Design and Operation of a 1000°C Lithium–Cesium Test System

L. G. Hays
G. M. Haskins
D. E. O' Connor
J. Torola, Jr.

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

December 1, 1973
DESIGN AND OPERATION OF A 1000° C LITHIUM-CESIUM TEST SYSTEM

A 100 kW cesium-lithium test loop was fabricated of niobium-1% zirconium for experiments on erosion and two-phase system operation at temperatures of 980° C and velocities of 150 m/s. Although operated at design temperature for 100 hours, flow instabilities in the two-phase separator interfered with the achievement of the desired mass flow rates. A modified separator was fabricated and installed in the loop to alleviate this problem. Because of program cancellation, the test system has been placed in standby condition for storage. This report documents the test system.
HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14 blank. Complete the remaining items as follows:

3. Recipient's Catalog No. Reserved for use by report recipients.

7. Author(s). Include corresponding information from the report cover. In addition, list the affiliation of an author if it differs from that of the performing organization.

8. Performing Organization Report No. Insert if performing organization wishes to assign this number.

10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72), which uniquely identifies the work unit under which the work was authorized. Non-NASA performing organizations will leave this blank.

11. Insert the number of the contract or grant under which the report was prepared.

15. Supplementary Notes. Enter information not included elsewhere but useful, such as: Prepared in cooperation with... Translation of (or by)... Presented at conference of... To be published in...

16. Abstract. Include a brief (not to exceed 200 words) factual summary of the most significant information contained in the report. If possible, the abstract of a classified report should be unclassified. If the report contains a significant bibliography or literature survey, mention it here.

17. Key Words. Insert terms or short phrases selected by the author that identify the principal subjects covered in the report, and that are sufficiently specific and precise to be used for cataloging.

18. Distribution Statement. Enter one of the authorized statements used to denote releasability to the public or a limitation on dissemination for reasons other than security of defense information. Authorized statements are "Unclassified-Unlimited," "U. S. Government and Contractors only," "U. S. Government Agencies only," and "NASA and NASA Contractors only."

20. Security Classification (of this page). NOTE: Because this page may be used in preparing announcements, bibliographies, and data banks, it should be unclassified if possible. If a classification is required, indicate separately the classification of the title and the abstract by following these items with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for classified items.

21. No. of Pages. Insert the number of pages.

Design and Operation of a 1000°C Lithium–Cesium Test System

L. G. Hays
G. M. Haskins
D. E. O'Connor
J. Torola, Jr.

December 1, 1973
PREFACE

The work described in this report was performed by the Propulsion Division of the Jet Propulsion Laboratory.
CONTENTS (contd)

FIGURES (contd)

3. 100-kW erosion loop liquid metal circuits schematic diagram .. 12

4. Cesium-lithium test circuits before activation .. 13

5. Cesium-lithium nozzle geometry .. 13

6. Cesium-lithium nozzle before welding .. 14

7. Water-nitrogen test of nozzle for cesium-lithium loop .. 14

8. Comparison of experimental and theoretical exit velocities for cesium-lithium loop nozzle operating with nitrogen and water ... 15

9. Cesium-lithium nozzle flow for different nozzle inlet temperatures (saturated vapor) 15

10. Nozzle-separator assembly .. 16

11. Thrust target assembly ... 17

12. Erosion specimen mounted on thrust target .. 18

13. Thrust target mounted in separator body .. 19

14. Separator assembly .. 20

15. Lithium baffles ... 21

16. Two-phase cyclone separator operating with H2O and N2 .. 22

17. Cesium-lithium cyclone separator ... 23

18. Pumping element for lithium pump ... 24

19. Helical induction pump stators .. 25

20. Lithium pump characteristic at 980°C .. 26

21. Lithium heater before welding ... 27

22. Lithium heater end before welding .. 27

23. Cesium and lithium flowmeters .. 28

24. Lithium flowmeter calibration (776 gauss) .. 28

25. Cesium flowmeter calibration (2355 gauss) ... 29
CONTENTS (contd)

FIGURES (contd)

26. Cesium desuperheater ... 30
27. Radiant cesium desuperheater before welding 31
28. Cesium condenser before welding 31
29. Cesium condenser after welding 32
30. NaK heat rejection system before insulation 32
31. Vacuum chamber and ion pump for cesium-lithium erosion loop ... 33
32. Pressure transducer installation 34
33. Control console for cesium-lithium test system 35
34. Modified version of cesium-lithium erosion loop 36
B-1. 100-kW erosion loop liquid metal circuits schematic diagram ... 49
B-2. 100-kW erosion loop electrical schematic diagram 50
B-3. 100-kW erosion loop argon, vacuum, and air circuits schematic diagram ... 51
B-4. 100-kW erosion loop cooling circuits schematic diagram ... 52
B-5. 100-kW erosion loop Cs injection and separation circuit schematic diagram ... 53
B-6. Building 148 panel CBA wiring diagram 55
B-7. Building 148 junction box JA interconnection diagram 57
B-8. Building 148 panel CBB wiring diagram 58
B-9. Building 148 panels CBE and CBF wiring diagram 59
B-10. Magnetohydrodynamic facility panel CBH wiring diagram ... 60
B-11. Magnetohydrodynamic facility panel CBJ wiring diagram ... 61
B-12. Magnetohydrodynamic facility panel CBK wiring diagram ... 62
CONTENTS (contd)

FIGURES (contd)

B-13. Building 148 panel CBP wiring diagram 63
B-14. Building 148 panel CBQ wiring diagram 63
B-15. Building 148 100-kW test valves schematic diagram 64
B-16. Magnetohydrodynamic facility type WSH welder 1000 A,
unit 1, wiring and schematic 65
B-17. Magnetohydrodynamic facility type WSH welder 1000 A,
unit 2, wiring and schematic 66
B-18. Magnetohydrodynamic facility type WSH welder 1000 A,
unit 3, wiring and schematic 67
B-19. Magnetohydrodynamic facility type WSH welder 1000 A,
unit 4, wiring and schematic 68
B-20. Building 148 NaK pump blower schematic diagram 69
B-21. Building 148 heat exchanger blower schematic diagram ... 70
B-22. Building 148 vacuum vessel heater schematic diagram 71
B-23. Building 148 damper control schematic diagram 71
B-24. Building 148 100-kW test, NaK heater schematic
 diagram .. 72
B-25. Building 148 NaK pump schematic diagram 73
B-26. Building 148 hot trap schematic diagram 74
B-27. Magnetohydrodynamic facility 15-hp blower schematic
diagram .. 74
B-28. Magnetohydrodynamic facility 1-1/2-hp blower
 schematic diagram ... 75
B-29. Magnetohydrodynamic facility lithium pump schematic
 diagram .. 76
B-30. Magnetohydrodynamic facility cesium pump schematic
 diagram .. 77
C-1. Layout and installation - 100-kW MHD ac generator
 erosion loop .. 80
C-2. Weldment injector assembly 83
CONTENTS (contd)

FIGURES (contd)

C-3. Plug, housing injector assembly 83
C-4. Needle assembly .. 84
C-5. Aperture plate .. 85
C-6. Tube, needle assembly 85
C-7. Holder, tube .. 86
C-8. Separator - 100-kW erosion loop 87
C-9. Assembly, body, separator - 100 kW erosion loop 88
C-10. Collar separator - 100-kW erosion loop 89
C-11. Baffle 1, separator - 100-kW erosion loop 90
C-12. Baffle 2, separator - 100-kW erosion loop 91
C-13. Cylinder screen, separator - 100-kW erosion loop 92
C-14. Body, separator - 100-kW erosion loop 93
C-15. Band, separator - 100-kW erosion loop 94
C-16. Plate, top, separator - 100-kW erosion loop 95
C-17. Nozzle assembly, separator - 100-kW erosion loop 96
C-18. Ring, nozzle, separator - 100-kW erosion loop 97
C-19. Plate, bottom, separator - 100-kW erosion loop 98
C-20. Ring, separator - 100-kW erosion loop 99
C-21. Assembly, cone and support, separator - 100-kW erosion loop 100
C-22. Cone assembly, separator - 100-kW erosion loop 101
C-23. Support, tube, separator - 100-kW erosion loop 102
C-24. Plug, tube support - 100-kW erosion loop separator 103
C-25. Bellows, separator - 100-kW erosion loop 104
C-26. Coupling, separator - 100-kW erosion loop 105
C-27. Tubing, separator - 100-kW erosion loop 106
CONTENTS (contd)

FIGURES (contd)

C-28. Pin ring, separator – 100-kW erosion loop 106
C-29. Nose cone, separator – 100-kW erosion loop 107
C-30. Heater assembly – 100-kW erosion loop 108
C-31. Shell, lithium heater – 100-kW erosion loop 109
C-32. Element assembly, lithium heater 110
C-33. Bulkhead, lithium heater 110
C-34. Condenser – 100-kW erosion loop, cesium 111
C-35. Joint, coextruded – erosion loop cesium condenser 113
C-36. Bracket, bus support, inner (LH and RH) 114
C-37. Bar, bus, lead-in (RH) 115
C-38. Adapter, aft .. 115
C-39. Bar, bus, lead-in (LH) 116
C-40. Bracket, bus support, outer 117
C-41. Housing, injector assembly 118
C-42. Bar, bus transition (LH) 119
C-43. Bar, bus transition (RH) 120
C-44. Door assembly – 100-kW erosion loop 121
C-45. Vacuum tank assembly – 100-kW erosion loop 123
C-46. Frame, weldment, vacuum tank support 124
C-47. Frame, assembly .. 125
C-48. Transition pieces, columbium separator 126
C-49. Sump weldment – cesium, lithium and NaK (tabulated) 127
C-50. Sketch, desuperheater, erosion loop 128
C-51. Cooler, 100-kW erosion loop 129
C-52. Flowmeter FM-14 130
CONTENTS (contd)

