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Hora t i  0: 

Brutus: 

Hora ti o : 

Cassius: 

Brutus: 

Hora ti o : 

Cass i us : 

Hora ti o : 

Cassi us:  

scQlAEu 

(Enter  Horat io ,  Brutus, & Cassius) 

Alas. Ny experiment must n o t  work. I have been 
searching f o r  g r a v i t a t i o n a l  r a d i a t i o n  f o r  months now 
and I have found nothing. 

If you see nothing, then t h e r e ' s  no th ing  there. 
s t a r s  must n o t  em i t  g r a v i t a t i o n a l  r a d i a t i o n .  

The 

Not necessar i ly .  
t h i n g  . Perhaps we a re  l o o k i n g  f o r  t h e  wrong 

The f a u l t ,  dear Brutus, i s  n o t  i n  the s t a r s  b u t  i n  
ourselves - t h a t  we a re  poor Masters o f  human thought. 
And n o t  u n t i l  we conquer ourselves shal 
the secrets  o f  t h e  Universe. 

we ever  master 

Perhaps. Nevertheless, if there ' s  noth 
the 1 i near tensor  theory i s wrong. 

ng t h e r e  then 

That i s  incomprehe:isible. 
we have no bas is  f o r  2n expanding Universe. 

I f  the  tensor theory i s  wrong 

Horat io ,  dear Horat io,  here you a re  - standing upon a 
speck of dust  trapped i n  a sunbeam - and you have the 
audaci ty  t o  s t a t e  t h a t  the Universe i s  expanding. 

Cassius, I know the Universe i s  expanding. I have 
measured the cosmological r e d s h i f t .  Indeed, t h a t  i s  
why the heavens a re  b lack a t  n ight .  

Horat Io,  what you have discovered i s  a f o o t p r i n t  i n  
the sand. And behold - i t  i s  your  own. 

v i i i  



The notion of gravi ta t ional  radiat ion is  an old one. I t  has a s  i t s  be- 
g i n n i n g s  '.he sca l a r  theory of tiewtoniar! mechanics, i t  becomes manifest 
and e x p l i c i t  i n  the electromagnetic vector theories  of g rav i ta t ion ,  and i t  
is  f i n a l l y  extended t o  i t s  most general form i n  the tensor  theories  of 
r e l a t i v i t y .  The purpose here is  t o  consider the nature of gravi ta t ional  
radiation. Thence, i t  is  our hope t o  invest igate  and t o  understand the 
l inea r  and the nonlinear cha rac t e r i s t i c s  of s ca l a r ,  vector,  i n d  tensor 
radiat ion theory. 

Early considerations of gravi ta t ional  waves can be f o u n u  i n  the work o f  

Hooke (1671) on the physical cause of gravi ta t ion and of Laplace (lb02) on 
Newtonian cosmology, b u t  not unt91 the advent of c l a s s i ca l  electromagnetism 
does gravi ta t ional  radiat ion take a very de f in i t e  form. T h i s  i s  the i n -  
vestigation o f  Maxwell (1865) in to  an electromagnetic theory of gravi ta t ion.  
Subsequently, theoret ic ians  a r e  found applying numerous fea tures  of the 
laws of c lass ica l  electrodynamics t o  planetary o r b i t s  i n  an e f f o r t  t o  ac- 
count fo r  several anomalies i n  c e l e s t i a l  mechanics. The most popular 
problem t o  be found i s  the  anomalous precession of the perihelion of the 
planet Mercury which is  explained by mechanisms ( a l l  of them due t o  Newton) 
such a s  so l a r  oblateness and var ia t ions i n  the inverse-square law. 
the concepts of electrodynamics (not forseen by Newton) a r e  found t o  in t ro-  
duce suggestions of a veloci ty-dependent force fashioned by Hzllzm'Lil l e r  (1870) 
a f t e r  the electron theories  of Weber (1846) and Riemann (1861). Adopting 
the precessional behaviour of Mercury, f o r  example, a s  an experir. ental 
basis f o r  the determination of the veloci ty  of propagation of a retarded 
gravi ta t ional  po ten t ia l ,  one can a r r ive  a t  the value of Gerber (1895): 
c = 305,500 km/sec, w i t h i n  2% o f  the speed of l i g h t .  

However, 



2 

The l a s t i n g  d iv idend of these lg th Century i n v e s t i g a t i o n s  i s  the 
g r a v i t a t i o n a l  wave. 
i n  t h e  electromagnet ic ( vec to r )  theory of g r a v i t a t i o n ,  d e f i n i t i v e l y  s t a t e d  

oy Heaviside (1893) - n o t  t o  mention t h e  work o f  Lorentz, Poincare', Lodge, 
Ish iwara (1914), and H.A. Wilson (1921). Vector g r a v i t a t i o n a l  waves a re  

t r e a t e d  e x p l i c i t l y  by Gans (1905, 1912) and Abraham (1911, 1912, 19131, 
who a r e  t h e  f i r s t  t o  i d e n t i f y  t h e  annoying fea tu res  o f  negat ive Poynt ing 

vector's, negat ive energy dens i t i es ,  and p a r t i c l e  i n s t a b i l i t i e s  under grav- 
i t a t i o n a l  r a d i a t i o n  react ion.  But t he  vec to r  t heo r ies  o f  g r a v i t a t i o n  are 
found t o  be inadequate by some and consequently t h i s  i s  one o f  t h e  j u s t i f i -  
ca t i ons  f o r  t h e  more general theory o f  g r a v i t a t i o n ,  t h e  tensor  theo ry  due 
t o  E i n s t e i n  (1915, 1916, 1918). 
r a d i a t i o n  i s  t h e  f i r s t  f o r  tensor  g r a v i t a t i o n a l  waves. As c l o s e r  s tudy 
demonstrates, however, t he re  i s  noth ing i n t r i n s i c  i n  t h e  tensor theo ry  which 
excludes t h e  p o s s i b i l i t y  o f  negat ive energy s t a t e s  discussed by Maxwell 
i n  1865. 

The shortcomings o f  Newtonian mechanics thus r e s u l t  

E i n s t e i n ' s  t reatment of mass quadrupole 

The non l i nea r  na tu re  o f  E i n s t e i n ' s  tensor  theory o f  g r a v i t a t i o n a l  rad ia -  
t i o n  i s  i t s  most d i f f i c u l t ,  provocat ive,  and y e t  rewarding feature.  But 
most o f  t he  success i n  i t s  a p p l i c a t i o n  has been due t o  the  many analogies 
w i t h  electromagnetism and t h e  numerous l i n e a r i z a t i o n  schemes, s imply  be- 
cause the exact  s o l u t i o n s  o f  t h e  non l i nea r  f i e l d  equat ions i n  t h i s  theo ry  
a r e  formidable, d i f f i c u l t  t o  i n t e r p r e t ,  and beset w i t h  mathematical singu- 
l a r i t i e s  which cannot be associated w i t h  r a d i a t i v e  sources. 

There i s  even controversy i n  the  tensor  theo ry  o f  g r a v i t a t i o n a l  r a d i a t i o n  
as t o  i t s  very existence, due t o  i t s  covar iance and o f t e n  i n t r a c t a b l e  n o n l i n -  

e a r i t i e s .  I n  t h e  vector  theory,  however, t h e r e  i s  r e a l l y  no such quest ion;  
r a t h e r  i t  i s  t h e  phys ica l  i n t e r p r e t a t i o n  of t he  d i f f e r e n c e  between e l e c t r o -  
magnetic and vec to r  g r a v i  , i t i o n a l  waves and t h e i r  resonant i n t e r a c t i o n s  
( i t  i s  a u n i f i e d  f i e l d  theo ry ) .  Regardless, t h e  concept of g r a v i t a t i o n a l  
r a d i a t i o n  now o f f e r s  an e x c i t i n g  new v i s t a  i n  t h e o r e t i c a l  physics and may 
ever; become a d e f i n i t i v e  t e s t  of t he  weal th  of e x i s t i n g  t h e o r i e s  o f  e l e c t r o -  
magnetism and y a v i  t a t i o n .  
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WTER I 1  

El€ClRMflIC: THEORIES OF GPAVIrATIWL RADIATION 

The Scalar Theory O f  Gravitational Radiation -- - 
The concept of a gravitational wave follows from a wave ec,. Decal 1 

from the Newtonian theory of gravitation t h a t  a force [ ex. ed bpor, 
mass m a t  a distance g from another mass M i s  the equation 3.F motdon 

p o i n t  

where G is the Newtonian constant of gravitation. 
defines a f i e l d  intensi ty  g ( 5 )  which i s  a force per u n i t  mass, 

This relat ion i n  turn 

.. 

For a multipt e dis t r ibut ion of mattilr ~ ( 5 ' )  i t  follows tha t  the f ie ld  inten- 
s i t y  g i s  derivable from a scalar  potential 9 as - 

3 =-y4 (2-3) 
cc 

where 

Taking the diverger'cz of Eq (2-3) one obtains the different ia l  form o f  

Gauss' law and  a zero curl 

v'9 =-4rGp 

0x3 = 0 
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Hence, t h e  f i e l d  i s  i r r o t a t i o n a l .  

Poisson’s  Equat ion 

Eqs (2-5) and (2-3) t o g e t h e r  c o n s t i t u t e  

for t h i s  s t a t i c  and s t a t i o n a r y  case o f  a s c a l a r  Newtonian p o t e n t i a l  $ .  

However, t h e  theo ry  i s  as y e t  n o n r a d i a t i v e .  I t  p rov ides  o n l y  f o r  t h e  i n -  
d u c t i v e  t r a n s f e r  o f  e i e r g y  between Newtonian masses, such as by t h e  mech- 

anism o f  t i d a l  f r i c t i o n  (Appendix G lh S ) .  

TG o b t a i n  a r a d i a t i v e  s c a l a r  t heo ry  one borrows from h i s  understanding of 
t h e  v e c t o r  t heo ry  - which has a s c a l a r  component - and argues t h a t  a non- 
s t a t i o n a r y  s c a l a r  p o t e n t i a l  due t o  an o s c i l l a t o r y  n i u l t i p o l e  d i s t r i b u t i o n  

P = o,exp(iUlt) extends Poisson’s Equat ion t o  t h e  wave equa t ion  

a+ = -“p (2-7) 

where Osp-izJ:  , where y = 4nG, and where c i s  t h e  v e l o c i t y  o f  propagat ion 
o f  t h e  s c a l a r  g r a v i t a t i o n a l  wave 6 .  The s o l u t i o n  o f  t h i s  wave equa t ion  i s  

e s s e n t i a l l y  (2-4) ,  

except t h a t  t h e  b racke ts  q u a l i f y  t h e  r e t a r d e d  s o l u t i o n  of Larenz (1867), t h e  
advanced s o l u t i o n  of P.itz (1908), o r  s tand ing  waves (both) .  

A m u l t i p o l e  expansion of ti i n  (2-8) s t a t e s  t h a t  

The Newtonian (Coulomb) s c a l a r  p o t e n t i a l ,  f m t h e r r ’ r e ,  has a s p h e r i c a l  ha r -  
monic decomposi t ion ( e q u i v a l e n t  t o  2-8b) i r t o  t h e  2’-th m u l t i p o l e s  QM which 
de r i ves  f rom an expansion of  t he  denominator i n  (2-8a) 

L 

where 
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and where the tirne-dependence has beeri sdppressed. (This spherica? harmonic 
decomposition i s  given for the sake of comparison w i t h  the tensor decomposi- 
tion in Chapter 3 ) .  

Arguing t h a t  the dipole p contribution cannot radiate and conserve momentum, 
the f i r s t  radiative contribution 

" 

i s  due t o  the quadrupole (L=2) 

--- The Vector Theory Of Gravitational Radiation 

The vector theory of radiation derives from Maxwell's theory of electro- 
magnetism. One can argue against establishing a n  electromagnetic theory of 
gravitation on the basis t h a t  the Newtmian f ie ld  equations (2 -5 )  are irro- 
tational. 
e t s  in the solar system one can present a reasonable argument for the exis- 
tence of a gravitational vector potential. 
gravitation does just this (Appendix E ,  Eq E-10 & E - i 8 ) .  

They have no vector potential. B u t  from the ro t a t ion  of the p lan -  

* 
Indeed, the tensor theory of 

Flaxwell's Equations will be wr.itteri as follows: 

where u i s  the permeability, E i s  the permittivity, 
intensity, 
density. 

i s  the e ? e z t b i c  f'eld 
i s  the magnetic induction, 2 i s  tqe current, and  c i s  the z l  !rge 

Comparison of +he Newtonian field equations (2-5)  w i t h  the Maxw.11 f ield 
equations (2-111 shows t h a t  the g r a v i t a t i o n a l  analogue of E i s  g .  Similarly, 

* a  

-- * 
Th$r also derives from the not ioi  of the Coriolis force as well as  the remark 
of  Wilson (1923) t h a t  there i s  a relation between t h o  r o t a t i o n  o f  mass and the 

origin o f  Pagnetic f ie lds  (see Appendix F ) .  
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an entire development of a grdvitatiot,-,: vector theory follows that o f  
Maxwell. 
itation) are 

The resultant fieid equations (using lcrner ca:e r,;mbol-, fsr  9~3':- 

V q = -  4 d  p bow 
(2429 

Vek = 0 

where .- and dre the gravitational pemE:bi;ity and permittivity, and 
where 

b =  V V X ~  
are derivable from scalar and vector potentials. 
associated with the Coriolis forcr iu, for exairqle. 

The axial vector kcar, be 

The constitutive relations are 

t2-Md 
(2-nb, 

These are important in the nonlinear theory of electromagnetic gravitation 
(in the fashion of nonlinear optics and Maxwell-Dirac Spinor electrodynamics). 
The Lorentz equations of motion are 

[246 ) 

There is likewise a gravitational Ohm's Lap? (See Appendix F) 

3 = 59 =/: 
Y CI 

which defines a gravi tation31 conductivity 2. providing diffcsion equations 
for gravitational vector waves as well as gravi tationai hydrodynamics. 
what follows, and i t s  sssociated diffusiotl are neglected. (See Appendix F)  

In 

The continuity ccndi tion is 



while the gravitational Poynting vector i s  simply 

7 

I t  is straightforward to determine the wave equations for g ,  b ,  A ,  and 3 .  

They are al l  of type (2-251. ]heir solutions are ci i n  Eq (2-8) as well as 
- 4 -  

given by 

-3 
where DE = c - ~ .  Alternativelv 

The quadrupole rad ia t ion  i s  (e = el l ipt ic i ty  of the ellipsoid) 

In 4-vector notation the gravitational f ield equations are the Maxwell 
ones deriveable fr9m the f i e i d  tensor 

These field equations are (letting K = 4 7 G / ~ )  

The gravitational stress-energy tensor i s  
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2 00 is  where the field energy density c t 

and where the Poynting vector i s  s. = 0 

L 

Explicitly i n  terms o f  the f ie lds ,  the stress-energy tensor is 

Subject t o  the Lorentz gauge condition 

the 4-potential A' = (O/c2, b)  has the wave equation 

where j' = PV' obeys the continuity condition 

jr+= 0 (2- 17) 
# 

in Eq (2-17).  
Newtonian mechanics. 

Note t h a t  (2-25) contains the scalar case (2-7) from 

This, then, i s  the electromagnetic theory of gravitation. I t  i s  a vector 
theory whose equations of mcjtion are (2-15),  whose f ie ld  equations are (2-121, 
and whose wave equation i s  the vector one (2-25) subject t o  the gauge condi- 
tion (2-24). The theory i s  readily quantized, consisting of Spin-1 gravi tons .  
I f  i t  be desired the development can be extended to Proca's Equations, pro- 
viding for a massive g r a v i t o n  and a cut-off (Laplaze-1846) in t h P  g r a v i t a -  
tional f ie ld .  Furthermore, if the development i s  assumed t o  satisfy the re- 
stricted theory of re lat ivi ty ,  the entire theory i s  Lorentz covar ian t .  

Such a theory does not  account for the apparent nature of gravitation t h a t  
a l l  matter a t t racts ;  indeed, i t  maintains t h a t  in the physical world there 
could well exist states of negative matter (negative mass) or antimatter which 
are repulsive. Such speculation, in fac t ,  has been pursued by Fappl (1896, 
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1898) and Schuster (1898). 
Maxwell ian vector theorj of gravitational radiation is that Maxwell himself 
abandons it (in 1865). He does so because the energy density of the grav- 
itational field in Eq (2-23) i s  negative-definite, if the force between 
masses is to remain attractive. 
tackground &o in order to maintain a positive-definite energy &, 

However, the principle embarassment in such a 

Maxwell accordingly invokes a universal 

The error in Yaxwell's judgemer,' is that he has divorced the gravitational 
theory from the electromagnetic one. 
energy tensor is composed o f  the electromagnetic one T I p v  and the gravita- 
tional one tgV. The total stress-energy tensor must be required to remain 
posi ti ve-def i n i te 

This is to say that the total stress- 

which (along with the continuity equation) couples the gravitational vector 
fields with the electromagnetic ones - or else the force between masses must 
be allowed to become repulsive upon the appearance of negative-energy den- 
si ties. 
netic and gravitational fields as 

More explicitly, Eq (2-27a) gives the coupling between electromag- 

This coupling is also supplemented by the continuity condit' , (2-17) for 
both fields, 

or 

In the absence of charge (pe=0), for example, an electromagnetic current can 
manifest itself in (2-27d) due to the flow or rotation of mass - constjtuting 
a basis for the origin of magnetic fields. 
o f  the electromagnetic theory of gravitation are giien in Appendix F. 

Further queries into the nature 
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-- The Tensor Theories Of Gravitational Radiation 

Recalling now the scdlar and vector wave equation>, these czln be readily 
generalized and one further step can be t3ken by in t roducing  a tensor wave 
eouat ion 

(2-28) 

for gravitational waves. 
tensor for a l l  matter except those effects due t o  the gravitational fields 
themselves. 
However, in order t o  make the energy of the gravitational field positive- 
definite, the auxiliary condition 

In this equation f b v  represents the stress-energy 

Wave Eq (2-28) therefore represents a linear tensor wave theory. 

Ar" 
,V 

must be imposed. 
from (2-28) t h a t  

But  i f  condition (2-29) i s  imposed then i t  must be true 

which i s  no t  true. Thp t o t a l  stress-energy tensw must be divergence-free: 

where tpV 
Hence, the 

s the contr bution from the gravitational fields themse 
tensor wave equation must satisfy 

subject t o  the divergence condition (2-31). I f  we assume t h a t  
least quadra t ic  i n  the gravitational field variables, then the 
equation (2-32) becomes nonlinear. I f  ever quantized, i t  shou 
Spin-2  gravftons. 

I n  sumnary, then, the scalar, vector, and tensor theories of 
r ad ia t ion  are respectively 

ves. 

tu" i s  a t  
tensor wave 
d c o n t a i n  

gravitational 
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They a l l  cons t i t u te  g rav i ta t i ona l  rad ia t ion ,  subject on ly  t o  appropriate 
boundary condit ions o f  incoming and outgoing r a d i a t i o n  a t  i n f i n i t y .  These 
are f i e l d  equations, and no t  necessari ly equations of motion. It i s  the 

l a t t e r  which address the  meaning o f  r a d i a t i o n  reac t ion  and tho  energy con- 
ten t  o f  such waves. 

By f a r  the most sophist icated theory i s  the tensor one, which we are  now 
prepared t o  discuss . 



WlER I11 

GDW RELATIVISTIC THEORIES OF GRAVITATIOFI4L RADIATION 

Introduction 

In the development of General Relat ivi ty ,  Einstein's theory is confronted 
w i t h  the task of accounting f o r  a number of accepted gravi ta t ional  phenomena, 
known t o  most any student of natural philosophy. Amongst these a r e  the 
deflection of l i g h t  i n  a gravi ta t ional  field as predicted by Newton i n  Book 
IIIof  Opticks (1704) and calculated by Soldner (1801), the anomalous preces- 
sion of the perihelion of Mercury which preoccupies more than 100 years of 
physics, as well a s  the inadequacies s ta ted by Abraham and others of the 
res t r ic ted  theory of r e l a t i v i t y  for  an explanation of gravitational behaviour. 

Sravitational radiation i s  another such example. By 1905 this is  being 
expl ic i t ly  addressed i n  the work of Gans (1905, 1912) and several years l a t e r  
by Abraham (1911, 1912, 1913), as  we have mentioned. The thearet ical  problem 
a t  this time has developed to  the point of demonstrating t h e  existence o f  a 
gravitational instabi 1 i ty due t o  gravi ta t ional  radiation reaction (the radia- 
t i n g  source gains energy - a problem which s t i l l  plagues the theory). 

When Einstein does proceed w i t h  his own theory of gravi ta t ion,  i t  is t o  
borrow an idea from Harry Bateman*and t o  "geometrize" gravi ta t ion,  t h a t  is, 
t o  p u t  the theory i n  the form o f  a relat ion between geometry and the sources 
rather t h a n  between the f i e l d  and the sources. 
i t a t i o n  i s  described by Einstein 's  tensor f ie ld  equaticns 

The resu l tan t  theory of grav- 

where R i s  the Ricci tensor, g i s  the metric tensor,  R i s  the sca la r  
U ' J  P L, 

curvature, and 

* The equation ds2=g dX''dX'" m i g h t  properly be called "Bateman's Equation." u v  
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is the total stress-energy tensor consisting of d l  nongravi t a t i o n a l  effects 
T '  due t o  the 
gravitational fields themselves. The left-hand side of the field equations 
( 3 - l ) ,  referred ?o as the Einstein tensor G D ~ ,  is subject t o  the Bianchi 
identities G'";" = 0 which  implies t h a t  the r igh t -hand  side must also be 
divergence free 

a s  well a s  the stress-energy pseudo-tensor components t 
b V  'SV 

The right-hand side o f  the field equations is made nonlinear by the presence 
o f  tu" i n  (3-1) and (3-2) since the la t ter  i s  a t  least quadratic i n  the 
field quantities. 
Poincar; (1 904) 

Furthermore, the equivalence of mass and energy due t o  

E = Mc2 

i s  assumed t h r o u g h o u t ,  a1 though this postulate has never been demonstrated t o  
have an experimental basis for gravitational phenomena. In effect, this 
postulate depletes the mass monopole source o f  gravitational r ad ia t ion ,  i n  
contrast t o  the invariance of classical electromagnetic charge under electro- 
dynamic rad ia t ion  where (3-4) has a firme;' basis (Cockroft & Walton, 1932). 
The dilatation of mass 

i s  also postulated, which  presents complications i n  the theory of gravita- 
tional r ad ia t ion  reaction. 
tion which will be discussed shortly when the linearized theory i s  addressed. 

I t  is the origin of the "slow motion" approxima- 

Note t h a t  Einstein's cosmological term Ag / 2  is n o t  included i n  the field 
P V  

equations (3- l ) ,  simply because i t s  presence revokes a l l  of the existing 
results i n  the genera? relativist ic theory o f  gravitational r a d i a t i o n .  I t  
will not be discussed further. 

Approximation Methods & Coordinate. Conditions 

Although there do exist eAact solutions of Einstein's nonlinear field equa- 
tions (3-1) (Chapter 4), the physical interpretation and meaning of such re- 
sults i s  difficult  t o  determine. As a consequence, most o f  t he  theoretical 



14 

work on g r a v i t a t i o n a l  radiation has been performed w i t h  approximation 
methods w h i c h  are valuable because they provide some understanding of the 
nature of the problem - a l t h o u g h  they are ac tua l ly  inadmissible because they 
destroy the nonlinearity cf the equations. 

These approximations consist of linearization and perturbation techniques 
which  make various assumptions about the n a t u r e d  the metric tensor g,,. 
example, the "weak-field" approximation assumes 

For 

where h 
rl 

the Ricci tensor R t o  f i r s t  order i n  h then transforms the Field equations 
(3-1) i n  vacuum (Tv, = 0) i n t o  a system of linear differential equations. An- 
other method, known as the "k-approximation" or "fast  motion" method, 

constitutes a weak (h<<g) pertbrbat'on of the background geometry 
Evaluation of 

1 , ., 

suih  as the Hinkowski or the Schwarzschild backgrounds. 
v u '  

IJV IJV 

assumes t h a t  the metric tensor g 
pansion i n  the parameter k,  which is proportional to the gravitation constant 
G .  i n  inverse 

can be represented as  a power series ex- 
V U  

Next, there i s  a "slow motion" approximation which expands g 
l l \ ,  r "  

powers of the speed of light c: 

This technique i s  the basis of the so-called "EIH approximation" w h i c h  has 
played a significant ro le  i n  the developmentdthe equations o f  motion i n  
General Relativity and the determination o f  what  are referred t o  as "post- 
Newtonian" results (the precession of the apse, the deflection of light, and 
t h e  gravitational red-shift). The numbers i n  parentheses i n  (3-8) reflect 

One last  technique t h a t  must be mentioned i s  the "double series'' approach 
w h i c h  consists of an expansion of themtric tensor g 

t he  "order" of t he  approximation - namely the power of c - ~ ,  such as c - 2  , c -3 . 

i n  powers cf 6 mass 
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where now the sum of the numbers or  exponents i n  parentheses represents the 
''order" o f  the approximation. 

Coordinate conditions const i tute  the next s ign i f icar t  aspect o f  l inearized 
General Relativity.  Jus t  as the Lorentt gauge condition (2 -24)  

is invoked i n  classical  electrodynamics i n  order t o  obtair, the vector wave 
equation (2-25) 

so do similar gauge conditions ex is t  i n  genera! re la t iv i ry .  
defines the auxi l iary function 

Einstein (1918) 

which i s  subject t o  the Einstein coordinate conditfon (Appendix B) 

(3-10) 

result ing i n  a tensor wave equation of the form (E-32) from the f i e l d  
equations (3-1) 

uY'=-uTP. 
Such gauge conditions and coordinate conditions have led t o  much controversy 
i n  General Relativity,  primarily because they destroy the general covariance 
of the theory. 
which must be removed by coordinate transformations. Furthermore, gravi ta-  
t ional waves can be created i n  the l inearized theory or they can be annihi- 
la ted,  simply by a coordinate c o n d i t i o n .  
question the very existence of gravitational radiation. 

F ic t i t ious  gravitational wavts a lso manifest themselves 

Upon this basis,  some authors 

Two more features of the l inearized theory are  s ignif icant :  (a )  Boundary 
conditions, and (b) Radiation reaction. 
Somnerfeld radiation condition (outgoing radiation a t  in f in i ty)  are important 
because they l icense the theoretician t o  o b t a i n  whatsoever experiment implores 

Boundary conditions such as the 
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- radiation, or no rad ia t ion .  
authors employ the geodesic postulate of Einstein whereby gravi ta t iona l  rad- 
i a t i o n  does n o t  result in rad ia t ion  reaction, i n  the linear theory. 
sure, such solutions are inconsistent w i t h  the general nonlinear theory. 

Radiat ion reaction is important because many 

To be 

I t  should be evident that there i s  a wealth o f  theoretical work, both con- 
troversial and t h o r o u g h ,  which exists i n  the tensor theory cf gravitation. 
I t  is  now best t o  begin w i t h  Einstein's original derivation of g r a v i t a t i o n a l  
radfa t ion  i n  the linearized approximation. 

Einstein's Or ig ina l  Kerivation Of Gravitational Radiation- 

The geometrical nature  o f  t h e  f ield equations (3-1) i s  made more transparent 
i f  the la t te r  are contracted w i t h  9'" 

4 where K = 8&/c and T = Tu 
Substitution of this relation (3-13) for the scalar curvature R i n  the 
original equations (3-1) gives 

i s  the trace of the stress-energy tensor (3-2). 
L 

This form of Einstein's f i e l d  equat ions ctates more explicitly the corres- 
pondence between the structure of geometry i n  the Ricci tensor R and the 
structure o f  the sources of matter implicit in the stress-energy tensor TPv .  

Einstein (1918) makes a "weak-field" approximation and thereby linearizes 
the Ricci tensor i n  (3-14), as shown i n  Appendix A.  Employing the Einstein 
coordinate condition (Appendix B) i n  Eq (B-8), the first-order Ricci tensor 
(A-6) becomes (B-9) a n d  the  f i e l d  equations (3-14) above simplify t o  

lJV 

In other words, the wave equatior a n d  i t s  coordinate condition (3-11) for 
the tensor theory are, t o  f i r s t  order i n  h ,  



The wave equation (3- 
T as discussed i n  
PV' 

6) i s  s t i l l  nonlinear due t o  the nonlinear 
3-2) .  I ts  solution i s  represented by 

17 

(3-16) 

ty of 

where r '  = I &  - 6' I a n d  where the brackets reoresent retarded, advanced, 
or standing wave solutions. 
homogeneous wave equation 

To these solutions can be added those of the 

which are plane waves. 
a "slow motion" approximation such t h a t  M s m  i n  Eq (3-5) while T,," -+nuvT 
is represented by T . 
sources, i n  the rad ia t ion  zone, r ' r  r whereby (3-17) becomes 

The stress-energy tensor i s  now linearized by making 

For distances r '  much greater t h a n  the extent of the 
i ib 

Imposing the boufldary condi t ion  t h a t  l P v  = 0 a t  r = 

one can demonstrate t h a t  
and us!ng Gauss' theorem 

2 Since To2rnc i n  a slow-motion approximation and Xo=ct, then (3-19) and (3-20) 
give 

I t  is advantageous t o  use the  mass quadrupole tensor (the mass monopole and  
dipole make no radiative contribution) 

43-22] 
a a 8  m (3X'Xy- S,,Xg)A 8 
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4 dnd express h i n  (3-21) as follows (recalling t h a t  c = 8nG/c ) :  
k' v 

This compietes the deterrn'wtion of the tensor wave hiiV in the linearized 
tensor theory. 

By means o f  a coordinate transformation one may go t o  the principal axes 
of t h s  quadrupole and choose a n  axis,  say  X1 , t o  be an axis of symmetry 5uch 
t h a t  Q,, = 0. 
transverse ( h 1 2 ,  h13, hZ0,  h30) perturbations vanish under such a gauge. 
leaving only a transverse-transverse set  o f  perturbations (h2* ,  h33, nZ3) 
propagat ing a t  velocity c in the X1 direct'on: 

All longitudinal-longitudinal ( h l l .  h l O ,  h oo ) and longitudinal- 

One now wishes t o  determine the radiation spectran. The gravitational 
For the perturbations h22, 

of the stress-energy 
stress-energy i s  given by the pseudo-tensor t". 
h33, h23 propagat ing along X 1 ,  the energy flux C T  

pseudotensor (Appendix C ,  Eq ( C - 1 1 ) )  simplifies t o  

1 0  

which becornzs for retarded solutions X1=ct 

Substitution o f  (3-24)  into (3-26), noting t h a t  y 8nG/c 4 , gives one 
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Generalizing this result t o  an arbitrary direction of propagaticn n ' ,  the 
radiated power per unlt solid angle dci is ( this  particu1;rr representation i s  
due t o  Landau & Lifshitz,  1962, b u t  , their work offers n o t h i r a g  t h a t  i s  n o t  
contained i n  Einstein's 

The te ta l  power radiated i s  now determined by awr:-,i'lg this  energy f l u x  
over a l l  s o l i d  angles. 
i t a t iona l  rad ia t ion  i s  thus 

The resultant ecergy 165s diie t o  linearized grav- 

The mass quadrupole and the moments of inertia are related as Q; =16ij-31:j. 
Hence for a spinning rod cd,:;>* 1s 

3 j 
whereby 

twice the value obtairid by Einstein (1918), as corrected by Eddington  (1532). 
iEq (3-30) i s  correct only for an e l l ip t ic i ty  of unity; see Eq (!+I).] 

For the particular case of a rod spinning about  the % a x i s  ( i i= i j ,  Einstein's 
results are demonstrated by Park (1955) t o  give the r a d i z t i o n  pattern shown 
i n  Figure 1.  
dinates, the power radiated per u n i t  solid angle i n  the dirtction 6 i s  

Transforming Eddingtorl's (1922) E q  (18) into spherical coor- 

Integrating this over the a z i m u t h  $I, Park obta in ;  the radiation pattern 
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Averaged o v e r  :, t h e  r e m a i n i n s  p a r t  of t h e  s a l i d  a n g l e ,  (3-32) y i e l d s  
(3-30). 
see i n  C h a p t e r  5. 

