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! THREE ISOPARAMETRIC SOLID ELEMENTS FOR NASTRAN
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I
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SUMMARY

Linear, quadratic, and cubic isoparametric hexahedral solid elements have

been added to the element library of NASTRAN. these elements are available for

static, dynamic, buckling, and heat-transfer analyses. Because the isopara-

metric element matrices are generated by direct numerical integration over the

volume of the element, variations in material properties, temperatures, and

stresses within the elements are represented in the computations. In order to

compare the accuracy of the new elements, three similar models of a slender

cantilever were developed, one for each element. All elements performed well.

As expected, however, the linear element model yielded excellent results only

when shear behavior predominated. In contrast, the results obtained from the

quadratic and cubic element models were excellent in both shear and bending.

INTRODUCTION _,

{
New aerospace vehicle concepts, such as the Space Shuttle, have added

impetus for the continued updating of NASTRAN with the best state-of-the-art

finite element technol_gy. In response to this need, the three-dlmenslonal

family of linear, quadratic, and cubic isoparametric hexahedral solid elements

were developed for and installed in NASTRAN. These three new elements signifi-

cantly improve NASTRAN's capability to solve any tbree-dlmenslonal solid prob-

lem zequlrlng static, dynamic, buckling, and/or heat-transfer analysis.

THEORETICAL BACKGROUND

Hexahedron solid isoparametric elements may be used to analyze any three-

, dimensional continuum composed of isotroplc or anisotropic materials. Examples

-. include thick inserts in rocket engine nozzles, thermal protection system

insulations, sell structure interaction problems, and geometrically complex

_, thlck-walled mechanical components such as pumps, valves, etc. These solid

"_".. • elements have only three degrees of freedom at each grid point (the three dis-

''>- placement components),and they may be combined with all other nonaxlsymmetrlci

The isoparametric solid elements were first presented by Irons, Ergatoudis
and Zienkiewicz [Refs. 1 to 4]. Isoparametric solid elements employing either

} eight, twenty or thlrty-two grid points have been found to be suitable to solve
most problems (Figure i). These elements correspond to assuming a linear,

- quadratic, and cubic variation of displacement, respectively. Clough [Ref. 5]
_ conducted an evaluation of three-dlmenslonal solid elements and showed that the

isoparametric elements were superior to other solid elements. He further .,_"
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' pointed out that the choice of which isoparametrlc element is best to use

depends on the type of problem being solved. For problems involving shear and

bending type deformations, the higher order elements are preferred over the

linear elements which should be used for problems _n which shear stresses pre-
' dominate. It is for this reason that all three isoparametric elements have

," been incorporated into NASTRAN.

The governing equations for isoparametric elements are based on minimum

energy principles. The derivation of these equations assumes a displacement

function over the element which depends on grid point displacements only. The

governing equations are obtained by minimizing the Potential Energy which is

evaluated in terms of these displacement functions.

Oisplacement Functions
I

! The name isoparametric is derived from the fact that the interpolating or

shape functions used to represent the deformation of the element are also used
! to represent the geometry of the element. This choice insures that the element

i displacement functions satisfy the criteria necessary for convergence of thefinite element analysis [Ref. 4]. Referring to the curvilinear coordinates

(_,_,_) qhown in Figure i, the rectangular basic x,y,z coordinates at any point

i, , in th( _ement are obtained from the NASTRAN basic coordinates at each of the

I ' n grid points by:

I ;*! I*I• y - Ni (_,n,_) y (1)
i=l

Z Z
t

i

where the Ni(_,n,_) are shape functions which depend on the number of grid

points used to define the element geometry. The Ni functions are either linear
quadratlc_ or cubic, and correspond to employing two, three, or four grid points

respectively, along each edge of the element. This choice insures that there
are no geometric gaps between grid points. Expressions for the shape functions

may be found in Reference 6.

• _ The deformation of the element is represented with the identical interpo-

lating functions used to define the geo: _ry; that is:

• v - Ni (_,n,_) v (2)

•w w i

where u, v and w are displacements along the x, y and z basic coordinate axes.