FIGURES (contd)

C-53. Flowmeter FM-12 .. 131

D-1. Cs-Li loop characteristics 138
ABSTRACT

A 100 kWt cesium-lithium test loop was fabricated of niobium-1% zirconium for experiments on erosion and two-phase system operation at temperatures of 980°C and velocities of 150 m/s. Although operated at design temperature for 100 hours, flow instabilities in the two-phase separator interfered with the achievement of the desired mass flow rates. A modified separator was fabricated and installed in the loop to alleviate this problem. Because of program cancellation, the test system has been placed in standby condition for storage. This report documents the test system.
I. INTRODUCTION

Power generation for advanced space missions and central station power by a liquid metal magnetohydrodynamic cycle has been studied extensively (Refs. 1-4). A promising system for power levels above about 100 kWe is based on the two-component separator cycle using lithium and cesium as working fluids (Refs. 5 and 6). Cesium is mixed with lithium at high temperature at the inlet of a nozzle as shown in Fig. 1. The cesium vaporizes and the mixture is accelerated in the nozzle to high velocity. Impingement on an inclined surface produces a low-void fraction stream that is predominantly liquid lithium. This stream is decelerated in an MHD generator, producing electric power, and is subsequently returned by its remaining kinetic energy through the heat source to the nozzle inlet. The other flow leaving the separator is a high-void fraction stream that consists of cesium vapor with carryover of liquid and vaporous lithium. This mixture is condensed and returned by a pump to the nozzle inlet.

The characteristics of this system have been partially determined by analysis (Ref. 6), by component experiments using ambient water-nitrogen, NaK, and NaK-nitrogen mixtures (Refs. 7 and 8), in system experiments with water-nitrogen and NaK-nitrogen mixtures (Ref. 8), and through high-temperature, corrosion-erosion experiments with lithium (Refs. 9 and 10). However, information on the following subjects requires testing with cesium and lithium at the peak system temperatures:

1. Erosion of surfaces by lithium impingement at the design velocity of 150 m/s.
2. Performance of a two-phase nozzle with a cesium-lithium mixture.
3. Condensation characteristics of cesium-lithium mixtures.
Nonequilibrium behavior of cesium-lithium flows where solution or dissolution are occurring.

In order to investigate these subjects a flow system was fabricated from niobium-1% zirconium alloy to operate with cesium-lithium at a peak temperature of 980°C. Erosion can be determined by measuring the depth of attack or deposit on a wedge with an optically flat surface which was located in the flow stream at the nozzle exit. Nozzle performance can be derived from the measured thrust produced by the flow on a target cone which was designed to turn the flow by 90 deg. Cesium condensation coefficients can be determined by measurements on the NaK-cooled compact condenser. Nonequilibrium behavior would be inferred by deviations from the thermodynamic cycle calculations.

The test system was operated with simultaneous cesium and lithium flow at the design temperature of 980°C for about 100 hours. Figure 2 is a photograph of operation at high temperature and low flow rates. Flow instability prevented attainment of the design mass flow rates and impingement velocities. Modifications to the separator component to eliminate the instability were nearly completed when the NASA liquid metal MHD project was cancelled. The test system has been placed in a standby condition pending further investigations oriented toward commercial power generation.

Appendixes A, B, C, and D present, respectively, loop operating procedures, test system schematics, fabrication drawings of the test system, and loop operating characteristics.

II. DESCRIPTION OF TEST SYSTEM

The two-component liquid metal MHD system being studied and the Cs-Li test system are most closely related to the Rankine cycle. The flow paths and processes can be illustrated by reference to Fig. 3, which is a schematic of the liquid metal circuits of the test system. Lithium is heated to the maximum temperature in the heater component and flows to the nozzle, where it is injected at point 1.

Cesium liquid is also injected in the nozzle at point 2. Part of the cesium vaporizes and the remainder goes into solution with the lithium, which remains mostly in the liquid state. The cesium vapor is accelerated
to high velocity and low pressure in the nozzle. As the pressure decreases, more cesium comes out of solution and vaporizes. Shear and pressure forces resulting from the expanding cesium vapor cause breakup and acceleration of the lithium droplets to high velocity. The mixture impinges on the target and on a mesh separator within the receiver component. The lithium pump increases the pressure to the maximum of the cycle and returns the flow to the heater. The cesium vapor leaves the receiver vessel and flows to the desuperheater. Subcooled liquid cesium is injected at that point to reduce the cesium vapor (which is highly superheated) to the saturated state. The vapor then enters the condenser, where the heat of vaporization is removed by flowing NaK, is condensed, and returns to the cesium pump. The pump pressurizes the cesium and returns it to the nozzle and through a cooler to the desuperheater.

Figure 4 is a photograph of the cesium and lithium circuits prior to testing. All components and piping were fabricated from Nb-1%Zr. All weldments were performed in a high-purity argon atmosphere. This part of the test system was mounted on the door of a getter-ion pumped vacuum chamber which was operated in the 10^{-7} torr range to protect the refractory metals from oxidation during high-temperature operation. Description of the test system components and their performance is summarized below.

A. Two-Phase Nozzle

The two-phase nozzle for the test system was designed to provide cesium and lithium flow over a range of conditions. The design pressure gradient was established from the pressure variation measured on a larger nozzle, using water-nitrogen and freon-water flows. This gradient was used in the two-phase, two-component nozzle program to calculate the contour. The resulting geometry is summarized in Fig. 5. Figure 6 is a photograph of the nozzle prior to final welding.

The nozzle was calibrated with water and nitrogen to compare the exit velocity with that calculated by the computer program. The test setup is given in Fig. 7. As shown in Fig. 8, the agreement between the calculated and measured exit velocity was quite good. The computer program was then used to calculate the nozzle flow rates as a function of inlet temperature and mass ratio with the result shown in Fig. 9. At saturated Cs vapor conditions at the inlet, there is a unique relation between the cesium and
lithium flow rates. The information from Fig. 9 was used to determine the flow rates and operating conditions of the test system for the desired values of mass ratio and nozzle inlet temperature.

B. Thrust Target and Separator

The relation of the nozzle and thrust target is given by Fig. 10. The two-phase lithium-cesium flow impinging on the thrust target is turned by 90 deg. The thrust produced is transmitted through a stainless-steel bellows which is joined to the Nb-1%Zr alloy by a coextruded joint. The measured thrust thus provides an indication of the nozzle exit velocity. The separated lithium falls to the bottom of the separator and is returned to the lithium pump. The cesium vapor is separated from the lithium by a mesh-type separator and flows to the desuperheater.

The thrust target with the erosion specimen mounted in place is shown in Figs. 11 and 12. The erosion specimen is an optically flat wedge which extends beyond the nozzle exit diameter. Erosion depth was to have been measured with a traversing microscope as was done on a previous test (Ref. 10). The basic wedge is Nb-1%Zr alloy; the insert, which was electron-beam-welded to the Nb-1%Zr, is T-111 alloy.

Figure 13 shows the thrust target mounted in the separator body. The Nb-1%Zr mesh was wrapped on the outside of the perforated annulus as shown in the assembly drawing of Fig. 14.

The entire unit was assembled and tested with water-nitrogen flows. The thrust measured by the thrust target agreed to within ±5% with the values measured for the nozzle alone. The nozzle exit velocity was varied from 90 to 155 m/s for these measurements. Liquid carryover in the gas exit ranged from 2-7% of the primary liquid flowrate, acceptable values for the high-temperature flow system. Complete separation of gas from the liquid outlet flow was made possible by adding baffles, as shown in Fig. 15. However, these same baffles resulted in excessive lithium holdup during the lithium-cesium tests.

In order to eliminate this holdup problem a cyclone separator was designed for the lithium-cesium test system. A model was tested (Fig. 16) with water and nitrogen with a liquid carryover in the gas outlet of less than
0.1% and gas-free flow at the liquid outlet. Figure 17 shows the cyclone separator fabricated of Nb-1%Zr ready for installation in the test system.

C. Lithium Pump

The lithium pump is a helical induction electromagnetic pump. The pumping element shown in Fig. 18 is a Nb-1%Zr structure that fits within a stainless-steel, thermally-insulated sleeve. The electromagnetic body forces are supplied through the stainless-steel sleeve by an air-cooled, three-phase motor stator shown in Fig. 19. The pump was operated for more than 1000 h at temperatures exceeding 1000°C and for more than 4000 h above 650°C.

