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FINITE ELEMENT ANALYSIS OF A COMPOSITE

MATERIAL INTERFACE

By

Kenneth H. Murray*

SUMMARY

A finite element model of a composite material interface is developed
to study the influence of the interface on the thermal strain in the composite.
A plane stress model is used with an axisymmetric model as a check. The
interface thickness, thermal coefficient, modulus, Poisson's ratio and the
percent of mineral in the composite are variables in the study. The
results confirmed the usability of the finite element model in studying
the polymer-mineral interface.

INTRODUCTION

Composite materials can be considered to be a combination of two separate
phases or materials with an interphase or interface between them. The inter-
face transmits the forces and displacements between the phases and thus
makes possible the combined action of the phases[|FT]. These forces and
displacements have been analyzed by means of finite elements to estimate
the matrix stresses [2-4] as well as the effect of the interface [5-7].
In all of these analyses, perfect bonding and zero thickness interface
between the phases was assumed, although such an assumption is physically
unrealistic.

Consequently, a finite element analysis was made of a composite material

* Associate Professor of Engineering, School of Engineering, Old Dominion
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consisting of a continuous polymer phase (the matrixi) containing a discon-
tinuous mineral phase (the filler). The phases were separated by a finite
thickness interface to which a range of properties could be assigned. The
effects of the interface properties on the thermal strain of the composite
were determined and are reported in the next section.

MODELS AND ANALYSIS

Composite Model

The model polymer-mineral composite material had properties which
approximated those of an epoxy-glass system in which the gilass is in the
form of small, uniformly sized, beads. The properties were:

Elastic modulus, GN/m2

Thermal expansion coef., K"1

Poisson's ratio
Specific gravity
Bead diameter, urn

Polymer

3.047

88.6xlO-6

0.44

1,15

Mineral

68.95

8.5xlO~6

0.22

2.45

125

A composite wd'th these properties was being investigated concurrently in an
experimental program at NASA Langley Research Center.

Finite Element Model

The finite element model of the composite was basically a plane stress
model of a unit cell of polymer surrounding a single glass bead, separated
by a finite thickness interface (Figure 1). The bead was modeled as a
hexagon because only straight line boundaries were permitted with the plane
stress elements available in the computer,program which was used in the
analysis. The interface, which can vary in thickness and material properties,
is essentially a geometrical extension of the hexagon. The bead diameter
was taken as the distance between opposite sides of the hexagon. Since
the diameter was fixed (125 ym), different volume percentages of miimeral
were obtained by changing the size of the unit cell. Thus a large mineral



volume percentage (e.g. 60%) required a smaller unit cell than did a small
percentage (e.g. 5%).

Using the basic unit cell, four finite element models were constructed.
The first model (Figure 2) had a flexible link element as the interface.
This link has been used successfully to model the bonding between concrete
and reinforcing steel [8], The material properties of this interface element
were independent of the polymer and mineral because of the linking arrangement,
so these properties could be varied over an extremely wide range. The second
model used the same geometry except for the interface element (Figure 3).
The interface element was a normal element geometrically but had its material
properties bounded by the material properties of the polymer and mineral;
e.g. it is unreasonable to expect the interface modulus to be larger than
the mineral or smaller than the polymer modulus. The thiiid model was made
up of two of the second models stacked on top of each other (Figure 4).
This was done to determine df the strain for two unit cells would differ
from that for one cell. The fourth model was an axisymmetric idealization
of the bead and polymer (Figure 5). This model used the same type of interface
element as the second model. The idealization shownnin Figure 5 was rotated
360° about the z-axis to develop a three-dimensional solid.

Analysis

The four models were analyzed using the finite element method by way
of NASTRAN. NASTRAN, an acronym for NASA S;tKuctural Analysis, is a general
purpose finite element computer program for structural analysis. A discussion
of the finite element method and of NASTRAN is given in Appendix A.

