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1. Introduction

A popular theory of measurement of quantum systems says that if we describe states
of a quantum system S as elements in a Hilbert space 3C0, then any measurement can

o
be characterized by a Hermitian operator in Hilbert space 3CC. This notion of quantum

o
measurement is too restricted, and we shall consider measurements characterized by
Hermitian operators in extended Hilbert spaces that include the original space 3C0. One

o
possible way of implementing such measurement is to let an apparatus A interact with
the system S and then perform subsequent measurement on the combined system S+A.
Therefore we want to know what types of interaction are feasible and, in particular,
to find restrictions on possible types of interaction when we invoke some form of con-
servation law. We know that we can characterize interactions between two quantum sys-

1 2terns by specifying ' the interaction Hamiltonian HT. In this report we discuss the
restriction of the law of conservation of energy on the allowable form of H.,.

2. States of S+A Described by Pure States

Let us assume that before a certain contact time t the two systems S and A are"
noninteracting and evolve independently according to their individual free Hamiltonians,

3C and 3CA, respectively. The Hamiltonian for the combined system S+A before t is
S A. C

then H = Hg ® I + I ® HA> where IA and I are the identity operators in 3CA and
JC , respectively. Let ~# c, A be a complete linear subspace of X ® 3CA such that

S QT/4. S -A
for t > t the states of S+A described by vectors in ~4? c. . are noninteracting. Let

C OTA

[a +s°}} S ~^ s+A ke *ke Schrodinger state of S+A at t . The energy of the combined
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system at this point is

For t > tc, JaW)) = Uja^s0)}, where Ut = exp{- ± H'(t-tc)}.

Then for t > t ,

E t
s+A-«s t+a t |H'|a t

+s t})

= «s0
+a0|ujH'Ut|a°+s0)}.

Since H1 is the generator of the unity group U,, it commutes with U,; that is, the com-

mutator [H1, U ] =0. Therefore, for t > t ,
t \-*

-r-,t / / O. O l T - , , 1 O. O\ \ES+A = «s +a |H' |a +s »

= « s°+a° H a°+s°» + « s°+a° H a°+s°»

= E°+A + «s0+a°|HI|a
0+s

0».

The law of conservation of energy requires

ES+A = ES+A; for a11 *'

Hence this implies (*) « sO+ao|HI|a
o+s°}} = 0.

A sufficient (but not necessary) condition for EL to satisfy the constraint (*) is to

have |a°+s°)) in the null space (^TT ) of HT (condition la). Or equivalently if we have

already specified ^ C + A « we require HT to be representable completely by vectors

in *Jt s+A' where ^ „ . = 3C ® 3C. - ^ ^ . is the orthogonal space of ̂  „ . (con-

dition Ib).

A necessary and sufficient condition can be found. Let HJ-^O.A - {all x£ 3C y>

HIx = ELy, some y £ ^~ . }. Let ~tf „ . be the completion of this space. In other words,

HI•^ O+A is the range space of EL with domain restricted to ~tf~ Then a necessary

H ±

and sufficient condition for (*) to hold is -^c+A C "^ S+A (condition 2)-
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3. States of S+A Described by Density Operators

Let the state of S+A at t be described by the density operator PCI A- Requiring

no interaction between S and A before t means that ps+ A can be represented com-

pletely by vectors in ~M „ .. For t > t the density of the combined system is

t TT O TTt

PS+A = U tPs+A U t "

The mean energy for t > t is

ES+A = Tr { PS+AHI>

= Tr

where Tr denotes the trace.

