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ANALYSIS OF THE FLOW ABOUT DELTA WINGS WITH
LEADING EDGE SEPARATION AT SUPERSONIC SPEEDS

By Joseph P. Nenni and Chee Tung
Calspan Corporation

1. SUMMARY

A research program was conducted to develop an improved theoretical flow
model for the flow about sharp edge delta wings with leading-edge separation
at supersonic speeds. The flow model incorporates a representation of the
secondary separation region which occurs just inboard of the leading edge on
such wings and is based on a slender-wing theory whereby the full three-
dimensional problem is reduced to a quasi two-dimensional problem in the
cross-flow plane.

The secondary separation region was modeled by a surface distribution
of singularities or a linearized type of cavity representation. The primary
vortex and separation were modeled by a concentrated vortex and cut in the
cross-flow potential which represents its feeding sheet (in the sense of
Brown and Michael), The formulation is made determinate by requiring that
the stream lines in the cavitv region be conical rays, by imposing a cavity
closure condition, by applying a Kutta condition at the wing leading edge,
and by requiring that the primary vortex and its feeding sheet be force free.
The flow model reduces to that of Brown and Michael in the limit of zero
cavity width,

The cross-flow solutions for the cavity model were obtained, but these
solutions have physical significance only in a very restricted range of
angle of attack, The reasons for the failure of the flow model are discussed,
The analysis is presented so that other interested researchers may critically
review the work.

The second order corrections to slender-wing theory for this flow model,
for nonslenderness and compressibility, have been formally derived using
matched asymptotic expansions. In the limit of zero cavity width, these re-
sults reduce to the second-order-theory previously obtained by the authors
using the Brown and Michael cross-flow model. In this case certain improve-
ments have been implemented in the method of obtaining the surface pressure
distributions from the velocity potential. The agreement between theory and
experiment is thereby improved over a limited Mach number range.

IT, INTRODUCTION

The flow fieid about low aspect ratio or slender wings that exhibit
leading-edge separation has been of concern to designers of high-speed
aircraft and 1lifting reentry vehicles for some time, The unique features
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of such flow fields are the spiral sheets of vorticity that emanate from
highly swept leading edges and dominate the flow field on the lee side of
the wing or vehicle. This separation produces a nonlinear aerodynamic
behavior of the wing as angle of attack is varied.

Although the main features of these flow fields have been recognized
for almost twenty years, no completely satisfactory theoretical analysis
has been developed. Polhamus (Reference 1) has developed an accurate ana-
lytical method utilizing an intuitive leading-edge suction analogy for
estimating overall forces on slender wings. However methods to predict
detailed flow quantities such as surface pressures and loadings are needed.
Moreover, a further understanding of such vortex flows would aid in the
design of optimum wings for supersonic flight and open up the possibilities
for control of the flow over such wings.

The problem is fundamentally non-linear through the boundary conditions
because the location of the spiral vortex sheets is unknown a priori. However,
for compressible flow the exact equations of motion are also non-linear.
Existing analyses for the detailed flow quantities have used slender-wing
theory whereby the problem is rcduced to a quasi two-dimensional incompressible
problem in the cross-flow plane. The nonlinearity in the boundary conditions
may then be handled by the use of complex variable theory in the cross-flow
plane. The most notable efforts in this vein were made by Brown and Michael
(Reference 2), Mangler and Smith (Reference 3), and Smith (Reference 4). These
analyses differ only in the representation of the spiral sheet in the cross-
flow plane, Brown and Michael use a concentrated vortex connected to its
corresponding leading edge by a cut in the cross flow velocity potential.
Mangler and Smith used a more realistic spiral representation of the vortex
sheet terminated by a cut and concentrated vortex in the core area of the
spiral sheets. Smith refined this representation still further by essentially
considering more wraps of spiral sheet. A refined representation of the core
area has been considered by Mangler and Weber (Reference 5).

Comparison between theory and experiment shows that the existing slendei-
wing theories greatly overestimate the forces on low apsect ratio wings. (For
example, the slender wing result is high by almost a factor of two in the
moderate angle of attack range.) The possible reasons for this discrepancy
have been attributed to an inadequate cross-flow model and the neglect of
higher order aspect ratio and Mach number terms in the equations of motion.,

A second order theory was developed by the present authors, in Reference
6, to account for non-slenderness and compressibility effects. The Brown and
Michael cross-flow model was used for ease of analysis since che gross pre-
dictions of this model were similar to those of References 3 and 4. The
consideration of these corrections improved the correlation bhetween
theory and experiment, but did not remove all discrepancies. It was, however,
clear from the results of Reference 6 that, in terms of total 1ift on the
wing, compressibility and nonslenderness effects were more important than
refinements in the representation of the primary separation and vortex sheet.
The essential fault with either flow models of Reference 2 and 3 is that the
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predicted vortex positions are close to the wing surface, which results in
overprediction of the upper surface suction pressures, It may be concluded
that a fundamental change in the cross-flow model is required to improve the
prediction of vortex location and strength. In short, it was felt that neither
cross-flow model incorporated all of the features that may be physically
significant to the flow field.

