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THREE ISOPARAMETRIC SOLID ELEMENTS FOR NASTRAN
By Stephen E., Johnson and Eric I, Field

Universal Analytics, Inc.
Los Angeles, California

SUMMARY

Linear, quadratic, and cubic isoparametric hexahedral solid elements have

. been added to the element library of NASTRAN. These elements are available for

static, dynamic, buckling, and heat-transfer analyses. Because the isopara-
metric element matrices are generated by direct numerical integration over the
volume of the element, variations in material properties, temperatures, and
stresses within the elements are represented in the computations. In order to
compare the accuracy of the new elements, three similar models of a slender
cantilever were developed, one for each element. All elements performed well.
As expected, however, the linear element model yilelded excellent results only
when shear behavior predominated. In contrast, the results obtained from the
quadratic and cubic element models were excellent in both shear and bending.

INTRODUCTION

New aerospace vehicle concepts, such as the Space Shuttle, have added
impetus for the continued updating of NASTRAN with the best state~of-the-art
finite element technolagy. In response to this need, the three-dimensional
family of linear, quadratic, and cubic isoparametric hexahedral solid elements
were developed for and installed in NASTRAN. These three new elements signifi-
cantly improve NASTRAN's capability to solve any three-dimensional solid prob-
lem requiring static, dynamic, buckling, and/or heat-transfer analysis.

THEORETICAL BACKGROUND

Hexahedron solid isoparametric elements may be used to analyze any three-
dimensional continuum composed of isotropic or anisotropic materials. Examples
include thick inserts in rocket engine nozzles, thermal protection system
insulations, s0il structure interaction problems, and geometrically complex
thick-walled mechanical components such as pumps, valves, etc. These solid
elements have only three degrees of freedom at each grid point (the three dis-
placement components), and they may be combined with all other nonaxisymmetric
NASTRAN elements.

The isoparametric solid elements were first presented by Irons, Ergatoudis
and Zienkiewicz [Refs. 1 to 4). Isoparametric solid elements employing either
eight, twenty or thirty-two grid points have been found to be suitable to solve
most problems (Figure 1). These elements correspond to assuming a linear,
quadratic, and cubic variation of displacement, respectively. Clough [Ref. 5]
conducted an evaluation of three-dimensional solid elements and showed that the
isoparametric elements were superior to other solid elements. He further
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pointed out that the choice of which isoparametric element is best to use
depends on the type of problem being solved. For problems involving shear and
bending type deformations, the higher order elements are preferred over the
linear elements which should be used for problems in which shear stresses pre-
dominate. It is for this reason that all three isoparametric elements have
been incorporated into NASTRAN.

The governing equations for isoparametric elements are based on minimum
energy principles. The derivation of these equations assumes a displacement
function over the element which depends on grid point displacements only. The
governing equations are obtained by minimizing the Potential Energy which is
evaluated in terms of these displacement functions.

Jisplacement Functions

The name isoparametric is derived from the fact that the interpolating or.
shape functions used to represent the deformation of the element are also used
to represent the geometry of the element. This choice insures that the element
displacement functions satisfy the criteria necessary for convergence of the
finite element analysis [Ref. 4]. Referring to the curvilinear coordinates
(£,n,Z) shown in Figure 1, the rectangular basic x,y,z coordinates at any point
in the¢ .ement are obtained from the NASTRAN basic coordinates at each of the

n grid points by:

(1)

\: - Nz |
K 2N, G )'

where the Ny(£,n,7) are shape functions which depend on the number of grid
points used to define the element geometry. The Ny functions are either linear
quadratic, or cubic, and correspond to employing two, three, or four grid points
respectively, along each edge of the element. This choice insures that there
are no geometric gaps between grid points. Expressions for thlie shape functions
may be found in Reference 6.

