JSC-08587

NASA TECHNICAL MEMORANDUM NASA TM X-58132
December 1973

NASA

GRAVITATIONAL RADIATION THEORY

A Thesis Presented to the

Faculty of the Graduate School of
Rice University

i+ Partial Fulfillment of the

F quirements for the Degree of
master of Arts in Physics

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
HOUSTON, TEXAS 77058

(NASA—I?‘\-X--‘SS1}Z) uEnVTLZAIICt_iAL FALIATION NTd= 11050
THEOEFY M.A. inesls < Ficz Univ. (NaSa)l

He $11.50 CSCL G
1.‘jh r‘ 1% » - 'lr‘l(jl 1:“

G/l 2blbe



1. Report No ¢ Government Accession No.

| NASA TM x-58132

Rexient’s Cataiog No

4 Title and Subtitie
GRAVITATIONAL RADIATION THEORY

. Report Date

December 1973

. Pertorming Organization Code

7. Authorts)
Thomas L. Wilson, JSC

. Pedo«mmg Orgamization Report No
87

JSC-o08

8. Performing Organization Name and Address

Lyndon B. Johnson Space Center
Houston, Teras 77058

10

Work Unit No

n

Contract or Grant No.

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

13.

Type of Report and Period Covered T

Technical Memorandum

14,

Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

independently from cther problems in gravitation.

A survey is presented of current research in the theory of gravitatienal radiation.
structure of gravitational radiation is stressed. Furthermore, the radiation problem is treated
The development proceeds candidly through three
points of view-scalar, rector, and tensor radiation theory - and the corresponding results are stated

The mathematical

17. Key Words (Suggested by Author(s:!

Gravitation Theory . Magnetic Charge

Gravitational Fields Density

Field Theory {Physics) . Astrophysics
Tensor Analysis . Gravitational Ra-
Vector Analysis dfation

. Electromagnetic Radiation

18. Dsstribution Statement

19. Security Classif. (of this report)

|

20. Security Classif. {of thi~ page)

21. No. of Pages

22, Price®
185







PRECEDING PAGE BLANK NOT FILMID
RICE UNIVERSITY

GRAVITATIONAL RADIATION THEORY

BY

Thomas L. WiLsown

A THESIS SURMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGPEL OF

1 ASTER OF ARTS

Thests DIRECTOR'S SIGMATURE:
W

HousTon, Texas

May 1973

i1



ABSTRACT
GRAVITATIONAL RADIATION THEORY

BY
THoMas L. WiLson

A SURVERY 1S PRESENTED OF CURRENT RESEARCH IN THE THEORY OF GRAVITATIONAL
RADIATION, [RONICALLY, THEORETICAL WORK ON GRAVITATIONAL RADIATION FIRST
APPEARS IN THE ELECTROMAGNETIC (VECTOR) THEORIES OF GRAVITATION - WHERE IT
HAS SINCE BEEN FORGOTTEN, THIS IS IN PART DUE TO AN CVER ENCHANTMENT WITH
THE MORE GENERAL TENSOR THEORY OF RADIATION., ALTHOUGH SUCH ENCHANTMENT IS
WARRANTED IN THE SENSE THAT IT MAY BE THE PROPER SOLUTION TO THE PROBLEMS
IN RADIATION THEORY.

SPECIAL CARE IS TAKEN TO STAY AWAY FROM THE METAPHYSICS OF GRAVITATION
THEORY AND TO STICK WITH THE MATHEMATICAL STRUCTURE OF GRAVITATIONAL RADIA-
TION, FURTHERMORE. THE RADIATION PROBLEM IS TREATED IN A FASHION ENTIRELY
DIVORCED FROM OTHER PROBLEMS IN GRAVITATION. THE DEVELOPMENT PROCEEDS
CANDIDLY THROUGH THREE POINTS OF VIEW - SCALAR, VECTOR., AND TENSOR RADIATION
THEORY = AND THE CORRESPONDING RESULTS ARE STATED.

iv
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SCIARIO

(Enter Horatio, Brutus, & Cassius)

Horatio: Alas. My experiment must not work. I have been
searchingy for gravitational radiation for months now
and I have found nothing.

Brutus: If you see nothing, then there's nothing there. The
stars must not emit gravitational radiation.

Horatio: Not necessarily. Perhaps we are looking for the wrong
thing.
Cassius: The fault, dear Brutus, is not in the stars but in

ourselves - that we are poor Masters of human thought.
And not until we conquer ourselves shall we ever master
the secrets of the Universe.

Brutus: Pernaps. Nevertheless, if there's nothing there then
the linear tensor theory is wrong.

Horatio: That is incompreheasible. If the tensor theory is wrong
we have no hasis for an expanding Universe.

Cassius: Horatio, dear Horatio, here you are - standing upon a
speck of dust trapped in a sunbeam - and you have the
audacity to state that the Universe is expanding.

Horatio: Cassius, I know the Universe is expanding. I have
measured the cosmological redshift. Indeed, that is
why the heavens are black at night.

Cassius: Horatio, what you have discovered is a footprint in
the sand. And behold - it is your own.

viii



CHAPTER |
INTRODUCTION

The notion of gravitational radiation is an old one. It has as its be-
ginnings *he scalar theory of Newtonian mechanics, it becomes manifest
and explicit in the electromagnetic vector theories of gravitation, and it
is finally extended to its most general form in the tensor theories of
relativity. The purpose here is to consider the nature of gravitational
radiation. Thence, it is our hope to investigate and to understand the
linear and the nonlinear characteristics of scalar, vector, and tensor
radiation theory.

Early considerations of gravitational waves can be founu in the work of
Hooke (1671) on the physical cause of gravitation and of Laplace (1502) on
Newtonian cosmology, but not until the advent of classical electromagnetism
does gravitational radiation take a very definite form. This is the in-
vestigation of Maxwell (1865) into an electromagnetic theory of gravitation.
Subsequently, theoreticians are found applying numerous features of the
laws of classical electrodynamics to planetary orbits in an effort to ac-
count for several anomalies in celestial mechanics. The most popular
problem to be found is the anomalous precession of the perihelion of the
planet Mercury which is explained by mechanisms (all of them due to Newton)
such as solar oblateness and variations in the inverse-square law. However,
the concepts of electrodynamics (not forseen by Newton) are found to intro-
duce suggestions of a velocity-dependent force fashioned by Hollzmiiller (1870)
after the electron theories of Weber (1846) and Riemann (1861). Adopting
the precessional behaviour of Mercury, for example, as an experirantal
basis for the determination of the velocity of propagation of a retarded
gravitational potential, one can arrive at the value of Gerber (1835):
¢ = 305,500 km/sec, within 2% of the speed of light.



The lasting dividend of these 19th Century investigations is the
gravitational wave. The shortcomings of Newtonian mechanics thus result
in the electromagnetic (vector) theory of gravitation, definitively stated
by Heaviside (1893) - not to mention the work of Lorentz, Poincare, Lodge,
Ishiwara (1914), and H.A. Wilson (1921). Vector gravitational waves are
treated explicitly by Gans (1905, 1912) and Abraham (1911, 1912, 1913),
who are the first to identify the annoying features of negative Poynting
vecto s, negative energy densities, and particle instabilities under grav-
itational radiation reaction. But the vector theories of gravitation are
found to be inadequate by some and consequently this is one of the justifi-
cations for the more general theory of gravitation, the tensor theory due
to Einstein (1915, 1916, 1918). Einstein's treatment of mass quadrupole
radiation is the first for tensor gravitational waves. As closer study
demonstrates, however, there is nothing intrinsic in the tensor theory which
excludes the possibility of negative energy states discussed by Maxwell
in 1865.

The nonlinear nature of Einstein's tensor theory of gravitational radia-
tion is its most difficult, provocative, and yet rewarding feature. But
most of the success in its application has been due to the many analogies
with electromagnetism and the numerous linearization schemes, simply be-
cause the exact solutions of the nonlinear field equations in this theory
are formidable, difficult to interpret, and beset with mathematical singu-
larities which cannot be associated with radiative sources.