The calculated performance curve is given in Fig. 20. Previous tests with lithium flow nozzles at 1100°C gave measured performance data which agreed quite closely with the calculated performance (Ref. 9). A serious limitation of the pump which became apparent during the testing was the tendency of vapor to accumulate within the pump body and cause flow oscillations. Extensive shakedown testing was required to evolve a startup procedure that minimized this problem. Although vapor accumulation was a problem, the pump was able to operate with a negative suction head. The most successful two-phase startup procedure consisted of injecting cesium while the pump operated with lithium flow at 980°C and zero pressure at the inlet.

D. Lithium Heater

The heater to raise the lithium to the maximum temperature of 980°C consisted of four "cal-rod" type elements welded in a Nb-1%Zr shell. Figures 21 and 22 are photographs of this unit before final welding. The heating elements are tantalum center conductors with beryllia insulation and swaged Nb-1%Zr sheaths. The beryllia was removed to a depth of 6 mm to enable the Nb-1%Zr sheaths to be TIG-welded to the Nb-1%Zr shell without degrading the ceramic insulation. As shown in Fig. 21, the body and elements are curved to provide flexibility to accommodate thermal stresses. The unit was operated for over 3000 h, heating lithium at temperatures ranging from 650-1000°C. After this time a small leak occurred at one of the sheath weldments. The leak was repaired and the unit was to have been used on succeeding tests. Electron-beam welding of the sheaths rather than TIG
welding would have enabled a greater depth of penetration, which probably would have eliminated this problem.

E. Lithium Flowmeter

The electromagnetic flowmeters used for the lithium and cesium are shown in Fig. 23. The calculated characteristics of the lithium flowmeter are given by Fig. 24. Calibration of this flowmeter with 1100°C lithium flow nozzles showed the measured flow to agree to within ±5% of the calculated values.

F. Cesium Pump

The cesium pump is of similar construction to the lithium pump. The stator is seen in Fig. 19, adjacent to the stator for the lithium pump. The flow was controllable with a throttling valve during the periods of operation at lower flow rates. Attempts to run the pump at higher pressure rise with a low inlet pressure and low flow rate resulted in excessive temperature rise and vaporization of the cesium at the pump inlet. A small jet pump was fabricated which should have eliminated this problem when installed.

G. Cesium Flowmeter

The cesium flowmeter of Fig. 23 was used only at very low flow rates. The calculated output curve is given in Fig. 25.

H. Cesium Desuperheater

The cesium vapor leaving the separator is highly superheated and has a very poor heat transfer coefficient. The desuperheater of Fig. 26 was designed to lower the temperature to saturated vapor conditions by injection of subcooled cesium liquid. The large surface area afforded by the small liquid metal droplets more than compensates for the poor coefficients.

An alternative method to desuperheat the Cs vapor is a heat exchanger with large internal surface area. A radiant heat exchanger with internal Nb-1%Zr fins was fabricated (Fig. 27) to replace the original desuperheater. This would enable the subcooled cesium bypass flow to be used for the cesium jet pump discussed previously.
I. Cesium Condenser

The condenser for the cesium was constructed of both Nb-1%Zr and stainless steel. The niobium alloy is required for the condensing cesium, while stainless steel is the material of construction for the NaK cooling system that rejects the latent heat of vaporization from the cesium.

The condenser assembly is shown in Fig. 28 before welding and in Fig. 29 after final assembly. The transition between the stainless-steel tees and center section and the niobium end pieces that weld to the Nb-1%Zr cesium tubing was achieved by brazing with a cobalt-nickel alloy. The condenser performed satisfactorily at the low Cs vapor flow rates tested.

J. NaK Heat Rejection Loop

The NaK heat rejection loop was constructed of type 316 stainless steel. NaK flow is produced by an electromagnetic AC conduction pump. The flow piping enters the vacuum chamber through a thermal sleeve. The entering NaK removes heat from the cesium subcooler and condenser and exits the vacuum chamber through another thermal sleeve. It flows through an expansion tank, heater, and air-blast heat exchanger (to reject the heat) back to the pump. The function of the heater was to control the NaK temperature during low-load operation and to heat the NaK during purification operations. A titanium-zirconium hot trap was provided for initial purification. The heat rejection system is shown in Fig. 30 before insulation.

K. Vacuum Chamber

The vacuum chamber and getter-ion pump are shown in Fig. 31. The chamber is heated so that the temperatures of all liquid metal lines can be maintained at at least 200°C to prevent solidification. All ports have bakeable metal seals. The main door seal is Viton-A cooled to less than 100°C. During testing the chamber operated in the 10⁻⁷ torr range, with the liquid metal system at 980°C and the chamber at 250°C.

L. Instrumentation and Controls

Liquid metal pressure was measured directly with bonded strain gage transducers. The transducers and pressure lines were maintained at 230°C to prevent solidification. Installation of the transducers in the heated enclosure is shown in Fig. 32. Valving was provided to enable calibration during operation of the test system.
Chromel-alumel thermocouples were used for temperature measurement. Attachment to the Nb-1%Zr piping and components was made by welding the wires to a tantalum foil which, in turn, was welded to the niobium alloy. Only two thermocouples of 53 failed during more than 3000 hours of testing.

All instrumentation readout and control of the loop was accomplished remotely. Figure 33 shows the control console and alarm system which was used during the test. Schematic diagrams of the instrumentation and control circuits are given in Appendix B.

III. Operating Experience

The test system was operated for over 3000 h with liquid metal flow to determine the proper startup sequencing and flow characteristics with cesium and lithium. Achievement of stable flow with both liquid metals was very difficult and tedious. For proper functioning with cesium condensation in the condenser, no cover gas (argon) could be tolerated. Yet it was found that heating the evacuated system from ~200 to ~650°C while lithium was flowing always caused argon to evolve from the lithium. Attempts to reduce the pressure while circulating lithium produced instabilities and the loss of the pumping action unless extremely gradual reductions in pressure were used (~0.1 - 0.2 atm/day). Another problem which occurred early in the test sequence was lack of control of the cesium flow rate. Attempts to start the cesium pump at a low flow rate and without a control valve inevitably resulted in injection of a cesium flow which was too large for the conditions of lithium temperature and flow. The result was entrainment of cesium in the lithium circuit and the subsequent loss of the lithium pump due to cesium vaporization in the pump. This latter problem was eliminated by installation of a valve in the cesium line and an externally controlled cesium injection system for startup.

With these modifications, relatively stable cesium and lithium flow was obtained at lower flow rates (~0.1 kg/s). Attempting to further increase the lithium flow resulted in severe flow oscillations, cesium entrainment, and loss of the lithium pump. The reason for the flow oscillations is the holdup of lithium in the separator because of the baffles which were installed after hydraulic testing. Use of the centrifugal separator of Fig. 17 should
eliminate this problem and enable the attainment of higher flow rates. Figure 34 is a schematic of the test loop as it should appear after the above modifications are made.

IV. SUMMARY

The cesium-lithium test system proved to be a reliable installation for obtaining lithium and cesium flow at 980°C. However, stability problems were encountered as the flow rates were increased above about 0.1 kg/s. Minor modifications to the separator should enable attainment of the 0.4-kg/s design flow rate with stable operation.
REFERENCES

Fig. 1. Schematic diagram of cesium-lithium MHD power system

Fig. 2. Cesium-lithium erosion loop at 980°C
Fig. 3. 100-kW erosion loop liquid metal circuits schematic diagram
Fig. 4. Cesium-lithium test circuits before activation

Fig. 5. Cesium-lithium nozzle geometry

DIMENSIONS ARE IN INCHES
Fig. 6. Cesium-lithium nozzle before welding

Fig. 7. Water-nitrogen test of nozzle for cesium-lithium loop
Fig. 8. Comparison of experimental and theoretical exit velocities for cesium-lithium loop nozzle operating with nitrogen and water.

Fig. 9. Cesium-lithium nozzle flow for different nozzle inlet temperatures (saturated vapor).
Fig. 10. Nozzle-separator assembly
Fig. 11. Thrust target assembly
Fig. 12. Erosion specimen mounted on thrust target
Fig. 13. Thrust target mounted in separator body
Fig. 15. Lithium baffles
Fig. 16. Two-phase cyclone separator operating with H₂O and N₂
Fig. 17. Cesium-lithium cyclone separator
Fig. 18. Pumping element for lithium pump
Fig. 19. Helical induction pump stators
Fig. 20. Lithium pump characteristic at 980°C
Fig. 21. Lithium heater before welding

Fig. 22. Lithium heater end before welding
Fig. 23. Cesium and lithium flowmeters

Fig. 24. Lithium flowmeter calibration (776 gauss)
Fig. 25. Cesium flowmeter calibration (2355 gauss)
Fig. 26. Cesium desuperheater
VAPOR HEADER
REINFORCING RIBS
INTERNAL FINS

Fig. 27. Radiant cesium desuperheater before welding

NaK INLET
Nb-1% Zr INNER TUBE
Nb-1% Zr TO STAINLESS-STEEL JOINT

NaK OUTLET

Fig. 28. Cesium condenser before welding
Fig. 29. Cesium condenser after welding

Fig. 30. NaK heat rejection system before insulation
Fig. 31. Vacuum chamber and ion pump for cesium-lithium erosion loop
Fig. 32. Pressure transducer installation
Fig. 33. Control console for cesium-lithium test system
Fig. 34. Modified version of cesium-lithium erosion loop
APPENDIX A

LOOP OPERATING PROCEDURES

The startup and shutdown procedures used for the test loop are summarized below. The main modification required was installation of a cesium injection system and its actuation prior to starting the cesium pump (step 17). Full flow (steps 18-22) was not realized because of the problems discussed in the text. Values of temperatures, pressures, and flows are given in English units since the instrumentation and gauges are all in these units.
STARTUP PROCEDURES FOR Cs-Li LOOP

Startup Step

1. Evacuate loop to less than 10 microns by opening manual valves HT-1 and HV-1. Evacuate chamber to less than 10 microns by opening vacuum valve MV-1 to roughing manifold. Turn on load cell and O-ring cooling air flange, and bus cooling water. Turn on makeup air in NaK room.