The loading system for the models was a temperature change from 300 K
(approximately room temperature) to 400 K. In the finite element method
the thermal displacements are found by defining a set of nodal loads which
approximate the thermal load on an element. The nodal loads from each
element are summed to obtain the total load vector. This approximation
along with the basic idealization of polymer-mineral composite are necessary
to analyze the system using finite elements.

The boundary conditions for the first three models were the same



(Figures 3 and 4). The x-axis nodes (16, 17, 21, and 22) were restrained
in the y-direction and the y-axis nodes (18, 22, and 23) were restrained
in the x-direction. The boundary conditions approximated those of a pdiece
of the composite two unit cells wide, resting on a plate, with the composite
axis of symmetry co/imcident with the y-axis. As a result of the symmetry
only half of the piece (one unit cell) had to be analyzed. The boundary
conditions for the fourth (axisymmetric) model were zero displacement along
the r-axis in the y-direction (see Figure 5).

The variables used in the analysis are listed in Table I. One composite
variable, the volume percent of mineral, was included to confirm the results
obtained with the other variables; if the mineral volume is increased, the
thermal strain should decrease [9]. Four interface variables were used,
the interface thickness plus the interface properties of elastic modulus E,
coefficient of thermal expansion a, and Poisson's ratio n. The interface
properties were assumed to change littibe over the 300-400 K temperature
range investigated, and indeed, the large drop in the epoxy modulus does
not occur until a temperature of 440 K is reached [10]. The interface prop-
erties were assigned values equal to the polymer, the mineral, or the average
of the two values. The particular value is indicated in the text and the
tables by a lower case suffix p (polymer), m (mineral), or a (average).
Thus the designation aa, Em means that the average value of the coefficient
of thermal expansion (48.55xlO~6/K) and the mineral value of the elastic
modulus (68.95 GN/mf) were assigned to the interface. Only the interface
properties were varied; the polymer and mineral always were assigned their
respective values listed in Table I.

The geometry of the models, the variable mineral volume, and the
variable interface properties created a major data preparation problem.
To reduce the effort and the possible errors associated with the input data,
a computer program was written to punch the NASTRAN input deck. This program
is given in Appendix B along with an outline of its operation.

RESULTS AND DISCUSSION

The results of the finite element program (NASTRAN) are displacements



at the nodes and stresses within the element. The displacements were divided
by the length (height or width) of the unit cell to obtain strain values.
These strain values are listed in Tables II through VII. An analysis of
variance (ANOVA) of selected data is given in Tables VIII through X.

Preliminary Results

Model One: No results are presented in this report because the model
never gave reasonable results. The material properties of the linking element

20
were varied systematically from zero to 10 and no combination of values
gave reasonable results.

Poisson's ratio: Table II shows some of the results when the Poisson's
ratio was varied in Model Two. It is obvious from the table that this
quantity does not affect the thermal strain values, therefore it was eliminated
from further study and an average value was used (y = 0.33) for the interface.

Interface thickness: Most researchers agree that the interface is a
thin layer between the mineral and the polymer. Using this, the larger
value of F did not appear valid. The remainder of the study uses only
F = 1 and 10 ym.

Model Three: The two cell model gave strain values identical to the
one cell model (Model Two). The mineral content was 34% and the interface
was 10 ym with all combinations of am, ap, Ep, and Em.

Variables examined: The final results are based on the following
variables with their discKete values listed in parentheses. All combinations
were studied for:

Volume Percent of Mineral - PER (5, 34, and 60%)
Interace thickness - F (1 and 10 ym)
Interface thermal coefficient - <x (ap, am, and aa)
Interfaee modulus - E (Ep, Em, and Ea)
Modelsstwo and four

The reference model was Model Two with 34% mineral and an interface
thickness of 1 ym.



Final Results

Mineral content: Comparison of data in Tables III, IV, and V and the
ANOVA in Table VIII indicatestithattithemtfiiiinerralcGonilientiiisaavyepyssngnif<icant

variable. The thermal strain in the model decreases with increasing mineral
content. This can be predicted because the mineral is less responsive to
temperature change than the polymer,=thus the more mineral the less thermal
strain.

