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EFFECT OF INCREASED FUEL TEMPERATURE ON EMISSIONS OF OXIDES OF

NITROGEN FROM A GAS TURBINE COMBUSTOR BURNING NATURAL GAS

by Nicholas R. Marchionna

Lewis Research Center

SUMMARY

An annular gas turbine combustor was tested with heated natural-gas fuel to deter-
mine the effect of increasing fuel temperature on the formation of oxides of nitrogen
(NO ). Fuel temperatures ranged from ambient to 800 K (980° F). Combustor pres-

X , -.
sure was 6 atmospheres and the inlet-air temperature ranged from 589 to 894 K (600
to 1150° F). The NOY emission index increased with fuel temperature at a rate of 4 to
9 percent per 100 K (180 F) increase in fuel temperature, depending on the inlet-air
temperature. The rate of increase in NO was lowest at the highest inlet-air temper-

X

ature tested.

INTRODUCTION

This report presents the results of combustor tests which were conducted with
heated natural-gas fuel to determine the magnitude of the effect of increased fuel tem-
perature on the formation of oxides of nitrogen (NO ).

X

Natural gas has been proposed as a possible fuel for supersonic flight applications
(refs. 1 to 3). The fuel, which has a high heat-sink capacity and a low tendency to fuel
decomposition, could be utilized as a heat sink in supersonic flight. Natural gas also
has an advantage over kerosene fuels in that it produces lower NO emissions (ref. 4).

X

Using fuel as a heat sink will raise the fuel temperature. Fuel temperatures signifi-
cantly higher than those currently used could produce higher flame temperatures and
significantly higher exhaust-gas emissions of NO since the formation of nitric oxide

X

(NO) is sensitive to flame temperature. However, higher fuel temperatures also in-
crease the flammability limits of the fuel. Increased flammability may allow the pri-
mary zone of the combustor to be designed to burn at lean fuel-air ratios, where the
formation of NO is lower than at stoichiometric fuel-air ratios.

X



Tests were conducted on a ram induction combustor over a range of fuel tempera-
tures from ambient to 800 K (980° F) to determine the effect of fuel temperature on
NO emissions. Combustor pressure was 6 atmospheres. Combustor inlet-air tem-
perature ranged from 589 to 894 K (600° to 1150° F) and reference Mach number ranged
from 0.065 to 0.080. Emissions of NCT , carbon monoxide (CO), unburned hydrocarbons

i X

(H/C), and carbon dioxide (COo) were measured.
The units for physical quantities in this report are given in both the International

System of Units (SI) and the U.S. customary system. However, measurements during
the investigation were made in the U.S. customary system.

FACILITY

Testing was conducted in a closed-duct test facility of the Engine Components Re-
search Laboratory of the Lewis Research Center. A schematic of this facility is shown
in figure 1. A detailed description of the facility and instrumentation are contained in
reference 5. All fluid flow rates and pressures are controlled remotely.

TEST COMBUSTOR

The combustor tested was designed using the r am - induction approach and is des-
cribed in reference 6. With this approach, the compressor discharge air is diffused
less than it is in conventional combustors. The relatively high-velocity air is captured
by scoops in the combustor liner and turned into the combustion and mixing zones. Vanes
are used in the scoops to reduce pressure loss caused by the high-velocity turns. The
high velocity and the steep angle of the entering air jets promote rapid mixing of both
the fuel and air in the combustion zone and the burned gases and air in the dilution zone.
The potential result of rapid mixing is a shorter combustor or, alternatively, a better
exit-temperature profile in the same length.

A cross section of the combustor is shown in figure 2. The outer diameter is about
1.06 meters (42 in.), and the length from compressor exit to turbine inlet is approxi-
mately 0.76 meter (30 in.). A snout on the combustor divides the diffuser into three
concentric annual passages. The central passage conducts air to the combustor head-
plates, and the inner and outer passages supply air to the combustor liners „ There are
five rows of scoops on each of the inner and outer liners to turn the air into the com-
bustion and dilution zones.

The snout and the combustor liners are shown in figure 3. Figure 3(a) is a view
looking upstream into the combustor liner. The scoops in the inner and outer liners



can be seen, as well as the openings in the headplate for the fuel nozzles and swirlers.
Figure 3(b) is a view of the snout and the upstream end of the combustor liner. The
V-shaped cutouts in the snout fit around struts in the diffuser. The circular holes
through the snout walls are for the fuel nozzle struts. Figure 3(c) gives a closer view
of the liner and headplate, showing the liquid fuel nozzles and swirlers in place. There
are a total of 24 fuel nozzles in the combustor. The fuel nozzles were modified for use
with natural gas.