There is even controversy in the tensor theory of gravitational radiation
as to its very existence, due to its covariance and often intractable nonlin-
earities. In the vector theory, however, there is really no such question;
rather it is the physical interpretation of the difference between electro-
magnetic and vector gravi itional waves and their resonant interactions
(it is a unified field theory). Regardless, the concept of gravitational
radiation now offers an exciting new vista in theoretical physics and may
ever. become a definitive test of the wealth of existing theories of electro-
magnetism and cravitation.



CHAPTER 11

ELECTROMAGNETIC THEORIES OF GRAVIIATIONAL RADIATION

The Scalar Theory Of Gravitational Radiation

The concept of a gravitational wave follows from a wave ec. . Rezall
from the Newtonian theory of gravitation that a force E ex ed upor. point
mass m at a distance r from another mass M is the ejuation of motion

F=- GMm r (2-v)

where G is the Newtonian constant of gravitation. This relation in turn
defines a field intensity g(ﬁ) which is a force per unit mass,

g =- SEE;}.E: (2-2)

For a multip. e distribution of matter p(;') it follows that the field inten-
sity g is derivable from a scalar potential ¢ as

qg = -Y‘b (2-3)

[ 4

"o, - ) 4 =-M (o
¢=) Sar =-6) FEHdX - @

Taking the divergence of Eq (2-3) one obtains the differential form of

vhere

Gauss' Taw and a zero curl

v.a =- 41(’Gf (2-53)
an =0 (25%)



Hence, the field is irrotational. Eqs (2-5) and (2-3) together constitute
Poisson's Fquation

V' = -4wep @-¢)

for this static and stationary case of a scalar Newtonian potential ¢.
However, the theory is as yet nonradiative. It provides only for the in-
ductive transfer of ensergy between Newtonian masses, such as by the mech-
anism of tidal friction (Appendix G & S).

Te obtain a radiative scalar theory one borrows from his understanding of
the vector theory - which has a scalar component - and argues that a non-
stationary scalar potential due to an oscillatory multipole distribution
o = pyexp(ivt) extends Poisson's Equation to the wave equation

0é¢-= -%p @-7)

where DsV’-é'): , Where « = 47G, and where c is the velocity of propagation
of the scalar gravitational wave ¢. The solution of this wave equation is
essentially (2-4),

3.0
¢ = -c|1A & (2-82)
Ix-x{
except that the brackets qualivy the retarded solution of Lorenz (1867), the
advanced solution of Nitz (1908), or standing waves (both).

A multipole expansion of & in (2-8) states that
¢=-G—M-—§L£_oto \’.'85)

r ced

The Newtonian (Coulomb) scalar potential, furtherr-re, has a spherical har-
monic decomposition (equivalent to 2-8b) irto the 2“-th multipoles Qy which
derives from an expansion of the denominator in (2-8a)

b )
¢(L‘ = »‘,,:M Z j:;; On YR‘;‘) (2-80)
Mol

where )

Qo =LmuE Y @e) (s



and where the time-dependence has been sunpressed. (This spherical harmonic
decomposition is given for the sake of comparison with the tensor decomposi-
tion in Chapter 3).

Arguing that the dipole P contribution cannot radiate and conserve momentum,
the first radiative contribution

3 [}
P~ £ [ (ady (29
is due to the quadrupole (L=2)

we 2
F)ov -E%r (:i'qp (?’“d)

The Vector Theory Of Gravitational Radiation

The vector theory of radiation derives from Maxwell's theory of electro-
magnetism. One can argue against establishing an electromagnetic theory of
gravitation on the basis that the Newtonian field equations ‘2-5) are irro-
tational. They have no vector potential. But from the rotation of the plan-
ets in the solar system one can present a reasonable argument for the exis-
tence of a gravitational vector potentia].* Indeed, the tensor theory of
gravitation does just this (Appendix E, Eq E-10 & E-i8).

Maxwell's Equations will be written as follows:
VE=¢p (2)
VcE =-B/t (2
V-8 =0 (219
VB =z uJ + pedEfit (24d)

where u is the permeability, ¢ is the permittivity, £ is the elect.ic field
intensity, B is the magnetic induction, £ is tne current, and ¢ is the <t irge

density.

Comparison of *he Newtonian fieid eauations (2-5) with the Maxw>11 field
equations (2-11 shows that the gravitational analogue of E is g. Similarly,

~

*This also derives from the notiot of the Coriolis foirce as well as the remark
of Wilson (1923) that there is a relation between the rotation of mass and the
origin of magnetic fields (see Appendix F).



an entire development of a gravitationa) vector theory follows that of
Maxwell. The resultant fieid equations (using lower case symbols for grav-

V-q=- (2-123)
Uxe - - )b/}t (2-12%)
Vb= 0 @29
Usb =-4xGpu] 4pelgft (200

where - and . are the gravitational perme:biiity and permittivity, and

where a - 'V‘ - )&m (2“33)
b= VxA (2-nW

are derivabie from scalar and vector potentials. The axial vector b car be

itation) are

associated with the Coriolis forcc tw, for example.

The constitutive relations are

d=¢69 (2-143)

~ L
b= 3 h (2-ubw)
These are important in the nonlinear theory of eleccromagnetic gravitation

(in the fashion of nonlinear optics and Maxwell-Dirac Spinor electrodynamics).
The Lorentz equations of motion are

. P[ + wxb]
pY = rl-v«» RruxWh]  @e)
fﬂ +be

There is likewise a gravitational Ohm s Law (See Appendix F)

J = q;g =py (2-¢)

~
which defines a gravitational conductivity 2, providing diffusion equations
for gravitational vector waves as well as gravitationai hydrodynamics. In
what follows, - and its associated diffusion are neglected. (See Appendix F)

The continuity ccndition is



V-i + % = 0 (2-\1)

while the gravitational Poynting vector is simply

0= §xh . -8

It is straightforward to determine the wave equations for g, A, and s.
They are all of type {2-25). 1lheir solutions are ¢ in Eq (2- 8) as well as

A given ty $--& I ‘_&_‘ &Y (2-193)

=-pcllil g -
A =-p6 I_‘_‘i_ﬁ 'Yy (2-19b)

2

where ue = ¢ “. Alternatively

b= -6 [LE o (2-18)
A=

-6
G ' -
S ey (e
The quadrupole radiation is (e = ellipticity of the ellipsoid)

P= 230, =T (oo

In 4-vector notation the gravitational field equations are the Maxwell
ones deriveable from the field tensor

£ = Auum M, (+203)

fy= Cepby fu=-dly, | (2200)

These field equations are {letting x = 45G/¢)
n? ¢ -
' =
»4p Ir (2-21)
-px,u t fu,p N f-«p.x =0,

The gravitational stress-energy tensor is

- - + ( 80+ % W EPE p) (2-223)
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where the field energy density czt00 is
2,00 \ 2 212 -
ct =‘ﬁ(§+°§), (>233)

and where the Poynting vector is

9 3 A0
E; .=ct . (?rl!ﬂi)
A
Explicitly in terms of the fields, the stress-energy tensor is

i --z'i(g‘«- C‘E")S’v- _‘i (3"3’{-:‘5’5’) . (ab)
Subject to the Lorentz gauge condition

’\,“’*1= ".e! ¥ 'lGL %EE& =0 (?Plﬂb

the 4-potential A" = (72, A) has the wave equation

O N‘ =-A J’ (z-25)

where j" = ov" obeys the continuity condition

‘ill!" =0 (2“1)

in Eq (2-17). Note that (2-25) contains the scalar case (2-7) from
Newtonian mechanics.

This, then, is the electromagnetic theory of gravitation. It is a vector
theory whose equations of motion are (2-15), whose field equations are (2-12),
and whose wave equation is the vector one (2-25) subject to the gauge condi-
tion (2-24). The theory is readily quantized, consisting of Spin-1 gravitons.
If it be desired the development can be extended to Proca's Equations, pro-
viding for a massive graviton and a cut-off (Laplz:ce-1846) in the gravita-
tional field. Furthermore, if the development is assumed to satisfy the re-
stricted theory of relativity, the entire theory is Lorentz covariant.