The major features of the cross-flow as ohserved from flow-field and
surface-flow studies (see for example, References 7, 8, and 9) are shown
sketched in Figure 1. The details of the secondary separation region have
not bheen thoroughly explored. In some instances additional flow separations
and reattachments may be observed close to the upper surface leading edge:
however, further categorization of this flow region does not appear to be
warranted at this time. All of these major features except the secondary
separation region have been considered to some degree of approximation in the
previous analysis. Hence, it was suspicioned that the secondary separation
region must be modeled to resolve the discrepancies between theory and experi-
ment. Moreover, although the secondary separation occurs only over a minor
portion of the wing span, it can have important effects upon the manner in
which the flow leaves the wing surface and forms the primary spiral vortex
sheets.

A rational, but unsuccessful, attempt to include secondary separation
in the cross flow model is described in this report. The secondary separation
was modeled by a surface distribution of singularities and the primaryv sepa-
ration in the Brown and Michael sense. In effect the separation is modeled
as a cavity and in the limit of zero cavity width the flow model reduces to
that of Reference 2. Unfortunately the mathematical solutions for this flow
model have physical significance only in a limited angle of attack range near
zero angle of attack. The reasons for the failure of this model are discussed
and the results are presented to allow other interested researchers to review
the analysis critically.

The cavity flow model was formally incorporated into the previously
developed second-order theory and in the limit of zero cavity width this
theory reduces to the results of Reference 6.

In Reference 6 the surface pressure distributions were obtained from
the velocity potential by using an approximate form of the isentropic
pressure-velocity relationship obtained by series expansion. In unpublished
calculations this expression was found to give spurious results at high
Mach numbers. The series expansion employed was not valid for high Mach
numbers, This shortcoming of the previous theory has been partially overcome
by using the exact isentropic pressure-veloucity relationship to calculate
surface pressures from the velocity potential. This can only be accomplished
for limited Mach number and angle of attack ranges because, at sufficiently
high Mach numcers and/or angles of attack, the theory predicts surface
velocities which exceed vacuum conditions, (This is also a consequence of
the vorticies being too close to the wing,) In this limited range, however,
the correlation between theory and experiment is improved. This work is
described in Section IV of the report.
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ITI. LIST OF SYMBOLS

ratio of wing span to root chord

aspect ratio

cavity width in x plane

1lift coefficient

normal force coefficient

pressure coefficient

pressure coefficient at vacuum conditions

source strength in cavity region

- portion of solution for &,

normalized half span of wing (it is a function of x and is some-
times written as h(x) to emphasize this dependency)

function defined in Equation 8
function defined by Equation 22
function defined by Equation 24
N T
imaginary part of complex function
free-stream Mach number
real coordinate of vortex core in physical plane
line doublet strength for outer solution
imaginary coordinate of vortex core in physical plane
line source strength for outer solution
distance from S axis in Sﬁﬂ.t space ( r = ~6ffff27? )
Reynolds number based on root chord
real part of imaginary function

strained outer variables
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- complex potential for second inner solution

strained inner variables
ncrmalized cavity thickness
free stream velocity

complex potential for first inner solution

Cartesian coordinates normalized by one-half

the root chord
angle of attal,

ME-1
normalized vortex strength (I"'/ h)
vortex strength
parameter defined in Equation 7
ratio of specific heats
angle of attack parameter ( sin a/ tam A)
real coordinate of vortex in X plane
inboard edge of cavity in physical plane
straining of % coordinate
complex inner variable, # + J-y
position of vortex in o~ plane

delta wing semi-apex angle
imaginary part of X

imaginary coordinate of vortex in  plane
velocity potential

inner solution for velocity potential
complex transformation of ¢ plane
position of vortex in 3 plane

decomposition of #
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IV, OUTLINE OF MATHEMATICAL FORMULATION

- The general perturbation method presented in Reference 6 for determining
. the velocity potential is employed again and will only be outlined briefly.

The coordinate system used is shown in Figure 2., This system is a body
axis system and the wing leading edge is given by Jte = ah(z). The physical
spatial variables are normalized by one-half the root chord such that the wing
apex is located at x = -/ and the trailing edge at x=+/. Then, for a delta
wing, :-zl(lfx) .

For infinitely thin wings the velocity potential is expanded as

&~ U, {xcosaz + Sena ¥, -r.s:'n‘zcz{ﬁz}

and the independent spatial variables may be strained in the typical P.L.K.
fashion as(see Reference 6)

y’z
3=9
:i; ) » ¥ = $+€, 5cna

The straining in the axial direction, §,, is determined by the principle
that '"the higher order solutions shall be no more singular than the first
order solution.'" This expansion procedure decomposes the original nonlinear
problem into a sequence of linear poblems. The governing partial differential
equations and boundary conditions on the ¢, are given by Equations 7, 10,

12, and 15 in Reference 6.

