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FAST MCDAL EXTRACTION IN NASTRAN VIA THE

FEER COMPUIER PROGRAM

By Malcolm Newman and Aaron Pipano

Israel Aircraft Industries, Ltd.
Lod Airport, Israel

SUMMARY

A new eigensolution routine, FEER (Fast Eigensolution Extraction
Routine), used in conjunction with NASTRAN at Israel Aircraft Industries
is described. The FEER program is based on an automatic matrix re-
duction scheme whereby the lower modes of structures with many degrees
of freedom can be accurately extracted from a tridiagonal eigenvalue
problem whose size is of the same order of magnitude as thke number of
required modes. The process is effected without arbitrary lumping of
masses at selected node points or selection of nodes to be retained in

the analysis set.

The results of computational efficiency studies are presented,
showing major arithmetic operation counts and actual computer run times
of FEER as compared to other methods of eigenvalue extractiun, including
those available in the NASTRAN READ module. It is concluded that the
tridiagonal reduction method used in FEER would serve as a valuable addi-
tion to NASTRAN for highly increased efficiency in obtaining structural

vibration modes.

INTRODUCTION

One of the most burdensome computational tasks in discretized
structural systems centers around the extr .tion of mode shapes and
frequencies when the orders of the matr’ .s are large. The difficulties
are compounded as the number of requircd eigensolutions increases and
nultiple or near-multiple eigenvalues are encountered.
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Currently, NASTRAN provides three methods for modal extraction
(refs. 1 and 2): the Tridiagonal or Givens method. the Inverse Power
Method with Shifts, and the Determinant method. In each method the
problem size enc-untered is equal to the number of degrees-—-of-freedom
in the analysis set which, given typical, present-day prob.em applica-
tions, may run into the thousands. One means of reducing the size of
the analysis set is via the Guyan reduction (ref. 3), which has been
incorporated into NASTRAN. This technique, which is similar in concept
to the Kaufman ~ Hall reduction (ref. 4), requires a "judicious"
elimiration of selected mass degrees-of-freedon. and an attempt is made
to account for the influence of the eliminated nodes through egnivalent
energy criteria. As demonstrated by Levy (ref. 5), such an intuitive
approach involves a great deal of guesswork and can le d to grossly
inaccurate results, particularly in systems with relatively non-uniform
mass distributione.

What is reguired to circumvent these difficulties is a more
automated eigenreduction scheme which yields zccurate lower modes of
the structural system. In essence, the probliem may be pose. as follows:

Given the nth order eigenvalue problem
[K){6} = w’[M)(s) (1

where [K] and [M] are symmetric and non-negative definite, we wish to
approximate the modal vectors by

{¢} =« [T]{8} (2)

vwhere [T] is a suit»“lv constructed transformation matrix of size
nxm (m<<n) and {§' 1s zn m-component vector of generalized co-
ordinates. Using a Rsvleigh-Ritz procedure the r=sulting reduced,
mth order eigenpr-btlem is of the form

[R1{8) ~ &l(¥){e) (3)
where

®) = (1" k() (42)

M = (11" (M) (7] (4b)

and w 4s an approximate modal frequency. If a specified number of
lower modes are to be accurately obtained, then the individual nth
order vectors comprising the transformation matrix must be sufficiently
rich in the corresponding modal vector... Thus, the practical value of
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the reduction scheme hinges on its ability to generate such a trans-
formation matrix with a minimum of computational effort.

A number of closely related methods involving eigenreduction
concepts have been proposed previously. In the work of Hestenes and
Karush (ref. 6), eigensolutions were obtained via a block power method
(iterating with several vectors simultaneously as opposed to a single
vector) and a reduced eigenvalue problem was employed to orthogonalize
and improve successive blocks of vectors between iteration steps. More
recently, Jennings and Orr (ref. 7), Dong, Wolf and Paterson (ref. 8),
and Bathe and Wilson (ref. 9) proposed similar techniques using the
Inverse Power Method in conjunction with simultaneous sets of vectors
(alternitely called Simultaneous Iteraticn, Subspace Iteration and
Block-Stodola methods). In each of thase approaches, however, the
fuactional role of the reduced eigenproblem is to improve a sub-
space of approximate modal vectors with central emphasis being placed
on a block-type Inverse Power method.