Such a theory does not account for the apparent nature of gravitation that
all matter attracts; indeed, it maintains that in the physical world there
could well exist states of negative matter (negative mass) or antimatter which
are repulsive. Such speculation, in fact, has been pursued by Foppl (1896,



1898) and Schuster (1898). However, the principle embarassment in such a
Maxwellian vector theory of gravitational radiation isthat Maxwell himself
abandons it (in 1865). He does so because the energy density of the grav-
itational field in Eq (2-23) is negative-definite, if the force between
masses is to remain attractive. Maxwell accordingly invokes a universal
tackground 80 in order to maintain a positive-definite energy [

E=6-flgeddl e

The error in Maxwell's judgemen* is that he has divorced the gravitational
theory from the electromagnetic one. This is to say that the total stress-
energy tensor is composed of the electromagnetic one T'"" and the gravita-
tional one t"V. The total stress-energy tensor must be required toc remain

positive-definite
(’Tl‘v N th') >0, (2-213)

which (along with the continuity equation) couples the gravitational vector
fields with the electromagnetic ones - or else the force between masses must
be allowed to become repulsive upon the appearance of negative-energy den-
sities. More explicitly, Eq (2-27a) gives the coupling between electromag-
netic and gravitational fields as

(2-210)

&lE e @i+ [eenive)-@pan)so,

This coupling is also supplemented by the continuity condit’ . (2-17) for
both fields,

(J)‘ + Jr)‘)‘ = 0 (2-2%)

@1+ )+ @jed)=0. G

In the absence of charge (pe=0), for example, an electromagnetic current can
manifest itself in (2-27d) due to the flow or rotation of mass - constituting
a basis for the origin of magnetic fields. Further gueries into the nature
of the electromagnetic theory of gravitation are given in Appendix F.
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The Tensor Theories Of Gravitational Radiation

Recalling now the scalar and vector wave equations, these can be readily
generalized and one further step can be tiken by introducing a tensor wave

oMY= xT” (2-28)

for gravitational waves. In this equation T represents the stress-energy

equation

tensor for all matter except those effects due to the gravitational fields
themselves. Wave Eq (2-28) therefore represents a linear tensor wave theory.
However, in order to make the energy of the gravitational field positive-
definite, the auxiliary condition

A =0 (2)

»y

must be imposed. But if condition (2-29) is imposed then it must be true
from (2-28) that
’

TP.» o) (2-0)

which is not true. The total stress-energy tensor must be divergence-free:

(‘T‘I‘V + tw)w =0 (23)

is the contribution from the gravitational fields themselves.

where t"V

Hence, the tensor wave equation must satisfy

oA =-x (T ) (29

subject to the divergence condition (2-31). If we assume that t"¥ is at
least quadratic in the gravitational field variables, then the tensor wave
equation (2-32) becomes nonlinear. If ever quantized, it should contain
Spin-2 gravitons.

In summary, then, the scalar, vector, and tensor theories of gravitational
radiation are respectively



N

O¢ = -xp ()
aN' = -2 (34" (2-25)
OA"= -%(T"”). (2-3)

They all constitute gravitational radiation, subject only to appropriate
boundary conditions of incoming and outgoing radiation at infinity. These
are field equations, and not necessarily equations of motion. It is the
latter which address the meaning of radiation reaction and the energy con-
tent of such waves.

By far the most sophisticated theory is the tensor one, which we are now
prepared to discuss.



CHAPTER 111

GENERAL RELATIVISTIC THEORIES OF GRAVITATIONAL RADIATION

Introduction

In the development of General Relativity, Einstein's theory is confronted
with the task of accounting for a number of accepted gravitational phenomena,
known to most any student of natural philosophy. Amongst these are the
deflection of light in a gravitational field as predicted by Newton in Book
I11of Opticks (1704) and calculated by Soldner (1801), the anomalous preces-
sion of the perihelion of Mercury which preoccupies more than 100 years of
physics, as well as the inadequacies stated by Abraham and others of the
restricted theory of relativity for an explanation of gravitational behaviour.

Gravitational radiation is another such example. By 1905 this is being
explicitly addressed in the work of Gans (1905, 1912) and several years later
by Abraham (1911, 1912, 1913), as we have mentioned. The thecretical problem
at this time has developed to the point of demonstrating the existence of a
gravitational instability due to gravitational radiation reaction (the radia-
ting source gains energy - a problem which still plagues the theory).

When Einstein does proceed with his own theory of gravitation, it is to
borrow an idea from Harry Bateman” and to "geometrize" gravitation, that is,
to put the theory in the form of a relation between geometry and the sources
rather than between the field and the sources. The resultant theory of grav-
itation is described by Einstein's tensor field equaticns

Ro- T3, R=-2FT, 6

where Ruv is the Ricci tensor, guv is the metric tensor, R is the scalar
curvature, and ’
T = Thtt (2
Y ad rv }l.v

*The equation d52=guvdX“dXv might properly be called "Bateman's Equation."
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is the total stress-energy tensor consisting of &1 nongravitational effects
T;v as well as the stress~energy pseudo-tensor components tuv due to the
gravitational fields themselves. The left-hand side of the field equations
(3-1), referred to as the Einstein tensor Gu‘, 1s subject to the Bianchi
jdentities G“v;v = 0 which implies that the right-hand side must also be
divergence free

&,
Il L ) r') =0 3-3)
T ;v"(T + i v . (
The right-hand side of the field equations is made nonlinear by the presence
of t, in (3-1) and (3-2) since the latter is at least quadratic in the
field quantities. Furthermore, the equivalence of mass and energy due to
Poincaré (1904)

E =M -9

is assumed throughout, although this postulate has never been demonstrated to
have an experimental basis for gravitational phenomena. In effect, this
postulate depletes the mass monopole source of gravitational radiation, in
contrast to the invariance of classical electromagnetic charge under electro-
dynamic radiation where (3-4) has a firme. basis (Cockroft & Walton, 1932).
The dilatation of mass

4
M=¥m= (lfv‘;‘-'c; +%§+---m 6-5)

is also postulated, which presents complications in the theory of gravita-
tional radiation reaction. It is the origin of the "slow motion" approxima-
tion which will be discussed shortly when the linearized theory is addressed.

Note that Einstein's cosmological term Aguv/z is not included in the field
equations (3-1), simply because its presence revokes all of the existing
results in the genera?! relativistic theory of gravitational radiation. It
will not be discussed further.

Approximation Methods & Coordinate Conditions

Although there do exist exact solutions of Einstein's nonlinear field equa-
tions (3-1) (Chapter 4), the physical interpretation and meaning of such re-
sults is difficult to determine. As a consequence, most of the theoretical
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work on gravitational radiation has been performed with approximation
metheds which are valuable because they provide some understanding of the
nature of the problem - although they are actually inadmissible because they
destroy the nonlinearity cf the equations.

These approximations consist of linearization and perturbation techniques
which make various assumptions about the nature & the metric tensor 9, For
example, the "weak-field" approximation assumes

Go = T+ Mo =

where h  constitutes a weak (h<g) perturbation of the background geometry
Ny such as the Minkowski or the Schwarzschild backgrounds. Evaiuation of
the Ricci tensor Ruv to first order in huv then transforms the field equations
(3-1) in vacuum (Tuv = 0) into a system of linear differential equations. An-
other method, known as the "k-approximation" or "fast motion" method,

TRDCE R AR I

assumes that the metric tensor guv can be represented as a power series ex-
pansion in the parameter k, which is proportional to the gravitation constant
G. Next, there is a "slow motion" approximation which expands 9., in inverse
powers of the speed of light c: (2)

Joo = <V ¥ Yoot (?u e
Qo = +§h+ (3-8)
ik = &3 + ,.“83“.--

This technique is the basis of the so-called "EIH approximation” which has
played a significant role in the development o the equations of motion in
General Relativity and the determination of what are referred to as "post-
Newtonian" results (the precession of the apse, the deflection of 1ight, and
the gravitational red-shift). The numbers in parentheses in (3-8) reflect
the "order" of the approximation - namely the power of c ", such as <8, 3
One last technique that must be mentioned is the "double series" approach

which consists of an expansion of themtric tensor 9.0 in powers cf & mass
parameter m as well as powers of " 11ke 1n (3-8):

EEwel - pobage. 69
Jo=h2 o = 1;* A §5+---+‘.‘;—i}3*3i3*"'
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where now the sum of the numbers or exponents in parentheses represents the
“order" of the approximation.