F i g u r e  7 also applies t o  tke c?rrc!er  Kepler oroblem. a s  w; s h a l l  

The a n g u l a r  momentum M'" of t h e  r a d i a t i o n * f ,  likewise d e t e r m i n a b l e  from 
the g r a v i t a t i o n a l  p seudo- t enso r  t'" ir! (5-25),  u s i n g  Eq (D-4) from Appendix D 
- a l t h o u g h  E i n s t e i n  m g l e c t s  t h i s  a s p e c t  of t h e  problem: 

E 
t h e  

n s t e i n ' s  o r i g i n a l  treatment o f  t h e  l i n e a r  
p l a n e  wave s o l u t i o n s  of 

zed t h e c r y  a l s o  c o n s i d e r s  

Def in ing  a p p r o p r i a t e l y  t h e  E i n s t e i n  p o l a r i z a t i o n  t e n s o r  c 

i t  %uu; Weyi and  Eddington  call  i t  a ) t h e  g e n e r a l  p l a n e  wave s o l u t i o n  o f  
t h e  homogeneous e q u a t i o n  (3-18) i s  

( E i n s t e i n  ca l l s  
U V  

P V  

which s a t i s f i e s  (3-18) p rov jded  

and (3-11) i f  

Under a gauge  c o n d i t i o n  (6-1) ivher,e X "  = XL' + C' t h e  p o : a r i z a t i o n  t e n s o r  
c transform? as 
p ,i 

1 For an  Eins te in-Eddingtm-Wcy-I  piane-wavz (3 -33)  prwpaga t ing  i n  t h e  X 

clirection w i t h  kl=kolk w h i l e  k2=k3-0 

*Sec Hans& (1372) .  
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Letting c o  = to0 /2k ,  c 2  = - t 2 1 / k ,  t 1  = -r11/2k, and  :3 = -~31/k ,  all  compon- 
ents of (3-37) vanish except '.22 and '23. Those t h a t  remain ( t z 2  and ~ 2 3 )  
represent the physical components o f  the gravitational plane waves. Those 
t h a t  vanibh are "fictitious" because they can be produced by mere coordinate 
transformations. The tensor plane wave (3-33) has helicities 0, 1, 2. 
B u t  only helfcity 
formation. 
Spin-E (althcugh they do possess "fictitious" Spin-1  components). 

2 cannot be transformed away with a coordinate trans- 
Linearized gravitational waves are therefor2 cmsidered t o  have 

Einstein's work on the theory of linearized gravitational radiation is 
characteristically definitive in a number of respects. 
equation from the linear field equations and therefrom obtains retarded 
solutions i n  s t r i c t  analogy rvith the radiative solutions of classical electro- 
dynamics. 
Newtcn's principle of equivalence wherein gravitational and inertial mass 
are the same, and whereby a system of masses necessarily has y k , ~  same grav- 
i taticnal-to-inertia: mass ratio and the dipole radiation vanishes under 
conservation of linear clomentum - just  as i t  does i n  electrodynamics for  a 
sqstem of charges with idehtical charge-to-mass ratios. The velocity of 
propagation of the remaining quadrupole radiation is the same as that for 
electromagnetic phenomena, upon the basis of correspondence between the 
general theory and the restricted theory of relativity and Newtonian 
mechanics (However, see Appendix G ) .  

He obtains a wave 

There i s  no gravitational dipole radiation because he invokes * 

Eipstein's development i s  not  definitive, however, i n  the sense t h a t  he 
fa i l s  t o  address the real nature of his theory, i t s  nonlinearities. 
there does appear t o  exist radiation from a mechanically driven Jacob1 cl-  
lipsoid possessing a time-varying mass quadrupole, there i s  no th ing  yet i n  
the theory t h a t  demonstrates radiation exists for an isolated, gravitationally 
bound system such as the two-body Kepler problem. Neither has i t  been es- 
tablished t h a t  the desroaw i n  energy of the radiating mass quadrupole (3-30) 
i s  equal t o  t he  energy cdrried dway by the yrdviLationa1 rhdidt'iuri, a problem 
intimately related t o  the question of radiation reaction and the equations 

Although 

* 
In art% t o  write the equation of motior, m 
assume mI = m 

- -G& ?/rz ,  Newton had t o  
This form of the p r i x : p ! & ;  then, ?s due t o  Newton. 9' 
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o f  motion. These more subtle aspects of gravitational radiation theory 
remain untouched, and are l e f t  t o  plague the proponents of Einstein's theory. 

The EIH Approximation 

If one were considering pxisibilities for tensor field equation:, thr-e 
would necessarily involve the total stress-energy tensor T g L  on tile basis of 
a generalization of classical f ield theory. Furthermore, the conservation 
conditions T"'',,) = 0 from cldssical electrodjnamics would necessdrlly gen- 
eralize t o  the covariant relation 

Hence, i f  one takes the field equaticns i n  the form 

then ?he covariant divergence of this form (3-39) guarantees by virtue of 
(3-38) t h a t  

G p g i y =  0 . (3-60) 

Because (3-40) is  simply the contracted f o rm of the Bianchi identities. t h t :  
the reasonable choice for Guv i s  the left-hand side of (3-1), name 

Th. s argument, partially due t o  Hilbert (1915), constitutes the t e  
basis of Einstein's nonlinear field equations (3-1). 

Y 

( Y O  
eo1 ogi ca 1 

The surprising result o f  this argument is  t h a t  the equations of motion 
follow from (3-38), although this seems n o t  t o  have been apparent a t  the time. 
Einstein (1916) originally introduces the assumption of geodesic motion, b u t  
Einstein & Groinmer (1927) later sxceed in demonstrating t h a t  the motion of a 
singularity i n  a:i external f ie ld  m u s t  hc along the geodesics of the external 
f iei?.  Finally, Einstc.:n, Infeld, & Hoffmanr. ( E I H )  formulate an approximation 
method by which both the gravitational fielt: and the equations of motion for  
i t s  sources can be calculated f r a m  the field equations. 

This EIH approximation method is essentially a qus:.; statjonary weak-fiel: 
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approximation which has resulted in the so-called "Fost-Newtonian" results 
cf Genera! !?e!ativity (see P.ppex!ix E ) .  I t  i s  best tcnderttnnd by drawing 
an analogy due t o  Infeld (1938) and Trautman (1958) with the scalar wave 
theory. I f  we consider the "near zone" ( i n  the region of the sources) of 
the scalar wave equation 

n+ =-wp 0-9) 

and further consider t h a t  .r may be expanded in powers of small parameter 
-1  

I = c  

then operation upon ; with the d'Alemiertian results i n  a series of simul- 
taneous cliffe;-nnti?? equations determined by setting coefficients o f  the same 
powers of E equal. Because of the jcasi-stationary condition that V b & + ,  

we obta in  upon equatins coefficients: 

These near zone equations (3-43) exhibit the salient feature of the EIH 
The wave equation associated w i t h  any particular power approximation method. 

o f  F~ i s  determined in the near zone by the solutions of lower order approx- 
imations, i n  this case t,n-2.  This behaviour i s  represented by the arrows t o  
the l e f t  of the equations which demonstrate how the approximations couple 
together. 
case i n  the wave zone where R u t  the interesting characterisiic of 
the radiation zone i s  t h a t  i t  couples back into the near zone, acting on the 
sources as radiation reaction. 

There i s  likewise a set o f  such equations for the homogeneous 
= 0. 

Recalling t n a t  in General Relativity the scalar wave functions 9 are replaced 
by the metric tensor components g u v ,  the above analogy must be reconsidered 
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from the point of view of Einstein's field equations (3-1).  
scalar case (3-42), Einstein's f ie?d equations f o r  empty space may also be 
expanded i n  a power series 

As i n  the 

However, in the case of (3-44) the coefficients o f  E cannot i n  general be 
set  equal to  zero, as was done i n  (3-43). A word of caution about the l i t -  
erature i s  likewise i n  order due t o  a certain amount o f  confusion f n  no ta t ion .  
Most of the original EIH development is i n  terms of = c-l, rather t h a n  E. 
The treatments are equivalent, except t h a t  i = cn+', for the following 
reason (see also Appendix E ) .  From the geodesic equation of motion, radia- 
tion reaction on the particle i n  mot!on is described by 

m 

The equations of motion are of order A ,  b u t  the metric components g 
Christoffel symbol of (3-45) are of order E.  

( a o  = c a = Aat)  raise the order of€ by two. To make matters even a l i t t l e  
more miserable, some authors also get an extra factor o f  c-l because they ex- 
press energy as PO=C"E=AE (they get rad ia t ion  reaction i n  A'' instead of X ). 

i n  the 
U V  

The two time derivatives 
-1  

t 

9 

The EIH method i s  summed up by expressing g,, as  i n  Figure 2. 
representation of the expansion of g,, i n  (3-8) as  powers of E = c 
the numbers i n  parenthesis reflect the order of E .  I t  i l lustrates the "post- 
Newtonian" effects i n  General Relativity and their o r ig in  i n  the metric tensor 
a s  depicted by the EIH method. There are  two types of contributions, radia- 
tive and non-radiative. 
Newtonian" terms connected by the line indicated, one car! see t h a t  g i k  and 
goo are odd-powers o f  

tions, goo and g i k  are even i n  t while gok i s  odd. By virtue of conservation 
o f  linear momentum and the equivalence of inertial and  gravitational mass the 
dipole radiation (represented by the dotted line) o f  seventh-order i n  A Lan 

be made t o  disappear. I t  a l s o  can bc annihilated by a coordinate transforma- 
tion, as demonstr. :ed by Infeid and Scheidegger (1951, 1953, 1955, 1950). 
Boundary conditions likewise determine the behaviour o f  Figure 2. 
waves, as an example, manifest themselves i f  a l l  of the radiative lines cancel 
and vanish from the diagram. 

Th i s  is a 
-1  , where 

2.5- By examining, for example, the quadrupole or "pos t  

while gok i s  even i n  E .  For non-radiative contribu- 

S t a n d i n g  
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Infeld ( i w j  estaDiisnes +he radiatjoc terms in Figure 2 ,  demonstrating 
that they do n o t  contribute t o  the equations of motion (radiati17n reaction) 
up t u  the seventh-order in A. 

9 -order, being the f i r s t  t o  study expl ic i t ly  the problem of radiation 
reaction i n  the two-body DrOblem. Infeld & hcheidegger (1951) investigate 
the elimination of radiation reaction lines by coordinate transformations, 
b u t  Goldberg (1955) finds solutions which cannot be eliminated in th i s  
fashion. 
l ishes the EIH formalism depicted in Figure 2 $ 5  a l inear perturbation meth- 
od w i t h  which t o  approximate the nonlinear f ie ld  equations of Einstein 
in the weak-field, slow-motion case. 

HLI ( i 9 4 7 )  carries the approximation on t o  
t h  

By 1958, the definit ive paper of Trautman (1958) firmly estab- 

The final step i n  understanding the EIH method i s  one of re-establishing 
Figure 2 i n  a manner that  ref lects  the coupling discussed i n  Eq (3-43) .  
T h i s  i s  done in the schematic representation of Figure 3 (par t ia l ly  due t o  
Thorne, 1969), which ref lects  the work of the Infeld school th rough  1960. 
As with Eq (4 -43 ) ,  the arrows in Figure 3 represent how the various levels 
of the approximation couple together. In the near zone there i s  the same 
scalar coupling o f  the even orders in E, except t h a t  an additional scalar 
coupling in the odd orders manifests i t s e l f  a t  the postze5 level. Likewise, 
the solutions of the honogeneous wave equations ( fa r  from the sources) couple 
i n  the radiation zone. 
asvnptotic matching, t o  be discussed la te r  in this chapter - a t  the boundary 
between the near and radiation zones, the solutions are  consistent. 

And w i t h  proper matching - the method of EIH or 

However, the most significant aspect of the EIH method, and  any other l in-  
earized approximation of the n o n l i v a r  f ie ld  equations for  that  matter, i s  
the radiation reaction which occurs i n  the Sth-order ( A  ) or p~s t~ '~ -Newton ian  
approximation of Figures 2 & 3 .  
Somerfeld condition (outgoing radiation) then the energy of the radiative 
sources must be depleted by a n  amount equivalent t o  t h a t  carried off in the 
gravitational radiation, or soaked up by some nonlinear mechanism in the 
near zone. This behaviour constitutes radiation reaction. 

9 

If the boundary condition a t  inf ini ty  i s  the 

A demonstration o f  th i s  resul t  i s  f i r s t  conducted by Trautman (1958) a n d  
Peres (1959). 
Newtonian" approximation (7th-order i n  t > ) ,  doing so a t  a c r i t i ca l  time when 
the integrity of Einstein's linearized quadrupole formula (3-29) and  the very 
existence of gravitational radiation has been a controversial subject. This 

2.5- Peres succeeds in carrying the EIH method i.3 t h e  " p o s t  
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same resul t  has been obtained before as we have seen, by Hu (1947) who works 
the radiation reaction problem o u t  t o  Sth-order in h ( h  ), a t  the suggestion 
of Pauli a t  Princeton. 
t i o n  of their resu l t s  t o  the two-body Kepler problem and ascertain t h a t  the 
system gains energy under gravitational radiation, cnrroborating the re- 
s u l t s  of Gans (1905) and Maxwell (1865) - although Hu does n o t  point this o u t .  
That the problem i s  a boundary-value problem, however, is  maintained by 
Feres ( i960) ,  whereupon he obtains a d x r e a s e  i n  energy as depicted i n  (3-29) 
for the Sommerfeld radiation condition. For the Kepler problem, Einstein's 
quadrupole r a d i a t i o n  formula (3-30) reduczs t o  

9 

Bo th  Hu (1947) and Peres (1959) consider the applica- 

* 

which i s  the resu l t  obtained by Peres (1960) - and by Hu (1947), except f o r  
the s ign .  The source mass likewise decreases by this amount. 

Radiation reaction in the EIH mass quadrupole and two-body problem is 
subsequently pursued by several authors, such as Ryte6 (1963), Demianski & 
Infeld (1963), and 1r;feld & Michalska-Trautman (1966, 1969). 
od ,  furthermore, i s  employed by Chandrasekhar, e t  a1 (1965-1970) and Thorne, 
-- e t  a1 (1967-1970) i n  certain astrophysical applications where the e a r l i e r  
work i s  extended t o  the hydrodynamics of perfect f lu ids .  
o f  a l l  of these resu l t s  i s  that  the EIH approximation method, while account- 
i n g  f o r  some of the nonlinearit ies of the theory, corroborates Einstein 's  
linearized quadrupole x d i a t i o n .  

The E I H  meth- 

The significance 

The derivation of Rytefi (1963) of the mass quadrupole radiation i n  the 
EIH approx ima t ion  provides, for  the interested reader, a detailed example of 
how the trethod i s  pursued t o  the gth-order where quadrupole raCidLion 
reaction appears. Her f inal  radiation formula, 

i s  identical  with tke linearized approximation (3-29). 

* 
I t  i s  of in te res t  t o  note t h a t  Eddington (1922 ,  P.251) encounters this 
problem also.  
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The - I' --- Fast Mot i on'! App_rcxima t i  on 

The EIH approximation i s  both a "weak-field" and a "slow-motion" apprcxima- 
t i o n ,  par t icular ly  silited t o  the study of such behaviour as  planetary motion 
and post-Newtonian General Relativity.  
i t s  applications. 
or the "k-approximation" method has established i t s e l f .  
a I' s 1 ow-mo t i on 'I ass  ump t i on. 

B u t  such a technique i s  limited i n  
Consequently, another methoa known as the " fas t  motion" 

I t  does not makc 

T h i s  procedure consists of a scheme o f  successive approximatims, l ike  EIH, 
b u t  w i t h  a power ser ies  expansion of the metric tensor g, , i n  terms of a small 
parameter k 

4 J  

where k i s  proportional t o  the gravitation constant G:  
mean par t ic le  mass, and R is the mean in te rpar t ic le  separation. 
quasi-stationary; tha t  i s ,  ao@zV@. 
expanded i n  a power ser ies  i n  k. 

k = GM/R, M i s  the 
I t  i s  not 

The energy-momentum tensor i s  likewise 

Einstein (1916, 1918) is the f irst  t o  use i t ,  assuming tha t  the f i e l d  is  
suff ic ient ly  weak tha t  the nonlinear terms can be neglected. T h i s  is  the 
so-called "lSt-approximation" i n  k ,  which i s  again addressed by Bertotti 
(1956) and deWitt & Ging (1960). Ser tot t i  & Plebanski (1960) then establ ish 
a generalized Green's function method for  nonlinear f i e l d  theory and develop 
the equations of motion up t o  the "2nd-approximation" i n  k .  Their work, 
however, contains i n f i n i t e  self-action terms - although these a re  removed 
w i t h  a renonal iza t ion  process by Kuhnel (1964). 
Bannor (1958) a lso discuss solutions o f  the "2nd-approxirnation.'' 

Bock (1957, 1959) and 

More recently,  the " f a s t  motion'' approxination is u t i l i zed  by Havas (19571, 
Havas & Goldberg (1962), and Havas & Smith (1965) t o  address the question of 
the existence of gravitational radiation from a f reely gravitating system, 
such as a Kepler problem. Havas, Goldberg, & Srllith confine themselves t o  the 
l.1 St-approxlmation ,I' investigating its p a r t i a l  ar ion t r i  but ion t o  radiation 
damping. They obtain antidamping and a gain of energy for  the r a d i a t i n g  
two-body problem, as does Hu with the EIH method. However, the i r  work i s  
c r i t i c ized  by Peters (1970) as  improperly neglecting the s t resses  in the 
system. 

* 

I*See also Lind (1972) and Peters (1972) .  
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The rad ia t ion  reac t ion  assoc ia ted  with the " p ~ s t ~ ' ~ - N e w t o n i a n ' '  EIH e f f e c t s  
r d  appears  i n  the " 3  -approxinat ion" which none of these authors  has addressed. 

Furthermore, In fe ld  (1961) has c r i t i c i z e d  the "k-approximation" method a s  a 
r e s u l t s ,  which ?re 
ess, the " f a s t  
because i t  has 

"step backwards ,I' p a r t l y  becaus. 
well  ez t ab l i shed ,  i n  t he  l i m i t  of 
inoti on" appro ximati nn wi 11 a1 ways. 
many r e a l i s t i c  as t rophys ica l  appl 

t does not g ive  the EIH 
low ve loc i ty .  Neverthe 
have t h e o r e t i c a l  appeal 
c a t i o n s  . 

The "Double __I_L_ Ser i e s"  Approximation 

In connection with the " f a s t  motion" approximation just  d iscussed ,  there i s  
another  method which i s  very s i m i l a r  - due t o  Bonnor (1359) and employed by 
Carmeli (1964, 1965). 
t enso r  introduced by Bonnor (1 959) 

t ising the "double series" expansion of the metric 

where M and m a r e  the i n e r t i a l  masses of a two p a r t i c l e  system, Carmeli a l so  
imposes the "slow-motion" assumption i n  o rder  t o  expand the "k-approximation" 
terms of  the  met r ic (dq)  a s  a power s e r i e s  i n  c-l 

il v 

(PQ) (PI) (or, 
j p v  = $p+ 3p * 9p+ O @ *  

tQ 9) w 
jus t  a s  i n  the EIH approximation. 
both methods w i t h  a proper correspondence between the two, t h u s  addressing 
the  c r i t i c i s m  of In fe ld  (1961). 
the "3rd-approxiniation" which a r e  to the gth-order i n  c-' (A9), where the 
r a d i a t i o n  r eac t ion  manifests  i t s e l f .  
su l  t a n t  equat ions ,  he does present an argument maintaining t h a t  the rad ia-  
t i n g  two-body problem i s  damped, los ing  energy, under an outgoing r a d i a t i o n  
condi t ion .  

The result is e f f e c t i v e l y  a synthesis of 

Carmeli ob ta ins  t h e  equat ions  o f  motion i n  

A l t h o u g h  he does not  solve the re- 

The Method Of Matchcd Asymptotic Expansions 
__. ~ ___._.__I 

A var id t ion  o f  t he  EIH approximation has been presented by Burke E Thorne 
(1969, 1970, 1971) based upon the methods of singular per turba t ion  theory  f o r  
, ionl inear  d i f f e r e n t i a l  equat ions.  Thei r  technique e s t a b l i s h e s  no new r e s u l t s  
i n  g r a v i t a t i o n a l  r ad ia t ion  theory ,  but  i t  does succeed i n  reproducing the 
t e s u l t s  o f  the EIH method f o r  g r a v i t a t i o n a l  r ad ia t ion  from the two-body 
Croblem found by Peres (1960) and Ryte6 (1963).  The work of Burke & Thorne 
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borrows extensively from the EIH met i d ,  and the paper of Infeld (1938). 

The formalism is the method of matched asymptotic expansions, an under- 

I t  
standing of ,vhich follows from the continued analogy w i t h  radiation i n  
electromagnetism original ly  due t o  Infeld (1938) and Trdutman (1958). 
begins w i t h  exact!y the same EIH representation o f  the metric tensor g 

u w  

except that  the various components have been expressed expl ic i t ly  ts cer t r in  
functions: the goo a re  scalars ,  the go, a r e  vect.ors, and the gab a r e  ten- 
sors.  (These cholces follow by analogy with the components of the energy- 
momentum tensor where Too i s  the sca la r  energy densiry, TOa is the vector 
momentum f lux,  and Tab is the Maxwell s t r e s s  tensor.)  
the Einstein tensor G u u  i n  (3-41) gives the f o l l c , , i n g  EIH resu l t  tha t  

Plugging (3-46) into 

(3-41) 

Burke (1971 1 then imposes t h ?  auxi 1 iary condi tons 
p*y + 3.q = 0 
V.H + i)*y = 0 

C**) 
i n  c -  

which succeed/simpl ifying the Einstein tensor consfderably. 
f i e l d  equations (3-1) or (3-39) 

The Einstein 

now reduce t o  
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where 

(3-50) 

$ab' Tab 

> 
de f in ing  p a s  t l ip  energy densi ty ,  3, as the  r,limentum f l u x ,  sa,, as the  mat ter  
s t ress,  and Sab as the g r a v i t a t i c n a l  s t ress.  G 

Figure 2 f o r  the  EIH approximatior becomes i n  t h i s  method o f  matched 

dsymptotic expansions Figure 4. 
and the EIH f i e l d  equatioris (3-49),  the sources must s a t i s f y  

Due t o  the a u x i l i a r y  cond i t ions  (3-4P: 

= o  
= o  

a; conservation laws. 

The g r a v i t a t i o n a l  fo rce  i s  determined by 

(3-SI) 

where $=4+ ,  w i t h  represent'ng the  Fiewtonian po ten t i a l .  

In e f f e c t ,  g r a v i t a t i o n a l l y  bound systems such as the two-body problem are 
found t o  r a c i a t e  quadrupole r a d i a t i o n  wh i l e  c rea t i ng  add i t i ona l  r e s i s t i v e  
f i e l d s  hh ich  couple back from the  r a d i a t i o n  zone i n t o  the  near o r  fnduc t ion  
zone as  p i c tu red  i n  F igure 3 ,  causing r a d i a t i o n  damping and a l oss  of energy. 

The method o f  matched asymptotic expansions and s ingh la r  per tu rba t ion  theory 
i n  e f f e c t  c r i t i c i z e s  the E l H  method as being s t r i c t l y  v a l i d  on l y  i n  the  near 
o r  inner  zone, due t o  the  f a c t  t h a t  "slow-motiofi" expansions are n o t  nec- 
e s s a r i l y  d a l i d  a t  distances f a r  from the cources i n  nonl inear  theor ies.  A 
separate outer  zone expansion i s  requ i red  there  where the  stresses are  the  
non l inear  ones d w  t,o the q r a v i t a t i o n a l  waves themselves. 

ou ter  expansions must then be proper ly  matched. Although t h i t  technique has 
EIH 

on ly  succeeded i n  dup l i ca t i ng  the r e s u l t s  o f  thg'method a f  tcle present t ime, 

i t s  ai i thors have argued tha t  i t  s i m p l i f i e s  ca lcu la t ions  wh i le  p rov id ing  a 

cons is ten t  and systematic, frame work f o r  the EIH theory. I t  could prove t o  
be a s i g n i f i c a n t  step i n  the d i r e c t i o n  o f  a s o l u t i o n  o f  some o f  the  more 

formidable problems t h a t  remain unscathed t y  e x i s t i n g  techniques. 

The inner  and 
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-- The Regge-Wheoler-Zerilli Formalism 

Another i n  teres  t i  ng perturbation techni que for  sol v i  ng Einstein I s nonl i near 
f f e l d  equations appears i n  the very import;?t papel. by Regge & Wheeler (1957). 
They Eddress the question of the s t a b i l i t y  of t h e  Schwarzschild (1916) nietric 
by considering a nonspherical perturhation a i  the Schwarzschila back- 
g r a n d  :. , , w5ich i s  def ined by 

+ -  

Based upon a weak-field apprcximation as before ii: (3-6) 

the Fertcrbations h are  deccxpsec! ip to  a generalized n3nsphor :a1 f o rm 
involving tensor sphet ical  harmonics and comprising a separabi soiution 
of  the type 

L *  

The Einstein f i e l d  equations a r e  solved t o  f i r s t  order i n  h ,  and i t  is 
determined tha t  the time-dependence exp(-i k t )  cannot diverge because imag- 
inary frequencies k a r e  disallowed, thereby demonstrating the s t a b i l i t y  
- o r  so maintain Regge & Wheeler - o f  the Schwarzschild solution. Their 
technique i s  contested by Peres & Rasen (1959) as unsatisfactory because 
i t  does not take i n t n  account properly the nonlinear e f fec ts  of gravita- 
t ional radiation. Indeed, Peres & Rosen maintain t h a t  small osc i l?a t ions  
cannot be s table  for  any gravitational f i e l d  assumed t o  be asymptotically 
f l a t  a t  i n f i n i t y  - b u t  this cr i t ic ism has been either ignored or forgotten. 
The work of Regge & Wheeler is  pursued fur ther  by Manasse (1963), Bri l l  & 
Hartle (19641, Doroshkevich, e t  a1 (1965j, Petars (1966), Vishveshwara (1968, 
197C) , Vishveshwara & Edelstein (1970), am5 Z e r i l l i  (1969, 1970). 

Regge & ‘rlheeler’ 
i o r  Schwarzschild 

note tha t  Eicstein’c f i e l d  equatic,is (3-1) for  the exter- 
background I .  are  simply 

R 8 P 
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and they argue that a perturbation o f  the metric a s  i n  (3-6) likewise re- 
sults i n  ii perturbation of the fieid esuztions which s t i l l  eqiiaf zero 

By virtue of (3-54), the11 (3-55) reduces t o  

which i s  given in Appendix A ,  Eq (A-6). 
be represented by a relation due t o  Eisenhart (1926) 

This perturbation can l ikmise 

iiGtffi9 t h a t  5 r 6  i s  a tenscr a!t!?cugh r B  i s  no t .  Eq (3-56) cs the cwariant 
U V  c ,,I 

generalization in curved space o f  the Schrsdinger equation for a massless 
Spin-2  particle in f l a t  space (Regge, 1957). 

The most general form o f  h consists o f  an  odd-parity ( - l )Lt l  case 
L .; 

as well as an even-parity ( - 1 1 ~  case 

where the asterisk * means h i j = h j i .  By performing a gauge transformation 
- known a s  the Regge-iiheeler gauge fi\ppe:cdiic 1) - i z h  ~t 4;  d i s . x x c d  in 
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Appendix (8 -5 ) ,  the perturbat ions h 
lowing canonical form: 

of (3-57) can be reduced t o  the f o l -  
d 'd  

- Odd-Pari _ _  -- t i  .I- Perturbations 

t; = 
PV 

h =  P 

Even-Pari ty Perturbations -_ 

where aximuthal symmetry has been assumed (M=O). 
h. 
p a r i t y  (lower case) r a d i a l  funct ions h, and hl as we l l  as fou r  even-parity 
(upper case) r a d i a l  functions Ho, H1, H2, and K. 

The Regge-Wheeler cdnonical pe r twba t ions  o f  the Schwarzschild metr ic,  

then, subs t i t u t i ng  (3-58) i n t o  (3-6) and (3-53), amount t o  

This p a r t i c u l a r  form o f  
i s  what i s  meant by the "Regge-Wheeler gauge." I t  consists o f  two odd- tJv 

Odd-Parity Schwarzschiid Met r ic  - 
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The p r o b l m  remain ing  i s  t o  d e i e r l i i n ?  t l le  d d - p a r i  t y  and even-pa r i  ty  
r a d i a l  f u n c t i o n s .  
(Appendix H) which result f rom me s u b s t i t u t i o n  of h 

case Regge & Wheeler o b t a i n  t h e  f o l l o w i n g  "Scht.odinger" t y p e  e q u a t i o n  

These  are o b t a i c e d  by so lv ing  t h e  d i f f e r e n t i a l  e q u a t i o n s  
i n  (3-58) back i n t o  

* i 
the per t i i rbed  R i c c j  ter;scr 3 ~ 2  fic!;i ~+~::';<;i { z - c c ! .  Ccr t h a  nrfrl-parity 

* 
where Q = e'. 'hl/r and r i s  g i v e n  by 

The e f f e c t i v e  p o t e n t i a l  Veff i s  

For t h e  odd-par i  t y  q u a d r u p o l e  osci 1 l a t i o n s  (L=2) t h e  effective p o t e n t i a ?  
Veff  i n  (H-8) c a n  be shown t o  be t h a t  i n  F i g u r e  5. 

Vishveshwara (1970) i ; r ea t s  t h e  s c a t t e r i n g  o f  g r a v i t a t i o n a l  r a d i a t i o n  from 
such a S c h r s d i F g e r - t y p e  e f f e c t i v e  p o t e n t i a l .  

The e v e n - p a r i t y  r a d i a l  e q u a t i o n s  (Appendix,  H-10) p rove  t o  be more d i f -  
f i c u l t  and a r e  n o t  r educed  t o  a s i n g l e  second-o rdkr  d i f f e r e n t i a l  e q u a t i o n  
u n t i l  t h e  work r f  Zerilli (1970b) ,  which i s  p r e s e n t e d  i n  d e t a i l  i n  Appendix J .  
He o b t a i n s  a hon3geneous "Schrb'dinger" e q u a t i o n  ( 5 - 7 )  f o r  the r a d i a l  f u w t i o n  
kLn(r ) from whizh h 
A *  

i n  (3-58b) can  be  de t e rmined :  
P V  

d' &,,, + [k2- VL.]G ul = 0 (3-7) 
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* 
where r i s  given by (H-5) and where 

X = + (L-I)(L~~') 
V,(r) in (5-8)  i s  the even-psrity dua i  of (H-8). 
are sometimes referred t o  as Z e r i l l i ' s  Equations. 

(S-G 
Eqs :5-7) and (5-8) 

Ter .or Harmonic Decomposition With Sources 

The or ig i ra l  treatment due t o  Regge & Wheeler (1957) i s  the f i r s t  decom- 
position i n t o  tensor harmonics of perturbations on a spherically s j m e t r i c  
background. Tensor harmonic decompositions are useful because they provide 
for  a separation of variables in  the d i f fe ren t ia l  equatiotx, and f o r  this 
r ' e d w f t  d r e  further'  analyzed by flathew; (1962). Peter: & Mathens (19631, 
Thorne, _ _  e t  a1 (1967-1970), a n d  Zer i l l i  (1570a,c). Such decompositions are  
also important in generalizing the l inear  perturbation technique used on 
the Schwarzschild background t o  include sources. 

Recail t h a t  Regge & Llheeler do not account for  sources. Theirs i s  a 
canonical nonspherical perturbaticn h 
as in (3-56). 
inhomogeneous equations w i t h  sources can be constructed. 
i n  order t o  es tahl ish rea l i s t i \ .  perturbations with astrophys'cal applications 
one can account for sources with a non-zero stress-energy tensor T 
exampie, t h i 5  treatment of the problem i s  redsonable in the study of the per- 
turbation due t G  a saall  par t ic le  fa l l ing  i n t o  the Schwarzschild geometry 
frorii i n f i n i t y .  

of the Ricci tensor such t h a t  R( l )=  0, 
i.u li .$ 

They thereby find h-een's functions from which solutions of 
On the other hand, 

For uv '  

5uch a i i  ar;a?y;i: i s  formul3ted by Peters (1966) who considers f i r s t -order  
l inear  perturbations of the Einstein tensor 4 G  

accounts f o r  sources o f  small mass IT (nl<<MS) by means o f  a variation i n  the 
stress-ensrgy tensor . T  . I t  i s  a weak-field approximation (3-6) and must 
be c lass i f ied  as a slow-motion one also,  t o  the extent tha t  the d i la ta t ion  
of mass (3-5) retains the condition m(particle)<<Ms(Schwarzschild). Peters' 
l inear  perturbation o f  the Einstein equations (3 -1 )  resu l t s  i n  the following 
f i e l d  equations for  a background ri o f  constant curvature (Ricci f l a t  w i t h  

rather then G R u v ,  and 
liv 

l i  v 

J '_' 
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In (3-60), f p  represents an arbitrary gauge vector introduced in srder t o  
reduce these field equations t o  a canonical form, once the unperturbed 
background metric n G v  i s  chcrsen. 
sistent, i T  must obey a conservation law. 
shows t h a t  the representation of the perturbins source :TU,) must satisfy 

Furthermore, i n  order t h a t  (3-60) be con- 
Tak ing  t h e  variatio!! of (3-38) 

P V  

Peters represents the p a r t  of tT2,> due t o  the perturbing particle as 

where 

z’(s) i s  the space-time position of the particle i n  the  metric. 
finishes his treatnlent w i t h  a Green‘s function method fo r  curve4 space and 

specializes his results to the Schwiirzschild background. 

