SUMMARY

A basic automated substructure analysis capability for NASTRAN is presented which eliminates most of the logistical data handling and generation chores that are currently associated with the method. Rigid formats are proposed which will accomplish this using three new modules, all of which can be added to Level 16 with a relatively small effort.

INTRODUCTION

Prior to Level 15, no real substructure analysis capability existed in any NASA released version of the NASTRAN program. With the pre-release of Levels 8 and 11, users began expressing the desirability and necessity for a substructure analysis capability. Several user organizations attempted, with limited success, to accomplish substructure analysis by using the checkpoint/restart capability of NASTRAN coupled with the direct matrix abstraction (DMAP) approach. Other organizations utilized user-developed utility modules and Rigid Format DMAP alter packages, thus taking advantage of the Rigid Formats whenever possible.

The latter method with an expansion of user options was adapted by NASA for inclusion in Level 15 and is fully described in Section 4.3 of the Theoretical Manual (reference 1) and Section 1.10 of the User's Manual (reference 2). The casual user may well be quite frustrated with this method since its generality requires the user to design a specific approach for the problem at hand. This involves externally generated partitioning vectors as well as DMAP alter packets which are often unfamiliar to the engineer user. In addition, little assistance is provided in the form of qualitative verification of the hand-generated coupling data or of the resulting coupled matrices. The probability of undetected user-generated errors in this process is therefore rather high. Furthermore, the user must develop customized DMAP packages for any problem that does not match the currently published substructure alter packages.
The currently available Level 15 technique was intended as a general but preliminary capability. The upgrading of this capability with user conveniences and qualitative data checks has been requested by many. As NASTRAN's substructure analysis capabilities are improved, serious users will explore many different approaches. Several techniques and utility module designs developed by necessity will be discussed for use with Levels 15 and 16. Along these lines, several aids are suggested herein. Some take advantage of existing code and capability while others indicate the need for additional user-developed utility modules as well as modifications to several existing modules. The techniques discussed are intended for the casual engineer user and are therefore used somewhat more rigidly than might normally be expected with utility modules. It is hoped, however, that the concepts described will stimulate other serious user teams to develop structurally-oriented and utility modules to ease the difficulties encountered in carrying out an effective substructure analysis.

All new and modified routines and modules are based on the Level 16 version of NASTRAN currently undergoing validation. Many of the techniques described are valid for Level 15, however, and can be installed in that level with slightly more difficulty since many Level 16 features will also have to be installed. It should be possible for a reasonably competent experienced team to install the capability described with a nominal effort.

SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>Stiffness matrix</td>
</tr>
<tr>
<td>P</td>
<td>Load vector matrix</td>
</tr>
<tr>
<td>u</td>
<td>Displacement vector matrix</td>
</tr>
<tr>
<td>G</td>
<td>Transformation matrix</td>
</tr>
<tr>
<td>M</td>
<td>Mass matrix</td>
</tr>
</tbody>
</table>

Subscripts:

- f: Free (unconstrained) set
- a: Analysis (boundary) set
- o: Omitted (interior) set
- g: All degrees of freedom set
Superscripts:

T Transpose operator
-1 Inverse operator
i Substructure index
o Related only to the omitted (interior) set

Other Symbols:

- Pre-reduction portion of a matrix
[] Matrix
{ } Matrix of vectors
^ Related to pseudomodel.

Symbols appearing in the appendices are defined in the appropriate appendix as necessary.

OBJECTIVE AND SCOPE

A sample substructure analysis model is shown in figure 1. The grid points on the top surface of this model which are to be coupled are identified by letters. Substructure analysis implicitly assumes that each substructure is analyzed separately and subsequently combined with other previously analyzed substructures to form a pseudostructure as shown in figure 2. Once the pseudostructure is solved, the detailed solutions for each of the substructures may be obtained by a set of data recovery runs. The objective of the techniques and new capability to be presented herein is to define a basic substructure analysis capability which will require a minimum amount of user-generated data and logistics.

With this objective in mind, the scope will be limited to providing a basic capability; therefore, many desired features will be omitted in order to focus attention on the fundamentally important capabilities. In the discussion that follows, the limitations that result from this restricted scope will be identified. It should be kept in mind that most, if not all, of these limitations can be removed by additions to the basic capability once it is implemented.
DISCUSSION

The theory, utilization and programming aspects of NASTRAN's substructure analysis capabilities are discussed in references 1-3. Necessary and desirable features of any substructure analysis capability have been given by many, including papers presented at the first Users' Colloquium (references 4 and 5). For ease of reference, the basic theory is given in the following section as an aid to the interested reader.

The difficulty in carrying out a substructure analysis with NASTRAN lies in the logistical procedures rather than with any inherent deficiency with NASTRAN itself. This logistic problem is illustrated in figures 2 and 3 where the number of runs and retainable data files is seen to be large. The data requirements for substructure analysis in Levels 15 and 16 and for the capability described in this paper, which we shall designate Level 16.X, are tabulated in table 1.

The major disadvantages to the current (Level 15) substructure analysis capability of NASTRAN are:

1. The user must generate partitioning vectors

2. A DMAP alter packet appropriate to the problem being run must be created.

These disadvantages can be overcome relatively easily if a few modest restrictions are imposed. This will be illustrated for the two most commonly used rigid formats, Static Analysis and Normal Modes Analysis which, when upgraded as described herein, will not require the generation of an alter packet to run.

The restrictions that will be imposed are listed in table 2 and are summarized here.

1. Only one (1) level of substructure analysis is supported, consisting of a maximum of twenty (20) substructures.

2. The degrees of freedom at coupled boundary points must agree in number, meaning and direction.

3. The internal sequence of all points on the boundary between any two substructures must be the same.

4. All subcases must be defined in all runs.

5. Output may be obtained during Phase II for any degrees of freedom present as identified by the pseudostructure map printout (see fig. 4).
Advantage features provided are:

1. If the grid points of the substructures are numbered uniquely, the user may request automatic coupling to occur. If exceptions occur, they may be handled by means of bulk data.

2. The minimum required data are the DTI data cards defining the number of substructures present and other logistical control information.

3. If topologically equivalent substructures are present, only one needs to be input; coupling data cards will be required in this case since the grid points are no longer unique.

Level 16.X overcomes the most serious objections by providing an automated capability. This capability is implemented by the addition of new modules, rigid formats, and a user-oriented data table specification. These facets are discussed in the sections which follow the theoretical discussion. As far as the rigid format is concerned, the new modules appear as structural matrix assemblers similar to SMA3 with the substructures appearing internally as arbitrarily defined super elements.

THEORY

The basic theory used as a basis for the implementation of substructure analysis is presented here for the convenience of the reader. Full treatment is given in Section 4.3 of the Theoretical Manual (reference 1). The NASTRAN set notation will be employed.

For static analysis, the free (f) degrees of freedom of the substructure are allocated to the a-set, which contains all boundary degrees of freedom, (i.e., degrees of freedom which are to be coupled to similar degrees of freedom at some grid point in another substructure), and the o-set, which contains the non-boundary degrees of freedom. The equilibrium equations are written as

\[
\begin{bmatrix}
K_{aa} & K_{ao} \\
K_{oa} & K_{oo}
\end{bmatrix}
\begin{bmatrix}
u_a \\
u_o
\end{bmatrix}
=
\begin{bmatrix}
p_a \\
p_o
\end{bmatrix}
\]

from which

\[
[K_{aa}]\{u_a\} = \{p_a\}
\]
\[[K_{aa}] = [\hat{K}_{aa}] + [G_o]^T[K_{oa}] \] \hspace{1cm} (3)

\[\{P_a\} = \{\hat{P}_a\} + [G_o]^T\{P_o\} \] \hspace{1cm} (4)

and

\[[G_o] = -[K_{oo}]^{-1}[K_{oa}] \] \hspace{1cm} (5)

Also, the displacements of the interior points are given by

\[\{u_o\} = \{u_o^0\} + \{G_o\}\{u_a\} \] \hspace{1cm} (6)

where

\[\{u_o^0\} = [K_{oo}]^{-1}\{P_o\} \] \hspace{1cm} (7)

Equations 3, 4, 5 and 7 can be carried out in Phase I. Equation 2 must be deferred to Phase II where the missing contributions to \([K_{aa}]\) from the other substructures are available. Equation 6 consists of two parts, one of which (equation 7) is evaluated in Phase I. The other part depends on the solution generated in Phase II. Equation 6 is therefore done in Phase III.

In Phase II, the substructure boundary matrices \([K_{aa}^i]\) and \(\{P_a^i\}\), which are brought in from User Files generated by the Phase I runs, are expanded to pseudomodel q-size.

\[[K_{aa}^i] \rightarrow [\hat{K}_{gg}^i] \] \hspace{1cm} (8)

\[\{P_a^i\} \rightarrow \{\hat{P}_g^i\} \] \hspace{1cm} (9)

and added to form

\[[\hat{K}_{gg}] = \sum_i [\hat{K}_{gg}^i] \] \hspace{1cm} (10)

\[\{\hat{P}_g\} = \sum_i \{\hat{P}_g^i\} \] \hspace{1cm} (11)

from which a normal solution proceeds.
After the solution \(\{u_\text{g}\} \) is obtained, the boundary displacements are simply extracted by

\[
\{u^\text{i}_\text{a}\} \rightarrow \{u_\text{g}\}
\]

(12)

The merge and partitioning operations defined by equations 8, 9 and 12 require information identifying degrees of freedom in each substructure with corresponding degrees of freedom of the pseudomodel.

For normal modes analysis, the mass matrix is arbitrarily reduced via the Guyan reduction

\[
\]

(13)

described in reference 6 and carried into Phase II in the same way as \([K_{aa}]\).

In dynamics rigid formats, the viscous and structural damping matrices are similarly treated.

NEW MODULE DESCRIPTIONS

Three new modules are presented in this section which form the basis for the automation of the basic automatic substructure analysis technique. These modules can be either added to DMAP alter packets currently being utilized or to new rigid formats as will be shown in the following section.

The three new modules are:

- SSMA: Substructure Matrix Assembler
- SSVE: Substructure Vector Extractor
- UDBR: User File Data Block Recovery

Descriptions of these modules are presented on the following pages using the format prescribed for Section 5 of the NASTRAN User's Manual.
I. NAME: SSMA (Substructure Matrix Assembler)

II. PURPOSE: Generates matrices from substructures -

1. Obtains substructure matrices and other data from designated User Files.

2. Assembles g-sized stiffness, mass, viscous damping, structural damping and/or load vector matrices for all substructures designated.

3. Outputs appropriate diagnostic and information messages and summary information.

III. DMAP CALLING SEQUENCE:

SSMA GE@M4,UFTABLE / K,M,B,K4,P,PSD / C,Y,P@PT / C,Y,GENSAME / V,N,LUSET $

IV. INPUT DATA BLOCKS:

GE@M4 - Contains SAME data

UFTABLE - User File information

V. OUTPUT DATA BLOCKS:

K,M,B,K4,P - Stiffness, mass, viscous damping, structural damping and load vector matrices

PSD - Pseudostructure data table

V. PARAMETERS:

P@PT - Integer-input, default=1.
 =+1, print pseudostructure map
 =-1, do not print map

GENSAME - Integer-input, default =-1.
 =-1, coupling data is taken from GE@M4
 =+1, automatic coupling based on grid point identification numbers will be employed (GE@M4 data is also used if present).

LUSET - Integer-output, default=0. Number of degrees of freedom in pseudostructure g-set.
VII. REMARKS:

1. SSMA will read User Files INPT, INP1, INP2, ---, INP9 as specified by the data on UFTABLE.
2. Any or all outputs may be purged.
3. GEOM4 may be purged if GENSAME=+1.
4. UFTABLE may not be purged.

I. NAME: SSVE (Substructure Vector Extractor)

II. PURPOSE: Generates a User File containing substructure boundary displacement vectors.

III. DMAP CALLING SEQUENCE:

SSVE PSD,LA,UGV // $

IV. INPUT DATA BLOCKS:

PSD - Pseudostructure data table (generated by SSMA)
LA - Eigenvalue table
UGV - Displacement vector

V. OUTPUT DATA BLOCKS: None

VI. PARAMETERS: None

VII. REMARKS:

1. Companion module to SSMA, requires pseudostructure data table (PSD) output from SSMA as input.
2. SSVE will write a User File on INFT, INP1, INP2, ---, or INP9 as specified by the data block UFTABLE and passed to the module via PSD.
I. NAME: UDBR (User File Data Block Recovery)

II. PURPOSE: Recovers data blocks from a given User File according to information contained on a directory data block (the first data block on the file).

III. DMAP CALLING SEQUENCE:

```
UDBR / DB1,DB2,DB3,DB4,DB5 / C,Y,SUBID / C,Y,UNIT / C,Y,USRTPID2 $
```

IV. INPUT DATA BLOCKS: None

V. OUTPUT DATA BLOCKS:

DBi - Data Blocks recovered by module.

