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ABSTRACT

The nonlinear response of boron/aluminum angleplied laminates sub-

jected to cyclic loads was investigated. A procedure is outlined and

criteria are proposed which can be used to assess the nonlinear response,

The procedure consists of testing strategically selected laminate con-

figurations and analyzing the results using composite mechanics. Results

from the investigation show the contributions to nonlinear behavior are

from: premature random fiber breaks where the ply orientation angle is

small relative to the load direction, ply relative rotation at inter-

mediate values of the ply orientation angle, and nonlinear aluminum

matrix behavior at large values of the orientation angle. Premature

fiber breaks result in progressively more compliant material; large ply

relative rotations result in progressively stiffer material; and pro-

nounced matrix nonlinear behavior results in no significant change in

the stiffness of the initial load portion.

KEY WORDS: Boron/aluminum, angleplied laminates, nonlinear response,

cyclic loading, premature-fiber-fractures, ply relative

rotation, experimental, stress analysis
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INTRODUCTION

Boron/aluminum angleplied laminates exhibit nonlinear stress-strain

relationships at relatively low loads as compared with their fracture

load. The primary factors that may contribute to this nonlinear ty are:

early aluminum matrix nonlinear response, premature random fiber frac-

tures, and relative ply rotations. The amount each factor contributes

depends on the ply orientation. This paper assesses the effects of the

aforementioned factors on the nonlinear response of boron/aluminum angle-

plied laminates under monotonic and cyclic tensile load.

The procedure followed for the assessment consisted of both experi-

mental and approximate theoretical investigations. The experimental

investigation consisted of testing selected boron/aluminum (50% 4 mir

boron fiber/6061-0 aluminum alloy) angleplied laminates in cyclic ten-

sion. The laminates selected had low, intermediate, and high ply orien-

tation angles relative to the load direction. Specimens with some low

ply orientation angles were selected to assess the invluence of premature

fiber fractures on nonlinear response. Those of intermediate angles were

selected to assess the ply relative rotation (scissoring effect), and

those of high angles for the influence of the matrix. Since the focus of

the investigation was on nonlinear response, the specimens were loaded

well into the nonlinear stress-strain regime and therefore failed in a

few cycles.

The numbers in parentheses refer to list of references appended to this

paper.
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In the theoretical investigation, well known strain transformations

were used in conjunction with the strain-magnification-factor (SMF) con-

cept to determine the strains in the plies, the maximum strains in the

matrix, and the changes in the fiber direction. The emphasis of this in-

vestigation is on how an assessment can be obtained of the factors con-

tributing to composite nonlinear response using measured strains from a

few strategically selected test specimens and available, approximate,

theoretical methods. In this sense, the approach can be used as a pro-

cedure for obtaining such an assessment, A more detailed stress analysis

may be obtained by using nonlinear finite element methods.

In this paper, the term "yield" is used to denote the onset of non-

linear stress-strain behavior in the matrix rather than its classical

plasticity meaning.

EXPERIMENTAL INVESTIGATION

Material, Test Apparatus, and Procedure

The composite material for this investigation was 4 mi boron fiber

and 6061-0 aluminum foil which was fabricated into 12-inch square plates

by a supplier using a conventional diffusion bonding process. Fiber

volume was approximately 50 percent. The laminate configurations were

of the form (0', ±8~) where 0 was 15', 30' , 45* and 90 , and are identi-

fied as plates C, D, E and F respectively. See reference 1. Coupons

were cut at specified angles from the plates by shearing. The background
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for specimen selection is given in the theoretical investigatron. The

sheared edges of the specimens were ground with a diamond wheel to pro-

duce a coupon with smooth edges and a .500-inch width. The specimen con-

figuration, notation, ply orientation and specimen length are depicted

in figure 1. The fiber directions relative to the load directon are

shown schematically in figure 2. Photomicrographs of specimen cross-

sections are shown in figure 3. Each coupon was instrumented with strain

gage rosettes. The coupons were clamped in serated, bolted grips (fig. 4)

and cyclicly loaded to failure in a hydraulic universal testing machine.

The maximum load of each successive cycle was increased to insure failure

in relatively few cycles. Loading was halted at intervals for acquiring

strain gage data on a digital strain recorder.

The strain gage data were reduced using a computer program (2).

This program calculates the strains along the load direction and normal

to it. It also provides instantaneous tangent modulus of elasticity,

Poisson's ratio, the extension/shear coupling ratio and the angular change

of the principal strain axes.