In this report, a new eigenreduction routine, FEER (Fast
Eigensolution Extraction Routine) is described, wherein a sing'?2 reduced
eigenproblem it generated for the ac~urate extraction of any specified
number of lower modes. Further, the transformation matrir 1is generated
vector-by-vector in such a way that the reduced eigenprobiem is
tridiagonal in form. The FEER program is now being used in conjunction
with NASTRAN at Israel Aircraft Industries to obtain much more
economical eigensolutions than currently possible with the NASTRAN READ
module.

The tridiagonal reduction method employed in F:ER was first
suggested by Crandall (ref. 10) as a truncated version of the Lanczos
algorithm (ref. 11). However, it was soon discovered that the original
scheme possessed numerical instabilities (refs. 12 and 13). The
necessary improvements to correct these weaknesses were made by Ojalvo
and Newman (ref. 14), who were the first to develop a successful
tridiagonal reduction prog' = for large scale structural dynamics
problems. The FEER computer program contains further refinements later
introduced by Newman and Pipano (ref. 15), including:

1. Highly efficfent numer‘cal computation schemes, usii.g packing
techniques whirch take advantage of matrix sparsity.

2. Calculation of accurate upper and lower bounds on the
extracted eigenvalues.

3. Accommodation of singular mass matrices snd stiffness matrix
singularities associated with rigid body modes.
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TRIDIAGONAL REDUCTION METHOD
Preliminary Opevations

Employing the NASTRAN notation, the structural eigenvalue problem
is of the form

2 P
[xaa]{¢a} = [Maa]ua} {5)

Both [Kaa] and [Maa] are nth order symmetric, nor-negative and semi-

definite untrices corresponding to the analvsis set. Hence, they may
both be singular, but all “~he eigenival :es are zero or positive.

In order to obtain a decomposable matrix, a small, positive shift
parareter, a , is chosen such that

u)z - ¢32 - a (6)
o

Then

2
(Ko™~ oMaa]Na} * “’o[“aa“‘a}' ¢))

It can be easily show. that the shifted stiffness matrix is non-
singular and positive-definite provided that (he system masses generate
kinetic energy due t> any kinematically admissible rigid body motions
of the structure. This requirement is alway: satisfied by the mass
matrix in a physically well-posed problem.

In order to maintain the elements of the subsequent trial vectors
on the order of unity, a positive mass-scaling paraister, S, is also
employed, such that

M

1 -
aal TS5 (M) (8)

If a Cholesky symmetric decomposition of the shifted stiffness
matrix is performed:

T 9
(K, +aM ] = (L] (L]

it follows that the eigenvulue problem.equation (7). .. be converted
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to the form

(B} {x} = a{x} 10)
where
(81 = w1 lm it (11a)
{x} = [L]T {s,} (11b)
and
ro= zs (11c)
w +a

The above triangular matrix inverses are treated as purely
operational symbols, since in actual numerical operations forward and
backward passes on vectors are employed.

Generation of the Reduced Eigenproblem

A reduction of the nth order eigenvalue problem, equation (10), is
effected through the transformation

{x} = [V]{y} (12)

nxl nxm mxl

where {x} is an approximation of {x} and m < n. The transformation
matrix is taken to be unitary, so that

vittvl = (1. (13)
The reduced mth crder eigenproblem is then
[A) {y} = Xy} (14)

where
(al = (1TBIV) (15)

and A is an approximat{ion of the eigenvalue A.

The essence of the reduction scheme lies in the choice of the
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transformation matrix [V]. In the tridiagonal reduction method, the
Lanczos algorithm (refs. 11 and 13) is used to build the [V] matrix,
vector by vector, i.e.,

(vl = [{vl} {vz} ------- {v.}1 (16)

such that the reduced mxm matrix [A], is tridiagonal and its eigenvalues
approximate the higher end of the eigenspectrum of [B] (or, equivalently,
the lower natural frequencies of the structure).

The algorithm yields

{A] = d a N (17)

| ‘n %

where the matrix coefficients are theoreticaily given by the recurrence
formulas

a;, = (v} IBlv)
a4, = tv,_VBliv,) s 1=l,m (18)
{;i+1} = [Bl{v, }-a, {v,}-d {v, _,}

- - T, = 1/2
{vi+1} = {v1+1}/[{vi+1) {vi+1}]

The process is initialized by choosing an initial trial vector, {vl}

and setting {v_l} = {0}; dl = 0,

The initial trial vector should contain all components of the systenm
eigenvectors and must be constrained to eliminate spurious eigensolutions
(wé + = ) due to mass matrix singularities. These requirements are
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satisfied by setting
(v} = (Bl e @m0 1Y, (19

where {w} is an n-element vector obtained from a random number generator
routine.