VI. PARAMETERS:

- **SUBID** - Integer-input, default=0. Substructure identification number.
- **UNIT** - Integer-input, default=0. Permanent file code as follows:
 0 INPT
 1 INP1
 2 INP2

 9 INP9

- **USRTPID2** - BCD-input, default=XXXXXXXX. User File identification code.

VII. REMARKS:

1. The User File is assumed to have been generated by module SLVE.
2. The number and kind of data blocks recovered depends on the directory data block contents.
NEW RIGID FORMATS

In order to simultaneously use the new utility modules previously defined and to relieve the user of the burdensome chore of preparing DMAP alter packets, new rigid formats have been developed, one for each major analysis capability. Static Substructure Analysis, Rigid Format 16, is given in Appendices B, C and D where the solution subset numbers 1, 2 and 3 are indicative of Phase I, II and III, respectively. If subset 0 (see Appendix A) is used, an ordinary Static Analysis will result. Normal Modes Substructure Analysis, Rigid Format 17, is illustrated for Phase II by Appendix E. These new rigid formats are fully compatible with all existing displacement rigid formats, including restart capability, as defined by Rigid Format Series N which is scheduled for Level 16 of NASTRAN.

Many of the DMAP instruction sequences contained in these rigid formats can be used by current Level 15 users with appropriate caution.

USER DATA REQUIREMENTS

The Phase II coupling process requires that matrices and data tables generated in several Phase I runs be recovered from User Files. Many possible data input configurations are possible, depending on the sequence of Phase I runs and reruns which led up to the Phase II analysis. In order to allow the greatest amount of flexibility in the automated process, a table data block containing user file information will be used to control the Phase II assembly process. This can ultimately be generated from a Case Control packet. For the purposes of the current design, however, this table will be assumed to be input via DTI bulk data cards as illustrated in figure 8 and described in some detail in Appendix F. The UFTABLE data block that results will be required input to module SSMA previously discussed. Future expansion to include control of the load assembly process, as well as features not currently envisioned, is easily accomplished since the records of table data blocks are open-ended.

USAGE

The usage of the capability just presented is shown by the sample data decks in figures 5, 6, 7 and 8. It is to be emphasized that, within the limitations previously described, the burden on the user is minimal. The primary requirement is that the small UFTABLE data block be prepared on DTI cards for input to Phase II. Job control language is still necessary, of course, and will not be discussed here since the subject is not only machine-dependent but usually highly installation-dependent as well.
The user accomplishes substructure matrix generation (Phase I) as presently described in the Level 15 User's Manual without the alter packet. The new modules SSMA and SSVE are used to automate the matrix coupling (Phase II) and thereby eliminate the chore of generating complicated DMAP alter packets. No longer must the user supply the input, merge, add, and equivalence statements for the coupling of each matrix of every substructure. Now one module (SSMA) replaces all of the above-mentioned DMAP statements. The user supplies only substructure names and identification values via bulk data cards to inform SSMA how many substructures are being coupled and to relate the substructures to user-supplied coupling data. The substructure's parameter value is used to indicate the presence of identical substructures. The user may also include user file labels from Phase I, names of matrices to be read from each user file, and, when tapes are used, the installation's tape code when requesting multiple-reel tapes. All tape changes and mount requests are handled similarly to the current NASTRAN user tape modules with the exception that the user is unin involved once the installation's job control language requirements are met. NASTRAN with one module (SSMA) now requests user tapes, verifies the correct mounting and builds all the coupled matrices, taking full advantage of any identical substructures that exist. Module SSVE is similarly used to request an output tape and uncouple the substructure solution vectors.

As a final indication of the usefulness of the techniques developed, the sample problem used in reference 2 is presented in Appendix G. It is seen that truly little effort is required on the part of the user to prepare data for a substructure analysis using Level 16.X features.

FUTURE IMPROVEMENTS

Once the basic capability becomes implemented, an environment will exist with respect to which improvements can be made. Several of these potentially useful improvements are described in the paragraphs which follow.

One early addition should be to provide data checking capability for points being coupled between substructures. These checks will require that additional geometric information about boundary grid points be carried forward from Phase I. This information can then be automatically recovered in Phase II via SSMA and either used inside that module or passed out of the module in the form of data blocks to be used by other new modules.

Another improvement which can be added relatively easily to the basic capability is the ability to introduce and symbolically manipulate and generate geometrically related loading conditions in Phase II. This also requires the availability of additional geometric information in Phase II. At this point,
it will be possible to introduce direct matrix input as a representation of loading conditions. This capability will complement the existing capability for users who may desire to input loading matrices generated by programs external to NASTRAN.

The ability to relate degrees of freedom of the pseudostructure to externally designated degree of freedom descriptions in Phase II requires only that the correspondence be known. Since this information is contained in the ASET data blocks input from the Phase I runs, it is easy to conceive of a translator module which will accept data referencing external degrees of freedom (e.g., SPC, OMIT, FORCE cards) and generate equivalent data blocks containing internal pseudostructure degree of freedom descriptions. With this capability, analyses of pseudostructure models can be carried out as if they were simple structures.

Non-conforming boundaries can be handled with an extra transformation step. If \([Q]\) is chosen so that the transformed displacement vector

\[
\{u\}^* = [Q]^T\{u\}
\]

has the desired sequence but the same values, then

\[
[Q]^{-1} = [Q]^T
\]

and the conformable matrices and vectors are easily computed as

\[
[K]^* = [Q]^T[K][Q]
\]

and

\[
\{p\}^* = [Q]^T\{p\}
\]

After solution, the reverse transformation is merely

\[
\{u\} = [Q]\{u\}^*
\]

Since \([Q]\) has an extremely low density, NASTRAN's sparse matrix multiply routines will carry out the indicated computations most efficiently. The essential task is the generation of the \([Q]\) data. With suitable arbitrary conventions, this can be accomplished within the module SSMA and included in the PSD data block for transfer to other modules such as SSVE where the reverse transformation can be made.

Multi-level substructure analysis, while not covered explicitly by the scope of this effort, can be obtained with a small modification to the existing capability herein defined. In this case, the ASET data block output from Phase II will contain both the pseudostructure degrees of freedom and the
equivalent Phase I external degree of freedom designations. Since several Phase I external degree of freedom designations may exist for each Phase II degree of freedom, the data block becomes somewhat more complex but no essential new difficulty is encountered. Once the correspondence recognition feature is accomplished, multi-level substructure analysis capability essentially becomes open-ended with no real limit to the possible number of levels. Since the degree of freedom correspondence is automatically carried forward at each level, it will be possible to return directly to the original substructures in any data recovery phase. In addition, the substructure formed at any level can be analyzed by itself. Figure 9 illustrates this process.

A user convenience improvement would be to replace the DTI form of the input of the table UFTABLE described earlier with a Case Control Deck packet similar to the structure plotter request packet. This will require new code in the Input File Processor (IFP) portion of the preface which will read the data cards, analyze them for correctness and form the UFTABLE data block. When implemented, the present requirement for a dummy UFTABLE input for subset 0 will be eliminated. The language specifications can be made as user-oriented as desired since IFP will interpret the statements and form the UFTABLE data block. At such time as the data block UFTABLE is added to the FIAF as a recognized output from the preface, an EQUIV DMAP instruction will be needed in the rigid formats if DTI input is also to be available.

Another enhancement will be to allow the coupling of individual degrees of freedom at a grid point rather than all unconstrained degrees of freedom as will be done in Level 16. This task is not dependent on anything presented in this paper but can be done at any time since it merely involves the definition of a new data card similar to the present SAME card (see figure 10) and the addition of minor processing logic in the Level 16 module PVEC.

Several other improvements which will either remove restrictions or extend the capability can be envisioned. The important point is that any or all of these improvements can be relatively easily made once the basic capability is operational.

CONCLUSION AND RECOMMENDATIONS

An approach has been presented by which basic automatic substructure analysis can be added to NASTRAN. It is suggested that this technique can be implemented in Level 16 with a relatively small level of effort. While the resulting capability will not completely satisfy all potential users, it is felt that most substructure analyses will be encompassed. Furthermore, reasonable extensions of the techniques presented can be made which will result in any degree of further sophistication, convenience and automation that can be supported by resources that are made available for this purpose.
APPENDIX A

RIGID FORMAT DMAP LISTING FOR SØL 16, (0)

STATIC SUBSTRUCTURE ANALYSIS (ALL PHASES)

Subset 0 of Rigid Format 16 contains all DMAP instructions for Static Substructure Analysis. If run without subsets 1, 2, or 3, a complete static analysis will result which is equivalent to Rigid Format 1. Selection of one of the subsets 1, 2 or 3, however, reduces Rigid Format 16 to a DMAP sequence which will automatically solve Phase I, II or III of Static Substructure Analysis. These subsets are displayed in Appendices B, C and D. The DMAP compilation listing of SØL 16,0 constitutes the remainder of this Appendix, including an explanatory description of the DMAP similar to that found in Section 3 of the NASTRAN User's Manual.
APPENDIX A

RIGID FORMAT DMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 16 - SUBSET ZERO

NAS TRAN SOURCE PROGRAM COMPILATION
DMAP-DMAP INSTRUCTION

1 BEGIN NO. 16 BASIC STATIC SUBSTRUCTURE ANALYSIS - SERIES N &
2 FILE LLL=TAPE $
3 FILE UG=APPEND/PGG=APPEND/UGV=APPEND/UM=SAVE/KNH=SAVE $
4 JUMP PH2BK1 $
5 PARAM //C,N,ADD/V,N,PHASE2/C,N,0/C,N,-1 $
6 (SUMER) UEGM4,UGTABLE/KGGPS,PGPS,P30ULM/C,Y,PUTGFT/C,Y,VERSAME/V,N,
 LUSET $
7 SAVE LUSET $
8 CHKNT KGGPS,PGPS,PSDATA $
9 LABEL PH2BK1 $
10 (GPI) UEGM1,UGM2,/GPL,EGEXIN,GPDT,CSTM,BGPUT,SIL/V,N,LUSET/ V,N,
 NUGPUT $
11 SAVE LUSET $
12 CHKNT GPL,EGEXIN,GPUT,CSTM,BGPUT,SIL $
13 (GP2) UEGM2,EGEXIN/ECK $
14 CHKNT ECT $
16 PURGE PLTSETX,PLTPAR,GPSETS,ELSETS/NuPLUB $
17 CNOD F1/NUGPDB $
18 PLTSET PGU8//EGEXIN/ECK/PLTSETX,PLTPAR,UPSETS,ELSETS/V,N,NSIL/
 JUMPLOT=-1 $
19 SAVE NSIL,JUMPLOT $
20 PRMSTG PLTSETX// $
21 PARAM //C,N,MPY/V,N,PLTFLG/C,N,1/C,N,1 $
22 PARAM //C,N,MPY/V,N,PFILG/C,N,0/C,N,0 $
23 CNOD PI,JUMPLOT $
24 (PLUT) PLTPAR,GPSETS,ELSETS,CASECC,BGPUT,EGEXIN,SIL,,,/PLUTX1/ V,N,
APPENDIX A

RIGID FORMAT UMAP LISTING
SERIES N *** EASIY STATIC SUBSTRUCTURE ANALYSIS ***
RIGID FORMAT 16 - SUNSET ZERO

NASTRAN SOURCE PROGRAM LUMP LATION
DMAP-DMAP INSTRUCTION

SAVE NSIL/V,N,LUSET/V,N,JUMPLOT/V,N,PLTFLG/V,N,PFILE $

SAVE JUMPLOT,PLTFLG,PFILE $

PATMSG PLTFLG/ $

LABEL P1 $

CHKPNT PLTFLG,GPSETS,ELSETS $

GP3 GEOM3,EDEXIN,GEOM2/SLT1,UT/VT/VN1,LUSET $

SAVE NGRAV $

PARAM //C,N,AND/V,N,NOMGG/V,N,NGRAV/V,Y,6UPHTT=1 $

PARAM //C,N,AND/V,N,NOMGG/V,N,NOMGG $

chkpnt SLT1,GPPT $

TA1 ECT1,EP1,GPPT,STL,GPPT1,STL/EP1,GPPT1/V,N,LUSET/V,N,
NUSIMP/C,N,1/V,N,NGENL/V,N,GCHNL $

SAVE NUSIMP,V,N,NGENL,GCHNL $

PARAM //C,N,AND/V,N,NOMET/V,N,NUGENL/V,N,NUSIMP $

COND ERRURS,NOELMT $

PARAM //C,N,AND/V,N,NOMET/V,N,NUGENL/V,N,NUSIMP $

COND ERRURS,NOELMT $

CHKPNT EST1,GEI,GPST,GOPT $

OPTPP1 MPT1,EP1,EP1,EST1/OPTPP1/V,N,PRINT/V,N,TSTART/V,N,LUUNT $

SAVE PRINT,TSTART,COUNT $

chkpnt OPTPP1 $

JUMP LOUPTOP $

LABEL LOUPTOP $

COND LBLL,NUSIMP $

PARAM //C,N,ADD/V,N,NOKGGX/C,N,1/C,N,0 $

CHP3 ECT1,STL,MPT,DI,TGEOM2,HELMT1,MELM,MULT1,VL/V,N,NOKGGX/V,
N,NOMGG/C,N,C,N,VC,Y,CY,GMAT1,SLT1,V,Y,LUOSR/C,Y,CPHUO/C,Y,
CPDLP/C,Y,CPTRPLT/C,Y,CPTRBSC $
APPENDIX A

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 16 - SUBSET ZERO

NASTRAN SOURCE PROGRAM COMPIIATION
UMAP-UMAP INSTRUCTION
NO.

