOUT = KGBW ^^S^X1 (12)

Equation 12 illustrates the ideal case for the switching radiometer where

the output of the radiometer is proportional to the difference in the two

temperatures and independent of the receiver noise. The only constraint on

the receiver is that the short term stability be sufficiently good for the

duration of the switching period. However, the long term gain variations of

the receiver still must be considered when evaluating the radiometer accu-

racy. Also, as may be seen from equation 10, any difference in mismatches

N , N or losses at , a result in receiver noise contribution to the radio-
1 £ i d

meter output degrading the performance of the radiometer.
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If, however, a second reference temperature is used and the receiver

processes the inputs so that there are two outputs, I (proportional to
ALiO

the difference of the two reference temperatures) and lp.ArrA (proportional
U A J. A

to the difference between the unknown temperature and the average of the

reference temperatures, then the long term gain stability of the receiver

would no longer enter into the measurement.

Let

IT + T 1

-^V-52- - Tx j <13>

and I = KGByNa[T s l-TS 2] (14)

AGC

Solving (14) for G,

and using I.-,-, to control the receiver gain,

_ ITSI * TS2 - 2Tx1 'AGC
'DATA" 2 T - T <16a>

or

WTA ETSI
 + TS2

I ~ 2 TT TJAGC 2 [TS1 TS2]
( 6b)

Equations 16(a,b), then, are the basis for the ideal dual reference tempera-

. ture (or continuously calibrated) radiometer.

4.3 ANALYSIS OF THE DUAL REFERENCE TEMPERATURE (OR CON-
TINUOUSLY CALIBRATED) RADIOMETER

Equation 16a is a very idealized expression for the continuously
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calibrated radiometer (CCR). If we extend the non-ideal analysis of the

switching radiometer to include two temperature references we find

WA = I KGB^ [(Ni T>si + ^2 T)
S2 - 2 <N3 T)x ]

'AGC

Expanding (17) and (18)

IAGC

N2 <TS2 aS2 + TR

- 2 N3 (Tx <*x + TR (1 - ax)) ] (19)

- N2 <TS2 QS2 + TR (1 - aS2>) ^ (20)

and substituting (20) into (19) after solving for G we find

+ N2 ^82 aS2 + TR (1 - °'S2))

- N3 (Tx ax + TR (1 - ax)) ]

- [2 [N1 (TS1 "SI + TR & ~ aSl»

- N2 ^TS2 aS2 + TR & - aS2» "

As can be seen from equation 21, the gain, bandwidth, and detector con-

stants common to both the Ip . rpA and IACC expressions have again been

eliminated from the expression for the radiometer output, In4T,A. However,
LJ A i A
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a portion of the receiver noise temperature, T_, has been introduced into
K

the output by the terms (1 - a ), (1 - a ), and (1 - a ). The magnitude
p J. O^J -A

of these terms, as will be shown later in Section 4.10, may greatly influence

the contribution of receiver noise fluctuations into the radiometer output.

Using the RADSCAT radiometer block diagram for the model of the con-

tinuously calibrated radiometer, an exact analysis of the CCR will be under-

taken. Direct noise injection into the receiver, via the TWTA, along with

the cross polarization input due to the antenna system will be accounted for.

Figure 4-3 is a simplified radiometer system block diagram which will be

used to analyze the CCR. It divides the CCR into functional groups with

practical interfaces to facilitate the analysis.

4.4 SOURCES OF SYSTEM DEGRADATION

Referring to Figure 4-3, sources of system degradation due to noise,

VSWR, or loss will be identified so that these sources may be explicitly

identified in the analysis of the CCR.

Starting with the antenna subassembly, the antenna pattern, VSWR,

losses and cross polarization components must be considered. The polari-

zation selection switch, P, has VSWR, loss, and finite isolation which must

be taken into account. TWTA noise enters into the receiver via C7, the

T-R circulator. The reference temperature terminations T1, T , and AT
1 £

switch, Cl, with their composite VSWR, loss, and isolation introduce poten-

tial errors into the reference arm of the radiometer. The Dicke switch, C2,

and the protection limiter, LIM, introduce loss and VSWR into the signal
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path. Also, these terms are different for the reference and measurement

arms of the radiometer depending upon the positions of Cl, C2. The re-

ceiver and processor (i. e., TDA through DATA integrator) introduce noise

into the measurements. Other sources of performance degradation include

timing variations, short-term thermal variations in lossy elements, and

power supply variations coupled into the reference voltages.