The deformation of the element is represented with the identical interpo-
lating functions used to define the geo: cry; that is:

S emo 1o :
M 12_21(5,.;),”1 (2)

where u, v and w are displacements along the x, y and z basic coordinate axes.
The displacement functions N (£,n,;) satisfy the required convergence criterion
of adequately representing a constant strain state, and insure interelement
compatibility along the complete element boundary [Ref. 4].
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Strain-Displacement Relations

Equation (2) may be used in the well-known strain-displacement relations for
a three-dimensional continuum [Ref. 7] to define the strain vector {e} in terms
of the grid point displacements:

r~
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In order to evaluate the strain matrix [C], the derivatives of the shape
functions N1 with respect to x, y, and z must be calculated. Since Ni is

defined in terms of £, n and ;, it is necessary to use the relation that

(v, ) 'auiT
= 1

4 ;;i > = (31714 ;;1 > (5)
aN, N,
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where {J] is the Jacobian matrix. It is easily evaluated by noting that
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where the subscripts i, 2, ... n denote the n grid points of an element.

Stress-Strain Relations

The stress-strain relations for a general elastic material are
{o} = [Gg] {& - ¢} (N

vhere {0} is the 6x1 stress vector in the basic coordinate system, [G.] is a

6x6 symmetric <lastic material matrix, and {Et} is the 6x1 thermal strain vector.

This thermal strain vector is defined as

n
{eg} = {ap} - }E: Ny (E,m,8) Ty (8)
i=1

where {“e} 1s a vector of 6 thermal expansion coefficients, and T; is the tem-
perature at the ith element grid point.

Stiffness, Mass, and Load Matrices

The stiffness, mass, and load matrices for the isoparametric element are derived
by application of the Principle of Virtual Work. These element matrices, rela-
tive to the basic coordinate system, are given by

+1 +1 +1
T
(Kl = [€)" [G) [c] |J] dE an &g 9
-1 -1 -1
+1 +1 +1
M) = p[NIT [N] |3] dE dn 4t (10)
-1 -1 -1
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where [Kee] is the element stiffness matrix in the basic coordinate system,
[Mge] is the mass matrix, {Pet} is the thermal load vector, and {Pep} is the
pressure load vector derived from surface pressures on each of the six faces
of the solid element. IJI is the determinant of the Jacobian matrix, and [N]
is a matrix of the isoparametric shape function defined by

TN P NG o B

! ]
N, 0 0 ! N, 0 0 i ‘ E N 0 0
- | i
N] 0 N, 0 | 0 N, 0 ; . 5 0 N 0 (13)
|
[l 1 |
0 0 N, | 0 0 N, | : 0 0 N

P_, is the uniform normal pressure (positive outward) applied to the face of
the element where 7 = ~1; P_p, 18 the pressure applied to the face where
ne=-1, etc.; and {J'l}, {371}, and {JZI} are the first, second, and third col-
umns, respectively, of the inverse of the Jacobian matrix. Products like

|J| {JEI) in the expression for pressure load are equivalent to a vector of

direction cosines multiplied by a surface area scaling factor relating the curvi-
linear coordinates to the basic coordinate system.

The integrals in equations (9) to (12) are evaluated numerically by using the
method of Gaussian Quadrature [Ref. 8]. In the above equations, therefore, {C],
[3], and [N] must be eveluated at each interior point used for numerical inte-
gration. [Ge]’ {ae}' and p can also be evaluated at each integration point.

Thus, variations in these quantities are allowed because of, say, temperature-
dependent m~terial.
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The computations for the iscparametric elements are carried out in the
basic coordinate system. If the global coordinate system at any grid point is

different from the basic system, the final matrices and vectors are transformed
into that global system.

Stress Recovery

The equation for calculating element stresses at any interior point of an

isoparametric element may be obtained by combining equations (3), (7), and (8) ¢
follows:

n
{o} = [G,] ({c] {ug} - {ag} - (E Ny Ti)> (14)
1=1

[{C] and N4 are functions of the element curvilinear coordinates £,n,Z evaluated
at the point at which stresses are desired.