48 SAVE NOKGGX,NOMGG $
49 CHKPT KELM,OKICT,MELM,MDICT $
50 COND JMPKGG,NOKGGX $
51 EMA GPECT,MDICT,KELM/KGGX,GST $
52 CHKPT KUGX,GST $
53 LABEL JMPKUG $
54 COND JMPKGG,NOMGG $
55 EMA GPECT,MDICT,MELM/MGG,CN=1,YN=1,MTASS=1.0 $
56 CHKPT NUG $
57 LABEL JMPKUG $
58 COND LBL1,GRPNT $
59 COND LARGXX,NOMGG $
60 GP9U BUPDT,CSTM,EQFXIN,MGG/CPPWG/V,Y,UPRPT/C,V,MTASS $
61 DSP GPPWG,,,,,V,N,CARNO $
62 LABEL LBL1 $
63 EQUIV KUGA,KGG/NOGENL $
64 CHKPT KUG $
65 COND LBL11A,NOGENL $
66 SMA3 GEI1/KGGX/KGG/V,N+LUSET/V,N,NUGNL/V,N,NUSMP $
67 CHKPT KUG $
68 LABEL LBL11A $
69 JMP PH2BKZ $
70 ADD KGG,KGEP/KGGT $
71 EQUIV KUGA,KGG/PM,SEZ $
72 CHKPT KUG $
73 LABEL PH2BKZ $
APPENDIX A

RIGID FORMAL UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 16 - SUBSET ZERO

NASTRAN SOURCE PROGRAM COMPIILATION
UMAP-UMAP INSTRUCTION
NUM

74 PARAM //CNS,MPY/VNN,NSKIP/CNS/CNSU $
75 JUMP LBL11 $
76 LABEL LBL11 $
77 (GP4) LASECTION/GE1/M4,EDEXIN,SIL,IPUT/VNN,USSET,USET/VNN,LUSSET/VNN,MPF1/VNN,MPCF2/VNN,SINGLE/VNN,UNIT/VNN,REALT/VNN,NSKIP/VNN,REPEAT/VNN,NOSET/VNN,1OL/VNN,NOA/LVNN,NOA/CY3,STU1U $
78 SAVE MPF1,MPCF2,SINGLE,UNIT,REALT,NSKIP,REPEAT,NOSET,NUL,NOA $
79 LABEL ERAUR3,NOA $
80 PARAM //CNS,AND/VNN,NSR/VNN,SINGLE/VNN,REALT $
81 PURGE KMK1,KLR,G/OM/REALT/GM/MPF1/UM/KOU,LOG,PU,UGVV,UVUV/UNIT/PS, KFS,KSS/SINGLE/QO/NUSR $
82 CHECK KMK1,KLR,G/OM,GM,GO,KCO,LOG,PU,UGVV,UVUV,PS,KFS,KSS,GO,USET,RG, YS,ASET $
83 CHECK LBL4,CCHC $
84 (GP5) UPL,GPST,USSET,SIL/UGPST/VNN,NUPST $
85 SAVE NOGPT $
86 COND LBL4,NOGPT $
87 UFP GGPST,///VNN,CARDNO $
88 LABEL LBL4 $
89 EQUIV KGG,KNN/MPF1 $
90 CHECK KNN $
91 COND LBL2,MPCF2 $
92 (MCE1) USET,RG/GM $
93 CHECK GM $
94 (MCE2) USET,G,KGK///KNN/// $
95 CHECK KNN $
96 LABEL LBL2 $
97 EQUIV KNN,KFF/SINGLE $

341
APPENDIX A

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***
RIGID FORMAT 16 - SUBSET ZERO

NASTRAN SOURCE PROGRAM COMPIlation
DMP-DMP INSTRUCTION
NU.

98 CHKPT KFF $
99 COND LBL3, SINGLE $
100 SCEI USET,KNN, KFF, KFS, KSS, $
101 CHKPT KFS, KSS, KFF $
102 LABEL LBL3 $
103 EQUIV KFF, KAA/OMIT $
104 CHKPT KAA $
105 COND LBL5, OMIT $
106 SMP1 USET, KFF, GO, KAA, KOC, LDO, $
107 CHKPT WKKAA, KOC, LDO $
108 LABEL LBL5 $
109 EQUIV KAA, KLL/REACT $
110 CHKPT KLL $
111 PARAM //CN, SUB/V, N, PHASE1/Cn, O/Cy, SUBID=0 $
112 COND LBL7, PHASE1 $
113 COND LBL6, REACT $
114 CONG USET, KAA, KLL, KLR, KRR $*
115 CHKPT KLL, KLR, KRR $*
116 LABEL LBL6 $*
117 REMO KLL/LLL $*
118 CHKPT LLL $*
119 COND LBL7, REACT $*
120 REMO LLL, KLR, KPR/DM $*
121 CHKPT DM $*
122 LABEL LBL7 $*
123 SSUL SLT, BGRPV, CSTM, SIL, EST, MPT, GPTT, CUT, MUG, CASECL, ULT/PM/V, N,
USET/V, N, NSKIP $*

342
APPENDIX A

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 10 - SUBSET ZERO

NASA TRAN Source Program Compilation
umap-umap Instruction
num.

124 JUMP PH2or3 $
125 ADU PO, PPS, PC, T $
126 EQUIV PUT, PG, PHASE? $
127 LABEL PH2or3 $
128 CHKPT PG $
129 EQUIV PO, PL, NOSIET $
130 CHKPT PL $
131 COND LQ1Q, NOSIET $
132 $SS02$ USE, GM, YM, KFS, GO, DM, PG, WR, PO, PS, PL $
133 CHKPT LR, PO, PS, PL $
134 LABEL LQ1U $$
135 COND PUL1Q, NOSIET $
136 $SS03$ LLL, KLL, PL, LCO, KQW, PO, ULV, UCCV, RULV, RUOV, V, N, UNIT/V, Y, IRES=-1/V, V, N, EPSI $$
137 SAVE EPSI $$
138 CHKPT ULV, UDOV, RULV, RUOV $$
139 COND LQ9, IRES $$
140 MATGPR GPL, USE, S/IL, RULV, /C, A, L $
141 MATGPR GPL, USE, S/IL, RUOV, /C, N, D $
142 LABEL LQ1V $$
143 JUMP PH3B1 $$
144 LABEL PH18K1 $$
145 COND SKIP, UNIT $$
146 FS LUO, PO, UDOV $$
147 EQUIV UDOV, UDOV, PHASE? $$
148 CHKPT UDOV $$
149 LABEL SKIP $
APPENDIX A

RIGU FORMAT UMAP LISTING
STEPS N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***
RIGU FORMAT I6 = 8

NASTRAN SOURCE PROGRAM COMPIILATION
DMAP-UMAP INSTRUCTION

150 OUTPUT ASET,KLL,PLs/C,1-1/C,1,0/C,1,Y,USKTP101 $
151 PARAM //C,1,ADD/Y,N,PHASE3/C,1,0/C,1-1 $
152 EQUIV ULVA,CY,SUBID/C,1,Y,UNIT/C,1,Y,USKTP102 $
153 EQUIV ULVX,ULV/PHASE3 $
154 CHKPT1 ULV $
155 LABEL PH3bk1 $
156 UXT P,ULVX,UD2V,YS,G0,GM,PS,KF,S,WS,WW/DDV,PGS,WW/V,N,NSKIP/
 C,1,STATICS $
157 CHKPT1 UGV,PGS $
158 CAND LBL8,REPEAT $
159 REPT LBL11,105 $
160 JUMP ERR0R1 $
161 PARAM //C,1,NOT/V,N,TEST/V,N,REPEAT $
162 CONU ERR0R5,TEST $
163 LABEL LBL8 $
164 CHKPT1 UG $
165 JUMP PH2bk4 $
166 SVE PS,DATA,UGV/ $
167 LABEL PH2bk4 $
168 SR1 LASECC,CSTM,MPT,DIT,ECEXIN,SIL,DPTT,DT,DPDT,T,WG,ULV,EST,PGG/
 CPG,1,001,0UGV1,DES1,0DFL,PGV1/C,1,STATICS $
169 CAND LBL10,0COUNT $
170 UPTPR2 UPTP1,DES1,EST/OPTP2,EST1/V,N,PRINT/V,N,START/V,N,COUNT $
171 EQUIV EST1,EST/COUNT/OPTP2,OPTP1/COUNT $
172 CONU 1,0OPEND,PRINT $
173 LABEL LBL0FP $
174 PARAM //C,1,MPY/V,N,CARDNO/C,1,0/C,1,0 $
APPENDIX A

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 10 - SUBSET ZERO

NASTRAN SOURCE PROGRAM Compilation
UMAP - UMAP INSTRUCTION
Number.

175 UFP UGW1, DPG1, DPG1, DFG1, DESF1, DES1 //V30, LARUMO $
176 SAVE CARUNO $
177 COND P2, JUMPLO $
178 (PLUT) PLTY.7, OPSET, LSSET, CASECC, BROUT, ELAINT, SEL, PUX1, XPUPER, DES1/
PLUY17/V, N, NSET/V, N, LUSET/V, N, JUMPPLU/V, N, PLTFLU/V, N, PFILE $
179 SAVE PFILE $
180 PRTPARM PLUY17// $
181 LABEL F2 $
182 LABEL LUPEND $
183 COND FINIS, COUNT $
184 REPT LOOPTOP, 100 $
185 JUMP FINIS $
186 LABEL ENAUR $
187 PRTPARM //Cn+1/Cn, N, STATICS $
188 LABEL ENAUR $ $
189 PRTPARM //Cn+2/Cn, N, STATICS $
190 LABEL ENAUR9 $
191 PRTPARM //Cn+3/Cn, N, STATICS $
192 LABEL ENAUR4 $
193 PRTPARM //Cn+4/Cn, N, STATICS $
194 LABEL ENAUR $ $
195 PRTPARM //Cn+9/Cn, N, STATICS $
196 LABEL FINIS $
197 END $

NU ERRORS FOUND - EXECUTE NASTRAN PROGRAM
APPENDIX A

Description of DMAP Operations for Basic Static Substructure Analysis

6. SSMA analyzes and/or generates coupling data and forms coupled substructure matrices $[K_{gs}]$ and $[P_{gs}]$.
10. GP1 generates coordinate system transformation matrices, tables of grid point locations, and tables for relating internal and external grid point numbers.
13. GP2 generates Element Connection Table with internal indices.
17. Go to DMAP No. 27 if no plot package is present.
18. PLTSET transforms user input into a form used to drive structure plotter.
20. PRTMSG prints error messages associated with structure plotter.
23. Go to DMAP No. 27 if no undeformed structure plot request.
24. PLBT generates all requested undeformed structure plots.
26. PRTMSG prints plotter data and engineering data for each undeformed plot generated.
29. GP3 generates Static Loads Table and Grid Point Temperature Table.
34. TAI generates element tables for use in matrix assembly and stress recovery.
37. Go to DMAP No. 192 and print error message if no elements have been defined.
40. BPTPRI property optimization module for Level 16.
45. Go to DMAP No. 62 if there are no structural elements.
47. EMG generates structural element matrix tables and dictionaries for later assembly.
50. Go to DMAP No. 53 if no stiffness matrix is to be assembled.
51. EMA assembles stiffness matrix $[K_{gs}]$ and Grid Point Singularity Table.
54. Go to DMAP No. 57 if no mass matrix is to be assembled.
55. EMA assembles mass matrix $[M_{gs}]$.
58. Go to DMAP No. 62 if no weight and balance request.
59. Go to DMAP No. 188 and print error message if no mass matrix exists.
60. GPWG generates weight and balance information.
61. BPF formats weight and balance information and places it on the system output file for printing.
63. Equivalence $[K_{gs}]$ to $[K_{gg}]$ if no general elements.
65. Go to DMAP No. 68 if no general elements.
66. SMA3 adds general elements to $[K_{gs}]$ to obtain stiffness matrix $[K_{gg}]$.
70. $K_{gs} [K_{gg}]$ and $[P_{gs}]$ to form $[K_{total}]$.
APPENDIX A

71. Equivalence \([K_{gg}^{total}] \) to \([K_{gg}] \) if coupling phase.

75. Go to next DMAP instruction if cold start or modified restart. LBL1 will be altered by
the Executive System to the proper location inside the loop for unmodified restarts within
the loop.

