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ABSTRACT

Standing or traveling waves which vary algebraically with the axial

distance in uniform ducts with sheared mean velocityy profiles are inves-

tigated. The results show that such waves are not possible for ducts

with uniform cross sections and fully developed mean flows.
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I. INTRODUCTION

Recently, the problem of sound propanation through ducts with mean

flow has received considerable attention,as evidenced by the large number

of contributions (see Refs. 1, 2, and 3). To predict the reduction of

sound as it travels through a duct with a given length, roost of the

authors quoted in the above references assume that all acoustic flow

quantities can be expressed in terms of the normal modes in the duct as

QA
 A

n {q (y)eXp [i(knx - wt)]

+ qn(Y) exp[-i(kn x - wt)])	 (1)

Here, Q stands for any of the acoustic flow quantities,u(axial velocity),

V (normal velocity), p (pressure); x is the axial coordinate; y is the

normal coordinate; and t is time. The real and imaginary parts of kn

represent, respectively, the wave number and attenuation rate of the nth mode

In writing Eq. 1, the above authors assumed that the eigenfunctions between

the brackets in Eq. 1 form a complete set.

Recently, Mohring 4 suggested that these eigenfunctions are not complete

and that there exist standing wave solutions of the acoustic equations of

the form,

Q = q(x,y)eiwt + q(x,y)e-iwt
	 (2)

where q(x,y) is an algebraic function of x, for the case of sheared mean

flow profiles that do not vanish at the wall. Moreover, he suggested that

q(x,y) behaves like x3/2 in the far field. Whereas Nayfeh and Telionis5

showed that algebraically varying modes are possible in ducts with varying

cross sections, it is shown in this paper that such modes do not exist in

uniform ducts, contrary to Mohring's suggestion.
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II. STANDING WAVES

The differential equations that govern the propagation of sound in

ducts with parallel generators were derived by Pridmore-Brown6 from the

Euler equations. For a two-dimensional flow with the x-axis directed along

the axis of the duct, these equations may be expressed in terms of the

acoustic pressure p and the normal component v of the acoustic velocity

as

(1-M2) ER + a2
ax	 ay

Dv 
+ Mc ax

2Ma2	 c dM av	 1 2R = 0
c axat	 po dy 8x - J at2 -	

(3)	 9

+ po p = D	 (4)

where p  is the density of the mean flow, c is the speed of sound and M

is the Mach number which is assumed to be a function of y only. For lined

walls,the boundary conditions are

v/p = 6/ poc at y = + d	 (5)

where 6 is the acoustic admittance of the walls and 2d is the width of

the duct.

In the far field,we seek asymptotic solutions to Eqs. 3 and 4 in

the form,

p = eiwt x  LF
o (Y) + x-1 F l (Y) + x-2 F2 (Y) + ...]	

(6)

B

v = e iwt X  CG
o (Y) + x

-^ 
Gl (Y) + x-2 G2 (Y) + ...^	 (7)

where r is any real number.	 We substitute expansions

6 and 7 into	 Eqs. 3 and 4, equate coefficients of like powers of x to

zero, and obtain

a^
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F"
0

 ^2/rj Fo = 0	 (8)

Fo + ipow Go = 0	 (9)

F1.. + rw2 /c11 F1 = 2iwr 
c 

Fo - 2pocr ^ Go	 (10)

F' + ip
o
w 

J

G1 = - por McGo	(11)

Fm + (w2/c21
111111
Fm = gm

	

	 (12)

for m >_ 2
Fn + ipow Gm = Cm	(13)

where gm and Sm are known functions of F o , Fl ,..., Fm_ l and Go , G1 ,..., Gin.

Substituting	 expansions 6 and 7 into Eq. 5 and again equating

coefficients of like powers of x, we obtain

Gm(d)	 B	 m = 0,1,2...	 (14)
Fm d	 poc

The symmetric solution of Eqs. 8 and 9 subject to the Boundary

Condition 14 with m = 0 is

Fo = An cos 
tAy

Go =-A' sin PI	 (15)
0

4	 provided that

tan ca = iB	 (16)

1The antisymmetric counterpart of Eqs. 15 and 16 is

Fo = An sin w

iA
Go =	 ^ cos	 (17)

0

i	
cot wcd = -ig	 (18)

,f
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Equations 16 and 18 can be satisfied only when 0 is purely imaginary,

that is, only when the resistance of the lining material is zero. Lining

materials with such a property, though, are considered unrealistic. There-

fore, we conclude that standing waves which vary algebraically with the

axial distance may be possible only for hard-walled ducts, provided that

the frequency is an element of the infinite discrete set

wn = n7rc/d	 for symmetric modes

wn = (n+') 7rc/d	 for antisymmetric modes	 (19)