Differential Stiffness Matrix
The differential stiffness matrix for the isoparametric solid element is

derived by adding the energy of an init.al stress state to the potential energy
function. This additional energy is derived in Reference 9 and is given by

1 2 2 2
wp 3 [ [u& (oy + oz) + w& (ox + oz) + w, (0x + Oy)
v

-2(»x my '1'xy--2my wz Tyz-Zmz w rzx]dv (15)

where the rotations are given by the relations

(5-8) |

E
[}
ST

w = %(%5'%) f (16)
o = 3 (R-8)

These rotations may be expressed in terms of the grid point displacements by
using equaticn (1):

mx
(wy( - 18 e 1 G i) = (€] {ug) an
} A
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Substituting equation (17) into equation (15) and adding this function to the
otential energy expression yields the differential stiffness matrix:

41 +1 +1 [0 +o0 -1 -1t ]
y z xy zZX
d = T =
Kee) [C) "y Ot T Ty [€) |J] d€ dn dz (19)
-1 -1 -1
-1 -7 ox + cy
g zX 2y N

s with the structural stiffness matrix, this integral is evaluated using the
thod of Gaussian Quadrature. The differential stiffness is computed in the
hasic coordinate system and then transformed, as required, to the NASTRAN
lobal system.

IMPLEMENTATION

Many existing NASTRAN functional modules and subroutines were modified to
mplement the isoparametric snlid eiements. Several new subroutines were also
dded. These modules and brief descriptions of the changes tuv each are listed
n Table 1. The detailed description of these changes preserted in Reference 10
an be used to augment the NASTRAN Programmer's Manual instructions, Section 6.8,
o assist in the installation of other new elements of similar complexity. Many
f the changes are thoss normally required when implementing new elements. How-
ver, in this case, changes were also required in the PL@T module (to plot
hree-dirensional elements), the GP3 module (to process a new external pressure
oad). .nd in various other modules to accommodate the large space requirements
f the 32-grid-point cubic element.

PRETER . NGNT .

It should be noted that the i{soparametric elements were installed in func-
ional modules SMAl, SMA2, and DSMGl on an interim basis only. Thec element
trix subroutines were designed specifically for the new Element Matrix Gener-
tor module and will be made available with Level 16 of NASTRAN.

EVALUATION
A slender cantilever beam model was chosen to evaluate the performance of

he three new isoparametric solid elements in NASTRAN. This model was chosen
or two reasons: (1) theoretical solutions are well known, and (2) solid finite
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elements characteristically do not perform well when used to model structures
which exhibit predominant bending behavior.

Three models were prepared as shown in Figures 2 3, and 4, one with each
of the three elements: IHEX1, IHEX2, and IHEX3, the linear, quadratic, and
cubic elements, respectively. All three beam models had a length (L) of 3.66m
(144 in.) and a uniform rectangular cross section with depth (D) of 0.61m
(24 in.) and width (W) of 0.30m (12 in.). The same uniform material properties
shown in Table 2 were used for all three models. Static, normal modes, and
buckling analyses were performed for each of the beam models.

Statics

For the static analyses, all der-ees of freedom at the base of the beam
(z = 0) were completely fixed. All three models were subjected to *Le same
four loading conditions:

1. Linear thermal gradient (Y-girection)
T=322.06 Kat Y= 0 (120 F at Y = Q)
T=188.71 K at Y = 0.61m (-120° F at Y = 24 in.)

2. Uniform temperature rise
AT = 55.56 K (100° F)

3. Compressive axial pressure (Z-direction)
P, = -2.954 x 10* N/u® at 2 = 3.66m (-42837 psi at Z = 144 in.)

4. Transverse pressure gY-direction)
Py = 6.895 x 10° N/m® at Y = 0 (100 psi at Y = 0)

The results for the tip displacements are summarized in Table 3, where the
computed solutions are compared with the theoretical solutions. The maximum
error for the linear IHEX1 element was 10.3% for the transverse pressure load.
For the quadratic and cubic elements, IHEX2 and IHEX3, the maximum errors of
4.52 and 3.5%, respectively, occurred in the solutions for the thermal gradient
load. For the transverse pressure load, the errors were 1.6% for the IHEX2
element model, and 1.12 for IHEX3. Thus, the higher order isoparametric sclid
elements perform very well when used to model the bending behavior of this beam.