4.5 DEFINITION OF REFERENCE PLANES

There are seven reference (or interface) planes of interest in the sim-

plified radiometer system block diagram, shown in Figure 4-3. While all

seven will not be explicitly treated in the analysis, they provide a convenient

way to break the system into functional groupings of components. Reference

plane 1 is the interface of reference temperature 1 and the associated port

of the AT switch, Cl. Reference plane 2 is similarly associated with ref-

erence temperature 2. Reference plane 3 is the interface between the

antenna subassembly and the receiver input. Reference plane 4 is defined

as the input to the receiver. Reference plane 5 is the interface between the

TWTA and the T-R circulator, C7. Not shown in Figure 4-3 are Reference

plane 6, the local oscillator input interface, and reference plane 7, the IF

output to the processing electronics.

4.6 SUBASSEMBLY TRANSFER FUNCTIONS

The analysis will proceed by generating individual subassembly transfer

functions starting first with the antenna. Consider first the following defi-

nitions. Let R. be the composite power reflection coefficient at the i
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reference plane, L. the loss (0 <; L. <; 1) and T., the temperature of the i

component. Starting with the model in Figure 4-4, excerpted from Figure

4-3, the antenna subassembly transfer-function shall be generated.

T is the maximum available power, with the m polarization
OQ.

Jw\ \

selected, at reference plane 3. T consists of four main sources ofoa

power:

T . - The desired polarization signal
A

T. - The undesired polarization signal

T_ - The ambient temperature of the feed and OMT.

Tp - The ambient temperature of the polarization switch.

Combining these sources of power with respect to the network of Fig-

ure 4-4 gives the result

T ( m ) = T d
( m ) [L (1-R )L n-R )

3a A L mm v mm' P v m

+ L (1 -R )C ( 1 - R ) L 2 R ]mm v mm mn v n P mj

+ T . ( n ) [ L (1 - R ) C L^ (1 - R )
A nn nn mn P m

• + L (1 - R ) L 2 (1 - R ) R ]
nn v nn' P v n7 mj

+ T^ [(1 - L ) (1 -R ) L_F uv mm' m' P

+ (1 - L ) (1 -R ) L_.2.R ] •nn n P mj

+ Tp (1 - Lp) (22)
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*Note: The OMT has a finite isolation between polarization modes. This
coupled with the inherent antenna cross-polarization component will be
treated as Cmn (a pure ratio) where m is the desired polarization and n is
the orthogonal polarization. Similarly, the OMT loss and antenna feed loss
will be considered one loss with respect to each polarization.

Figure 4-4. Antenna Subassembly Block Diagram

Equation 22 ignores second order reflections and losses but does include

for the sake of symmetry the cross-coupling terms though in practice they

should be small. Equation 22 also defines a generator with a maximum

available power due to the aforementioned sources and, in the subsequent

developement of the analysis, will be used to complete the overall transfer

function of the CCR.

The model in Figure 4-5 represents the switching subassembly contain-

ing reference planes 1, 2, 3, 4, 5.
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TWTA LOSSY ELEMENTS MAINTAINED AT

T AMBIENT TEMPERATURE

Figure 4-5. Switching Subassembly

In a manner similar to that used to generate T , T. is related
o3, 4 3.

to Tn ,, T,, TOJ, T,., as follows:Id 2d 3d 5d

With C2 - ANT and Cl -» TI

(A -> B indicates energy passes from B to A)

and T = m T , m = (1 - R ) see Appendix A
OQ ocl o

= T

3a - R3>

and (1 - RI)

T2d =
 T2 t1 - V

Then T (m) = (m)
4a 3d l-R (1-R

LMJ

Tld [ LClW LM
(cont)
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T2d tLCl Rl (1-RC1C2> RC2

LTPX ^TPX^ ̂ ^ LLIM

To R3LC7+R3LC7 + 1> (1-LC7> ^TPX* L
TPX

LC2 RC2 <R2R1LC1 + R1LC1+1) (1-LC1> (1-RC1C2> LC2

(RC 1 C2 RC2 LC2 + RC2 LC2 + X> <™CJ ^wJ LLIM

RLIM

and for C2 -.ANT, Cl - T0
Li

= T3d [LC7 LTPX (1-R
TPX) LC2 <1-RC2> LLIM

Tld [LC1 R2 (1-RC1C2) LC2 RC2 LLM

T2d [LC1 (1-RC1C2) LC2 RC2 LLM

TTWTA W~*j LC7 R3 LTPX (1-RTPx) LC2

To R3 LC7 + R3 LC7

LTPX + (1 + RTPX

LC2RC2 (R1R2LC12"R2LC1+1) ^CJ (1-RC1C2) L
C2

<RC1C2 RC2 LC2 + RC2 LC2 + X> <1'LC2> ^LIM* LLIM

RLIM L ^ - L (24)
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for C2 -Cl, Cl-T