Reorthogonalization of the Trial Vectors

Although the trial vectors {vi} generated in equations (18) form

a theoretically orthogonal set, it has been shown (ref. 16) that they
rapidly degrade as the computations proceed, such that the later vectors
are far removed from orthogonality to the earlier ones. This is caused
by unavoidable computational round-off, which, because of repeated
multiplications by the unreduced eigenmatrix, [B], tends to amplify

the contributions of the lower frequency eigenvector components, To
correct this problem, Gregory (ref. 12) experimented with the use of
higher precision arithmetic, but found only marginal improvements in

the final results. Later, Lanczos suggested a single reorthogonalization
of the trial vectors. While this improves matters substantially, it still
does not eliminate the precision problem adequately. However, Ojalvo
and Newman (ref. 14) found that the introduction of an iterative
reorthogonalization loop can make the trial vectors as orthogonal as
necessary for extremely large systems. The procedure is as follows:

Denote each new vector obtained from equations (18) as {v2+1} and

iterate,
1
i} = V5! Z [{vj} Vi vy}
(19)
{v1+1} {v1+1 jle{vj} {vi+1}]{vj}
until an acceptable vector i“
s+l
fvigqt = {vi+1} - 2 [(v 3T {vi+1}]{vj} %
is found which satisfies the orthogonality criterion
max |{v,}7{v3,.} < 1027t (20)
1<j<i 3 1+1 -

where t is the total number of decimal digits carried by the computer.
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A normalized form of the reorthogonalized trial vector is finally
obtained through
s+l 1/2

s+1}T{ s+l
i+1

} = Av }/[{vi+1 vi+l}] (21)

Vin

Experiences gained through application of the FEER program to
a large variety of problem types and sizes have indicated that an
average of only two reorthogonalizations are required per trial vector
generation.

Size Criteria for the Reduced Eigenproblem

As a result of numerical experiments and arnlications (refs. 14,
15, 17-19), it has been found that in cases where m<<r (where r is the
total number of structural modes, including rigid body modes, and m is
the size of the reduced eigenvalue problem), a first grouping of more
than /2 lower frequencies of the reduced system are in accurate
agreement with the corresponding number of exact frequencies, provided
that m > 7, i.e., when at least seven trial vectors are chosen. The
remaining reduced system frequencies are spread across the remaining
exact spectrum, with the last one representing a lower bound on the
highest exact frequency of the unreduced problem.

Thus, if the user requests q lower frequencies of the structure,
the order of the reduced eigenvalue problem is

w o=

min [2q+l,r]; q > 3
min [7, r] ; q <3 J (22)

It should be noted that in all cases m < r, and whenever m is
set equal to r, all the structural modes of the unreduced problem are
generated.

Error Bounds on the Computed Eigenvalues

One of the inherently striking features of the tridiagonal reduction

method is that the solution of the reduced, tridiagonal eigenproblem

[Al{y} = ily} (23)

~
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and the off-diagonal elements of [A] automaticaily provide accurate
error-bound parameterc for the extracted eigenvalues. In particular,
it can be shown (ref.20) that absolute error bounds for each approximate

root, m%, are found from the inequality

-2
w, + a d *(y,)
; -1 < m+l £71 | (24)
+ a - X
9y i

where wi is an exact system root, is the (m+l)th off-diagonal

d
m+l
element of an [A] matrix of order mt+l, and Yeq is the last element of the

eigenvector corresponding to Xi .

Program FEER Flow Diagrams and Sample Output

The overall flow diagram for implementation of the tridiagonal
reduction method in FEER is shown in figure 1. The reduced system
eigenvalue problem is solved in block 7 by means of a Q-R algorithm which
takes advantage of the symmetrical, tridiagonal form of the eigenmatrix
and the physical modal vectors and frequencies are finally computed in
block 9. The details of block 6, "Execute Tridiagonal Reduction
Algorithm', are given in figure2., Block 6.4 and the assoclated
peripheral test conditions are used to generate re-start vectors when-
ever premature vanishing of a trial vector occurs. This is usually due
to the existence of multiple or near-multiple eigenvalues, as described
in reference 13. Figure 3 shows a representative eigenvalue table
produced by FEER. In this example, the order of the stiffness matrix
was 3,072, while the size of the reduced problem was 41. As showm by a
the error bound listing, FEER generated 21 lower frequencies to within
an accuracy of .01%, using only 362 seconds of CPU time on a CDC~6600
computer.