For wings of small aspect ratio the ¢, are determined by i. 2 method of
matched asymptotic expansions. The small parameter used is @ . the ratio of
wing span to root chord. The outer expansion for ¢, valid far from the wing
and for small a is of the form

¢’ ~ n aﬁ,; + a,’¢,‘,’p *+ o(a”) (1)

where 8¢ = & (.£,5)and f,‘,:, is the potential for a line source distribution
and §, is the potential for a line doublet distribution. The doublet distri-
bution is required for lifting flows and the source distribution is required
because the cavity representation for the secondary separation region
effectively gives the wing thickness. The appropriate forms are

g0 .1 AT Q(s,) ds, )
HJ 2m » [(s_so)z_ﬂzer'/z

P 1 7 s-pr E(so)‘;"fo) ds, 3
1y, " g _/ L )
o ¢m r L, [(s-5,)-8"r]
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where

The source strength @(S5,) and the doublet strength P(s,) will be determined
later by the matching conditions between inner and outer solutions, The
inner problem is obtained by stretching the coordinates normal to the wing
to regain the detail lost near the wing., The inner variables are

Y = p/a
2 = &/a
S = 8

Then the inner solution valid near the wing for small values of a is of the
form

v ~adl(v,2;5) +a’dy,(V.2;5)+ altnad, (v, 2;5)

[

4
+ola,a tma) “

The partial aifferential equations for the #‘ are given by Equations 26, 27,
and 28 of Reference 6. The important point to note is that these equations
are two dimensional in Y and # with § appearing only as a parameter. The
first inner solution ¢/ satisfies LaPlace's equation in the plane transverse
to the wing and the appropriate form of surface flow tangency. This first
inner solution is the standard "cross-flow problem" of slender-wing theory
and may be solved by conformal mapping techniques of complex variable theory,
The first inner solution may be expressed as

é;' = R.P. W/,(a.) + 6,(3)

where o~ is the complex variable Z+(Y and W, is referred to as the complex
velocity potential, The 6,(8) term is required because of the source-like
behavior of the cavity, and it is determined by matching with an outer
solution,

A brief review of the experimental observation of the cross-flow and the
detailed formulation of the cross-flow model used is presented in the next
section,

V. THE CROSS-FLOW MODEL

Review of Experimental Observations of
the Cross Flow

The tentative concept of the actual cross-flow model for slender wings is
shown in Figure 1, deduced largely from the vapor screen studies of References
7 and 10, the smoke flow studies of References 8 and 11, and the surface flow
studies of References 13 and 14, (These references have been selected because
of the quality of the photographic material contained in them rather than on
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chronoidcgical order or originality.) These flow featurcs are present
regardless of the Mach number as long as the leading edge is subsonic.

There are some systematic differences evident in the cross-flow model at
subsonic and supersonic speeds. The vapor screen studies of Refercnce 8
indicate that at supersonic speeds the vortex pattern is spread over a
greater spanwise extent of the wing and lies closer to the wing surface than
at subsonic speeds. Comparison of surface pressure distributions (as between
References 10 and 12) also confirms the observation that the vortex pattern
is more diffused at supersonic speeds.

Details of the secondary separation region are dependent upon Reynolds
number., The spanwise flow evidently separates because it cannot negotiate
the pressure rise between the negative pressure peak (underncath the vortex
core) and the leading edge. Available experimental data indicate that the
primary Reynolds number effect is through boundary laver transition and its
proximity to the secondary separation line. There is some expe.imental
evidence which indicates that for the higher aspect-ratios, rcattachment
occurs between the secondary separation region and the leading edge,

An example of Reynolds number effects on the surface pressure distribu-
tions may be seen in Figure 3 which shows some subsonic data from Reference 11.
As Reynolds number increases, the magnitude of the upper surface pressure
peak increases, and the lateral extent of the vortex pattern decrcases,
Apparently, after the boundary layer at the secondary separation point be-
comes fully turbulent, the Reynolds number dependence becomes very weak. The
spanwise pressure distributions also indicate that at the lower Reynolds
numbers the secondary separation region contains several discrete longitudinal
vortices (as indicated by the variations in pressure) while at higher Reynolds
numbers the secondary separation is more like a cavity (as indicated by the
uniformity of the pressure). Although the pressure distributions are markedly
affected by Reynolds number, the normal force and pitching moment are
independent of Reynolds number. (The wing root bending moments which have
not been measured, however, must be affected.)

It must, however, be concluded that the existence of any secondary
separation region is a significant factor in the observed differences between
theoretical predicted forces and experimentally determined forces. Since the
theoretical values are higher, the foregoing discussion would indicate that
the secondary separation region of slender wings is an area where boundary
layer control devices may be used to increase the lift on such wings, Complete
elimination of the secondary separation region should move the experimental
results closer to the theoretical results,

The experimental investigations of Reference 14 indicate that at transonic
speeds there are similar effects of Reynolds number cn the pressure distribu-
tion. lowever, at transonic speeds the normal force and pitching moments
are also dependent on Reynolds number, These results cast some doubt as to
whether the existing supersonic data are free of Reynolds numbers effects,

More experimental work is needed in the supersonic speed regime to investigate
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Reynolds number effects, Moreover, additional detailed flow field and
surface pressure measurements near the lcading edge are needed to investigate
the character of the secondary separation region,