= Tld CLC1 LC2 ' RLIM>

2d Rl LC2

T3d [LC7 LTPX <RC1C2>

TWTA R3 LTPX

+ T R

RTPX LTPX>

R

TPX

LC2 RC1C2

(1-RC1C2>LC2

+ RC1C2

L-L )

LC2 + 1) (1-LC2) (1-RLIM) LLm

(25)

and finally, with C2 - Cl, Cl -

Cl 2 C1C2'

T2d CLCI LC2 <1-Rcic2> LLM

T3d [LC7 LTPX C2 C1C2

LLIM (I-RLIM) 3

R3 LTPX

(cont)
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To

LTPX + (1+RTPXLTPX> (1-LTPX) (1-RC2> LC2 RC1C2

R2 LC1 + X> (1-LC1> (1-RC1C2)
 LC2

<RC1C2 RC2 LC2 + RC1C2 L
C2 + X> ̂ ^ ^LIM* LLIM

(26)
J-JJ.1V.L J-jllVl iJjJ-VX I

Note:

R exists but is inaccessible in the system. Its magnitude and phase

are subject to change with the state of Cl and C2. Similarly, (1-R ) is not
^ I

treated when considering T. , since it is treated as (1-R0). Also, RT -... and
JQ o LilM.

R are subject to change with the state of Cl and C2. These are second
C^2

order effects. For justification of the terms involving T , see Appendix B.

The receiver has the following parameters:

B - Effective noise bandwidth

G - AGC amplifier gain
Avjl--

G- G - Receiver power gain
ACj\_*

K - Boltzmann's constant

y - Detection constant

T - Effective receiver noise temperature referred to
reference plane 4

Figure 4-6 represents a model of the composite CCR system. Recall-

ing the following terms,
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(m)
Ae

le

2e

- Effective received antenna noise temperature, when the m
polarization is selected, incident on reference plane 4,

- Effective reference temperature incident on reference
plane 4 when reference temperature No. 1 is selected,

- Effective reference temperature incident on reference
plane 4 when reference temperature No. 2 is selected,

th

then,

Ae
= T

(m)

T = Tle 4a

T2e = T4a

4a

(m)

(m)

), C2-Ant, Cl

(1-R4), C2 -Gland Cl

)' C2 -. Cl and Cl

(27)

(28)

(29)

ANTENNA

REFERENCE
TEMP. 1

SWITCHING
SUB ASSEMBLY

T3d(m) — + --

(m)
4a

RECEIVER
TR

' 4d
(m)

REFERENCE
TEMP. 2

Figure 4-6. Composite CCR Model
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By using equations 27, 28, 29 and the timing diagrams for the

operational modes, the various CCR outputs will now be generated as a

function of T. (m), T, , and T0 .Ae le 2e

4.7 CCR OUTPUTS

Referring to Figures 2-2, 2-3 and 2-4 in Section 2, expressions will be

found for the CCR outputs in the measurement mode, calibration mode, and

baseline mode. Expressions for G , V , T , and t (the
ACiO IJAJ.A AS ^

normalized radiometer output) in terms of the constants (reference tempera-

tures and other non-varying system constants) will also be derived.

Square Law Output

R

'T + T v~"'\|2KT + T/2 s t < (2K+1) T
R AG

(TR + Tle ) /(2K+1) T £ t < (2K+1) T + T/2

T + T
R Ae

J(2K+1) T + T/2 ^ t< (2K>2) T

(30)
'K = 0, 1, 2 ...

Solving for GAGC

IAGC = - KBGGAGC, /-(T + Tn ) \ 2KT + est< 2KT + T/2v R 2e; 1

(T + T ) /• (2K+1) T + e < t < (2K+

1 . 1
(2K+l)T-HT/2

(31)
Elsewhere

K = 0, 1, 2 . . .
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For AGC steady state solution

NT

't /
N, the number of operating periods > 2

Where <V > and I are assumed negative and <V >is the steady
AH.

state AGC voltage

Nr

o

For the steady state condition to occur in the AGC loop, the time average of

(denoted < I „> must equal-I . Thus,
Ai-iC, Axv

'AR^'AGC*' °

and

(Tle ' T2e> (35)

G -'AR2T
A~~ KBGy (T, - T0 ) (r/2 - e) v ;

From (34), (35) we may compute G

Letting a = ,£ _ ' (37)

o

GAGC = KBGy (T^ - T ) (38)

for all modes of radiometer operation.
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Computing Baseline Calibration

< T R + T 2e>

<TR + Tle>

2Kr s t < (2K+1) r

(2K+1) r * t < (2K+2) T

(39)

K = 0, 1, 2 . . .