Interface thickness: Comparison of datac.in Tables IV and VI and the
ANOVA in Table IXUriâ cit̂ s!̂

Model: Comparison of data in Tables IV and VII and the ANOVA in Table X
for Models Two and Four indicates no apparent significance for the model.
This, of course, is good because now only the plane stress model needs to be
studied in detail.

Strain location: Comparison of Tables III through VII and the ANOVA
in Tables VIII and IX indicates that the strain location is a significant
variable. This is somewhat disturbing because it should not be significant.

The variationsinRS.tica.innaili0nggtheebbundciKyyis plotted in Figure 6. The low
strain values in the middle region near the mineral bead are caused by the
mineral's presence.

Table XI gives the results of the basic model with the boundary conditions
varied at the corner node (22). Standard conditions fix the node in both the

x- and y-directions. To help explain the inonjunitformsstKariinaacPOSstthe-tbp
and side of the model, this node (22) was released first in the x- and then
in the y-direction. Only the two outside nodes and node 22 are presented,
to observe the difference between them. It is quite obvious that the boundary
conditions affect the final strains. The only way to eliminate this effect
is to increase the number of elements near the boundaries to isolate the effect.

Interface material properties: Observation of Table IV for Model Two,
F = 1 ym and 34% mineral, indicates that as a and E increase the thermal
strain increases. The thermal coefficient a has the most effect as can
be seen from ANOVA Table^IXIL; Itrshokldlibebino.tedathatath^.tot'alaef'fect "f
of both variables is less than 1% in general. This presents critical
questions as to the real effect of the interface on the final thermal strains.



CONCLUDING REMARKS

The basic procedure used in this study was to model the polymer-
mineral composite as a plane stress elasticity problem modeled with finite
elements. A unit cell with one bead and a variable interface was idealized
as plane stress triangles and quadrilaterals. The interface was varied
in thickness and material properties through a realistic range to obtain
data on its effect on the thermal strain of the unit cell during a temperature
change.

For the standard model used in this study (34% mineral, interface thickness
approximately il.% of the bead diameter?,, 1 ym, and interface material properties
equal to the polymer, mineral and their average) the following conclusions
can be drawn:

1. The major factors influencing the thermal strain of the composite are:
a) Mineral content
b) Interface thickness
c) Interface thermal coefficient

2. The thermal strain decreases with increasing mineral content.

3. The thermal strain decreases with increasing interface stiffness.

4. More elements and nodes are needed to eliminate the variation in
displacement if the plane stress elements are used.

5. Experimenta.1 results are needed to establish the correct interface
properties.

6. The plane stress finite element idealization does a reasonable job
-ipepresenttingiithetpolymep.f.mrinerailrGomposiiiteltbutbneedses'ome^more. e
refinement.

7. A three-dimensional representation needs to be made to evaluate the
usefulness of the plane stress model beyond what Was done here.
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Appendix A

Finite Element Analysis - NASTRAN

I. Basic Procedure (Reference A.I)

A general continuous body can be idealized using the

finite element method by dividing it into a discrete number

of small elements. These elements are interconnected only

at a finite number of points called nodes or joints. At each

node a finite number of degrees of freedom, usually displace-

ments and rotations, are prescribed. Thus the real system

with displacements continuous throughout -the body is idealized

by a discrete system with displacements specified only at nodes,

This approach to structural analysis has been used on framed

structures for quite some time, but in the last twenty years

it has been extended to include two- and three-dimensional

continua. Because it is a systematic procedure it is very

well suited for implementation on digital computers. It is

this fact plus the versatility of the method that has led to

its great popularity.

The first step in the analysis procedure is to idealize

the continuum as a discrete number of finite elements. For

each element a functional relationship between the internal

displacements and the nodal displacements is written. Next

the stress-strain-displacement relationships are developed

and used to write the potential energy of the element. From

the potential energy equation the stiffness matrix for the ele-

ment is derived. The stiffness matrices of all elements are



iAr'2'-

then summed to determine the equations of equilibrim for the

continuum. These equilibrium equations are then solved for

the nodal displacements using modern numerical techniques.