Figure 4 shows a gas fuel nozzle and its installation. The nozzle has six holes of
0.476-centimeter (0.188-in.) diameter at a 13.5° angle from the nozzle centerline.
Fuel flow was restricted by the small supply hole through the fuel strut, which was
originally designed for liquid fuel.

FUEL SYSTEM

The fuel pumping system was capable of providing only 0.45 kg/sec (1 Ib/sec) of
natural gas at 800 K (980° F) to the combustor because of the previously described flow
restriction in the fuel strut. The fuel heat exchanger was therefore sized accordingly.

The chemical and physical properties of the natural-gas fuel are presented in
table I. The natural-gas composition reported is representative of the natural gas used
during the test program. The gas composition varies and is dependent upon the season,
the demand, and the gas field from which it is obtained.

TEST PROCEDURE

Exhaust Gas Sampling

Concentrations of nitric oxide, total oxides of nitrogen, carbon monoxide, unburned
hydrocarbons, and carbon dioxide were obtained with an on-line system. The samples
were drawn at the combustor exit from three circumferential locations (120° apart) and
at five radial positions, through water-cooled stainless-steel probes. The exit instru-
mentation plane is shown in figure 2. The sample probe is pictured in figure 5.

Gas sampling system. - The samples collected by the three sampling probes were
common manifolded to one sampling line. Approximately 18 meters (60 ft) of 0.95-
centimeter (3/8-in.) stainless-steel line was used to transport the sample to the analyti-
cal instruments. To prevent condensation of water and to minimize adsorption -
desorption effects of hydrocarbon compounds, the line was electrically heated to 420 K
(310° F). Sampling line pressure was maintained at 1.7 atmospheres absolute to supply



sufficient pressure to operate the instruments. Sufficient sample was vented at the in-
struments to provide a line residence time of about 2 seconds.

The exhaust gas analysis system shown in figure 6 is a packaged unit consisting of
four commercially available instruments along with associated peripheral equipment
necessary for sample conditioning and instrument calibration. In addition to visual
readout, electrical inputs are provided to an IBM 360 computer for on-line analysis
and evaluation of the data.

The hydrocarbon content of the exhaust gas was determined by a Beckman Instru-
ments Model 402 Hydrocarbon Analyzer. This instrument is of the flame ionization
detector type.

The concentration of the oxides of nitrogen was determined by a Thermo Electron
Corporation Model 10A Chemiluminescent Analyzer. The instrument includes a thermal
converter to reduce NO0 to NO and was operated at 973 K (1290° F). Both NO and total

£t

NO data were taken. . Both carbon monoxide and carbon dioxide analyzers are of thei±
nondispersive infrared (NDIR)-type (Beckman Instruments Model 315B). The CO
analyzer has four ranges: 0 to 100 ppm, 0 to 1000 ppm, 0 to 1 percent, and 0 to 10 per-
cent. This range of sensitivity is accomplished by using stacked cells of 0.64-
centimeter (0.25-in.) and 33-centimeter (13.5-in.) length. The CO« analyzer has two
ranges, 0 to 5 percent and 0 to 10 percent, with a sample cell length of 0.32 centimeter
(0.125).

Analytical procedure. - All analyzers were checked for zero and span prior to the
test. Solenoid switching within the console allows rapid selection of zero, span, or
sample modes. Therefore, it was possible to perform frequent checks to ensure cali-
bration accuracy without disrupting testing.

Where appropriate, the measured quantities were corrected for water vapor re-
moved. The correction included inlet-air humidity, water injected, and water vapor
from combustion. The equations used were obtained from reference 7.

The emission levels of all the constituents were converted to an emission index
(El) parameter. The El may be computed from the measured quantities as proposed in
reference 7 or by an alternate procedure which uses the metered fuel-air ratio when
this is accurately known. With the latter scheme the El for any constituent X is given by

El = -X L±l [x] x 10'3 (1)
x M. f

where

EIX emission index in grams of X per kg of fuel burned

MX molecular weight of X



M average molecular weight of exhaust gas
"

f meter ed fuel-air ratio

[x] measured concentration of X in ppm

Both procedures yield identical results when the sample validity is good.