1 Data = - KBGG AGCy 2Kr + e ^ t < 2KT + r/2
(40)

2Kr + T/2 + .6 ^ t < (2K+1) T

(2K+l)r+T/2

(2K:+l)T+T/2 + e ^ t < (2K+2)r

K = 0, 1, 2 ...

DATA

NT

-t I DATA dt

DATA

NT

•t' / (0) + IDB) dt

-2N(T/2-c)I.

DATA C
PR. (IDR negative)

D

(41)

The result is a baseline voltage produced by adding and subtracting identical

temperatures.
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v _-2N (T/2 - e)
B" CD

Computing Normal Calibration

(42)

AGC' | (TR+T2e)

-(TR+T2e>

+(TR+Tle) ( (2K+1) r + e <; t< (2K+1) T + T/2

(2K+2)

(43)

'DATA = - AGC

(2K+l)r

K = 0, 1, 2 ...

)] 2Kr st< (2K+1) r

(TR + Tle)

Mr

CAL (IDATA + W dt

0

M, the number of calibration periods, > 2

MT
V = — V -i-

CAL N B C_ WTA dt

V
M v^ ~" ~~ V

CAL N B
D

using (36) and (45)

MV = — v
CAL N B

2MT

(44)

(45)

(46)
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Computation of the Measurement Mode

2KT £t<2KT + T/2

2KT + T/2 £t< (2K+1) T

(2K+1)T st< (2K+l)r + T/2

WA = -KSCGAGCy (T +T \( R 2e;

(2K+l)T + T/2 <; t< (2K+2) ^

(30)
K = 0, 1, 2 ...

2KT+6 <; t < 2KT + T/2

st<(2K+l)r

(2K+1) r + T/2 + e st< (2K+2) T

(47)
K = 0, 1, 2 ...

for polarization choice m

V = V
DATA B

NT

~c~ J dt

N, the number of operational periods, > 2

using (47)
KBGG y

V = V + - N (T +T - 2T (m') (T/2 - e)
DATA B 2C^ { le 2e Ae MT/ '

and using (36)

DATA
cm) NT 'AR (Tle + T2e

- - (48)
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Solving (46) for I and substituting it into (48)

v
DATA B

1
CAL Bj

I~T + T - 2T1 le 2e A^
2 (T, - T_ )

lrr\\l

(49)

Rearranging (49) to solve for T or £ (normalized radiometer output)
AC

Ae

2 |~V - V 1
[T +T ] . DATA B_J

Lile i2e j ,N „ „ , L le 12eJ

' r — v - V ILM CAL B J

(50a)

or,

(T +T( le 2e (VDATA " VB)

2 <T le
(50b)

VCAL

When V = V , the baseline represent^ the equivalent Dicke ref-
DATA B i- • -

\ L l e ~ - L 2 e \erence temperature, —

4.8 MINIMUM DETECTABLE SIGNAL

The general expression for the RMS fluctuations of a simple radiom-

eter using a simple integrator (one time constant, T. = RC), bandwidth B,

and square law detector is given by

T
AT = (51)

/2Br.i

where T is the sum of the unknown temperature TX, at the input to the

radiometer and the effective receiver temperature, T .
K
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Due to the switching nature of the CCR,
\ ;

2Kr £ t < 2Kf + T/2

T =

TR>
2Kr + T/2 ^ t < (2K + 1)

(2K+ 1) (2K + 1 ) T + T / 2

+ TR) I (2K + 1) T + T/2 <: t < (2K + 2) T (52)

The following, then, are expressions for the fluctuations of the radiome-

ter depending on the position of the Dicke and AT switches.

Reference 1 selected: ATj =

Reference 2 selected: AT =

Antenna selected:

Tle + TR

V/BT./2

T + T2e R

V/BT./2

Ae

/BT./2

(53)

(54)

(55)

Both the AGC and DATA outputs are formed from different linear com-

binations of these four uncorrelated temperature measurements during a

measurement period. The RMS value of the fluctuation of the combination

(12)
is calculated by the quadratic addition of the RMS values of the fluctua-

_»

tions of the respective temperatures. The AGC channel has a T. = T . „,, and
1 ALil_*

the DATA channel has a T. = T-.- .. From the expression for l. (31) it

is evident that IAr,n is directly proportional to (T. - T ). Thus
-LG ^6
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AIAGC (T -T_ )
- - = A v le 2e

AGC T, - T0le 2e
I 2 2
I (T + T \ + (T + T \

- V le R 2e R
~ (56)

(Tle - T2e> ^BTAGC/2

Note that (56) does not include contributions from the antenna, an im-

provement over Hach's radiometer obtained by adjusting Hach's parame

ter, a, the phasing between the Dicke and AT switch. Adjusting for zero

phase delay and blanking the switching transients after detection resulted in

this improvement.

