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ABSTRACT

Standing or traveling waves which vary algebraically with the axial
distance in uniform ducts with sheared mean velocity profiles are inves-
tigated. The results show that such waves are not possible for ducts

with uniform cross sections and fully developed mean flows.
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I. INTRODUCTION

Recently, the problem of sound propamation through ducts with mean
flow has received considerable attention, as evidenced by the large number
of contributions (see Refs. 1, 2, and 3). To predict the reduction of
sound as it travels through a duct with a given length, :ost of the
authors qguoted in the above references assume that all acoustic flow

quantities can be expressed in termns of the normal modes in the duct as
Q= Iy A, {a,(y) explilk x - ut)]
+ 9, {y) exp[-i(k % - wt)]} (1)

Here, Q stands for any of the acoustic flow quantities,u{axial velocity),

v (normal velocity}, p (pressure); x is the axial coordinate; y is the

normal coordinate; and t is time. The real and imaginary parts of kn
represent, respectively, the wave number and attenuation rate of the nth mode.
In writing Eq. 1, the above authors assumed that the eigenfunctions between
the brackets in Eq. 1 form a complete set.

Recently, M'éhm'ng4

suggested that these eigenfunctions are not complete
and that there exist standing wave solutions of the acoustic equations of

the form,
Q = qlx,y)e't + gix,y)e 6t (2)

where q(x,y) is an algebraic function of x, for the case of sheared mean
flow profiles that do not vanish at the wall. Moreover, he suggested that

3/2 in the far field, Whereas Nayfeh and Te110n155

q(x,y) behaves Tike x
showed that algebraically varying modes are possible in ducts with varying
cross sections, it is shown in this paper that such modes do not exist in

uniform ducts, contrary to Mohring's suggestion.



II, STANDING WAVES

The differential equations that govern the propagation of sound in
ducts with parallel generators were derived by Pridmore~Brown6 from the
Euley equations. For a two-dimensional flow with the x-axis directed along
the axis of the duct, these equaiions may be expressed in terms of the

acoustic pressure p and the normal component v of the acoustic velocity

as
(1_M2);3_2.E+32 -gﬂ_ﬂ__ga +gpc£l.r‘.‘1.§_‘i . E.Z,P..-.o (3)
sz 3y c oxbt 0" dy 73X , at2
v v .1 3p
ot F Moo T oray T O (4)

where P, Ts the density of the mean flow, ¢ is the speed of sound and M
is the Mach number which is assumed to be a function of y only. For lined

walls, the boundary conditions are

v/p = Blp,c aty =+ d (5)

where B is the acoustic admittance of the walls and 2d is the width of
the duct.
In the far field,we seek asymptotic solutions to Egqs, 3 and 4 in

the form,

1

p = ety R (y) + X7 Fyly) + kT Fy) + L] (6)

L [Go(y) + x'? 61(y) v x2

<
1

6y (¥) * ... (7)

where v 1s any real number. We substitute expansions

6 and 7 into Eqs. 3 and 4, equate coefficients of 1ike powers of x to

zera, and obtain



" 2

Fo t P /c% Fo = 0 (8)
F(') + iy Go =0 {(9)
n 2

JEI +ﬁu /c‘?] Fi = 2iwr % Fo - 2p4Cr -3% G, (10)

; F-i +ipgw Gy = -pgr MG, (11)
fl1 2 2 -

[ ﬁn-+ﬁu /c ]Fm = £ (12)

form> 2

Fp * T Gy = (13)

where En and &y are known functions of Fy, Fy,..., F1 @nd Ggy G1,..., Gy
Substituting expansions 6 and 7 into Eq. 5 and again equating

coefficients of like powers of x, we obtain

d
E—E'EH)VEE*E , m=0,1,2... (14)

The symmetric solution of Egqs. 8 and 9 subject to the Boundary

Condition 14 withm = 0 is

= wy,
Fo = An cos =

iA
=--——-r-]- 3 (-l—,l
6, e sin =2 (15)
provided that
tan %g = 9B (16)

The antisymmetric counterpart of Egs. 15 and 16 is

s sin O
FO An sin <
iA
=_n wy
6, X cos = (17)
cot ¥4 - _ig (18)



Equations 16 and 18 can be satisfied only when 8 1s purely imaginary;

that is, only when the resistance of the 1ining material {s zero. Lining
materials with such a property, though, are considered unrealistic., There-
fore, we conclude that standing waves which vary algebraically with the
axial distance may be possible only for hard-walled ducts, provided that
the frequency is an element of the infinite discrete set

w, = nwc/d for symmetric modes

w, = (n+%) nc/d for antisymmetric modes (19)