_ _e displacement functions Ni(_,_,_) satisfy the required convergence criterion

of adequately representing a constant strain state, and insure interelement
compatibility along the complete element boundary [Ref. 4].
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Straln-Displacement Relations

Equation (2) may be used in the well-known strain-displacement relations for
a three-dlmenslonal continuum [Ref. 7] to define the strain vector {e} in terms

of the grid point displacements:

"l; u 1

, v 1
t

i w1

i {£} = C1 C2 I .-. I C : = [C] {ue} (3)
? I I

i Un

i V
f n

! 'lW

i where _ n.

i aNi

_-x 0 0

aNi

o a7 oaNt
0 0 az

[Cl] - aNi aNi (4)

a-T a-g" o

aNI aNi
o _ ygT"

aNi aNi -,

o a-V" i"In order to evaluate the strain matrix [C], the derivatives of the shape

functions Ni with respect to x, y, and z must be calculated. Since Ni is I,_

defined in terms of _, n and _, it is necessary to use the relation that

a,[ _-_Ni aNi

" [a]-i.T6-: (5)| ,_.t :aN:!
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where [J] is the Jacobian matrix. It is easily evaluated by noting that

a._x ay _z 1 8NI aN2 aNn !

a_ a_ a-% a_ ' a_ ' "'"_- Xl Yl Zl i

ax ay az aNI aN2 aN Ii
-- -- = _ x2 Y2 z2 (6) ['

; [J] = an an an [ an ' an ' "'" an . . :

__ax ay az aNI aN2 aNn : • : i

•: a_ a_ a-_ a_ ' a_ ' "'" _- Xn Yn Zn i

where the subscript_ l, 2, .. n denote the n grid points of an element.t "

t Stress-Straln Relations

i The stress-straln relations for a general elastic material are

i {O} " [Gel {E - e t} (7)

i . where {o} is the 6xl stress vector in the basic coordinate system, [Ge] is a ;
"_" 6x6 symmetric _lastic material matrix, and {8t} is the 6xl thermal strain vector. '

This thermal strain vector Is defined as

11

{st} " {_e } " E Nt (_,n,_) Ti (8)
i-l

where {a e} is a vector of 6 thermal expansion coefficients, and T i is the tem-
perature at the i th element grid point.

Stiffness, Mass, and Load Matrices

_ The stiffness, mass, and load matrices for the isoparametric element are derived
.. ' by application of the Principle of Virtual Work. These element matrices, rela-

tive to the basic coordinate system, are given by

"'_ .. [Kee] = [C]T [%] [c]IJI d_ drl d_ (9)

. ._ -I -I -i

+I +I +I

" Ill, [M,e] = o[s]T [N] IJI dEd. d_: (I0)
,,_ -I -i -I

" I
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+i +i +i
n

, -i -i -i

+i +i

{Pep} - - P__ [N(_,n,-l)] T IJ[ {5_ I} d_ dn
-1 -1

I
%

+I +i

- I I P_n [N(_,-I,_)]T ,J, {J_l} d_ d_

+I +I

i + T IJI {j_l} d_ dn (12)

-I -1where [Kee] is the el_ent stiffness _trlx in the basic coordinate system,
[Mee] is the _ss _trix, {Pe t} Is the thermal load vector, _d {P_} is the
pressure load vector derived from surface pressures on each of the six faces

IJI is the determinant of the Jac_ian mtrix, and [N]of the solid ele_nt.

is a _trlx of the isopar_etric shape f_ctlon defined by

[N] - o N1 o o _2 o I • • • o N o (13)! n
! !

0 0 N1 ] 0 0 N2 I 0 0 N! n

P__ is the unlfo_normal pressure (positive outward) applied to the face of
the el_ent _ere _ = -1; P__ is the pressure applied to the face where . --

". _ " -I, etc.; and {j_l}, {j_l}, and {j_I} are the first, second, and third col-
_: unms, respectively, of the inverse of the Jacobian_trix. Products like

IJI {j=l} in the _pression for pressure load are equivalent to a vector of _

direction cosines _ltiplted by a surface area scaling factor relating the cu_i-
linear coordt_tes to the basic coordinate syst_.

_e integrals in equations (9) to (12) are evaluated n_erically by using the "_
method of Caussian _adrature [Ref. 8]. In the above equations, therefore, [C],
IJI, and IN] _st be ev_l_t_ at each interior point _ for n_erical inte-
gration. ICe], {ae], _d 0 can also he evaluated at each integration _int.

_ _us, variations in these quantities are all_ because of, say, temperature-
depender m_tertal.

'v
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The computations for the isc2arametric elements are carried out in the

basic coordinate system. If the global coordinate system at any grid point is

" [ different from the basic system, the final matrices and vectors are transformed

• t into that global system.

: !
Stress Recovery

I%e equation for calculating element stresses at any interior point of an
_ isoparametric element may be obtained by combining equations (3), (7), and (8)

follows :

{0] = [Ge] [C] {ue} - {ee} • Ni Ti (141T

t

[C] and Ni are functions of the element curvilinear coordinates _,n,_ evaluated
at the point at which stresses are desired.