COMPUTATIONAL EFFICIENCY STUDIES

A count of the major arithmetic operations expended in FEER is
summarized in Table 1, where n denotes the size of the stiffness matrix
in the analysis set, b and b are average semi-band widths of the stiffness i
and mass matrices, respectively, and q is the number of accurate modes - ¥
requested by the user. Each operation is assumed to consist of a -

B
%
e
5
¢
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multiplication followed by an addition.

It should be noted that the average bandwidth parameters are used
primarily to provide a measure of the number of non-zero matrix elements.
In actuality, FEER employs efficilent packing routines which do not
require a uniform band structure for efficient computational operations.
It can be seen that the major computational effort involves decomposition
of the modified stiffness matrix (step 3) and provides the leading term
of 1/2 nb2 1in the total operation count. One of the positive features
of the tridiagonal reduction method is that only one such decomposition
is performed regardless of the number of roots required.

Operation count and storage requirements for several alternate
eigensolution methods are compared with FEER in Table 2. The purpose
of this comparison is to provide an indication of the potential
efficiency of each method, assuming that an equally adept and kncwledg-
able programmer has had a chance to employ the same time-saving tricks
in each case. For this reason, several excellent solution techniques
which achieve high efficiency through special data handling and storage
methods (see for example, refs. 21 and 22), but nevertheless show 1
high minimum operation count, havc not been included in the comparison.
As in Table 1, the counts are presented in terms of average bandwidths
which are again to be interpreted as a measure of non~zero matrix entries
rather than in terms of a specific band structure.

It can be seen that in the Givens method the operation count (—n3)
and the storage requirements as well ( O(n ) ) become prohibitively
large when the size of analysis set grows beyond more than a few hundred
degrees-of~freedom.

The leading term in the Inverse Power Method (NASTRAN) is qnb /2

as compared to nb2/2 for FEER, since at least one shift per extracted
root and a subsequent triangular decomposition is typically required in
the former method. Based on this assumption and the additional supposi-
tion that an average of seven iterations per eigenvector are required

in the Inverse Power method, theoretical operation-count ratios (Inverse
Power Method/FEER) are presented as a function of semi-band width and
the number of required roots in figures 4 and 5 for the cases of
diagonal and consistent mess matrices. These curves provide only an
approximate estimate of the relative time savings actually accrued for
several reasons. First, the siructure of the stiffness matrix influences
the decomposition strategy employed in NASTRAN via the active column
approach. In addition, there is no a-priori knowledge of the actual
number of shifts and iterations which will be required in the Inverse
Power method for any given problem application. In general, both the
number of shifts and iterations tend to increase with the number of
roots extracted, so that the curves indicating improved efficiency

of the Inverse Power method for a very large number of extracted roots

Lok

e




ey A S ey v p e

B NP 5;3@#*;?%%»&% EER R e L RS

and small bandwidths are unrealistic.

Table 2 also shows approximate operation counts and storage
requirements for Gupta's Sturm Sequence method (ref. 23) and a current
version of the subspace or Block-Stodola method (ref. 9). The storage
requirements for each of these methods, as well as the Inverse Power
and FEER methods, are all on the same order of magnitude. In Gupta's
method the count of 25nb2q is based on his assumption that approximately
2nb?2 operations are involved in examining the Sturm sequence for one
trial root value, and that about twelve such values must be examined
for each accurately predicted root (ref. 9). With regard to the
Subspace Iteration method, the leading term in the count,nbz, is twice
as large as in FEER and all other terms involving the same functional
forms of the parameters n, b, b, q are‘also much larger. In addition,
the reduced eigenproblem which is solved for improvement of the sub-
space is not tridiagonal so that the count for this operation is on
the order of q3 as compared to q2 for the tridiagonal reduction method.
Finally, the assumption of eight subspace iterations may not be very
reliable, since this depends on the choice of the starting subspace,
which is somewhat arbitrary.