With 8 = O an inspection of Eqs. 4~7 reveals that the Boundary
Conditions 14 reduce to
Fr:] (d) = 0 [] m = 0,1]2;!01 (20)

Taking w = mh = nre/d, we can write Eq. 10 as

Py + —2— Fy = 2irA, (3 M cos MR 4 S sin A0V (21)

Equation 21 has a solution 1f, and only 1f, 1ts nonhomogeneous part 1s
orthogonal to the solution of the adjoint homogeneous problem cos(nmy/d);
that s, if, and only if,

= f Mly) cos® My + 1~[ M ein -ﬁﬂx-dy =0 (22)
Integrating by parts, we can rewrite Eq, 22 as

S

L]

d d .
[ro @ [ mn) cos B0 ga)

The case n = 0 corresponds to a time independent solution which is

not of interest. Forn 2 1, we assume that the mean Magh number pre-
file is uniform and equal to My in the core of the duct, and
possesses a boundary layer profile Mly) in



a thin layer of thickness § next to the walls. Then, ;a

8
= - v . d 2nu(d-8)
§ = Mo(d &) + [d-ﬁ M{y)dy Mo B sin ]

8
- f M cos g%ﬁx-dy

d-3 (24)
A Tower bound on S is given by
'ﬂi?).l-%"-é%? (25)

As long as &/d is less than 0.85, which is a value very much larger than
those encountered in practical applications, S$> 0. Therefore, there can-

not exist standing waves that vary algebraically with the axial distance.

ITI. TRAVELING WAVES
Next, let us determine if traveling waves that vary algebraically
along the duct can exist. We seek expansions in the far field of the

form, |

-1

p=e O xR (y) + X7 Fly) + ] (26)

v =ell xr[Go(y) + ) G (y) + .01 (27)

where 6 = kx - wt, Substituting expansions 26 and 27 into Eqs. 3
and 4, and equating coefficients of like powers of x, we obtain

2 . ;
I L 2 - 2 o) F_jﬂ - i
Fot L 2 KZ(1-M7) + 2M 2 K] F + 2ip ck o G, = 0 (28)

F"_., + 'Ipo(m + kMc) G, = 0 (29)



F"+|:m 2(1-M)+2M=-PJF +2r)c-ay'lkG“

C
L g? 6, - 2017 ikr (30)
Fi + ip, (w + KMc) Gy = -Mcr G, (31)
F'+[‘”2-k2(1-r42)+zm‘9-k]r' vopcMipgee (32)
mo 2 c m " Pt gy K BT Sy
for m = 2,3,.,,
Fo o+ pg(w + kMe) 6 = ¢ (33)

For a mean velozity profile that vanishes at the walls, the Boundary
Conditions 14 sti11 hold,
Eliminating G, from Eqs. 28 and 29,we have

-l 2ke dM rd 2 W -
L(F,) = Fy m+MkcH“‘F'+[ - KE(1-M") + 2M S K1 F = 0 (34)

In this case for each frequency w there exists an infinite number of eigen-
values k and eigenfunctions F, that satisfy Eq. 33,  the Boundary Condition
14 and FO(O) = 0 or Fé(O) = 0, These eigenfunctions can be obtained

either analytically or numerically.

ETiminating Gy from Egs. 30 and 31 and using Eq. 34,we obtain

L(Fy) = 9y IMy), F{y)] (35)

where Y, is a known function of M(y) and Fo(y). For a given frequency,
the nonhomogeneous first-order problem has a solution if, and only if, its
nonhomogeneous part is orthogonal to the solution of the adjoint homo-
geneous probiem. This solvability condition imposes a restriction on the

mean Mach number profile, Carrying the expansion to higher order, we find



more restrictions on M{y). If r is a positive integer, there will be r
restrictions on M{y); otherwise, there will be an infinite number of
restrictions on M{y). Since M(y) must satisfy the Navier-Stokes

equations, i1t will not satisfy, in general, any other restriction.

IV, RESULTS AND DISCUSSION

The results show that there cannot exist standing waves which vary
algebraically along a uniform duct if the walls have a finite resistance.
Since Nayfeh7 showed that the acoustic boundary-layer produces an effective
finite admittance &% the wall even if it is rigid, we conclude that there
are no standing waves which vary algebraically along a duct with uniform
cross section,

Also, the results show that traveling waves which vary algebraically
along the duct do not exist unless the mean velocity profile satisfies
one or more restrictions besides satisfying the Navier-Stokes equations.

Clearly,such velocity profiles are not realistic.
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