THEORETICAL INVESTIGATION

Theoretical Background

In order to identify and assess the factors contributing to compos-

ite nonlinear response the strain states in the composite, plies, and

matrix are required as a minimum. in this investigation, the strain state
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in the composite was measured using delta rosette strain gages. When

the composite strain state is known, the other strain states can be

determined using available theoretical methods. The underlying theoret-

ical concepts and the equations to be used in the computations are

briefly described herein.

Since the strains are kinematic quantities and since three strains

are known at a point from the strain gage readings, strains along any

ply orientation are determined by well known transformations. The im-

plicit assumption in this transformation is that the strain is constant

through the specimen thickness. This assumption is valid so long as no

delamination takes place. No delamination was observed in the specimens

tested in this program.

Once the ply strains are known the maximum strains in the matrix are

obtained as follows:

ii= Ei (1)

Em22max = SMF22Ef22 (2)

cmi2max = SMF12E:l 2  (3)

where EU is the strain in the ply, c is the strain in the matrix. Them

subscript 1 denotes a measurement along the fiber direction and 2, normal

to it. SMF denotes the strain magnification factor (3,4).
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The SMF's used are given by the following approximate equations:

SMF2 2 =E

SMF1 2  G

P =

E - 0 as the matrix becomes nonlinearm

The undefined notation in equations (4), (5) and (6) is as follows:

E is the modulus of elasticity, G is the shear modulus; the subscripts f

and m denote fiber and matrix, respectively, and k is the fiber volume

ratio.

The values for the moduli used in this calculation were: E = 60
f

6 6
x 10 psi, E = 10 x 10 psi if 22 < .001 and E = 0 if E .001,m m2m m22

the ratio of ( /G ) = 1/6 if c < .002 and (/G ) = 0 if >m f m12 m f m12

.002. The strain limits of 0.001 and 0.002 were determined from normal

and shear stress-strain curves respectively.,

The ply strains were computed from the measured strains by the fol-

lowing well known transformation equation:

S 2 2 1
't l C 6 t 6in e t M26 C

S4in26 c 042 T4n26 Eyy (7)

E212 -6in26 SiK26e co621 t cxy
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where 0, is the angle between the load and the direction of the fibers in

the ply under consideration and is given by e = 0L/O + 0 (see figure 1).

ECxx is th(: measured strain in the laminate along the load direction, E

is the measured strain normal to the load direction and 6 is the cor-
cXy

responding shear strain.

The change in the fiber direction can be determined from the last.

equation of (7). See reference (4) or (5).

The instantaneous change of the principal-strain axes as a function

of load is another measure of nonlinear response especially for nonsym-

metrically loaded specimens. By definition, the principal-strain axes is

a set of axes on which the shear strains are equal to zero. The equation

for the principal strain-axes is given by

1 Ecxg )
e= itan ( -CXX (8)

where 8 is the angle between the load direction and the ell axis of the

principal strain axes. The composite strains (dc) have been already

defined. Equation (8) is derived from the last of equations (7) by let-

ting 6. = 6 and requiring eZ12 to equal zero.

In addition to the above mentioned calculations, the equivalent

modified-total-strain (or equivalent strain for convenience) in the matrix

was calculated. The general equation for calculating this strain is given

by (from ref. 6)
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1/2
i 2 2 2' 2 2 2

e Y Y z z Yx xq

where e , etc. are the normal strains along a mutually orthogonal co-

ordinate axes and E~y, etc. are the shear strains associated with these

normal strains. For the present case the strains e , C and E rep-
z xz yz

resent strains in the matrix through the specimen thickness and were

assumed to be negligible compared to the other strains. With this assump-

tion and using the previous notation, equation (9) reduces to

2 - 1/2

C = [I2 (E2 + C2  - E' +i6c 2
me 3 mil m22 M112M22) 12] (10)

where Eme is the equivalent strain in the matrix and the other strains

have been defined previously.

The equivalent strain concept is useful in performing stress analy-

sis problems in the presence of material nonlinearities. Our interest

herein is to obtain some indication as to whether this approach may be

applicable to the present problem.