Once the nodal displacements have been computed, the forces-,

stresses and strains in each element are found.

II. Thermal Stress Analysis

The temperature load is input as a nodal force which is

equivalent to the thermal strain associated with the tempera-

ture change. The thermal stress analysis by the finite element

method can be best summarized by the following steps:

1) Idealization

The continuum is subdivided into a system of discrete or

finite elements, interconnected at a discrete number of nodes.

The unknown parameters of the problem are normally the dis-

placements or rotations at each node.

2) Functional

A displacement function is selected which expresses the

internal displacement of the element in terms of the unknown

nodal displacements:

{f} = [N3 {,6)e CD

3) Strain

The state of strain within an element is expressed in

terms of the nodal displacements:

{e> = [BJ {6)e . C2)

10
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4) Stress

The state of stress within an element is expressed in

terms of the nodal displacements using the element strains,

initial strains and constitutive properties of the material.

In equation form:

(a) = [D] ({e} -'{e0» , (3a)
or

{a} = [D] ([B] {6>e - {e0}) . C3b)

5) Total Potential Energy

The total potential energy is expressed in terms of the

nodal displacements using the stress and strain functions:

H = U + V (4)

where U is the internal strain energy

U = 1/2 /„ {e}T {a} dV_
e

or after substituting equations (2) and (3b)

U= 1/2 /v {6} [ B ] [ D ] [B]{6)edVe-l/2/v {6} [B] [D] {eo>dVe . (5)
e e

The potential energy of the applied forces can be written as

V= / - {f}T(p} dV - / { f} T (g} dS - ' { 5 > g . F n (6)

11
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where {p} = body force per unit volume

{g} = surface tractions per unit area

S = surface (area) over which {g} acts

;{Fn> = applied nodal forces

For the case of thermal strain V = 0 and is omitted from the

following. The total potential energy then is U,'__. ••

n = 1/2 /e {6}^tB]
T[D] [B]{6>edVe - l/2/v {6 }£ [B]

T [D] {eQ}dVe (7)

6) Minimize Total Potential Energy

The equilibrium of the system can be established by

minimizing the total potential energy of the system. In equa-

tion form this can be stated:

= 0
8 {6}e

Performing the minimization, after using equation (1), yields

[B]T[D] [B]{6>dV - / [B]T[D]{e}dV = 0. (8)e v 0 e

e e

7) Nodal Forces

In the minimization above four load types are usually
€ra- ,

present, but here only one is present. Each must be converted

into equivalent nodal forces. The second integral in equation

(8) represents nodal loads resulting from initial strains or

{Fo} = /v CB]TIDJ{£0
}dVe • C9)

e

12
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The equivalent nodal force then is

{F>e = {FQ} (10)

8) Stiffness Matrix

Another outgrowth of the minimization is the basic

element relationship between load and displacement or the

stiffness matrix .[k ]/:.;. The basic equilibrium equation in

discrete cooredinates can be written as

(F}e = [k]{6}e

and comparing it to equation (8) defines

[kj = / [B]T[D] [B]dVe . (11)
e

9) Assemblage

Each element has now been reduced to a set of equilibrium

equations. The continuum can now be represented by the sum of

the equilibrium equations. If N denotes the total number of

elements, then

{F} = [K]{6> (12)

N
where {F> = E {F} U3a)

e=l e

N
[K] = E [k] C13b)

e=l e

N
and {6} {5} (13c)

e=l e

13



10) Boundary Conditions

The external constraints are applied using modern numer-

ical technique ̂ procedures.

11) Solution

The unknown displacements of equation (12) with con-

straints are obtained using appropriate numerical procedures

to solve the equations.

12) Stress Recovery

The displacements are used to determine the stress and

strains in the continuum using equations (2) and (3a).