Coordinate conditions constitute the next significart aspect of linearized
General Relativity. Just as the Lorentz gauge condition (2-24)

M =0 -24)

is invoked in classical electrodynamics in order to obtain the vector wave
equation (2-25)

an =-wj’ (2-25)

so do similar gauge conditions exist in general relativity. Einstein (1918)
defines the auxiliary function

e LW $57n) (3-10)

which is subject to the Einstein coordinate condition (Appendix B)

v
V =0 (3-n)
Y

resuiting in a tensor wave equation of the form (2-32) from the field

equations (3-1)

| LAl Vet . (>-12)

Such gauge conditions and coordinate conditions have led to much controversy
in General Relativity, prinmarily because they destroy the general covariance
of the theory. Fictitious gravitational waves also manifest themselves
which must be removed by coordinate transformations. Furthermore, gravita-
tional waves can be created in the 1inearized theory or they can be annihi-
lated, simply by a coordinate condition. Upon this basis, some authors
question the very existence of gravitational radiation.

Two more features of the linearized theory are significant: (a) Boundary
conditions, and (b) Radiation reaction. Boundary conditions such as the
Sommerfeld radiation condition {outgoing radiation at infinity) are important
because they license the theoretician to obtain whatsoever experiment implores
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- radiation, or no radiation. Radiation reaction is important because many
authors empioy the geodesic postulate of Einstein whereby gravitational rad-
jation does not result in radiation reaction, in the linear theory. To be
sure, such solutions are inconsistent with the general nonlinear theory.

It should be evident that there is a wealth of theoretical work, both con-
troversial and thorough, which exists in the tensor theory ¢f gravitation.
It is now best to begin with Einstein's original derivation of gravitational
radiation in the linearized approximation.

Einstein's Original Derivation Of Gravitational Radiation

The geometrical nature of the field equations (3-1) is made more transparent
if the latter are contracted with g~

R=1ART (-13)

]

where « = 8nG/c4 and T = T“u is the trace of the stress-energy tensor {(3-2).
Substitution of this relation (3-13) for the scalar curvature R in the
original equations (3-1) gives

R,w =% (r‘;w- 1 3,»1‘) . (>-4)
This form of Einstein's field equations <tates more explicitly the corres-

pondence between the structure of geometry in the Ricci tensor va and the
structure of the sources of matter implicit in the stress-energy tensor Tuv.

Einstein (1918) makes a "weak-field" approximation and thereby linearizes
the Ricci tensor in (3-14), as shown in Appendix A. Employing the Einstein
coordinate condition (Appendix B) in Eq (B-8), the first-order Ricci tensor
(A-6) becomes (B-9) and the field equations (3-14) above simplify to

R(‘)

=1 =.1¢,('|" - ) 3-15)
v 2-|:l ‘Duv ‘pv .*:%’Ur“ . (
In other words, the wave equatior and its coordinate condition (3-11) for

the tensor theory are, to first order in h,
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O h)wg 2% (T ﬂl‘ ) (3-16)
xr vz 0 . (3-w)

The wave equation (3-16) is stiil nonlinear due to the nonlinearity of
Tuv, as discussed in (3-2). Its solution is represented by

b= ) 33.; Loy em

where r' = 15 - i‘[ and where the brackets represent retarded, advanced,
or standing wave solutions. To these solutions can be added those of the
homogeneous wave equation

Qh,=0 (3-18)

which are plane waves. The stress-energy tensor is now linearized by making
a "slow motion" approximation such that M=m in Eq (3-5) while Tw --*an
is represented by T For distances r' much greater than the extent of the
sources, in the radiation zone, r'x r whereby (3-17) becomes

h}“ = - ;,;';, ['t),,] &£ (>19)

Imposing the boundary condition that Ty = 0 at r = « and using Gauss' theorem
one can demonstrate that

P, = +E [ XNy, ew

Since xm?nmz in a slow-motion approximation and X =ct, then ’3-19) and (3-20)
give

b, :r o | mXXEY e

It is advantageous to use the mass quadrupole tensor {the mass monopole and
dipole make no radiative contribution)

Qu 2 [m(AX-5,%)8 e
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and express huv in (3-21) as follows (recalling that « = 8ﬂG/c4):

26 —~ S Y 3,
h o= F1Q.-28 \mX X dX} (29
4 3¢é'e Y ol o o I
This compietes the determination of the tensor wave huv in the linearized
tensor theory.

By means of a coordinate transformation one may go to the principal axes
of the quadrupole and choose an axis, say X], to be an axis of symmetry such
that Q]v = 0. All longitudinal-longitudinal (h]1, h]O’ hoo) and longitudinal-
transverse (h]2, hi3 h20’ h30) perturbations vanish under such a gauge,
leaving only a transverse-transverse set of perturbations (h22’ h33, n23)
propagating at velocity c in the X] direction:

hyy = ‘:?E :as (3-243)
hao = 3 {8 okpdY]
3 = B [y - yuXds)
(hyy hyy) = 3{%-{ Qg2 - 033} . (3-24n)

One now wishes to determine the radiation spectrum. The gravitational
stress-energy is given by the pseudo-tensor t"Y. For the perturbations h22,

0
h33, h23 propagating along X], the energy flux ¢t of the stress-energy
pseudotensor (Appendix C, Eq (C-11)) simplifies to

c":w"s;::s{):xu “ e )x')';m )1&?};;?} (25)

which becomas for retarded solutions Xl=ct

cr’ = S {hu»f (b “ (+20)

Substitution of (3-24) into (3-26), noting that « = 8"G/c4, gives one

.o- G ...2 .Q” .6.3 .
Al = Qza"'(-g'z'_')I . (-2n
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Generalizing this result to an arbitrary direction of propagaticn nf, the
radiated power per unit solid angle d& is (this particular representation is
due to Landau & Lifshitz, 1962, but their work offers nothirg that is not
contained in Einstein's paper)

%—E vy b (Q nn)‘ ,_Q2 -4 Q‘,,n*n" ‘ (-28)

The tctal power radiated is now determined by aver2.ing this energy flux
over all snlid angles. The resultart energy luss due to linearized grav-
itational radiation is thus

AE IO T )
T 451 Q Q“t (3-2)

The mass quadrupole and the moments of inertia are related as Q 1j-3I:j.
Hence for a spinning rod (b )-~ 103, whereby

ii 3523 _Q (3-30)

twice the valve obtair:d by Einstein (1918), as corrected by Eddington (1522).
(Eq (3-30) is correct only for an ellipticity of unity; see Eq (5-1).]

For the particular case of a rod spinning about the 2-axis (¢=4), Einstein's
results are demonstrated by Park (1955} to give the radiztion pattern shown
in Figure 1. Transforming Eddington's (1922) Eq (18) into spherical coor-
dinates, the power radiated per unit solid angle in the dircction nis

d 4G w267, 7 2 ?

- 1’(0¢) = — Lsmban2g + c0s @ -3t)

5 P6e)= BT |fsnbanzgrs’d] ©
Integrating this over the azimuth ¢, Park obtains the radiation pattern

46, T [alor gole]

in Figure 1:

smue 15 1@ 6)
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Averaged over <, the remaining par: of the solid angle, (3-32) yields
(3-30). Figure 1 also applies to the circular Kepler problem. as we shall
see in Chapter 5.