2. Turn on the chamber heaters to 5 A in each leg. Increase by 5-A steps over 10-12 h time until current is 20 A. Continue pumping until pressure is below 10 microns again. Close all transducer valves to loop. Backfill with argon to 75 mm.

3. Start diffusion pump; open to chamber; close vacuum valve MV-1 to roughing manifold. Close manual valves HT-1 and HV-1.

4. Adjust pressure on lithium sump to 15 psig. Heat to 500°F.

5. Actuate Li pump. Adjust voltage until T-9 reads 450°F. Shut off pump.

6. Open lithium fill valve, V13, slowly. Monitor TC-3 to determine when receiver is filled to proper level. When TC-3 actuates, close V13.

7. Adjust pressure on cesium sump to 15 psig. Heat to 200°F.

8. Actuate Cs pump. Adjust voltage until T-21 reads 300°F. Shut off pump.

9. Open cesium fill valve, V15, slowly. Monitor TC16 to determine when cesium is at the proper level. Close V15 and VI.

10. Evacuate NaK loop through HV5. Open V8, V9, and VI7; continue evacuation while vacuum manifold is <10 microns. Close HV5.

11. Increase the argon on the supply tank to 8 psig; open the auxiliary drain valves (V11 and V12), then the main drain valve (V7), slowly and only enough to insure flow. It is best to fill the system slowly. When the liquid level has reached the desired level in the expansion tank, close the drain valves (V7, V11, and V12), then the heat exchanger bypass valve (V5), the exit valve on the heat exchanger (V6), the hot trap bypass valve (V4), and the Cs-Li loop bypass valve (V10). Open the two loop valves V8 and V9. Listen for NaK flow in the loop lines. As a final step, adjust the level by adding or draining NaK to the predetermined level as discussed in a previous section. Set the pressure at 10 psig on the reservoir and supply tank.

12. Turn the NaK pump powerstat up slowly until the liquid metal is flowing in the loop. Keep a constant watch on the flowmeter. If there is no immediate indication of flow, stop the pump immediately and determine the trouble. CAUTION: This is a high-capacity pump and cannot be operated without flow or liquid metal in the pumping section. In the event that there is no indication of flow, double-check the electrical connection on the flowmeter and pump, all valve settings, and the liquid level. If everything

Values of Key Parameters

- Pressure of chamber - 10^-2 torr on multi-torr gauge.
- Final chamber temperature ≈ 500°F. Loop temperature ≈ 450°F.
- Chamber pressure of 10^-5 torr.
- Current setting of 5 A on trace heater to obtain 500°F.
- T-9 = 450°F. Li pump voltage ≈ 45 V.
- T-3 should raise from 450 to 500°F in 2-3 s when lithium is at the proper level.
- T-21 = 300°F. Cs pump voltage ≈ 35 V.
- T-16 should lower from 450 to 200°F in 2-3 s when Cs is at the proper level.
- Manifold vacuum should be < 10 μm at 4 h.
- Level indicator light on Nak reservoir will change from red to yellow at proper level.
STARTUP PROCEDURES FOR Cs-Li LOOP (contd)

12. (contd)

appears in order, try the pump again. Watch for a flow indication and also use an ammeter to check that the current is flowing to the pump. A humming or buzzing sound will be heard if power is reaching the pump.

The above instructions may seem rather pessimistic, but the most important point to remember is that power must not be left on this pump for more than a few seconds without liquid metal flowing.

13. Turn the NaK immersion heater on and set the temperature for 650°F. Close the valve (V4), isolating the hot trap from the system. Do not circulate cold liquid metal through the hot trap. By adjusting the flow through the heat exchanger, the desired temperature can be reached.

Once the loop temperature has reached 650°F, operate at this point for an hour to ensure that the flowmeter is wet. Set the pump current at 10.5 A for a flow of 0.3 lb/s. The next step is to raise the loop temperature to 1000°F. Actuate the cooling blower for the pump when the loop temperature exceeds 850°F. Circulate at this temperature for a period of 24 h to ensure that oxides and impurities are absorbed in the liquid metal. Maintain as high flow in the heat exchanger as practical in order to ensure that the insides of these tubes are also cleaned.

14. Operate the hot trap, starting the flow slowly, 1/4 - 1/2 gpm, through the hot trap by opening the valve (V4). The flow in the main loop should be 1 lb/s through the heat exchanger. All portions of the loop must be at a minimum of 1000°F while hot trapping to ensure that any oxide present is in solution. Maintain the temperature at a minimum of 1000°F and the flowrate through the loop at some reasonable rate (1/2 - 1 lb/s). The time required to reduce the oxide content to an acceptable level is dependent on the quantity present and the operating temperature of the hot trap. The oxide removal rate is greater at 1200 than 1000°F. Experience indicates for a system of this size that a minimum of 12 h would be necessary to initially clean the system. Reduce the heater voltage until the loop temperature is 800°F.

15. Start Li pump at 25 V. Gradually increase until flow rate F1 is 0.3 lb/s. Start freeze stem flow at maximum flow rate. Remove insulation from Li pump duct port and Cs pump port.

16. Actuate Li heater at 200 A. Increase current until Li inlet temperature TC-I is 1200°F (100°F/h).

17. (a) Set Li pump at 90 V.
 (b) Start Li pump blower.
 (c) Start Cs pump at 80 V.
 (d) Actuate Cs pump blower.
 (e) Set heater at 9.1 V.

Cs flow, F2 = 0.0076 lb/s
Pump voltage = 50 V.

JPL Technical Memorandum 33-633 39
STARTUP PROCEDURES FOR Cs-Li LOOP (contd)

17. (contd)
Open valves to transducers. Reduce freeze valve flow until T-26 = 450°F. Actuate load cell motor until the gap is reduced to 0.010 in.

18. Increase Li inlet temperature in 100°F steps by first increasing the heater voltage, then the lithium flow, then the cesium flow. Keep chamber pressure in the 10^-5 range. Actuate the ion pump when 1800°F is reached and pressure is declining. Valve off diffusion pump. When the Cs pump temperature TC21 reaches 1100°F, evacuate Cs expansion tank through manual valve HV2, close manual valve HT2, open the manual valve V18 to the expansion tank until the first level thermocouple TC-52 is actuated, close the manual valve V18. When Cs temperature TC-21 reaches 1300°F, drain loop through the Cs drain line V18 until the second level thermocouple TC-53 is actuated.

19. Adjust the separator gap until the NaK outlet temperature TC-33 is minimized. Change V1 until saturated vapor is obtained (compare TC14 and P11).

20. Adjust the Li pump and Cs pump, heater and NaK temperature until Pl = 137 psia at a value of F1/F2 = 10.

21. Measure nozzle thrust. Vary stem position by +0.010 in. in 0.002-in. increments to determine spring constant.

22. Freeze stem by increasing the Dowtherm flow to the full flow rate.

<table>
<thead>
<tr>
<th>Values of Key Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
</tr>
<tr>
<td>1300</td>
</tr>
<tr>
<td>1400</td>
</tr>
<tr>
<td>1500</td>
</tr>
<tr>
<td>1600</td>
</tr>
<tr>
<td>1700</td>
</tr>
<tr>
<td>1800</td>
</tr>
<tr>
<td>1700</td>
</tr>
<tr>
<td>1800</td>
</tr>
</tbody>
</table>

The values under key parameters are for a lithium carryover fraction of 0.05. Different values will result in different heater settings to attain the required temperatures.
<table>
<thead>
<tr>
<th>Startup Step</th>
<th>Valve No. V</th>
<th>Valve No. SA</th>
<th>Valve No. SV</th>
<th>HV</th>
<th>HV</th>
<th>HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>6</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>9</td>
<td>0/X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>11</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>12</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>13</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>14</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>15</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>16</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>17</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>18</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>19</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>21</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>22</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

X Closed
O Open
NORMAL SHUTDOWN FOR EROSION LOOP

1. Decrease the Li pump and Cs pump voltages concurrently by 25-V steps until a Li pump flow rate of 0.3 lb/s is reached. Reduce flow to freeze valve and increase gap to 0.045 in.