Mathematical Flow Model

The secondary separation region is properly modeled by a volume distri-
bution of singularities over the separation region. However, since this
representation is mathematically intvactable at present, a simpler represen-
tation was sought., Since the height of the secondary separation is small
compared to the other wing or flow field dimensions, it appeared permissible
to collapse the volume singularity distribution to a surface singularity
distribution. Indeed, inspection of the vapor screen studies of Reference 7
would suggest that at low angles of attack even the primary separation might
also be modeled by a surface singularity distribution. (This type of flow
model was considered further and will be discussed later in Appendix A.) Such
a flow model would then be generically related to that used in Reference 15
to analyze the flow over a partially cavitated, low-aspect-ratio hydrofoil,
Hence, the terminology of cavity has been used for this surface singularity
distribution. For reasons discussed pre iously the Brown and Michael represen-
tation of the primary separation was considered adequate for present purposes,

Inclusion of the secondary separation in the flow model requires the
development of additional boundary conditions to make the problem determinate.
Since the condit.on of flow tangency at the wing surface must be abandoned in
the cavity vegion, one of the other flow quantities must be prescribed on
the cavity. In the hydrofoil case, Reference 15, the pressure is specified
as constant along the cavity, but tnis is not appropriate for aerodynamic
problems, The required constraint for the present flow model was deduced
from inspection of surface flow patterns, primarily those shown in Reference
9. Inspection of these photos shows that in the secondary separation region
the surface streamlines are conical rays emanating from the wing apex and
this was the condition used, being equivalent to making the transverse velocity
parallel to the wing in che cross flow plane equal toy¢ys. Since the wing
surface in the cross-flow plane also has a transverse velocity of ¢g/s, this
condition implies that in the cavity region of the cross-flow plane there
is no relative transverse velocity between the flow and the wing. Then,
according to the definitions oif separation in three-dimensional flow given
by Maskell in Reference 16, the inboard edge of the cavity is automatically
a separation line, In total, then, the conical streamline requirement in
the cavity region appears to be consistent with all of the physical require-
ments for modeling the secondary separation region,

One additional constraint is required to make the problem dzterminate.
The condition selected was that of cavity closure. To the inviscid flow
outside the cavity, the cavity appears as a local thickening of the wing. The
cavity closure condition is then the requirement that the cavity has no
thickness at its edges, implying that the flow that leaves the wing surface
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at the inboard edge of the cavity reattaches to the wing at the leading.edge
before departing from the wing surface and becoming entrained in the primary
separatioa flow pattern.

The resulting cross-flow model and applicable bounda- - vaiue. 'n the
velocity potential are shown in Figure 4. The subscript notat..n has bo.
used to indicate partial differentiation with respect to the appropriate vari-
able. The concentrated vortices are located at ¢; and-@; ind are connected
to their respective leading edges by a cut in the cross-flow potential!. The
cut then represents a planar vortex sheet in the three-dimensional flow with
the axis of the vorticity vector in the cross-flow plane. In this fashion the
cuts serve as the feeding sheets for the concentrated vortices. The cavity
extends between A, and h

This boundary value problem is most easily handled by using conformal
transformations, The trausformation chosen was

X = {02 - (5)

The branches of the square root are chosen such that the upper wing surface is
mapped into a line segment along the positive imaginary axis and the lower
wing surface is mapped into a line segment along the negative imaginary axis,
The flow in the x plane is shown in Figure 5. Any analytic function with the
proper symmetry in this plane automatically satisfies the condition of no

flow through the wing, The cavity is represented by a source distribution

in this plane that extends between the origin and ic, The vortices are
mapped to X, and-x,. The appropriate complex potential is then given by

¢ r _
W, (x) = -ig +f f(qo)jn(x-i.qo)dqo-2;[[»;({-{,)-,&,,_(1-»7(,):' (6)
o

Whereas the first term gives the flow about the wing without any additional
singularities in the flow field, the second term gives the flow due to a
distribution of sources of local strength £(n,) along the cavity, and the
last term gives the flow due to the concentrated vortices . The source
strength is given by the requirement for conical streamlines in the cavity
area. In terms of the velocity potential this is

f,j = 82 on Y=0, AZZ%h
2
7
§ = -1 )
€h
s g s . l-‘ d”" . .
Utilizing the relation that EH‘ s R,P. Z= and Equation 6, the following
integral equation rusults for £(a) . .
Crvny) A ! /
‘/:: (—7-:7Jd7, “87"57-('7“-'!, —7_”‘.)- Hin) (8)
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The inversion of this equation can be obtained from Reference 17 or 18 as

/ H(’,o) .
= o / 1/'70 e e

S LY P M-8 Ol 27{._’_,.':":-_1.{_34_
T 10 72 [T 1y i i ke gl

(9)

The solution to Equation 8 is not unique in that a term of the form cowst //p(n-c)

may be added to f(n) and still satisfy the equation, This term, however, would
introduce undesired singular behavior at the edges of the cavity and thercfore
has been discarded,

The leading edge Kutta condition or requirement for smooth outflow at the
wing edpes is

d W,
e =0 .
dx X#0 (10)
which implies that
flo) = 0

or
Sc f X, 2o X
-(’4- p +—-—{x, X, -i¢ X, i'-f-gc} (11)

In the 1imit ¢~ 0 this condition reduces to +<he Kutta condition for the Brown
and Michael flow model.