76. Beginning of loop for additional constraint sets.

77. GP4 generates flags defining members of various displacement sets (UES1), forms multipoint
constraint equations \([R_y](u_y) = 0 \) and forms enforced displacement vector \((Y_y) \).

79. Go to DMAP No. 190 and print error message if no independent degrees of freedom are defined.

83. Go to DMAP No. 88 if general elements present.

84. GPSP determines if possible grid point singularities remain.

86. Go to DMAP No. 88 if no Grid Point Singularity Table.

87. GPFP formats the table of possible grid point singularities and places it on the system output
file for printing.

89. Equivalence \([K_{gg}] \) to \([K_{nn}] \) if no multipoint constraints.

91. Go to DMAP No. 96 if MCE1 and MCE2 have already been executed for current set of multipoint
constraints.

92. MCE1 partitions multipoint constraint equations \([R_m] = [R_m^1] + [R_m^2] \) and solves for multipoint
constraint transformation matrix \([G_m] = [R_m^{-1}] [R_m^2] \).

94. MCE2 partitions stiffness matrix

\[
[K_{gg}] = \begin{bmatrix}
K_{nn} & K_{nm} \\
K_{mn} & K_{mm}
\end{bmatrix}
\]

and performs matrix reduction

\[
[K_{nn}] = [K_{nn}] + [G_m^T][K_{mm}] + [K_{nn}][G_m] + [G_m^T][K_{nn}][G_m] .
\]

97. Equivalence \([K_{nn}] \) to \([K_{ff}] \) if no single-point constraints.

99. Go to DMAP No. 102 if no single-point constraints.

100. SLE1 partitions out single-point constraints

\[
[K_{nn}] = \begin{bmatrix}
K_{ff} & K_{fr} \\
K_{rf} & K_{ss}
\end{bmatrix}
\]

103. Equivalence \([K_{ff}] \) to \([K_{aa}] \) if no omitted coordinates.
105. Go to DMAP No. 108 if no omitted coordinates.

106. SMP1 partitions constrained stiffness matrix

\[
[K_{ff}] = \begin{bmatrix}
K_{aa} & K_{ao} \\
K_{oa} & K_{oo}
\end{bmatrix}
\]

solves for transformation matrix \([G_o] = -(K_{oo})^{-1}K_{oa}\)

and performs matrix reduction \([K_{aa}] = [K_{aa}] + [K_{oa}] [G_o] \).

109. Equivalence \([K_{aa}] \) to \([K_{kk}] \) if no free-body supports.

112. Go to DMAP No. 122 if initial substructure data reduction (Phase I).

113. Go to DMAP No. 116 if no free-body supports.

114. RBMG1 partitions out-free body supports

\[
[K_{aa}] = \begin{bmatrix}
K_{kk} & K_{kr} \\
K_{rk} & K_{rr}
\end{bmatrix}
\]

117. RBMG2 decomposes constrained stiffness matrix \([K_{kk}] = [L_{kk}] [U_{kk}] \).

119. Go to DMAP No. 122 if no free-body supports.

120. RBMG3 forms rigid body transformation matrix

\[
[D] = -(K_{kr})^{-1}[K_{rr}]
\]

calculates rigid body check matrix

\[
[X] = [K_{rr}] + [K_{rr}] [D]
\]

and calculates rigid body error ratio

\[
e = \frac{||X||}{||K_{rr}||}
\]

123. SSG1 generates static load vectors \([P_g]\).

125. Add \((P_g)\) and \((P_{gs})\) to form \((P_{gtotal})\).

126. Equivalence \((P_{gtotal})\) to \((P_g)\) if coupling phase.

129. Equivalence \((P_g)\) to \((P_g)\) if no constraints applied.
APPENDIX A

132. SSG2 applies constraints to static load vectors

\[
(P_g) = \begin{bmatrix}
\tilde{P}_n \\
\tilde{P}_m
\end{bmatrix}, \\
(P_n) = (\tilde{P}_n) + [G_n^T](P_m),
\]

\[
(P_m) = \begin{bmatrix}
\tilde{P}_f \\
\tilde{P}_s
\end{bmatrix}, \\
(P_f) = (\tilde{P}_f) - [K_f](Y_f),
\]

\[
(P_s) = \begin{bmatrix}
\tilde{P}_a \\
\tilde{P}_o
\end{bmatrix}, \\
(P_a) = (\tilde{P}_a) + [G_o^T](P_o),
\]

and calculates determinate forces of reaction \((q_n) = -(P_m) - [G]^T(P_f) \).

135. Go to DMAP No. 144 if initial substructure data reduction (Phase I).

136. SSG3 solves for displacements of independent coordinates

\[
(u_x) = [K_{xx}]^{-1}(P_x),
\]

solves for displacements of omitted coordinates

\[
(u_x^0) = [K_{xx}]^{-1}(P_o),
\]

calculates residual vector (RULV) and residual vector error ratio for independent coordinates

\[
(\delta P_x) = (P_x) - [K_{xx}](u_x),
\]

\[
\epsilon_x = \frac{\left(\delta P_x\right)^T}{(P_x)^T(u_x)}
\]

vector (RULV) and residual vector error ratio for omitted coordinates

\[
(\delta P_o) = (P_o) - [K_{xx}](u_x^0),
\]

\[
\epsilon_o = \frac{\left(\delta P_o\right)^T}{(P_o)^T(u_o^0)}
\]
APPENDIX A

\[e_0 = \frac{(u_0^T)(p_0)}{(p_0^T)(u_0)} \]

139. Go to DMAP No. 142 if residual vectors are not to be printed.
140. MATGPR prints the residual vector for independent coordinates (RULV).
141. MATGPR prints the residual vector for omitted coordinates (RUBV).
145. Go to DMAP No. 149 if no omits.
146. FBS solve for displacements of the omitted coordinates

\[\{u_{Ox}^O\} = [K_{OO}]^{-1}\{P_c\} \]

147. Equivalence \(\{u_{Ox}^O\}\) to \(\{u_0^O\}\) if initial substructure data reduction (Phase I).
150. OUTPUT1 write a user file on INPT containing analysis set information, \([K_{xx}]\) and \(\{P_x\}\)
152. UDBR recover \(\{u_k^x\}\) from coupling phase user file for substructure SUBID (Phase III)
153. Equivalence \(\{u_k^x\}\) to \(\{u_k\}\) for substructure data recovery.
156. SDR1 recovers dependent displacements

\[
\begin{pmatrix}
 u_8 \\
 u_r \\
 u_0
\end{pmatrix} = \{u_a\}, \quad \{u_c\} = [G_0]\{u_d\} + \{u_0^O\},
\]

\[
\begin{pmatrix}
 u_8 \\
 u_r \\
 u_0
\end{pmatrix} = \{u_d\}, \quad \begin{pmatrix}
 u_f \\
 y_5
\end{pmatrix} = \{u_n\},
\]

\[
\begin{pmatrix}
 u_m
\end{pmatrix} = [G_m]\{u_n\}, \quad \begin{pmatrix}
 u_n \\
 u_m
\end{pmatrix} = \{u_g\},
\]

and recovers single-point forces of constraint

\[
\{q_3\} = -(p_s) + [K_{fs}^T](u_f) + [K_{ss}^T](y_s).
\]

158. Go to DMAP No. 163 if all constraint sets have been processed.
159. Go to DMAP No. 76 if additional sets of constraint were to be processed.
160. Go to DMAP No. 186 and print error message if number of loops exceeds 100.
APPENDIX A

162. Go to DMAP No. 194 and print error message if multiple boundary conditions are attempted with improper subset.

166. SSVE partitions \(\{u_0 \} \) into substructure solution vectors and forms user file.

168. SDR2 calculates element forces and stresses \((\delta E_1, \delta E_1) \) and prepares load vectors, displacement vectors and single-point forces of constraint for output \((\delta B_1, \delta U_1, \delta U_1, \delta P_1) \).

170. \(\Omega PTPR2 \) property optimization module for Level 16.

172. Go to DMAP No. 182 if no property optimization print control.

175. \(\Omega FP \) formats tables prepared by SDR2 and places them on the system output file for printing.

177. Go to DMAP No. 181 if no deformed structure plots are requested.

178. PLOT generates all requested deformed structure plots.

180. PRTMSG prints plotter data and engineering data for each deformed plot generated.

183. Go to DMAP No. 197 if property optimization looping is finished.

184. Go to DMAP No. 44 if property optimization looping is not finished.

185. Go to DMAP No. 197 and make normal exit.

187. STATIC ANALYSIS ERROR MESSAGE NO. 1 - ATTEMPT TO EXECUTE MORE THAN 100 LOOPS.

189. STATIC ANALYSIS ERROR MESSAGE NO. 2 - MASS MATRIX REQUIRED FOR WEIGHT AND BALANCE CALCULATIONS.

191. STATIC ANALYSIS ERROR MESSAGE NO. 3 - NO INDEPENDENT DEGREES OF FREEDOM HAVE BEEN DEFINED.

193. STATIC ANALYSIS ERROR MESSAGE NO. 4 - NO ELEMENTS HAVE BEEN DEFINED.

195. STATIC ANALYSIS ERROR MESSAGE NO. 5 - A LOOPING PROBLEM RUN ON NON-LOOPING SUBSET.
APPENDIX B

RIGID FORMAT DMAP LISTING FOR SOL 16, (1,7,8,9)

STATIC SUBSTRUCTURE ANALYSIS PHASE I

Subset 1 of Rigid Format 16 reduces the rigid format to a DMAP sequence which solves Phase I of static substructure analysis. No new modules of interest are included. OUTPUT1, DMAP No. 150, is used to transfer the reduced boundary matrices onto User Files from which they are recovered in Phase II. The compilation listing of this DMAP sequence constitutes the remainder of this Appendix. Subsets 7, 8 and 9 remove non-essential capabilities for the purposes of this presentation. These capabilities, which may be utilized if desired, are:

<table>
<thead>
<tr>
<th>Subset</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Structure plotter</td>
</tr>
<tr>
<td>8</td>
<td>Grid Point Weight Generator</td>
</tr>
<tr>
<td>9</td>
<td>Property optimization</td>
</tr>
</tbody>
</table>

Appendix A contains a full listing of Rigid Format 16.
APPENDIX B

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***
RIGID FORMAT 16 - SUBSET ONE, SEVEN, EIGHT, NINE

NA STR AN S O U R CE P R O G R A M C O M P I L AT I O N
UMAP-UMAP INSTRUCTION
NO.
1 BEGIN NO.10 BASIC STATIC SUBSTRUCTURE ANALYSIS - SERIAL N $
2 FILE LLL=TAPE $
10 GP1 GEO1,GEOM2,/GPL,EQEXIN,GPDT,USTM,OUTPUT,SIL/V,N,LUSET/ V,N,
NQGPUT $
11 SAVE LUNET $
12 CHKPTN GPL,ECXIN,GPDT,CSTM,BGPUT,SIL $
13 GP2 GEO2,ECXIN/ECT $
14 CHKPTN ECT $
29 GP3 GEO3,ECXIN,GEOM2/SLT,GPIT/V,N,NUGRAV $
30 SAVE NGRAV $
51 PARAM //C,N,A&D/V,N,NOMGG/V,N,NOMGRAV/V,Y,UPMT=1 $
32 PURGE MMG,MELM,MDICT/NOMGG $
33 CHKPTN SLT,GPIT $
34 TAI ELT,EPIT,BGPD,SLT,GPIT,CSTM,ST,UC1,UPECT/V,N,LUSET/ V,N,
NUSIMP/C,N,1/V,N,NODEN/L/V,N,GFMEL $
35 SAVE NUSIMP,NODEN,GFMEL $
36 PARAM //C,N,A&D/V,N,NODELM1/V,N,NODELNL/V,N,NUSIMP $
37 COND ERROR4,NODELM $
38 PURGE KGDA,GPST/NUSIMP/OPST/GFMEL $
39 CHKPTN EST,GPST,GEI,GPST,OPGST $
45 COND LUBL1,NCSIMP $
46 PARAM //C,N,A&D/V,N,NOKGGX/C,N,1/C,N,0 $
47 CMG EST,CSTM,MP1,DI1,GEOM2,KELM,NUL1,MLM1,NU1T1/V,N,NOKGGX/V,
NOMGG/C,N,1/C,N,1/C,Y,COPMAYSS/C,Y,CMWMXX/C,Y,CMG/C,Y,
CMUADP/C,Y,CMWADDS/C,Y,CMPTML1/C,Y,CMPTML2/ C,Y,CMPTUBE/C,Y,
CMWPLT/C,Y,CMPTPL/C,Y,CMPTBC $
48 SAVE NOKGGX,NOMGG $
49 CHKPTN KELM,KDICT,MELM,MDICT $
APPENDIX B