Peters 

* 
Peters‘ field equations (3-60) and  conservation law (3-61) assume the 

stabil i ty of the background metric n u b ;  this work i s  n o t  a s tabil i ty anal- 
ysis as  i s  t h a t  of Regge & Wheeler. Furthermore, the perturbation i s  of 
first-order and thereby neglects radiation reaction. 
t icle i s  assumed t o  follow a geodesic in the unperturbed background r! 

the computation of 6T 

perturbing particle follows a geodesic i n  the perturbed metric g 
a geodesic in rl 

The perturbing par- 
for 

P V  
i n  (3-62) - an a;rumption which i s  m t  correct. The 

P V  
and not 

!JV 

, according t o  Eifistein’s theory, (Zee Figure 20) 
IJV 

Nevertheless, Peters’ reiwesentation af Schwarzschild perturbations is  a 
very useful approximation, as has been demonstrated by Zeri 11 i (1970a ,c) , 
who decomposes Peters’ field equations (3-60) i n t o  tensor harmonics using 
the Regge-Wheeler gauge. 

Zerilli ( 1 9 7 0 ~ )  develops a n  orthonormal set of  tensor harmonics (Appendix K) 
for  app!ication t o  gravitational r a d i a t i o n  theory, based upon the earlier 
work of Pcgge & Wheeler (1957) and Mathews (1962) .  Because Peters’ field 
equat.ions (3-Ga) are o f  t he  form 

(3-63) 

* Peters and Zerilli assume h,, i s  small i f  ‘T is  smal l .  l, ,. 
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where Q i s  a r o t a t i o n a l l y  i n v a r i a n t  ope ra to r ,  Z e r i l l i  expands b o t h  s ides  o f  
(3-63) i n  tenso r  harmonics i n  o r d e r  t o  separate t h e  angu la r  v a r i a b l e s  o , b  

from t h e  r a d i a l  equat ions.  Choosing t h e  Regge-Wheeler gauge (Appendix I )  
t h e  h decompose as  

where tenso r  s u b s c r i p t s  "QV" have been rep laced  by t h e  double s t r o k e  i n  

o rde r  t o  s i m p l i f y  t enso r  n o t a t i o n .  

e l e c t r i c  o r  even-pa r i t y  case w h i l e  (m) stands f o r  magnet ic o r  odd -pa r i t y .  

Re fe r r i ng  t o  t h e  tenso r  harmonics i n  Appendix K, one can v e r i f y  t h a t  (3-64) 
i s  e s s e n t i a l l y  t h e  same as t h e  Regge-Wheeler gauge i n  (3-58). 

The s u p e r s c r i p t  (e)  corresponds t o  t h e  

L ikewise t h e  s t ress-energy t e n s o r  f o r  t h e  p e r t u r b i n g  p a r t i c l e  6T can be 
V b  

P.v.~?&:! i z t z  the t e n s o r  harmonics o f  Appendix K: 

@I (* + B L n L  - - Ln&m*A~~,+A,Bm+bbul 
sT =C{#?' to) bl 0)  

(0) Y) L,m 
t Q ~ ~ ~ + a s ~ + ~ 3 u ( + D Y ~ L ~ t ~ ~ b ~ } .  t (SJS) 

The r e s p e c t i v e  c o e f f i c i e n t s  AL,,,. . . ,FLM a r e  d e f i n e d  i n  Appendix L and rep re -  

sen t  t h e  ampl i tudes of  t h e  va r ious  tenso r  harmonic components o f  the s t r e s s -  

energy tenso r  which " d r i v e "  t h e  p e r t u r b a t i o n  o f  t h e  m e t r i c .  

S u b s t i t u t i o n  01' t h e  t e n s o r  decomposi t ions (3-64) and (3-65) back i n t o  

P e t e r s '  f i e l d  equat ions (3-63) or (3-60) r e s u l t s  i n  one equa t ion  f o r  t h e  

magnet ic (odd o r  L+1) p a r i t y  and one f o r  t h e  e l e c t r i c  (even o r  L )  p a r i t y  

case w i t h  tenso r  harmonics on bo th  s ides. The c o e f f i c i e n t s  o f  t h e  t e n s o r  

harmonics on each s i d e  o f  these equat ions muct t h e n  be s e t  equal ,  which 
g i ves  t h e  r a d i a l  equat ions f o r  t h e  P e t e r s - Z e r i l l i  a n a l y s i s  i n  t h e  Regge- 

Wheeler gauge w i t h  sources (Appendix 0). 
t h e  conserva t i on  c o n d i t i o n s  s p e c i f i e d  i n  (3-61) and Appendix M. 

The sources, i n  t u r n ,  must s a t i s f y  

Z e r i l l i  nex t  takes t h e  F o u r i e r  t rans fo rm of t h e  r a d i a l  equat ions (Appen- 
d i x  P) and then reduces them ( P - 1  and P - 2 )  t o  second-order "Schrodinger" 

equat ions w i t h  s n w c e s l  in t h e  same fashion as i s  performed w i t h  t h e  source- 

f ree Regge-Wheeler problem discussed e a r l i e r .  I n t r o d u c i n g  two a u x i l i a r y  
r a d i a l  f unc t i ons  RL;;) and R / G )  he ob ta ins  Eqs (3-66) & (3-67):  
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Magnetic-Pari ty  I &hrGdinger" Equation W i  t k  Sources 

ElettricyPari tx "Schr6dinger" Equation With Sources 

The original radial functions ho, b l ,  Hg, H 1 ,  H 2 ,  and  K can now be derived 
from RLM in (3-66) and (3-67). These relations as well a s  those f o r  the 
auxiliary source coefficients C,, C2, and B are a l l  given in Appendix Q .  

Equations (3-66) a n d  (3-67) are also referred t o  d S  "Zeri-11' '~ Equations." 
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Upon e v a l u a t i o n  o f  t he  c o e f f i c i e n t s  o f  Appendix L f o r  a Schwartschi ld  

geodesic, Eq (L-8),  one f i n d s  t h a t  f o r  a p a r t i c l e  f a l l i n g  r a d i a l l y  (say 

a long t h e  z - a x i s )  i n t o  t h e  Schwarzschi ld geometry, a l l  magnetic (odd o r  

L t l )  p a r i t y  c o n t r i b u t i o n s  and a l l  

t h i s  case, t h e  source f u n c t i o n  SLMEO i n  (3-67) reduces t o  

# 0 e l e c t r i c  p e r t u r b a t i o n s  vanish.  For  
(e'  

b - w  

where 

These equat ions a r e  of  c u r r e n t  a s t r o p h y s i c a l  i n t e r e s t ,  i n  t h a t  seve ra l  

groups a r e  e v a l u a t i n g  them f o r  h i g h e r  L by numer ica l  i n t e g r a t i o n  techniques, 

as we s h a l l  see i n  Chapter 5 .  

Z e r i l l i  so lves h i s  equat ions i n  h f o r  L=O and L = l  i n  t h e  above case o f  
The magnet ic monopole 

P V  
a p a r t i c l e  i n  o r b i t  about a Schwarzschi ld geodesic. 

(L=3) i s  i d e n t i c a l l y  zero. 
a mass p e r t u r b a t i o n  which s imply  adds t h e  p a r t i c l e  mass m t o  t h e  Schwarzschi ld 

mass H ( y o  i s  a cons tan t ) ,  depending upon t h e  p o s i t i o n  r o f  t h e  observer :  

The e l e c t r i c  monopole ( L = O )  case correspont  t o  

W,tI 
I =  

The magnet ic d i p o l e  ( L = l )  

e q u a t o r i a l  o r b i t  assumed, 

w h i l e  t h e  e l e c t r i c  d i p o l e  

ggV  by hPv, as we know i t  

c o n t r i b u t i o n  i s  t h e  angu la r  momentum o f  t h e  

which i s  

(36%) 

( L = l )  r ep resen ts  a coo rd ina te  t r a n s f o r m a t i o n  o f  

should - b u t  no t  c o n t r i b u t i n g  d i p o l e  r a d i a t i o n  due 

t o  conserva t i on  of momentum. For L>1, a n a l y t i c  s o l u t i o n s  have n o t  been obta ined.  
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--- The Bondi News Function & Milltipole Expansions 

An e n t i r e l y  d i f t e r e n t  approximation technique i s  the method of multioo 
expansions.  Mult ipole  approximations have h i s t o r i c a l l y  provided a great 
deal of i n s i g h t  i n t o  tile s tudy o f  r a d i a t i o n  theory ,  c e r t a i n l y  i n  the c l a  

e 

- 

s i c a l  vec tor  theory of e lectromagnet ic  and g r a v i t a t i o n a l  r a d i a t i o n ,  a s  d i s -  
cussed e a r l i e r .  
i n  the t enso r  tbeory of g r a v i t z t i o n a l  r a d i a t i o n .  

Likev!ise, multipcrle approxim3tions have found t h e i r  place 

I n  o rde r  t o  i l l u s t r a t e  the mult!'pgle approximation i n  General R e l a t i v i t y ,  
i t  is bes t  t o  cons ider  the  work of b n d i  (1960, 1962, 1965) who has been 
e x p e c i a l l j  concerned about the meaning and the physical existence of grav- 
i t a t i o n a l  r a d i a t i o n  frorn gravi ta t .  ; ona l ly  bound and otherwise i s o l a t e d  sys- 

tems. 
ta rded  so lu t ions  ar,d he p laces  g r e a t  emphasis upon the requirement t h a t  
g r a v i t a t i o n a l  r a d i a t i o n  must r e s u l t  i n  a l o s s  o f  energy and hence mass of 
t %  source i n  o rde r  t o  be c o n s i s t e n t  w i t h  the s p i r i t  o f  General R e l a t i v i t y .  
This  means t h a t  f o r  g r a v i t a t i o n a l  r a d i a t i o n  from a mass quadrupole,  there 
must be a s e c u l a r  change i n  the  mass monopole. T h u s  the monopole must be 
coupled t o  the r a d i a t i v e  mul t ipo les ,  such a s  the quadrupole,  of the  m u l t i -  
pole  approxi ma t i  on. 

On the bas i s  of c a u s a l i t y  arguments, Bondi (1962) cons iders  only re- 

Rondi Is developnient (Appendix R )  t r e a t s  the s t a t iona ry - rad ia t ive - s t a t iona ry  
t r a n s i t i o n  o f  an outgoing g r a v i t a t i o n a l  "sandwich" wave (Figure 6 )  a s  i t  
passes through some re ta rded  hypersurface "u=t - r /c=cons tan t"  i n  an asymp- 
t o t i c a l l y  f l a t  r e j i o n  of space: 

S T A T I M  - RADIATIVE - STATIOIW 
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I n  F i g u r e  6, reg ions  1 and 3 a r e  s t a t i o n a r y  and Minkowski f l a t  w i t h  no 
cu rva tu re .  Region 2, however, i s  r a d i a t i v e  and empty, behaving i n  much t h e  

;me f a s h i o n  as t h e  Regge-Wheeler t reatment  presented e a r l i e r .  
i t i o n  i s  assumed i n  o r d e r  f o r  t h e  Boridi formal ism t o  be c o n s i s t e n t  w i t h  

Huygens' p r i n c i p l e .  

waves i n  a s t a t i o n a r y - r a d i a t i v e - s t a t i o n a r y  t r a n s i t i o n  have no " t a i l s " :  

Such a t r a n s -  

I t  i s  tantamount t o  t h e  statement t h a t  r,:.avi t a t i o n a l  

FIGURE 7 

The ex i s tence  o f  " t a i l s "  (F igu re  7b) means t h a t  t h e  background geometry 
cont in l res t o  o s c i l l a t e  as a consequence o f  t h e  "shock" p e r t u r b a t i o n s  induced 
by t h e  passage o f  t h e  g r a v i t a t i o n a l  wavefront .  I t  has s i n c e  been demonstra- 

ted,  however, t h a t  Bondi 's  assumption o f  no " t a i l s "  (F igu re  7a) i s  indeed 

i n v a l i d .  Papapetrou (1969) and H a l l i d y  & J a n i s  (1970) have i n v e s t i g a t e d  

t h e  problem o f  t h e  e x i s t e n c e  of a f i n a l  s t a t i o n a r y  s t a t e  (Region 3 of F i g -  
ures 6 & 7a) and they  have concluded t h a t  s t a t i o n a r y - r a d i a t i v e - s t a t i o n a r y  

t r a n s i t i o n s  cannot occur f o r  a x i a l l y  symmetric (Bondi)  r a d i a t i o n  o f  a f i n i t e  
mu1 t i p o l e  expansion. Nevertheless,  i t  i s  i n f o r m a t i v e  t o  cons ide r  Bondi I s  

r e p r e s e n t a t i o n  because Sachs (1962) has demonstrated t h a t  t h e  c o n d i t i o n  of 
a x i a l  symmetry can be re laxed,  and t h e  " t a i l s "  e l im ina ted .  

m e t r i c  

which 
d i  t i o n  
m e t r i c  

The c r i t i c a l  and c o n t r o v e r s i a l  ques t i on  o f  ou tgo ing  r a d i a t i o n  a t  i n f i n i t y  
i s  addressed by Sondi by choosing t h e  a x i a l l y  symnetr ic  (independent o f  4 )  

Bondi I s  A x i a l  1 y  Symnetr ic M e t r i c  

s e x t r e n e l y  w e l l  s u i t e d  t o  t h e  problem of t h e  Somnerfeld r a d i a t i o n  con- 
A s y m p t o t i c a l l y  t h e  Bondi 

reduces t o  i t s  Minkowski form 
The Bondi coo rd ina tes  a r e  X"=(u=t-r , r ,u,$).  
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For sufficiently large values of r ,  Bondi (Appendix R )  assumes for the 
arbitrary functions i v  his metric (3-70) or ( R - 1 )  the following: 

He shows that f=b=O. 
i n  Region 2 of Figure 6 a differential  equation for the time :ate of change 
of the function M(u,o) in (3-71) 

Then he derives from the f ie ld  equations R p v  = 0 

Based upon correspondence arguments w i t h  the s t a t i c  case, the "mass aspect" 
M(u,o) i s  shown t o  be related to  the mass of the source m(u) by 

. (3-73) 

Differentiation of m ( u , Q )  in (3-73) with respect to  u a n d  substitution of 
Mo from (3-72) gives Bondi's result  t h a t  

" - , d i  ca l l s  the function c=c(u,O) a "news function" because from i t  alone 
can be determined the ent i re  behaviour o f  his metric. In particular,  from 
relation (3-74) one can see t h a t  knowledge of c(u,O) on some hypersurfacL 
u=constant would determine the secular change of the mass monopole source. 
Furthermore, i f  the news function i s  not zero, then from (3-74) there must 
be a monotonic decrease of the mass r n ( l ! )  o f  the source. k n d i ' s  methcd i s  
effectively a method of asymptotic l inearization, and i s  i l lus t ra ted  in 
Figure 8. 

In a paper due t o  Penrose R Newan (1965) a set  of ten geometrical q u a n -  
t i t i e s ,  defined for asymptotically f l a t  space-times, are shown t o  be conser- 
ved during the emission of gravitational radiation. Ore of these quantit ies 
i s  particularly relevant to the b n d i  representation atld s ta tes  t h a t  a 
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f 

FIGURE 8 



4 ?  

t rznsi t ion between two ;tationary stdtes (Fjgures 6 8 7 a )  i s  a1loi:td i f  

where D i s  the dipole, m i s  the mass, a n d  Q ib the qluadrupole ,:ornent of  

tne sotirce. (3-75) is nct suff ic ient  t c  i n s u v  t h a t  t h 2  f i r , a '  s tat:  i s  
stationary,  however. 

Bondi 's  work i s  generalized by Sachs (1962) who relaxes the condition 
o f  spsLia1 s y m t r y  on the f i e l d s ,  allowing for two polarizations instead 
of Bondi 's  one. 
c ,  from which he determines the r a t e  o f  loss of mass due t o  gravitational 
radiation (Figure 8) as 

Sach's geoera:ization i s  Lsed upon a ccmplex cews function 

' ** r;-c = -<cc ) B (3-761 

which i s  identical to  Bondi's (3-74), except t h a t  c a v t s  arc used ts rep- 
resent the integri l  or' average over the sphere a t  i n f i n i t y .  Morg.?, & Peres 
(1963) identifv the Sachs news ?unction w i t h  the m,:-,s quadrupole tensor Q i j  
and t h e n  from (3-76) derive the relat ion 

(3-77) 

i n  close agreement with the resu l t s  of Einstein 's  l inearized Quadrupole 
radiation (3-29) and of the EIH approximation (3-4;;. 
has gained more significance w i t h  thc w o f k  o f  Pa,Jdp,trou (1969) and Hallidy 
k Janis (1970) mentio: ?d e a r l i e r  because the groblm of gravitationrl  " t a i l s "  
in the Bondi represe*ltation does cor ax'zt if the ccndition of a x i a l  sym- 
metry i s  removed. 

Sach's paper (1962) 

Early cr i t ic ism o f  Bondi's ?pproxirnatior, method i s  a l s r  presented by 

Bonnor (1953) and Bonnor & Ro,tevberg (19G5; 
metric (3-70) & ( R - 1 ) .  Bonnor (1963) argues t h a t  071y part of the news func- 
tion t ( u , c j ) ,  the: l inear  part,, i s  known t o  the observer i n  Bondi's .?proxima. 
t i o n  method. The nonlinear and Lri ' ical  part i s  indeterminable. I f  you 

plug only the l inear  part o f  c(3,t.)  for  a quadrupole o s c i l l a t o r .  as an 
example, i n t o  Bondi's fcrmalism ( R - 7 )  the osc i l la tor  gces mst , .  ' e .  
& Rotenberg (19b6) eliminate t h i s  shortcoming o f  the Bondi method by u s i n g  
instead Bonnor's (1959) "double ser ies"  approximation (3-9).  U F u n  passing 

t o  nonl inrar  approximatims, they demonstrate t h a t  under forced osci l la t ions 

who make use qnly o f  Bclndi's 

Eonnor 
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the source loses ma:s due t o  quadrucole-quadrupole i n te rac t i on  and exper- 
iences rad iat ion recgi 1 under quadrupole-octupole interact ion.  They also 
point  out that  the a x i a l  symnetry o f  the Bondi method produces " t a i l s . "  

Bonnor L Rotenberg conclude, furthermore, w i th  the statement t h a t  the ex- 
istence of rad iat ion from a f r e e l y  gravitu:ing system i s  s t i l l  an outstand- 

ing problem (1965). 

The error  i n  Bondi': o r i g ina l  approximation and the basis of the o r i g i n  
of the " t a i l s "  i s  a naive one. Using the mul t ipo le approximation methc' i n  

the l i n e a r  vector theory cf c ? c r t r x ~ g x t i ~ m ,  !xc t?? determino t h e  salu- 
t ions f o r  a stationary-rajfative-;t;:ionar~ trznsit fof i  {rfgiirc 5) Ly s i l t i s -  

f y i ng  a f i n i t e  nunber o f  l inear- conditions. 
ing t h i s  r e s u l t  t o  a nonlinear tensor theory o f  radiat ion.  

r e l a t i v i s t i c  tensor problem, Bondi needs an i n f i n i t e  number of nonlinear 
condit ions t o  make h is  approximation work f o r  the a x i a l l y  symnetric case. 

h n d i  errs, however, i n  extend- 
In the general 

Nevertheless, the Bondi formalism and i t s  associat ion w i t h  the not ion of 
grav i ta t ional  tees c r  dzta nn 3 r a d i a t i v e  hypersurface has insp i red a qreat 

deal of research i n t o  methods o f  acymptotic l i nea r i za t i on  - i n  par t icu lar ,  

the te t rad rormalisms o f  the next chapter. 

- The High Frequency Approximatioil 

Relevant t o  any discussion of approximt ions i n  General R e l a t i v i t y  i s  the 
high-frequency approximation o f  Isaacson (1968) who arr ives a t  an ef fect ive 

stress tensor by analogy w i th  the geometrical opt ics  l i m i t  of electromagne- 
t i s m .  

t h e i r  sources and a t t a i n  an existence a l l  t h e i r  own. The Isaacsan stress- 
tensor i s  gauge-invariaqt, second-rank, symnetric, and (most important) 
- not a pseudotensor ( l i k e  the Landau-Lifshitz pseudotensor o f  Appendix C). 
Treatments using the I .aacson approximation include Pr ice & Thorne (1969, 11), 
Ipser (1971), and Thorne (1968). 

I n  the high-frequency l i m i t  the g rav i ta t i ona l  f i e l 4 s  unccluple from 

The Isdacson e f fec t i ve  stress t e n w r  l inear izes the rad iat ion zone, placing 
the  burden o f  the nonl inear i t ies  upon the region of ihe sources - as does 
the Bondi formalism. 



Looking f o r  exact so lu t ion ' s  o f  Einstein's nmlinear f ie ld  equations i s  

%evertbelesr,  
very x c ! i  'i'-e 4 K &- '  rouing 6 peak ias ide P;nCora'z %A. 

ply make t h i s  statevent and leave the whole t h i n g  a: tha t .  
it1 f a c t ,  a m  iiiight siz- 

taticna! 
solut isns ,  i n  par t icular  those which have been found. 

rac!_!.ti!x thccry must 355e.5'; t!K! pb$"sif3? ant, + r s r + i r  ., .-. , A  on gray 

meani ng o f  radi a t  i ve 

Indeed, i t  i s  prec 
which rakes progress 

sely the phys;cal interpretat ion of the exact solutions 
i n  the nonlinear theory o f  radiation extremely awkward. 

$?I of t 5 e  radiat!vn sr?liltior?s P i t b e t  coctair, naked r ingular i t ies ,  o r  for 
those s ingular i t ies  which can be ident i f ied w i t h  a source, tQre always 
appear singular 2-surfaces whi:h transport  energy and/or momentum from i n -  
f i n i t y  irlto the source, where i t  can t h e n  be radiated outwagad zgain. Con- 
seyentlv,  the mst profound t l i toret ical  question about nonlinear gravita- 
t i ~ w !  ra?i?tinri - tht cf ecerg;' t ransfer  - remains unanswered. And u n t i l  
i t  is  answered, the very existence of nonlinear tensor radiatfon will 
remain i n  doubt. 

-- Exact - Plane - Wave Solutions 

Plane wave solutions of Einstein 's  empty space f i e l d  equations G = 9 
H V  

or  R = 0 are  invzstigated by E r i n k m n n  (1925) w i t h  the metric 
!Jv 

although he does not characterize the solutions a s  radiation. 
formally addressed by Rosen (1937) whose metric is derivable from (4-1) 

They are  more 

o r  as s ta ted  by Bondi (1957) 
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7 
where u = T-6, .;=b(uj, a=a(u), an3 uu=Uua=ug" 

that  the solutions of (4-2) carmot e x i s t  because they possess physical 
s ingular i t ies .  
(1957) a n d  Bondi, Pirani,  & Robinson (1959! who maintain t h a t  Rosen does n o t  
dist inguish adequately between coordinate singulari  t ies and physical s ingu-  
l a r j t i e s .  Rosen's r e t r i c  i s  empty, and i t  i s  f l a t  (RaGY,=O) i f  

Rosen concludes, however 
U' 

That this conciclsioo I:s too  severe is  pointed olit by Bondi 

As pointed out by Bondi (1957), the coordinate transformation 

(4-Q 

6-41 

i s  nonsinguiar for. u>ii ard IS-2b) bccomes 

which r q r e s e n t s  a non-flat region between two f l a t  ones provided 13, # 0 i n  
the l a s t  term. 
i s  determined by B = B ( u ) .  A more general plane-wave, w i t h  a variable plane 
of polarization i s  given by Bcndi ( I%?)  as 

* 
This i s  a "plane-wave" zone cf finite extent whoie amplitude 

where s=?(u). The empty-space condition for  (4-5) is 

A discussion of s ingular i t ies  i s  presented by Bonnor (1957), while Kundt (1961) 
investigates the general nature of "plarie-fronted" gravitational waves. 

Recent work by Szekeres (1970, 1972) and Penrose & Kahn (1971) has made 
signif icant  progress i n  the study of exact solutions for ccllid!ng plane 

* 
They are  not real ly  "plane" because the departure from flatness  RmQ,,& 
di?Dertd.i a n n  y z r r l  2 ,  csr Frspagation a1c.g .y. 

. .  
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waves (essent ia l ly  a s o r t  0 :  "gravi ton-gravi ton" in teract ion) .  The nonlin- 
e a r i t i e s  are taken f u l l y  inzo account, which i s  o f  the utmost importance, 
because the very notion o f  *.inear superposition (Maxwell's theory) i s  a t  
stake. 
representation essent ia l ly  i inearizes the f i e l d  equations i n  the rad iat ion 
zone by v i r t u e  o f  the fact  tha t  there issrperposi t ion o f  thenens functjons 
(c  = c1 + c2) - which places the burden o f  the nonl inear i ty upon the near 
zone in the reglon o f  the soirces. Szekeres (1970, 1965) maintains that  
superposltion i s  simply i n v i l l a  f o r  c o i i i d i n g  "sandwicn waves," l i i  cciiii':;ct 
with the Bondi-Sachs formalivn. Penrose & Kahn employ impulsive &funct ion 
plane-waves, a r r i v i n g  a t  s i m i l a r  resu l ts  as Szekeres. 
l a r i t i e s  ex is t ,  which make the physical interpretat i?n d i f f i c u l t  t o  assess; 
perhaps the s ingu la r i t ies  di::appear f o r  more r e a l i s t i c ,  curved wave-fronts. 

Indeed, as we have seen i n  Figure 8, the Bondi-Sachs asymptotic 

I n  e i ther  case singu- 

Exact C y l n d r i c a i  & Soiutions 

Exact cy l indr ica l  waves f o r  R = 0 are presented by Einstein & Rosen (1937) 
uv 

and Rosen (1937, 1954, 1956, 1958), based upon the s t a t i c  axially-s,vrrmetric 
metric o f  Weyl (1918) and Levi-Civ i ta (1919), 

which reduces t o  the Laplace equation ( i n  cu l indr ica l  polar coordinates) 

(4-8b) 

(4-84 
Rosen's cy l indr ica l  
z and t i n  (4-8;, whereby 

Subst i tut ing i n  RUv=O, the Rosen metr ic (4-9a) gives 

0 
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For the Somnerfeld radiat ion condition, the solutions o f  (4-9) f o r  
k = UP/C a r e  (Rosen (1954)) 

interpreted a s  a loss of energy due t o  radiation. Rosen (1956) objects t o  
th i s  intei 
momentum because the pseudotensor vanishes. Weber & Wheeler (1957) demon- 
s t r a t e  t h a t  i t  is nonzero. Marder (1958, 1961, 1969, 1972) s tud ie s  exact 
cy1 i ndr i ca 1 waves a1 so. 

Although the s ingu la r i ty  along the axis  o f  symnetry can be identified w i t h  
a source such as a thing rod, which makes i t  more tenable, this rod is 
infinite i,, 1 -LL 

:WIYLII. Thiir thc njce c;#lt&jcz! sc!utfcnc, whfch r a d i a t e  en- 
ergy outwards require an infinite source. Furthermore, there is reason t o  
believe t h a t  energy is transported back around and down the a x i s  of symnetry 
along the source s ingular i ty  w i t h  zero net t r ans fe r  of energy. 

t a t i o n ,  clziainy t h a t  there i s  zc transport ef energy and 

Exact Spherical Wave Solutions 

Birkhoff (1527) proves t h a t  any general spherical ly  symmetric solut ion of 
the empty space f ie ld  equations can always be transformed i n t o  the s t a t i c  
Schwarzschild metric. By virtue of Birkhoff’s theorem, no spherical ly  sym- 

metric gravi ta t ional  radiation can exist, an important result f o r  astrophys- 
i ca l  theory. 
investigated by Boardman & Bergmann (1959) and Bonnor (1959). As s t a t ed  by 
Weber & Wheeler (1957), however, spherical  gravi ta t ional  waves can never be 
t ru ly  spherical ly  symnetric, just a s  i s  the case w i t h  electromagnetic ones 
( the fixed point theorem of topoloqy) . 
Robinson & Trautman (1960, 1961), nevertheless,  have discovered a c l a s s  of 
exact solutions which correspond t o  d form of expanding radiat ion which they 
c l a s s i fy  as spherical gravitational waves. 

Spherical gravi ta t ional  waves i n  the l inear ized theory have been 

Other Solutions 

Additional solutions can be found i n  the gork of Peres (1959) and Takeno 
(1956, 1957, 1958). Takeno t r e a t s  the problem of plane, cy l ind r i ca l ,  and 
spherical waves i n  the nonsymnetrical un i f ied  f i e l d  theory. 

.- - ._ .. .- 
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Invar iant  Formulation_ Of Gravi tat ional  Radiation Theory 

As we have seen i n  some de ta i l ,  coordinate or  gauge transformations can be 

used t o  create and destroy apparent g rav i ta t i ona l  radiat ion.  But t ha t  radia- 
t i o n  which cannot be transformed away i s  cons; jered physical. The Riemann 
ciirvature tensor R 3 9 y r  l i k w i s e  cannot be transformed away by means o f  a 
change o f  coordinates. As a consequence, theoreticians - enchanted by the 
prospect o f  r e l a t i n g  the Riemann curvature tensor t o  the existence of 
physical rad ia t i on  - have begun t o  c lass i f4  i t s  rad ia t i ve  character ist ics.  

3 

Recall ing tha t  the t rsr isversal i ty o f  k-!j = 0 and !!I = ! H i i n  5 the rad ia t i on  
zone of electromagnetism can be expressed i n  terns o f  the n u l l  vectors kU 

(defined by k3ka = 0) as 

i t  i s  argued tha t  the R i  mann tensor possesses simi l a r  symetry  propert ies. 
Based upon a theorem due t o  Debever i l 958 )  and Sachs (1961), a s im i la r  s e t  of 
n u l l  vcctcrs k" satisfy the fo l lowing equations (sze Bcnnor (1963) for  a 
discussion) : 

kUFae = 0 kaF* = 0 , 
Q B  

-- P e t r m  - Metric Equations For Nul l  Vectors I&. D i s t i n c t  

I 
11 

D 

111 
N 

4 
3 

2 

2 
1 

where the Petrov (1954) types (Appendix U) have been applied by Pirani  (1958) 
as a means o f  c lass i fy ing the r a d i a t i v e  propert ies o f  the Riemann curvature 

tensor. This can be stated i n  terms o f  a Penrose (1960) diagram: 

I 
+ \  
0-1 
0- 

Penrose Diagram 

G 
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which represents the subst ructure of t he  Petrov met r ics .  There are  th ree  

spaces ( th ree  v e r t i c a l  columns) which may o r  may no t  be canposed of a sub- 
space. The le f t -hand column (reading down) i s  composed o f  "Petrov-type I 
nondegenerate," "Petrov-type f degenerate" (D)  , and f la t -space (0).  The 
middle column i s  "Petrov-type 11," and "Petrov-type I 1  n u l l "  (N). A l l  the 

met r ics  a re  "a lgeb ra i ca l l y  spec ia l "  except type I ( t h e  most general type) .  

The Riemann tensor has the form 

R+= $+v+ 
o r  dropping the  subscr ip ts  

Hence, Petrov-type N i s  r a d i a t i v e  ( i t  goes as r e ' ) .  

appl ies t o  the  Weyl tensor. 
types i n  Eq ( 4 - l l b )  are (Trautman (1962)) 

The same formalism a lso  

I n  terms o f  the  Bondi news func t ion ,  the  Petrov 

Appendix U contains d e t a i l s  on a l l  o f  t h e  exact so lu t ions  discussed e a r l i e r  
and t h e i r  associated Petrov-pi rani c l a s s i  f i  c a t i  on. 

The Petrov c l a s s i f i c a t i o n  o f  f i e l d s  us ing the  Riemann tensor, then, i s  
introduced by P i ran i  (1457) i n t o  g r a v i t a t i o n a l  r a d i a t i o n  theory w i t h  the  
hope o f  const ruct in :  an i n v a r i a n t  bas is  f o r  es tab l i sh ing  the existence of 
g r a v i t a t i o n a l  rad ia t io r l .  Refer r ing  t o  Appendix U , one can see t h a t  t h i s  

endeavor i s  no+ e n t i r e l y  successful.  

-- I n v a r i a n t  -- Formulati  on & Asymptotis Approxima ti ons 

The embodiment o f  the P i r a n i  i n v a r i a n t  fo rmula t ion  o f  g r a v i t a t i o n a l  rad ia -  
t i o n  us ing the  Petrov c l a s s i f i c a t i o n  can a lso  be designated as a t e t r a d  c a l -  

culus. 
sp inor  formalism. The t e t r a d  and sp inor  ca lcu lus are  then combined together 

by Newman & Penrose (1962) i n  a formalism w i t h  emphasis upon an expansion of 
the  Weyl tensor ra the r  than an expansion o f  t he  me t r i c  tensor I n  inverse  

W i  t t e n (  1959) and Penrose (1960) l i kew ise  develop a two-component 
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pcwers o f  r, due t o  Bondi e t  a1 (1962) .  Llopefully, the Newman-Penrose 

method w i l l  o f f e r  a r e c o n c i l i a t i o n  cf the i nva r ian t  formulation w i t h  the 
asymptotic approximation o f  Bcndi. 