Similarly,

Two methods will be used to compute the fluctuation of the radiometer

output.

Direct Method

Consider the ratio of VDATA/VAGC or IDATA/IAGC, Note that these

ratios are equivalent to £, the normalized radiometer output (see equations

16b, 50b). Assuming the fluctuations in (56) and (57) to be small compared

to 1, and that IDATA and IACC are uncorrelated, then the normalized

fluctuation is

2

-^ = A (L .- ./I. — 1 = (L. ... /I. -^//A-IDAT^ +^IAGC

2e^
(58)
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Substituting. (31), (47), (56) and (57) into (58), and multiplying by (Tn - T0 )
16 ^6

(normalizing factor) to compute the actual fluctuation AT

'T * T '
'T«_ /o

"DATA'

(59)

combining terms,

[<Tle + TR>:

1 2BT,,

and then rearranging them,

(T

2BT

AGC Method

The second method of expressing the minimum detectable signal is to

let the AGC current, !.„_,, be held to a constant value I and let all fluctua-
AGC o

tions in A (T, - T0 ) result in a A G , common to both the DATA and AGCv le 2e o'

channels.

Hence,
AG A (T. - T0 )
_ o v le 2e'
— — = — — - —
Go (Tle " T2e>

.-oAGC
-

XAGC
(61)

The gain fluctuation now results in an additional data fluctuation such

that the total RMS fluctuation in (47) is

(62)
WTA

Kf ,
,G°)

A (T, + T0 - 2T . ^m^v le 2e Ae '

(Tn + T0 - 2T . (m')
le 2e Ae

2

Since the reference temperature fluctuations act upon the data path after

being smoothed by the AGC loop, T. becomes for (61), the sum of T.n n and
1 Avjrl^

DATA1
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T l - = TDATA + TAGC (63)

Hence, from (56), (61) and (63)

<T2e

Substituting (57) and (64) into (62) directly yields an expression of

radiometer output fluctuation.

"DATA J <TI£ - T,,/ B(rAGC + rDATA)/2 vle + T2e - 2 TAe
(m))2 BrDATA/2

Rearranging the terms and solving for AT,
If . , 2-i r i

/ 1 ' T l e + T 2e - 2 T Ae > 2 2 |»,
/ 1 + — — — (T + T ) + IT + T ) + 2 (T ( ' + T '
/L l + ̂ A^/Tn..,. _ __ ,2 J Lv le R' 2e R J Ae R

/(._.(bt))

__ T \" J L it iV «.i- l\ J J1V i» \" ^ /

'A 1o ~ LI>O'

2BTDATA

Again, equation 66 shows the improvement over Hach . Equations 60 and

66 show that not only does the DATA integration time constant affect the

minimum detectable signal but also the ratio r A ^ ^ / T T ^ A ^ A - Note also ^at

U A IA

in the limit as T .rr approaches zero for the direct case, AT has an un-

bounded upper limit. This may be explained by remembering that it was

arbitrarily assumed that !-..„,. and IArir, were uncorrelated. This is not
JJ A X A A (jr(_,

true for small values of r inr,/T *.„.. However, for the AGC method, AT
JJA i. A

is bounded. In the limit, then, as T .,-,^/T r ^ . r p A becomes very large, AT,
Av_iC-

approaches that of the Dicke radiometer :

4.9 SENSITIVITY

From the results of Section 4. 8 it is apparent that AT \/BT is a
UA1. A
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good measure of the sensitivity (i. e., Figure of Merit) of radiometers. It

allows comparison of different radiometers without correcting for their
11 r*\

different bandwidths and data integration time constants. Tomiyasu has
TJ

proposed a similar Figure of Merit, rrr:

where B = Bandwidth

NF = Noise Figure

related to AT by the relationship

AT \/TB = K(NF) T

or

KT 2

5TF ' 2
iT

which is useful when working with measured performance data, but less

convenient to use for analysis since AT embodies both B and NF.