Normal Modes

In the normal mode analyses, the same single point constraints were
applied to all three models in the following manner: All Z components of dis-
placement in the plane Z = 0 and all Y components along the line Z = 0,

Y= 0.30m (12 in.), were fixed. For the IHEX. and IHEX3 models only, all X
components along the line Z = 0, X = 0, were fixed. For the IHEX2 model cnly,
the X components along the line Z2 = 0, X = ~0,15m (6 in.), were fixed. This
system of constraints was chosen to allow dilatation at the base of the beam.
The particular set of constraints used for the IHEX2 model has the additional
sdvantage of symmetry.
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The inverse power method was used to extract the first three normal modes
of each model. The results for the natural frequencies are summarized in
Table 4. The computed natural frequenci{es for the THEX2Z and IHEX3 r .els are
within 3.0 per cent of the theoretical solution. The natural frequency for the
IHEX1 model is 2.7% off for bending in the Y-direction, but it is off by 18.3%
and 15.8% for the two bending modes about the X-dircction. These er: s are
probably caused by an insufficient number of elements through the width of the
beam in the X-direction. Using a smaller mesh size with more IHEX1l elements
would improve these results at the expense of increased computer costs. This
problem, therefore, serves to demonstrate even more clearly the superiority of
the THEX2 and IHEX3 elements over the THEZ] element for modeling the bending
behavior of structures.

All the computed mode shapes for all three models showed excellent corre-~
lation with the theoretical solution [Ref. 1l1. Comparative plots of the mode
shapes are not included in this paper because there would be no visible dis-
tinction between computed and theoretical solutions.

Buckling

Each of the three beam models was used to compute the critical buckling
load for axial pressure. The same system of constraints used to compute normal
modes was used to compute the axial pressure buckling load. The applied pres-
sure on the end of the beam was -2.954 x 10® N/m® (42,837 psi). This amouats
to a tctal applied force of -5.406 x 107 N (-1.234 x 107 1b), which is equal to
the theoretical critical load for buckling in the X-direction. Therefore, the
fundamental eigenvalue for buckling should have been unity.

Lgain, the inverse power method was used to extract the three lowest buck-
ling modes. The resuits for the buckling eigenvalues )\ are presented in
Table 5. The IHEX2 and IHMEX3 eleme~t results are excellent, They are within
0.7Z2 of the theoretical solution., The eigenvalue for the IHEX1l element mod«l
is in error by le=e than 102 for buckling in the Y-direction. Rowever, it is
off by more than 40X for both buckling modes in the X-direction. This situation
is siwilar to that of the normal mode problem for tne IHEX: element model.
Again, it is probably due to the lack of an adequate number of elements through
the width of the beam in the X-direction.

As was the case for th: normal modes problem, the mode shapes computed by
NASTRAN for buckling were very close to the theoretical shapes. Thus, no plots
comparing computed shapes with theoretical shapes are included in this paper.

-t i . k.. .

CONCLUDING REMARXS

All three isoparametric solid elements produced good results for static,
normal mode, and buckling analyses. As expected, the linear element results
showed that it is best used when shcar behavior predominates. The superiority
of the quadratic and cubic elements was confirmed by the excellent resui.s
obtained in both the bending and the shear behavior of a cantilever beam wodel.
Therefore, the implementation of these three isoparametric solid elemer"s, which
provide for variations in both materiasl propertics and stressec throughout the
element, does greatly enhance the to%al modeling capability of NASTRAN.
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TABLE 1. FUNCTIONAL MODULE MODIFICATIONS TO IMPLEMENT
ISOPARAMETRIC SOLID ELEMENTS