Test Conditions

Tests were conducted at a constant pressure of 6 atmospheres and a constant airflow
of 50 kg/sec (110 Ib/sec). Gombustor inlet-air temperature was varied from 589 to
894 K (600° to 1150° F). Nominal reference Mach numbers ranged from 0.065 to 0.080
because of the changes in inlet-air temperature.

Fuel flow rates were limited by a flow restriction in the fuel nozzle strut. All tests
were conducted at the maximum fuel flow rates attainable. The fuel flow varied with
fuel temperature and resulted in a fuel-air ratio of 0.0125+0.0035.

Data were taken at fuel temperatures near 300, 550, and 800 K (80°, 530°, and
980° F).

RESULTS AND DISCUSSION

Data taken during the test program are presented in table n. The NC) emissions
X

data were adjusted to zero inlet-air humidity by multiplying the measured values by
1 QTJ

e , where H is the absolute humidity (g of water/g of dry air), reference 8. The
NO emissions data were also adjusted to nominal reference Mach numbers by assuming

X

that NOV varies inversely with Mach number, reference 8.
X

Effect of Fuel Temperature on Oxides of Nitrogen

The NO emission index increased with increasing fuel temperature, as shown in
X

figure 7. The increase in NO_ with fuel temperature is attributed to increased flame
X

temperature in the primary combustion zone, which is caused by the increased enthalpy
of the fuel. Increasing flame temperature increases the rate of formation of nitric oxide
(NO) with time, reference 8:

[NO] = 9.5k2|exp/-75-5kcal/g-moleVi x [O] x IN.! (2)
[ \ RTf /J L *•>



where

[NO] rate of formation of NO, d[NO]/dt

k2 (13±4)xl012 cm3mole~1sec~1

R 1.987 cal/(g-mole)(K)

[NO] concentration of NO

[o] concentration of O

concentration of N,N '2
flame temperature, K

If the concentrations of N2 and O remain constant, the rate equation (2) implies an ex-
ponential increase in NO formation with increasing flame temperature. The data are
therefore plotted on semilog coordinates and the best straight line is drawn through the
data. Variations from the constant exponential increase in NO with fuel temperature

A.

are attributed primarily to repeatability of the data.
The rate of increase in NO which might be expected from an increase in fuel tern-

X

perature can be calculated based on a simplified combustion model. The model specifies
that all the NO is formed in a primary combustion zone where the fuel-air ratio is

X

stoichiometric and that all the additional enthalpy of the fuel raises only the primary-
zone flame temperature, affecting the rate of formation of NO (eq. (2)). The change
in flame temperature may be calculated from the change in enthalpy of the heated fuel:

*Hfuel
—

with

change in flame temperature

AH change in enthalpy of the fuel due to heating

C_ specific heat at constant pressure of the combustion gases at a stoichiometric
fuel-air ratio (ref. 9)

f/a stoichiometric fuel-air ratio

The specific heat C of the combustion gases increases with increasing flame tem7

perature and increasing fuel-air ratio. The stoichiometric flame temperature increases
with increasing inlet-air temperature.

By using equations (2) and (3), the increase in formation rate of NO concentration
may be calculated:



exp
[NO] _ [R(T0 + AT)j

£ZLi\
V R T o /

where [NO]Q corresponds to the rate of formation of [NO] at ambient fuel temperature
for a stoichiometric flame temperature T .

This calculation was carried out for the minimum and maximum inlet-air temper-
atures tested. Figure 8 shows the theoretical results and the actual data results
normalized to the value with ambient fuel temperature, 300 K (80° F). At the high
inlet-air temperatures the data agree very well with the model. The NO emission index
increased approximately 4 percent per 100 K (180° F) increase in fuel temperature. At
the lowest inlet-air temperature, the increase in NO was higher than predicted by the

Ji

model and was approximately equal to a 9 percent increase in NO_. per 100 kelvin
o(180 F) increase in fuel temperature. The model does predict a greater increase in

NOX due to fuel heating at lower inlet-air temperatures, partially because of the dif-
ference in specific heat and partially because of the steeper gradient of the exponential
function at the lower flame temperature.

One factor which the model does not take into account is the increased flammability
limits of the fuel when it is heated. Increased flammability allows the fuel to burn over
a wider range of fuel-air ratios, where the rate of formation of NOV is lower than at the

X

stoichiometric fuel-air ratio. The combustor would have to be redesigned to take ad-
vantage of this possibility.