Differential Stiffness Matrix

The differential stiffness matrix for the Isoparametric solid element is

derived by adding the energy of an Inlt.al stress state to the potential energy

function. This addltlonal energy is derived in Reference 9 and is given by

1 [ _Ox2(Oy 2 (O.x tOz2 (0 xWp = i + °z)+ _ + °z)+ + Oy)
v

- _ T ]dV (15)- 2 a,x _y "_x-'y 2 _y _oz 'ryz - 2 _oz x zx

where the rotations are given by the relations

_x " _ W-_

- _ _ - _ (16) ¢

1 _v _u

These rotations may be e_resaed in terms of the grid point displacements by
using equation (I):

I°xl
" _l''' '']Ic2' ..... '_ {%} " [_l (Ue) (17)i 'W

Z
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: here _Ni _Ni .

o - _ 2-T"
' i _NI _Ni

[_i] " _ _"T 0 - _-_- (181

BNI @Ni
0

' @y [_x

¢

Substituting equation (17) into equation (15) and adding this function to the

"_ I,otential energy expression yields+othe differential_T-_stiffness matrix:+i +I +I Cy z xy zx

; x z zy

,_ -i -i -I a + a
- - "r X y

J Tzx zy

_s with the structural stiffness matrix, this integral is evaluated using the
_thod of Gaussian Quadrature. The differential stiffness is computed in the

_asic coordinate system and then transformed, as required, to the NASTRAN

lobal system.

IMPLEMENTATION

Many existing NASTRAN functional modules and subroutines were modified to
mplement the isoparametric solid elements. Several new subroutines were also

Idded. These modules and brief descriptions of the changes to each are listed

:n Table 1. The detailed description of these changes presented in Reference !0
:an be used to augment the NASTRAN Programmer's Manual instructions, Section 6.8,
:o assist in the installation of other new elements of similar complexity. Many
_f the changes are those normally required when impleme_ting new elements. How-
:ver, in this case, changes were also required in the FI_T module (to plot
:hree-dlrensional elements), the GP3 module (to process a new external pressure

•, Load). nd in various other modules to accommodate the large space requirements _..

_f the 32-grid-point cubic element.

It should be noted that the Isoparametrlc elements were installed in func-
:ional modules SHAI, SHA2, and DS}_I on an interim basis only. Thc element

strix subroutines were designed speclfically for the new Element Matrix C_ner-

i. _tor module and will be made available with Level 16 of NASTRAH,

_i EVALUATIOH

A slender cantilever beam model was chosen to evaluate the performance of
• the three new isoparametrlc solid elements in NASTRAN. This model was chosen

for two reasons: (I) theoretical solutions are well known, and (2) solid finite

_29 "
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elements characteristicallydo not perform well when used to model structures
which exhibit predominant bending behavior.

Three models were prepared as shown in Figures 2 3, and 4, one with each
of the three elements: IHEX1, IHEX2, and IHEX3, Lhe linear, quadratic, and
cubic elements, respectively. All three beam models had a length (L) of 3.66m
(144 in.) and a uniform rectangular cross section with depth (D) of O.61m
(24 in.) and width (W) of 0.30m (12 in.). The sa:_.euniform material properties t

; shown in Table 2 were used for all three models. Static, normal modes, and _'
buckling analy_es were performed for each of the beam models.

; Statics

For the static analyses, all de_-ees of freedom at the base of the beam
(z = 0) were completely fixed. All three models were subjected to _.e same

i four loading conditions:

I I. Linear thermal gradient (Y-dlrection)
T = 322.04 K at Y = 0 (120° F at Y = O)
T = 188.71 K at Y - 0.61m (-120" F at Y = 24 in.)

i 2. Uniform temperature rise

i AT = 55.56 K (100" F)

._ 3. Compressive axial pressure (Z-direction)

PZ = -2.954 x 10 a N/m_ at Z = 3.66n (-42837 psi at Z = 144 in.)

I 4. Transverse pressure (Y-dlrectlon)
Py = 6.895 x 10 s N/m2 at Y - 0 (100 psi at Y = 0)

The results for tLe tip displacements are sumurlzed in Table 3, where the
c._nnputed solutlons are compared with the theoretical solutLons. The maximum
error for the llnear IHEXI element was 10.3Z for the transverse pressure toad.
For the quadratic and cubic elenents, IIIEX2 and IHEX3, the maximum errors of
4.SZ and 3.$X, respectlvely, occurred in the solutions for the thermal gradient
load. For the transverse pressure Zoad, the errors were 1.6X for the IHEX2
elemnt model, and 1.1Z for IREX3. Thus, the hlgher order isoparametric solld
eleme.nts perforu very weU when used to model the bending behavior of this beam.