Exact So lu t ion  For A Gmvi t a t i o n a l l y  Bound Sys AI 

An exact r a d i a t i v e  so lu t i on  from a system representjng a bound s e l f -  
g r a v i t a t i n g  s t a t e  i s  now ava i lab le ,  and i s  of great importance i n  t h a t  i t  has 
phys ica l l y  meaningful s ingu la r i  t i e s  associated only wl'th the mater ia l  sources 

and cons t i tu tes  the f i r s t  exact so lu t i on  o f  any k ind  f o r  a system i n  motion. 
I t  i s  the work o f  Bonnor & Swaminarayan (1964), Swaminarayan (1966), and 

Bita'k (1968, 1971). I t  is an analogue o f  the c lass i ca l  Born (1909) problem 
G f  the uniform accelerat ion o f  two charges (see a lso  Rohr l ich (1965). 118). 

me t r i c  ( S i t & ,  1971) 
The so l t i t i un  i s  "Petrov-t j i j i '  I ,  nondegenerate." I t  comes from the 

describes two pa i r s  of mass points which are represented by the wor ld l i n e s  

t 
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and are thus uniformaly accelerated by 
There dre four ossible cases for particle mass: 

./(2hi) i n  a Minkowski background. 

k = \  h-H3 - (h;bJ' a, - 

aaro as> o 3 &-W 
a, >o 
a, = 0 

Eq (4-14a) corresponds t o  two mass dipoles (positive and negative mass); 
Eq (4-14b) corresponds to four masses of positive mass with stresses; 
Eq (4-14c) corresponds t o  a p a i r  w i t h  negative mass moving under s t ress ,  while 
the other two particles move freely; and Eq (4-14d) represents only two 
particles w i t h  the same positive mass, connected by stress. 

Transforming t o  spherical coordinates, the line element (4-12) becomes very 
involved, b u t  B i % k  gets for  the Bondi news function 

where u = t - r and 

+ h+h S& 

The Bondi news function (4-15) begins w i t h  an asymptotic expansion contain- 
i n g  re',  irrespective of the choice of a i ,  h i ,  k ( t h a t  i s ,  for all  cases 4-14).  

This i s  t o  say, the asymptotic expansion of the Riemann tensor tetrad i s  rad- 
iative according t o  Bondi's method. B i % k  (1971) demonstrates t h a t  the radia- 
t ion  pattern, furthermore, for the Born solution o f  electrodynamics i s  

while t h a t  fo r  the Bonnor-Swaminarayan solution of gravitational radiation is 

BirAk, i n  a d d i t i o n ,  points ou t  t h a t  the particle masses i n  the Bonnor- 
Swaminarayan solution are the same as those occurring in Bondi's (1957) paper 
on negative mass i n  general relativity. There i s  strong evidence t h a t  the 
particles i n  the Bonnor-Swami narayan solution are gravitational monopoles. 



c t m  v 

GMVITATIONQL RADIATION IN ASTROPHYSICS 

L e t  us tu rn  now t o  astroghysics. A wealth o f  astrophysical  app l i ca t ions  

exists fo r  the l i nea r i zed  so lu t ions  of the tensor theory o f  g r a v i t a t i o n a l  
r a d i a t i o n  - even though the  exact, r a d i a t i v e  so lu t ions  which are known have 

been d i f f i c u l t  t o  i n te rp re t .  Such app l ica t ions  must be as t roph js i ca l  i n  
nature simply becausc the order o f  tliaqqitude o f  the rad a t i o n  i s  so small 

(G/c5 = 2 .7~10-~ ' ) .  For quadrupole r a d i a t i o n  alone, 

U n t i l  exact so lu t ions  which are phys ica l l y  meaningful w e  establ ished, i t  i s  
nevertheless in fo rmat ive  t o  adopt the  l i nea r i zed  theory, t o  fo rge t  any contro- 

versy which may e x i s t  i n  regard t o  r a d i a t i o n  from the Kepler problem, and t o  

consider the observable phenomena which might r e s u l t .  

Grav i ta t iona l  Radiat ion From A Spinning Jacobi E l  l i p s o i d  
._C --- - 

Consider a spinning Jacobi e l l i p s o i d  ( t r i a x i a l  i n e r t i a s  I,,, 122, 133 and 
semi-axes a, b, c) whose body axes are chosen t o  coincide w i t h  the p r i n c i p a l  
axes and whose angular v e l o c i t y  .r( i s  along the X -axis. 

Eddfrlgton quadrdpole r a d i a t i o n  fo rau la  (3-30) becomes i n  t h i s  case 

3 The Einstein- 

2 1  4 - % = F a  3 2 G ~ e n  
(5-1 b) 

where I = 1,1+122 and e = ( I1 , - I2* ) / I  = (a-b)/J(ab) i s  the equator ia l  e l l i p -  

t i c i t y .  
o r i g i n a l  quadrupole r a d i a t l o n  (3-30) f o r  a spinning rod. On the  other hand, 

i f  111=122 the Jacobi e l l i p s o i d  degenerates i n t o  the Mai laur in  spheroid and 

For an e l l i p t i c i t y  o f  u n i t y  (e=1, 122=0) t h i s  formula reduces t o  the 
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ceases  t o  genera te  g r a v i t a t i o n a l  r a d i a t i o n  because i t  has zero  e l l i p t i c i t y  
(e=O i n  5-1) .  

The rad ia t ion  r eac t ion  torque ac t ing  07 the e l  l i p so id  due t o  g r a v i t a t i o n a l  
r a d i a t i o n  would appear t o  con t r ibu te  a loss i n  angular  momentum L by an 
amount 

For the t r i a x i a l  e l l i p s o i d ,  th i s  i s  (Chandrasekhar, 1970) 

Naively t r e a t e d ,  Eq (5-2) should result i n  a spinning down o f  t h e  e l l i p s o i d .  
Consequently, the exponent n of nn i n  -d€/dt i s  known as the "slowing expon- 
ent" and has been used t o  i n d i c a t e  the presence of mul t ipo le  r a d i a t i o n  
niechani sms, 

The Crab pu l sa r  has been observed t o  have ( e .g .  Ruffini & Wheeler, 1969) 

n = 5.76 5 0.65 
n = 3.6 5 0.6 (Radio) 

(Op t i ca l )  

w h i c h  would imply the existence of a quadrupole r a d i a t i o n  mechanism (n=6) 
such a s  (5-1).  Assuming a mass of  0.786 Mo, a mean r ad ius  of 9.75km, and 
e c c e n t r i c i t y  o f  8 ~ l O - ~ ,  and a period of 33 msec, then a "neutron" star sp in-  
ning as  a t r i a x i a l  e l l i p s o i d  i n  (5-1) can account  for the observ'd rate of 
change of t h e  Crab p u l s t r ' s  per iod o f  4 ~ 1 0 - ~ ~ s e c / s e c .  The power r ad ia t ed  
would be 

-d€/d t  = 2 x erglsec. 
However, energy d i s s i p a t i o n  and angular  ve loc i ty  cannot be r e l a t e d  i n  this 

Chandrasekhar (1969, 1970) has pursued the evolu t ion  of the (lacobi fash ion .  
e l l i p s o i d  under g r a v i t a t i o n a l  r a d i a t i o n  i n  the context of the "pos t  
Newtonian" (EIH) approximation. He has a r r ived  a t  the s u r p r i s i n g  result t h a t  
a t r i a x i a l  e l l i p s o i d  inc reases  i n  angular  ve loc i ty  a s  i t  loses angular  mmen- 
turn and r a d i a t e s  energy (5 -1 ) .  I t  asymptot ica l ly  approaches the Maclaurin 
sphero id ,  whereupon i t  ceases  t o  r a d i a t e ,  a t  the polnt of b i fu rca t ion  ( s e e  
Figure 9 ) .  

2 .5  - 

The Maclaurin spheroid i s  then dynamically uns tab le  under 
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gravitational radiation reaction, exhibiting the possibility of fragmen- 
t a t i  on. 

I 
t- 

FIGURE 9 

The dissipation o f  energy, then, under gravitational radiation can be 
derived from potential and internal energy, and reed not be a t  the expense of 
rotational kinetic energy. 
gravitational collapse and the formation o f  "black holes"* i n  astrophysics, 
because asymmetries during collapse should be radiated away as grsvi tatioml 
radiation i f  his approximations are applicable. The collapsing object 
should evolve i n t o  a spheroidal (Maclaurin), nonradiating "black hole" - 
which i s  secularly and dynamically unstable. I t  could frigment and even 
bifurcate under this E I H  analysis, i n  contrast t o  the results of Penrose 
(1972) and Hawking (1971) .  

Chandrasekhar's results have significance f o r  

Figure 9 also explains the "glitches" or sharp drops i n  the rotational 
Starquakes briefly create a Jacobi ellipsoid which  periods o f  pulsars. 

quickly becomes Mac1 auri n .  

Gravitational Radiation From The Kepler Problem 

Another system of astrophysical interest i s  the rwo-body Kepler problem which 
has already been discussed a t  some length in the EIH approximation. I t  i s  
particularlq interesting because i t  i s  a case o f  a self-gravitating system 
not  undergoing forced oscillations b u t  yet experiencing a time-varying 
quadrupole moment. 

- ---- 

*"Black hole" i s  the acronym attributed t o  thesometry i n  (3-53) hen the 
radius of the mass M i s  less t h a n  the Schwarzschila radius 2GM/c !! . 
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2 
R e c a l l i n g  f o r  a c i r c u l a r  o r b i t  t h a t  :i2=G(ml+m2)/r' ana t h a t  t h e  

i s  u n i t y  ( e = l ) ,  then (Landau & L i f s h i t z ,  1962) Eq (5-1) becomtls 
e l  l i p t i c i  t y  

(5-3) 

T h i s  formula should rep resen t  t h e  grau 
f rom a s t e . l l a r  b i n a r y ,  p rov ided  such r a d i a t i o n  e x i s t s  and boundary c o n d i t i o n s  
a l l o w  f o r  it. 

i o n a l  mass quadrupole r a d i a t i o n  

No t ing  t h a t  t h e  t o t a l  energy o f  a K c p l e r i a n  c o n i c  i s  

then s u b s t i t u S i o n  o f  (5-3)  i n t o  i o f  (5-4) g i ves  

which rep resen ts  t h e  r a t e  o f  dec?y o f  t h e  b i n a r y  - b u t  C i l l y  approx imate ly  
because t h e  c i r c u l a r  o r b i t  assumption must be %rea tzd  a d i a b a t i c a l l y  as t h e  

con ic  s t a r t s  t o  co l l apse .  Eq (5-5)  i s  o f t a n  used by s, t rophys ic is ts  wher, 
cons ide r ing  t h e  l i f e t i i d les  or r e l a x a t i o n  .:imes o f  b- -t-y systems u n d e r g o i i g  
g r a v i t a t i o n a l  r a d i a t i o n .  Such a! guments, f o r  example, a r e  used t o  d i s p e l  
b i n a r i e s  as p o s s i b l e  p u l s a r  mechanisms because they c o l l a p s e  t o o  r a p i d l y .  

Th i s  i n t e r p r e t a t i o n  o f  g r a v i t a t i o n a l  r a d i a t i o n  r e a c t i o n  ( b i n a r y  c o l l a p s e )  
e f f e c t i v e l y  ignores or considers i n v a l i d  t h e  r e s u l t s  o f  Hu (1947) ,  Peres (19591, 
Havas & Goidberg (1962), and Havas & Smith (1965) who a l l  f i n d a d i l a t a t i o n  o f  
t h e  b i n a r y  system under g r a v i t a t i o n a l  r a d i a t i o n  - which i s  c o n s i s t e n t  w i t h  
t h e  behaviour  o f  observed p u l s a r  pe r iods .  

e l l i p s o i d ,  however, i t  should i nc rease  i n  angular  v e l o c i t y  ( c o l i a p s e )  under 
Chandrasekhar's i n t e r p r e t a t i o n  4 . f  t he  E I H  method. 

Th ink ing  o f  t h e  b i n a r y  as an 

The f i r s t  adequate t rea tmen t  o f  t h e  genera l  Kepler  problem sub jec ted  t o  
g r a v i t a t i o n a l  r a d i a t i o n  i s  due t o  Peters  i% Mathews (1963) and Peters  (1964), 

who study t h e  case o f  e c c e n t r i c  o r b i t s  u s i n g  Mathews' (1962) tenso r  harmonics. 

* 
Hu a l s o  argues t h a t  such a behaviour o f  g r a v i t a t i o n a l  r a d i a t i o n  r e a c t i o n  

should account f o r  t h e  cosmologica l  expansion o f  t h e  Universe. 
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Instead of Eq (5-3). they obta'n 

where 

while "5 . '  i s  the eccentricity and "a"  representc the semi-mjor axis or apse. 
I f  rre l e t  

(S-64) a? 
the?, (5-&a) i s  simply 

B u t  recall ing our c i rcu lar  o r b i t  assumption, where the enhancenent factor  
f (c=O)=l ,  Po i n  (5-6c) i s  actually 

which i s  equivalent t o  ( 5 - l j  ( a n d  3-30 f o r  e = l ) :  

(5-7 b) 

I F  terms of (5- ;a) ,  the Einstein-Eddington-Park power formulae (3-33) and 
(3-31) tha t  we obtained e a r l i e r  can now be abbreviated as 
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The resu l t s  o f  Peters & Hathews (1963) reduce i d e n t i c a l l y  t o  these angular 
paer 4i;tributfcns i c  t h r  czsc of grzv i??t inn i i l  r a d i a t i o n  from a c i r c u l a r  

o r b i t .  
i s  represented by Figure 1. 

The c i r c u l a r  Kepler Orb i t ,  then, l i k e  the spinning rod o f  Einstein,  

For the more r e a l i s t i c  case c j f  an eccentrfc whit, themhancement factor 
The power radiated i n  the f ( E )  becomes important, as shown i n  Figure lk. 

nth harmonic, Figure lob, i s  

where g(n,E) i s  derived from the Bessel functions Jn(nc) as 

The enhancement fac to r  f (E) i s  merely the sum o f  a l l  o f  the harmonic con- 

t r i bu t i ons  i n  (5-9b): 

(5-94 

Figure 10 i l l u s t r a t e s  the important r e s u l t  t ha t  most o f  the power radiated 
i s  emitted a t  the higher harmonics f o r  greater eccentr ic i t ies .  

Before leaving the question o f  g r a v i t a t i o - 3 1  rad ia t i on  from the f ree l y  

g rav i ta t i ng  Kepler problem f o r  two or  more bodies, the r o l e  of t i d a l  f r i c t i o n  
must be sssessed. 

for po in t  masses (actual ly ,  they are even marginal for po in t  masses - i f  we 
r e c a l l  Apw id i x  G ) .  
r ad ia t i on  - d U d t  i n  (5-3) necessarily exhib i ts  i t s e l f  as a lass i n  o r b i t a l  
angular momentun. However, f o r  macroscopic bodies t i d a l  phenomena mari fest  

themselves, providing an energy d iss ipat ion mechanism der iv ing from spin-orb1 t 
in teract ion.  The resul tant  t i d a l  f r i c t i o n  has the opposite e f f e c t  on the 
binary systtrn as does grav i ta t ional  rad ia t i on  rr2action (Appendix S )  . The 

mechanism o f  t i d a i  f r i c t i o n ,  furthei'iww, cannot be ?iffe*ertfited frnm 
variat ions i n  the ve loc i t y  o f  propagation o f  grav i ta t ional  rad iat ion,  as we 
have already stated (Appendices G & S). 

The treatvents presented so f a r  have been adequate only 

Ccnsequently, the energy d iss ipat ion represented by the 

Gravitat'onal radiat!cn and t i d a l  f r i c t i o n  remain i n  ec,uilibrium w t i l  tho 
sp in angular momerltum o f  the primary isectinguished. Acting as a primary 
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i n  a binary system, a "black hole" can play host t o  another companion which 
will  r ad ia t e  away i t s  angular rnomeiiturn as  gravi ta t ional  radiat ion,  and the 
system will c o t  a l l a p s e .  Local nonlinear e f f ec t s  can vary the velocity o f  
propagation and cause the same result. 

Gravitational -- Bremstrahlunp & Synchrotron Radiation 

A natural extension o f  the bound ( ~ < 1 , & < 0 )  two-body Kepler problem just 
t reated i s  the hyperbolic scat ter ing o f  asrnall mass rn as  i t  passes i n  the 

v ic in i ty  of a large mass M such as  a "black hole, a t  an impact parameter b 
(Figure 113). 9n  the basis o f  an electromagnetic analogy, one expects from 
the l inearized tensor theory o f  gravi t3t ion t h a t  Ihe small mass m should emit 
a "burst" o r  "splash" of multipole radiat ion as i t  experiences a tramverse 
acceleration due t o  M. 

1 FIGURE I I  

Such an analysis i s  presented by Peters (1970) as  a generalization of the 
non-relat ivis t ic  bound o r b i t s  t reated by Peters & Mathews (1963). 
removes the "slow-motion" assumption employed i n  the derivation o f  the quad- 
rupole radiation (3-29), ( 5 - l ) ,  and (5-6),  and he considers the r e ' a t i v i s t i c  
case o f  h i g h  velocity - assuming tha t  the impact parameter i s  large enough 
( b > > Y ) ,  which keeps the scat ter ing looking l i k e  the c l a s s i ca l  one o f  Figure 
i i a  rather t h a n  the general r e l a t i v i s t i c  behaviour a t  small impact parameters 
(3Mcbc6M) - -  such 5s  depicted by Figure l l b .  
i s  due t o  Forsyth (1920), Morton (1921), and Darwin (1959) who qualify the 

conditions for capture,  s t a b i l i t y ,  and s c a t t e r .  ) 

Peters 

[The o rb i t a l  theory o f  F i g u r e  l l b  

* 

* 
See also de Felice (1968) t o r  a gravitational bt'dnner-type representation of 
general r e l a t i v i s t i c  o r b i t  theory. Also read Ruffini & Wheeler (1969, 1971).  
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Peters develops his own representation uf  relativist ic radjation a t  high 
veloci tis, different f r m  the "fast-motion" approximation which has already 
been discussed. I n  fact ,  h i c  paper (1970) presents an excellent critique of 
the "fast-motion" method used by Smi th  & Havas (19651, who treat the  Kepler 
problem by improperly mglecting the stresses , n  cne system. 

In the "slow-motion weak-ti*ld" lirni t ,  Peters shows t h a t  the energy 
radiated i n  Figure l la  i s  (2<<1 or v:<c) 

which can be derived trom the Einstein quadrupole radiation formula (3-29) 
by calculating the quadrupole tensor Q i j  o f  the mass m from i t s  Schwarzschild 
geodesic i n  Figure l la .  The same result i s  obtained by Ruf f in i  L Wheeler 
(1969), being discussed further t y  Ruffini (1975). Hawever, for  the relativ- 
i s t ic  case Peters' approxiination gives 

for the radiated Dower P and energy ~ t ,  where the precise coefficients of 
Eqs (5-11) must be determined by numerical integration. The results are 
given in Figure 12,  evaluated in the eouatorial plane (i: = ~ / 2  on the angular 
distribution of the 5ound conic i n  Figure 1 )  of &e hyperbolic orbit. 
forward beaming or bremsstrahlung is manifest in Peters' analysis. 

The  

I n  light of Peters' relativist ic gravitaticnal bremsstrahlung, the next 
reasonable question t o  consider i s  t h a t  o f  the highly relativist ic ( h i g h  vel- 
ocity) bound conics in close circular orbits about a massive object M ,  such 
as a Schwarzschild "black hole." The tighter the circular orbit, the higher 
i t s  angular velocity (neglecting the Roche 1 ' and consequently the greater 
i t s  chances o f  behaving like a rotating "searL,, I h t , "  radiating out  Peters' 
bremsstrahlung (Figure l lc )  . 
zgnchrotron radiation. 

Such a mecharlism constitutes gravitational 

Circular Darwin (1959) orbits are aliowed for r a d i i  r>3M, although they 
are unstable i n  the region 3M<r<4M. Consequently, Misner a_l (1972) have 
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made the suggestion t h a t  grav i ta t ional  synchrotron rad ia t i on  should be 

emitted by such orb i ts ,  although they are unstable and rap id l y  plunge i n t o  
the "black hole" under r a d i a t i v e  perturbations. 
associates present an analysis o f  scalar grdvi  t a t i ona l  synchrotron rad ia t i on  
based upon the Regge-k'heeler-Zerilli formalism, dsing standard JWKB methods. 
They obtain the r e s u l t  t ha t  pa r t i c l es  i n  high r e l a t i v i s t i c  o r b i t s  which are 
coupled t o  a scalar grav i ta t ional  f i e l d  rad iate s t r o q l y  i n t o  narrow 

synchrotron beams a t  high harmonics of the ombi ta l  frequency. 

Nevertheless, Misner and * 

Because o f  the importance o f  the synchrotron mechanism i n  the experimental 

ve r i f i ca t i on  ( the energy of the source can be much less) o f  g rav i ta t i ona l  
radiat ion,  Misner's work on the scalar theory has prompted Davis, Ru f f i n i ,  

Tiomno, & Z e r i l l i  (1972) and Breuer, -- e t  a1 (1973) t o  invest igate the general 
problem o f  scalar (Spin-O), vector (Spin-1) , and tensor (Spin-2) synchrotron 
rad ia t i on  frm r = (3+6jM c i r cu la r ,  unstable orb i ts .  

3 uency o f  the rad ia t i on  and W~ represents the frequency of the o r b i t  ~c=4(M/ro) ,  
then the power emitted i s  given i n  a l l  three cases (scalar, vector, tensorlby 

I f  w=mwC i s  the f req- 

i n  the Regge-Wheeler formalism. 

(odd) and e l e c t r i c  (even) p a r i t y  respectively, being defined e x p l i c i t l y  i n  
Appendix R. They are computed i n  the asymptotic region 0" .+ +.p) frm a 

The functions R l r n  and R l m  are o f  magnetic 
( W  (E) 

function technique using the solut ions u(rJ  and v ( r * )  o f  the 

and (3-67) w i  thout sources : 

Green's 

"Schrod nger" equations (3-66 

u must be outgoing a t  r* = + m and v r d s t  be ingoing a t  r* = - 
"black hyle'' a t  r=2M). 
(scalar, vector, tensor). 

( i n t o  the 

The structure o f  Veff depends upon the f i e l d  

The resu l t s  o f  Davis, e t  a1 (1972) are given i n  Figure 13, which represents 
the p w e r  radiated a t  a c i r c u l a r  o r b i t  r=3.05M (6=.05). The scalar spectrum 

corroborates t h a t  o f  Misner e t  a1 i 1972), determined by the JWKB method, but 
the vector and tensor power spectra do not a t  a l l  behave as do conventional 

"Scalar rad ia t i on  occurs i n  the Brans-Dicke (1561) tkeory. See also 
Morganstern 6 Chiu (1967). 
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synchrotron mechanisms. Synchrotron radiation i s  enhanced 2 t  high mu1 t i  poles, 
w h i c h  accounts for the beaming effect. 
contributions are significant a t  lower mu1 tipoles with an associated radiation 
a t  wider beam angles. 
tional) and gravitational tenscr radiation do ~ . i  concentrate energy very 
effectively i n t o  the orbital plane of *e source. 

From Figure 13 the vector and tensor 

As a consequence, vector (electromagnetic or g r a v i t a -  

The cri tica! frequency ucri  i s  defined as 

The power spectrum P(.) i n  (5-12) i s  found to vary as 

f o r  a l l  three spins: s=O (scalar) , s=l (vector), and s=2 (tensor). 

Particle Falling I n t o  A Schwarzschild Black Hole 

Also o f  wide astrophysics: interest has been Zeri l l i ' s  (1964, 1970) study 
of the radiative behaviour of a particle falling radially into a Scharzschild 
"black hole," deriving from his spectral decomposition of the Regge-Wheeler 
and Peters formalisms into tensor harmonics (Chaptcr 3) .  T h i s  particular prob- 
lem i s  very much like Peters' relativist ic gravitational bremsstrahlung of 
Figure 112,  except t h a t  Zerilli i s  treating a geodesic w h i c h  i s  captured 
(impact parameter b<3M) - more like trajectory 2 of Figure l lb.  
Zerilli treats a radial, unperturbed Schwarzschild geodesic ( E q  3-68, along 
the z-ax is )  t o  characterize his particle (which  neglects and avoids the c r i t -  
ical issue of radiation reaction). This 1 3  the case of zero impact parameter 
(b=O in Figure l l a ) .  

I n  particular, 

Zeri l l i ' s  equations (the electric, even pari ty  ones in 3-67) have been 
numerically integrated by several authors. Davis & Ruffini (1971) and Davis, 
Ruffini, Press, & Price (1971) investigate the asymptotic behaviour of the 
outgoing burst of gravitational radiation due t o  a particle falling from rest  
a t  infinity - as suggested by Zeril l i .  
the effective potential, the energy f l u x ,  and the t i d a l  stresies of the 
Riemann curvature tensor (these are of interest t o  experimentalists). 

The results are givon in Figlrre 1 4  for 

Forward 
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bremsstrahlung i s  not manifest (Figure ;4d)  as i t  it; i n  Peters' analysis of 
larger (b>>M) impact parameters (Figure 12). 
radiated energy of 

Davis, -- e t  a1 f i n d  an outgoing 

2 where mc I S  the particle's rest energy and M is  the mass of the "black hole.'' 
The 
a1 1 
the 

energy radiated into the "black hole" proves t o  have contributions a t  
higher multipoles L (hence divergent), b u t  assuming a cutoff Lmax=n//E ( M / m )  
total ingoing radiation i s  f inite:  

which i s  independent of the mass of the "black hole" (? ) .  
(5-16) i s  s t i l l  a small percentage of the particle's rest energy mc2, however 
which i s  an important result due t o  the Schwarzschild geodesic assumption. 
This i s  t o  say, neglecting r a d i a t i o n  reaction (by assuming the radiated 
energy i s  small enough for  a sufficiently small mass m) results i n  a small 
loss of energy - i f  you can rationalize away the ingoing divergence. The 
spectrum of gravitational radiation which Davis, et  a1 obta in  i s  given i r l  

Figure 15a for the quadrupole (L=2) contribution. 

(Ein+Eout) i n  

Ruffini (1973) ,  however, has addressed the more practical case of Zeri l l i ' s  
problem wherein the particle i s  assumed to  possess a nonzero kinetic enersy 
a t  infinit  . 
source S t $  given by 

Solving Zeri l l i ' s  Equat ion (3-67) for a Fourier-transformed 

3 (=w 
Ruffini demonstrates t h a t  the spectrum aJes not vanish a t  low frequencies 
( a s  i t  does in Figure 15a for v = l ) .  His results (Figure 15b-d) i l lus t ra te ,  

* 
This result appears contradictory i f  one allows Peters' s c a t t 4 n g  problem of 
Figure l l a  t o  evolve into trajectory 2 of Figure l lb  (cipture, :?M) a d  f i n -  
ally lets b=O. B u t  for b=O there i s  no curvature o f  i : ~ !  trajectory. 
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i n  f a c t ,  that  large amounts of energy are emitted there.  
his comparison of quadrupola (L=2)  contributions for  varying i demonstrates 
the dramatic e f fec t  of assuming t h a t  the par t ic le  has a velocity a t  i n f i n i t y  
( v > l ) .  Furthermore, as shown i n  Figure 15c-d, the gravitational tensor rad- 
fa t ion emitted outward i s  f l a t  a t  the ?wer hLa-monics for quadrupole (L=2) 
and higher multipoles. This further substantiates the e a r l i e r  discussion 
(Figure 13) of the inefficiency of tensor radiation as a synchrotron mech- 
anism. There is  !.o bremsstrahlung i n  the sense of Figure 12. 

In Figure 15b, 

Umklapp & Gravitational Dipole Radiation 

The mu1 t ipole  expansions considered e a r l i e r  contain dipole contributions 
which are usually argued away, based upon the Newtcjniar. principle o f  equiv- 
alence tha t  iner t ia l  and gravitational mass are  the same. This means t h a t  
i f  the gravi ta t ional- to- iner t ta l  mass r a t i o  i s  identical  for  a l l  components 
of a massive system, gravitational dipole radiation vanishes i n  the center 
of momentum system - due t o  conservation of :inear momentum. Although neither 
the Newtonian nor the Einstein theory of gravitatier! Assurrles tha t  mass must 
be posi t ive-def ini te ,  introducing the concept of negative mass does not nec- 
essar i ly  change this argument against gravitational dipole radiation ( the  
sign of the grz;i tational constant G is  also important). 
made simple i t  we recall  Sondi’s multipole representation wherein the mass 
monopole, dipole,  and quadrupole are  a l l  non-zer:, and coupled together, as 
seen i n  the Newman-Penrose conserved quantity D -mQ i n  Eq (3-751, o r  i n  

* 

Nor is the question 

2 

i q  (R-15). 

To cer ta in  observers momentum simply need not be conserved, and i n  such 
frames gravitational dipole radiation may serve a meaningful purpose. The 
quickest example of such a process is found i n  so l id  s t a t e  physics where 
thermal resistance cannot be accounted for by the normal convention o f  mom- 
entum conservation. The no t ion  o f  “umklapp ,“  due t o  Peierls (1929, 1955) 
must be invoked. 

Conventional conservation o f  energxi 3fiqentum i n  the l inear  quantum 
theory are  represented by (assume (J . 5-vectors) 

* 
This does noL rule o u t  mass dipole pulsations , however (Campolattaro 
& Thorne, 1970). 



74 

I f  you now consider a c r y s t a l ,  and you feed momentum i n t o  one s ide  o f  i t  

i n  the laboratory ,  then accordin9 t o  the normal process o f  (5-18) a l l  o f  
t h a t  momentum has t o  come out  the other  bide. There i s  nothing ' 7  the  theory 
which accounts f o r  the thermal iza t ion  o f  phonors; the c r y s t a l  l a t t i c e ,  hence, 

has i n f i n i t e  thermal conduc t i v i t y  irr zero thermal res is tance.  Eq ( 5 -  
cannot exp la in  the known behaviour o f  c r ys ta l s  f o r  an observer i n  the 

1 aboratory center-of-momentum frame. 

Admittedly, t h i s  equation f o r  momentum conservation i s  a l i n e a r  one 

imply ing the  need for a nonl inear  mechanicm t o  account for the  therma 
& 

8b) 

i za- .. 
t i o n  of phwon populat ions. 
stead of (5-18b), which works, and i t  i s  known as "umklapp": 

But  Peie * I s  presents a l i n e a r  mechanism i n -  

where $ i s  a recip-oca1 l a t t i c e  vector .  One way o f  v i s u a l i z i n g  umklapp i s  
t o  r e c a l l  moments i n  o l d  Western movies when the  wagon whesls appear t o  s p i n  
backwards. This i s  an o v e r s i m p l i f i c a t i m ,  kqwever, because thermal iza t ion  
and entropy are r e a l .  

For a pe r iod i c  l a t t i c e ,  the wave-vectors k3 and (k3+G) are  i nd i s t i ngu ish -  

able. Normal momentum conservation (5-18b) and uml:lapp (5-18c) a re  repre- 
sented i n  F igure 16 f o r  t he  l S t - B r i l l o u i n  zone i; two-dimensional k-space. 

s FIGURE 16 
I 

(a) Normal (b) Umklapp 

Whensoever the normal process o f  momentum conservation (5-18b) exceeds the  

* 
The "axwell-Dirac theory (second quan t i za t i on ) i s  nonl inear ,  f o r  example. 
There, Eqs (5-18a,b) are inadequate due t o  photon-photon i n t e r a c t i o n .  
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Joundary o f  t h e  l S t - B r i 1 l o u i n  zone, umkldpp ensues and b r i r g s  i t  back i n t o  
t h c  zone, as ' n  F i g u r e  16b. 

t h e  d i r e c t i o n  o f  ,ne "Poynt ing v e c t o r "  o r m e r g q  f l w  d f  Eq ( 5 -  Ya). 
onset  o f  umklapp a l s o  r c n s t i t u t e s  t h e  onset  o f  an i nc rease  i n  system entropy.  

Umkl2pp destroy'  momer, am and aLt tha i ly  changes 

Tbe 

The n o t i o n  o f  umklapp can a l s o  serve as a i i n p a r i t a t i o n  of  sal,t! o f  t h e  

n o n l i n e a r  e f f e c t s  o f  n o n l i n e a r  r a d i a t i o n  theo ry  - and herxe, i t s  apF"- - 

t o  g r a v i t a t i o n a l  r a d i a t i o n .  The n o n l i n e a r  wave-wave i n t e r a c t i o n  o f  c J l l i d '  -15 
p l a n e  waves can be t r e a t e d  i n  such a fashic , i  ( F i g u r e  16b j .  The non:inear 
s c a t t e r i n g  o f  g r a v i t a t i o n a l  r a d i a t i o n  can be analyzed t h i s  way. Apd, i c  

f a c t ,  s c a t t e r i n g  o f  g r a v i t a t i o n a l  r a d i a t i o n  f rom t h e  backgrouni  geometry it- 
s e l f  (such as t h e  Schwarzschi ld  background: can occur  w i t ' ,  an umklapp meoh- 
anicm. L a s t l y ,  i t  can be used t o  analyze g r a v i t a t i o n a l  " t a i l s . "  

Umklapp does n o t  n e c e s s a r i l y  havs t o  be g r a v i t a t i o n a l  d i p o l e  rac i i a t i ov ;  i t  

s i m p l j  p rov ides  f o r  a n o n l i n e a r  source c mom +.urn i n  a l i n e a l  fa>t.,ion. 