Cy *
The angular momentum M"° of the radiation i. likewise determinable from
the gravitational pseudo-tensor t*” in (3-25), using Eq (D-4) from Appendix D
- although Einstein ra2glects this aspect of the problem:

MP= LI X Y epds, . 00

Einstein's original treatment of the linearized thecry also considers
the plane wave solutions of

0 h’y =0 (3-18)

Defining appropriately the Einstein polarization tensor €y (Einstein calls
it 20 Weyi and Eddington call it auv) the general plane wave solution of
the homogeneous equation (3-18) is
3 »* -thx
h =€ e + € ¢ (3-3
g Y o A

which satisties (3-18) provided

| A J,’”‘ =0 (3-34)
and (3-11) if

Poa b
- - € 3-35)
Under a gauge condition (B-1) where X'* = X* + £¥ the po:arization tensor
v transforme as
’
¢’ =¢ +h3 +h3 (+x%)
pr T Ty T
h]
For an Einstein-Eddington-Weyl piane-wave (3-23) propagating in the X
wirection with k'=k0=k while k2=k>-0

*See Hansen (1972).
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(5;1' = €, Ea;l<= €33
€ = €u+hy € = Enthy (331
(;:. a Gg.ﬁ'zjilg fE;.‘z ‘5..312‘11‘.

Letting 0 = too/Zk, i T -Lzl/k, i T -n]]/Zk, and i3 = —c31/k, all compon-

ents of (3-37) vanish except o0 and “n3- Those that remain (»22 and 523)
represent the physical components of the gravitational piane waves. Those
that vanish are "fictitious" because they can be produced by mere coordinate
transformations. The tensor plane wave {3-33) has helicities 0, + 1, + 2,
But only helicity + 2 cannot be transformed away with a coordinate trans-
formation. Linearized gravitational waves are therefore considered to have
Spin~2 {although they do possess "fictitious" Spin-1 components).

Einstein's work on the theory of linearized gravitational radiation is
characteristically definitive in a number of respects. He obtains a wave
equation from the linear field equations and therefrom obtains retarded
solutions in strict analogy with the radiative solutions of classical electro-
dynamics. There is no gravitational dipole radiation because he invokes
Newton's principle of equiva]ence* wherein gravitational and inertial mass
are the same, and whereby a system of masses necessarily has tr.: same grav-
itaticnal-to-inertial mass ratio and the dipole radiation vanishes under
conservation of linear momentum - just as it dgoes in electrodynamics for a
system of charges with identical charge-to-mass ratios. The velocity of
propagation of the remaining quadrupolie radiation is the same as that for
electromagnetic phenomena, upon the basis of correspondence between the
general theory and the restricted theory of relativity and Newtonian
mechanics (However, see Appendix G).

Einstein's development is not definitive, however, in the sense that he
fails to address the real nature of his theory, its nonlinearities. Although
there does appear to exist radiation from a mechanically driven Jacobi c¢1-
lipsoid possessing a time-varying mass quadrupole, there is nothing yet in
the theory that demonstrates radiation exists foi an isolated, gravitationally
bound system such as the two-body Kepler problem. Neither has it been es-
tablished that the decrease in energy of the radiating mass quadrupole (3-30)
is equal to the energy carried away by the yravilational radiatiun, a problem
intimately related to the question of radiation reaction and the equations

*
In order to write the equation of motion m v - ~GMm r/r » Newton had to
ssume my = mg. This form of the principlé, then, Is due to Newton.
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of motion. These more subtle aspects of gravitational radiation theory
remain untouched, and are left to plague the proponents of Einstein's theory.

The EIH Approximation

If one were considering possibilities for tensor field equations, the.e
would necessarily involve the total stress-energy tensor TN on toe basis of
a generalization of classical field theory. Furthermore, the censervation
conditions T"", = 0 from classical electrodynamics would necessorily gen-
eralize to the covariant relation

'T"w,’v =0 (+30)

Hence, if one takes the field equaticns in the form

Gl (3-39)

then the covariant divergence of this form (3-3%9) quarantees by virtue of
(3-38) that

!ﬂi
G .,=0 . (3-40)
]

Because (3-4C) is simply the contracted form of the Bianchi identities. the:

the reasonable choice for Guv is the left-hand side of (3-1), namely

G = RP"H"R . ()

Th's argument, partially due to Hilbert (1915), constitutes the teleological
basis of Einstein's nonlinear field equations (3-1).

The surprising result of this argument is that the equations of motion
follow from (3-38), although this seems not to have been apparent at the time.
Einstein (1916) originally introduces the assumption of geodesic motion, but
Einstein & Grommer {1927) later succeed in demonstrating that the motion of a
singuiarity in an external field must he along the geodesics of the external
fieit, Finally, Einstc:n, Infeld, & Hoffmanr (EIH) formulate an approximation
method by which both the gravitational fiel and the equations of motion for
its sources can be calculated from the field equations.

This EIH approximation method is sssentially a quasi staticnary weak-field
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approximation which has resulted in the sc-called "post-Newtonian" results
of General Relativity [see Appendix E)}. It ic best understood by drawing
an analogy due to Infeld (1938) and Trautman (1958) with the scalar wave

theory. If we consider the "near zone" (in the region of the sources) of
the scalar wave equation

0¢ = -Np (2-9)

and further consider that : may be expanded in powers of . small parameter

p- b= hechr | Ga

then operation upon : with the d'AlemLertian B} results in a series of simul-
taneous aifferential equations determined by setting coefficients of the same

powers of ¢ equal. Because of the cuasi-stationary condition that V“»;‘lg*,
we obtain upon equating coefficients:

Ve, -Np

G. ‘qu}' s = 0

€2, Vi, -apd = 0

e o, - 2 fad = 0 (3-43)
P, - &« o

I

These near zone equations (3-43) exhibit the salient feature of the EIH
approximation method. The wave equation associated with any particular power

of " is determined in the near zone by the solutions of lower order approx-
imations, in this case 2,

This behaviour is represented by the arrows to
the left of the equations which demonstrate how the approximations couple
together. There is likewise a set of such equations for the homogeneous
case in the wave zone where . = 0. But the interesting characteristic of

the radiation zone is that it couples back into the near zone, acting on the
sources as radiation reaction.

Recalling tnat in General Relativity the scalar wave functions ¢ are replaced
by the metric tensor components 9., the above analogy must be reconsidered
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from the point of view of Einstein's field equations (3-1). As in the
scalar case (3-42), Einstein's fie'd equations for empty space may also be
expanded in a power series

A ob

(:; = l:ii (;; = }E:: " (;[’“, =0 (3-44)
» » nwg O

However, in the case of {3-44) the coefficients of ¢ cannot in general be

set equal to zero, as was done in (3-43). A word of caution about the 1it-

erature is likewise in order due to a certain amount of confusion in notation.

Most of the original EIH development is in terms of * = c'], rather than c.

The treatments are equivalent, except that A= e"+2, for the following

reason (see also Appendix E). From the geodesic equation of motion, radia-

tion reaction on the particle in motion is described by

X* - - xext (-6
() (e)dp '

The equations of motion are of order i, but the metric components 9., in the
Christoffel symbol of (3-45) are of order ¢. The two time derivatives
(30 = c']at = xat) raise the order ofc by two. To make mat%ers even a little
more miserable, some authors also get an extra factor of ¢ = because they ex-
press energy as P°=c"1E=XE (they get radiation reaction in A10 instead of xg).
The EIH method is summed up by expressing g, as in Figure 2. This is a
representation of the expansion of 9., in (3-8) as powers of € = c'], where
the numbers in parenthesis reflect the order of e¢. It illustrates the "post-
Newtonian" effects in General Relativity and their origin in the metric tensor
as depicted by the EIH method. There are two types of contributions, radia-
tive and non-radiative. By examining, for example, the quadrupole or "postz's-
Newtonian" terms connected by the 1ine indicated, one car see that P and
90 2T odd-powers of ¢ while 9ok is even in €. For non-radiative contribu-
tions, 990 and gk are even in ¢ while 9ok is odd. By virtue of conservation
of linear momentum and the equivalence of inertial and gravitational mass the
dipole radiation (represented by the dotted line) of seventh-order in » can
be made to disappear. It also can bc annihilated by a coordinate transforma-
tion, as demonstr_ *ed by Infeid and Scheidegger (1951, 1953, 1955, 1960).
Boundary conditions likewise determine the behaviour of Figure 2. Standing
waves, as an example, manifest themselves if all of the radiative lines cancel

and vanish from the diagram.
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Infeld (1938) estapiishes the radiatior terms in Figure 2, demonstrating
that they do not contribute to the equations of motion {radiation reaction)
up tu the seventh-order in a. Hu (1947) carries the approximation on to
ch—order, being the first to study explicitly the problem of radiation
reaction in the two-body oroblem. Infeld & Scheidegger {1951) investigate
the elimination of radiation reaction lines by coordinate transformations,
but Goldberg (1955) finds solutions which cannot be eliminated in this
fashion. By 1958, the definitive paper of Trautman (1958) firmly estab-
lishes the EIH formalism depicted in Figure 2 a5 a linear perturbation meth-
od with which to approximate the nonlinear field equations of Einstein
in the weak-field, slow-motion case.