For conical flow the outer boundary of the cavity should be expressible
as

Y=€ahT6§)

Then the requirement that the outer edge of the cavity is a stream surface is
that

i'jv (0,) - (hT)s = 0

11
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Using the conical flow assumptions this may be expressed as

z/ £, 0.2) 52 -me [ g, ) e

0

Then the requirement for cavity ¢! »>ure is 7 20 at c:- 0

f‘r(n,) dp, = 0

b °

[} hz-q‘

"(“ Nm 1/——] ZEL {h_’ {__J
*z'i}c H;f-'—zc(h'i ¢ [er—x'—,‘_c'] 'Zh(h’nx,)[{ﬁh.c_"} i Ih(:'-wc, >‘UP7F_’])

1 h-c_7 1 h+c ,
h Zhth-ig,) || 4

, 7 X, *éc ]
( ¥ X "] 2h(h+iX,)

In the limit ¢ -0 this equation becomes an identity.
The force balance on the concentrated vortex and feeding sheet (cut in

complex potential) is given by
(13)

W,
evaluated at o; less the singular contribution from the vortex
For the conical flow /" and o; scale with A and Equation 13 becomes

where
locatea at a; .
o _
uf—{I 1oL 1_}4-‘ (25 -1) =0 (14)
X 2rh X, +X,) moix,

12
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where

€ Aln,) 8¢ X, -cc c X,-éC ) )
I=/ — dp, = 1+—)[7- e | -8 (—+ix |1-9 )
A 7044." ? ( 2 A, 2 X, X,

[e / r f, ./i'fzr' ‘/x,—ZC}
7 k(2 -ie) 2m(xrx,) 1%t | 1OX, X,

In the iimit ¢ -0 this equation reduces to the corresronding force balance for
the Brown and Michael flow model.

Equations 11, 12, and 14 then provide sufficient conditions to determine
the unknown parameters ¢, /7, andd; . This system of equations must be solved
numerically. The details of how this was accomplished are given in Appendix B.

Results and Conclusions

The system of equations for the unknown parameter €, /° and o-1is non-
linear and hence the number of roots is unknown. It may be seen by inspection
of the equations that Equations 11 and 14 reduce to the corresponding syst:m
of equation for the Brown and Michael cross-flow model in the limit ¢ —0.
Also, Equation 12 becomes an identity in this limit. Therefore, the Brown
and Michael values for the vortex parameters and ¢ = ¢ will satisfy the system
of equations, This is not the desired solution and will not be discussed
further,

The only solutions with nonzero ¢ that have been found are shown in
Figures 6, 7, 8, and 9. These roots have physical significance only below
€ = 0.206 and hence the figures are restricted to this range. As seen in
Figure 6, above & = 0.206, ¢ becomes negative which implies that the cavity
shifts to the wing lower surface. This clearly contradicts experimental
observations. Furthermore, in the range of € where ¢ is positive, ¢ is
very small and the corresponsing vortex parameters are within one half of
one percent of the corresponding Brown and Michael values. (Therefore these
values have not been included in the figures.) Wing surface pressure distri-
butions for € = 0.1 (near the maximum cavity width) are shown in Figure 10
for the Brown and Michael cross-ilow model and Figure 11 for the cavity
cross-flow model. Although the cavity does not significantly change the
vortex position or strength, the upper surface suction peak is slightly
reduced, producing a slightly lower normal force coefficient. Although these
changes are in the right direction, the magnitude is inconsequential and
therefore this specific cavity cross-flow model has little application to the
slender wing problem,

13
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The failure of this flow model must he due to 2ither the conical
streamline condition imposed upon the cavit); or the civity closure condition,
In the present flow model it was assumed tlat the cavity closed at the wing
leading edge. It is possible that the cavity may close inboard of the
leading edge (some argument may be made for this assumption by inspection
of surface flow studies of Reference 13) or may not close at all, The present
experimental observations are insufficient to answer this question con-
clusively.

A flow model in which it is assumed that the cavity closes inboard of
the leading edge contains an additional unknown narameter, namely the location
of the outboard edge of the cavity. It appears thet such a model could be
made determinate by eliminating the singular behavior at the outboard cavity
edge, but this flow model has not been investigated in detail.

An alternative condition to replace the conical streamline condition on
the cavity might be deduced from that used in Reference 15. The cavity
cross-flow model used in Reference 15 for the cavitating low-aspect-ratio
hydrofoil problem evidently produces realistic results for that problem. In
that analysis a constant pressure boundary condition is imposed on the cavity.
The specific form used was that the spanwise velocity component on the cavity
was a constant, which is tantamount to assuming that the vorticity in the
cavity is constant. This interpretation of the boundary condition used might
be plausible for an aerodynamic problem, It is difficult to assess before-
hand how this would affect the solution for the model presently used. However,
the flow model used in Reference 15 results in singularities at both edges of
the cavity. The leading edge singularity may be removed by adding the primary
vortex to the flow model, but it is not immediately evident how the singularity
at the inboard edge of the cavity may be removed.