2. Decrease the Cs pump voltage further until a setting of 25 V is reached.

3. Decrease the Li heater power until a lithium inlet temperature of 1000°F is reached (100°F/hr).

4. Turn off cesium pump.

5. Turn off Li heater.

6. Decrease Li pump voltage by 25-V increments until it is off.

7. Turn off NaK flow.

10. Heat both sumps to 400°F. Heat chamber and pumps to 800°F. Open V13 and V15. Monitor fill and dump line temperature TC-43. When TC-43 drops to ~400°F the loop is drained. Close V13 and V15. Turn off all heaters.
EMERGENCY PROCEDURES FOR EROSION LOOP

<table>
<thead>
<tr>
<th>Emergency</th>
<th>Function</th>
<th>Location of Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Liquid metal leak in chamber</td>
<td>a. Turn off Li, Cs, NaK pumps, Li heater, ion pump.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>b. Close manual dp valve (if open).</td>
<td>HB</td>
</tr>
<tr>
<td></td>
<td>c. If O-ring temperature rises to 300°F, open argon flood for chamber, SA-8.</td>
<td>HB</td>
</tr>
<tr>
<td></td>
<td>d. Increase cooling flow on chamber to limit temperature rise.</td>
<td>HB</td>
</tr>
<tr>
<td></td>
<td>e. If NaK level drops, pressurize NaK reservoir to 10 psig, and drain through V7 to NaK sump.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>f. Keep system under observation as temperature cools.</td>
<td>CR/HB</td>
</tr>
<tr>
<td>2. Liquid metal leak in NaK room</td>
<td>a. Turn off Li, Cs, NaK pumps, Li heater, bus cooling water.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>b. Turn off heat exchanger blower and makeup air blower.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>c. Close heat exchanger damper by setting controller on 1400°F.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>d. Pressurize NaK reservoir to 10 psig, drain through V7 to NaK sump.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>e. When leak stops, extinguish fire if safe.</td>
<td>HB</td>
</tr>
<tr>
<td>3. Liquid metal leak in door area</td>
<td>a. Turn off Li, Cs, NaK pump, Li heater, bus cooling water.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>b. Turn off heat exchanger blower and makeup air blower.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>c. Close heat exchanger damper by setting controller on 1400°F.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>d. If safe, turn off flange water and transducer oven.</td>
<td>HB</td>
</tr>
<tr>
<td></td>
<td>e. If NaK level drops, pressurize NaK reservoir to 10 psig and drain through V7 to NaK sump.</td>
<td>CR</td>
</tr>
<tr>
<td></td>
<td>f. If leak is from transducer box, valve off all transducers, if safe.</td>
<td>HB</td>
</tr>
<tr>
<td></td>
<td>g. When safe, extinguish fire.</td>
<td>HB</td>
</tr>
</tbody>
</table>

CR = control room
HB = high bay
APPENDIX B

TEST SYSTEM SCHEMATIC DIAGRAMS

All instrumentation, control, flow, argon and vacuum, and electrical schematics for the test system are contained in this appendix (see Figs. B-1 through B-30).

The following manufacturers' manuals are available at the Jet Propulsion Laboratory, care of Section 383 files, Mr. L. H. Huebner.

5. Miscellaneous instrumentation and auxiliary component calibration sheets and instruction manuals.
INSTRUMENTATION FUNCTIONS

Transducer Connections

<table>
<thead>
<tr>
<th>Inside Chamber</th>
<th>TC Panel 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-1 Nozzle inlet - lithium</td>
<td>1 & 2</td>
</tr>
<tr>
<td>2 Nozzle inlet - cesium</td>
<td>3 & 4</td>
</tr>
<tr>
<td>3 Receiver lithium fill</td>
<td>5 & 6</td>
</tr>
<tr>
<td>4 Receiver cesium exit</td>
<td>7 & 8</td>
</tr>
<tr>
<td>5 Receiver lithium exit</td>
<td>9 & 10</td>
</tr>
<tr>
<td>6 Lithium pump return line</td>
<td>11 & 12</td>
</tr>
<tr>
<td>7 Lithium pump exit</td>
<td>13 & 14</td>
</tr>
<tr>
<td>8 Lithium pump duct A</td>
<td>15 & 16</td>
</tr>
<tr>
<td>9 Lithium pump duct B</td>
<td>17 & 18</td>
</tr>
<tr>
<td>10 Heater bus A</td>
<td>19 & 20</td>
</tr>
<tr>
<td>11 Heater bus B</td>
<td>21 & 22</td>
</tr>
<tr>
<td>12 Heater body</td>
<td>23 & 24</td>
</tr>
<tr>
<td>13 Lithium flowmeter magnet</td>
<td>25 & 26</td>
</tr>
<tr>
<td>14 Condenser, cesium inlet</td>
<td>27 & 28</td>
</tr>
<tr>
<td>15 Condenser, cesium exit</td>
<td>29 & 30</td>
</tr>
<tr>
<td>16 Condenser, cesium fill</td>
<td>31 & 32</td>
</tr>
<tr>
<td>17 Cesium line, cooler to de-sup</td>
<td>33 & 34</td>
</tr>
<tr>
<td>18 Cesium pump return line</td>
<td>35 & 36</td>
</tr>
<tr>
<td>19 Cesium pump exit</td>
<td>37 & 38</td>
</tr>
<tr>
<td>20 Cesium pump duct A</td>
<td>39 & 40</td>
</tr>
<tr>
<td>21 Cesium pump duct B</td>
<td>41 & 42</td>
</tr>
<tr>
<td>22 Cesium flowmeter magnet</td>
<td>43 & 44</td>
</tr>
<tr>
<td>23 Receiver level indicator</td>
<td>45 & 46</td>
</tr>
<tr>
<td>24 Co-extruded joint, pressure taps</td>
<td>47 & 48</td>
</tr>
<tr>
<td>25 Co-extruded joint, loop vacuum</td>
<td>49 & 50</td>
</tr>
<tr>
<td>26 Co-extruded joint, load cell stem</td>
<td>51 & 52</td>
</tr>
<tr>
<td>27 Receiver</td>
<td>53 & 54</td>
</tr>
<tr>
<td>28 Nozzle inlet lithium</td>
<td>55 & 56</td>
</tr>
<tr>
<td>29 Nozzle inlet cesium</td>
<td>57 & 58</td>
</tr>
<tr>
<td>30 Nozzle body</td>
<td>59 & 60</td>
</tr>
<tr>
<td>31 Sight glass, 3-1/4 in. high</td>
<td>61 & 62</td>
</tr>
<tr>
<td>32 Sight glass, 4-1/2 in. high</td>
<td>63 & 64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outside Chamber</th>
<th>TC Panel 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC-33 NaK exit piping</td>
<td>65 & 66</td>
</tr>
<tr>
<td>34 Expansion tank</td>
<td>67 & 68</td>
</tr>
<tr>
<td>35 Heater</td>
<td>69 & 70</td>
</tr>
<tr>
<td>36 Hot trap</td>
<td>71 & 72</td>
</tr>
<tr>
<td>37 Hot trap flowmeter</td>
<td>73 & 74</td>
</tr>
<tr>
<td>38 Heat exchanger out</td>
<td>75 & 76</td>
</tr>
<tr>
<td>39 Main flowmeter</td>
<td>77 & 78</td>
</tr>
<tr>
<td>40 Pump outlet</td>
<td>79 & 80</td>
</tr>
<tr>
<td>41 NaK pump windings</td>
<td>81 & 82</td>
</tr>
<tr>
<td>42 Pressure tap lines</td>
<td>83 & 84</td>
</tr>
<tr>
<td>43 Fill and dump lines</td>
<td>83 & 84</td>
</tr>
<tr>
<td>44 Lithium pump windings</td>
<td>119 & 120</td>
</tr>
<tr>
<td>45 Cesium pump windings</td>
<td>119 & 120</td>
</tr>
<tr>
<td>46 Transducer oven</td>
<td>121 & 122</td>
</tr>
<tr>
<td>47 Cesium pump windings</td>
<td>121 & 122</td>
</tr>
<tr>
<td>48 Cesium pump windings</td>
<td>121 & 122</td>
</tr>
<tr>
<td>49 Heater feedthru A</td>
<td>127 & 128</td>
</tr>
<tr>
<td>50 Heater feedthru B</td>
<td>129 & 130</td>
</tr>
<tr>
<td>51 Chamber body</td>
<td>131 & 132</td>
</tr>
<tr>
<td>52 Ambient</td>
<td>133 & 134</td>
</tr>
<tr>
<td>53 Thermocouple ambient</td>
<td>135 & 136</td>
</tr>
<tr>
<td>54</td>
<td>137 & 138</td>
</tr>
</tbody>
</table>
Instrumentation Functions

Transducer Connections (contd)

<table>
<thead>
<tr>
<th>Pressure Functions</th>
<th>Pressure Panel Amp, Out Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>F- 1 Nozzle, lithium inlet</td>
<td>1 to amplifier 105 & 106</td>
</tr>
<tr>
<td>2 Nozzle, cesium inlet</td>
<td>2 to amplifier 107 & 108</td>
</tr>
<tr>
<td>3 Receiver pressure</td>
<td>3 to amplifier 109 & 110</td>
</tr>
<tr>
<td>4 Nozzle tap A</td>
<td>4</td>
</tr>
<tr>
<td>5 Nozzle tap B</td>
<td>5</td>
</tr>
<tr>
<td>6 Nozzle tap C</td>
<td>6</td>
</tr>
<tr>
<td>7 Nozzle tap D</td>
<td>7</td>
</tr>
<tr>
<td>8 Nozzle tap E</td>
<td>8</td>
</tr>
<tr>
<td>9 Nozzle tap F</td>
<td>9 to amplifier 111 & 112</td>
</tr>
<tr>
<td>10 Nozzle tap G</td>
<td>10</td>
</tr>
<tr>
<td>11 Condenser cesium inlet</td>
<td>11 to amplifier 139 & 140</td>
</tr>
<tr>
<td>12 Cesium pump inlet</td>
<td></td>
</tr>
<tr>
<td>13 NaK bypass</td>
<td></td>
</tr>
</tbody>
</table>