Figure 4-7 is a plot of the expression AT v Br_ . for both the Direct
UA 1. A

and the AGC methods of computing sensitivity. Either method, as can be

seen from this figure, gives a good estimate of the sensitivity of the CCR

for T . / T . > 1 and the bounded behavior of the AGC method is also

clearly illustrated for 0 ^ T ' =s - - - . By choosing T.~_,/T~ . „ .
Ae & - Aljl^ LJ A 1 A

T + T
& 100 for 0 s T s - - - one obtains the most symmetrical curve

and a minimum variation in sensitivity. However, one must exercise caution

using the sensitivity expression for radiometer design. It would first appear

that reducing T^A . to zero would yield a perfect system. However, AT
LJ A i. A

4-27



10

$ ,0<
Q

m
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CCR PARAMETERS T_ IOOO°Kr\ *
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le

T 300°K

'AGC
TDATA '

(AGC METHOD)
SOLID LINE

I

DATA

(DIRECT METHOD)

BROKEN LINE

100 200 300 400 500 600

(m)

Figure 4-7. CCR Sensitivity vs. Antenna Temperature

4-28



embodies T . . as well. Therefore, for design purposes equation 66, ex-
L) A A A

pressing the minimum detectable signal (MDS), is a better design tool. One

should choose r. rn/T~ ._. for the desired MDS and choose r^.™ A com-
AVJV_/ JJA J. A JJA J. A

patible with desired instrument response time.

4.10 ACCURACY

The expressions for the minimum detectable signal, sensitivity, and

VDATA (or IDATA) contain ^e^' Tle' T2e* These terms> expressed by

equations 27, 28, and 29 respectively, are very complex and tedious to

evaluate. What is immediately apparent when analyzing the expressions' for

T. (equations 23-26) are the terms involving the two reference tempera-

tures, the antenna, the TWTA, and the contribution of ambient temperatures

(17)by component losses. Hach assumed a low loss, low VSWR system and

simplified these expressions. However, he noted that for higher insertion

losses, corrections would become indispensable for accurate measurements.

His correction dealt only with the loss factor in the antenna system and the

added noise contributed by it.

The following analysis will assess the magnitude of error or bias intro-

duced by the losses and VSWR's. An expression representative of MDS,

sensitivity and V will be analyzed. Equation 50b, repeated here for
JJA J. A

convenience, will be used for the analysis.

V - V T + T - 2 T_ DATA B _ Lle I2e Ae__
£ ~ N ~ 2 (T - T ) ( '

T* V O A T ~ VT, Ule 2e'M CAL B
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Only one approximation will be made. It will be assumed that RI and

R are of equal magnitude, R, and that they are stable both long and short

term.

Substituting equations 23 through 29 into 50b, the following expressions

are generated:

(Tle+T2e) = <T1+T2> ^ [ <1+LC1R> LC1 LC2 <1-RC1C2> LLIM

2T3a (1-R3) [LC7 LTPX C2 LIM

(T le

2T + R3LC7

RTPX LTPX> (1-LTPX>

TPX

RL

LC2 RC1C2

C2C1

(RC1C2 RC2 LC2 + RC1C2 LC2

RLM LLM> <1-LL1M>

2 "" 2
2TTWTA LC7 (1~R5)R3LTPX(1~RTPX)LC2 (1~RC2)RC1C2

LIM (68)

' LC1R) LC1 (1'R) LC2

d-RLM) (69)

TPX LIM

(cont)
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(1-RC1C2)

2
LC2 RC2 LLM (1~RLIM}

TTWTA [ (1-R5> LC7 R3 LTPX

LC2 ^-RC2) LLM <1-

2To ! R 3 L C 7 2 +R3LC7+1) ^CT* ^TPX* L
TPX

(1 + RTPX

o o )
T "D /~D T _L "DT -J- 1 \ /I T \ / 1 " D \ ( T
LC2RC2 ^ LC1 RLC1 1} V'^cJ (1"RC1C2)J LC2

/T? T> T a."D T 4- 1\ /I T \I /I "D \T(RC1C2 RC2 LC2 RC2 LC2 1} (1 LC2} (1 RLIM) LLIM

RLM LLIM> (I- (70)

Combining (68) and (70),

Tle + T2e - ^Ae = <T1+T2> ^^ <1+RLC1> LC1

LC2 LLIM

LLM (1-RLIM) <1-LC2 RC1C2>

- 2TTWTA (1-R5) LC7 R3 LTPX

LC2 V^cd LLIM

(cont)
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<1+RTPX LTPX> <1-

LC2 (1 ' LC2 RC1C2)

<RC1C2 RC2 LC2 + RC1C2 LC2

(1-LLIM>

(71)

Note that in the final expression for £ (not explicitly written,

t = — ̂  — — ) the term (1 - R.) does not appear. Note also that terms of theEqn 6" 4

form, (1 - LR), (1 - L), (1 - R), appear in equations 69 and 71. Express-

ing £ in the following manner should clarify this point.