IFP - New Bulk Data cards were added
1 GP2 - Array sizes were increased to accommodate elements
: with 32 grid points
f
v PLTSET -~ Array sizes were increased to accommodate elements
{ with 32 grid points
; PL@T - Capability for plotting solid elements was
implemented )
GP3 - Processing of the isoparametric element pressure
card was implemented
TAl - Capability to appenu grid point temperatures to
EST/ECPT entries was implemented
SMA1 - Stiffness and conductance matrix generation for
the new elements was iumplemented
SMA2 - Mass and capacitance matrix generation for the new
elements was implemented 3
SSG1 - Load vector generation for thermal and pressure ;
loads on the new elements was implemented ¢
¥
DSMG1 - Differential stiffness matrix generation for the 'ﬁ
new elements was implemented A
SDR2 ~ Stress calculations for individual grid points of .
the new elements was implemented r
@FP - Stress printout formats for the new elements were 5
implemented .
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TABLE 2. MATERIAL PROPERTIES OF THE CANTILEVER BEAM MODELS
Symbol Description Value (SI) Value (English)
E Young's modulus 2.068 x 10! N/m? 30 x 10% 1b/in?
v Poisson's ratio 0.3 0.3
o |Coef. of thermal expansion| 2.570 x 10™° —E oo | 1.428 x 107° El‘-_‘—;-F
p |Mass density 20.86 kg/m® 7.535 x 10™* 1b/in?

TABLE 3. COMPARISON OF TIP DEFLECTIONS FOR NASTRAN AND THEORETICAL
SOLUTIONS FOR FOUR STATIC LOADING CONDITIONS
NASTRAN Solutions Theoretical
" *
Load Description IHEX1 Model | IHEX2 Model | IHEX3 Model | Solution
Case Defl,,[Error|Defl.,|Erroz,|Defl. ,[Error, Tip Defl.,
cm % cm % cm A cm
1 Thermal Gradient 3.668] 2.5 3.932| 4.5 | 3.894] 3.5 3.762
2 Uniform Temperature | .5367| 2.8 | .5344) 2.3 | .5304{ 1.6 .5222
3 Axial Compression -.5179| 0.8 |-.5187| 0.7 |-.5199| 0.4 -.5222
4 Transverse Pressure .3612110.3 .3965| 1.6 .3985] 1.1 4028
*Theoretical Solutions
Load Case 1 Load Case 2 Load Case 3 Load Case 4
4
5 - aATLz s AT s PZ L 5 3PY L 4D2
Y™ 75D 7 = CATL = E Y~ o
2ED 5L
GY = 3,762 cm GY = 5222 em GY a= 5222 cm GY = 4028 cm
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TABLE 4., COMPARISON OF NATURAI FREQUENCIES FOR NASTRAN AND
THEORETICAL SOLUTIONS
NASTRAN Solutions Theoretical
Mode Description IHEX1 Model | THEX2 rodel | THEX3 Model Solut;on,
Freq.,|Error | Freq.,[Error |Freq., |Error, cp
cps % cps Y4 cps % [Ref. 11]
1 First Bending Mode | 22.0 | 18.3] 18.6 0 18.6 0 18.6
in the X-Direction
2 First Be:iding Mode | 38.3 2,71 6.5 | 2,1 | 36.5 | 2.1 37.3
in the Y~Direction
3 Second Bending 135.3 | 15.8|114.3 | 2.1 {113.3 | 3.0 116.8
Mode in the
X-Direction
TABLE 5. COMPARISON OF BUCKLING EIGENVALUES FOR NASTRAN AND
THEORETICAL SOLUTIONS
NASTRAN Solutions Theoretical
Mode | Description THEX1 Model IHEX2 Model IHEX3 Model Solu;ion
A Error, Error, A Error,
b3 % % [Ref. 12}
3 X-Direction | 12.809 | 42.3 | 9.037 .4 8.934 .7 9.0
k35

R L T

e N

Sapcre




PE P N A st

et R

e s o 2 e A e 3 v n o

k36

(a) Linear.

(b) Quadratic.
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FIGURE 1. THREE ISOPARAMETRIC ELEMENTS
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FIGURE 2. IHEX1 MODEL -- 216 ELEMENTS AND 364 GRID POINTS
MATRIX ORDER (g-SET) = 1092, SEMI-BANDWIDTH = 102,
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FIGURE 3. 1IHEX2 MODEL -~ 36 ELEMENTS AND 275 GRID POINTS
MATRIX ORDER (g-SET) = 825, SEMI-BANDWIDTH = 156,
)
4
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FIGURE 4. IHEX3 MODEL -- 8 ELEMENTS AND 148 GRID POINTS
MATRIX ORDER (g-SET) = 444, SEMI-BANDWIDTH = 132.
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