RIGID FORMAT: UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 10 - SUBSET ONE, SEVEN, EIGHT, NINE

NAS TRANS SOURCE PROGRAM COMPILATION
UMAP-UMAP INSTRUCTION

50 COND JMPKGG, NOKGGX $
51 GMP G PE, KDLICT, KELM/KGGX, GPST $
52 CHKPT KGGX, GPST $
53 LABEL JMPKGG $
54 COND JMPKGG, NOKGGX $
55 GMP G PE, MDLICT, KELM/KGG, /C, N, I, V, M, MASS=1.0 $
56 CHKPT KGG $
57 LABEL JMPKGG $
58 LABEL LOL $
59 LABEL KGG $
60 GMP G PE, NOKGGX $
61 JMPKGG $
62 CHKPT KGG $
63 GMP G PE, NOKGGX $
64 CHKPT KGG $
65 COND LOL14, NOKGGX $
66 GMP G PE, GEL1, KGGX, KGG/NOKGENL $
67 CHKPT KGG $
68 LABEL LOL14 $
74 PARAM //C, N, MPY/V, N, NSKIP/C, N, O/C, N, O $
77 GMP G PE, CASCC, GEOA, EQEXIN, SIL, GPDT/KGG, YS, USET, ASE, V, N, USET/ V, N, M, MPFC1/V, N, MPFC2/V, N, SINGLE/V, N, UM1/ V, N, REL, V/N, SNSKIP/V, N, M, REPEAT/V, N, NOSN/ V, N, NOSL/ Y, N, NUM/ Y, N, SUB, $
78 SAVE MPFC1, MPFC2, SINGLE, OMIT, REACT, NNSKIP, REPEAT, NSET, NUL, NOD $
79 COND ERKUR, NOL $
80 PARAM //C, N, AND/V, N, NOSR/V, N, SINGLE/V, N, REL $
81 PURGE KAR, KLR, Q, DM, REACT/GM/MPCF1/U, N, KDD, LDD, PU, UOOV, RUUV/OMIT/PS, KFS, KSS/SINGLE/QG/NOSR $
82 CHKPT KAR, KLR, Q, DM, GM, GO, KCC, LDD, PU, UOOV, RUUV/PS, KFS, KSS, W/US, REACT, FG, YS, AS $
83 COND LOL4, GENEL $
84 GMP G PE, GPL, GPST, USET, SIL/OGST/V, N, NOKGST $
APPENDIX B

RIGIU FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGIU FORMAT 16 - SUBSET ONE, SEVEN, EIGHT, NINE

NAS TK AN SOURCE PROGRAM COMPILATION
UMAP-UMAP INSTRUCTION

NO.

05 SAVE NWPST $
06 COND LBL4,NOGPST $
07 QFP UGPT*///V,0N,CARDNO $
08 LABEL LBL4 $
09 EQUIV KG*KNN/MDFC1 $
10 CHKPT KIN $
11 COND LBL2,MDFC2 $
12 MCE1 SSET,GM/IA $
13 CHKPT GM $
14 MCE2 SSET,GM,KGG///KNN, $
15 CHKPT KNN $
16 LABEL LBL2 $
17 EQUIV KNN,KFF/SINGLE $
18 CHKPT KFF $
19 COND LBL3,SINGLE $
20 SECI SSET,KN,///KFF,KFS, $
21 CHKPT KFS,KSS,KFF $
22 LABEL LBL3 $
23 EQUIV KFF,KAA/OMIT $
24 CHKPT KAA $
25 COND LBL5,OMIT $
26 SMPI SSET,KFF///GO,KAA,KCC,LOD $
27 CHKPT GU,KAA,KOO,LOD $
28 LABEL LBL5 $
29 EQUIV KAA,KLL/REACT $
30 CHKPT KLL $

355
APPENDIX B

RIGID FFORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FFORMAT 16 - SUBSET ONE, SEVEN, EIGHT, NINE

NASTRAN SOURCE PROGRAM COMPIILATION
UMAP-UMAP INSTRUCTION
NO.

111 PARAM //CN,SUB/1.V,PHASE1/CNHO/C,N,/Sub1/=O $
112 COND LBL7,PHASE1 $
113 COND LBL6,REACT $
114 RBMG1 USET,KA4//KLL,KLR,KRR$ $
115 CHAPNT KLL,KLR,KRR $
116 LABEL LBL6 $
117 RBMG2 KLL//LLL $
118 CHAPNT LLL $
119 COND LBL7,REACT $
120 RBMG3 LLL,KLR,KRR/DM $
121 CHAPNT DM $
122 LABEL LBL7 $
123 SS01 SLT,BRPDT,CSTM,SIL,EST,MPT,UPFT,LUT,MUG,LASECC,ULT/PG/V/N,$
124 CHAPNT PL $
125 EQUIV PG,PL/NOSET $
126 CHAPNT PL $
127 COND LBL10,NOSET $
128 SS02 USET,GM,YS,KFS,SO,OM,PG/QR,PO,VS,PL $
129 CHAPNT WR,PU,PS,PL $
130 LABEL LBL10 $
131 COND SKIP,OMIT $
132 RPG LQD,PO/UNOVX $
133 EQUIV UNOVX,UNOV/PHASE1 $
134 CHAPNT UDV $.
135 LABEL SKIP $
136 OUTPUT ASET,KLL,PL,///CN,-1/CNH0/C,N,USmj/1D$ $
APPENDIX B

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 10 - SUBSET ONE, SEVEN, EIGHT, NINE

 N A S T R A N S O U R C E P R O G R A M C O M P I L A T I O N
 DMAP-DMAP INSTRUCTION
 NO.

 185 JUMP F1415 $
 188 LABEL ERROR2 $
 169 PRTPARM//C,N3-2/C,N6STATICS $
 190 LABEL ERROR3 $
 191 PRTPARM//C,N3-3/C,N5STATICS $
 192 LABEL ERROR4 $
 193 PRTPARM//C,N3-4/C,N5STATICS $
 196 LABEL FINISH $
 197 END $

 NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM
APPENDIX C

RIGID FORMAT DMAP LISTING FOR SOL 16, (2,6,7,8,9)

STATIC SUBSTRUCTURE ANALYSIS PHASE II

Subset 2 of Rigid Format 16 reduces the rigid format to a DMAP sequence which solves Phase II of static substructure analysis. The new modules of interest are SSMA, the Substructure Matrix Assembler, DMAP No. 6, and SSVE, the Substructure Vector Extractor, DMAP No. 166. The compilation listing of this DMAP sequence constitutes the remainder of this Appendix. Subsets 6, 7, 8 and 9 remove non-essential capabilities for the purposes of this presentation. These capabilities, which may be utilized if desired, are:

<table>
<thead>
<tr>
<th>Subset</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Checkpoint</td>
</tr>
<tr>
<td>7</td>
<td>Structure Plotter</td>
</tr>
<tr>
<td>8</td>
<td>Grid Point Weight Generator</td>
</tr>
<tr>
<td>9</td>
<td>Property optimization</td>
</tr>
</tbody>
</table>

Appendix A contains a full listing of Rigid Format 16.
APPENDIX C

RIGIU FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGIU FORMAT 10 - SUBSET TWO, SIX, SEVEN, EIGHT, NINE

NASTRAN SOURCE PROGRAM LUMPILATION
DMAP-UMAP INSTRUCTION

1 BEGIN NH16 BASIC STATIC SUBSTRUCTURE ANALYSIS - SERIES N $
2 FILE LLL=TAPE $
3 FILE WG=APPEND/PG=APPEND/UV=APPEND/UM=SAVE/KN=SAVE $
5 PARAM //C,ADD/V,N,PHASE2/C=0/C=1 $
6 GSA VELMUP+UFTABLE/KGPGS=,PDPGSPDUGA/C,T,PRTUPT/C,Y,UESAME/V,N,
LUSET $
7 SAVE LUSET $
10 GP1 GEOM1,GEOM2,/GPL,EDEXIN,GPDT,CSTM,GPDT,..//V,N,LUSET/V,N,
NUGP $
11 SAVE LUSET $
12 CHKPT GPL,EDEXIN,GPDT,CSTM,BGPOT,SLE $
13 GP2 VELM2,EDEXIN/ECT $
29 GP3 GEOM3,EDEXIN,GEOM2/SLT,GPTT/V,N,..C2L $
30 SAVE NUGRAV $
31 PARAM //C,N,AND/V,N,NCMGV/V,N,NODGRAV/V,Y,NUHOTPNT=1 $
32 PURGE PGUG,HELM=DICT/NMG $
34 CAL ECT,SGPT/BGPOT,SLE,GPTT/CSTM/EST,UET,OGELT/V,N,LUSET/V,N,
NUSIMP/CT=N1/V,N,NODGENLV/V,N,NGENEL $
35 SAVE NUSIMP/,NODGENL,GENEL $
36 PARAM //C,N,AND/V,N,NOELMT/V,N,NOGENL/V,N,NUSIMP $
28 PURGE KGUX,GPST/NUSIMP/DGPST/GENEL $
45 CUNO LBYL,N,SIMP $
66 PARAM //C,N,ADD/V,N,NMGXX/C=1/C=0 $
47 EMG EST,CSTM,HPYD,TDT,GEOM2,/KELP,MULT,RELM,MULT,..//V,N,NURGXX/V,
K=N/MG/C,N/C,N/C,N/C,Y,CDUM=M3Y/C,Y,CDUM/C,Y,PHW/C,Y,
CPWUAT/C,Y,CPQHZOT2/C,Y,CPTRPLT/C,Y,CPTRPL $
48 SAVE NURGXX,NMG $
APPENDIX C

RIGID FORMAT UMAP LISTING
SCRIPT N *** MOTOR STATIC SUB-STRUCTURE ANALYSIS ***
RIGID FORMAT 10 - SUBSET TWO, SIX, SEVEN, EIGHT, NINE

LACTRAN SOURCE PROGRAM COMPIATION
DMAP-UMAP INSTRUCTION

50 Cond JMPAUG, NOXGGX $
51 END UPECT, KOICT, KELM/KGGX, GPST $
53 Label JMPKUG $
54 Cond JMPHUG, NOXGG $
55 END UPECT, KOICT, KELM/HUG, / C, N-1, V, Y, W-50, 1.0 $
57 Label JMPHUG $
62 Label LBL1 $
63 Equiv AEGX, KGGX/AGGENL $
65 Cond LBL114, NOXGENL $
66 END UEL, KGGX/KGG/V, N, N, LSET/V, N, AGGENL/V, N, N, NUSDIM $
68 Label LBL115 $
70 Add KUG, AGOPS/KGOT $
71 Equiv KGOT, KGG/PHASEZ $
74 Param // C, N, P/V, N, NSKIP/C, N, O/C, N, O $
75 Jump LBL116 $
76 Label LBL117 $
77 GPA CAS ECCC, GEDOM, EQFXIN, S1LGPUT/A, T2, USE/T, ADLT/V, N, LSET/V, N, LSET/V, N,
MPCF1/V, N, MPCF2/V, N, SINGLE/V, N, HCLT/V, N, N, SHIF/V, N, NLPLAT/V, N, N, NOSET/V, N, NCL/V, N, LON/LAY, SUBIU $
78 Save MPCF1, MPCF2, SINGLE/DIM, REACT, NSKIP, NLPLAT, NUSD, NUL, NOA $
79 Cond ERRUAZ, NOL $
80 Param // C, N, AND/V, N, NOSR/V, N, SINGLE/V, N, REACT $
81 Purge KRR, KLPL, GR, CM/RAFACT/GM/MPCF1/OU, KOU, LOU, PU, UOUV, NUOU/UNIT/PS,
KPS, RSS/SINGLE/QG/NOSR $
89 Equiv KUG, KNH/MPCF1 $
91 Cond LBL2, MPCF2 $
92 AC1 USEI, PG/AM $
94 AC2 USET, GM, KGG, KNN, KNN, N $
APPENDIX C

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC SIF TC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 1C - SUBSET TWO, SIX, SEVEN, LIGHT, NINE

NASTRANS SOURCE PROGRAM COMPILATION
UMAP-UMAP INSTRUCTION
NO.