Hence, i t  has a meaningful  p l a c e  i n  t h e  a s t r o p h y s i c a l  t heo ry  o f  thermal iza-  
t i o n  due t o  g r a v i t a t i o n a l  i n t e r a c t i o n .  I f  a d e i t y  feeds w n l i n e a r  g r a v i t a -  

t i o n a l  p l a n e  waves i n t o  one s i d e  g f  a c r y s t a l  ( p e r i o c ' i c  s t r u c t u r e )  Universe, 
no one expects them a l l  t o  come o u t  t h e  o t h e r  s ibe .  

i m p l i c a t i o n  o f  a l a t t i c e  s t r u c t u r e  i n  g e o m e t r i z a t i o n  i t s e l f ,  which can be 
c h a r a c t e r i z e d  by g r a v i  t a t i o r . a l  umklapp. The p e r t u r b a t i o n s  huv due t o  one 

g r a v i t z i i o n a l  Have g i v e  t h e  background g e o r e t r y  a p e r i o d i c  s t r u c t u r e ,  which 
behaves l i k e  a g r a t i n g  clr moving l n i r r o r  and s c a t t e r s  o t h e r  g r a v i t a t i o n a l  
waves ( B r l l l o u i n  s c a t t e r i n g ,  1927). 
g r a v i t a t i o n a l  wwes .  

There i; a l s o  an obvious 

Thus, t h e r e  i s  a Bragg c o n d i t i o n  f o r  

G r a v i t a t i o n a l  umklapp, however, dccs r e s d i l y  t r e a t  d i p o i e  r a d i a t i o n  mech- 

anisms. Two p a r t i c u l a r  problems cme t o  mind: Mo t ion  o f  t h e  e n t e r  o f  ma-; 
i n  two-body systems (which i s  known t o  e x i s t  i n  c e r t a i n  t h e o r i e s ) ,  and 
t h e o r i e s  whlch d i s p e l  t h e  Newtonian p r i n c i p l e  of equiva lenc-  (m fm j .  

I Y  
A c c e l e r a t i o n  o f  t h e  cen te r  o f  T ~ S S  o f  t h e  two-body problem i s  CcnsidereG 

tcr e x l s t  I n  genera l  r e l a t i v i t y  by L e v i - C i v i t a  (1937) ,  b u t  t h f s  i s  demonstrate? 
t u  be i n  e r r o r  by RoDertson (1938) and Rob - r t s o n  & Noonan (1968).  

many o t h e r  t h e o r i e s  o f  ( J r a v i t a t i o n  do p r e d i c t  such an e f f e c t .  

* 
1 w e v e r  
., ..L- 

:at.,  K as 

t h m f r o m  Whitrow & Morduch (1965) t h e  p a r a m e t e r i z d  L l : x . - ~ i ? s  congare as 
*See a l s o  S c h i l d  (;362). 
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Eravi ta t ion  Theory Acceleratiop Of CeQter Of Mass -- 
Ger --a1 Relativity 

Scalar Potential (Variable c )  
Vector Potential - Parameter i id  (p )  
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A l l  of the theories which exhibi t  an acceleration o f  the ccnter-of-ntac: 
i n  the Cd-body problem a lso  emit gravi ta t icnal  dipole radiat ion a s  a con- 
sequence of radiation reaction and coaservrtion o f  momentum. 

metric can be thought of  a recoiliny under gravi ta t ional  uwklapp. 
The background 

A breadown i n  the equivalence pr inciple  (mass i s  a tensor,  not a scalar :  

Recent kork by Nordtvedt (1968, 1969). Dicke 
mA3#m6 -,) a l so  results i n  gravi ta t ional  dipcte  radiat ion,  i.r addition t o  
producing mass anisotr-;pies. 
(19f3), Will (197:). Thorne S Will (1971). and Will a Nordtvedt (1972) s tudies  
mass anisotmpies  i n  t h e  motions of massive, self-gravi ta t ing sj-stems. This 
"dordtveut effect"result5 i n  gravitational dipole radiation and gravitational 
urn:.' -., i f  the eCfect exists. In par t icu lar ,  Brans-Dicke-Nordtvdt 
" ).. lrk?es'' should :mi t dipole raeiarion during co1:isions. 

1;: 

Backscatter (Parker,  1972). like qravi ta t ional  " t a i  Is ,'* and gravi%tionai  
shoci waves a re  a i so  admirably treated by gravitational unklapp. 
also occur i n  the peri-dic l a t t i c e  of a n e u t r o n  star. T h i s  is pertinent not 
only for  gravitational radiation b u t  a l s r  for  the propagation o f  optical  and 
acoustica: (sound: phonon branches there. 

Unklapp can 

5ravi tational dipcle  radiation and UmklapD a r e  discussed further i n  Appen- 
ciix tr, based upon angular momentum conservation laws in general r e l a t i v i t y .  

Gravi tational gtterbewegufl 

Standing rlrves are  important in physics, f o r  example i n  characterizipg the 
e lec t r ica l  nroyei-ties o f  ilisulators i n  sol id  s t a t e  physics (the electron vel- 
oc i t ies  form standing waves). 
o f  waveguides. 

Standing waves a r e  a l so  importa7t i n  the theory 
Furthermore, they manifer t themselves in  the theory o f  gravi ta t ion.  

* 
See a l so  Hawking ; 1972).  



77 

The standing wave solut ions c f  the scalar, vector, and tensor wave 

equations i n  rad ia t i on  theory cjive r i s e  to  zitterbewegung. The assumption 
of both incoming and outgoing rad ia t i on  a t  i n f i n i t y  f o r  boundary conr'itions 

resu l t s  i n  advanced (Ritz, 1908) and retarded (Lorenz, 1867) solut ions which 
together canprise s t ~ n d i q  wves w i t h  no outgoitig rad ia t i on  a t  a ? l .  The 

classical  hydrogen a'. m, f o r  example, i s  s tab le f o r  standing wave s0iut'ioc.s; 

quantum mechanics i s  not necessary on t h i s  basis alone. 

Sti.nding waves l ikewise occur 'in g rav i ta t i ona l  rad ia t i oc  thecry. A s m a l l  
mass i n  the presence of such standing waves w i l l  go i n t o  a j i t t e r i n g  o s c i l l a -  

t i o n  between the nodes o f  the standing waves and resonate a t  twice (quadrJ- 
pole) the frequency o f  the rad ia t i ve  source. 

Gravi tat ional  standing waves appear i n  the analysis o f  c y l i t d r i c a l  wav6  

by Harder (1958, i i ;  it5 we l l  as the work o f  Thorne (:969, 111) on nonradial 
pulsations o f  neutron s tars  using the Reqge-Wheeler formalism. Thorne (1968) 

a lso presmts a r igorous treatment o f  j r a v i t a t i o n a l  rad ia t i on  dampiqj i n  
terms o f  a standing wave analysis which concentrates a t ten t i on  on the poles 

o f  the S-matrix ( the complex frequencies *=J+i/T a t  which the incaning rad- 
i a t i o n  vanishes). For a l l  resonances i n  the quadrupole standing-wave norma1 
modes o f  various neutron s t a r  models, the poles a l l  l i e  i n  the upper h a l f  of 

the complex frequency plane - which corresponds t 3  damping (and not a n t i -  
damping) o f  the exponential exp(iwt). 
such an astrophysical object, z i  tterbewegung ensues and the smaller p a r t i c l e  
osc i l l a tes  i n  resonance u n t i l  i t  radiates i t s e l f  away. 

If a p a r t i c l e  i s  ir the presence of 

Scat ter lnq 3 Absorption Of Gravi tat ional  Radiat ion 

A general izat ion o f  the vector (electromagnetic) scat ter ing problem t o  :en- 
sor plane-waves resu l t s  i n  an op t i ca l  theorem and scatter ing cross-section 
f o r  g rav i ta t i ona l  rad iat ion.  I f  we consider the r ra t te r i ng  of hpb i n  (3-33)  
from a tensor scatter ing center f.,,, (an antenna, f o r  example) 

.t .. 

a Gegenbauer expansion o f  the inc ident  plane-wave p a r t  gives i n  the usual 
fashion (using the Einste in  po lar izat ion tensor E. ; 

a *  
L, hr b*f&vF v\ (s-21) 

%t > 
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which i s  the op t i ca l  theorem f o r  tensor scatter ing.  
axis of c i r c u l a r  s:metry, the antenna cross-section reduces t o  (see k'einberg, 

1972, o r  R u f f i n i  & dheeler, 1369) 

For an antenna w i th  an 

where '-? i s  the natural frequency o f  f ree  o s c i l l a t i o n  of the antenna,; i s  
the t o t a l  decay r a t e  o f  f ree  oscillation, ?grau i s  tho decay r a t e  of f ree 

o s c i l l a t i o n  due t o  the re-emissiw o f  grav i ta t ional  radiatir.2, and rt=rgrav/;. 

This cross-section i s  maxirrw wthen the antenna i s  perpendjculat t o  the 
grav i ta t ional  w v e  (2=7/2).  

The signif icance o f  an opt ica l  theorem (a lso known as the Ewald-Oseen 
Ext inct ion Theorem or  the Bohr-Peierir-Placzek r e l a t i o n )  f o r  l inear ized tenscr 

rad ia t i on  i s  t ha t  i t  represents a u n i t a r i t y  cf the scattering-matrix. I t  

also const'tgtes Huyghen's p r i n c i p l e ,  which we know i s  not  v a l i d  i f  there 
e x i s t  grav i ta t ional  t a i l s  - from our discussion o f  the Bcrndi news %nction. 

An idea of the behaviour o f  g rav i ta t i ona l  tensor scat ter ing i s  represented 

by Figure 17 from Price 8 Thorne (1969), f o r  2 neutron s tar .  

it i s  in terest ing t o  note tha t  the scattered spectrum o f  Pr ice b Thorne i s  
i den t i ca l  t o  ( 5 - 8 )  f o r  the Kepier problem and the spinning rod o f  Figure 1, 
provided L=2 and Y=2 f o r  even-pari ty, quasi-normal pulsations. Vishveshwara 
(1970) also considers such scatter ing f r a n  the ef fect ive potent ia l  o f  Figure 

5, maintaining tha t  the scattered rad ia t i on  cantains the signature o f  the 
Schwa- r s c h i l d  "black hole." The scat ter ing o f  scalar gravitons from ro ta t i ng  

Kerr "black hole;" i s  discussed by Misner (1972) and Press b Teukolsky (1972) 
w i th  the in terest ing conclusion tha t  the scalar \;we i s  ampl i f ied as i t  

scatters o f f  the hole. 

I n  the vector theory o f  grav i ta t ion,  cI' course, there are the d i r e c t  ana- 
logues o f  electromagnetic scatter ing phenamena such as Mie scatter ing o f  
grav i ta t ional  (Spin-1) waves. 

-- Detection - 8 Experimental V e r i f i c a t i o n  Of ;,ravi t a t i ona l  Padiat ion 

I f  you r e c a l l  frm Newtonian mechanics that  f o r  any nonuniform g rav i ta t i ona l  

there e x i s t  grav i ta t ional  gradients, you r e a l i z e  that  you can read i l y  d i s t i ng -  
u i sh  between grdvi t a t i ona l  and nongravi ta t ional  accelerat ion ef fects.  I f  you 

are i n  f r e e - f a l l  i n  an inverse-square f i e l d  ( i n  an elevator, i f  you wish), d 

measuremrnt wi th  i n e r t i a l  sensors o f  the g rav i ta t i ona l  oradient ccmponents i r  
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your elevator frame w i l l  not only d is t inguish such acclerat ion from non- 
grav i ta t ional  ones, but i t  w i l l  give you the value o f  the f i e l d  as wel l .  

Einstein 's p r i n c i p l e  of equivalefice, inportant f o r  correspondence with the 
Minkowski frames o f  r e s t r i c t 2 d  r e l a t i v i t y ,  i s  v a l i d  only i n  a uniform 

g rav i ta t i ona l  f i e l d  ( " f i c t i t i o u s "  farces a r i s ing  frcii the choice of coor- 
dinates and hence g , ,  are not questioned here). 

are not known t o  e x i s t  i n  astrophysics; hence h i s  p r i n c i p l e  i s  a tautology. 

i c ,  essent ia l ly  a g l o r i f i e d  version o f  
the same thing, the Aewtonian grav i ta t ionz? Gradient or t!dal coaponent i n  

c lass ica l  mechanics. 
i n t e n s i t y  w i th  mult ipoles (quadrupoles, etc. 1 i n  Eq (2-32, t ida l  stresses 

can be determined from the R oio components o f  the Riemann tensor (Eq 1-2 
of Appendix A )  i n  the tensor theory o f  grav i ta t ion.  

Riemann stresses l i e  a t  the basis o f  the construction o f  g rav i ta t i ona l  

But sur)! m i f o r m  f i e l d s  
I-. 

The R i m a m  curvature tensor R _. 
. A i  i, v 

Instead o f  taking the gradient of the scalar f i e l d  

i 

These t i d a l  forces w 

To f i r s t  order i n  the l i n e a r  perturbat ions huu of g,,, 

t h a t  

rad ia t i on  detectors. 

Appendix A determines 

From Einste in 's  quadrupole rad ia t i on  i n  (3-26) and (3-27), which lead t o  
the l inear ized quadrupole power formulae (3-29) and (5-1), the non-zero 
Newtonian ti !e producing components due t o  a g rav i ta t i ona l  plane wave prop- 
sgating i n  the X -d i rect ion are caused by h23 and (h22-h33) i n  (3-26) o r  
(3-37). From Eq (5-23) above, usfng :3-24), 

1 

i 1 Ncte tha t  R oio has zero trace (R 01L1+R*~20+F?3030=0) which means t h a t  the 

quadrupole detector Qi 
( i n  Chapter 3)  maintains a constant volume under the Newtonian t i d e  compon- 

ents o f  stress. 
object  by exc i t i ng  i t s  quadrupole moment Qij. k cy l inder  (Figure 18a), for 
example, has two transverse modes o f  polar izat ion,  separated by 45' due t o  
quadrupole s y m t r y .  
which i c  i nd i ca t i ve  o f  a scalar component o f  radiat ion.  No detectors have 
been designed f o r  mcasdring stresses due t o  electromagnetic (vector) theories 

responding t o  the Einstein-Fddington-Weyl plane-wave 

These components o f  transverse stress simply deform the 

A d isk (Figure 18b) also exhib i ts  a r a d i a l  stress 

* . - . -  t i n s t e i n  (1911) d id  not understand t h i s  when he f i r s t  establ ished the pr inc ip le .  



81 

o f  gravitation, nor i s  there consideration o f  d i p o l e  mechanisms. 

+ 
(A) TENSOR 

FIGURE I8 

Experimental work on gravi tat iof ia l  radiat ion has bew~ pr imari ly fostered 
by Weber, e t  a1 (1960-1972), who measure responses of a gravi tat ional  
quadrupole antenna t o  supposed radiat ion sources. Although they have 
found coincidences between the i r  two cy l indr ica l  antennas, these measure- 
men+: k v e  not been duplicated. The unusually large f l u x  (10 ergs/cm -sec) 

given by Weber's measurements (Figure 19) indicates unphysically short l i f e -  
times of ast ropbsica l  objects such as the 6alaxy, and consequently a grea t  

deal of theoretical work on tensor synchrotron mechanisms i s  a d i rect  re- 
s u l t  - as we have seen. One should also note i n  Figure 19 that the coin- 
cidences occur not only when the galact ic center i s  i n  view but also 12 
hours l a t m  when i t  i s  occulted by the earth. Others ( k r o n  Il Hofstadter, 
1969) present argments that  high-energy cosmic riys can excite phonon 
osc i l la t ions o f  quadrupole symnetry i n  gravi tat ional  antennas !cl. tolescopes) 
and be mistaken fo r  grav i ta t ional ly  induced osc i l la t ions (which &re o f  the 
order o f  a nuclear radius!). Some worh on the generation o f  gravi tat io l la l  
radiat ion i n  the laboratory i s  available (Weber, 196C; and Forwart,  1966), 
although the quadwpole power factor o f  erg/sec i n  Eq (3-29) i s  more 
than enough t o  discourage the most ardent experimentalist. 
experimental work i s  presented by Logan (1973). 

4 2 

A good survey o i  

Attempts other than synchrotron mechanisms to  explain the high f l dxes  

measured by k b e r  Include the amplif ication o f  gravitons upon scattering 
from rotat ing Kerr "black holes" (Misner, 1972; and Press b Teukolskv, 1972) 

* 
This suggestion i s  rebuffed by Ezrow, e t  a1 (1970), however. 
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as  well as the collisior?. o f  black holc.-s which cannot bifurcate (Hawking, 
1972). 

sap1 i ngs . 
Hawking's mechanism i s  reminiscent of u s i n g  J power saw t c  cut 

B u t  ra ther  than build detectors,  some observers have been using natural 
gravitational antennas - for hundreds o f  years. 
a t t rac t ion  of two spheres, t h a t  is, gravi ia t i>nal  a t t rac t ion  i tself ,  as  a 
"gravitational antenna" indicating the existen e of gravi ta t ional  waves i n  
order t o  explain the trechanisrn D f  gravitation. Laplace uses the planetary 
o r b i t s  of the solar  system as  a rteans o f  determining perturbaticns caused 
by f in i t e  veloci t ies  of propagation of fields, and hence of waves. 
experiments a r e  being performed us ing  the quadrupole modes of the ea.-th, 
the moon, the earth-moon system, and the Mariner 6 spacecraft  as  gravitational 
antennas. 
of the ear th  t o  gravi ta t ional  radiation, makes t h ?  srggestion t h a t  coinci- 
dences might be autocorrelated between seismic data and astrophysical pul- 
sars .  

carried obt by Dror Sadeh !1972), who claims t o  have correlated t e r r e s t r i a l  
and lunar seismic a c t i v i t y  w i t h  pulsar CP 1133 - much t o  the consternation 
o f  seismologists such as  Mast e t  a1 (1972). 

Hooke (1671) considers the 

And now 

Dyson (1969), i n  the process of considering the seismic response 

This suggestion gives negative r e s u l t s  frorn sore authors (Wiggins 
Press, 1969), but an interest ing f l u r y  of experimental work is being 

In order t o  make this discussion of the t idal  stresses complete, i t  is 
worthwhi 1 e t o  consi de* the Riemann stress components i n  the Regge- Wheel er- 
Z e r i l l i  formalism 
asymptotic tide-producing , transverse components a r e  

1 For a wave propagating along the X -axis as before, the 

where 

which appears in the tensor harmonics of Appendix K. 
pretation of these s t r e s r e s  i s  found by referr ing t o  Figure l 4 h .  
GCCC"' - : t ions are also discussed by Finloy (1971). 
t r c  ' J by Manasse (1563). 

The phys'cal inter- 
Tidal 

Tidal deforniation i s  
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Astrophysical Mi scel lania 

There are numerous sources of g rav i t a t iona l  radiation i n  astrophysics 
which have been examined w i t h  the theoretical results of Einstein's nonlinear 
tensor theory o f  g r a v i t a t i o n .  The n o n r a d i a l ,  asymnetric pulsations of stars,  
i n  particular neutron stars,  have been studied quite extenlr I 
-- e t  a1 (1967-1970) , using the familiar Regge-Wheeler foriml4: I. b ~ +  applied 
t o  general relativist ic hydrodynamics. The odd-pari t y  perturt,tiorls des- 
cribe differenkial rotation, while the even-parity perturbations desc -ibe 
the pulsations. 
s te l lar  oscillations under gravitational r a d i a t i c 3  and a study of the as- 
sociated relaxation times. However, i t  is limited i n  that Ruderman (1968, 
1969) has presented moaels of neutron stars w i t h  crystalline mantels which 
support shear stresses. 
slowly rotating neutron stars. 

by Thorne 

Thorne's work is a thorough treatment of the damping of 

Ipser (1971) extends these investigations t o  

P u l s a t i n g  stars prove t o  have another significance i n  the astrophysical 
theory of g rav i t a t ion ,  as pointed out  by Morganstern & Chil l  (1967). 
Brans-Dicke (1961) theory a transverse scalar (Spin-0) component ? E  the 
radiative Riemann tensor is predicted, whose source i s  a monopole oscilla- 
t ion  (see Robinson & Winicour, 1969). For a radially symmetric pulsation, 
scalar waves can be radiated away b u t  not tensor waves. 
t i o n ,  furthermore, damps ou t  the rad ia l  pulsation of the neutron s ta r  i n  a 
matter of seconds. The existence of the scalar field can hence be ruled out 
i f  neutron stars are found t o  pulsate. 

In the 

Such scalar radia- 

Gravitational collapse with asymnetries is  another aspect of gravitational 
mdiation theory which has astrophysical importance. Symmetric collapse, o f  
course, does n o t  radiate tensor rad ia t ion  due to Birkhoff's theorem. Ar-pn- 
metric collapse is  treated by de l a  Cruz, Chase, & Israel (1970) who deter- 
mine that ingoing radiation (down the Schwarzschild "black hole") causes 
external asymmetries t o  decay quickly with a brief relaxation time on the 
order of EGM/c . They conclude t h a t  "black holes" cannot serve as tensor 
synchrotron mechanisms, a result consistent w i t h  Chandrasekhar's triaxial 
Jacobi ellipsoid of Figure 9 wherein asymnetries are quickly radiated away 
1. v-ing collapse and the "black hole" becomes a Maclaurin spheroid. 
rad ia t ion  o f  such asymnetries i s  also discussed by Israel (1971), Penrosc & 
Floyd (197:) ,  and Penrose (1972). 

3 

The 
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* 
Excited "black hcles" a r e  discussed b.y Fackerell (1971), Peres (1971). 

and Goebel (1972). They a r e  a l so  relevant in the context of "black hole" 
co l l i s ions ,  wherein the gravitational radiation is en t i re ly  tensor radia- 
t ion according t o  the analysis cf  Hawking (1972). Th i s  i s  simply because 
Brans-Dicke "black holes' nave no sca la r  f i e l d  Hence, no Brans-Dicke scalar  
radiation can be emitted d u r i n g  the col l is ion of two "black holes." 

In the mzny and varied e f f o r t s  t o  study the behaviour o f  nonlinear tensor 
gravi ta t ional  radiation, low frequency and h i g h  frequency approximations 
have been made. Low frequency work, o f  course, is what leads Ruffini (1973) 
t o  the important conclusions of Figure 15. Likewise, low frequency analysis 
i s  the basis of Bergmann's (1971) i. ,destiSation and of the Mariner spacecraft  
tracking studies o f  Anderson (1971) (see alsd Gibbons, 1971) i n  an e f f o r t  t o  
observe s c i n t i l l a t i o n s  due t o  gravi ta t ional  waves. 
imations, on the  other hand. a r e  discussed by Isaacsor: (1968) as well as 

Halpern (1971), Isaacson 8 Winicour (19721, arfi Kafka (1970). 
cance o f  Isaacson's work has already been stated i n  the  discussion of his 
resul tant  stress-tensor.  Kafka assumes the goss ib i l i ty  tha t  gravi tationa'l 
radiation m i g h t  be of primordial origin.  
is fur ther  pursued a t  very long wavelength by Rees (1971) and critiqued by 
Jackson (1972). T h i s  work a l l  emphasizes the cosmological significance of 
gravitational radiation. 

h i g h  frequency approx- 

The s ign i f i -  

Priinordial gravitational radiation 

Misner's (1968) mixmaster unlver ;  : i s  another interesting embodiment of 
gravi ta t ional  radiation i n r e l a t i v i s t i c  as trophysi cs. 
the Universe as  a gravitational waveguide, much l i k e  the work of Campbell & 
Morgan (1971) which employs a gravitational Debye potential  formalism and 
the work o f  Marder (1958, 11) on cyl indrical  s:;.nding waves. 
& Jacobs (1 972) maintain t h a t  tachyons shuuld produce gravitational Cerenkov 
radiation, although tachyonic system are not very popular among astr9-  
physi c i  sts. 

I t  essenti  a1 l y  t r e a t s  

Lastly, Lapedes 

Meditations Upon A Few Thouqhts - -- From Classical Fhysics 

There are a number o f  topics i n  the classical  astrophysics of gravitational 
radiation which must not go unnoticed. 
know tha t  controversial thought -: . r radi t ioval ly  wherein l i e  many of the 
great advancements i n  human s- ienco.  

They a re  controversial .  And yet  we 

Ccnsequently, i t  is a greater  heresy 

* 
They can be excited by a p a r t i c l e  f a l l i n g  into the geometry, as ir! the 
f e r i  11 i problem. 
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t o  ignore such thoughts t h a n  t o  weigh their merit - a l t h o u g h  many of them 
should not be dignified by a great deal  of detail.  

The coricept of mass i s  fundamental t o  any theory of gravitation and hence 
t o  any theory of gravitational radiation. B u t  i s  mass posi tive-definite, 
3r does Nature provide for  states cf negative mass ( F s p p l ,  1898) and negative 
matter or anti-matter (Schuster, 1898)? We know, for example, t h a t  there 
exist negative energy instabilities i n  nonlinear plasma theory (Sagdeev & 
Galeev, 1969). 
preted, perhaps, i n  terms of negative mass ( u s i n g  the negative mass shell 
of p m ) , a n d  i f  so are there such t h i n g s  as negative energy photons and 
g r a v i t o n s  (e.g. Misner, 1972) associated with jumping  the energy gap? Such 
conjectures have been made i n  explaining the behaviour o f  quasi-stellar 
sources. Indeed, in view o f  the negative mass solutions manifesting them- 
selves i n  the only known L.  -t radiative so lu t ion  o f  Einstcin's nonlinear 
theory, we are forced t o  address this problem. 
ical whim of  Arthur Schuster. 

Can the Cirac theory 3f negative energy states be re-inter- * 
2 2  

I t  i s  no longer a metaphys- 

I t  is likewise believed t h z t  mass and energy are equivalent i n  relativity 
thedry,  as stated by Eq (3-4) .  
contradiction with the related postulate of classical electrodynamics t h a t  
charge i s  invariant. Gravitational radiation is produced by mass, and i t  
trarsports mass (according to Einstein's theory), while electromagnetic 
radiation is produced by charge - but  does not  transport charge. This 
irreconcilable difference is just cause for rejecting any grounds for an 
electromagnetic analogy i n  the linearized tensor theory o f  Einstein. I t  i s  
an epistemological flaw of the  f i r s t  magnitude and deteriorates any founda- 
t i o n  f o r  a unified field theory based upon geometrization. 
Maywe1 1 theory and the noni i near Einstein theory of energy transport cannot 
be reconciled. 

This assumption results i n  an epistemological 

The linear 

A l s o ,  we must note t h a t  negative energy densities characterize all  g rav i t a -  
t i o n  theory. 
theory t h a t  denies t h i s .  
definite energy are taitological i n  the sense t h a t  they assume a reversal of 
the Poynt ing  vector (gio - g i o )  under time-reversal (reversal o f  incoming and 
outgoing radiation conditions). They assume wSat they attempt to  demonstrate. 

There i s  nothing intrinsic i n  the scalar, vx tor ,  or tensor 
Time-symmetric arguments (Bril l .  1960) for positive- 

* 
Velocity i s  anti-parallel t o  momentum for negative mass. The helicity @/p  
o f  anti-particles i s  directly accounted for i f  anti-particles possess negative 
ma\s. However, see Morrison & Gold (1957) and  Schiff (1958) or this point. 
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Furthermore, mass i s  assurned t o  dilatate as stated by Eq (3-5), i n  the 
Einstein theory of relativity. The structure of g rav i t a t iona l  radiation 
theory mast n o t  collapse just becduse this single postu'ate proves to be 
untenablg if  there are future developnents in electrodynamics. Likewise, 
there is  a "second posttilatE of general relativ ' ty." In other words, con- 
vention has i t  t h a t  the velocity of a photon  ic  independent o f  the velocity 
of i ts  source. I f  the nonlinear tensor theory of gravitationa: r ad ia t ion  
i s  allowed t o  be lineari'ed and characterized witn all  of the other a t t r i -  
butes o f  electromagnetic radiation, then must not  gravitons likewise be 
independent o f  the velocity of theii source? In contrast, there i s  a 
ball ist ic theory of grLvi t a t i ona l  rad ia t ion .  The Ewald-Oseen Extinction 
Theorem (the 9ptical Theorem) reviers the second postulate indeterminable 
by experimental method for both photons and linearized gravitons. 

* 

Is J gravitation31 wave stable? The contribution o f  the Regge-Wheeler 
(1557) s t u d y  o f  the stabij i ty of thekhwarzsch I d  metric i s  the implication 
t h a t  1"o physical theory can be considered seriously until i t  has been demon- 
strated t o  be stable. 
why n o t  question the stabil i ty of the graviiztional waves h ? Thc. regen- 
erative nature o f  seIf-interac.;icn in the nonlinear theory of general 
relativity i s  important in such considerations.. 

Whence, i f  the integrity of nUV i s  questioned then 

U V  

I*- tho gravitc,, stable? This aspect of the question of stabil i ty is  taken 
.irom the quantized linear p o i n t  of view rather t h a n  the general nonlinear wave 
and resonance instability discussed above. I t  becomes important i f  experi- 
mentalists f a i l  t o  detect such r ad ia t ion  or i f  there exists a "cosmological 
redshift'' o f  the gravitational rac'iation power sp=,trum (which there should 
be f n  order t o  avoid an Olbers-Ches lux-Halley parado;\\. Decay mec'*snisms 
for gravltons, w i t h  and without rest-mass, can be readily i.+rov;sed. The 
dispersion relation for vector (Spjn-1)  gravitons includes an effective mass 
term fron, the Proca theory or from the propagation of gravitons throilgll matter 
using the Weyl tensor ( i n  direct analogy w i t h  "plasmons," which ere photons 
o f  effective ndss propagatinn th rough  a n  electron gas). The vec?w (Spin-1)  
massive gravltor: i s  readily extended t o  the tensor (Spin-2) t h w r y  by a d d i n r  
Proca terms t o  the tensor !rave e.yatson. 

Lastly,  we mention t h a t  there f s  k ,rk 
theories, such as the neutrino theory o f  
these i s  presented . ; i t h i n  the context of 
Appendix V.  

'This postulate has marginal experimenta 

n the literature on compo: ! . , e l d  
: i g h t .  A candid discussion of 
g r a v i  ? a t  ifma1 radiation theory i n  

basis (Wilson, 1972). 
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I 

iionl inear Effects In Astrophysics 

Several aspects of the nonlinear nattire of the tensor theory cf gravita- 
tiona! radiation are signiCicant and  must Le kept i n  mind as nne interprets 
the astrophysical properties of the Universe. The first characteristic of 
Einstein's geometrized theory of g r a v i t a t i o n  w h i c h  asserts i tself  i s  the 
remarkable feature t h a t  i t  has no r a d i a t i o n  reaction as  does the 
l inear ,  classical theory of i,axwell and Lorentz. This i s  wiginally due 
t o  Einstein's geodesic postulate, bu t  actually i t  i s  a consequence o f  the 
f a c t  t h a t  the EIti equations of motion fo l low from the noni4near field egua- 
tions because of (3-38). 
geometry is traversed by a geodesic on the bdclwound q u v .  

Referring t o  Fi9ut.e 20, an empty Schwarzschild 

b- 
FIGURE 20 

t!owever, upori inserting a particle o f  small mast m i n t o  tl,r Schwarzschild 
geomctry, the particle does n o t  follow the geodesic 5 ' 4  . rip" b u t  rather t h t  
for  ri + h . The perturbations h p U  are those imp-* .cu  upon the st-ucture 
of the backgrow,d by m and are determined by the very existence of m in the 
geometry. 
get as a d+re,, dividend the new geodesic. 
ically accounted for by tile nonlinear nature of the theory. 
o f  Einstein's theory, however, such as the Regge-Wheeler-Peters-Zerilli 
formal ism are confronted w i t h  the problem of r a d i a t i o n  reactic!: because they 
neglec,t i t .  
assumes the  particle follLws ri 

takes. 
tenabl e. 

LJ \3 i! 

I t  you can zver solve Einstein's nimlinear field equations you 
Radiatiorl  reacticn is automat- 

Linearizations 

Leri l l i ' s  treatment o f  the particlz falling in, if you recall. 
.- w h i c h  f.; t lot  tre trajectory i t  actually 

Only for vacishingly smal" mass , - ~ s O )  i s  the l i  .earized treatment 
1' 



The regenerative feature of E i n s t e i r l s  non l inear  f i e l d  equ; ims i s  
another c r u c i a l  aspec% of t b a i r  p roper t ies .  

sources (Gupta 1957; T h i r i  ing, 1959, 1361). 
Thefields ac t  a s  t h e i r  own 

Iiaving enphasized the nonl inear  nirture of the t e n j o r  rad ia t i o r l  ?ieory, 

we must f i n q l l y  ask ourselves what i t  means t o  t r e a t  the tneory i n  a l f n e a r  
fashion, as w i t h  energy and moinentuv r e l a t i o n s  l i k e  Eqs (5-18a,b) f-om 
quantum theory. Sure lv  we can w r i t e  f o r  en ' rgy 

but what does t h a t  mea?? From the Fork o f  ?au l i  & F ie rz  (1933) and GuGt3 
(1954, 1962) tensor  r a d i a t i o n  i s  :pin-2, i n  
i t a t i o n .  