The final step in understanding the EIH method is one of re-establishing
Figure 2 in a manner that reflects the coupling discussed in Eq (3-43).
This is done in the schematic representation of Figure 3 (partially due to
Thorne, 1969), which reflects the work of the Infeld school through 1960.
As with Eq (.-43), the arrows in Figure 3 represent how the various ievels
of the approximation couple together. In the near zone there is the same
scalar coupling of the even orders ir =, except that an additional scalar
coupling in the odd orders manifests itself at the postz'5 level. Likewise,
the solutions of the homogeneous wave equations (far from the sources) couple
in the radiation zone. And with proper matching - the method of EIH or
asvmptotic matching, to be discussed later in this chapter - at the boundary
between the near and radiation zones, the solutions are consistent.

However, the most significant aspact of the EIH method, and any other 1lin-
earized approximation of the nonlinear field equations for that matter, is
the radiation reaction which occurs in the ch-order (Ag) or postz's-Newtonian
approximation of Figures 2 & 3. If the boundary condition at infinity is the
Sommerfeld condition (outgoing radiation) then the energy of the radiative
sources must be depleted by an amount equivalent to that carried off in the
gravitational radiation, or soaked up by some nonlinear mechanism in the
near zone. This behaviour constitutes radiation reaction.

A demonstration of this result is first conducted by Trautman (1958) and
Peres (1959). Peres succeeds in carrying the EIH method %o the "post2'5-

th—order in +), doing so at a critical time when

Newtonian" approximation (7
the integrity of Einstein's linearized quadrupole formula (3-29) and the very

existence of gravitational radiation has been a controversial subject. This
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same result has been obtained before as we have seen, by Hu (1947) who works
the radiation reaction problem out to ch—order in A(Xg), at the suggestion
of Pauli at Princeton. Both Hu (1947) and Peres (1959) consider the applica-
tion of their results to the two-body Kepler problem and ascertain that the
system ggng_energy* under gravitational radiation, corroborating the re-
sults of Gans (1905) and Maxwell (1865) - although Hu does not point this out.
That the problem is a boundary-value problem, however, is maintained by

Peres (1960), whereupon he obtains a decrease in energy as depicted in (3-29)
for the Sommerfeld radiation condition. For the Kepler problem, Einstein's
quadrupole radiation formula (3-30) reduces to

18 32 G (m, ‘“a) (‘; +M,) (3-4%)
’TFE v ’

which is the result obtained by Peres (1960) - and by Hu (1947), except for
the sign. The source mass likewise decreases by this amount.

Radjation reaction in the EIH mass quadrupole and two-body problem is
subsequently pursued by several authors, such as Ryten (1963), Demianski &
Infeld (1963), and Infeld & Michalska-Trautman (1966, 1969). The EIH meth-
od, furthermore, is employed by Chandrasekhar, et al (1965-1970) and Thorne,
et al (1967-1970) in certain astrophysical applications where the earlier
work is extended to the hydrodynamics of perfect fluids. The significance
of all of these results is that the EIH approximation method, while account-
ing for some of the nonlinearities of the theory, corroborates Einstein's
linearized quadrupole radiation.

The derivation of Ryten (1963) of the mass quadrupole radiation in the
EIH approximation provides, for the interested reader, a detailed example of
how the method is pursued to the 9th-order where quadrupole radia.ion

reaction appears. Her fipal radiation formula,

e G [ aTan i
gk °’*ﬁ[§'o°.5§‘°’ 20 LA-H{G o

is identical with the linearized approximation (3-29).

*
t is of interest to note that Eddington (1922, P.251) encounters this
problem also.
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The "Fast Motion" Apprcximation

The EIH approximation is both a "weak-field" and a "slow-motion" approxima-
tion, particularly suited to the study of such behaviour as planetary motion
and post-Newtonian Generail Relativity. But such a technique is limited in
its applications. Consequently, another method known as the "fast motion"
or the "k-approximation" method has established itself. It does not make
a "slow-motion" assumption.

This procedure consists of a scheme of successive approximations, like EIN,
but with a power series expansion of the metric tensor 9., in terms of a small
parameter k

zka =N + 3 *\(3 e (39)
3" ms) ’v ’V

where k is proportional to the grav1tation constant G: = GM/R, M is the
mean particle mass, and R is the mean inierparticle separation. It is not
quasi-stationary; that is, ao¢zV¢. The energy-momentum tensor is likewise
expanded in a power series in k.

Einstein (1916, 1918) is the first to use it, assuming that the field is
sufficiently weak that the nonlinear terms can be neglected. This is the
so-called "1St-approx1mation“ in k, which is again addressed by Bertotti
(1956) and deWitt & Ging (1960). Bertotti & Plebanski (1960) then establish
a generalized Green's function method for nonlinear field theory and develop
the equations of motion up to the "Z"d-approximation" in k. Their work,
however, contains infinite self-action terms - although these are removed
with a renormalization process by Kuhnel (1964). Bock (1957, 1959) and
Bonnor (1958) also discuss solutions of the "Z"d-approximation."

More recently, the "fast motion" approximation is utilized by Havas (1957),
Havas & Goldberg (1962), and Havas & Smith /1965) to address the question of
the existence of gravitational radiation from a freely gravitating system,
such as a Kepler problem. Havas, Goldberg, & Swith confine themselves to the
“1St—approx1mation,“ jnvestigating its particular contribution to radiation
damping. They obtain antidamping and a gain of energy for the radiating
two-body problem, as does Hu with the EIH method. However, their work is
cr1t1c1ied by Peters (1970) as improperly neglecting the stresses in the
system.

See also Lind (1972) and Peters (1972).
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The radiation reaction associated with the ”postz'S-Newtonian" EIH effects
appears in the “3rd-approximation“ which none of these authors has address«d.
Furthermore, Infeld (1961) has criticized the "k-approximation" method as a
"step backwards," partly because it does not give the EIH results, which are
well ectablished, in the limit of Tow velocity. Nevertheless, the "fast
motion" approximaticn will always have theoretical appeal because it has
many realistic astrophysical applications.

The "Double Series" Approximation

In connection with the "fast motion" approximation just discussed, there is
another method which is very similar - due to Bonnor (1959) and employed by
Carmeli (1964, 1965). Using the "double series" expansion of the metric
tensor introduced by Bonnor (1959)

(o) () q bo) W)
= +Mq +mqg +M'q +Mmg + (39

P A | WL ¥
where M and m are the inertial masses of a two particle system, Carmeli also

imposes the "slow-motion" assumption in order to expand the "k-approximation"
terms of the metric(ggz as a power series in c°]

(pq) (pe) + ey &y
= f’ 4+

Ej}lv ) od ) ad ﬁ!’uﬂ
just as in the EIH approximation. The result is effectively a synthesis of
both methods with a proper correspondence between the two, thus addressing
the criticism of Infeld (1961). Carmelj ob*ains the equations of motion in
the "Brd-approximation“ which are to the 9%M-order in ¢ (Ag), where the
radiation reaction manifests itself. Although he does not solve the re-
sultant equations, he does present an argument maintaining that the radia-

ting two-body problem is damped, losing energy, under an outgoing radiation
condition.