This entire procedure has been programed many times. The

program used in this study is NASA's Structural Analysis Pro-

gram - NASTRAN. The input for NASTRAN must contain the fol-

lowing information:

1) Type of analysis (static)

2) Type of element (plane stress)

3) Nodal point locations

4) Element connections

5) Material properties

6) Loads (temperature change)

7) Boundary conditions

8) Output requirements

Most of the input is quite easy, but the nodal locations

and element connection cards can be difficult. For this reason

a FORTRAN program was written to generate the geometry of the

14



polymer-mineral composite and then convert this into NASTRAN

input format for punching. Appendix B gives a detailed de-

scription of this procedure.

REFERENCES
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Appendix B

NASTRAN Input Generation Program

A FORTRAN program was written to generate the geometry

of the mineral polymer composite and punch it in NASTRAN for-

mat. The Executive Control and Case Control decks are read

into this program as data for the final NASTRAN deck. Also

read into this program are the GRDSET, PROPERTY, MATERIAL and

TEMP cards from the Bulk Data deck. All other cards are

generated and punched. The mineral bead diameter, mineral

content in percent volume, interface thickness and the number

of basic blocks in the model are also read into this program.

This allows great flexibility in defining the variables of this

polymer-mineral composite study.

The program is listed on the following pages with a

typical data deck.

16



~ DIMENSION DECK" ( 30cl8 ) .GRIDX ( 35 ) »GRIDY ( 35 ) • IE (22 J • JE t 22 ) *KE< 22)
DIMENSION LE(22J

C B « B^AD RADIUS IN MICRONS
C F = INTERFACE THICKNESS
C PER « PERCENT BY VOLUME OF BEADS
C A * INSCRIBED CIRCLE OF LARGE HEX
C - R * RADIUS TO NODE OF LARGE HEX
C IN = LOGICAL UNIT FOR INPUT
C 100 = LOGICAL UNIT FOR PUNCHED OUTPUT
C 1C = LOGICAL UNIT FOr? PRINTED OUTPUT
C NO * NUMBER OF HEXES
C MAXIMUM OF 2 FOR .MODEL ONE AND 1 FOR MODEL TWO
C NDEC = NUMBER OF LEADING CARDS
C BHEX = RADIUS OF BEAD HEX
C ITYPE = TYPE OF INTERFACE
C 0 FOR MODEL ONE AND 1 FOR MODEL TWO
C
C SET UP INPUT-OUTPUT UNITS
C

IN«2
I0«3
100=7
READ (IN»1) B»F»PER»NO*NDEC »ITYPE

1 FORMAT <3F10oO»3I2)
NDEC1=NDEC+1 . .

C
C READ IN NASTRAN EXECUTIVE CONTROL DECK*
C CASE CONTROL DECK AND
C THE FOLLOWING BULK DATA CARDS
C GRDSET
C PROPERTY
C MATERIAL
C TEMP.
C • ' . ,'- ' . . ' • , .

WRITE U0*600)
600 FORMAT(1H1)

DO 15 I«1*NDEC1
RFAD (IN*n)<DECKU*J)»J = l*18)
WRITE(lOtll)(DECK(I»J)»J=1»18I

15 CONTINUE
11 FORMAT (18AA)

BHEX =» 1»15469*B
R « SQRT(75«0/PER)*B/>86603
C3IDXU) « 0.
GSIDYt l ) « 0.

IF ( ITYPE) 300*19*300
C
C LINKAGE ELEMENT MODEL ONE
C

19 DO 20 I»2*13
20 GRIDX(I)xBHEX

DO 21 I«14,25
21 GRIDX(I)«BHEX*F

DO 22 I«26*31
22 GRIDX(I)-R

JJ-1

17



1-3
G R I O Y ( 2 ) « 0

23 G R I D Y ( I ) » G R I D Y ( I - 1 ) 4 - 6 0 »
IF ( I»31) 24t30*30

24 IF ( JJ-5 ) 25»26t27
25 I«I + 1

JJ-JJ+1
GO TO 23 ;

?6 l-l+l
JJ»1

GRIDYm»0.