Since [H1, Uj =0 and uj commute with H1,

4+A = Tr

Since unitary transformations do not change the trace of operators,

= Tr { p°+AH} + Tr {

Tr

Conservation of energy requires that, for all t, Eo, A - -^Q+A- which implies

(**) Tr

Let 5C be the Hilbert space of bounded Hermitian operators defined on 3C,C ® 3CA and
O O -ci

the inner product in 3C be defined as (A, B) = Tr JA, B} for all A, B e 3C . Then a nee

essary and sufficient condition to satisfy (**) is

PCX A ^i 3C7r = 3C -{HT} (condition 3a),
O"r/i. ^"T ^

where {Hj} is the subspace generated by HT, and 3CV is the subspace orthogonal to it.
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Furthermore, if we have already specified the possible choices of P O + A by requiring

that they be representable by vectors in ^ v . and denoted the subspace of 3C gen-
OTA O

erated by these sets of possible density operators by 3C^ M , then an equivalent

condition of (3a) is

TT f~^ ftf^~ — ft/t _ f/5

1 PS+A;^S+A ° PS+A;-^S+A
(condition 3b).

A more illuminating sufficient (but not necessary) condition is easily found by noting

that if we require H, to be representable by vectors in ^ „, . the condition (**) is

always satisfied (condition 4).
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B. REALIZATION OF AN OPTIMUM QUANTUM MEASUREMENT

BY EXTENSION OF HILBERT-SPACE TECHNIQUE

National Aeronautics and Space Administration (Grant NGL 22-009-013)

V. Chan

A system S is in one of M equiprobable pure states i f f . ) } . , and these states are
M l~

linearly dependent with certain symmetry such that S b | f . ) ( f . ) = I , b > 0, where I.=1 i i s s

is the identity operator in Hilbert space 3C that describes the system S. To maximize
S

the probability of correct detection, we want to observe S and determine in which of

M states it is. It is known that there is a solution to this problem.

The measurement operators are Hermitian and positive definite: Q. = b | f . ) ( f . | , i =

1 M. These Q. are not orthogonal in general, however, and do not correspond to

any measurement on S alone that can be described by a Hermitian operator in 3C
2 s

Helstrom and Kennedy have proposed to synthesize these types of measurement by

bringing into consideration another quantum system A, called the apparatus, described
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by Hilbert space 3C. so that there exists a set of orthogonal positive definite

Hermitian measurement operators {IT.}.., in the tensor product Hilbert space 3C ® 3C.i 1-1 s A
and a density operator p. for A withQ. = Tr. \ ir .p /, where Tr. indicates taking a

partial trace over 3CA. Now the TT. correspond to a Hermitian measurement on
Xi 1

3C ® 3CA. We have solved this problem for a particular case with M = 3.
S iT. 1

If the possible states of S are the three shown in Fig. VII-1, it can be shown that
3
Z - T - | S - ) ( S - ! = I > so that Q. = ̂  |s.)(s.|, i = 1, .... 3, and the probability of correct

. _ « j 1 1 S 1 - 5 1 1

detection is P[C] = | Z Tr [p.Q-] = -|.

AXIS

Fig. VII-1. Possible states of S. Fig. VII-2. Configurations of ul = ] < } > . ) < < j > . | .

Pick any apparatus A described by Hilbert space 3CA of dimension N & 2 (hence

the dimension of 3C <8> 3C. 5 4). Let p. = |a)(a | , where la) is any pure state.
S -ti xi.

Therefore the three possible joint states of S+A are {| s.) |a)}._,, and again they span

a two-dimensional subspace in 3C ® 3CA, namely 3C where— - \j * r iicLi.ixcj.jr uv ^-^ •-'»•»' i \ , vv lit j. ^ *sn, I \s A s \< i / \a/

subspace generated by |a). Choose any other one-dimensional subspace^

is the

®
S+A in

where i \ is the orthogonal subspace ofja; Then three orthog-

\ t t- fonal measurement operators {ir!}._, can be found in 3C ®

our requirements.