Flowmeter Functions

<table>
<thead>
<tr>
<th>Flowmeter and Feedthru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowmeter Functions</td>
</tr>
<tr>
<td>F-1 Lithium flow</td>
</tr>
<tr>
<td>1a Lithium flow (standby)</td>
</tr>
<tr>
<td>2 Cesium flow</td>
</tr>
<tr>
<td>2a Cesium flow (standby)</td>
</tr>
<tr>
<td>F-3 Main NaK flow</td>
</tr>
<tr>
<td>F-4 Hot trap flow</td>
</tr>
<tr>
<td>F-5 NaK bypass flow</td>
</tr>
<tr>
<td>95 & 96</td>
</tr>
<tr>
<td>99 & 100</td>
</tr>
<tr>
<td>103 & 104</td>
</tr>
<tr>
<td>(outside)</td>
</tr>
<tr>
<td>(outside)</td>
</tr>
</tbody>
</table>
Instrumentation Functions

Meter - Relays

<table>
<thead>
<tr>
<th>Cable No. 71 to Main Control Panel (CBA)</th>
<th>Meter No.</th>
<th>Cable No. 71 to Controllers</th>
<th>Controller No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcable 1</td>
<td>1</td>
<td>Subcable 22 Cl 69 & 70</td>
<td>22</td>
</tr>
<tr>
<td>Subcable 2</td>
<td>2</td>
<td>Subcable 23 C2 75 & 76</td>
<td>23</td>
</tr>
<tr>
<td>Subcable 3</td>
<td>3</td>
<td>Subcable 24 C3 125 & 126</td>
<td>24</td>
</tr>
</tbody>
</table>

Subcable 4	4		
Subcable 5	5		
Subcable 6	6		
Subcable 7	7		
Subcable 8	8		
Subcable 9	9		
Subcable 10	10		
Subcable 11	11		
Subcable 12	12		
Subcable 13	13		

<table>
<thead>
<tr>
<th>Cable No. 71 to Secondary Panel (CBD)</th>
<th>Meter No.</th>
<th>Cable No. 72 to Strip Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subcable 14</td>
<td>14</td>
<td>Subcable 1 No. 1 5 & 6</td>
</tr>
<tr>
<td>Subcable 15</td>
<td>15</td>
<td>No. 2 31 & 32</td>
</tr>
<tr>
<td>Subcable 16</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Subcable 17</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>Subcable 18</td>
<td>18</td>
<td>pair 7 - bus shunt</td>
</tr>
<tr>
<td>Subcable 19</td>
<td>19</td>
<td>5</td>
</tr>
<tr>
<td>Subcable 20</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>Subcable 21</td>
<td>21</td>
<td>Y 7</td>
</tr>
</tbody>
</table>

Subcable 22	22	53 & 54
Subcable 23	23	61 & 62
Subcable 24	24	63 & 64
Instrumentation Functions

Meter - Relays (contd)

Cable No. 45

<table>
<thead>
<tr>
<th>Channel</th>
<th>1-26</th>
<th>P4</th>
<th>3 (pressure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-27</td>
<td>P5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3-28</td>
<td>P6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4-29</td>
<td>P7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>5-30</td>
<td>P8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>6-35</td>
<td>P9</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7-36</td>
<td>P10</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>8-33</td>
<td>P12</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9-34</td>
<td>139 & 140</td>
<td>34 amp 6</td>
<td></td>
</tr>
</tbody>
</table>

Cable No. 46

<table>
<thead>
<tr>
<th>Channel</th>
<th>1</th>
<th>23 & 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>37</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>12</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>13</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>14</td>
<td>41</td>
<td>42</td>
</tr>
<tr>
<td>15</td>
<td>33</td>
<td>34</td>
</tr>
<tr>
<td>16</td>
<td>75</td>
<td>76</td>
</tr>
<tr>
<td>17</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>18</td>
<td>65</td>
<td>66</td>
</tr>
<tr>
<td>19</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>20</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>21</td>
<td>71</td>
<td>72</td>
</tr>
<tr>
<td>22</td>
<td>83</td>
<td>84</td>
</tr>
<tr>
<td>23</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>24</td>
<td>135 & 136</td>
<td>vacuum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>load cell enc. temp.</td>
</tr>
</tbody>
</table>

JPL Technical Memorandum 33-633
Fig. B-1. 100-kW erosion loop liquid metal circuits schematic diagram
Fig. B-2. 100-kW erosion loop electrical schematic diagram
Fig. B-3. 100-kW erosion loop argon, vacuum, and air circuits schematic diagram
Fig. B-4. 100-kW erosion loop cooling circuits schematic diagram
Fig. B-5. 100-kW erosion loop Cs injection and separation circuit schematic diagram
Fig. B-6. Building 148 panel CBA wiring diagram
Fig. B-7. Building 148 junction box JA interconnection diagram
Fig. B-8. Building 148 panel CBB wiring diagram
Fig. B-9. Building 148 panels CBE and CBF wiring diagram
Fig. B-10. Magnetohydrodynamic facility panel CBH wiring diagram
Fig. B-11. Magnetohydrodynamic facility panel CBJ wiring diagram
Fig. B-12. Magnetohydrodynamic facility panel CBK wiring diagram
Fig. B-13. Building 148 panel CBP wiring diagram

Fig. B-14. Building 148 panel CBQ wiring diagram
Fig. B-15. Building 148 100-kW test valves schematic diagram
Fig. B-16. Magnetohydrodynamic facility type WSH welder 1000 A, unit 1, wiring and schematic
Fig. B-18. Magnetohydrodynamic facility type WSH welder 1000 A, unit 3, wiring and schematic
Fig. B-19. Magnetohydrodynamic facility type WSH welder 1000 A, unit 4, wiring and schematic.
Fig. B-20. Building 148 NaK pump blower schematic diagram
Fig. B-21. Building 148 heat exchanger blower schematic diagram
Fig. B-22. Building 148 vacuum vessel heater schematic diagram

Fig. B-23. Building 148 damper control schematic diagram
Fig. B-24. Building 148 100-kW test, NaK heater schematic diagram
NOTES

1. CAPACITORS CONSIST OF 2 BANKS OF 480V, 1A UNITS (TOTAL 240 KVAR)
 MOUNT BATTERIES ON EAST WALL OF STORAGE AREA IMMEDIATELY UNDER UNIT.
 CONNECT TO SECONDARY TERMINALS OF VARIABLE TRANSFORMER W/ 2 - 14/0 CABLE IN 1/4" FLEX CONDUIT.

2. CHECK OUT CAPACITORS PRIOR TO CONNECTION

3. RECONNECT EXISTING CAPACITORS FOR LITHIUM PUMP AND CESIUM PUMP AS REQUIRED.

Fig. B-25. Building 148 NaK pump schematic diagram
Fig. B-26. Building 148 hot trap schematic diagram

Fig. B-27. Magnetohydrodynamic facility 15-hp blower schematic diagram
Fig. B-28. Magnetohydrodynamic facility 1-1/2-hp blower schematic diagram

Legend

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DEVICE</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOT</td>
<td>1200 FRAME</td>
<td>PANEL CBB</td>
</tr>
<tr>
<td>BKR</td>
<td>TRANS 480/230V EDMA</td>
<td>PANEL CBB</td>
</tr>
<tr>
<td>FS</td>
<td>PULL IN A IND. 460</td>
<td>PANEL CBB</td>
</tr>
<tr>
<td>M</td>
<td>SEE 1 MAGNETIC SWITCH</td>
<td>PANEL CBB</td>
</tr>
<tr>
<td>CA/CHB</td>
<td>MICRO-SWITCH 266B</td>
<td>PANEL CBB</td>
</tr>
<tr>
<td>TOI</td>
<td>THERMAL OVERLOADS</td>
<td>PANEL CBB</td>
</tr>
<tr>
<td>R</td>
<td>RES 22562 5 SW</td>
<td>PANEL CBB</td>
</tr>
<tr>
<td>PO</td>
<td>MICRO-OPERATOR INDIC</td>
<td>PANEL CBB</td>
</tr>
</tbody>
</table>

NOTE:

SEE DIAG. B-10004455 FOR LOCATION OF PANEL CBB

JPL Technical Memorandum 33-633
Fig. B-29. Magnetohydrodynamic facility lithium pump schematic diagram
Fig. B-30. Magnetohydrodynamic facility cesium pump schematic diagram
APPENDIX C

FABRICATION DRAWINGS OF TEST SYSTEM

The fabrication drawings of the cesium-lithium test system are included in this appendix (see Figs. C-1 through C-53). In some cases minor deviations and/or modifications have been made for the reasons discussed in the text. However, the essential features of the components and piping arrangement are identical to the drawings.
Fig. C-1. Layout and installation - 100-kW MHD ac generator erosion loop.
REMOVE APERTURE PLATE FROM NEEDLE ASSY. & WELD IN POSITION. THEN INSTALL NEEDLE ASSY & WELD.