4 = [*! <T! - T2) (i - LC2 RC2) + (K2T3a + KS TTWTA) •

^- LC2RC1C2> + K4 To> ^K5(T1 - T2> ̂  ' LC1 R^ (?2)

where the K. are combined reflection and loss constants found in equations

69 and 71.

The importance of equation 72 becomes apparent when compared with

equation 21. In actual practice, while the reflection coefficient at the input

of the receiver (if constant) does not enter into consideration, all losses be-

fore the receiver input do enter into consideration, and, if the reflection

coefficients are not small, many terms exist which are significant and can-

not be dropped. In all cases, however, a scale factor (1 - L . R), related
\~f A.
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to the temperature references, appears in equation 50b and must always be

considered.

Figure 4-8 illustrates the magnitude of the antenna temperature correc-

tion in degrees Kelvin which must be added (subtracted) to (from) the anten-

na temperature. (R, L, LR ) are expressed in dB.

13
ua:

+80

+70

+60

+50

+40

+20

+10

0

10

- 20

- 30

: -40
-400

(L.R.LR)
0,1 dB

-300 -200 -100

T L .T A ( °K)

+100

Figure 4-8. Radiometric Temperature Correction Factors
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SECTION 5

APPLICATION OF THE GENERAL SOLUTION TO THE
AAFE RADSCAT

The predicted and experimental values of minimum detectable signal

(MDS), sensitivity, and accuracy of the AAFE RADSCAT were computed

using the foregoing analysis. Key system parameters used in the analysis

are listed in Table 5-1. The results are summarized in Table 5-2. Figures

5-1, 5-2 and 5-3 are plots of the data in Table 5-2.

Table 5-1. RADSCAT Radiometer System Parameters
*

TAGC = 2, 10

DATA

TD = 1500°K
R

T = 400°K

T = 311°K
2e

TTWTA = 38°°K

T = 311°K
o

TA
(n) • = 13°K

TF = 298°K

T = 298°K

B " 200 MHz

*
= 0.10 seconds, 0.5 seconds

= °-05 seconds

N = 128

M ' = 100
T = 0.001 seconds

*The system was modified during August 1972 an^T
ACC

 was changed from
0.1 sec to 0.5 sec.
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Figure 5-1. Minimum Detectable Signal - AAFE RADSCAT
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Figure 5-2. Sensitivity - AAFE RADSCAT
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- AAFE RADSCAT
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5.1 RADSCAT TESTS

Data on the RADSCAT instrument was collected under the direction of

NASA Langley Research Center at Table Mountain, California. The antenna

viewed clear sky and a uniform temperature microwave absorber in sequence.

After the tests were completed, it was discovered that reference termination

No. i (426 K) was defective and was in excess of its rated temperature. It

was also changing temperature since its thermostat was broken. The data

presented, in Figure 5-1, however, shows that the resolution of the instru-

ment does follow the theoretical trend with antenna temperature variation.

The normalized radiometer output (£) is not computed for the Table Mountain

data due to the fact that T , for this series of tests, is in question and the
le

accuracy of the tests is already questionable due to the variations in sky

temperature and in the microwave absorber.

The tests at General Electric Space Division were conducted in a

laboratory environment using commercial radiometer loads at 77 K and

' 313 K, and an uncontrolled ambient temperature (301 K) waveguide termina-

tion. Several tests were conducted at each temperature and at least 60 data

points were averaged over 60 seconds for each datum entered in Table 5-2.

The fact that the 301 K load was not controlled closely in temperature may

be seen by comparing AT/0/,,o_.. with AT o in Figure 5-1, and observing
(oUl K) (oio &.)

that the uncontrolled load has a larger variation in temperature resolution.

This same effect is felt to have occurred with the microwave absorber during

the Table Mountain tests.
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Finally, an experimental measurement of £, shown in Figure 5-3, was

made and compared favorably with the theory. This indicated that the instru-

ment is accurate when all loss and VSWR corrections are accounted for,

using the expressions developed in this thesis.
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SECTION 6

SUMMARY

A model was developed for the switching radiometer utilizing a continuous

method of calibration. Sources of system degradation were identified and

include losses and VSWR's in front of the receiver input. After computing

the three modes of operation (Baseline Calibration, Normal Calibration, and

Measurement Mode), expressions were developed for £, the normalized

radiometer output; AT, the minimum detectable signal (normalized RMS

temperature fluctuation); AT \J&T^. . , sensitivity (Figure of Merit); and
JJA J. A

accuracy (correction factors).

Specifically:

• The output of the radiometer is linear with input temperature and

may be expressed in terms of the sum and the difference between

the internal reference temperatures.