96 LABEL LBL2 $
97 EQUIV KNN,KFF/SINGLE $
99 COND LBL3,SINGLE $
100 0001 USET,KNN,KFF,KFS,KSS $*
102 LABEL LBL3 $
103 EQUIV KFF.KAA/OMIT $*
105 COND LBL5,OMIT $*
106 SKP 0 USET,KFF,GO,KAA,KCC,LOU $*
108 LABEL LBL5 $*
109 EQUIV KAA,KLL/REACT $*
113 COND LBL6,PFAE $*
114 0002 USET,KAA,KLL,KLR,KRR $*
116 LABEL LBL6 $*
117 0002 KLL/LLL $*
119 COND LBL7,REACT $*
120 0002 LLL,KLR,KRR/OM $*
122 LABEL LBL7 $*
123 S$ SLL SLT,GPOT,CSTY,SLT,EST,MPT,GPIT,UT,HG6,CASLCC,DT/PV/VN,
LUSET/VN,TSKTS $*
125 ADD PG,PO/PS/PG $*
126 EQUIV PG,PG/PS $*
129 EQUIV PG,PL/NOS $*
131 COND LBL9,NOSET $*
132 S$ SLL USET,GN,KFS,GO,DM,PG/QR,PO,PS,PL $*
134 LABEL LBL10 $*
136 S$ SLL LLL,KLL,PL,ICD,KDO,PG,ULV,UVV,KUV,UVV/VN,UNIT/VY,RES=1/
VY,N,SKIP/VY,N,EP $*

361
APPENDIX C

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***
RIGID FORMAT 16 - SUBSET TWO, SIX, SEVEN, EIGHT, NINE

M A S T R A N S O U R C E P R O G R A M C O M P I L A T I O N
UMAP-UMAP INSTRUCTION

APPENDIX C

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 16 - SUBSET TWO, SIX, SEVEN, EIGHT, NINE

NASTRAN SOURCE PROGRAM LUMPILATION
OMAP-DMAP INSTRUCTION
NO. 155 PRTPARM //C,N,-5/C,N,STATICS $
156 LABEL FINIS $
157 END $

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM
APPENDIX D

RIGID FORMAT DMAP LISTING FOR SØL 16,(3,6,7,8,9)

STATIC SUBSTRUCTURE ANALYSIS PHASE III

Subset 3 of Rigid Format 16 reduces the rigid format to a DMAP sequence which solves Phase III of static substructure analysis. A new module of interest is UDBR, the User File Data Block Recovery, DMAP No. 152. The compilation listing of this DMAP sequence constitutes the remainder of this Appendix. Subsets 6, 7, 8 and 9 remove non-essential capabilities for the purposes of this presentation. These capabilities, which may be utilized if desired, are:

<table>
<thead>
<tr>
<th>Subset</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Checkpoint</td>
</tr>
<tr>
<td>7</td>
<td>Structure Plotter</td>
</tr>
<tr>
<td>8</td>
<td>Grid Point Weight Generator</td>
</tr>
<tr>
<td>9</td>
<td>Property optimization</td>
</tr>
</tbody>
</table>

Appendix A contains a full listing of Rigid Format 16.
APPENDIX D

RIGIU FORMAT DMAPP LISTING
SERIES N *** 0BASIC STATIC SUBSTRUCTURE ANALYSIS ***
RIGIU FORMAT lo - SUBSET THREE, SIX, SEVEN, EIGHT, NINE

NAS TRAN SOURCE PROGRAM COMPI LATION
DMAP-DMAP INSTRUCTION
NJ.

APPENDIX D

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***
RIGID FORMAT 10 - SUBSET THREE, SIX, SEVEN, EIGHT, NINE

NAS TRANSPUCE PROGRAM COMPIILATION
UMAP-DMAP INSTRUCTION NUM.

55 GMA GPECT,MDICT,MEM/MiG,/(C,1,-1/C,1,1/THA5S=1.0 $
57 LABEL JMPMUG $
62 LABEL LBL1 $
63 EQUIV KUGX,KGG/NOGENL $
55 COND LBL11A,NOGENL $
66 GMA3 GE1,KGGX/KGG/V,N,LUSET/V,N,NOGENL/V,N,NOSIMP $
68 LABEL LBL11A $
74 PARAM //C,N,M,MY,VPN,NSKIP/C,N,0/C,N,0 $
77 GP4 CASECC,CCGME,ED0XN,SIL,GP0T/NG,TV,USET,SEE/V,N,LUSET/V,N,
 MFCFI/V,N,MPCF2/V,N,SINGLE/V,N,OMIT/V,N,EMCT/V,N,NSKIP/V,N,
 REPAT/V,N,NOSE//V,N,NO/LV,N,N,NO/4,V,V,UBIU $
78 SAVE MFCFI,MPFC2,SINGLE,OMIT,REACT,NSKIP,REPAT,LUSET,NUL,NUA $
79 COND ERR01$3,NO \Rightarrow
80 PARAM //C,N,AND/V,N,NOSR/V,N,SINGLE/V,N,REACT \Rightarrow
81 PURGE KAR,KLR,0,7,DM,REACT,GM,MPCF1/LU,LUU,LUU,LUU,LUU,LUU,VOMIT/PS,
 KPS,KSS,SINGLE/OG/NOSR \Rightarrow
83 COND LBL4,GENEL \Rightarrow
84 GPSP GPL,GPST,USET,SIL/GPST/V,N,NUGPST \Rightarrow
85 SAVE NUGPST \Rightarrow
86 COND LBL4,NUGPST \Rightarrow
87 OFP OGPST,//////V,N,CARDNC \Rightarrow
88 LABEL LBL4 \Rightarrow
89 EQUIV KGG,KNN/MPCF1 \Rightarrow
91 COND LBL2,MPFC2 \Rightarrow
92 MCE1 USET,PG/GM \Rightarrow
94 MCE2 USET,GM,KCG,////KNN,/// \Rightarrow
96 LABEL LBL2 \Rightarrow
97 EQUIV KNN,KFF/SINGLE \Rightarrow

366
APPENDIX D

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***
RIGID FORMAT 16 - SUBSET THREE, SIX, SEVEN, EIGHT, NINE

NASTRAN SOURCE PROGRAM COMPIILATION
UMAP-UMAP INSTRUCTION
NO.

99 COND LBL3,SINGLE $
100 SCEL USET,KNN,,,/KFF,KFS,KSS,,, $
102 LABEL LBL3 $
103 EQUIV KFF,KAA/OMIT $
105 COND LBL5,OMIT $
106 SMPL USET,KFF,,,/GO,KAA,KGC,LDO,,,, $
108 LABEL LBL5 $
109 EQUIV KAA,KLL/REACT $
113 COND LBL6,REACT $
114 RBMGK USET,KAA,,/KLL,KLP,KRR,,, $
116 LABEL LBL6 $
117 RBMG2 KLL/LLI $
119 COND LBL7,REACT $
120 RBMG3 LLL,,LRR,,KRR/DM $
122 LABEL LBL7 $
123 SCEL SLT,,GPOT,,CSTM,,SIL,,EST,,MPT,,GPTT,,LUT,,MU,,CASECC,,DIT,,PG,,V,,N,, LUSET,,V,,N,,NSKIP $
129 EQUIV PG,PL/N0SET $
131 COND LBL10,N0SET $
132 SCEL USET,CM,,YS,,KFS,,GO,,OM,,PG,,UR,,PS,,PL $
134 LABEL LBL10 $
136 SCEL LLL,,LKL,,PL,,LCC,,K00,,P0,,ULV,,UCO,,RULV,,RUUV,,V,,H,,UNIT,,V,,Y,,TRES,,1/ V,,N,,NSKIP,,V,,N,,EPSI $
137 SAVE EPSI $
139 COND LBL9,TRES $
140 MATGPR GPL,USET,,SIL,,RULV,,/C,,N,,L $
141 MATGPK GPL,USET,,SIL,,RUUV,,/C,,N,,O $
APPENDIX D

RIDG F R M AT U M A P L ISTING
SERIES N *** BASIC STATIC SUBSTRUCTURE ANALYSIS ***

RIDG FORMAT 16 - SUBSET THREE, SIX, SEVEN, EIGHT, NINE

NASTRAN SOURCE PROGRAM COMPILATION
DAP-UMAP INSTRUCTION

142 LABEL LBL9 $
151 PARAM //C,N,ADD/V,N,PHASE3/C,N,0/C,N,-1 $
152 ULBX /ULVX,,/,C,Y,SURID/C,Y,UNIT/C,Y,USRTPID2 $
153 ENUIV ULVX,ULV/PHASE3 $
156 SUR1 USET,PG,ULV,URDV,V3,GC,GM,PS,AFS,KSS,WH/UIV,PGU,UG/V,N,NSKF/C,N,STATIC $
161 PARAM //C,N,NOT/V,N,TEST/V,N,REPEAT $
162 CUND ERROR5,TEST $
168 SUR2 CASECC,CSTM,MPY,DIT,EGEXIN,SIL,UTPIT,UTPBUT1,UG,UGU,EST,UPG/ UPG1,UGDV1,CE11,CEF1,PUGV1/L,N,STATIC $
174 PARAM //C,N,MPY/V,N,CARDNO/C,N,0/C,N,0 $
175 OFP UGIV1,OPG1,ODG1,OE1,OE11/,/V,N,CARDNO $
176 SAVE CARUNO $
185 JUMP FINIS $
188 LABEL ERROR2 $
189 PRTPARM //C,N,-2/C,N,STATIC $
190 LABEL ERROR3 $
191 PRTPARM //C,N,-3/C,N,STATIC $
192 LABEL ERROR4 $
193 PRTPARM //C,N,-4/C,N,STATIC $
194 LABEL ERROR5 $
195 PRTPARM //C,N,-5/C,N,STATIC $
196 LABEL FINIS $
197 END $

NO ERRORS FOUND - EXECUTE NASTRAN PROGRAM

368
APPENDIX E

RIGID FORMAT DMAP LISTING FOR SOL 17,(2,6,7,8)

NORMAL MODES SUBSTRUCTURE ANALYSIS PHASE II

Subset 2 of Rigid Format 17 reduces the rigid format to a DMAP sequence which solves Phase II of normal modes substructure analysis. The new modules of interest are SSMA, the Substructure Matrix Assembler, DMAP No. 5, and SSVE, the Substructure Vector Extractor, DMAP No. 127. The compilation listing of this DMAP sequence constitutes the remainder of this Appendix. Subsets 6, 7 and 8 remove non-essential capabilities for the purposes of this presentation. These capabilities, which may be utilized if desired, are:

<table>
<thead>
<tr>
<th>Subset</th>
<th>Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Checkpoint</td>
</tr>
<tr>
<td>7</td>
<td>Structure Plotter</td>
</tr>
<tr>
<td>8</td>
<td>Grid Point Weight Generator</td>
</tr>
</tbody>
</table>
APPENDIX E

RIGID FORMAT DMAP LISTING
SERIES N *** BASIC NORMAL MODES SUBSTRUCTURAL ANALYSIS ***

RIGID FORMAT 17 — SENSE TWO, SIX, SEVEN, EIGHT

NASTRAN SOURCE PROGRAM LUMPILATION

DMAP — DMAP INSTRUCTION NO.

1 BEGIN R0.17 BASIC NORMAL MODES SUBSTRUCTURAL ANALYSIS - SERIES N $
2 FILE LLL=TAFF $
4 PARAM //C,N,ADD/V,N,PHASE2/C,C,N0/C,N,-1 $
5 SMC GEOM4,UPTABLE/KGGPS,MISSPSUATA/C,Y,PHTUPT/C,Y,GENSAME/V,N,
 LUSET $
6 SAVE LUSET $
7 CHKPTI KGGPS,MISSPSUATA $
9 GP1 $GEOM1,GEOM2/GPL,EOEGIN,GPDT,CLSTM,GPDT,SIL/V,N,LUSET/V,N,
 NUGPDT $
10 SAVE LUSET $
12 GP2 $GEOM2,EOEGIN/ECT $
28 GP3 $GEOM3,EOEGIN,GEOM2,GPTT/V,N,NOGBAY $
30 TAA ECT,EPT,GPDT,SIL,RPDT,CLSTM/EST,LPST,UPECT/V,N,LUSET/V,N,
 NUSIMP/C,N1/V,N,NOSIMP/GENEL/V,N,GENEL $
31 SAVE NOSIMP,GENEL/GENEL $
32 PARAM //C,N,ADD/V,N,NOELTS/V,N,PHASE2/V,N,NOEILM $
33 COND ERR1,NOELTS $
34 PURGE KGGX,GPST,MISSP/NOSIMP/GPST/GENEL $
36 COND LBL1,NOSIMP $
37 PARAM //C,N,ADD/V,N,NOAKGGX/C,N0,1/C,N0 $
38 PARAM //C,N,ADD/V,N,NOAKGGX/C,N0,1/C,N0 $
39 EMG ECT,CLSTM,PMT,DIT,EOEGIN,HELM,MOULT,HELM,MOULT/V,N,1/UKGGA/V,
 N,NUMGGA/C,N0/C,N0/C,N0/C,Y,CPHAMS5/C,Y,CYPCU/C,Y,CYPCUKOO/C,Y,
 CPQUADCI/C,Y,CPQUAD2/C,Y,CPTRIM/C,Y,CPTKIA2/C,Y,CPTUBE/C,Y,
 CPQUPLT/C,Y,CPTREL/C,Y,CPRMLG $
40 SAVE NOKGGX,NOAKGGX $
42 COND JMPKGGX,NOKGGX $
43 ENA GPST,KGIC,HELM/KGGX,GPST $
APPENDIX E