The Method Of Matched Asymptotic Expansions

A variation of the EIH approximation has been presented by Burke & Thorne
(1969, 1970, 1971) based upon the methods of sinqular perturbation theory for
nonlinear differential equations. Their technique establishes no new results
in gravitational radiation theory, but it does succeed in reproducing the
results of the EIH method for gravitational radiation from the two-body
rroblem found by Peres (1960) and Ryteri (1963). The work of Burke & Thorne
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borrows extensively from the EIH met >d, and the paper of Infeld (1938).

The formalism is the method of matched asymptotic expansions, an under-
standing of which follows from the continued analogy with radiation in
electromagnetism originally due to Infeld (1938) and Trautman (1958). It
begins with exactly the same EIH renresentation of the metric tensor g .

as in (3-8) or Figure 2,
Qoo = - +EE€WH ¢ E(Hd+W)+ -
- 3\41 § Y Q3'4GJ

S;bi-‘ki"ﬁsab + ‘4(‘!‘5;»*“;» --}H‘ts*)‘,,,,,

except that the various components have been expressed explicitly &s certain
functions: the 9g0 3TE scalars, the 9oa 2T€ vectors, and the 9, 2re ten-
sors. (These chofces follow by analogy with the components of the energy-
momentum tensor where T°° is the scalar energy densiry, 7°? is the vector
momentum flux, and 720 is the Maxwell stress tensor.) Plugging (3-46) into
the Einste1n tensor G iy in (3-41) gives the follcwing EIH result that

peTy e
a 3 t63[v‘va- (Y!*%'\V)“] PR
Gp= € {'{‘VI“,L*'!&' S G0 2 a5 (LML AN

NS, D0 G ATV V)
"fsab["("“ VALP N\ TSUO) | 2

Joa =

(3-47)

where H is a 3-dyadic.

Burke {1971) then imposes thz auxiliary conditons
" \"0-:"\" 1&;.413)
in vﬂ+bv=0
which succeed/simplifying the E1nste1n tensor considerabliy. The Einstein
field equations (3-1) or ({3-39)

G,v = - T}w (3-39)

now reduce to vl“"s 21‘. f

" V= il1t‘_
ViH = AR S *G§l,

-

(-42)

q=Ee
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where P k] T“
;r;L 'L"":na (SPEQO)
f;;“,!E r‘:dp
¢ S*E ('la")[%w»a‘\tb* kwi; Sab(tw“**mﬂ,

defining p as ta2 energy density, Ja as the rcmentum flux, Sab as the matter
stress, and Gsab as the gravitaticnal stress.

Figure 2 for the EIH approximatior becomes in this method of natche!
asymptotic expansiocns Figure 4. Due to the auxiliary conditions (3-48)
and the EIH field equations {3-49), the sources must satisfy

V°I+3ﬁf =0
V-(_s__+°§)+),§ 2 0

a3 conservation laws.

(3-s1)

The gravitational force is determined by
6 )
VS = "‘PW' (3-52)

where y=4¢, with ¢ representing the Newtonian potential.

In effect, gravitationally bound systems such as the two-body problem are
found to reriate quadrupole radiation while creating additional resistive
fields which couple back from the radiation zone into the near or induction
zone as pictured in Figure 3, causing radiation damping and a loss of energy.

The method of matched asymptotic expansions and singular perturbation theory
in effect criticizes the EIH method as being strictly valid only in the near
or inner zone, due to the fact that "“siow-motior" expansions are not nec-
essarily valid at distances far from the cources in nonlinear theories. A
separate outer zone expansion is required there where the stresses are the
nonlinear ones due to the gravitational wavec themselves. The inner and
puter expansions must then be properly matched. Although this technique has
only succeeded in duplicating the results of the method at the present time,
its authors have argued that it simplifies calculatinns while providing a
consistent and systematic frame work for the EIH theory. It could prove to
be a significant step in the direction of a solution of some of the more
formidable problems that remain unscathed ty existing techniques.
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The Regge-Whe~ler-Zerilli Formalism

Another interesting perturbation technigue for solving Einstein's nonlinear
field equations appears in the very importint pape by Regge & Wheeler (1957).
They address the question of the stability of the Schwarzschild (1916) nietric
by considering a nonspherical perturhation ot tne Schwarzschild back-
ground s which is defined by

I 1Y = L1 e 4 (100 ad0lg)
=it (-2mp) , mw=eMf (=)

Based upon a weak-field approximation as before in (3-6)

Juv = N + ko (3-6)
)NV }lv »rv

the perturbations h  are decorposed intg 2 generalized nonspher :zal form
involving tensor spherical harmonics and comprising a separabi soiution

of the type

-tkt
h, 940 < h(r)YL:“ (U (354)

The Einstein field equations are solved to first order in h, and it is
determined that the time-dependence exp(-ikt) cannot diverge because imag-
inary frequencies k are disallowed, thereby demonstrating the stability

- or so maintain Regge & Wheeler - of the Schwarzschild solution. Their
technique is contested by Peres & Rosen (1959) as unsatisfactory because
it does not take intn account properly the nonlinear effects of gravita-
tional radiation. Indeed, Peres & Rosen maintain that small oscillations
cannot be stable for any gravitational field assumed to be asymptotically
flat at infinity - but this criticism has been either ignored or forgotten.
The work of Regge & Wheeler is pursued further by Manasse (1963), Brill &
Hartle (1964), Doroshkevich, et al (1965}, Petzrs (1966), Vishveshwara (1968,
1970), Vishveshwara & Edelstein (1970), and Zerilli (1969, 1970).

Regge & Wheeler note that Eirstein's field equaticas (3-1) for the exter-
ior Schwarzschild background - are simply

R, =0, (>-552)
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and they argue that a perturbation of the metric as in (3-6) likewise re-
sults in & perturbation of the field equations wnich still equal zero

R, (W =R q+SR =0,  Gs=v
By virtue of (3-54), then (3-55) reduces to

0] i
R, = SRuM=0, (s

which is given in Appendix A, Eq (A-6). This perturbation can likewise
be represented by a relation due to Eisenhart (1926)

Q) _ _ '
R, = 3R, = Sr;f,v, Sk, G

noting that srsv is a tensor although r® 45 not. Eg (3-56) is the covariant

v

generalization in curved space of the Schrodinger equation for a massiess
Spin-2 particle in flat space (Regge, 1957).

The most general form of h consists of an odd-parity (-1)L+1 case

v

0o htasad hrrmod
h - 0 0 ‘\\,&,\‘)&\Lﬁ* M‘.”““& Y“
» |o -1 * )
2 2 theofy G-l K‘ﬂ"‘%\;“ﬂ

i
as well as an even-parity (-1)" case

N Y

Hed Mgs  hend \\(tﬂ & |m
h - e b} \

ol e r{ven+etnd) 'e YL("’)
x VG " PlK&Asm

" Poeklr gl L ] o

where the asterisk = means hij=hji' By performing a gauge transformation

- known as the Regge-wheeler gauge (Appendix I) - such as 15 discussed in

o

_J
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Appendix (B-5), the perturbations h of

(3-57) can be reduced to the fol-
lowing canonical form:

0dd-Parity Perturbations

(0 0 0 h(™]
_|lo o o h(]2 )
5“’ “lo o 0 o :“IMS]PL(N)
L. * O o ] (3-%

Even-Parity Perturbations

ruon.’ W, 0 0 ]
d
» o O vk o
© 0 O ¥k (+-s8t)

where aximuthal symmetry has been assumed (M=0). This particular form of
huv is what is meant by the "Regge-Wheeler gauge." It consists of two odd-

parity (lower case) radial functions h0 and h] as well as four even-parity

(upper case) radial functions HO' Hy» Hy, and K.