ALL WELDS TO BE ELECTRON BEAM.

Fig. C-2. Weldment injector assembly

3 MACHINE FINISH 16 YA.
2. BREAK CORNERS .005-.015 RAD.
1. MACHINED FILLET RAD. .020.

Fig. C-3. Plug, housing injector assembly
FIG. C-4. Needle assembly

WELD ALL AROUND

INSTALL 1 TO 100, GRIND TO 1000 AFTER TUBE WELDING.

ELECTRON BEAM WELDING TO BE USED THROUGHOUT.
Fig. C-5. Aperture plate

1. CLEAN & DEBURR TUBE ENDS.
2. MEASURE & RECORD I.D. & WALL ON ALL TUBES.

Fig. C-6. Tube, needle assembly
Fig. C-7. Holder, tube
ASSEMBLY INSTRUCTIONS

STEP NO. 1. INSERT 3 INTO 1 AS SHOWN. THE DIMENSION SHOWN IN
DETAIL A IS DESIGN DIMENSION AND MUST BE HELD
TO ± .001. USE .010 SHIM STOCK, REMOVE AFTER WELDING.
WELD 1 & 3 AS SHOWN.

STEP NO. 2. INSTALL 3 INTO 1 AND WELD AS SHOWN.
NOTE: PRESS 3 LIGHTLY UNTIL IT BOTTOMS OUT ON THE
STEP OF 1. THIS WILL ESTABLISH THE ± .001 WELD DIM.

STEP NO. 3. COVER OR PLUG ALL PARTS, ETC.

ALIGN INDEX MARKS; USE FIPL 100-002 & SPINDLE 2.
1. AFTER WELDING STORE IN PROPER CONTAINER TO PREVENT DAMAGE.

SPEC TIG WELD JPL 20035
SPEC IDENTIFICATION JPL 20002

<table>
<thead>
<tr>
<th>PART</th>
<th>DESCRIPTION</th>
<th>QTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>C911761</td>
<td>NOZZLE, ASSY</td>
<td>1</td>
</tr>
<tr>
<td>D911765</td>
<td>CONE, ASSY</td>
<td>1</td>
</tr>
<tr>
<td>D511765</td>
<td>BODY</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. C-8. Separator - 100-kW erosion loop
Fig. C-9. Assembly, body, separator — 100 kW erosion loop
4. ALL DIAMETERS TO BE CONCENTRIC WITHIN .005, EXCEPT 4.09 DIA.

3. MACHINED FILLET RADIUS: .005 R
2. REMOVE ALL BURRS AND SHARP EDGES .010 R.
1. MACHINE FINISH .005.

<table>
<thead>
<tr>
<th>SPEC</th>
<th>IDENTIFICATION</th>
<th>JPL 10006</th>
</tr>
</thead>
</table>
| 2 | COLLAR | 3/4 x 4 1/8 DIA | Cb-Ix E

Fig. C-10. Collar separator – 100-kW erosion loop
TO BE CONCENTRIC WITHIN .001 AFTER WELDING.

1. MACHINED FILLET RADIUS:
2. REMOVE ALL BURRS AND SHARP EDGES .015 R MAX.
 MACHINE FINISH G3

<table>
<thead>
<tr>
<th>SPEC</th>
<th>TIG WELD</th>
<th>JPL 20035</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC</td>
<td>IDENTIFICATION</td>
<td>JPL 20002</td>
</tr>
<tr>
<td>BATTLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PART</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOCK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIZE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPECIFICATION</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. C-11. Baffle 1, separator - 100-kW erosion loop
TO BE CONCENTRIC WITHIN .001 AFTER WELDING.

1. MACHINED FILLET RADIUS:
2. REMOVE ALL BURRS AND SHARP EDGES. 0.15 R MAX.
1. MACHINE FINISH 6.3

Fig. C-12. Baffle 2, separator - 100-kW erosion loop
AFTER WELDING

1. MACHINED FINISH MAX.
2. REMOVE ALL BURRS AND SHARP EDGES .005 MAX.
3. MACHINED FILLET RADIUS: .010 MAX.

Fig. C-13. Cylinder screen, separator – 100-kW erosion loop
Fig. C-14. Body, separator – 100-kW erosion loop

1. Machined fillet radius.
2. Remove all burrs and sharp edges 0.05 R max.

<table>
<thead>
<tr>
<th>SPEC</th>
<th>IDENTIFICATION</th>
<th>JPL20002</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPEC</td>
<td>TIG WELD</td>
<td>JPL20035</td>
</tr>
<tr>
<td>BAND</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STOCK SIZE</td>
<td>1.125 X 1 1/8 X 12 LG</td>
</tr>
<tr>
<td></td>
<td>MATERIAL</td>
<td>Cb-1% Zr</td>
</tr>
<tr>
<td></td>
<td>NO.</td>
<td>1</td>
</tr>
</tbody>
</table>

Fig. C-15. Band, separator — 100-kW erosion loop
Fig. C-16. Plate, top, separator - 100-kW erosion loop
Fig. C-17. Nozzle assembly, separator - 100-kW erosion loop
MACH. AS REQD TO FIT C9117262 NOZZLE.
MAKE FROM CORE REMOVED FROM C9117762, IF FEASIBLE.

1. MACHINED FILLET RADIUS.
2. REMOVE ALL BURRS AND SHARP EDGES. .015R MAX.
3. MACHINE FINISH .025" MAX.

Fig. C-18. Ring, nozzle, separator - 100-kW erosion loop
4. THE REMOVED CORE WILL BE USED TO PRODUCE C9117762.

3. MACHINED FILLET RADIUS:
2. REMOVE ALL BURRS AND SHARP EDGES .030 R MAX.
1. MACHINE FINISH ✓

SPECIFICATION: JPL 80002

PLATE, BOTTOM
PLATE 1/2 x 7 DIA
Cb-1% Zr

Fig. C-19. Plate, bottom, separator – 100-kW erosion loop
3. MACHINED FILLET RADIUS: .030 MAX.
2. REMOVE ALL BURRS AND SHARP EDGES .015 R.
1. MACHINE FINISH .63/

Fig. C-20. Ring, separator – 100-kW erosion loop
Fig. C-21. Assembly, cone and support, separator — 100-kW erosion loop
Fig. C-22. Cone assembly, separator - 100-kW erosion loop

JPL Technical Memorandum 33-633
Fig. C-23. Support, tube, separator – 100-kW erosion loop
4. MATCH FIT WITH PART NO. C9117771, FOR SNUG FIT.

3. MACHINED FILLET RADIUS: .010 MAX.

2. REMOVE ALL BURRS AND SHARP EDGES. DIA RADIUS MAX.

1. MACHINE FINISH .010

SPECIFICATION
JPL 20002

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>SPECIFICATION</th>
<th>STANDARDS</th>
<th>MATERIAL</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>C9117771</td>
<td>PLUG, TUBE SUPPORT</td>
<td>PLATE ½ × 4 DIA</td>
<td>CB-1% Zr</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Fig. C-24. Plug, tube support—100-kW erosion loop separator
Fig. C-25. Bellows, separator - 100-kW erosion loop
3. MACHINED FILLET RADIUS: .010 MAX
2. REMOVE ALL BURRS AND SHARP EDGES .015 R. MAX
1. MACHINE FINISH 60.0

Fig. C-26. Coupling, separator - 100-kW erosion loop
Fig. C-27. Tubing, separator - 100-kW erosion loop

Fig. C-28. Pin ring, separator - 100-kW erosion loop
4. MATERIAL TO BE DETERMINED BY THE COS. ENG.
3. MACHINED FILLET RADIUS: .052 MAX.
2. REMOVE ALL BURRS AND SHARP EDGES
1. MACHINE FINISH #8

Fig. C-29. Nose cone, separator – 100-kW erosion loop
Fig. C-30. Heater assembly - 100-kW erosion loop
Fig. C-31. Shell, lithium heater – 100-kW erosion loop
Fig. 32. Element assembly, lithium heater

Fig. C-33. Bulkhead, lithium heater
PROCURE FROM NUCLEAR METALS INC., CONCORD, MASS., OR EQUAL.

DIFFUSION BOND LIMITS.

1. MACHINE FILLET RADIUS.
2. REMOVE ALL BURRS AND SHARP EDGES
3. MACHINE FINISH 63

Fig. C-35. Joint, coextruded—erosion loop cesium condenser.
Fig. C-36. Bracket, bus support, inner (LH and RH)
Fig. C-37. Bar, bus, lead-in (RH)

1. **MACHINE FINISH**
2. **MACHINED FILLET RADIUS .030 R.**
3. **REMOVE ALL BURRS AND SHARP EDGES .030 R.**

Fig. C-38. Adapter, aft

1. **MACHINE FINISH**
2. **MACHINED FILLET RADIUS**
3. **REMOVE ALL BURRS AND SHARP EDGES .03 R.**
PERFORM THESE FUNCTIONS AFTER △.

Determine length at next assy.