GO TO 23
27 WRITE( IO»3)

3 FORMAT C PROBLEMS* I
STOP

30 DO 40 I«l»31 •
RR«GRIDX(I )
THa(-GRIDYU )-t-60,)*0«01745329
GR I DX ( I ) a RR*COS < TH ) *R

40 GRIDYU )=RR*SlN(TH)*Ot86603*R

GRIDX(34)»0«
GRIDX(35)«0.
GRIDY(32)«1«73206*R
GPIDY<33)«0.
GRIDY(34>«0.
GRIDY(35)=1«73206»R
DO 50 I»l»6

5P

DO 60
IE(I>
JEU)*9+I-7

60 LE(I)»
JE<12)*8
KE(12J*20
DO 70 I=13»18

JE(I)=21*I-13

70 LEUU26+I-13
JE(18)-20

DO 80 I«19»22
lE(I)*27-»-I-19
JE(I)»32-H-19
KE(I)s26*I-19

80 LEU)«0
Jn(21)«30
JE(22»«31
<F(21)«34

DO 16 I*1,NDEC '
16 WRITE( IQOtll) (DECK! I >J) »J=1»18)

CD 90 I« l»35
18



90 WRITE (I00»4) ItGRIDXU) tGRIDYCI)
4 FORMAT (•GRID«t4X»I8»8Xt2F8«3)

316 DO 100 1*1*6
100 WRITE (100.5) I.IE(I).JE(I)tKE(I)

5 FORMAT (•CTRMEM«2X»!e.7Xtll»»3I8)
DO 110 I«19»22

liO WRITt (100»6) I»fE(!)«JE(I)tKE(I)
6 FORMAT (•CTRMEM't2XtI8t7Xt'2't3I8)

DO 120 I=7tl2
120 WRITE (100,7) I, IE<n*JE(I)»KE(I).LE(II
7 FORMAT (*CODMEM',2X«I 8»7Xt'2't4I8)

DO 130 1-13.18
130 WRITE (100,8) I »IE(I)*JE(I)iKE(I)»LE(X)
8 FORMAT ('CQDMEM'»2X.18»7X»'1'

IF (irYPE>380,139t380
C
C SPC CARDS
C

139 11*1
12*34
13*12
14*30
15*1
WRITE(IOOtl2)Il.I2tl3tI4tI5

12 FORMAT('SPC'5Xt3I8,8Xt2l8J
11*2
X2-35
13*1
X4«29
X5*2
WRITE(100.12)11.12.13.14.15
11*3
12*28
13*2 • : . .
14*33
WRITE(100,12)11,12.13.14.15

149 IF(NO-l)27«240tl40
140 DC 141 I*lt35
141 GRIDY(I)=iGRIDY(I)+1.73206*R

DO 150 I»lt27

150 W R I T E < I O O t 4 ) I I t G R I D X U ) t G R I D Y U )
II«63
W R I T E ( I O O » 4 ) I I t G R I D X ( 3 0 ) t G R I D Y O O )
11*6^
WRITb( 100. 4)11. GRIDXO1) .GRIDYI31)
II -65
WRITE(I00.4)II.GRIDX(32),GRIDY(32)
11*66
WRITc(IOO»4)II»GRIDX(35)tGRIDY(35)
DO 151 1-1,6
IEU)«36
JE(I)«38-H-1

151 L E U ) « 0
JE(6)-37
DO 161 I«7»12

JE (I) -44*1-7
K E U ) -56+1-7 19
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160 Lf.<n«49«-i-7
JE<12) -43
K F < 1 2 ) « 5 5
DO 170 1-13*18
IEU1-56+I-13

170 L E < I » » 5 5 + I - 1 3
J £ U 8 ) = 5 5
J£(13)=62
J E C 1 4 > = 2 6
JH15)»31
JEU6)»63
JF(17)»64
JEU8)«61
KE( 13>=61