• The minimum detectable signal is a complex function of the system

parameters as well as the input temperature, and for the RADSCAT

timing sequence (with blanking) shows an improvement over pre-

viously published designs.

• The expression for the sensitivity of radiometers allows for the

comparison of different radiometers without explicit correction for

their different bandwidths and integration time constants as well as

their physical circuit implementation.

6-1



• The accuracy of the CCR is influenced directly by all losses and

reflection coefficients before the receiver input. Some corrections

are negligible for low loss-low VSWR systems. However, in all

cases, a correction factor exists which is a function of the com-

ponents in the reference temperature portion of the radiometer.

• A practical application of the analysis developed herein was made

using the AAFE RADSCAT.

The results compared favorably with the predicted performance of the

instrument using the expressions developed herein. £ correlated extremely

well. AT was several tenths of a degree Kelvin higher than predicted when

measured in a laboratory. AT was also higher when measured during tests

at Table Mountain, California. These differences are attributed to reference

temperature errors both internal and external to the instrument.
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APPENDIX A

NETWORK ANALYSIS FOR NOISE MEASUREMENT

Numerous references on Noise Measurement are available but the follow-
/1 Q\

ing is a summary of a National Bureau of Standards paper applicable to

radiometry.

Consider a general network (Figure A-l) with the following parameters:

Fq> pT , F.. , TV Reflection coefficients

S The two-pbrt scattering matrix

ZM' ^N The characteristic line impedance

"^Id" ^2rl ^e* P°wer delivered across reference

planes 1 and 2 respectively

1, 2 The reference planes

Z , Z The generator and load impedances

respectively

(19)It may be shown that the Scattering Matrix and the reflection coef-

ficients are related at the reference planes by

Similarly,

S S

2 = 22 l-S
s , 21 G (A2)

n
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Figure A-l. General Network

Miller^ 'defines four derived expressions of interest to the analysis.

The first two are the mismatch factors M and N associated with the interface

planes 1 and 2 respectively:

M =

N =

Next is the efficiency,

Z M / Z N

ld

(A3)

(A4)

(A 5)
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and fourth is a, a ratio of the available power at the output to the power at

the input:

a = !L* _ Mg _ <VZN) I s2il 2 fl--FG|2>- (A6)

01 = Pi* " N " a- | r 2 | 2 ) |i-sn r G | 2

where P,, = MP,Id la .

POJ = NP02d 2a

Of prime importance is the realization that both a and r\ measure the

lossiness of the two-port S and, if S is lossiness, then

r\ = 1 = or (A7)

Also a will be a direc t measure of the noise contribution of the two-port

to the output. Please note that, in general, a is independent of FL> an(i Tjis

independent of Fr- Therefore, these expressions lend themselves to a

method of writing convenient expressions for use in radiometer noise power

analysis.
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APPENDIX B

ANALYSIS OF NOISE GENERATION IN CASCADED MISMATCHED
TWO-PORT NETWORKS

The noise generated in a cascade of unmatched two-ports will be de-

velepod first from a simple model neglecting secondary reflections. After-

wards, the first order secondary reflections will be considered. For a

WA)more exact analysis see Mukaihata ' .

Consider Figure B-l, the model of a two-port, with a composite mis-

matched R. , R on each port and terminated on the input by a zero degree

Kelvin Z load, and on the output by a Z load. The effective radiometric

temperature at the output is computed as follows:

For simplicity of calculation, C s L s 1 where L = 1 indicates no loss

(100 % transmission) and L = 0 indicates infinite loss (0% transmission).

Then,

T = 0° + (1-L) T (1-R ,)out v ' o out'

Considering next the case of the first order reflections on the input,

T = 0° + (1-L) T (R. ) + (1-L) T (1-R )out v ' o in o out

= (1-L) (1 + R. ) (1-R .) Tin out o

then,

Tout = (1-L) (1 + R. ) (1 - R + R 2 - R t
3 *v ' v in' v out out out

For moderate VSWR, i.e. , VSWR S2. 0:1, R <:0. 11,

R2 = 0. 012, and R2 »R

T . = (1-L) (1 + R. ) (1 - R .) Tout v ' v in' v out o
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Figure B-l. Two-Port Model

For the purposes of the analysis, the effective radiometric temperature

of a two-port is

T = (1-L) (1 + R. ) (1 - R .) Tv in' v out' o

Extending this to a cascade of unmatched two-ports, with no power input

to the cascade, and with different temperatures for each loss,
n

T = yout 4* T.

out

R
2

L2

Vn
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Simplifying,

T .out

• • I (i-R ) Ln n

and for the same temperature, T
o,

(1+RnV
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