The above approach for determining the maximum strains in the matrix

has several advantages over more refined analyses. Some of the advan-

tages are: simplicity, amenable to quick hand computations, does not

require detailed knowledge of the nonlinear material properties, does

not require calculation of the stresses in the ply. Its main disadvan-

tage is that it only yields a good approximation of the maximum strains
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in the matrix. It provides no direct means for determining the strain

variation in the matrix or the stresses in the plies. However, this

approach can be used in conjunction with an incremental nonlinear analy-

sis to facilitate estimation of material properties for the current

increment.

It should be noted that the measured strains do not include residual

strains. In the discussion that folows the influence of the residual

stress is not considered separately. Its presence produces nonlinear

behavior In the matrix at relatively low loads (1) which is picked up

by the strain gage as a mechanical load effect.

Specimen Selection Background

Some remarks with regard to the anticipated results will help set

the stage for the discussion that follows. As was mentioned previously,

the ply orientations (fiber directions) in the specimens selected are

shown in figure 2. These configurations were selected because when the

specimens are loaded, as noted in figure 2, one of the factors mentioned

earlier contributes a significant part to nonlinear response with some

interaction from the other factors. For example, the matrix will con-

tribute the major portion to the nonlinear response in specimens C-80"

and D-800 . Premature fiber fracture will contribute to the nonlinear

response of specimens D-22.50 and E-37.50. Ply relative rotation will

contribute to the nonlinear response of specimen F-37.5.
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Specimens D-22.5 0 and E-27.50 are loaded unsymmetrically. These

specimens will exhibit considerable change in the principal-strain-axes

direction during each loading cycle and from loading cycle to loading

cycle. The other specimens will exhibit only small changes in the prin-

cipal-strain-axes directibn. Specimens D-22.5* and E-37.5* will exhibit

some ply relative rotation.

The above remarks lead to specific criteria for identifying and

assessing factors contriuting to the nonlinear response of boron/aluminum

angleplied laminates as will be described in the next section.

Criteria for Assessing

Factors Contributing to Nonlinear Response

Two criteria will be used for identifying and assessing the impor-

tance of the factors contributing to the nonlinear response. The primary

criterion is the change of the specimen instantaneous (tangent) modulus

during the initial portion of the loading with successive cycles. Spec-

ifically:

a. Negligible changes in modulus with successive loading cycles

indicate that the matrix is the major contributor.

b. Decreases in modulus with successive loading cycles indicate

that premature fiber fracture is the major contributor.

c. Increases in modulus with successive loading cycles indicate

that ply relative rotation is the major contributor.
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The secondary criterion to be used is the shape of the load versus

strain curve. Specifically:

a. When the matrix is the major contributor, the curve will be

analogous to that of a material showing strain hardening, that

is linear unloading response and little or no hysteresis.

b. When premature fiber fracture is a significant contributor, the

unloading portion of the curve will be linear initially, with

a smaller slope than the corresponding loading part, followed

by a nonlinear portion ano ogous to Bauschinger effect. The

reason for this is that fiber fractures cause excessive local-

ized matrix nonlinearities. Upon unloading, these local non-

linearities go into compression and "yield" in compression long

before the specimen is completely unloaded. The curve for this

case will show considerable hysteresis.

Also, during unloading, it is possible for the matrix to go

into nonlinear compression without premature fiber fractures.

This will be the case when the longitudinal tensile strain in

some plies is greater than the "yield" strain of the matrix.

However, for this case the modulus of elasticity of the initial

portion of both unloading and next-cycle-loading curves will be

approximately equal to the corresponding portion of the previous

cycle.

c. When ply relative rotation is a significant contributor, the

unloading curve will be linear with no or little hysteresis, so



long as no severe matrix shear "yielding" takes place (7).

The curve will show a higher strain hardening rate than the

curve for case (a). The reason for this is that the ply rela-

tive rotation is caused by fiber direction changes which tend

to decrease the angle between fiber and load directions for the

tensile load case. This results in a stiffer material and there-

fore a steeper strain hardening slope.

RESULTS AND DISCUSSION

Nonlinear Response of the Specimens Tested

and Assessment of Contributing Factors

In view of the secondary criterion, a convenient way for assessing

factors contributing to nonlinear response is to plot tensile load in

the specimen versus composite strain along the load direction (axial

strain). This is a stiffness curve and reflects the effects of any cross-

section changes.