K E ( 1 5 ) « 2 6
ICE(16)=31
<E(17)-63
K E ( l f ) = 6 4
DO IbO I=19 f 22

180 L E U > * 0
IE<19)»62
I E ( 2 0 > » 2 6
IE<21)«31
I E < 2 2 ) « 6 3
JE<19)-65
JE(20)»32
JE(21)»63
JE<22)*6<»
ICE<19)«61

DO 200 I«l«6

2 0 0 W R I T E ( I O O » 5 ) I I » I E ( I ) » J £ U ) f K E < I )
DO 210 I«19»22

210 W R I T E ( I 0 0 . 6 ) I I t I E t I )
DO 220 I»7»12
11*1+22

2 2 0 W P I T E ( I 0 0 . 7 ) I I , I E ( I ) » J E ( I 5 » < E ( I ) » L E ( I )
JO 230 I»13»18

2 3 0 W R I T E < I O O « 8 ) I 1 . I E ( I U J E U J « K E < I ) » L E U 1
!!«<»
12-63

C
C SPC CARDS
C

WR!TE( 100*12) II « 12* I3t!4*15
IF(NO-1>27»240»2<>1 •

240 W R I T E < 100.13)
13 FORMAT( 'SPCADD'7X» '100 l »7X*« l t »7X» l 2 l »7Xt l 3M

GO Tt 131 .
241 W R I T L ( 100*14)

14 F O R M A T t * S P C A D D ' 7 X ' 1 0 0 ( 7 X « l l 7 X « 2 » 7 X * 3 * 7 X l 4 l ) 20

131 W R I T E U00»9)



9 FORMAT CENDDATA*)
STOP

C
C REGULAR ELEMENT MODEL TWO
C

300 00 310 I = 2»7
310 G R I D X < n = B H E X

DO 311 I = 8 t l 3
311 GRIDX(I)«BHEX«-F

DO 312 I»14»19
312 GRIOX(I)=R

JJ=l
I»3
GRIDY(2)»0

323 GRIDYU)=GRIDYII-1)+60«
IF <I-19)324»330»330

324 IF (JJ-5) 325t326»327
3?5 1

GO TO 323
326 1=1*1

JJ»1
GRIDY(II»0.

GO TO 323
327 WRITE(IO»3>

STOP
C
C DEVELOPS AND PUNCH GRID AND CONNECTION CARDS
C

330 CD340 I«l»19

T H = < - G R I D Y t X ) + 6 0 , ) * 0 « 0 1 7 4 5 3 2 9
GP I DX ( I ) =RR*COS ( TH ) *R

340 G R I D Y ( I ) = R R * S I N ( T H ) + 0 « 8 6 6 0 3 * R
G P I D X ( 2 0 ) = 2 . * R
G R I D X ( 2 1 ) « 2 . * R
G R I D X { 2 2 ) » 0 «
G R I D X ( 2 3 ) = 0 .
GRIDY(20)=1«73206*R
G R I D Y ( 2 1 ) = 0 «
G R I D Y ( 2 2 ) = 0 .
GRIDV(23)=1.73206*R
D0350 I» l t6 .
IEin-1
JE<n-3+!-i
L E ( I ) » 0

350 KE(n=2-»-I- l
JE(6 )»2

DO 360 I»7tl8

KEU)»9«-I-7
360 LE{n«8*l-7

J E C 1 2 ) » 2
JE(18)-8
KE(12)*8 .
KE<18)*14
DO 370 2-19t22
KE(I)»20*I-19 " ' 2 1

370 L E ( U = 0 «



IE t20) -15
Is<21) -17
Ict22)-18
JEU9J-15 • '
JE<20)»16
JE<21)-18 ' • • • • • - . ' •
J F ( 2 2 > » 1 9
D0416 I = 1 » N D E C