There are then several plausible modifications to the present flow model
that might be considered but essentially on a trial and error basis. However,
there appears to be a more systematic way to address the problem. Thus far
the relevant theories have been using potential flow in an attempt to model
a flow in which viscosity plays an important role. (The primary and secondary
separation are directly attributable to the presence of viscosity.) Any
potentia)l flow model which attempts to model these featuves is inherently
indetermunate, The attempts to resolve these indeterminacies have been to
deduce the proper boundary conditions by studying experimental observation
in which viscosity is inherent. Thus far, however, the proper boundary
conditions have not been completely identified. Moreover it appears that
the surest way to significant progress on soliing these problems would be to
consider a flow model in which the viscous terms are present in the equations
2f motion thus eliminating the need for adc’ tional boundary conditions.

VI, SECOND ORDER THEORY FOR CAVITY FLOW MODEL

The previously described cavity flow model has been formally incorporated
into the second order theory developed in Reference 6. Recall that

i4
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#,, (15)

[+
¥y, ~p + a ¢§v *a 1

LR SR TR T 5

122 (16)

where

$, = RPW, +G,I(s)

L]
and W,, is given by Equation 6, ﬁ".l is g%ven by Equation 2, and ¢’:o is given
by Equation 3. Now, using the asymptotic matching principle and equating the
outer expansion of Equation 16 to the inner expansion of Lquation 15 results
in

(o
Q(s) = / £(n,\ dn, (17)
and
_ d [ h? r _ e }
P(s) = 4r£{2—+2”(x,+x,)-[qof(qa)dvo (18)
¢(s) = Q(s).dn (ih"if) (19)

Now.ﬁfz, satisfies the inhomogeneous partial differential equation given by
Equation 27 of Reference 6 and boundary condition given by Equation 30
thereof. The method of solution is also the same as that of Reference 6.
P2y is composed of a particular part and a homogeneous part and may be
expressed as

ér‘ZI = £ F VV,z; (d_) *//_q i;, (20)
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_ —s, 2/ hz—7?+h2+i'7o7c
~(G-~a)4h -qDJ%,-( dy,
h 1—470

The unknown portion of the second term of Equation 19 is determined by
matching of inner and outer solutions to be

2 2
Hys) = - P( ;,,,----) £ [__ +£1-I_(’_°,w(”'2) +(7-9)

mAZ T (Pra)? (Teg)?
+@(8,,+6;,)) +dn 2+ 2(Iy+1Iy) (22)
where
5. 1,12 1
P = —z'+ =
2’ r | P X, r
I, = — -=2 - — ~ —RP
s 13 2mr X, -iC (%)

., &7 7o m
G, pa 7 w7
LS _rT R
Gy strn 2 37 %6y <7
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The I, integral must, in general, be evaluated numerically. The coefficient
N . . . ¢ .
of the logarithmic term in Equation 16, gglz satisfies LaPlace's cquation and
may be expressed as

f:;zz = Hy, (s) f/‘; (23)

The #¢ function is again determined by matching of inner and outer expansions
to be

2
Ky =8.§ B(s) (24)

To calculate wing surface pressures it is not necessary to determine any
more of the higher order solutions (see Reference €). The inner solution for
the straining is, however, required and this is the same as that determined
in Reference 6, i.e.,

C e
Ef B M 'fll*F
where £ vanishes on the wing.

In Reference 6 the surface pressures were calculated from the velocity
potential by using an approximate series expansion form of the isentropic
pressure-velocity relationship. This was found to give spurious results at
high Mach numbers where the series expansion broke down, In the present
work the exact expression was used. Then on the wing surface the isentropic
pressure-velocity relationship gives the following expression for the pressure
coefficient

7-7) . .
Co = =2 r {[/“ (—7-—M"(254nacosay,s+5m2a [w,: (t+2m%cosa )

2
+(//’; *W,:-f])] ’_l}

where the quantities in this expression are evaluated on the wing surface and
are given by the following expressions.

(25)

R

On the upper surface

2
«l’: = (/ * Za.zHJ + Za,z,ln,a. H,/) f’"!
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¢ = =9 -7 - I, #+—y orYr A < c
I”z 7{ ’ ﬂ(A‘+(7-z')z)

= 87 for A s Z< 1

where 7,“/ f-z%and Z is the fraction of half span,

§ n-¢
I,:-(f+i—?-c+8q)(/—~¢——-7 2 2#1 7 T2 +ﬂ‘()+("{ 717)
f X {x
1 ] 1
=z ——— - ? o —— - R.F -

-2
¢/,; . (1+8a%Hy + 2atbraty) Q:’r

f,‘,';:o for 0<Z= A,

-—-{/+ —_ +87+-r— T}-{.C’]_q for )\cﬁlcf

W= alt+ay + abnats) %,

2 2z
#, = 4 fﬂ,

' 7 22y 2
2;._. 6’+}7{’-7r(3z+(q—2')‘) ZI'}
+L(9 -6;, ) for 0 € € Ac
o \Te T T
’ -
oo hgs#) e (e, ) for AES
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= 4a
67 = Q l"lr (‘——)
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n
1