Tensile cyclic load versus axial strain plots were made for all the

specimens tested. The results are shown in figures 5 through 9. Apply-

ing the secondary criterion to these curves leads to the following obser-

vations:

a. The matrix was the major contributor to the nonlinear response

of specimens C-80 0 (fig. 5) and D-80* (fig. 6).
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b. Premature fiber fracture was a significant contributor to the

nonlinear response of specimens D-22.5 '(fig. 7) and E-37.5

(fig. 8). Note, the nonlinear portion of the unloading curve

and the relatively lbrge hysterysis loop in figure 7.

c. The ply relative rotation was a significant contributor to the

nonlinear response of specimen F-37.50 (fig. 9). Note, the

unloading curve is linear in its entirety and the lack of hystery-

sis.

All of the above observations are consistent with the anticipated

results from the Specimen Selection Background section. An important

conclusion from the above observations is that the secondary criterion

may be a sufficient condition for assessing the contribution to the com-

posite nonlinear response of the three major factors.

The changes in the tangent modulus with successive loading cycles

may be illustrated by plotting the tangent modulus versus relative axial

strain. By relative strain it is meant that the residual strain from

previous cycles has been subtracted. Tangent mdoulus versus relative

axial strain was plotted for some of the specimens tested. The results

are shown in figures 10, 11 and 12. Applying the primary criterion and

restricting our attention to the initial portion of the loading curve it

is observed that:

a. The matrix was the major contributor to the nonlinear res-

ponse of specimen C-800 (fig. 10) with some contribution from

ply relative rotation.
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b. Premature fiber fracture was the predominant contributor to

the nonlinear response of specimen D-22.5 0 (fig. 11).

c. Ply relative rotation was the predominant contributor to the

nonlinear response of specimen F-37.5 (fig. 12).

These observations are in agreement with those made using the

secondary criterion and are consistent with the anticipated results

discussed previously.

;An additional observation from the results in figure 12 is: The

matrix strain-hardening effect on the "yield" strain is maximum on the

second load cycle and decreases rapidly with additional cycles.

The results discussed thus far show that the significant contribu-

tion to the nonlinear response of B/Al angleplied laminates when sub-

jected to a few cycles of tensile load was from: premature random fiber

breaks when the ply orientation angle is small (less than 10*) relative

to the load direction, ply relative rotation at intermediate values (35"

to 550) of the ply orientation angle, and aluminum matrix nonlinear

behavior at large values (greater than 700) of the ply orientation angle.

Principal-Strains Axes Change

The change of the principal-strains axis (e) is a good measure of

obtaining a combined measure of nonlinear response. A graphical repre-

sentation of this change may be obtained by plotting 6 versus initial-

area stress or relative axial strain.
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A plot of 0 versus relative axial strain is shown in figure 13 for

all the specimens tested. As can be readily observed in figure 13, the

instantaneous vblues of 0 increase with increasing relative strain. The

maximum values of 6 are less than 4° for specimens C-22.50 , D-800 , and

F-37.5; about 10* for specimen D-22.5*; and about 200 for specimen E-

37.5O . As can be seen from the schematics in figure 13, or figure 2, low

values of 6 correspond with specimens whose axis of symmetry is nearly

coincident with the load direction. The converse is true for the larger

6 values.

Two points need be made in connection with the above discussion:

(a) upon unloading, the major portion of the 6 value remains-as residual

angle; and (b) fiber direction shifts are possible with large or pro-

gressively larger values of 6.

Maximum Matrix Strains

The maximum strains in the matrix were computed using equations (1)

through (6) discussed previously. The variation of the maximum trans-

verse matrix strain with composite stress is shown in figure 14 for all

the specimens tested. Note that the transverse strain increases very

rapidly at about the same value of composite stress in specimens (C-800

and D-80") where the matrix carried the major portion of the load. In

the specimens where the fibers carried the major portion of the load (D-

22.50 and E-37.5 0 ), the maximum transverse strain in the matrix appears

to go along for the ride.
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The above discussion leads to the following conclusion. The maximum

transverse tensile strain in the matrix may be used as a criterion to

identify plies and/or composites in which the matrix carries the major

portion of the load. This strain increases very rapidly at some com-

posite stress value indicating onset of pronounced matrix nonlinearity.

The maximum shear strain in the matrix is plotted versus composite

initial-area stress in figure 15 for all the specimens tested. The im-

portant point to be observed in figure 15 is that the very large shear

strain for the specimen F-37.5* as compared with the other specimens. It

is this large shear strain which causes ply relative rotation (scissoring

effect). The conclusion is, then, that very large shear strains in the

matrix may be used as a criterion to identify plies undergoing ply rela-

tive rotation. Advantage may be taken of this observation in practical

designs where the need for the structural part is to become stiffer with

successive loading cycles.