We shall show that IT! = ( ( )> . ) ( 4>.|, where the ) < ) ) . } are orthonormal vectors. By

symmetry considerations, it is clear that we want the axis of the coordinate system

made up of | c j> . ) , |< t> 9 ) , |<t>,} to be perpendicular to the plane spanned by the Is.}, and
1 £ J 1

the projections of the ( < ) > . ) on the plane of the |s.) along the axis should coincide with

these respective |s.}, so that | { < j > . | s . ) | = a constant for all i is maximized (see
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Fig. VII-2). By straightforward geometric calculations | (< |> . |s.)| = -r so that P[C] =
3

^ Z Trjp.Tr.1} = T. Hence, the ( < J > . ) are indeed optimum and if we wish to require
* i=1 i i i
in addition that the sum of the measurement operators equals the identity operator in

3C ® 3CA, we need only define TT. = IT! (g> I,, where I, is the identity operator of
S A 1 1 Q Q

3
3CS ® 3CA - {5Cs ® Jf |a> U ^S+A}, then £ ir. = IS+A.
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C. ON THE OPTIMUM QUANTUM RECEIVER FOR THE M-ARY

LINEARLY INDEPENDENT PURE STATE PROBLEM
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R. S. Kennedy

It has been conjectured that the optimum quantum receiver for digital communication

may not always be characterized by a set of (commuting) observables on the system

space, i. e. , a set of commuting Hermitian operators with complete sets of eigenvec-

tors. Recently, it has been demonstrated that this conjecture is, in fact, true

and there has been renewed interest in delineating conditions for which the optimum

receiver can be characterized by observables.

It is known that the optimum receiver for binary signaling is characterized by an

observable. ' ' It has also been shown that, among those receivers characterized

by an overcomplete set of measurement states, the optimum receiver for the M-ary lin-

early independent pure-state problem can be characterized by an observable. '
8 9Not all quantum measurements can be characterized by such overcomplete sets, ' how-

ever, and the characterization of the optimum receiver for the M-ary problem has

remained open. In this report we show that the optimum quantum receiver for the M-ary

pure state problem can, in fact, be characterized by an observable when the M pure

states are linearly independent.

The problem of interest can be stated as follows. One of a set of M messages is

transmitted, the i message occurring with (nonzero) a priori probability p.. The

transmission of message i causes the field at the receiver to be in the quantum state

|u.}. That is, there is no randomness in the channel nor is there any additive noise.
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It has been shown that any quantum receiver for M-ary digital communication can

be characterized by a set of M nonnegative definite Hermitian operators, IT., that sum
89 1

to the identity operator. ' That is,

TTj 3= 0 i = 1, . . . ,M ( la)

M
2 IT. = I. ( lb)

i=l

It has further been shown that the necessary and sufficient conditions for a set of rr.
o c o 1

satisfying (1) to minimize the error probability are, in addition to (1), ' '

2 PifpiVVi* = ° (2a)

n,(S p.*. p. -p.p.) = 0 (2b)
J 1 J J

H p.-rr.p. - p .p . 5 0, all i. (2c)
• *i IKI J J

Here p. is the density operator of the received field when message i is transmitted.

For the pure -state problem, which is of interest here, the density operators p. are

given by

p . = | u . ) < u . | i = 1 . . . . .M. ( 3 )

Since we have assumed that the |u.) are linearly independent, their weighted sum will

vanish only if all of the weighting coefficients vanish. That is,

S a . |u .> = 0 (4)

implies that all of the a. are zero. Although (3) and (4) yield some simplification of
1 1 1 3 5(2 ) , they do not permit an explicit solution for the TT.. ' ' As we shall show, they

do imply that TT. satisfying (2) can be found which describe a receiver that is charac-

terized by observables. Precisely stated, if the Hilbert space of the system is taken

to be that spanned by the |u.), the operators ir. that satisfy (2) subject to (1) are com-

puting projection operators. That is,

where the 6.. is the Kronecker delta; 6.. = 0 for i + \ and 6.. = 1.
i] i] 11

Of course, there is no a priori reason for limiting the space of the system to be that
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spanned by the ju.) . Moreover, if larger spaces are considered, (2) will have solu-

tions that do not satisfy (5). It can be shown, however, that the use of a larger space

does not lead to performance improvement. That is, insofar as the performance is

concerned, no generality is lost by assuming that the system space is spanned by the

|u.}. The use of a larger space may, however, lead to simpler, and more easily inter-

preted, measurements. We assume that the Hilbert space associated with the system

is spanned by the M linearly independent vectors |u.) and prove that the IT. also sat-

isfy (5).