7 T 114 e
&, = tan —_1 - < 0y & —
! P 2 )

On the lower wing surface

: 2
‘ 2. L4 < 2.
A {‘2 7+77‘()\’+(T+7)2)} osest

where

_ _, _de +C §e 7 |y+c 7A
= (8q -1 =) .7?_1) » £ +2-;]/_7_ T T

¢ 7 2 2 rC 2 4
§"=6,-2—7{/‘Z-ZF3 ,,7 *872 f+7r;(9’4‘6ﬁ)

for O<Z< 1/
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where
de 7
Fy = 57-/-—,«5—’-’7',
QIL- 92‘. = '”‘-zaz
- wT v
&, = ta.n’—%‘h—'Z ; ‘Z‘“z‘f

And at Z-7 on the upper surface for ¢ # 0

NJo,

' 4
6':6‘ I (6, =6, ) +Gy-

N,

On the lower surface if ¢ #7

¢ 14 )
é,, = dr (61, -6, ) *6G -7

.

= 0
3
;

e

These expressions have been used to calculate the surface pressures for
a case in the € range where ¢ #0 for the cavity cross-flow model. These
results are shown in Figure 11, The limiting forms of the expressions when

20
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c going to zero were also used to celculate the corresponding pressure distri-
bution for the Brown and Michael flow model. These results are shown in
Figure 10.

A comparison of the two pressure-velocity relationships is shown in
Figure 12, It is seen that the exact isentropic relationship is somewhat
better than the approximate form; however, the upper surface suction peak
is still overpredicted. The exact expression proves to have a limited range
of applicability., At sufficiently high Mach numbers and/or angle of attack
the theory predicts surface velocities that exceed those corresponding to
vacuum conditions (because the primary vortex is too close to the wing surface),
A comparison of the lift predicted by the two forms of the pressure-velocity
relationship provides a better estimate of lift in th- regions where the
calculations can be performed (Figure 1~

VII. CONCLUSIONS

A new flow model for the prediction of the flow about delta wings with
leading-edge separation was investigated. The flow model included a
representation of the secondary separation region that has been experimentally
observed on such wings. Secondary separation was modeled as a cavity. The
resulting solution for the flow model proves to have onlv a veryv limited range
(near zero angle of attack) of physical significance. Thus, these results
cast suspicion upon the boundary conditions that were used to make the model
determinate. These boundary conditions consisted of a cavity closure condition
and a requirement for conical streamlines in the cavity region. These assump-
tions are plausible, based upon the available experimental evidence, but
evidently one or both are incorrect. It appears that the correct choice of
boundary conditions can be developed only by considering a flow msuael that
retains viscous terms in the equations of motion.
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Appendix A
CROSS FLOW MODEL WITHOUT CONCENTRATED VORTICES
As menticned in Section V of this report a flow model was investigated
in which the primary separation was modeled by a surface signularity distri-

bution.,

The appropriate complex velocity potential is

c
Wy = -inr [ Fr) dn (3 -in,) 2y, (A1)

The conical streamline requirement on the cavity gives

f(q):“#{z—;—j[ffa(-giwz)]-ﬁ—%—%i?) (A2}

With this flow model there must be a singularity at either or both ecdges of
the cavity depending on the specification of k . The choice k.=5§_(/+é£)
meets a Kutta condition at the leading edge and produces a quarter roof
singularity at Ao The resulting slender-wing normal force is then given hy

Cw

R _3 .2 c) iz_} e
—Z—-J'lﬂz{f ¢C (’4'2—?— +6é. (A3)

It is seen from this expression that the cavity produces a non-linear contri-
bution to the lift which is opposite in sign of that of experimental
observation,

The choice k = ¢ produces no singularity at A¢, however results in a
three-quarter root singularity at the leading edge. (The physical interpre-
tation of this leading edge singularity is questionable,) The corresponding
slender-wing normal force coefficient is given by

R . ’2 2
o Zoeina {1+ S (1-5) -5 | ()

It is possible for the nonlinear contribution to be of the proper sign, and
hence further analysis was conducted,

In these flow models ¢ is determined by the requirement for cavity closure.

Mathematically this is €£(n,)
4{ h’-z} ‘£7b =0
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This equation only has solutions for € > 23,3 This large an € value is well out
of the ranges of practical value,

Hence it was concluded that cross flow models of this type were of no
use for the slender wing problem.
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Appendix B
NUMERICAL SOLUTION OF THE CROSS-FLOW EQUATIONS

The system of equations to be solved for the unknown parameters ¢, /7, o3
is composed of Equation 11, 12, and 14, The basic method employed was a
Newton-Raphson iteration scheme, First, the cquations are normalized by
dividing all lengths by 4 and by letting 7«/7/h. Then y is cleininated from

. the system by using Lquation 11, viz.
(- %)
. 7 / ; j (B1)
R.Py— o ——
{x, X, -¢¢

and the following furnctions ae defined.