The equivalent strain in the matrix may also be used as a combined

index to assess composite nonlinear response. The equivalent strain is

plotted versus composite initial-area stress in figure 16 for all the

specimens tested. Comparing the curves in figure 16 with the corres-

ponding ones in figure 15, it is seen that the equivalent strains are

similar to the maximum shear strains. This is anticipated from equation

(1) where is is seen that the shear strain term cm1 2 has the largest

multiplier. We conclude, therefore', that the equivalent strain in the

matrix does not provide any more information than the maximum shear strain

in the matrix.
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As a side note, the equivalent strain in the matrix is used to carry

out nonlinear stress analysis of fiber composites based at the constit-

uents level. The equivalent strain approach presupposes isotropic

"yielding" or deviations from linearity. In view of the "yielding" direc-

tionality forced on the matrix by the restraining fibers, the isotropic

"yielding" assumption might be premature.

Changes in Fiber Direction

It was mentioned in the theoretical background section that the

change in the fiber direction may be computed from the last equation of

equations (7). An assessment on the fiber direction change may be ob-

tained by plotting the fiber direction change versus composite initial-

area stress or relative axial strain.

The fiber direction change versus composite initial-area stress is

plotted in figure 17 for the specimens tested. Note that the curves in

figure 17 are similar to those in figure 15 for maximum shear stress in

the matrix. This should be so since they both were computed using the

same equation but with different multipliers. The conclusion, there-

fore, is that excessively large shear strains in the matrix produce cor-

responding changes in the fiber direction. As is seen in figure 17, the

maximum change in fiber direction was in the F-37.5* as was expected.

As a side note, the computed change in angle between the 0O and

90* plies in the F-37.5" laminate was about 3.20 at the end of the third

loading cycle. The measured change in angle when the specimen broke was

about 230 corresponding to a 20 percent width reduction.
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SUMMARY OF RESULTS

The following are the important results obtained from an investi-

gation of 4 mil boron/6061-O aluminum angleplied laminates, subjected

to cyclic tensile loading.

A procedure has been described and criteria have been proposed

which can be used to assess the factors contributing to nonlinear res-

ponse of fiber composite angleplied laminates when subjected to tensile

cyclic loading.

The results of the specimens tested and analyzed showed that the

significant contribution to the nonlinear response of B/Al angleplied

laminates when subjected to a few cycles of tensile load was from:

premature random fiber breaks when the ply orientation angle is small

(less than 100) relative to the load direction, ply relative rotation at

intermediate values (35* to 550) of the ply orientation angle, and alu-

minum matrix nonlinear behavior at large values (greater than 700) of

the ply orientation angle.

Premature fiber breaks result in a progressively compliant material

with considerable nonlinearity in the unloading curve and a significant

amount of hysteresis.

Ply relative rotation results in a progressively stiffer material

with linear unloading and little or no hysteresis.

Pronounced matrix nonlinear behavior results in: no significant

changes in stiffness with successive load cycles, linear unloading, and

little hysteresis which seems to grow larger with successive cycles. The
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strain hardening effects on the "yield" strain are significant from the

first to the second cycle and appear to diminish thereafter.

Nonsymmetrically loaded B/Al angleplied laminates exhibit signifi-

cant changes in the direction of the principal strain axes which becomes

progressively larger. The major portion of this change remains as resid-

ual.

Pronounced matrix nonlinear behavior is the result of large trans-

verse strain in the matrix. This strain increases very rapidly at about

the 0.1 percent value of the relative axial strain for the specimens

tested.

Ply relative rotation (fiber direction change) is caused by large

shear strains in the matrix. The specimen used to test this condition

accumulated a ply relative rotation of about 230 when it fractures.
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Figure 1. - Schematic of specimen geometry 8(0, 0, +0, -, +8, 0, 0) boronlaluminum

angleplied laminate.
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C-80 D-22.50 D-800 E-37. 50 F-37. 50
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Figure 2. - Schematic depicting the fiber directions in the various specimens.



(a) 10, 0, f15JS. (b) [0, O, ±303S

C-73-1012

(a) GRIPS DISASSEMBLED.

(c)[0, 0, ±453S. (d), 0, 90, 901S

Figure 3. - Photomicrographs of cross section of boron/aluminum angleplied
laminates. X75.