Table 3 presents a set of actual computer runs comparing the
CPU execution times of FEER vs. the Inverse Power and Givens methods
in the NASTRAN READ module. The results indicate that the more efficient
decomposition operations and shift strategy incorporated into Level 15
have yielded significant i{improvements in the Inverse Power method as
compared to the Level 12 version (see also ref.24).

However, the run times for comparable or identical problems are
generally 5 to 20 times faster with FEER than with the Level 15 Inverse
Power method when between 5 and 20 accurate modes are requested. This
result is in rough agreement with the operation count ratios shown in
figures 4 and 5. In problem No.2, which is relatively small and could
therefore be t-eated with the Givens method, the execution time via
FEER was approx.mately 3 times as fast, since only 35 modes were re-
quested, while in the Givens method the user has no choice and must
pay the penalty of having all the efigenvalues calculated (in this -~
particular case, 105).

CONCLUDING REMARKS
Significant computational efficiencies are achieved in the FEER
program primarily due to the tridiagonal reduction method of modal

extraction. Basically, the subspace of trial vectors generated via i
this method are sufficiently rich in the lower modes to provide a
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single, reduced, tridiagonal eigenproblem whose solution provides these
modes with a high degree orf accuracy. This feature distinguishes it
from the usual subspace or block iteration methods, where the trial
vector subspace is established somewhat arbitrarily and subsequently
improved through repeated solutions of reduced eigenproblems. The
tridiagonal reduction method employs only a single, intitial shift of
eigenvalues and hence requires only one matrix decomposition. It is
consequently much more efficient than the Inverse Power Method with
shifts when more than one or two lower modes are requited. TFEER is
also extremely efficient for out-of-core operations and requires only
(15,000 + 7.n) central memory words, where n is the order of the
analysis set. Another feature of the method is that the reduced
problem is generated automatically, starting with a random trial
vector, and this avoids one of the basic weaknesses of techniques
requiring either a judicious selection of starting vectors or retained
nodes.

It is concluded that the tridiagonal reduction method used in
FEER would serve as a valuable addition to NASTRAN for increased

efficiency in obtaining structural vibration modes.
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- TRIDIAGONAL REDUCTION METHOD (PROGRAM FEER)
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Enter
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1. Compute Scaling and
Shift Parameters

AT--“‘

2. Zero-out Excessively
Small Mass Elements

|

3. Establish Tentative
Reduced Problem Size, m
T

4, Construct Factors of the
B Matrix

1

5 Generate Initial Erial
Vector

-

Reduction Algorithm

I 6. Execute Tridiagonal

7?. Solve Reduced System

Eisonvalue Problem

\ 4

8. Compute Maximum Eigenvalue
Errors

|ﬁ§. Compute Physical Eigenvalue:z
and Eigenvectors l

Exit

Figure 1, - Overall flow diagram for tridiagonal reduction method
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C Enter j
'

k.1 Initialize the Recurrence
Algorithm

P-Z Create one Approximate Trial

3
6.4 Generate a v i
; : ector and One Diagonal Q——1
: : Restart oy—————, Coefficient
; Vector
Set
k = k01
Exit 4‘)
be3
Non-null Set First Normaliza-
Vector Test k =0 tion Test

Fail Pass
6.5 Iterate vo Obtain Orthogona-

- lized Vector

No Yes 3
| k>3 Set Ortho i
. gonality
—n—s—i Criterion
( Exit )
) Satisfied
Set a1l ] 6.6 Second Normalization
mz Test

'

6.7 Normalize the Orthogonaliged
Trial Vector & Create one
0ff-du§onnl Coefficient

[ ]
set
ia i«

Figure 2. -~ Flow diagraa for block 6, execute tridiagonal reduction
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FIGURE &~ THEORETICAL OPERATION-COUNT RATIO
(INVERSE POWER METHOD/FEER)}DIAGONAL
MASS MATRIX ; INDEPENDENT OF PROBLEM
SIZE FOR N»200
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NO. OF ACCURATE ROOTS REQUIRED

FIGURE 5~THEORETICAL OPERATION-COUNT RATIO
(INVERSE POWER METHOD/ FEER)- CONSISTENT
MASS MATRIX ; INDEPENDENT OF PROBLEM
SIZE FOR N»200