E inq te in 's  non l inear  theory, f o r  i t  nas ne.:pr k e r :  r ;xn t ize i r .  k c3sudi 
look <-t she 9ehaviodr o f  cc l l dd ing  pl6ne WVJY..?: (5iekores, 1 9 7 ~ ~  1972; ana 
Penrose & Kahn, i971)  and r a d i a t i o n  sc?!f:-ring (Tor-ence & Janis, 1967) 
i l l u s t r a t e s  the naivet; one w s t  have irr L ,  der t o  consider e n q i  and mown- 

cum i n  the normal l i n e a r  fashion (superposi t ion)  

e I I nea r i zed  theory 0 7  Srav- 
Hdwevoi', t h i s  does no t  mean t h - +  Sp' I - :!  "g iav i tons"  e x i s t  i n  

b),  + 63, = c)J 

The se l f - i n te rac t i on  (See e.g. TLrrence & Couch, 1970) oc nonl inear  rad ia -  
t io r .  and the  be$aviour of gravitaciona! " t a i l c . "  {DeWitt 5 Brehrne, 1260; 
Couch k t  a i ,  1968; and H a l l i d y  ti Janis, 1970) a lso  are iormidablc prbblems 
- although s i y r t i f i c a n t  progress ttas beer 3ade since the ;dvent of Bondi 's 

asymptotic apprd:.imation (Rondi eL a l ,  1962) and c f  ti!e Weman-Penrose 
te t rad  formal i sm ( NeWiicifi & Per;rose , 1962). 

We can invcke grav;'-s:ional umk:app ( 5 - 1 8 ~ )  bu t  we ~ J S C  3"': ourselves 
questions about g r a v i t a t i o n a l  d ispers ion  o f  t he  frec;l:Prlcy \J i n  Eq (5-26). 
Gravi t a t i n n s l  r a d i a t i o n  must t r  ]verse i t i t e rs te l  l a r  distancss throiigh a 
"medium" of nonl inear  wave-have i ? t e r L r t i o ? s .  I t  would be FooliTh t o  s ~ p -  

pose t h a t  the frequenr: de+.ected bJ a t t r r e s t r i a i  observer V '  would be the 

theo re t i ca l  one f o r  quadrupole r 3 d i a t i o n  (3-29), namely: J '=2,1.  

son o?tica: and r a d i c  (SCP Charman t 1, 1970) co r re la t i ons  w i t h  b r a v i t a -  

t i o n a l  r a d i a t i o n  detec,, csincrdences arr. o f  major s ign i f 'cance bet,.;;? they 
can help a x e r t d i n  the  d ispers ive  n a t u r e d  ! r i t r t iQgalact ic  space t'; 9ra , ; ta-  

t iona? r a d i a t i  cn. 

c;r :his rea- 
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* 
The f a i l u r e  t o  f ind any electromagnetic and gravi ta t ional  coincidence 

so f a r  is a basis (assuming the g rav i t i t i ona l  data a r e  r e a l )  f o r  maintaining 
t h a t  there is a h i g h  degree o f  sh i f t  i n  frequency - medning that the freq - 
uency o f  the source u (and hence i t s  angul6.- moml!ntm) can !x much less than 
t h a t  measured here on earth.  Synchrotron mechanisms &re then unnecessary 
i n  order t o  r a t iona l i ze  Weber's data. One over-estimates the energy of the 
source because he misinterprets the energy density o f  ke gravi ta t ional  wave 
- due to  the l inear izat ion of the theory. 

Ancjther way o f  presenting the problem of ronlinear radiation is t o  t u r n  again ** 
t o  Eq (5-26). What is Planck's constant 
(which have never been quantized i n  the tensor theory)? 
S;nply be increasing the r a t i o  hgrav/h, one can eas i ly  account f o r  apparent- 
l y  high quadrupole fluxes.  

"h" f o r  gravi ta t ional  phenomena 
Is i t  constant? 

And what about the uncertainty principle? ? s  there  an uncertainty pr inciple  
f o r  gravi ta t ional  phenomena? 

A X A P  3 3i (S-tt) 

Again, what is h ?  How do we know t h a t  we can even measure gravi ta t jonal  
rad! a t i  on? 

Indeed, one must not abuse relationships f o r  the Maxwell theory and the  
quantum theory which have not yet been established f o r  gravi ta t ion theory. 
The c loses t  t h i n g  y e t  t o  gravi ta t ional  quantization is the tensor harmonic 
decomposition of the l inear ized f i e l d  equations. 

W i t h  this we end our query on the nature o f  gravi ta t ional  radiat ion theory. 

* 
Electromagnetic and gravi ta t ional  coincidences are fu r the r  complicated by 
the assrlmption tha t  t h e i r  veloci t ies  of propagation a r e  equal - which may 
n o t  be true. 

t u m  physics, one can use the identical  Bohr quantization condition employed t o  
quaptize the o rb i t a l  angular momentum o f  the Coulomb Kepler problem, and derive 
h f o r  the gravi ta t ional  Kepler problem (the so la r  system). On the basis o f  the 
o r b i t  o f  Mercury this is r ea l ly  the second "Bohr" o r b i t  i f  Bode's law is rel- 

sees another 8 i s t i n c t i v e  feature  of the gravi ta t ional  quantization problem: 
charge i s  quantized and so !s i t s  f i e l d  theory - while ~ t i i s s  4s not,  neither 
is  i ts  gravitational f i e l d ,  a t  the present time. 

** 
To demonstrate the epistemological inconsistency in gravi ta t ional  and quan- 

evant) ,  %=ma 510 I 9 joule-sec, ra ther  than 10-34. In making t h i s  analogy, one 



Gravi tat ional  rad ia t i on  theory has been discussed from the point  o f  view 
of i t s  scalar, vector, and tensor counterpa;-ts. This discussion has not 
ventured t o  ascertain the existence o f  such rad ia t i on  i n  g rav i ta t i on  theory 
btit ra ther  t o  take a candid look and t o  explore i t s  meaning i n  the context 
o f  contemporary physics. 

We have found t h a t  there i s  a theoret ica l  basis f o r  such rad ia t i on  i n  the 
vector and tensor theories o f  grav i ta t ion,  but i n  doing so we have been forced 
t o  address a l l  o f  the fundamental questions about rad ia t i on  thew;!. These 
include the notions o f  rad ia t i on  reaction, the behaviour o f  advanced and 
retarded solut ions, the choice of boundary conditions, the t ransport  of 
energy, t he  meaning o f  energy, the nonlinear nature o f  rad ia t i on  - and egen 
the maning o f  a wave. We have made analogies w i t h  c lass ica l  rad ia t i on  theory 
which are sound i n  the l i n e a r  electromagnetic (vector) theory of grav i ta t ion,  
but they become unsuitable when extended t o  the nonlinear tensor theory of 
general r e l a t i v i t y .  There they have as y e t  no experimental basis. Nonlinear 
electromagnetism, on the other hand, does have some foundation i n  experimen- 
t a l  fact ,  such as Maxwel l -Dirac spinor electrodynamics and nonlinear opt ics  
(both employ nonlinear cons t i t u t i ve  re la t ions 2-14). This i n  turn provides 

reason f o r  arialogy w i th  a nonlinear vector theory o f  grav i ta t ional  radiat ion.  
Nevertheless, we know and understand very l i t t l e  about nonl inear grav i ta t ional  
waves. 

To he sure, superposition must be sac r i f i c  
l inear izat ion,  furthermore, o f  the nonlinear 
t roys any popsi b i  li ty o f  accounting f o r  the 
f i e l d  w i t h  i t se l f .  

d i n  the nonlir,ear theory. The 
f i e l d  equations inherent ly des- 
nteract ion o f  the gravi  t a t i ona l  

The exact rad ia t i ve  solut ions o f  the Bnsor theory o f  g rav i ta t i on  l ikewise 
do not  y e t  render an adequate understanding o f  the problem. 
so lut ion for moving sources i n  general r e l a t i v i t y  allows f o r  negative mass, 
which l i k e  the concept o f  negative energy densit ies, may be ve ry  metaphysical 

Themly exact 
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i n  nature. 
more about the tyranny of mathematics than i t  reveals about the physical 
nature of gravi ta t ional  radiation. 

Indeed, enchantment w i t h  nonlinear tensor theory teaches us 

However, by means o f  l inearized tensor radiat ion theory, we have studied 
the behaviour of mass quadrupole o s c i l l a t o r s  such as the Jacob1 e l l i p so id  
and the two-body problem. As paradigms i n  astrophysics,  they have taken a 
useful place i n  the l i f e  and death of neutron s t a r s ,  binar ies ,  and "black 
holes. " 

By means of l inear izat ion,  we have a l s o  gained i n s i g h t  i n t o  cha rac t e r i s t i c  
features  of the tensor theory which can eventually lead t o  a decision a s  t o  
which of the s c a l a r ,  vector,  and tensor theories  is most consis tent  w i t h  
experimental data. 

Perhaps there has been undue interest here i n  the vector theory of grav- 
i t a t iona l  radiat ion,  bu t  i t  is intimately consis tent  w i t h  c l a s s i c a l  physics, 
quantuin mechanics, and the quantum theory of radiation - which the nonlinear 
tenrs7 theory i s  not. There is- a prodiguous amount of comparison 
o f  physical phenomena w i t h  electromagnetism -. and there always will be. 
Accordingly, an understanding of t he  real  nature of the vector theory is 
of fundamental significance.  

Nevertheless, this query on the nature of gravi ta t ional  radiat ion has led 
us t o  understand bet ter  the cha rac t e r i s t i c s  of 1 i near and nonlinear radiat ion.  
W i t h  a l i t t l e  b i t  of luck, we may even be on our way towards a unified 
picture  o f  the nature of the physical world. 
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I n  an a r b i t r a r y  geometry one is concerned w i t h  i t s  a f f i ne  connections. 
the geometry i s  Riemannian, these a f f i n e  connections a r e  represented by the 
Chri s to f f  e l  symbols 

I f  

The Riemann tensor f o r  t h i s  Geometry i s  defined as 

(W 
The geometry i s  " f l a t "  i f  

the P icc i  tensor R v v  
= 0. When contracted ( u = B ) ,  Rauav gives 

For  a "weak-field:3 approximation o f  the metr ic tensor 

(A- 41 
the two right-hand terms i n  (A-2) and h - J X  then t@ f i c s t  ortier i n  h=h X-n 

(A-3) are neg fg ib ie ,  g iv ing f o r  (A-2) 
hoA, 

&-SI 

( A 4  

and instead o f  (A-:), 

01 # d U R"' ry = R,,,P ppdav-rp,a . 
Ebaluating (A-6) by taking the appropriate p a r t i a l  der ivat ives o f  (A-1) gives 

t o  f i r s t  order i n  h. This may be re-wr i t ten as 
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Gauge Invariance 

I f  one considers an i n f i n i t e s i m a l  cooydinate transformation 

t’le met r ic  tensor i s  changed as fo l lows 

Because, furthermore, guv= nu’- h”” ( ra i s ing  indices) then 

Hence, i f  h i s  a so lu t i on  o f  the wave equation (A-6) 
P V  

then so i s  

This demonstrates the gauge invar iance o f  the  
the perturbat ion o f  h i n  (8-5) i s  n u l l  

!J V 

3 +3 = w *p 

f i e l d  equation (8-4). 

0 

one has what are re fe r red  t o  as “ K i l l i n g ’ s  Equations.” A gauge transformation, 
then, i s  comprised of inhomogeneous K i l l i n g  vectors. 

Einstein Coordinate Condition 

E ins te in  (1916, 1918), i n  h i s  l i r i g i n a l  der iva t ion  o f  the g rav i ta t i ona l  
rad ia t i on  associated w i t h  1 inearized General R e l a t i v i t y ,  chooses t o  def ine 
a tensor wave func t ion  
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subject t o  the following coordinate condition 

(0- 8) 

I t  appears t o  ue a c m o n  misconception tha t  r( .a t ion (8-8) is due t o  
de Donder (1921). and the l a t t e r  i s  often associated w i t h  his name. 
should be more properly credited to  Einstein. 

I t  

The virtue of the Einstein coordinate condition (8-8) is realized i f  one 
reca l l s  the f i r s t -order  l inearized Ricci tensor i n  Appendix A .  With (8-7) 
and (8-8).  Eq (A -6 )  simplif ies  d i rec t ly  t o  

I f  yPv does not s a t i s f y  (B-8), then  one can always find a y'"  and hence 
h"'" w h i c h  do, by performing a gauge transformation (B-1) where nc"=yuu . 

Harmonic Coordi nates 

Another coordinate condition much l i k e  (8-8) due t o  Einstein is the 
"harmonic coordinate" condition employed by de Donder (1921) and Lanczos (1922) ,  
and l a t e r  exploited by cock (1939, 1959). I t  is defined as  

which  i s  not generally covariant and which thereby destroys the general 
covariance of the theory. I t  is  ''harmonic" because the coordinates themselves 
s a t i s f y  OX'=O due t o  (B-10). 
there is the condition 

Defining a metric tensor desi ty  ~ w = J ( - g ) g ' u ,  

equivalent t o  (B-10). 
academi c one. 

The difference between (8-11) and (B-8) i s  a very 
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APwiIDIXC: E I E R G Y M r n P S E U D O T E N S O R  

The energy-momentum pseudotensor i s  demonstrated by Landau & L i f s h i  t z  
(1962) to be 

In the weak-field 1 inear perturbation approximation, howevcr, the pseuao- 
tensor t can I found more directly than  by Eqs (C-1) or (C-2).  The pro- 
cedure i s  mentioned, for example, by Weber (1962). Multiplying the wave 
Eq (3-16) 

by h ' E ,  one arrives a t  
CI 

The covariant divergence i n  (3-3) of the stress energy tensor is 
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h 
Furthermore, the stress energy tensor density Tu" and the stress energy 
pseudotensor density %'" are related by 

From (C-5) and (C-4), then 

Hence, (C-3) can be re-stated, w i t h  (C-6), as 

Expanding the left-hand side of ( C - 7 ) ,  one obtains @-a) 

Ditect comparison of (C-7)  and (C-8) - recalling Eq (8-7) for  yuv - gives 
the first-order stress energy pseudotensor density tPv=J-g tu": 

1 For the particular case of a perturbation h 
(discussed in Chapter 3, Eq 3-25), and n o t i n g  t h a t  J-g-.l for a f l a t  back- 

propagating i n  the X direction 
uv 

ground TI the 
UV' 

Whence, the gravitatlonal energy f l u x  (Poynting vector) i s  determined by 

The first-order pseudotensor tu'' i n  (C-9) provides the basis for studying 
radiation spectra and energy rad ia t ed  i n  this approximation. 
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PPPENDIX D: COESSERVATION (X iTMNU"l& THE EQUIVPLENCE OF 
GRAVITATIWL 8 INERTIAL MQSS 

Angular Momentum & The Pseudotensor 

Having addressed the Landau-Lifshi t z  pseudotensor i n  Appendix C ,  Eq (C-1) 
and (C-2), we need t o  assess its relation t o  conservation laws. The conser- 
v a t i o n  law 

is satisfied by the 4-momentum P' 

which can be written i n  the form of a 3-space i n t q r a l  

Because the quant i ty  in the integrand of (D. ?) is symnetric i n  tile indices 

tD-4 
P , V  we o b t a i n  a conservi tion law of angular momentum 

for  a closed gravitating systm i n  General Relativity. 
conservation condition, one can define a center of inertia system moving under 
uniform motion. 
whereby i t s  coordinates are determined by 

Because of this 

The tenter o f  inertia i s  defined by Moi= const in (D-4), 

RI' = j x"Y-+t-)cyd~ (0-5) 
J (p+ t!k$bV @ 

By performing gauge transformations such as (D-5) one can create or annihi- 
late the pseudotensor t'", which characterizes the energy and angular momen- 
t u m  of gravitational waves - the argument of Scheidegger & Infeld. However, 
tu" does no t  vanish globally under such transformations. 
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Equivalence Of Gravi tat ional  & I n e r t i a l  k4s_ 
Landau & L i f s h i t z  consider the purely g rav i ta t i ona l  case (T””=O)  and 

define 

whereby Pp i n  (D-2) i s  an ordinary 3-space in teg ra l  (i=l12,3) 

Demanding tha t  the metr ic g,, must be asymptotical ly f l a t  (Minkowskian) a t  
i n f i n i t y ,  they evaluate (D-6) fo r  the metric (where M i s  the t o t a l  mass of 
the system; $ i s  a u n i t  vector along L) 

which gives 

and (D-7) becomes 

P = O  Po=Mc a @-9) 
k 

I n  t% center-of- inert ia asymptot ica l ly - f la t  frame (D-8a), 4-momentum i s  
determinable and i t  i s  conserved. This i s  a statement of the Newtonian equi- 
valence o f  grav i ta t ional  and i n e r t i a l  mass discussed i n  the tex t .  There i s  
no outgoing o r  ingoing grav i ta t ional  dipole rad ia t i on  a t  i n f i n i t y  because 

from (D-9). 

Fa i lure Of Conservation 

One cannot always formulate a p r i n c i p l e  of conservation o f  angular momentum, 
whereupon the not ion of a center o f  i n e r t i a  loses i t s  mathematical basis. 
Such i s  the case f o r  ce r ta in  interact ions,  o r  if the integrand i n  (D-2) i s  not 
symnetric i n  the indices u,v - which i s  precisely what happen: when one 
includes the Electromagnetic stress-energy tensor ( T ’ ” ” # O ) .  Landau & L i  f sh i  t z  
determine (p. 311) tha t  (D-2) becomes 



where 

This  result i s  relevant to an inequivalence of gravitational and inertial 
mass. Eq (D-11) i s  an expression for gravitational umklapp. 
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APWVDIX E: POST-NEHTONIAN GE!ER4L RUATIVIN 

We are concerned w i th  the equations o f  motion (3-45) 

i n  the E I H  approximation o f  Figures ? & 3 t o  some order 
t i o n  o f  motion (3-45) represents a geodesic defined by the af f ine connections 

= c ' ~ .  The equa- 

rp which can be expanded as fol lows: 
a0 

The powers o f  E on the r ight-hand side of (E-1) r e f l e c t  the 
the Chr istof fe l  symbol must be expanded i n  g,, i n  Eq ( A - 1 ) .  
t ime-d i f ferent ia t ion (the dots) lowers the order o f  c by c- 

order t o  which 
Note tha t  each 

Newtonian Approximation O(.*,y) 
This i s  the left-hacd l i n e  o f  Figure 2 i n  the text .  

crder O ( E  ,A ) there are the fol lowing contr ibut ions:  
Analyzing (E- l ) ,  t o  

2 4  

€%: rc 
c': rtP,r: . 

Thus, Eq (E-1) i s  

00 4 
From (A-1) f o r  a stat ionary f i e l d  t o  JSt-order i n  hL,v 

Hence R rl, * +Vh,=-$V+. 
Correspondence wi th  Newtonian mechanics gives, then, 

whereby Prom (A-4) 
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Post0'5-Newtcnian Approximation Q(c 3 5  , A  ) 

As depicted i n  F igure 2 ,  t he re  i s  no c o n t r i b u t i o n  a t  o rder  O(c3,A5). 
This i s  due t o  the  conservation o f  encrgy and momentum. 

4 6  - Post'"-Newtooian Approximation Q(L ,A ) 

The post'"-Newtonian forces manifest themselves as the  second l i n e  of 

F igure 2. They are comprised o f  t he  me t r i c  con t r i bu t i ons  po, iOk, and g fk .  
Frcn the equation o f  motion (E- l ) ,  we requ i re  2 

I 
C :  r;,, 

Calcu la t ing  the C h r i s t o f f e l  symbols r:B t o  these orders o f  c-" using (A-1):  
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Transforming (E-6) t o  harmonic coordinates ( B - l o ) ,  the Ricci  equations 

R,= H g  (E-7) 

w,=. t q  
Einstein's f i e l d  equations now fo l low from (3-14), using (E-7). Taking 
caution w i t h  the c - ~  factors i n  the stress-energy tensor T", subst i tu t ion 
o f  (E-7)  i n t o  (3-14) gives t o  order O ( E  ,A ): 4 6  

From Eq (E-8c) we a r r i v e  a t  the Newtonian r e s u l t  i n  (E-3) 

(€4) 
The Newtonian potent ia l  4 i s  t ha t  defined by Poisson's Eq (2-6) 

v2+ = 4aG $- 
r,,,ist be asymptotical ly f l a t .  Hence, i n  order vanish a t  i n f i n -  

%V 
i t y ,  the scalar potent ia l  4 i s  ider, t ical  t o  (2-8) 

e-9) 
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The solution o f  
3 

(E-8b) is  the vector potential  Ai = gio : 

which is ident ical  t o  tha t  i n  the electromagnetic theory of gravi ta t ion 
discussed i n  Chapter 2. 

2 In order t h a t  9;; vanish a t  i n f i n i t y  the solution of (E-8d) is  

The remaining f i e l d  equatiw (E-&) is solved using (E-3') and (2-6') 
whereby 

(€4 
If we assume (Weinberg, 1972, following Mdller, 1962) V 

3 (fa 
t h e n  (E-11) becomes 

+ 4wG(T.;$q (E-M) 

which has the sca la r  solution 

The harmonic condition used e a r l i e r  imposes the following relation be- 
tween the sca la r  potential  6 and the vector potential A: 
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Using (E-3'1, (E-111, and (E-13) i n  conjunction w i th  the solut ions 
9, A,, and J I ,  the Christoffel connections (E-4) become 

P& = 34,; (€47) 
8 P; = 2 4& 8 

Subst i tut ing (E-17) back i n t o  E-1) we obtain the "post"*-Newtonian" 
equations o f  motion: (E-@) 

Note carefu l ly  t ha t  these are simply scalar and vector potent ia ls.  
more, note t h a t  Eq (E-18) contains the Lorentz equation o f  motion (2-15) 
from the electromagnetic theory o f  g rav i ta t i on  i n  Chapter 2. 

Further- 
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Having 

Appo.B)IX F: 
SOFZ FEATURES OF THE ELECTRDWETIC MW OF GRAVITATION 

derived the equations o f  motion for  the "postl''-Newtonian" approx- 
imation o f  the tensor (Einstein) theory (Appendix, Eq E-18), we observe the 
remarkable s i f l i l a r i t i e s  which e x i s t  between 1 t and the vector (electromag- 
n e t i c )  theory o f  g rav i ta t i on  - p r i m a r i l j  the use of a vector po ten t i a l .  
This so r t  of correspondence also manifests i t s e l f  i n  the matched asymp- 
t o t i c  expansion method which decomposes the tensor f i e l d  eqdations i n t o  
scalar, vector, and Maxwell stress-tensor components i n  Eq (3-49). 

c 

- The Classical Basis For The Vector Potent ia l  I n  Grav i ta t ion Theorv 

A simple hydrodynamic argument const i tutes the te leo log ica l  basis fc,r  
invoking a vector potent ia l  i n t o  the Newtonian f i e l d  equations (2-5) o f  
Chapter 2. These equations f o r  + are i r r o t a t i o n a l .  Hydrodynamically, a 
F ' r t i c l e  orb i+ ing i n  an fr-.rotat ional f l u i d  acquires no i n t r i n s i c  spin. 
i t  does, the f l u i d  i s  ro tat ional ,  possessing a cu r l .  Now extending t h i s  
argument t o  the so lar  system, one i s  struck by the experimental f a c t  t ha t  
a l l  o f  the planets possess an i n t r i n s i c  angular riwmentm ( 5 )  i n  add i t i on  t o  
t h e i r  o r b i t a l  angular momentum (k). 

O f  course, we know tha t  a ponderable, e l a s t i c  body (wi th  Love nunbers) 
which i s  some form o f  e l l i p s o i d  (fcrmed cosmogonically) w i l l  acquire an i n -  
t r i n s i c  spin 2 which i s  comnensurable w i t h  i t s  o r b i t a l  angular momentulnk i n  
the scalar potent ia l  + Q r-l of Newtonian theory. This i s  du9 t o  the grav- 
i t a t i o n a l  gradient, induct ive energy dissipat ion,  and the sp in-orb i t  i n t e r -  
act ion mechanism of, say, t i d a l  f r i c t i o n  (Appendices G & s). 
words, j u s t  because planets spin one does not necessari ly need a vector 
potent ia l  t o  supplement Eq (2-5). 

If 

I n  other 

Nevertheless, the grav i ta t ioqal  hydrodynamlcs o f  the so lar  system does 
establ ish an experimental basis f o r  invoking a vel 
achieve an electromagnetic theory o f  gravita,ion, as i n  Eq (2-12). The 
vector theory o f  g rav i ta t i on  in Eq (?-12) becomes even more in terest ing 
when one considers the o r i g i n  of  magnetic f i e lds  and the n a t w e  o f  the 
Cor io l  i s  force. 

r potent ia l ,  and thereby 
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Rotation O f  Mass 8 The O r i r i n  Of Magnetic Fields 

H.A. Wilson (1921, 1923) points out that  there may e x i s t  a corre la t ion 
between the r o t a t i o n  o f  mass and the o r i g i n  of magnetic f i e l d s  - basing 
h i s  query upon the experimental f ac t  t h a t  the r a t i o  o f  tbe magnetic mom- 
ent t o  the angular momentun f o r  the sun i s  the same as i t  i s  f o r  the 
earth. Wilson also investigates a s im i la r  l i n e  o f  reasoning Fn the elec- 
tromagnetic theory o f  g rav i ta t i on  by supposing the " r e l a t i v i t y "  o f  grav- 
i t a t i o n a l  f i e lds .  
charge exhib i ts  an apparent magnetic f i e ld ,  then perhaps a moving neutral  
mass possesses an apparent magnetic f i e l d .  
periment, but  measures no such ef fect .  

I n  the same fashion tha t  a uniformly moving e l e c t r i c  

Wilson then performs dn ex- 

Blackett (1947) pursues Wilson's ideas and advocates the ibnnula 

as the l i n e a r  r e l a t i o n  between the angular momentum! and the magnetic 
moment e (where B i s  a dimensionless constatn of the order o f  un i ty) .  
Fuchs (1948) generalizes (F-1) as 

where u i s  the g rav i ta t i ona l  permeability, E i s  the p e r m i t t i v i t y ,  and vB 
i s  the Bohr magneton. 

- The Lorentz Force 8 The Cor io l i s  Term 
Wilson's conjecture i s  too naive - as h i s  experimental resu l t s  determine. 

That i s ,  be considers the analog o f  the Lorentz force stated i n  Eq (2-15) 

0 

and surmises tha t  the ax ia l  vector e f o r  the "grav i ta t ional  induction" f i e l d  
i s  a magnetic f i e l d  - j u s t  as i n  Maxwell's re la t i ons  (2-11). 

However, from c lass ica l  mechanics we already have a force term exact ly l i k e  
the Larmor-Lorentz term i n  Eq (2-15), namely the Cor io l i s  force 

= + 2  oxv = -pyx(%),  
fLk P I  " 

Whence, we can make the i d e n t i t y  , 



108 

whereby the Lorentz force (2-15) becomes 

Result (F-5) consists o f  the Newtonian (Coulomb) force and the Cor io l i s  
force. 

A re- in terpretat ion o f  Wilson's conjecture, then, i s  t o  s ta te t h a t  there 
i s  a r e l a t i o n  between mass i n  u n i h r m  motion w i th  spin and the Cor io l i s  
force. Likewise, i n  the same fashion tha t  one has 
e l e c t r i c  f i e lds  

f o r  equi l ibr ium states (E-0 o r  high conduct iv i ty) ,  
motional ly induced grav i ta t ional  f i e l d s  

9 = -v x(2w) ., 
c 

r a t i o n a l l y  induced 

(F-&a) 

one also achieves 

4 

Eq (F-6b) i s  the electrodynamic way of s ta t i ng  t h a t  " f i c t i t i o u s  forces" 
behave l i k e  g rav i ta t i ona l  ones and are both characterized by g,, i n  I';, 
(Eq A-1) o f  the equation o f  motion 

It should also be transparent t ha t  the electromagnetic theory o f  grav i ta-  
t i o n  i s  Machian* i n  nature, a t t r i b u t i n g  i n e r t i a  t o  the induct ive effect of 
dis tant  cosmological matter. 

The grav i ta t ional  vector potent ia l  h i n  Eq (2-19) ar ises i n  the  presence 
o f  a hydrodynamic mass current 

. 

* 
Epistemologically speaking, however, the Machian school o f  thought f inds i t s  
p r i nc ipa l  experimental basis i n  electrodynamics. Hence electrodynamics and 
the electromagnetic theory o f  g rav i ta t i on  stand on t h e i r  own. Mach's work, 
i n  fact ,  i s  a philosophfcal deriVdtiVe o f  Maxwell ' 5  electromagnetism - 
p a r t i c u l a r l y  i n  l i g h t  o f  Maxwell's work on gravi tat ion,  avai lable t o  Mach. 
The vector theory o f  g rav i ta t i on  does not have t o  answer t o  Mach. 
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i n  Eq (2-16). I f  L i s  ro ta t i ona l ,  t h a t  i s ,  i f  

v =  0 x 1 .  
r* 

2a= .c v x v  
we have d i r e c t l y  from (2-19), if can be moved through the i n t e g r a l  sign, 

(f -9) 

I n  order t o  es tab l i sh  a basis f o r  the o r i g i n  o f  magnetic f i e l d s  i n  ro ta -  
t i n g  mass, one should t u r n  t o  the  c o n t i n u i t y  equation (2-27d). For nedt ra l  
matter ( p e=O) 

Ope can then argue t h a t  electromagnetic currents 3 a r i s e  i n  the presence 
of mass currents j. 
r e l a t i o n  (F-1). 

U 

This s o r t  o f  reasoning can be used t o  j u s t i f y  B lacke t t ' s  
U 

- The C o r i o l i s  Vector Poten t ia l  & Grav i ta t iona l  Radiat ion 

I f  we now temporar i ly  adopt Eq (F-9) as a d e f i n i t i o n  o f  the g rav i ta t i ona l  
vector po ten t i a l  e, from which derives the C o r i o l i s  force, we can qu ick l y  
surmise the behaviour o f  the f i e l d  equations. 

F i r s t  o f  a l l ,  the energy densi ty i n  (2-23a) i s  

(F-lo) 
e 

The "g rav i ta t i ona l  induction" pressure (magnetic pressure) i s  

2n (F-l0) 

whi le  (from plasma theory) the pressure o f  matter p i s  re la ted  t o  i t  by 
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- 0' = c*n.t.) 

( p +  8n 
The cyc lo t ron  frequency (eE/m) becomes 

wh i l e  the Larmor frequency i s  

The sp in L o f  t h e  vector  g r a v i t a t i o n a l  f i e l d  i s  p rec i se l y  the  Larmor 
frequency o f  electromagneti  sin. 

The gx! d r i f t  v e l o c i t y  perpendicu lar  t o  o r  e i s  

v =  2 2 2  
-4 w2 ' 

whi le  there  i s  an ad iabat ic  i n v a r i a n t  ( C o r i o l i s  m i r r o r )  g iven by 

(F- 13) 

(f-14) 

Likewise, 3 "piasma o s c i l l a t i o n "  fo l l ows  i n  t h e  usual fash ion from the  
Maxwell equations (2-12) and t h e  c o n t i n u i t y  equation (2-17), 

The magnetic moment i s  p rec i se l y  the  mechanical angular momentum L, 
(F-17) 

The torque ac t i ng  upon a spinning mass o f  angular momentum L i n  the  C o r i o l i s  
f i e l d  2: i s  

(F-18) 
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The Poynting vector i s  = g x h i n  Eq (2-18), o r  
Y *  

where the polar izat ion of $ i s  determined by s. 
F ina l l y ,  i t  should be pointed out t ha t  the f i e l d  i n tens i t y  g i s  derived 

'c 

from (2-13a) 

@ i s  r e a l l y  a centr i fugal potent ia l ,  containing both the Newtonian I$ 

as wel l  as centr i fugal  effects due t o  ro ta t i on  of the source o f  the f i e l d .  
at! then includes the time-dependence o f  the Cor io l i s  term. 

A rb i t ra ry  Vector Potent ia l  

There i s  nothing i m p l i c i t  i n  the f i e l d  equations (2-12) t h a t  demands a 
s t r i c t  i den t i f i ca t i on  o f  the grav i ta t ional  induction w i t h  the Cor io l  i s  
e f f e c t  ZW, although i t  should be consistent w i t h  it. One can consider a 
r i n g  current j o f  mass, using the vector potent ia ls  from electromagnetism, 
and determine the grav i ta t ional  induction f i e l d  2 i n  spherical coordinates 
as a so lu t ion o f  (2-19) (Smy tbp .  294-295), 

- 
4. 

where the r i n g  i s  a t  some colat i tude a, and a i s  the radius of the mass. 
For r>a, 

- -  
Then in tegrat ing the current loop over the volume of the spherical 
which i s  simply the moment o f  i n e r t i a  o f  the mass, one gets approx 

mass 
mate Y 
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This i s  the Wctor gravitational induction field about a mass s p i n n i n g  
a t  a n g u l a r  velocity E. 

The o r b i t a l  angular  momentum L o f  another particle o r b i t i n g  about this 
spinning mass interacts w i t h  b, creating a spin-orbit and a spin-spin inter- 
ac t ion .  