Normal Hodos

In the normal node analyses, the same single point constraints were
applied to all three models in the following winner: All Z components of dis-
placement in the plane Z - 0 and 811 Y components along the llue Z - O,
Y - 0.30u (12 in.), vere fixed. For the IHEY_ and IHEX3 m_dels only, all X
components along the llne Z - O, X - O, were fixed. For the IHEX2 model only,
the X components along the line Z = O, X - -0.15n (6 in.), were fixed. This
system of constraints was chosen to allow dilatation at tho base of the beam.
The particular set of constraints used for the IHEX2 nodal has the additional
advantage of sysmttry.

6
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The inverse power method was used to extract the first three normal modes '"

_ of each model. The results for the natural frequencies are summarized in

_ Table 4. The computed natural frequencies for the IHEX2 and IHEX3 r gels are

within 3.0 per cent of the theoretical solution. The natural frequency for the
IHEXI model is 2.7% off for bending in the Y-directlon, but it is off by 18.3%

and 15.8% for the two bending modes about the X-dlrcctlon. These er: s are

i probably caused by an insufficient number of elements through the width of the

beam in the X-dlrectlon. Using a srmller mesh size with more IHEXI elements

; would improve these results at the expense of increased computer costs. This
problem, therefore, serves to demonstrate even more clearly the superiority of
the IHEX2 and IHEX3 elements over the IHEZI element for modeling the bendlng
behavior of structures,i

I

All the computed mode shapes for all three models showed excellent corre-
latlon with the theoretical solution [Ref. ii]. Comparative plots of the mode

shapes are not included in this paper because there would be no visible dis-
, tinction between computed and theoretical solutions,
4

j Buckling

i Each of the three beam models was used to compute the critical bucklingload for axial pressure. The same system of constraints used to compute normal

i modes was used to compute the axial pressure buckling load. The apphed pres-

sure on the end of the beam was -2.954 x 10 s N/m 2 (42,837 psi). This amotmts

" to a tctal applied force of -5.406 x 107 N (-1.234 x 107 lb), which is equal to
the theoretical critical load for buckling in the X-direction. Therefoie, the
fundamental elgenvalue for buckling should have been unity.

Again, the inverse power method was used to extract the three lowest buck-
ling :odes. The results for the buckJtng eigenvalue8 t are rresented In
Table 5. The IHEX2 and I qEX3 elem_-t results are excellent. They are within
0.TZ of the theoretical solution. The eigenvalue for the IHEX1 element mod_l
is in error by le._s than IOZ for buckling in the Y-direction. However, it is

off by more than 4b% for both buckling modes in the X-direction. This situation
is similnr to that of the normal mode problem for the IHEX_ element model.
Again, it is probably due to the lack of an adequate number of elements through
the width of the beam in the X-direction.

As was the case for th. normal nodes problem, the mode shapes computed by
NASTRAN for buckling were vt, ry close to the theoretical shapes. Thus, no plots
couparing computed shapes with theoretical shapes are included in this paper.

CONCLUDING_v,S

' All three 18oparmeetrlc solid elemlmt8 produced good results for static,
' nornal node, and bucklin8 analyses. /us expected, the linear element results

_ shoved that it is best used when sh(-tr behavior predominates. The superiority_ of the quadratic and cubic elements was confirmed by the excellent resul.s
obtained in both the bending and the shear behavior of a cantilever bea_ _odel.
Therefore, the t_plementatton of these three isoparametric solid elemer_s, which
provide for variation: in both material propertits and stresse, throughout the
element, does greatly enhance the total modeling capability of _L_STRAN.

_31 "'
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TABLE i. FUNCTIONAL MODULE MODIFICATIONS TO IMPLEMENT

ISOPARAMETRIC SOLID ELEMENTS

IFP - New Bulk Data cards were added

GP2 - Array sizes were increased to accommodate elements i

i' with 32 grid points

!

PLTSET - Array sizes were increased to accommodate elements

i with 32 grid points

PL_T - Capability for plotting solid elements was

' implemented

i GP3 - Processing of the isoparametric element pressure
card was implemented

TAI - Capability to append grid point temperatures to i

EST/ECPT entries was implemented !

i
SMAI - Stiffness and conductance matrix generation for

the new elements was implemented

SMA2 - Mass and capacitance matrix generation for the new

elements was implemented ,!