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC NORMAL MODES SUBSTRUCTURE ANALYSIS ***
RIGID FORMAT 17 - SUBSET TWO, SIX, SEVEN, EIGHT

NASTRAN SOURCE PROGRAM Compilation
UMAP-UMAP Instruction

APPENDIX E

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC NORMAL MODES SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 17 - SUBSET TWO, SIX, SEVEN, EIGHT

NASTRAN TRANSCURE PROGRAM Compilation
DRAP-UMAP INSTRUCTIONS

89 COND LBL3, SINGLE $1974006473-372
90 GCE1 USET,KNN,MNN,,,/KFF,KFS,,KFF,,, $1
92 LABEL LBL5 $1
93 EQUIV KFF,KAA,OMIT $1
94 EQUIV KFF,MAR,OMIT $1
96 COND LBL5,OMIT $1
97 SMPI USET,KFF,,,/GO,KAA,KOC,LGD,,,,, $1
99 SMPI USET,GO,KFF,MAR $1
101 LABEL LBL5 $1
106 CCNU LBL6, REACT $1
107 CBMU USET,KAA,MAR/KLL,,LKL,KRR,KLL,KLR,MAR $1
109 CMU KLL/LLL $1
111 KBM13 LLL, KLR, KRR/ CM $1
113 KBM14 UMR, MLL, MLR, MPY, HR $1
115 LABEL LBL6 $1
116 BPU UYMNICS, GPL,SIL USET/GPL,SIL USET,,,$1
117 SAVE NOEDU $1
118 COND EKURZ, NOED $1
120 KEAD KAA, MAR, MR, OM, EED, USET, CASECC/LAM, PHI, MI, GLIUS/CN, MODES/VNA, NEIGV $1
121 SAVE NEIGV $1
123 FARM // CN, NPY/VNA, CARINO/CN, O/CN, O $1
124 OPP LAM, OEGS, //// VNA, CARINO $1
125 SAVE CAUHO $1
127 SSV 2 PSODATA, LMA, PHI, // $1
133 COND FINIS, NEIGV $1

372
APPENDIX E

RIGID FORMAT UMAP LISTING
SERIES N *** BASIC NORMAL MODES SUBSTRUCTURE ANALYSIS ***

RIGID FORMAT 17 - SUBSET TWO, SIX, SEVEN, EIGHT

NASTRAN SOURCE PROGRAM COMPILED
OMAP-UMAP INSTRUCTION
NO.

134 OPL-1 USET,...,GO,GET,K3,...,PHI1,...,C,PHI,CL1 &

136 PARAM //CNS,SAU/V,SIL/VS,LUSE &

137 EQUIV SIL,SIP/SCALAR,GET,GET/SIP/SCALAR &

139 CUND LBL7,SCALAR &

140 QLTRAN BUPUT,SIL/BGPDP,SIP/VS,LUSE/LUSEP &

141 SAVE LUSEP &

143 LABEL LBL7 &

148 OPL-2 CASELC,CTMP,HIT,EXIT,SIL,BGPDP,LAMA,PHI1,EST,PHIG,DEF1,PHIG/C,PHI,CL1 &

149 OPT UPHIG,OPT,DEF1,DEF2,VS,LUSEL &

150 SAVE CARUNO &

156 JUMP FINIS &

157 LABEL ERROR1 &

158 PRTPARM //CNS=1/CNS,MODES &

159 LABEL ERROR2 &

160 PRTPARM //CNS=2/CNS,MODES &

161 LABEL ERROR3 &

162 PRTPARM //CNS=3/CNS,MODES &

163 LABEL FINIS &

164 END &

NO ERRORS FOUND - EXECUTENASTRAN PROGRAM
APPENDIX F

UFTABLE USAGE WITH RIGID FORMATS 16 AND 17

Subset 0 requires a dummy form of the direct input table UFTABLE as shown:

<table>
<thead>
<tr>
<th>Card</th>
<th>DT1</th>
<th>UFTABLE</th>
<th>0</th>
<th>4</th>
<th>16</th>
<th>INP1</th>
<th>WIDGET02</th>
<th>ENDREC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>DT1</td>
<td>UFTABLE</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>WIDGET04</td>
<td>ENDREC</td>
</tr>
<tr>
<td>3</td>
<td>DT1</td>
<td>UFTABLE</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td>WIDGET06</td>
<td>ENDREC</td>
</tr>
<tr>
<td>4</td>
<td>DT1</td>
<td>UFTABLE</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td>WIDGET09</td>
<td>ENDREC</td>
</tr>
<tr>
<td>5</td>
<td>DT1</td>
<td>UFTABLE</td>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DT1</td>
<td>UFTABLE</td>
<td>5</td>
<td>0</td>
<td></td>
<td>INPT</td>
<td>WIDGETPH2</td>
<td>ENDREC</td>
</tr>
</tbody>
</table>

Subsets 1 and 3 do not need or use UFTABLE.

Subset 2 requires UFTABLE for information about the Phase I user files, identification of identical substructures, and, if desired, a user defined label for the coupling phase output user file. The content of the table will vary depending on where the Phase I materials were generated (e.g., Rigid Format 16 subset 1 or Rigid Format 1 with alters). The minimum data requirements are illustrated in example a. below with example b. showing the form for identifying items generated by rigid formats other than the coupling phase rigid format.

EXAMPLE a. (four substructures, N=4)

Card	1	2	3	4	5	6	7	8	9	10
 1 | DT1| UFTABLE | 0 | 4 | 16 | INP1| WIDGET02| ENDREC|
 2 | DT1| UFTABLE | 1 | 2 | | INP2| WIDGET04| ENDREC|
 3 | DT1| UFTABLE | 2 | 4 | | INP3| WIDGET06| ENDREC|
 4 | DT1| UFTABLE | 3 | 6 | | INP4| WIDGET09| ENDREC|
 5 | DT1| UFTABLE | 4 | 9 | | INPT| WIDGETPH2| ENDREC|

EXAMPLE b. (five substructures, N=5)

Card	1	2	3	4	5	6	7	8	9	10
 1 | DT1| UFTABLE | 0 | 5 | 17 | INP1| GROUP4 | ENDREC|+A00 |
 2 | DT1| UFTABLE | 1 | 10 | | INP4| PLT4 | 104823|+A01 |
 3a | DT1| UFTABLE | 2 | 13 | | HAMES|+A02 |
 3b | +A02| A | AS13B| K | KLL13| M | M134E | ENDREC|+A03 |
 4 | DT1| UFTABLE | 3 | 23 | | INP3 | | ENDREC|+A04 |
 5 | DT1| UFTABLE | 4 | 16 | 10 | INP3 | | ENDREC|+A05 |
 6a | DT1| UFTABLE | 5 | 237| | INP3 | | ENDREC|+A06 |
 6b | +A06| A | 3 | K | 1 | M | 2 | ENDREC|+A07 |
APPENDIX F

Remarks:

1. Card 1 defines the trailer for UFTABLE. Field 4 specifies that the table has N substructures. SSMA will use the information in field 5 to recognize that the tables were prepared for use with Rigid Format 16 and 17 for examples a and b respectively.

2. Cards starting with card 2 define records 1 thru N of UFTABLE, where N is the number of substructures. Field 4 gives the substructure identification number for use with the Phase II SAME bulk data cards and the Phase III data recovery module UDBR. Field 6 gives the GINØ file name for the User File containing the data for each substructure. Field 7 contains the User File Label for SSMA verification. Field 8 contains an optional tape reel identification number.

3. Optional data (shown in example b on card 3) is input whenever the data blocks required are not in the expected order on the User File as defined by the convention established for the Rigid Format being utilized. In the example, the ASET data block has the name AS13B, the stiffness matrix has the name KLL13 and the mass matrix has the name M134F.

4. In example a, card 6 defines the User File Label and GINØ file name to be used by SSVE when writing the Phase II output onto a User File. In example b, since five substructures are present and no card 7 is input, default values will be automatically implied.
APPENDIX G
SAMPLE PROBLEM DATA DECK LISTING

As an illustration of the automation that is introduced as a result of this new capability, the example used in the NASTRAN User's Manual (reference 2, p. 1.10-2 (6/1/72)) will be presented here. The sketch below shows the model for the problem being solved.

![Diagram of the model for the problem being solved.]

Substructure 1

- **Grid point numbers**
- **Element numbers**
- **3 = 6.096 m (240 in)**
- **E = 207 GPa (30 \times 10^6 \text{ psi})**
- **I = 2.08 \times 10^{-4} \text{ m}^4 (500 \text{ in}^4)**
- **P = 4.448 \text{ kN} (1000 \text{ lb})**

Substructure 2
APPENDIX G

The following data deck is used for Phase I of substructure 1:

<table>
<thead>
<tr>
<th>ID</th>
<th>PHASE ONE $</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>2</td>
</tr>
<tr>
<td>CHKPT</td>
<td>YES</td>
</tr>
<tr>
<td>APP</td>
<td>DISP</td>
</tr>
<tr>
<td>SØL</td>
<td>16,1</td>
</tr>
</tbody>
</table>

CEND

TITLE = PHASE ÆNE - SUBSTRUCTURE 1 - RIGID FORMAT 16

SPC = 101

BEGIN BULK

ASSET 3 126

CBAR 1 10 1 2 1.0 1

CBAR 2 10 2 3 1.0 1

GRID 1 345

GRID 2 240. 345

GRID 3 480. 345

MAT1 11 30.4+6

PARAM SUBID 10

PARAM USRTPID1 BEAMS1

PBAR 10 11 60. 500.

SPC 101 1 12

ENDDATA
APPENDIX G

The following data deck is used for Phase I of substructure 2:

```
ID    PHASE ONE $ 
TIME  2 
CHKPNT YES 
APP    DISP 
SOL    16,1 
CEND 

TITLE = PHASE ONE - SUBSTRUCTURE 2 - RIGID FORMAT 16 
SPC = 201 
LOAD = 202 

BEGIN BULK 

ASET 3 126 
CBAR 3 10 3 4 1.0 1 
CBAR 4 10 4 5 1.0 1 
CBAR 5 10 5 6 1.0 1 
F O R C E 202 3 1000. -1.0 
F O R C E 202 4 1000. -1.0 
GRID 3 480. 345 
GRID 4 720. 345 
GRID 5 960. 345 
GRID 6 1200. 345 
MAT1 11 30.+6 
PARAM SUBID 20 
PARAM USRTPID1 BEAMS2 
PBAR 10 11 60. 500. 
SPC 201 6 2 
ENDDATA 
```
APPENDIX G

The following data deck is used for Phase II.

```
ID PHASE TWO
TIME 2
APP DISP
SØL 16,2
CEND
TITLE = PHASE TWO - RIGID FORMAT 16
BEGIN BULK
DTI UFTABLE 0 2 16
DTI UFTABLE 1 10 INP3 BEAMS1 ENDREC
DTI UFTABLE 2 20 INP7 BEAMS2 ENDREC
DTI UFTABLE 3 0 INPT BEAMPH2 ENDREC
PARAM GENSAME 1
ENDDATA
```