416 W R l T E d O O t l l ) ( D E C K ( I » J U J « 1 « 1 8 »
D0390 I = l » 2 3

3 9 0 W R I T E < I O O i 4 ) I » G R I D X ( I ) » G R I D Y t I )
GO TO 316

C
C DEVfiLOPE AND PUNCH SPC CARDS

380 11-1 * •
12-22
I3«12
14-18
15-1
W R I T E d O O . 1 2 ) 1 1 . 1 2 » I 3 » U » I 5 -
11-2 • ' * . / .
12*23
13-1
14*17
15-2
WRITE!I00tl2)IIt!2»13*14.15
Il«3
12*16 -
13-2 .
14-21
WRITE(I00.12)I1»I2»I3»U»I5
GO TO 149
END,

C
C EXAMPLE DATA DECK FOLLOWS
C -
/* «
125. 1*0 5. 126 1

ID POLYMERtMINERAL
•.PP DIS?
SOL ItO .
TIME 10
CEND
TITLE » ONE HEX - 5 PERCENT MINERAL
SUBTITLE = INTERFACE = 1 » VARYING BOND REGULAR ELEMENT
FCHO = BOTH
bPCFORCES -ALL
OLOAD = ALL . ' •
ELSTRESS « ALL
DISPLACEMENT - ALL
SUBCASE 1
LABEL = ALfHA » MIN • E = MIN AND MU « 0»33
TEMPERATURL(LOAD)-1
SPC -100
BEGIN BULK
GRDSET 3456
PTRMEM i l l * 2 2
PTRMEM 2 2 1.



PODMEM 1 2 1, -
P2DMEM 2 • 3 1«

1 68.95 .22 1. 8o5E-6
2 3.047 .44 X. 88.6E-6
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TABLE I

Variables and their Values

Mineral Content,
by-Volume

Interface Elastic
Modulus

Interface Thermal
Coefficient

Interface Thickness

Interface Poisson's
Ratio

Unit Cell Length
X-Direction

Unit Cell Length
Y-Direction

PER

a

F

y

LX

5, 34 and 60%

Ep (3.047 GN/nr) ,
Ea (35.9985) and
Em (68.95)

ap (88.6 x 10~6/°K)
aa (48.55 x 10~6 and
am (8.5 x 10~6)

1, 10, and 20ym

yp (0.44), ya (0.33)
and ym (0.22)

(1118.0, 428.7, 322.7)ym

(968.2, 371.3, 279.5)ym.

24



TABLE II

Effect-of Poisson's Ratio

Average % Strain For F = lOym

am

ap

am

ap-

Em

Em

Ep

Ep

0.

6:
0.

0.

Vim

5136

5603

5249

5518

Average %

am

ap

am

ap

Em

Em

Ep

Ep

0.

0.

0.

0.

ym

5491

5537

5502

5528

0

0

, 0

0

Strain For

0

0

0

0

ya

.5135

.5621

.5244

.5538

F = lym

ya

.5491

.5540

.5502

.5531

0.

0.

0.

0.

0.

0.

0.

0.

yp
5134

5603

5234

5556

yp
5491

5543

5501

5532

Notes:

All-values are % strain averaged over all
exterior nodes

Mineral content is 34% in model two
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ĈM
0
CTv
VO
rH

O
•

0

r̂
vo
CTl
CN
CO
rH

•
ĵ1
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Î  Cn rH

[-• <* O
00 00 CM
cn r- oo
in ̂  in

CM CN CM

6
'̂

oo
•

rH

t —00

II

^1
|J)

6
^
[-»
•

OO
CN
^*

II

a

G
•rH

(U
T3 O
O CN

crP

G

rd

-P

ato
•H
Q

C
•H

<D
'd oo
O CN
&

to
•H
Q

^^ ^J* P*^

oo in r-
m in m

vo oo oo
oo in oo
O CM rH
r~- r-- in

rH O rH

CN CN CN

oo oo r--
m in oo
o oo CN

o oo oo
O r~- rH
OO O "3"
cn cn î*
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Figure 4 Model Three
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