- 
First, there i s  a precession of the Kepler conic by an amount 

for a polar  o r b i t .  Averaging over the orbit (where I i s  the Keplerian 
moment of inertia I=Mr 2 /2) 

There i s  likewise a spin-spin interaction, similar t o  the gyroscopic effect 
predicted by Schiff (Phys Rev Lett Q, 215, 1960) i n  post-Newtonian General 
Relativity (Appendix E) .  
intrinsic spin angular  momentum z=I'ts, i t  experiences a torque due t o  

I f  the second particle (satel l i te)  possesses an 
of 

which results i n  a precession of the spin axis of 

I n  an equatorial o r b i t  

(F-24) 

Compi 1 i n g  (F-23) and (F-25) 

which i s  Schiff's result, except t h a t  the f i r s t  term must be multiplied by -3/2. 
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General i zed Oh' s Law 

The classical relation for Ohm's Law (2-16) generalizes as follows: 

where JI represents a pressure of matter. 
t h i s  i s  

For the Coriolis interpretation, 

MacCullagh's Equations & Gravitational Radiation 

I t  is pertinent to  remark t h a t  MacCullagh's (1838) equations can be used 
t o  derive Maxwell's Equations for electromagnetism. Likewise, they can be 
used i n  the vector theory o f  gravitation. MacCullagh's theory, i n  effect, 
i s  a hydrodynamic theory o f  electromagnetism, and i n  t h i s  context, of  grav- 
i t a t i o n .  He assumes t h a t  velocity v, i s  given by our (F-7)  

p x v =  2G) * 
(c 

* 
where W, = $. His equation of motion I s  then assumed t o  be 

Y 

6-7)  

(F-7) and (F-29) are subjected t o  the zero divergence conditions ( incvpres- 
s i b i  1 i ty or transversal i ty) 

V@Y = o  
w = o  c . 

From (F-7 ) ,  (F-29), and  (F-30) one can derive the source-free Maxwell equa- 
tions ( with displacement current i n  1838!). If you recall the hydrodynam- 
ics of current 
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then we have the implicit use o f  &cCullagh's ideas if we simply state from 
(2-16? that 

V =  L ? E  h '  

For arbitrary constants o f  proportionality a,@, 

(F-30 

we obtain Maxwell's relations !2-11) for p=O and j=O. %e can identify 
4 

Sources can be readily included. The purpose in going into th s dis- 
cussion of MacCullagh's theory is to derrnstrate that all of the "magneto- 
hydrodynamic" analogies in the vector theory of gravitational ra iation are 
not magnetohydrodynamic at all. Magnetohydrodynamics was established by 
MacCullagh over a century ago. Again, the electromagnetic theory of grav- 
itation goes back to fundamentals. 

- A Generalization Of Bateman's Equations 
Starting with Maxwell's Equations (2-ll), Batman (1915) makes a simplifi- 

cation which in effect i s  reminiscent of the original MacCullagh theory. 
Sateman assumes a complex electromagnetic field 

whereby Maxwell's Equations reduce to and derive from 

These are simply a complex formulation of MacCullagh's Equations (F-29) 
and (F-30), with sources. (E.g. let = t i $  ) .  
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The neat t h i n g  about Bateman's Equations i s  t h a t  they provide a simple 
way of synthesizing vector electromagnetism and vector gravitat:on, as a 
complex unified field theory. L t i t  

(F-3c) 
M =  & t+a c 

1L = g+ig 
6 = H + G  c rL 

p =  pt-ipm 
tution of the complex fields (F-36) i n t o  the Bateman Eqs (F-35) 
the vector Maxwell Equa for electromagnetism and (2-12) 

for gravitation. The a complex component, 

Subst 
gives 

Or 

One i s  interested only i n  the real p a r t  of F i n  (F-38). 

The interesting feature o f  this approach i s  the implication t h a t  charge 
and mass are the real components of the same t h i n g  - a single complex 
quantity. That  i s ,  the Newtonian and Coulomb forces are unified i n t o  a 
single complex operation. The same i s  true for the Larmor-Lorentz term. 

The field intensities are determined by 

There i s  no negptive energy density. 
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(This page i n t e n t i o n a l l y  l e f t  blank3 
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Eddington (1920) discusses an important physical appl icat ion of the 
retarded Lienard-Wiechert potent ia ls  when he considers the qr;estion of the 
existence o f  a couple o r  torque act ing on the ;.no-body Kepler problem. 

ferr ing t o  Figure G-1, Eddington points out t ha t  the accelerat ion $ act ing 

on the present pos i t ion o f  e i t he r  component must be i n  the d i rec t i on  of 
the other binary component 

Re- 

n 

o r  a resul tant  torque T acts upofi the system. Assuming d phise l a g  6 
between the retarded and present posit ions, this osculat.ing torque i s  

where 
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Note tha t  t h i s  i s  an induct ive energy d iss ipat ion mechanism (it goes 
as r-l), character is t ic  o f  scalar (Newtonian) g rav i ta t i on  theory. 
ing t o  the Lt'enard-Wiechert scalar potent ia l  

Accord- 

the force per u n i t  mass o r  f i e l d  i n t e n s i t y  g = -v4 i n  Eq (2-3) (assuming 

zero vector potent ia l  5) act ing on e i t h e r  component i n  Figure G-1 i s  

(A, j=53 4!!* 
a 

where M = p  f o r  a c i r c u l a r  o r b i t  and where ?- i s  a u n i t  vector direct& to- 
U 

ward the present pos i t i on  and no t  the retarded one $. Hence, 

and there i s  no torque. 

However, t h i s  equi l ibr ium condi t ion (no couple or torque) derives fm 
the f a c t  t h a t  the ve loc i t y  o f  propagation o f  g rav i ta t i ona l  information c i s  
j u s t  r i g h t .  I f  we per turb the ve loc i t y  of propagation 

c'= c i c  
the grav i ta t ional  act ion i s  no longer i n  the "present" d i r e c t i o n  Po, 6 # 0, 
and a torque manifests i t s e l f .  The conic then d i l a ta tes  o r  contracts u n t i l  
once again i t  i s  i n  equi l ibr ium, whereby the phase angle disappears and the 
torque vanishes. These resu l t s  apply t o  po in t  masses. 

The f i r s t  matter t ha t  needs t o  be dispel led i s  the misconception o f  Laplace 
(1829) and others tha t  var ia t ions i n  the ve loc i t y  of propagation E necessar- 
i l y  manifest themselves as anomalous behaviour o f  the Kepler conic. This i s  
not true, because the retardat ion effect above cannot be dist inguished from 

the mechanism o f  t i d a l  f r i c t i o n  (Appendix S)  i n  the case o f  real ,  oonderable 
bodies. The second matter of importance i s  the assumption of a constant ve l -  
o c i  t y  o f  propagation c i n  the der ivat ion o f  the Lienard-Wiechert potent ia l  

(6-2). 

i n  a Schwarzscdld hackground) whereby c '  = c/n, the two-body problem 
expands o r  contracts u n t i l  the torque disappears. 

I n  the presence of an index of re f rac t i on  n (n = 1 + hn/r f o r  l i g h t  
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Hence, the ef fect ive induct ive f r i c t i o n  i n  the two-body problem due t o  

I n  
re tardat ion behaves a great deal l i k e  t i d a l  f r i c t i o n ,  except t ha t  i t  
occurs f o r  po in t  masses as wel l  as e l a s t i c  bodies w i th  Love numbers. 
turn, both o f  these regulate the behaviour o f  grav i ta t ional  rad ia t i on  
damping (or  anti-danping). =urthennore, a non-. inear f i e l d  theory can 
affect the ve loc i t y  of propagation c ' ,  producing retardation, and i n  turn 
neutra' izing rad ia t i on  react ion mechanisms. By means of t h i s  o r b i t - o r b i t  
i n te rac t i on  a nonl inear mechanism can vary the ve loc i t y  of propagiition i n  
the v i c i n i t y  o f  a "black hole" binary; there can be grav i ta t i ona l  radia- 
t i o n  (assuming i t  ex is t s  f o r  the Kepler problem); acd there does not  have 
t o  be collapse. 
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WfENDIX H: DIERENIIAL EWTIONS FOR PEfrmRB4TIOCSS 
OF THE s(luMmiILD m1c 

The d i f f e r e n t i a l  equations representing the nonspherical perturbations 
o f  the Schwarzschild metr ic 

are f i r s t  derived by Regge 6 Wheeler (1957) w i t h  a number o f  errors w:,Tch 
are l a t e r  corrected by Vishveshwara & Edelstein (1970). They are dert*:, I 

using spherical harmonics and are comprised o f  odd-pari t y  and even-pa; it,!! 
solut ions. 

- Odd-Pari t l  Equations 

I n  the case o f  odd (magnetic) p a r i t y  (-l)L+l, Eqs (3-56b) take the 
fol lowing form i n  the canonical Regge-Wheeler gauge (3-58): 

where the subscripts (such as wr) represent der ivat ives (vr=dv/dr). 
€qs (H-1) are then set equal t o  zero i n  order t o  determine (3-56a). For 
L= l ,  a l l  o f  the angular factors i n  (H-1) vanish. 
For higher L, Eq (3-56a) implies the terms i n  brackets vanish, providing 
three rad ia l  equations. The second-order rad ia l  equation resul t f n g  from 
(H-lc) i s  actua l ly  derivable from the other two, provided 

Also f o r  L=l, 6Re3=O. 

which indeed i s  the case f o r  the Schwarzschild metr ic where 



From these ther two rad1 1 equacions (H-la) and (H-lb), h, can be 
eliminated, resulting in a single second-order radial equation 

~~ 

If one defings 

then from (H-4) one obtains the odd-pari t y  “Schradinger” equation f i r s t  
given by Regge & Wheeler 

where V e f f  i s  an effective potential given by 

In the case of the Schwarzschild background 

- Even-Pari ty Equations 

Continuing i n  the Regge-Wheeler gauge, and using upper-case letters t o  
L represent the even (electric) parity ( -1 )  radial functions i n  order to dis- 

tinguish them from the lower-case odd-parity functions, the first-order 
perturbations of the Ricci tensor i n  (3-56b) are 
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Derivatives of the Leyndre polynomials vanish for L=O. 
angular factors in 6RZ2 of (H-9f) are not independent.For L>1, substitution 
o f  (H-9) into (3-56a) gives the following even-parity radial equations: 

For L=l, the two 
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Eqs (lOe,f,g), of second order, can al l  be derived from (lOb,c,d), of 
f i rst order, provi ded 

T h i s  relation (H-11), i n  conjunction w i t h  the first-order equations 

(*a (H-lOb,c,d) , gives one second-order differential equation: 

d’s 
7 4F 

where 

The second-order even-pari t y  differential equation for S=Hl/r i s  t h e n  

Further details are provided by Edelstein & Vishveshwara (1970). 
safer t o  follow their development as i t  does not contain the errors made 
i n  the original Regge-Wheeler (1957) paper. 

I t  i s  
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Reca 

APPFNIX I :  m-MEELER GAUGE 

1 fron: Appendix B tha t  i n  Einstein 's  f i e l d  equat ons for the 
f i rs t -order  perturbations, h 
t ion 

remain invariant under the gauge transforma- 
P V  

Odd-Pari ty Gauqe - 
Upon consideration of hUv i n  (3-57a), Regge Wheeler l e t  

whereby (8-5) transforms (3-57a) i n t o  (3-58a). !L is arbi t rary.  

Even-Pari t y  Gauge - 
Similarly, i f  for  a rb i t ra ry  !,lo, M,, and M one selects 

then (B-5) transforms (3-57b) into (3-58b). 
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APPENDIX J: EMU-PARITY "Wf6DIW E(JJATI0N 

Zeril l i 's  (1970b) derivation of the second-order "Schrzdinger" equation 
He for the even-parity Regge-Wheeler perturbation problem is  as follows. 

substitutes kR=H, i n  the first-order even-pari -y equations (H-lOb,c,d) 
and the algebraic relation (H-ll), and then uses (H-11) t o  reduce (H-lOb,c,d) 
to 

where a,E,y,  and 6 are functions o f  r,L, and M - bu t  not k=w. 

following transformations are assurnedh 
Next, the 

0 
(JL3) 

K =  C(\.,K + 
R =  I W ~ ?  + 

f Q* r 'b  +3m) 

dr = n(edp* = (I-mh)dt." 0 

n(r) i n  (5-3) i s  Eddington's (1920) refractive index. Zerilli lets 
Jr(rti)r'+ 3 h w  i c r q  

where 

n o t i n g  t h a t  throughout  the L and  M subscripts on a l l  r ad ia l  functions have 
been suppressed. 
which is  (H-5b), then 

By virtue of (5-41, (5-5), and the integral o f  (5-3) 

These may be re-wri tten i n -  second-order a s  

where angular momentum L and  az imuth  M have been re-instated. 



The following are the orthonormal set of tensor harmonics in $-space ar, 
developed by Zeri 1 1  i (1970a ,c)  : 

where 

b ,  and E are orthogonal to the 2-sphere (o,$). Q, $, and 0 are tangent. 
t a p  t 

f .Y (. e t hJ and ~ " ( g  - t~)  are, however, orthogonal. Thus {;,k,$,$,@Ll is an 
crthonormal set. Upon generalizing to a 4-dimensional pseudo-Euclidean space, 
we obtain 4 more tensor harmonics: a('), d'), b(') $ 5  ('I. Regge b Wheeler 
use g in place o f  1. 

'= ., 
Hence, theirs i s  not an orthonormal set. 
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AppElvDIX L: COEFFICIENTS OF SOURCE DEoC6!TI@4 

Any symnetric covariant  tensor can be expanded i n  terms o f  the tensor harmon- 
i c s  i n  Appendix K: 

(0) 0 
+QkNgw 

The c o e f f i c i e n t s  ALh,,. . . , 

where 

and rl i s  the  background metr ic .  Accordingly, 
uv 
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Now, the c o e f f i c i e n t  o f  ,aLM i s  ALM = ( 2LM , ).  So from (L-2) through (L-4) 

Thus, from Appendix K 

But from Appendix N, i f  the Schwarzschild geodesic postu la te  i s  assumed, 

Hence, l e t t i n g  y = dT/dSo (and s i m i l a r l y  f o r  the  other c o e f f i c i e n t s ) :  
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The dfvergece of the source stress-energy tensor 6Tuv in Eq (3-61) must 
be zero. Since (6T  );" is  a vector, expallding i t  i n  tensor harmonics gives 

U V  

Because o f  (3-61 ) 

A simple cal ulation gives the following divergenc- condi t i s :  

(W 

DIVEFWK€ CONDITIOFIS 

Upon integration of these conditions (Appendix C O F  Zeri l l i ' s  thesis) one 
obtains the equations of motion for a point particle fallilig a long  il geodesic 
of the Schwarzschild geometry I-, 

geodesi c pos tu1 ate. 
- demonstrating consistency with the 

P V  
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AppEM)IX N: TRUECTORY CT PARTICE & STRES TENSOH 

The stress-energy tensor due t o  Peters (1966) i n  Eq (3- 62) i s  

where i ( A )  r’s the i n v a r i a n t  de l ta  f?lncticjn def ined by /JJJ6(4)(x)d{-g)d4x 
s i s  t he  a f f i n e  pirameter along the  \JGrld Tine z ( s )  o f  t he  p a r t i c l e .  

the case of t he  Schwarzschild me t r i c  

I .  
I n  

(N-2) 

Carrying ou t  the  i n t e g r a t i o n  ( d - y ) ,  using (N-2): 

R ( t ) ,  o ( t ) ,  s ( t ) ,  and T ( t )  a r2  the  p o s i t i o n  o f  the pertrrrbi7;g p a r t i c l e  i n  
the Schwarzschi I d  coordinstes r,b , p ,  t. 

This i s  the  very c r i t i ,  -tion i t ?  the P,.,ers-Zeri? l i ana lys is  which 

adopts the Schwarzschild peodesjcs a: tk: path cf the r a d i a t i n g  pa r t i : l e  - 
i n  order  t o  evait iate T 
ulaccounted f o r .  

as s ta ted  i n  (R-3) .  Radiat ion reac t i on  i s  thus 
U V  
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The following radial equations are a consequence o f  the Zerilli tensor har- 
monic decompositions (3-64) and (3-65) o f  tho Peters f i e l d  equations (3-60) : 

Eiectric-Pari ty Harmonics 
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APF'ENDIX P: WIER TlUNFORa FIELD EWTIONS 

We may write the Fourier transfcrm o f  the field equations in Appendix 0 as: 

Magnetic-Pari ty Equations 

Electric-Pari ty Equations 
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bR€NilIX Q: THE AUXILIARY RADIAL FUKTIOeG 

Having determined the auxiliary radial functions qM as the solutions of the 
"SchGdinger" equzltions (3-66) and (3-67) ,  m e  can derive the original Regge- 
Wheeler radial functions and detenninz hUu witi. the following relations: 

Maqneti c (Odd) Parity Pertui . ti ons 

Electric (Even) Parity Perturbations 

Auxiliary Source Functions 
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Bondi ' s  representation o f  g rav i ta t i ona l  r a d i a t i o n  begins w i t h  h i s  inves- 

t i g a t i o n s  i n t o  negative mass i n  General R e l a t i v i t y  (1957a) - negative mass 
o r i g i n a l l y  being considered by Fzppl (1896) and Schuster (1898) although 
being discussed again by E ins te in  & I n f e l d  (1949) - and h i s  rediscovery of 
ce r ta in  plane-fronted waves (1957b, 1959). He publishes i n  1960 the f i r s t  
r e s u l t s  o f  h i s  mu l t ipo le  approximation method, and then i n  1962 i n  conjunc- 

t i c -  ;dith van der Burg L Metzner. Bondi establ ishes a r a d i a t i v e  so lu t i on  fo r  
an i so la ted  axisymnetric system whose mass decreases l i m o t o n i c a l l y  due t o  
out go i ng rad i  a t  i on. 

-- Bondi '5 Metr ic  & The ''Main Equations" 

Bondi's metr ic For a x i a l  symnetry i s  

f o r  coordinates (u=t-r,  r, e , $ ) .  That i s  t o  say, 

f o  liq 0 

Bondi assumes throughout a stationary-radiative-stationary t r a n s i t i o n  

as depicted i n  Figure 6 where the r a d i a t i v e  so lu t i on  i s  represented by 

E ins te in 's  f i e l d  equations i n  vacuo, 

Rr.= 0 B (3-54) 

j u s t  as i s  assumed i n  the Regge-Wheeler formalism. 

upon a contract ion o f  the Bianchi i d e n t i t i e s  

Using arguments based 



w i t h  gQE 1.; Eq (R-3), b n d i  reduces the field equations R.," = 0 t o  the 

"main equations" R l l  = RI2 = RZ2 = R33 = 0 : 

Bondi I s  "Main Equationx" 

plus two supplementary condit ions (Appendix 2 of Bondi, vd Burg, Plettner) 

k- R, = O 
and the t r i v i a l  equation RO1 = 0. The various subscripts i n  Eqs (R-5) 
correspond t o  ordinary der ivat ives:  (0,1,2,3)+-t(u,r,o,+). The Eqs (R-5a) 
and (R-5c) are refer red t o  as the "hypersurface" equations because they i n -  
volve only d i f f e r e n t i a t i o n  i n  the retarded hypersurface u=t-r=const, whi le 
Eq (R-5d) i s  known as the "standard" equation. Only the standard equation 

contains a der ivat ive w i th  respect t o  u. 

Numerical Intectration Scheme 

Bondi's i t e r a t i v e  so lut ion o f  the "main equations" (R-5) consists of 
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The functions of integration 

provide a l l  the information or "news': a s  Bondi calls i t ,  about the be- 
haviour of the source. 
"news f uncti  on. I' 

The functions (R-8) can be reduced t o  one single 

Multipole Expansion S, Somnerfeld Radiation Condit ion 

Based upon causality arguments, Bondi 
metric (R-1)  as 

assumes an expansion of i n  his 

+ ... 
Pa 

in terms of retarded time u = t - r, which i s  equivalent to  an outgoing 
(Sommerfeld) radiation condition. 

Boundary conditions require t h a t  L(u,o) = 0, eliminating one of the func- 
Hence, the leading terms in the iterative scheme (R-7) are tions in (R-8). 

Under coordinate or gauge transformations which do not  change the Bondi metric 
(R-l), H(u,:,) can be eliminated. Furthermore, by virtue o f  the Somnerfeld ra- 

2 diation condition, Bondi argues t h a t  g(t-r)  in Eq(R-9) o r  c(u,d) in (R-iOa) 
must vanish. Thus, he arrives a t  the following canonical form of the "main 
equations," noting t h a t  c = c(u,o) - and n o t  the speed of light: 

-- Bondi I s  Canonical I'm Equations" 

(R-rw 
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-- The News Function c(u,e) 

On the basis o f  the canonical form o f  the "main equations" (R-11), the 
supp:einentary conait?ons (R-6) reduce t o  

Supol menta= Conditions 

If M and N are given f o r  one value o f  u ( that  i s ,  on some hypersurface 
il = const), and c = C(U,G) i s  given, the e n t i r e  so lut ion i s  determined. 
For t h i s  reason, Bondi c a l l s  c(u,e) the "news function." 
p r i a t e  name might be the "data funct ion."  

Another appro- 

Correspondence of Ekmdi's equations wi th  a s ta t t c ,  non-radiating case re- 

veals the physical nature and meaning o f  the functions o f  in tegrat ion M, N, 
and C. An empty, a x i a l l y  symnetric metr ic such as Bondi's (R-1) can always 

be reduced t o  Weyl I s  form 

where 

Let t ing o represent the transformatioo parameter between (R-1) and (R-13), 

def i neti by 

then one obtains ( s t a t i c  case) 

where m, D, and Q are the mass monopole, dipole, and quadrupole respectively. 
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Depletion Of Mass Monopole 4 Radiation 

M(u,o) i n  the "main equations" (R-11),  based upon the correspondence 
t o  the s ta t ic  case (R-15), i s  called the "mass aspect." The mass of the 
system is  defined as the mean value of M(u,o)  ova=  the sphere 

0 

Note t h a t  for the s ta t ic  case M, = aM/,u = 0 and (R-16) gives m(u) = m, 

as i t  should. Differentiating (R-16) w i t h  respect to u and using (R-12a), 

That  is t 

or re-instating the derivative 

The mass rn of the source or radiating system, then, i s  constant i f  and only 
i f  there i s  no ''news": 

If  co#O on some hypersurface u=const (Figure 8), then mo i s  negative and m 
decrr,=es vonotonical ly. 

Outgoing radiation depletes the mass of the source, then, according t o  this 
for::,alism. 
polarization c (u ,o ,$ )  by Sachs (1962) while cylindrical gravitational news 
i s  addressed by Stachel (1966). 

The news function c(u,o)  of Bondi i s  generalized t o  include another 
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APPENDIX S: GRAVITATIOFN MIATI@! 8 TIML FRIrTION 

The induct ive f r i c t i o n  due t o  re tardat ion and var iat ions i n  the ve loc i t y  

o f  propagation i n  Figure G-1 o f  Appendix G must be contrasted wi th  t i d a l  
f r i c t i o n ,  which const i tutes s p i  n-o rb i t  i nterac - Ion: 

FIGURE S-l 

It occurs i n  the earth-moon systeni and i s  due t o  imperfect e l a s t i c i t y  w i t h  a 
resul tant  energy d iss ipat ion which characterizes rea: matter. 
eccen t r i c i t y  o f  the o r b i t ,  the r a t e  o f  change of expansion of the conic i, 
i s  approximately 

Ne? lect ing the 

where the Love ;,mber k, i s  defined i n  terms o f  the i n e r t i a s  C and A as 

(s- ) 
Tidal  f r i c t i o n  (S-1 ) has the opposite ef fect  as does g rav i ta t i ona l  rad ia t i on  

( t h a t  i s ,  if gravi ta t ional  rad ia t i on  collapses thet inary),  which i s  given i n  
Eq (5-5) as 

(s-3) 

The c r i t i c a l  value of the apse a, where grav i ta t ional  rad iat ion and t i d a l  

f r i c t i o n  remain i n  equi l ibr ium i s  given by equating (S-1) and (S-3): 
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or 

For a binary system o f  two solar masses, for example. this i s  

An optimization o f  ksin2lsl w i t h  hX= 312 and 6 = a/4  gives 

OI c = 128 R,' 
where Ro i s  the mean radius o f  the primary in Figure S-I. 

A binary system collapses under gravitational radiation until I t  reaches a 
sizi. of the order of (S -7 )  and then i t  attains a stable orbit, r ad ia t ing  away 
the angular riomentum tf the primary component until the la t te r ' s  angular 
velocity ,,, i n  Figure 5-1 i s  exhausted. 
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The work o f  Davis, Ruffini, Timno, & Zerilli (1972) as well as Breuer, 
Ruffini, Tiomno, 6 Vishveshwara (1973) analyzes the power emitted from 
a particle in a circular orbit r = ( 3  + 6 ) M  about a Schwarzschild "black 
hole." The treatment i s  general, so the vector case can readily be modi- 
fied t o  treat vector theories of gravft6tfon as discussed i n  Chapter 2. 
The even (-1) 
the power in Eq (5-12) are respectively: 

L or electric and the odd(-l)L+l or magnetic components for 

Scalar 

0 

!m 
Ran - 
Rk : 

Vector 

Tensor 
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APPENDIX U: THE PETRGV-PIRPSJI CLASSIFICATION 

The Petrov types i n  the Penrose diagram break down as follows: 

(Most General) 1 
'Cylindrical Waves (EinsteinLRosen, Roser , Marder, 

Bonnor , Weber 8 Wheeler) 
Axisymnetric field of Weyl (1918) Levi-Civita(l919) 
Empty space-times 
Isolated, bounded sources (oscillators) (Bonnor,1963) 
All real fields (P i r an i ,  1962) 

,Field of an actual isolated system 

Robinson & Tral;t.man (1960) 
Peres (1959) 

Schwarzschild Hetric 
Robinson b Trautman (1960) 

m Semi -far fie1 ds 
Robinson & Trautman (1960) 

Plane Waves (Brinknann,l925; Rosen,l937;Takeno, 

nPlane-Fronted" Waves (Robinson, 1956) 
Any radiating system of sources 
Far radiation zone fields 
Robinson b Trautman (1960) 

Kundt) 

(Radiat ion)  

( F l a t )  0 F1 a t space-time { 

I t  should be apparent from these results o f  the Petrov-Pirani classiffca- 
t i o n  t h a t  the method i s  much too general. 



143 

One can consider the l inear ized gravi ton i n  the context * composite f i e l d  
theory. The cmposi te  nature o f  electromagnetic quanta i s  suggested by 
Jordan (1928) using s t a t i s t i c a l  arguments. de Brogl ie  (1932, 1934, 1936) 
suggests tha t  a photon i s  composed of a neutr ino and an anti-neutr ino, 
establ ishing the basis of the neutr ino theory o f  l i g h t .  This i s  one form 
of a more general idea t h a t  elementary pa r t i c l es  are composite pai-t icles 
b u i l t  up out o f  a fundamental Spin-1/2 fermion, such as the nev"rino. 
Spin-l/2 neutr ino and a Spin-1/2 ant i -neutr fno couple together and form a 
Spin-1 boson, i t  i s  a photon (emission o r  creation); and if they mutual ly 
couple and cancel out they annih i la te  (absorption o f  a photon). I n  terms 
o f  hole theory, a neutr ino jumps the energy gap of the neutr ino sea, crea- 
t i n g  a neutr ino-antineutr ino p a i r  (emission o f  a photon). 

I f  a 

Jordan (1935) o r i g i n a l l y  t rea ts  the de Brogl ie  postulate i n  terms o f  a 
four-component neutr ino theory, using a neutr ino of m e n t u m  
neutr ino o f  momentum e - !! (producing a Raman e f f e c t  f o r  nsutr inos) 
t h i s  four-component work i s  brought t o  dn 2brupt end by Pryce (1938) when 
he demonstrates tha t  i t  i s  not i nva r ian t  under spat ia l  r o t a t i o n  or a r b i t r a r y  
Lorentt  transformation. 
comfng i n  the Jordan-Pryce treatment snd establishes an in terest ing four- 
component neutr ino theory o f  the photon, formulated from two two-component 
Weyl equations. Perkins' four-component model i s  invar iant  under spat ia l  
ro tat ion,  although h i s  resul tant  photon operators are not s t r i c t l y  Bose 
romnutation relat ions,  due t o  addi t ional  terms. However, Planck's radia- 
t i o n  law s t i l l  fol lows as i t  does from Bose s t a t i s t i c s .  

and an a n t i -  
However, 

Perkins ( i365) ,  however, overcomes t h i s  short- 

From the vector (Spin-1 boson) electromagnetic theory o f  grav i ta t ional  radia- 
t ion,  then, there i s  a neutr ino theory o f  the vector gravi ton - .In d i r e c t  an- 
alogy w i t h  the work o f  Jordan, de Brogl ie, Pryce, and Perkiris. One can l i k e -  
wise construct a neutr ino theory o f  the gravi ton comprised o f  four coupled 
neutr inos o r  two coupled photons, f o r  the l i nea r  Soin-2 tensor theory of 
grovitation;l radiet ion.  This implies, o f  course, t ha t  l tnear  gravitons can 
decay i n t o  four  neutrinos o r  two photons - e.g. upon in te rac t i on  w i th  m a t t e r  
o r  absorption. 
photons both t r a v e l l i n g  a t  t h -  same ve loc i t y  o f  propagation (Gertsenshtein, 
1962) are eas i l y  v isual ized from the aspect o f  composite f i e l d  theory. Care 
must be taken, however, t o  account f o r  the i n te rac t i on  o f  photons w i th  
charge and gravitons w i th  mass. 

Wave resonances due t o  i n te rac t i on  between gravitons and 
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One can speculate, furthermore, i n  a candid way w i t h  the bold conjecture 
tha t  given a fundamental Sp*n-1/2 quantum (such as a Spin-1/2 boson) kz 
could construct a un i f i ed  f i e l d  theory using composite f i e i d  theory. 
t h i s  quantm were a nonlinear Spin-1/2 graviton, fo r  example, he could ex- 
p l a i n  @-decay, p-meson and n-meson decay i n  terms o f  grav i ta t ional  rdd ia t i on  
!;tithout need f o r  the neutrino. 
u-wson decay i n  the earth 's atmosphere. 

and annih i la t ion of photons i s  ccmpletcly compatible w i th  the Dirac t rea t -  
ment o f  h i  .; negative energy states, namely w i th  positron-electron pai rs .  
However, Dirac e x p l i c i t l y  assumes tha t  the i r i f i . i i t e  sea o f  negatdve energy 
exhib i ts  no grav i ta t ional  effect ( i f  i t  does, we have Maxwell's postulate 
of an i n f i n i t e  sea o f  grav i ta t ional  energy, i n  1865). But if gravi tat ions1 
rad iat ion ex is ts  and i f  we are t o  bave a consistentquantum theory o f  raci"- 
t ion,  then there must be a grav i ta t ional  dual o f  Maxwell-Dirac spinor eiec- 
trodynamics - f o r  gravitons. 
theory, o r  by invoking (rtegative) mass conjugation rather  than o r  as wel l  as 
charge conjbgation i n  the Dirac theory. 

I f  

Weber's high f l u x t s  might then be ('1% t o  

There i s  another reason f o r  pursuing t h i s  l i n e  of reasoning. The creat ion 

Such a model may be afforded by tieutrino 
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IPf'EfBIX W: SPIN-2 8 GRNITATIOESIV RADIATItN 

The sixteen (16) independept variables h i n  Einstein 's f i e l d  equations 
;Iv 

(3-1) and (3-6) must be coupled t o  a tercor source TbV. 

a tensar Tu, consists of Spin-2, three Spin-1,  and two Spin-O admixtures: 
Generally speaking, 

where the numbers i n  parentheses under Eq (W-1) represent the various spin 
components o r  h e l i c i t i e s  of each spin group. I f  T 'J '3 i s  symnetric, 

Tp*= Ty 
then (U-1) loses s i x  (6) deg res  o f  freedom o r  two of the vector Spin-1 
admixtures and reduces t o  

The spin parts are 

The 33t i s  p l  

b 

(W-4c) t o  d is t inguish 
them as the same tensor Spin-0 contr ibution, d i s t i n c t  and d i f ferent  from the 
scalar Spin-0 i n  (W-4a) rJhich i s  coupled t o  the t race o f  T 
through (W-4) are not equations but group-theoretical re lat ions.  
which causes inconsistencies i n  massive rad iat ion theory (Appendix X, Eq X-32), 

where T,,'#O provides an exc i ta t ion o f  the Spin-0 degree o f  freedom. 

. Note tha t  (W-1) 
I t  i s  $4-43) 

)Ju 

If energy i s  assumed conserved, then 
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This means there i s  no source t o  which the Spin-1 and Spin-0 compooents i n  

(W-4b) can couple. Energy conservation, then, causes these h e l i c i t i e s  t o  
vanish, reducing the degrees o f  freedom by fnur  (4) - el iminat ing namely: 
- +1, 0, and 0. (W-5) also dictates that  

i s  true. (See Fronsdal, 1958, on higher spins.) 

Symnetry (hvu=hvii) and enersy conservation have thus reduced the 16 un- 
Invoking the Lorentz ga:ige condi t ion knowns t o  s i x  (6). 