SSGI - Load vector generation for thermal and pressure

loads on the new elements was i_plemented _

'_" DSMGI - Differential stiffness matrix generation for the "":

new elements was implemented ._

-..._ SDR2 - Stress calculations for individual grid points of -_'
;_/C the new elements was implemented

i:;""" _FP - Stress printout formats for the new elements were

I emented -_

mpl

_r- u33
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TABLE 2. MATERIAL PROPERTIES OF THE CANTILEVER BEAM MODELS I
J

i

Symbol Description Value (SI) Value (English) !

J

E Young's modulus 2.068 x 1011N/m 2 30 x 106 ib/in 2 i

Poisson's ratio 0.3 0.3

m in

Coef. of thermal expansion 2.570 x i0 "s _ 1.428 x i0-s in - °F

p Mass density 20.86 kg/m _ 7.535 x 10-4 ib/in 3

TABLE 3. COMPARISON OF TIP DEFLECTIONS FOR NASTRAN AND THEORETICAL
SOLUTIONS FOR FOUR STATIC LOADING CONDITIONS

NASTRAN Solutions Theoretical

IHEXI Model IHEX2 Model IHEX3 Model Solution*
Load Description

Case Defl., Error, Defl.,Error, Defl.,Error, Tip Defl.,cm % cm % cm % cm

1 Thermal Gradient 3.668 2.5 3.932 4.5 3.894 3.5 3.762

2 Uniform Temperature .5367 2.8 .5344 2.3 .5304 1.6 .5222

3 Axial Compression -.5179 0.8 -.5187 0.7 -.5199 0.4 -.5222

4 Transverse Pressure .3612 10.3 .3965 1.6 .3985 I.i .4028
_T

,==

' *Theoretical Solutions

._a_/" Load Case 1 Load Case 2 Load Case 3 Load Case 4

.j
.-- 6y='- 6 z = o_TL 6Z " _ 6y = 1 + --,

2ED 3 5L'

6y 3.762 cm _y = .5222 cm 6y --.5222 cm 6y ,, .4028 cm

'h ,

I
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TABLE 4. COMPARISON OF NATURAl, FREQUENCIES FOR NASTRAN AND

! THEORETICAL SOLUTIONS Ii
4

I

i NASTKAN Solutions Theoretical !Mode Description IHEXI Model IHEX2 _iodel IHEX3 Model Solution,

i Freq., Error Freq., Error, Freq., Error, cps

cps % cps % cps % [Ref. ii] i

i First Bending Mode 22.0 18.3 18.6 0 18.6 0 18.6

in the X-Directlon
& |

2 First Be:dlng Mode 38.3 2.7 36.5 2.1 36.5 2.1 37.3
in the Y-Directlon

3 Second Bending 135.3 15.8 114.3 2.1 113.3 3.0 116.8
i . Mode in the

! I X-Direction

I

" i

TABLE 5. COMPARISON OF BUCKLING EIGENVALIFES FOR NASTRAN AND

THEORETICAL SOLUTIONS

NASTRAN Solutions
...... Theoretical

IHEXI Model IHEX2 Model IHEX3 Model Solution
Mode Description k

A Error, k Error, A Error,
% % % [Ref. 12] P

i_' I X-Direction 1.406 40.6 1.002 .2 1.001 .i 1.0 _i

_,
-_.,, 2 Y-Directlon 4.391 9.8 3.981 .5 3.979 .5 4.0

L':_'_ 3 X-Directlon 12.809 42.3 9.037 .4 8.934 .7 9.0

 435

I
f.,

i

1974006473-433



i(a) Linear.
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i (b) Quadratic.

f

i '

'i, ",._ (c) Cubic

_{i, FIGURE i. THREE ISOPARAMETRIC ELEMENTS
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i 30 m ,3.66 m
i' f

C

FIGURE 2. IHEXI MODEL -- 216 ELEMENTS AND 364 GRID POINTS I

MATRIX ORDER (g-SET) = 1092, SEMI-BANDWIDTH = 102.

i ' Y

_ Z

FIGURE 3. IHEX2 MODEL -- 36 ELEMENTS AND 275 GRID POINTS

MATRIX ORDER (g-SET) = 825, SEMI-BANDWIDTH ,,156.

Y

_'_,_,'_ _ / X

FIGURE 4. IHEX3 MODEL -- 8 ELEMENTS AND 148 GRID POINTS_,_xo=,_(,__,._,._, ___,_o,,._,_,

- 437

i

]974006473-435