24 - ! 7 }
CFrz = 2L (25 - —— + T -1 + 2 - B2)
Wg( o ,)+foﬂr* 2m X, * X, (
: and
Fl = R.PCFI2 (B3)
-
' F2 = 1P CFI12 (B4)
b
i " From Equation 7
F3= (uéz.e)(m-,/r.—a)-z-;-(z-ﬁ-:g-ﬁfz)
. (B5)
‘ 7 X, (/ X, ic 1
+t—IP : -1)- 1-¢ -
2 2o (e [ sl
1
2(1+:x,) [I"c ’-]}
N and
F3 = F3/e* (B6)

The values of X, and ¢ which simultaneously zero the £, functions are then the
desired solution to the problem, The Newton procedure is outlined below.

An initial guess at the solution at a selected € value is made, say, x (7)
and ¢(1) . Further let X, = R.A X, X2 slPx and Xysc . Then it is assumed
that if these guesses are close to the solution that
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B -
Fo= F(1)+ AX, 2F ¢ =1,2,3 (B7)
¢ © X Nx;in

then the increments in the variables to reach the solution arc found by solving
the linear system of equations,

IF; ] :
v — = - . ‘- BB
ax; 7 Fi (1) 7.2, 3 (B8)
or
-F1(1) dFY 2F
QXZ IXs
1 2F2 7F2
2f3 2F3
g ogre
300 5o oxs
where
IF! IF 1 IF1 |
JX, sz 9)(3
D= AF2 FF2 FF2
ix, JX: Pxyg
aF3 JFI 2F3
X Ixg 7X3

All the partial derivatives are evaluated at X,(7). There are similar
expressions for A4X, and AX,. The rext guess at “the solution is theu

A (2) = X (1) + 48X (1) This process is then repeated until ali [F:(n) < 10 ¢,
The partlal derivatives of the F,; were computed using the finite difference
approximation. The initial dlfference was chosen as ,0l1X. The difference
for the successive steps where chosen as the 4X; (- 1) at each step.

This scheme was programmed for the Calspan/IBM 370 computing machine.
The resulting solutions for non-zero ¢ and vortex positions are shown in
Figures 6, 7, 8, arnd 9.

Initially the system was used with F'3 as given by Equation B5. This
system of equations (with the method of solution used) would only converge to

26



Susredumnsgthunibg( | Tty pieripampatey -

.:??h“i‘.‘ i

.

solutions for which €+ 0. Analysis of Equation B5 for small ¢ then showed
that F£3 vanished as ¢? for small ¢, hence 3 was formed and this system
resulted in the solutions shown.

The entire system of equations was analyzed for small ¢ because it was
intuitively thought that there should be a solution with ¢ si.all, at least
in the lower & range. This analysis showed some properties of the system of
equations that were interesting in their own right and therefore thic analysis
is outlined below.

Equations 11, 12, and 14 were expanded for small ¢ . The results are as
follows, The leading edge Kutta -ondition, Equation 11, becomes

3 3
F,’”+cf‘,+,—_.-c‘ﬁ¢o(c) 2 0 (R9)
where
2oL
Fram AT (x, i)
s - Lyr/t 1
o w (T

The closure condition, Equation 12, becomes

£ 3.2 s ! d “) =
Sh, 3 e (7?.‘ F,M+-3-z-f.)+o(c ) =0 (B10)

The force balance on the primary vortex and feeding sheet, Equation 14,
becomes

Figpy + CFa + %, +ofe?) - 0 (Bl
where
!, écfJy _ 1 1% , iyé_1
F"‘H 2(207")* 2 {2” {,¢ i' ’}x, * 2r a—'x.,z
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Now it is recognized that Fy, =0 and F3,4,, =0 are respectively the leading
edge Kutta condition and the force balance on primary vortex and its fecding
sheet for the Brown and Michael cross-flow model. Hence, as ¢ — ¢ Lquation Blv
vanishes as c*. This explains why the original system of equations wouid onl:
converge to solutions with c=0 .

Furthermore ¢/2 may be factored out of Equation Bl0 resulting in

3 2/ 1 5 ) 3 .
. F + - + = — + = (h12)
. - ch, c (8 Fig,, +-/6f2 o (c”) 8,
e an Then Equation B9, Bll and Bl12 form the approximate equation for the cross-tlou
; e model for small ¢ .

Comparison of the approximate closure condition, Equation Bl12 and the
approximate Kutta condition, Equation B9 shows that to zeroth order in
that these conditions are not independent. Because of the special form of
Equations B9 and B12 they may be conbined to give

*V
!/
C =

e {B13)
i Be 7¢ Tan

so that ¢ may be eliminated from the system of equations. Then Equation BY
and Bll constitute a sufficient system to determine 7y and x,. This approximate
system must also be solved :umerically and this was done in a fashion similar
to the full equations. The solutions to the arnroximate system were found to
have the same general behavior as the solutions to the full system and thus
reinforced the results previously given for the full system.
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A = 0.9971,

WING SURFACE PRESSURE DISTRIBUTION SECOND-ORDER THEORY CAVITY

CROSS-FLOW MODEL, M =15, R=10,€=0.1(a =1439),

Cn = 0.0485

Figure 11
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