With 0 n 0 an inspection of Eqs. 4-7 reveals that the Boundary

Conditions 14 reduce to

Fm (d) = 0 , m = 0,1,2,...	 (20)

Taking w n wn = nirc/d, we can write Eq, 10 as

F" + n-^ F
1 = 21rAn [n, M cos pj + dM sin nF 7	 (21)

Equation 21 has a solution if, and only if, its nonhomogeneous part is

orthogonal to the solution of the adjoint homogeneous problem cos(n7ry/d);

that is, if, and only if,

f
0 M(Y) cos,	 dy + ^0 -q sin 

2	
dy a 0 (22)

Integrating by parts, we can rewrite Eq, 22 as

S = foM (Y) dy - f0 M(Y) cos 2-4 dy = o	 (25)

The case n = 0 corresponds to a time independent solution which is

not of interest, For n	 1, we assume that the mean Mach number pro-

file is uniform and equal to M. in the core of the duct, and

possesses a boundary layer profile M(y) in

G

R

a

1:I
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a thin layer of thickness d next to the walls. Then,

S =_ M
0 (d-6)+ Ja	

M (Y) dY - Mo 2n^r sin 2nirdd-6
d-d

_ S	 2n9r
M cos	 dy

d-d	 d	 (24)

A lower bound on S is given by

a	
R07' 1 - d - 2nf	

(25)
0

As long as 6/d is less than 0.85, which is a value very much larger than

those encountered in practical applications, S > 0. Therefore,there can-

not exist standing waves that vary algebraically with the axial distance.

III. TRAVELING WAVES

Next, let us determine if traveling waves that vary algebraically

along the duct can exist. We seek expansions in the far field of the

form,

p = eia x r[Fo(Y) + x I F l(y ) + .v.]	 (26)

v 
= eia 

xr [Go(Y) + x I G l (y ) + ...]	 (27)

«	 where a = kx - wt. Substituting expansions 26 and 27 into Eqs. 3

and 4, and equating coefficients of like powers of x, we obtain

2
F"
0

	[ w2 - k2 (1-M2 ) + 2M 
c 

k] Fo + 21pock 
d 

Go = 0	 (28)
C
2

 + ipo (w + kMc) Go = 0	 (29)

+ 	 4



G

F^ + [W2 - k2 (1 - Ai2 ) + 2M 
c 

Q F l + 2poc 
dM 

ikG =
c

	

- 2MCw r Fo - 2pocr 
dy 

Go - 2(1-M2 ) ikr Fo	 (30)

Fl + 
ipo 

(w + kMc) G 1 = -Mcr Go
	

(31)

Fm + EW2 - k2 (1-M2 ) + 2M c 
Q Fm + 2poc d

y 
ik G = 9	 (32)

c

	

for in = 2,3,...	
d

Fm + ipo (w + kMc) Gm = rm	 (33)

For a mean velocity profile that vanishes at the walls, the Boundary

Conditions 14 still hold.

Eliminating G o from Eqs. 26 and 29,we have

2
L(F

o) ° Fo - w+Mkc iTy Fo + [7 - k2(
1 -M2) + 2M c 

k] Fo = 0	 (34)

In this case for each frequency w there exists an infinite number of eigen-

values k and eigenfunctions F o that satisfy Eq. 33 , 	 the Boundary Condition

14 and Fo (0) = 0 or Fo(0) = 0. These eigenfunctions can be obtained

either analytically or numerically.

Eliminating G 1 from Eqs. 30 and 31 and using Eq. 34,we obtain

L ( F l ) = + 1 EM(Y), FOW j	(35)

where *1 is a known function of M(y) and Fo (y). For a given frequency,	 a

the nonhomogeneous first-order problem has a solution if, and only if, its

nonhomogeneous part is orthogonal to the solution of the adjoint homo-

geneous problem. This solvability condition imposes a restriction on the

mean Mach number profile. Carrying the expansion to higher order, we find

emu
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more restrictions on M(y). If r is a positive integer, there will be r

restrictions on M(y); otherwise, there will be an infinite number of

restrictions on M(y). Since M(y) must satisfy the Navier-Stokes

equations, it will not satisfy, in general, any other restriction.

IV. RESULTS AND DISCUSSION

The results show that there cannot exist standing waves which vary

algebraically along a uniform duct if the walls have a finite resistance.

Since Nayfeh7 showed that the acoustic boundary-layer produces an effective

finite admittance ba the wall even if it is rigid, we conclude that there

are no standing waves which vary algebraically along a duct with uniform

cross section.

Also, the results show that traveling waves which vary algebraically

along the duct do not exist unless the mean velocity profile satisfies

one or more restrictions besides satisfying the Navier-Stokes equations.

Clearly,such velocity profiles are not realistic.

T.

J,
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