The NASTRAN Data Deck for the Phase III analysis of substructure 1 is given as follows:

```
ID PHASE THREE $
TIME 2
APP DISP
SØL 16,3
READ CARDS FROM 3 $ RESTART DICTIONARY FROM UNIT 3
CEND
TITLE = PHASE THREE - SUBSTRUCTURE 1 - RIGID FORMAT 16
DISP = ALL
ELFØRC = ALL
ØLØAD = ALL
SPCFØRC = ALL
BEGIN BULK
PARAM USR1PID2 BEAMPH2
ENDDATA
```
The NASTRAN Data Deck for the Phase III analysis of substructure 2 is given below:

```
ID PHASE THREE $
TIME 2
APP DISP
SOL 16,3
READ CARDS FROM 92 $ RESTART DICTIONARY FROM UNIT 92
CEND
TITLE = PHASE THREE - SUBSTRUCTURE 2 - RIGID FORMAT 16
DISP = ALL
ELFORCE = ALL
LOAD = ALL
SPCFORCE = ALL
BEGIN BULK
PARAM USRTPID2 BEAMPH2
ENDDATA
```
REFERENCES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>LEVEL 15</th>
<th>LEVEL 16</th>
<th>LEVEL 16.X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMAP Alter Packet</td>
<td>Required</td>
<td>Required</td>
<td>None</td>
</tr>
<tr>
<td>CHKPNT File</td>
<td>Tape</td>
<td>Tape (or Disk)</td>
<td>Disk (or Tape)</td>
</tr>
<tr>
<td>Output User File</td>
<td>Tape for Module OUTPUT1</td>
<td>Tape (or Disk) for Module OUTPUT1</td>
<td>Disk (or Tape) for Module OUTPUT1</td>
</tr>
<tr>
<td>Phase II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVMAP (or Alter Packet)</td>
<td>Required</td>
<td>Required</td>
<td>None</td>
</tr>
<tr>
<td>Input User Files</td>
<td>Tape(s) for Module INPUT1</td>
<td>Tape (or Disk) for Module INPUT1</td>
<td>Disk (or Tape) Automatically Processed by Module SSMA</td>
</tr>
<tr>
<td>Treatment of Identical Subroutines</td>
<td>Possible by DVMAP</td>
<td>Handled by Module PVEC Parameters and DVMAP Alters</td>
<td>Automatic via Simple User Data</td>
</tr>
<tr>
<td>Coupling Information</td>
<td>USER CREATED (GOOD LUCK!)</td>
<td>Generated by Modules PVEC/VEC</td>
<td>Automatically Generated</td>
</tr>
<tr>
<td>Pseudomodel Description</td>
<td>User Supplied</td>
<td>Can be Obtained from PVEC on Extra Run</td>
<td>Automatic</td>
</tr>
<tr>
<td>Output User File</td>
<td>Tape for Module OUTPUT1</td>
<td>Tape (or Disk) for Module OUTPUT1</td>
<td>Disk (or Tape) Automatically Processed by Module USS</td>
</tr>
<tr>
<td>Phase III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMAP Alter Packet</td>
<td>Required</td>
<td>Required</td>
<td>None</td>
</tr>
<tr>
<td>Restart File</td>
<td>Tape</td>
<td>Tape (or Disk)</td>
<td>Disk (or Tape)</td>
</tr>
<tr>
<td>Restart Dictionary</td>
<td>Cards Required from Phase I</td>
<td>Cards Required from Phase I</td>
<td>Can be Requested from Ext. File</td>
</tr>
<tr>
<td>Input User File</td>
<td>Tape for Module INPUT1</td>
<td>Tape (or Disk) for Module INPUT1</td>
<td>Disk (or Tape) for Module UDBR</td>
</tr>
</tbody>
</table>
TABLE 2
ASSUMPTIONS AND RESTRICTIONS

- Only one (1) level of substructures is allowed.
- The Number of substructures may not exceed twenty (20).
- Coordinate systems of points to be coupled are parallel. This is not verified by program.
- Degrees of freedom at two points to be coupled are the same. Exceptions can be handled via multipoint constraints in Phase II.
- The sequence (internal) of points along the boundary between any two substructures is the same.
- All subcases must be defined in the Case Control Decks for all runs.
- Static loads applied geometrically must be defined in Phase I. Loads may be applied to the pseudostructure degrees of freedom in Phase II in the usual way.
- Output obtained in Phase II must be requested using pseudostructure degree of freedom identifiers.
- Only a single boundary condition is considered; geometrically specified boundary conditions must be defined in Phase I.
(For clarity, only connected points on the top surface are shown.)

FIGURE 1. SAMPLE STATIC SUBSTRUCTURE ANALYSIS PROBLEM MODEL
FIGURE 2. SUBSTRUCTURE ANALYSIS RUN FLOW
FIGURE 3. SUBSTRUCTURE ANALYSIS DATA LOGISTICS (STATICS)
The pseudomodel map shown below was generated by module PVEC for the structure shown in figure 1.

<table>
<thead>
<tr>
<th>Internal DOF</th>
<th>Substructure Identification Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6013-3 9001-3</td>
</tr>
<tr>
<td>6</td>
<td>6016-3 9004-3</td>
</tr>
<tr>
<td>9</td>
<td>6019-3 9007-3</td>
</tr>
<tr>
<td>12</td>
<td>4001-3 6021-3</td>
</tr>
<tr>
<td>15</td>
<td>4002-3 6022-3</td>
</tr>
<tr>
<td>18</td>
<td>4004-3 6024-3</td>
</tr>
<tr>
<td>21</td>
<td>4005-3 6025-3</td>
</tr>
<tr>
<td>24</td>
<td>4006-3 6026-3 9014-3</td>
</tr>
<tr>
<td>27</td>
<td>4007-3 6027-3</td>
</tr>
<tr>
<td>30</td>
<td>4008-3 6028-3</td>
</tr>
<tr>
<td>33</td>
<td>4009-3 6029-3 9017-3</td>
</tr>
<tr>
<td>36</td>
<td>4013-3 9021-3</td>
</tr>
<tr>
<td>39</td>
<td>4016-3 9024-3</td>
</tr>
<tr>
<td>42</td>
<td>4019-3 9027-3</td>
</tr>
<tr>
<td>45</td>
<td>2002-3 4022-3</td>
</tr>
<tr>
<td>48</td>
<td>2003-3 4023-3</td>
</tr>
<tr>
<td>51</td>
<td>2004-3 4024-3</td>
</tr>
<tr>
<td>54</td>
<td>2005-3 4025-3</td>
</tr>
<tr>
<td>57</td>
<td>2006-3 4026-3</td>
</tr>
<tr>
<td>60</td>
<td>2007-3 4027-3</td>
</tr>
<tr>
<td>63</td>
<td>2008-3 4028-3</td>
</tr>
<tr>
<td>66</td>
<td>2009-3 4029-3</td>
</tr>
</tbody>
</table>

Notes:

1. For clarity, only the "3" degree of freedom is shown.

2. Single-point constraints have been applied to point 1 in substructure 2 and point 3 in substructure 4.

FIGURE 4. PSEUDOMODEL MAP
ID PHASE 0NE
TIME 10
CHKPNT YES,DISK
APP DISP
(1) SOL 16,1 $ BASIC STATIC SUBSTRUCTURE ANALYSIS
CEND

\{Case Control Deck\}
BEGIN BULK

\{Structural Data for Substructure\}

(2) PARAM SUBID 10
(3) PARAM USRTPID1 ABC
ENDDATA

Notes:

1. Solution subset 1 is used for Phase I runs.
2. User-specified substructure identification number.

FIGURE 5

LEVEL 16.X PHASE I DATA DECK
ID PHASE TWO
TIME 10
APP DISP
(1) SOL 16,2 $ BASIC STATIC SUBSTRUCTURE ANALYSIS
CEND

| Case Control Deck |

BEGIN BULK

(2) | DTI definition of User File Data |

(3a) PARAM GENSAME -1
(4) PARAM PRTOPT 1
(3b) | Coupling Data (can be optional) |

ENDDATA

Notes:

1. Solution subset 2 is used for Phase II runs.
2. User-specified data providing
 a. Number of substructures
 b. Identification numbers for both real and identical substructures
 c. User File Data Location Information and Identification Codes
3a and b. Coupling Information
 (a) GENSAME=+1 means coupling data automatically generated
 GENSAME=-1 means coupling data supplied by user via SAME cards (fig. 10).
 (b) See figure 8.
4. Pseudostructure map print option.

FIGURE 6
LEVEL 16.X PHASE II DATA DECK
ID PHASE THREE
TIME 10
APP DISP

(1) S0L 16.3 $ BASIC STATIC SUBSTRUCTURE ANALYSIS
(2) READCARDS FROM 3 $ RESTART DICTIONARY FROM UNIT 3 CEND

\{ Case Control Deck \}

BEGIN BULK

(3) PARAM USRTPID2 XYZ ENDDATA

Notes:

1. Solution subset 3 is used for Phase III runs.
2. The Problem Tape Dictionary is recovered from Unit 3.
3. User-specified User File Identification Code from Phase II.

FIGURE 7

LEVEL 16.X PHASE III DATA DECK
<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTI</td>
<td>TPTABLE</td>
<td>O (^{(a)})</td>
<td>4 (^{(b)})</td>
<td>16 (^{(c)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+DTI-000</td>
</tr>
<tr>
<td>+DTI-000</td>
<td>ENDREC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1\(^{st}\) substructure

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTI</td>
<td>TPTABLE</td>
<td>1</td>
<td>10 (^{(d)})</td>
<td></td>
<td>INP1 (^{(e)})</td>
<td></td>
<td>SUB1 (^{(f)})</td>
<td></td>
<td>ENDREC</td>
</tr>
<tr>
<td>+DTI-002</td>
<td>A (^{(p)})</td>
<td>3 (^{(i)})</td>
<td>K</td>
<td>1</td>
<td>P</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2\(^{nd}\) substructure

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTI</td>
<td>TPTABLE</td>
<td>2</td>
<td>20</td>
<td></td>
<td>INP4</td>
<td>TRY2SUB2</td>
<td>104823 (^{(g)})</td>
<td></td>
<td>+DTI-002</td>
</tr>
<tr>
<td>+DTI-002</td>
<td>A (^{(p)})</td>
<td>3 (^{(i)})</td>
<td>K</td>
<td>1</td>
<td>P</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3\(^{rd}\) substructure

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTI</td>
<td>TPTABLE</td>
<td>3</td>
<td>-21 (^{(j)})</td>
<td>20 (^{(j)})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENDREC</td>
</tr>
</tbody>
</table>

4\(^{th}\) substructure

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTI</td>
<td>TPTABLE</td>
<td>4</td>
<td>40</td>
<td></td>
<td>INP4</td>
<td>PLT4SUB4</td>
<td>NAMES (^{(k)})</td>
<td></td>
<td>+DTI-005</td>
</tr>
<tr>
<td>+DTI-005</td>
<td>A</td>
<td>A04 (^{(l)})</td>
<td>K</td>
<td>K1048</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ENDREC</td>
</tr>
</tbody>
</table>

Combined structure (optional)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTI</td>
<td>TPTABLE</td>
<td>5</td>
<td>1010-</td>
<td></td>
<td>COUPLE4</td>
<td></td>
<td></td>
<td></td>
<td>ENDREC</td>
</tr>
</tbody>
</table>

(a) DTI Record Number
(b) Number of Substructures
(c) Rigid Format
(d) Substructure Identification Number
(e) User File GINO Name
(f) User File Label (optional)

(g) Tape Reel Number (optional)
(h) Data Block Code (optional)
(i) Data Block Position (optional)
(j) Identical Substructure Reference
(k) Option Code (optional)
(l) Data Block Name (optional)

FIGURE 8. USER FILE COUPLING DATA
MULTI-LEVEL SUBSTRUCTURE ANALYSIS

Phase I
Phase IIA
Phase IIB
Phase IIC
Phase III

FIGURE 9
Input Data Card SAME Joining Data

Description: Defines grid or scalar points which are to be coupled in a substructure analysis.

Format and Example:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAME</td>
<td>S</td>
<td>G</td>
<td>S</td>
<td>G</td>
<td>S</td>
<td>G</td>
<td>S</td>
<td>G</td>
<td>abc</td>
</tr>
<tr>
<td>SAME</td>
<td>3</td>
<td>79</td>
<td>4</td>
<td>216</td>
<td>6</td>
<td>93</td>
<td></td>
<td></td>
<td>ABC</td>
</tr>
<tr>
<td>+bc</td>
<td>S</td>
<td>G</td>
<td>S</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>etc.</td>
</tr>
<tr>
<td>+BC</td>
<td>7</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>etc.</td>
</tr>
</tbody>
</table>

Alternate Form

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAME</td>
<td>S</td>
<td>G1</td>
<td>"THRU"</td>
<td>G2</td>
<td>S</td>
<td>G1</td>
<td>"THRU"</td>
<td>G2</td>
<td>+abc</td>
</tr>
<tr>
<td>SAME</td>
<td>10</td>
<td>1</td>
<td>THRU</td>
<td>60</td>
<td>20</td>
<td>101</td>
<td>THRU</td>
<td>160</td>
<td>ABC</td>
</tr>
<tr>
<td>+abc</td>
<td>S</td>
<td>G1</td>
<td>"THRU"</td>
<td>G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>etc.</td>
</tr>
<tr>
<td>+BC</td>
<td>30</td>
<td>526</td>
<td>THRU</td>
<td>585</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>etc.</td>
</tr>
</tbody>
</table>

Field Contents

S Substructure identification number (Integer > 0)
G, G1, G2 Grid or Scalar point identification number (Integer > 0; G1 < G2)

Remarks:

1. Up to four grid or scalar points (in four different substructures) may be coupled by a single card. As many continuation cards as required may be used.
2. No degrees of freedom of coupled points may be members of the o-set.
3. The substructure identification numbers should be written in ascending order.
4. If two SAME cards are to be joined, the highest numbered substructure entry on the first one should be repeated on the second one.
5. If the alternate form is used, all of the grid and scalar points G1 thru G2 are assumed. Each G1 THRU G2 sequence must define the same number of points.

FIGURE 10. SAME CARD DESCRIPTION