Effect of Fuel-Air Ratio on Oxides of Nitrogen

The data shown in figure 7 were taken at varying fuel-air ratios. There was no
significant difference in NOY emission index with varying fuel-air, ratio between these

X

data and data from the same combustor burning ASTM Jet-A fuel (ref. 10). However,
data at constant fuel-air ratio with natural gas have not been taken. If the NO..

X

emission index increases with increasing fuel-air ratio, the increase in NO with fuel
X

temperature would probably be larger than that shown in figures 7 and 8.

Combustion Efficiency

Combustion efficiency was over 99.6 percent at all the test conditions. The effi-



ciency data determined from gas sample measurements are shown in table n. Com-
bustion efficiency was lowest at the lowest inlet-air temperature and increased with in-
creasing inlet-air temperature.

Effect of Inlet-Air Temperature on Emissions of Oxides of Nitrogen

Figure 9 shows the effect of inlet-air temperature on NO emissions when natural
gas was used at ambient temperatures. The data have been adjusted to a constant ref-
erence Mach number of 0.065 for comparison with liquid ASTM Jet-A fuel from refer-
ence 8 for the same combustor. The use of natural gas gave less NO emissions than

•*»

the use of liquid fuel, as has been experienced by others (ref. 4). Also the effect of
inlet-air temperature on NO emission index appears to be slightly larger when using

A. ' • •

natural gas, tending to bring the curves together at high inlet-air temperatures. This
implies that the NOX emissions may be the same with both fuels if the reactant temper-
atures are very high.

Sample Validity

A calculation of the gas sample fuel-air ratio was made for each data point. The
ratio of the gas sample fuel-air ratio to the metered fuel-air ratio (fuel-air-ratio ratio)
is presented in table n. The maximum data scatter is ±4.5 percent about a mean of
1.105. The fact that the mean value is 10.5 percent high is probably symptomatic of the
location of the sampling probes and is not expected to influence the trends in the data.

SUMMARY OF RESULTS

Tests were conducted to determine the effect of increasing fuel temperature on the
formation of oxides of nitrogen (NO ). An annular gas turbine combustor was tested

H

with natural-gas fuel at fuel temperatures from ambient to 800 K (980 F). Combustor
pressure was 6 atmospheres and the inlet-air temperature ranged from 589 to 894 K
(600° to 1150° F). The following results were obtained:

1. The NO increased with increasing fuel temperature. The rates of increase inx • ^.
NO were between 4 and 9 percent per 100 K (180 F) increase in fuel temperature de-

X

pending on the inlet-air temperature. The rate of increase in NO was lowest at the
Ji.

highest inlet-air temperatures tested.



2. With fuels at ambient temperature using natural gas gave less NO emissions
X

than using liquid ASTM Jet-A in the same combustor. With higher inlet-air tempera
tures the difference between the NO emissions with Jet A fuel and natural gas was

Ji

lessened.

Lewis Research Center,
National Aeronautics and Space Administration,

"Cleveland, Ohio, October 1, 1973,
501-24.
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TABLE I. - PHYSICAL PROPERTIES OF NATURAL GAS

Densitya, kg/m3 (lb/ft3)
Net heat of combustion (calculated), J/kg(Btu/lb)
Normalized chromatographic analysis (calculated), vol.

Methane
Ethane
Propane
Hydrocarbons (C,, C^, Cg)
Nitrogen
Carbon dioxide
Oxygen

0.7320 (0.0457)
4.977xl07 (2.140xl04)

93.50
3.53
0.53
0.32
1.05
1.07

Trace
aDensity in kg/m3 is at 289 K (1.02xl05 N/m2 at 273 K). Density in lb/ft3 is at

60° F (30 in. Hg at 32° F).
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Fuel available:
300 K (80° F);

20 to 240 N/cm
(0 to 350 psia)

_L' Fuel measuring

Combustion
289 to 311 K
up to 136 kg/
up to 114 N/c
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160° to 100° F);
sec (300 Ib/sec);
m^ (165 psia)
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Figure 1. - Test facility.
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Figure 3. - Annular ram-induction combustor.
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(a) Gas sampling instrument console.
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(b) Schematic diagram of gas analysis system.

Figure 6. - Exhaust-gas analysis system.
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Figure 7. - Effect of fuel temperature on NOX emission index. Pressure, 6 atmos-
pheres (corrected to zero humidity).
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Figure 8. - Effect of fuel temperature on nor-
malized NOX emissions - compared to results
of theoretical model. (Data points omitted
for clarity of presentation.)
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zero inlet-air humidity; ambient fuel temperature;
nominal fuel-air ratio, 0.0155.
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