1. Machined fillet radius: .020 R
2. Remove all burrs and sharp edges: .030 R
3. Machine finish

Fig. C-39. Bar, bus, lead-in (LH)
Fig. C-40. Bracket, bus support, outer
Fig. C-41. Housing, injector assembly
Fig. C-42. Bar, bus transition (LH)
Fig. C-43. Bar, bus transition (RH)
Fig. C-44. Door assembly - 100-kW erosion loop
Fig. C-45. Vacuum tank assembly = 100-kW erosion loop.
Fig. C-46. Frame, weldment, vacuum tank support
Fig. G-47. Frame, assembly

<table>
<thead>
<tr>
<th>Part Reference</th>
<th>Description</th>
<th>Material</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tank</td>
<td>Steel</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Frame, assembly</td>
<td>Steel</td>
<td>4</td>
</tr>
<tr>
<td>3(4)</td>
<td>Washer, flat</td>
<td>Steel</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Nut, hex</td>
<td>Steel</td>
<td>8</td>
</tr>
<tr>
<td>5(4)</td>
<td>Washer, lock</td>
<td>Steel</td>
<td>6</td>
</tr>
<tr>
<td>6(4)</td>
<td>Nut, hex</td>
<td>Steel</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Washer, lock</td>
<td>Steel</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Caster</td>
<td>Steel</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Washer, lock</td>
<td>Steel</td>
<td>6</td>
</tr>
</tbody>
</table>

Suggested Vendor: Ducommun Metals & Supply Co.
Fig. C-48. Transition pieces, columbium separator
Fig. C-49. Sump weldment—cesium, lithium and NaK (tabulated)
Fig. C-50. Sketch, desuperheater, erosion loop

- .062 DIA x .75 PA Doubler
 Matl.- Columbiurn 1% Zirconium.

- .03 x .125 DIA (44) PLACES

- .020 DIA (48) HOLES SPACED 90° AROUND CIRCUMFERENCE.

1. .188 OD, X.03 W X 13.0 LG. TUBE
 Matl.- Columbiurn 1% Zirconium.

2. 1.125 O.D, X.062 W X 3.1 LG. TUBE
 Matl.- Columbiurn 1% Zirconium.

3. .062 X.75 DIA DOUBLER
 Matl.- Columbiurn 1% Zirconium.
Fig. C-51. Cooler, 100-kW erosion loop
Fig. C-52. Flowmeter FM-14
Fig. C-53. Flowmeter FM-12
APPENDIX D

CESIUM-LITHIUM LOOP OPERATING CHARACTERISTICS

The operating characteristics of the Cs-Li loop were determined by modeling the performance of the major components (Li pump, Cs pump, Li heater, Cs condenser, Cs subcooler, bypass valve) and combining the relations together with the hydraulic and heat loss characteristics of the system. The CAL program resulting from this effort is given in this appendix. The results of variation of key parameters over a range of interest is summarized in Fig. D-1. The independent variables are taken to be the pump voltages E_1 and E_2, the heat rejection rate Q, the NaK pump current I, the lithium heater voltage E_3, and the number of turns opening of the bypass valve N. The variations of the condenser temperature T_2, mass ratio r_c, NaK temperature T_3, and lithium temperature T_1 are shown for individual variations in the independent parameters. At the design point of:

\[
\begin{align*}
T_1 &= 1800^\circ F \\
T_2 &= 1300^\circ F \\
T_3 &= 900^\circ F \\
C_1 &= 0.02 \\
r_c &= 10
\end{align*}
\]

the control variables should have the following settings (from the figure):

\[
\begin{align*}
E_1 &= 304 \text{ V} \\
E_2 &= 283 \text{ V} \\
E_3 &= 11.3 \text{ V} \\
Q &= 24.3 \text{ kW} \\
T &= 18.3 \text{ A} \\
N &= 0.45 \text{ turns}
\end{align*}
\]

The effect of variations of the control parameters from the design point can be determined by following the appropriate curve.
NOMENCLATURE

A1 α_B fraction of cesium in lithium at nozzle exit

A2 A area of loop at highest temperature, ft2

B1 β_B fraction of lithium vapor in cesium at nozzle outlet

*C1 C$_0$ fractional lithium carryover

C2 Cp_{cs10} specific heat of cesium liquid and vapor at T_{10}, Btu/lb$^\circ$F

C3 Cp_{Li_f} specific heat of lithium at T_{12}

C4 Cp_{19} specific heat of lithium and cesium mixture into desuperheater

*D1 Δp_{f1} frictional drop in lithium lines, psi

*D2 Δp_{f2} frictional drop in cesium lines, psi

D3 ΔT_B drop in bulk temperature in nozzle, $^\circ$F

E1 E_1 lithium pump voltage

E2 E_2 cesium pump voltage

E3 E_3 lithium heater voltage

E4 E emissivity of foil insulation

L1 L_v_{Li} latent heat of lithium vapor, cal/g

L2 L_v_{Li} latent heat of lithium vapor, B/lb

L3 L_v_{cs} latent heat of cesium vapor, cal/g

L4 L_v_{cs} latent heat of cesium vapor, B/lb

M1 \dot{m}_T total nozzle flowrate, lb/s

M2 \dot{m}_Lit lithium flowrate in nozzle, lb/s

M3 \dot{m}_pl lithium flowrate in pump, lb/s
NOMENCLATURE (contd)

M4 \dot{m}_{csN} cesium flow in nozzle, lb/s
M5 \dot{m}_{cs} mass flowrate of dissolved cesium, lb/s
M6 \dot{m}_{L1v9} mass flowrate of lithium vapor, lb/s
M7 \dot{m}_{csD8} desuperheater flowrate, lb/s
M8 \dot{m}_{p2} cesium pump flowrate, lb/s
N1 n number of layers of radiation shielding
P0 P_0 inlet pressure of lithium, psi
P1 P_1 nozzle inlet pressure, psi
P2 P_{12} condenser pressure, atm
P3 P_{12} condenser pressure, psi
Q1 Q_1 heat input from lithium pump, kW
Q2 Q_2 heat input from cesium pump, kW
Q3 Q_3 heat input from lithium heater, kW
Q4 Q_4 radiant heat loss, Btu/hr
Q5 Q_5 heat transfer in subcooler
Q6 Q_4 radiant heat loss, kW
Q7 Q_R heat rejection date required, kW
R1 ρ_{Li} lithium density, lb/ft3
*R2 r_c mass ratio of lithium to cesium in nozzle
R3 ρ_{cs} cesium density, B/ft3
R4 ρ_{Li} lithium density, g/cm3
NOMENCLATURE (contd)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R5 ρ_{cs}</td>
<td>cesium density, g/cm³</td>
</tr>
<tr>
<td>$^{\ast}T1$ T_1</td>
<td>nozzle inlet temperature of lithium, °F</td>
</tr>
<tr>
<td>$^{\ast}T2$ T_{12}</td>
<td>condenser temperature, °F</td>
</tr>
<tr>
<td>T3 T_{34}</td>
<td>potassium low temperature, °F</td>
</tr>
<tr>
<td>T4 T_{12}</td>
<td>condenser temperature, °K</td>
</tr>
<tr>
<td>T5 T_1</td>
<td>nozzle inlet temperature, °F, °C</td>
</tr>
<tr>
<td>T6 T_{19}</td>
<td>temperature into desuperheater, °F</td>
</tr>
<tr>
<td>T7 T_{10}</td>
<td>nozzle exit temperature, °C</td>
</tr>
<tr>
<td>T8 T_{12}</td>
<td>condenser temperature, °C</td>
</tr>
<tr>
<td>T9 T_{10}</td>
<td>nozzle exit temperature, °K</td>
</tr>
<tr>
<td>X1 T_c</td>
<td>temperature of vacuum chamber</td>
</tr>
<tr>
<td>X2</td>
<td>temperature factor</td>
</tr>
<tr>
<td>X3</td>
<td>temperature factor</td>
</tr>
<tr>
<td>X4</td>
<td>temperature factor</td>
</tr>
<tr>
<td>X5 T_{10}</td>
<td>nozzle exit temperature, °F</td>
</tr>
</tbody>
</table>
Cs-Li LOOP PERFORMANCE PROGRAM (contd)

1433 M8=1
1434 X7=(Q7+Q5)/(Q4+Q7)
1435 X8=(Q5+Q4)/(Q3+M9)

1436 X9=(X7)/LOG(1/(1-(X7)/(1+M9)))
1437 M9= IF ABS((X9-X6)/X6)<0.01 THEN (X9-X6)/X6 ELSE M9
1438 TO STEP 1434 IF ABS((X9-X6)/X6) > 0.01
1439 I=400 70 0.75
1440 TYPE E1, E2, E3, PO, P3, T1, T2, D3, C2, M4, L2
1441 TYPE X6
1442 V7=923000/M7/23
1443 K=925000/(PO+P3)/(R3*V7/2)
1444 N=34*6/K+5
1445 TYPE N=M9*X7/X8=1
1446 TYPE M1, M2, M3, M4, M5, M6, M7, M8
1447 TYPE G1, G2, G3, G5, G6, G7
1448 TYPE D1, D2
1447 TO STEP 1*00
Fig. D-1. Cs-Li loop characteristics