3 h ' = o  P 
on h 
o f  freedom t o  two (2). These are the pure massless Spin-2 h e l i c i t i e s ,  w i th  
a l l  other spin admixtures removed. This re,ult const i tutes the so-called 

" transverse-trace1 ess" gauge (Appendix Z) . 

eliminates four ( 4 )  more ;"vector" gravitons) and reduces the degrees 
uv 

I n  massive rad iat ion theory f o r  Spin-2 (Appendix X), on the other hand, 
the Lorentz (a1 so ca l led H i  1 bert-Lorenrz) gabge condi t ion does n o t  produce 
four addi t ional  constraints, but  rather i t  reduces the f i e l d  equations i n  
conjunction w i th  energy conservation to  provide a r e l a t i o n  between the trace 
11 = h' and the trace T = Tu o f  the energy-momentum tensor. This gives 
only a f i f t h  constraint,  thereby reducing the s i x  (6) independent var ables 
t o  f i v e  ( 5 ) .  o r  2S+1, where 5 i s  the spin. 

u u 

(See Eq X-28.) 

I n  addi t ion t o  the above group-theoretic representation o f  the grav ta- 
t i ona l  Spin-E problem i!i term of reducible groups, we can r e c a l l  the tensor 

Spin-1 o f  do', h, do', and & and Spin-2 o f  2, g, and $. This representa- 
t ion, however, i s  often confusing because the respective harmonics consist  
o f  lower-spin admixtures and are reducible. 

P I  
spherical harmonics o f  Appendix K. Spin-0 i s  comprised o f  p (0) , g (11, and 

- 
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pppEM)IX X: M4SSIVE GfWVITATIOIUV RADIATION 

Massive rad iat ion t h e o r j  i s  an embodiment o f  the screening potent ia l  e-mr 
due t o  Laplace (1846). 
(2-25). and (2-32) which include a f i n i t e  rest-mass i n  the f o n  o f  Klein- 
Gordon equations fi=c=l): 

I t  concerns i t s e l f  w i th  wave equations slich as (2-7), 

The subscripts on the masses mi (i = 0.1 ,2) correspond t o  Spin-0, Spin-1, 
and Spin-2 f o r  the respective scalar, vector, and tensor wave equations. 

Radiation theory w i th  quanta o f  f i n i t e  rest-mass h;s been wel l  developed 
i n  electrodynamics, based upon the de Brogl ie postulate (1924) o f  a f i n i t e  
photon mass and i t s  subsequent incorporation i n t o  Proca's vector meson 
theory (1936). The resul tant  massive electrodynamics i s  well-behaved since 
i t  reduces to  Maxwell's theory as the photon mass goes t o  zero. 

However, such i s  no t  the case w i t h  conventional treatment- o f  massive grav- 
i t a t i o n a l  rad iat ion theory using Einstein 's General Theory o f  Relat iv i ty .  
An assumption o f  a gravi ton rest-mass does not  reduce t o  Einstein's theory 
I n  the massless l i m i t ,  i nd i ca t i ng  e i the r  t h a t  (i) Einstein 's theory i s  
p a r t i c u l a r l y  unique, or t h a t  (ii ) conventional representations of massive 
rad iat ion theory are inadequate and bolder hypotheses may be jus t i f i ed .  
Einstein 's theory i s  said to  have no "neighbors," meaning i t  does not  t o le ra te  
neighboring theories wi th  a f i n i t e  rest-mass. 

Massive rad iat ion theory i s  the conteliiporary expression o f  the cut-off 
potent ia l  o f  Laplace, l a t e r  investigated by Neumann (1874, 1896), Seeliger 
(1895), and Yukawa (1935). That i s ,  an assumption o f  a f i n i t e  rest-mass mo 
f o r  the scalar wave equation i n  ( X - 1 )  modifies the c lass ica l  Newtonian po- 
t e n t i a l  w i t h  an exponentfal cut-of f :  

I n  t h i s  fashion, the Newtonian o r  Cwlombic f i e l d  i s  screened and does not  
have an i n f i n i t e  C M S S - S ~ C ~ ~ O ~ ,  an a r t i f i c e  also employed i n  plasma theory. 
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Massive Electrodynamics 

Massive electrodynamics i s  important because i t  i s  manifest ly covariant, a 
feature which i s  not t rue f o r  the massless Maxwell theory. 
developed by mmy AuthorsB among them Wentzel (1943), Kal len (1972), Jauch 
i% Rohrl ich (1955), Sjorken i% Dre l l  (1965), and Bogoliubov i% Shirkov (1959). 

de Brogl ie  (1924) has demonstrated tha t  i f  one assumes the photon t o  have 

It has been 

a f i n i t e  r e s t  mass ml , then the energy r e l a t i o n  

necessarily implies tha t  the vacuum has 3 r e f r a c t i v e  index 

and behaves as a dispersive medium. This idea i s  important because i t  i s  
the basis of Proca's extension o f  Maxwell's equations f o r  massive quanta. 

The massive Maxwell-Proca equations take the form 

v*g = 0 
VnH h = $J+pE CI -r'b 

where P = mot/%. These equations represent a massive vector f i e l d  coupled 
t o  a conser8,ed currest. 

Their wave equation i s  
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wi th  a Poynting vector 

and an energy density 

The add i t i on  o f  the massive quanta t o  the Maxwell theory increases the 
nunber of degrees o f  freedom i n  the f i e l d  due t o  the f a c t  t ha t  the Lorentz 
condi t ion no longer reduces these degrees o f  freedom. Instead, 

re la tes current conservation and the Lorentz condition. 
two transverse polar izat ions o f  the photon, there are now a longi tud ina l  
photon and a scalar ( t ime- l ike) photon due t o  the presence o f  a photon 
r e s t  mass. (see GII&.) 

From a l l  o f  the above equations i t  i s  apparent t h a t  the massless l i m i t  
v = m12 = 0 reduces to the Muxwell theory. However, massive rad ia t i on  
theory i s  no t  as simple as t h i s  because the most s ign i f icant  r e l a t i o n  above 
i s  (X-9) f o r  the energy density. The massive energy density must be 
pos i t i ve  semi-definite o r  everything w i l l  collapse i n t o  any negative energy 
states t h a t  happen t o  exist. 

in addi t ion t o  the 

2 

* 

For t h i s  reason, massive rad ia t i on  theory i s  usual ly developed using an 
act ion pr inc ip le .  Provided the act ion I i s  expressed i n  a canonical - H" form, 

then the Hamiltorian energy density $can be read i l y  i d e n t i f i e d  i n  the Lag- 
rangian density * and hence examined f o r  negative energy states. 

* 
This problematic feature o f  Lagrangian f i e l d  theory can be a l l ev ia ted  by 
a massive exclusion pr inc ip le ,  discussed i n  the f i na l  section o f  t h i s  
appendi x. 



The f i r s t -o rde r  Proca act ion coupled t o  a prescribed conserved source Ja 

has been decomposed by Deser (1972) i n t o  i t s  trdrlsvorse and longj tud ina l  
parts, demonstrating tha t  the longi tud ina l  mode const i tutes a scalar f i e l d  
decoupled from the current. The energy density i s  

+Qcma&r+ 3(v*wT) (HZ) 
The "T" and "L" superscripts represent "transverse" and " longi tudinal"  
respectively. The second term i n  braces i s  non-)llaxmllian i n  t h a t  it re- 
mains coupled t o  g rav i ta t i on  i n  the SO l i m i t ,  which may have impl icat ions 
about the frequency dependence o f  the grav i ta t ional  def lect ion o f  l i g h t  
(See e.g. Woodward & Yourgrau, 1972). 

Massive Gravi tat ional  Radiation 

The current dilemna i n  the theory o f  massive grav ta t i ona l  rad ia t i on  can 
be best characterized i n  terms o f  the source theory (Ehwinger, 1970) 
associated w i th  the Feynman amplitudes o f  quantum electrodynamics. One 
can represent the grav i ta t ional  i n te rac t i on  as the exchange o f  a Feynman 
prooaga t o r  Dpv between one source T'"(X) and another T" ' (X ' ) :  

,a6 

FIGURE X-I 
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This propagator i s  given i n  a momentum space representation by 

where&,a8 i s  known as ?he spin project ior .  operator. These are stated 
by Ogievetsky 6 Polubarinov (1965). 

The resul tant  propagator f o r  a massive g rav i tmn  i s  (van 3 m  6 Veltman, 
1970, 1972): 

which reduces i n  the massless l i m i t  ( ~ 0 )  t o  

I n  contrast, the gravi ton propagator f o r  the massless case i s  

Comparison o f  the second term i n  the numerator o f  (X-15) and (X-15) 
demonstrates t: - t  the two theories are incompatible. 
where the del ta  tunc 

are respect ively 

I f  we take the case 
are a l l  unity, the numerators o f  (X-15) and (X-16) 

and Po-*= :: , 
This means that  

whereby the def lect ion o f  l i g h t  6 i s  changed as 



the massive radar t ime delays a re  l i kew ise  3/4 o f  the massless theory, 
atid the precession o f  the pe r ihe l i on  ~e i s  

The Jordan-Brans-Dicke (Brans & Dicke, 1962) scalar-tensor theory gives 
s i m i l a r  r e s u l t s  when i t s  dimensionless parameter w=O. 

w=min (X-19) gives the  E ins te in  theory. The Eddington-Robertson met r ic  

comparatively speaking i s  

a=fj=y=l E ins te in  (Massless) 
a=B=1 Y=4 Eins te in  (Massive, FO) 
a=+l y=(w+ l ) / (~+2)  Brans-Cicke 

f o r  these three representations. 
tween the Brans-Dicke and the massive theory, the massive Eddington-Robertson 
met r ic  i n  the massless l i m i t  (PO) i s :  

Drawing f u r t h e r  upon the w-0 analogy be- 

This i s  n o t  the Schwarzschild so lu t ion .  f 
Massive Sravi  t a t i o n a l  Act ion 

Many o f  the problems associated w i t h  massive g r a v i t a t i o n  theory have been 
addressed by van Dam & Veltman (1970, 1972), Zeldovich (1970), Boulware b 

Deser (1972a, 197 b), Deser (1973), van Nieuwenhuiten (1973), Vainshtein 
(1972), Sex1 (1967), Freund, e t  a1 (1969). and Ogievetsky b Polubarinov (1965). 
Massive two-tensor theor ies have been inves t iga ted  by IshGm, Salam, b 
Strathdee (1971), Aichelburg e t  a1 (1971), Aichelburg b Mansouri (1972). 
Aragone & Chela-Flores (1972), Aichelburg(1973), and Lawrence b Toton(1972). 
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The d e f i n i t i v e  work a t  present has proceeded w i t h  the H i  1 ber t -Palat in i  
formulation o f  the act ion p r i n c i p l e  (Arnowftt, Deser, & Misner, 1962) 
which represents the f u l l  Einstein act ion as 

where L a t i n  indices vary over 3-space and where riJ i s  the conjugate 
momentum: 

0. 

N = (-%j$ Mi 3Qd R~ 02x9; j 

The l inear ized massless act ion ( inc lud ing the coupling t o  t rl e source 

(X-2k) -r f 'R + J' ( # V - l l ~ ~ J  

+h T'") i s  uv 

qb"' -S"k[j(!Jj5 ( y y + ~ 2 )  +2WiT$ 
+fb(fhii=hijjj)+b + f.  hijTi' 

+NiT" + +LT@'], (*a) 
I n  t h i s  ac t i on  (X-22) , Ni and hoo const i tu te  Lagrangian mu1 ti p l i e r s  - upon 
whose va r ia t i on  are recovered the aux i l  i ary condi ti otlb ( h=hi ) 

Al ternat ive ly ,  one can vary wi th  respect t o  N and Ni i n  (X-21) and recover 
the const ra in t  

R Y = O  . 
Hence, the f i e l d  equations fo l lowing from (X-21) or  (X-22) consist  o f  

16 unknowns which are reduced to  10 upon the assumption o f  symnetry 
(hpV=hVU). These 10 are reduced t o  6 by energy conservation 
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and f u r t h e r  reduced t o  two (2) by the a u x i l i a r y  condi t ions (X-23) o r  (X-24). 
Thence, the massless g rav i ton  has two ( 2 )  degrees o f  freedom (?2 h e l i c i t y ) .  

(M6) Now, the  F ierz-Paul i  (1939) massive a c t i o n  1, 

can be added t o  (X-22) t o  g i ve  a t o t a l  massive ac t i on  

I = I  L +Im 
The immediate coilsequence i s  t h a t  v a r i a t i o n  o f  Ni and hoo i n  (X-27) no 
longer gives the massless a u x i l i a r y  condi t ions (X-23) bu t  ra the r  

(X-28b), as a cons t ra in t ,  simply recovers Ni i t s e l f  

and does n o t  e l im ina te  th ree  (3 )  o ther  var iab les.  Hence on ly  (X-28a) 
const ra ins the s i x  (6)  degrees of freedom subsequent t o  energy conservation 
i n  (X-25). 
f i v e  (5).  The massive theory has f i v e  ( 5 )  o r  25+1 h e l i c i t i e s  associated 
w i t h  a Spin-2 g rav i ton  o f  f i n i t e  r e s t  mass. 

(X-28a), then, reduces the degrees o f  freedom by one, t o  

Orthogonal Decomposition O f  Massive Act ion - 
i d  Boulware & Deser (1972) have considered an orthogonal decomposition o f  h 
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which i n  t u r n  decomposes I i n  (X-27) i n t o  a "transverse-traceless' '  ( ITT) ,  
a "vector" ( I y ) ,  and a "scalar"  (Is) par t :  

I = I,,+T,+T, 0 

This i s  f u r t h e r  decomposed by resca l ing  the ac t i on  i n  order t o  e l im ina te  
problematic m-* s i n g u l a r i t i e s  and t o  ge t  i t  i n  a canonical "p\ - H" form: 

IC represents instantaneous Coulomb cont r ibu t ions  , whi le  the superscr ipts 
correspond t o  sp in  components o r  he1 i c i  ty. .;11 cont r ibu t ions  i n  (X-31) 
uncouple and vanish as the g rav i ton  

1 (M=O) = 
Hence, the massive theory re ta ins  

mass m+O except the  f i r s t  and l a s t  

a sca la r  component coupled t o  the t race  
o f  the  energy-momentum tensor (See Appendix W). This massive theory, 

It i s  the Spin-0 o r  sca la r  con t r i bu t i on  
The r ight-hand term i n  (X-32) i s  t h a t  

a 
then, i s  a scalar-tensor theory. 
which creates the inconsistencies. 
which derives from the t race  i n  (W-4a). 

Speculations On The Problems - O f  Massive L im i t s  

The l i t e r a t u r e  has inves t iga ted  ways around the i n c o m p a t i b i l i t i e s  which 
a r i s e  i n  massless l i m i t s ,  using such techniques as i n d e f i n i t e  metrics, 
i n d e f i n i t e  p robab i l i t y ,  broken s y m t r i e s ,  Goldstone bosons, and the 
cosmological term (Appendix Y) .  As remarked e a r l i e r ,  bolder hypotheses 
may be warranted due t o  the inadequacies o f  the  conventional massive theory. 
Therefore , some addi ti onal approaches are s ta ted  here. 

(A )  One can suppress the Spin-0 h e l i c i t y  coupled t o  the t race  T',,#O by 
employing both cdvanced and retarded Green's func t ions  i n  the determination 
of the grav i ton  propagator i n  Figure ( X - 1  ) . This i s tantamount t o  removing 
the Somnerfeld l ad la t i on  cond i t ion  f o r  the Spin-0 exchange, and corlst i  tu tes  
a r e j e c t i o n  o f  the Feynman propagator. 

(6 )  The Bel-Robinson tensor has zero t race  i n  empty space. It i s  possible 
t h a t  a massive g r a v i t a t i o n  theory ( fo l l ow ing  E ins te in )  could be developed 
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around it, guaranteeing t h a t  no source can couple t o  the problematic Spin-0 
component. 
upon i t s  contracted, Spin-2 form. 

This tensor i s  fourth-order, bu t  such a theory would be based 

( C )  Recal l ing the gauge condit ions discussed Appendix W f o r  the Spin-2 
problem, a new gauge p resc r ip t i on  may provide p o s s i b i l i t i e s .  
the  conservation o f  energy 

I n  Eq (W-5), 

forces the S p i n 4  he1 i c i  ty  o f  Tpv t o  be zero: 

I n  o ther  words, the Spin-0 cont r ibu t ion  i n  the tensor source T 
manded t o  be zero. 

i s  de- 
Instead, t h i s  tensor Spin-0 component could be used 

WJ 

t o  cancel ou t  the scalar Spin-0 component coupled t o  
That i s ,  l e t  

the t race T=TUu. 

This gives a new gauge p resc r ip t i on  

instead o f  the Hi lbert-Lorentz gauge studied by qgievetsky & Polubarinov 
(1965). I n  t h e i r  notat ion, the spin p ro jec t i on  operator f o r  Spin-0 

i s  broken up i n t o  two Spin-0 admixtures Pscalar (0) and 'tensor (O) 
H i l b e r t  gauge (q i s  a r b i t r a r y )  

using the 
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such t h a t  

The suggestion here i s  t o  use (X-34) and suppress P ( O )  e n t i r e l y :  

whereby 

* 
The p r i c e  f o r  t h i s  approach i s  t h a t  T'" i s  QO longer  conserved: 

(D) Last ly ,  one can specl;late on the  existence o f  cegatfve mass (Wilson, 
I n  the  Stt'ckel berg-Feynman r e p r e s e n t a t i m  o f  Quantum Elect ro-  1972). 

dynamics, the  pos i t ron  i n  a negative energy s:.ate f r  equ iva len t  t o  a 
p o s i t i v e  energy e lec t ron  t r a v e l l i n g  backward ir ;ime. This view i s  Dased 
upon the f a c t  t h a t  changing .he s ign  a f  charge - and t ime s i n  the  equation 
of motion (X-36) does not. change the electromagnetic behaviour of the 
p a r t i c l e :  

However, the equation of motion (X-36) i s  a lso  no t  changed under a mass-time 
reversa l .  By a t t r i b u t i n g  t+e  c h a r a c t e r i s t i c  o f  negative mass t o  an i i -mat ter ,  
then, a p a r t i c l e  of negative mass i n  a negative e n e y y  s t a t e  behaves l i k e  a 
p a r t i c l e  o f  p o s i t i v e  mass i n  a p o s i t i v e  energy s tate,  e lect romagnet ica l ly  
speaki ng . 

Hence, by adopting an exc lus ion  p r i n c i p l e  based upon i n t r i n s i c  r e s t  mass, 
on l y  p a r t i c l e s  o f  negatlve r e s t  mass can a:cupy the negative energy mass 
s h e l l  i n  F igure (X-2). Rest mass cannot change mass she l l s  ( i f  ';lo=O). 

* 
Rasta l l  (1972) t r e a t s  the case T' = A R S J ,  

V;U 
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FIGURE X-2 

a consequence, a Lagrangian such as (X-26) and (X-27) can have a 
ton ian energy densi ty  conta in ing  negative energy s ta tes  and nol unLcr- 

go co l lapse o f  p o s i t i v e  mat ter  i n t c  t ' x e  states. 
Pau; i . s s i v e  ac t i on  (X-26), we cail adopt the  fo l ' l  ,wifig one 

Instead o f  the  F ie rz -  

= 1d4x(2!) 
where 

which gives the co r rec t  l i m i t  as m 4 ,  nsmely E lns tc in ' s  'chc-ory. Although 
the r ight-hand term i n  (X-37) i s  negat.i%,e, no co l lapse o f  p a r t i c l e s  
occupying p s s i t i v e  energy s ta tes  can occur i n t o  negative energy s tates,  
due t o  the exc lus ion p r i n c i p l e  invoked above. Problems associated w i t h  
"ghosts" (as p a r t i c l e s  associated w i t h  these negative s ta tes  are  c a l l e d )  
are el iminated. 

A nore r igorous treatment o f  the above conjecture must t r e a t  g r a v i t a t i o n a l  
bohaviour under mass-time invers ion.  
the r a d i a t i o n  reac t ion  equat,ions o f  Lind, e t  a1 (1972, Eq 11). 

This invar iance rldj be surmised from 
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The f i e l a  equations (3-1) o f  General R e l a t i v i t y  have numerous cosmological 
implicationc among them grav i ta t ional  collapse and an expansion o f  the 
Universe. Concerned Ibobt the l a t t e r ,  Einstein (1917) has considered a 
more general form o f  the f i e l d  equations which s t i l l  s a t i s f y  the contracted 
Bianchi i d e n t i  t i e s  and energy-mmer4um conservation: 

PV' 
o r  i n  terms o f  the Einstein tensor S 

The most general spher ical ly symnetric so lut ion (by v i r t u e  o f  B i r kho f f ' s  
theorem) o f  (Y-la) i s  the ex te r io r  Schwarzschil d form w i t h  AfO, namely 

which fctr m=GM/cL=O i s  

Because photons fo l lcwing geodesics i n  (Y-ld) do not  t ravel  a t  the speed of 
l i g h t  c, A#O implies a photon r e s t  mass. Furthennore, the o r b i t a l  eqyation 
i s  

The cubic e"=O now has two pos i t l ve  roots: r=2m and r=J(S/A). For A not t o  

e f f e c t  Mercury's o r b i t  by more than one arc sec per century, 
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Teleological ly speaking, the addi t ional  "cosmological term" governed by 
the "cosmological constant" :. i s  want t o  u f f s e i  the expansfon o f  the Uni- 
verse. 
s h i f t  as a Doppler e f f e c t  has been invoked as a reason f o r  re jec t i ng  the 
term, maintaining that  General R e l a t i v i t y  predicts a cosmological cxpansion. 

However, Hubble's (1429) i n te rp re ta t i on  o f  the cosmological red- * 

Nevertheless, a meaningful basis f o r  re ta in ing  the cosmological term may 
be found i n  the problems associated w i th  the theory o f  massive rad ia t i on  
(Appendix W). I n  such 
not the cosmological constant ?. i n  {Y-1) i s  equivalent t o  o r  can be re la ted  
t o  a gravi ton o f  non-zero r e s t  mass. Some say yes (E.G. Tonnelet, 1965; 
Peak, 1972; Kurdgelaidze, 1965; and Freund e t  a l ,  1969) whi le others say no 
(Treder, 1968; Polievktov-Nikoladze. 1967). A t  the same tine, SOAR main- 
t a i n  tha t  A cannot a l l e v i a t e  the inconsistencies o f  the massless l i m i t  i n  
Appendix W (Boulware I Deser, 1972). 

context, the question before us i s  whether o r  

The wave equation f o r  grav i ta t ional  rad ia t i on  on a non-flat background 
containing the cosmological term fol lows from the formalism o f  Peters (1966), 
Isaacson (1968). and Z e r i l l i  (1970) employed i n  Chapter 3. The va r ia t i on  
of Eq (Y-1) f o r  a stable** background nvu=gL!) i s  the fol lowing: 

the same P S  JI, ~ i n  App. 8, (8-71, and (3-10) except t h a t  tAe background 
i s  arb i  t r a r y )  

J J  

* 
See, however, Eddington's (MTR,192ZSp.154) i n te res t i ng  argument f o r  AfO. A 
provides d fundamental length. "An electron could never decide how large i t  
ought to  be unless there existed some length independent o f  i t s e l f  f o r  i t  
t o  compare i t s e l f  with." 

S t a b i l i t y  of the background rl,,,, must be taken f o r  granted i n  order tha t  
6Tuu can be assumed small. 

** 
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and i t s  divergence 

Re-grouping terms and sbbst i tut ing ( Y a . 3 )  and (Y-4) i n  (Y-2) w get  a 
re la t ion  s imi lar  t o  ($60) 

Now we impose the H i lber t  (Einstein-debnder i n  Appendlx B) gauge which 
sets (Y-4) t o  zero 

and supprasses the vector gravitons. (f #O can be retained f o r  fur ther 
s impl i f icat ion i n  some cases o f  T-I 

states may be associated with these degrees o f  freedom.) Wave Eq. (V-5) 
hereby reduces to  

U 
although problematic negative energy 

UV 

I n  an empty (T ,  = O ) ,  Ricc i - f la t  (Rpv=O) space with no Losmclogical constant 
(R=4~=0), (Y-7) reduces t o  

PJ 

which i s  the s tar t ing point  o f  the Regge-Wheeler-Zerilli formalism i n  
Chapter 3. 
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However, since ,If0 we know tha t  the f i e l d  ecuations ( Y - l a )  demand tha t  

4 A - R  =UT 
whereby (Y- la )  becomes 

For an empty Universe (T2_=0 and T=O), (Y-10) reduces t o  

and (Y-9) t o  

R=4A a 

Subst i tut ion o f  (Y-lla,b) i n t o  (Y-7). using (Y-3), shorn tha t  the con- 
t r i bu t i ons  due t o  AfO are now o f  second order i n  hUv. Neglecting these 
terms (pa r t i cu la r l y  i f  A i s  very, very small ), (Y-7) s imp l i f i es  t o  

Note that  one can a r r i ve  a t  (Y-12) t o  f i r s t  order i n  h 
a ra i s ing  and lowering operator ra ther  thar: the background npv - a r e s u l t  
which leads Treder (1968) t o  the conclusion t h a t  A terms cancel out  of the 
grav i ta t ional  wave equation. Furthermore, note di t h  caution t h a t  (Y-12) 
and (Y-8) are not the same wave equation. 

by using g,, as 
PV 

Overtly, the cosmological terms itave vanished from (Y-12), l i k e  (Y-8) 
whm-0 n=n: hiit the character o f  the Riemao: 
d f f f c r c n t  i n  the two rc la t locs.  For a space 
the cosmological constant- A#O i s  s t i l l  ma,iifest. That i s ,  the Riemann tensor 

-For Ra ' i s  s i g n l f i c a n t l y  
' constant curvature K-l/Rz, 

P "  

* Tolman (1934) places a lower l i m ' t  cm -2-1 0-21 ( l i g h t  
upon A ,  which gives a r a t i o  (Ar i /3)/(2m/rj- IO-** a t  Neptune's o r b i t .  



163 

reverts t o  

for use i n  (Y-12). This substitution ( ra is ing and lowering with q U v )  in to  
(Y-12) now gives a K and a A term contribution 

to second order i n  huv. Recalling that  K i s  related to A by 

K=A/3 (Y- 16) 

(Y-12) i s  to f i r s t  order 

Noting that  

then a traceless gauge = 0 means that  
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Whence, (Y-17) reduces (na"#2) t o  

i n  a traceless-Hi 1 be r t  gauge: 

I 

A t  t h i s  po in t  i t  i s  necessary to  determine i f  the wave equation (Y-20) can 
be put i n  a Klein-Gordon form 

To do so we must invest igate huviaia i n  the curved background (Y-ld) where 

* P d 0  
and determine i f  the A I 0  term i n  (Y-20) gets cancelled out. To s impl i fy the 
computations, assume dn=O and note the e-"+l and e"+l, as rU0. We wish t o  
determine i f  hpv;a;a goes to  a flat-space d'Alembertian i n  a l o c a l l y  f l a t  
region of (Y-22). We can w r i t e  

Define 
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0 
or terms that  vanish in locally f lat  space ( r<<l ) .  Furthemre, only the 
first-order second derivatives in Bllv remain as r-0. 

i s  the term of interest. AYL, and Clly contain terns o f  second order, 
UV 

These terms are 

which we can define as 

where 

B* ' = 5  c 6  p r y >  + H  VV 

( Y )  1. 
The results i n  (Y-26) are not t 2 h  because o f  the type of expansion i n  (Y -24 ) .  
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We f i n d  tha t  

whereby ( a l l  other terms do not contr ibute) 

L='qm[(*L]=-+A&# 
Nex - 

whereby ( a l l  other terms dc no t  coni r ibute)  

And l a s t l y ,  

b,=*AL, whereby H,= 0 
H ], = %Ah, Hm=*Agm . 

Subst i tut ing (Y-29b). (Y-28b!, (Y-27t,c) back i n t o  (Y-ffjb), we f i n d  tha t  
G + H = 0. That is ,  Buv = Fuv: 

* 
uv uv 

Subst i tut ion o f  (Y-30) and A v=CLv=O i n t o  (Y-24) determines tha t  

(a- S A ) L  a-2USTm 
(a- +A)K,] =-MJT,, 

The d'Alembertian i n  (Y-31) i s  not a rb i t ra ry  because cu rv i l i nea r  (e.g. spherical) 
coordinates cannot be used. Curvi l inear transformations have been l o s t  i n  the 
expansion (Y-24). What i s  important i s  t ha t  the sign o f  Buv i n  (Y-30) and Fp,, 
i n  (Y-20) i s  the same, w i th  no cancellation. 

The s ign i f i can t  r e s u l t  i s  t ha t  there i s  not a constant term hidden i n  a decom- 
pos i t ion o f  ~u,;,;a which removes the po ten t i a l l y  massive term 2A/3 Fpv i n  (Y-20). 
The cosmological term A # O  does apoear t o  const i tu te  a massive contr lbut lon t o  
the l inear ized grav i ta t ional  wave equation !Y-20) i n  a t raceless-Hi lbert  gauge. 
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Upon consideration o f  the nature o f  the spin admixtures inherent i n  
tensor rad ia t i on  theory (Appendices W & X), we know tha t  the l inear ized 
massless theory o f  Einstein (1916, 1918) and Fierz & Pauli  (1939) i s  a pure, 
transverse Spin-2 w i th  no longi tud ina l  Spin-0 scalar contr ibution. This 
scalar Spin-0 couples t o  the trace o f  TvY, t ha t  i s  T=TUU, as i n  (W-4a). 
Hence, the massless gravi ton h and i t s  energy momentum tensor TUv must 
be traceless i n  empty space. 

U V  

Recall i ng  the Regge-Wheel er  perturbations o f  the Schwarzschi 1 d metr ic 
(3-57) o r  (3-58). however, i t  i s  not read i l y  apparent t h a t  h 
I t  i s ,  on the other hand, t r u e  f o r  the plane-wave discussed i n  (3-33) and 
(3-37). O f  course, as i n  electrodynamics , such a transversal i ty condi ti on 
holds only i n  a source-free region o f  space-time. 

i s  traceless. 
uv 

The transverse-traceless (TT) gauge, then, i s  t ha t  coordinate condi t ion 
(B-1) whereby the so lut ion 

TT h = hry P 
has zero trace. That i s ,  

Furthermore, i t  i s  transverse i n  the sense treated f o r  the plane-wave o f  
(3-24) , (3-33) , and (3-37). 

Note tha t  i n  the transverse-traceless gauge, yuv o f  (3-10) and (8-7) and 
the H i l b e r t  funct ion (Y-3) are i den t i ca l  wi th  hUv, except for  possible 
scal e changes. The H i  1 bert-Ei ns t e i  n-dehnder coordi nate condi ti on (8-8) 
and the H i l b e r t  gauge (Y-6) are l ikewise simpl i f ied.  
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Including a current d9 (F-35) i s  

Bateman's Equations, reminiscent of classical six-vectors and quaternions I) 
provide a simple way of synthesizing vector electromagnetism and vector grav- 
i ta t ion,  As such they are the teleological basis of a complex unified f ie ld  

Substitution of the complex f ie lds  (F-36) i n t o  the Bateman Eqs (F-35') gives 
the vector Maxwell Equations (2-11 ) for electromagnetism and (2-12) for 
gravitation. The convention 

provides the complex Lorentz force relations, 
the real parts of f i n  (F-37 and F-38). 

One i s  interested only in 

The interesting feature of this  approach i s  the implication t h a t  charge 
and mass are the real components of the same thing - a single complex 
q u a n t i t y .  
single complex operation. 

T h a t  i s ,  the Newtonian and Coulomb forces are unified into a 
The same i s  true for the Larmor-Lorentz term. 

The f i el d i ntensi t i e s  are determi ned by 

8 

The above formulation i s  not derived from a Lagrangian, however. 

- A Quaternion Formulation - Of Maxwell's Equations 

Recalling the rule of multiplication of two quaternions &=a+ 

then Bateman's representation of Maxwell's Eqs i s  simply 

where 
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- A Unified, Vector Field Theory 

A derivation of the Maxwell Eqs, (2-11) follows from the Euler-Lagrange Eqs 
for a variation of the Lagrangian density 

To get the gravitational Maxwell Eqs. (2-12) one must change the sign of either 
the f i r s t  or l a s t  term in (F-42). 
a negative energy density in the radiation field;  hence, one must change the 
sign of the current coupling term J’A . 
force (2-15) and get a Newtonian rather than a Coulombic interaction, the 
signs of both of the l a s t  two terms in (F-42) must change. 
however, then results in the wrong sign for the middle, kinetic term. 

Nevertheless, i f  we adopt a complex vector potential 

However, reversing the sign of F F” gives 
’V 

B u t  in order t o  derive the Lorentz 
1-1 

This argument, 

e- 
where 

and where 

and the gravitational Maxwell Eqs (2- 
(F-47) 

Fm 
The current for M 

i s  conserved and does no t  transport charge or mass. 
as in the Maxwell theory. 
direction of the current, basic for the gravitational interaction. 
the theory nonlinear (transporting charge and mass) one simply adds the 

The equations are linear 
Interchanging M* and M u  i n  (F-49) reverses the ’ 

To make 