The proof has three parts. First, we demonstrate that a set of vectors | f . ) , i =

1, . . . , M can be found for which

< f . u . > =0 i* j, i, 3 = 1, . . . , M (6a)
J

(f .u .) * 0 i = 1 M. (6b)i i

Using these vectors, we then show that the vectors |v.) defined by

|v.) = TT. lu . ) (7)i i' 11 i' x

satisfy the expression

TTj |v.) = 6.. |v.) i , j = l M, (8)

and are linearly independent when the TT. satisfy (2 ) . The validity of (5) follows easily

from (8) and the linear independence of the |v.).

To demonstrate the existence of M vectors J f . ) satisfying (6), we invoke the

assumptions that the |u.) are linearly independent and span the space of the system.

These assumptions imply that, for every i, there exists a vector |f.) that is orthog-

onal to u.) for all j ± i and is not orthogonal to |u.}. That is, J f . ) is orthogonal to

the M-l dimensional space spanned by |u.), j ± i. Thus (6) is proved.

To prove (8) we observe that,, for any set IT. satisfying (2b),

TT (2 p ir.p.-p.p.) |f, > = 0 j. k = 1. M. (9a)
J i -1 -1 i 3 J K

But

P i l f k > = U i > < U i f k > = 5 i k C i l U i > ' (9b)

with Ck * 0, the rightmost equality being a consequence of (6). Use of (9b) to elimi-

nate the density operators from (9a) yields
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ir,(2 p.TT.6 C Ju.» - p.ir.6 ,C |u > = 0 j, k = 1, . . . , M, ( lOa)
j ^ i i i K i i 3 3 JK 3 J

or

p, C.u.ir. lu. > = 6.. p .C. i r . lu . ) i, k= 1, . . ., M. ( l O b )F k k j k 1 k ' j k * j 3 3 3

Introducing the vectors |v.), defined by (7) , in(10b) and noting from (6b) and (9b) that

the C. are nonzero, we obtain (8). _,
I \

To prove that the |v.) are linearly independent, we suppose, to the contrary, that

they are linearly dependent. Then the space contains a vector, say |g), other than the

null vector such that

<v i g) = 0 i= 1, . . . , M . (11)

For this vector it follows from (2c) that

2 {gp.u.p.g) - < g p . p . g > 5 0 j = 1, . . . , M . (12)

But

Tjpjg) = i r
i l

u j)(u ig) = |viXui§) i = 1, . . . . M,

the rightmost equality being a consequence of (7). Thus, by virtue of the assumed con-

dition (11),

<g^Pig> = < g v i > < u . g > = 0 i = l , . . . . M . (13)

Therefore, for (12) and hence (2c) to be satisfied, it is necessary that ( g p - g ) vanish

for all j. That is,

< g U j > = 0 j = 1, . . . , M . (14)

But since the |u.) span the space, (14) implies that | g) is the null vector. Consequently

the |v.) cannot be linearly dependent.

The proof is completed by noting that, since the M vectors (v . ) are linearly inde-

pendent, any vector |w) in the system space may be expressed as

|w> = 2 b. |v.>. . (15)

Thus
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= 2 b . r r . jv . ) = Z b . 6 . . | v . > = b j l v . } , (16)

the middle equality being a consequence of (8). Also

VT. |W> - irk{b.|v.» = bfk |v.> = b.6.k |v .> = 6 j k ,r . |w>, (17)

where the middle equality follows from (8) and the rightmost equality follows from (16).

Since (17) must be true for all vectors |w), we conclude that

IT, IT. = 6.kir, all j, k. (18)K J J

Summarizing, for the M-ary linearly independent pure state problem phrased on the

space spanned by the M states, the IT. associated with the optimum receiver are com-

muting projection operators.

The author wishes to thank Professor C. W. Helstrom, Dr. H. P. H. Yuen, and

Mr. V. Chan for their comments.
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