IC-73-1011
(b) GRIPS ASSEMBLED.

Figure 4. - Boron/aluminum angleplied laminate test specimen and grips.



E-7827

r- FRACTURE FRACTURE -

300 500

400 -

200 - LOAD, 300 SYM
LOAD, LB 200
LB

100- 100

I 0 4 8 12 16 20 24x10-3
0 1 2 3 4 5 6x10 3  

STRAIN, IN.IN.
STRAIN, IN. /IN. cs-6s7s

CS-68754 Figure 6. - Experimental nonlinear cyclic load response of boronlaluminum
Figure 5. - Experimental nonlinear cyclic load response of boron/ angleplied D-80°8(0,0,±30,:30, 0,0) loaded in tension at -800 to the 00-ply

aluminum angleplied laminate C-80 0 8(0,0, ±15,r15, 0, 0) loaded in direction. (4 mil dia. fiber; fiber volume ratioz0. 5; 6061-0 aluminum alloy.)
tension at -800 to the 00-ply direction. (4 mil dia. fiber; fiber
volume ratioz 0.5; 6061-0 aluminum alloy.)
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Figure 7. - Experimental nonlinear cyclic load response Figure 8. - Experimental nonlinear cyclic load response of boron/
of boronlaluminum angleplied laminate D-2Z 50 aluminum angleplied laminate E-37.50 8(0,0, ±45, , 0,0) loaded in
8(0, 0,± 30, :F30, 0, O) loaded in tension at -22.50 to the tension at -37.5U to the 00-ply direction. (4 mil dia. fiber; fiber
00-ply direction. (4 mil dia. fiber; fiber volume volume ratio, 0.5; 6061-0 aluminum alloy.)
ratioz= .5. 6061-0 aluminum alloy.)
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Figure 9. - Experimental nonlinear cyclic load response of Figure 10. - Nonlinear matrix behavior influence on modulus.

boronlaluminum angleplied laminate F-37. 50 8(0, 0,4(90), 0,0) Boronlaluminum angleplied laminate C-800 8(0,0, ± 15, 15,0,0)

loaded in tension at -37.50 to the 00-ply direction. (4 mil dia. loaded -800 in tension to the 00-ply direction. (4 mil dia. fiber;

fiber; fiber volume ratio, 0. 5; 6061-0 aluminum alloy.) fiber volume ratio z0. 50 6061-0 aluminum alloy.)
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RELATIVE STRAIN, IN./IN. cs-68761 Figure 12. - Ply relative rotation influence on modulus.
Boron/aluminum angleplied laminate F-37.50

Figure 11. - Premature fiber fracture influence on modulus. 812(0), 4(90), 2(0)1 loaded at -37.50 in tension to the 00-ply
Boronialuminum angleplied laminate D-22. 5o 8(0,0,± 30, T30, 0,0) direction. (4 mil dia. fiber; fiber volume ratio 0. 50;
loaded -22. 50 in tension to the 00-ply direction. (4 mil dia. fiber; 6061-0 aluminum alloy.)
fiber volume ratioz 0. 50. 6061-0 aluminum alloy.)
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Figure 13. - First cycle principal-strain axis change with strain.
Boronlaluminum angleplied laminates loaded in tension as noted
in the figure. (4 mil dia. fiber; fiber volume ratio= 0.50; 6061-0
aluminum alloy).
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Figure 14. - The effect of composite stress on the maximum transverse matrix
strain. Boron/aluminum angleplied laminates loaded in tension at various
angles to the 00-ply direction. (4 mil dia. fiber; fiber volume ratio= 0.50;
6061-0 aluminum alloy.)
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Figure 16. - The effect of composite stress on equivalent matrix strain.

Figure 15. - The effect of composite stress on the maximum shear matrix Boronlaluminum angleplied laminates loaded in tension at various
strain. Boronlaluminum angleplied laminates loaded in tension at angles to 00-ply direction. (4 mil dia. fiber; fiber volume ratio=0.50;
various angles to 00-ply direction. (4 mil dia. fiber; fiber volume 6061-0 aluminum alloy.)
ratio 0.50;, 6061-0 aluminum alloy.)
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Figure 17. - The effect of composite stress on fiber direction change.
Boronlaluminum angleplied laminates loaded in tension at various
angles to the 00-ply direction. (4 mil dia. fiber; fiber volume
ratio= 0.50 6061-0 aluminum alloy. )