The Regge-Wheeler canonical perturbations of the Schwarzschild metric,
then, substituting (3-58) into (3-6) and (3-53), amount to

Odd-Parity Schwarzschild Metric
[.'.’J.tz rde® + e (48t + sm‘el&)] (3-993)
+ 2(‘!}"\“&\\,@“ w (sma &)P (ash)

Even-Parity Schwarzschild Metric

-99
('1‘“ ;kt).. lt . (l‘l"“t ikt) ll (3 »)
H(1+KP .““xwm'w)«r 2HpE “iir.
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The problen remaining is to detewin2 tue ocdd-parity and even-parity
radial functions. These are obtaired by solving the differential equations
(Appendix H) which result from tne substituticn of h _ in (3-58) back into
the perturbed Ricci tensor and field eyuallons (3-553? Eor the ndd-narity
case Regge & Wheeler obtain the following "Schrodinger" type equation

Iyt 2
- T (k -V.“)Q=o ¢-0)

where Q = e”h]/r and r is given by

S zm\nl-z’:-“-l\ , (h-5)
The effective potential Veff is
_ e am\| L) GM] -
Vefc‘(“‘v"?‘[ S

For the odd-parity quadrupole oscillations (L=2) the effective potential
Vags 10 (H-8) can be shown to be that in Figure 5.

- FIGURE 5

2 La2

0 1 — #*
Vishveshwara (1970) ireats the scattering of gravitational radiation from
such a Schrahinger-type effective potential.

The even-parity radial equations (Appendix, H-10) prove to be more dif-
ficult and are not reduced to a single second-order differential equation
until the work f Zeriili (1970b), which is presented in detail in Appendix J.
He obtains a hom>geneous "Schrodinger" equation (J-7) for the radial function
ﬁim(r*) from whizh hw i;‘i?-58b) can be determined:

d Km 2 A
- = J-7
Tt [l( VL(r)]Km 0 (#7)
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-*
where r is given by (H-5) and where

_ (v 2y 2N ) szr’vlekm'na"a] 2
VL(") = (" —\")[ wW(\re Im)? (J 8)
A= 1 (-)(r2) R )

VL(r) in (J-8) is the even-perity duai of {H-8). Eqs 'J-7) and (J-8)
are sometimes referred to as Zerilli's Egquations.

Ter ,or Harmonic Decomposition With Sources

The origiral treatment due to Regge & Wheeler (1957) is the first decom-
position into tensor harmonics of perturbations on a spherically symmetric
background. Tensor harmonic decompositions are useful because they provide
for a separation of variables in the differential equatiors, and for this
reason are further analyzed by Mathews {1962), Peter: R Mathews (1963),
Thorne, et al (1967-1970), and Zerilli (1970a,c). Such decompositions are
also important in generalizing the linear perturbation technique used on
the Schwarzschild background to include sources.

Recail that Regge & Wheeler do not account for sources. Theirs is a
canonical nonspherical perturbaticn h of the Ricci tensor such that R(]) 0,
as in (3-56). They thereby find hreen s functions from which solut1ons of
inhomogeneous equations with sources can be constructed. On the other hand,
in order to establish realisti. perturbations with astrophysical applications
one can account for sources with a non-zero stress-energy tensor Tuv. for
exampie, this treatment of the problem is reasonable in the study of the per-
turbation due tc a small particle falling into the Schwarzschild geometry
from infinity.

Such an analysis is fermulated by Peters (1966) who considers first-order
Tinear perturbations of the Einstein tensor 6Guv rather then 6Ruv, and
accounts for sources of small mass m (m((MS) by means of a variation in the
stress-energy tensor -TUV. It is a weak-field approximation (3-6) and must
be classified as a slow-motion one also, to the extent that the dilatation
of mass (3-5) retains the condition m(partic]e)<<MS(Schwarzsch11d). Peters'
linear perturbation of the Einstein equations (3-1) results in the following
field equations for a background nL of constant curvature (Ricci flat with
R =0):

[’“-(Mf)QR h',‘n. ]

*'3»“" ' )--Z'KS'T (40
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In (3-60), fu represents an arbitrary gauge vector introduced in order to
reduce these field equations to a canonical form, once the unperturbed
background metric L is chosen. Furthermore, in order that (3-60) be con-
sistent, 6Tuv must obey a conservation law. Taking the variation of (3-38)
shows that the representation of the perturbing source :Tuu must satisfy

. \9Y o
($Tw) = £ T, WP Tt ";,T"-‘- 0 G4
Peters represents the part of fThv due to the perturbing particle as
ST i TT" o
ST"N-_- m_(ols;s“(x-i(s))‘."al 4P (3-e)

ds d&s °

2"(s) is the space-time position of the particle in the metric. Peters
finishes his treatnent with a Green's function method for curved space and

where

specializes his results to the Schwerzschild background.

Peters’ field equations (3-60) and conservation law (3-61) assume* the
stability of the background metric 03 this work is not a stability anal-
ysis as is that of Regge & Wheeler. Furthermore, the perturbation is of
first-order and thereby neglects radiation reaction. The perturbing par-
ticle is assumed to follow a geodesic in the unperturbed background "y for
the computation of 6Tuv in {3-62) - an assumption which is not correct. The
perturbing particle follows a geodesic in the perturbed metric guv and not
a geodesic in "y according to Einstein's theory. (See Figure 20)

Nevertheless, Peters' representation of Schwarzschild perturbations is a
very useful approximation, as has been demonstrated by Zerilli (1970a,c),
who decomposes Peters' field equations (3-60) into tensor harmonics using
the Regge-Wheeler gauge.

Zerilli (1970c¢) develops an orthonormal set of tensor harmonics (Appendix K)
for application to gravitational radiation theory, based upon the earlier
work of Regge & Wheeler (1957) and Mathews (1962). Because Peters' field
equations {2-60) are of the form

afh,]=-20T, (349

* Peters and Zerilli assume h, is small if *T _is small.
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where Q is a rotationally invariant operator, Zerilli expands both sides of
{3-63) in tensor harmonics in order to separate the angular variables ¢,4
from the radial equations. Choosing the Regge-Wheeler gauge (Appendix I)
the huv decompose as

h(m) = %_ m{i “‘LN'S'?L* "ll;ﬂ gm} (3-cA)
= (), a0y g+ (-EH, 2

where tensor subscripts "uv" have been replaced by the double stroke in
order to simplify tensor notation. The superscript (e) corresponds to the
electric or even-parity case while (m) stands for magnetic or odd-parity.
Referring to the tensor harmonics in Appendix K, one can verify that (3-64)
is essentially the same as the Regge-Wheeler gauge in (3-58).

Likewise the stress-energy tensor for the perturbing particle GTUV can be
expanded intc the tensor harmonics of Appendix K:

T =§{A:,4‘°’ +An 8t At t Blin + Bl
‘ M “’ngm*Gmam +D, dm* mhm} (3-¢5)

The respective coeff1c1ents ALM,...,FLM are defined in Appendix L and repre-
sent the amplitudes of the various tensor harmonic components of the stress-
energy tensor which "drive" the perturbation of the metric.

Substitution o1 the tensor decomnositions (3-64) and (3-65) back into
Peters' field equations (3-63) or (3-€0) results in one equation for the
magnetic (odd or L+1) parity and one for the electric (even or L) parity
case with tensor harmonics on both sides. The coefficients of the tensor
harmonics on each side of these equations muct then be set equal, which
gives the radial equations for the Peters-Zerilli analysis in the Regge-
Wheeler gauge with sources (Appendix 0). The sources, in turn, must satisfy
the conservation conditions specified in (3-61) and Appendix M.

Zerilli next takes the Fourier transform of the radial equations (Appen-
dix P) and then reduces them (P-1 and P-2) to second-order "Schrodinger"
equations with sources, in the same fashion as is performed with the source-
free Regge-Wheeler problem discussed earlier. Introducing two auxiliary
radial functions RE;‘;) and Réﬁ) he obtains Eqs (3-66) & (3-67):
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Magnetic-Parity 'Schrodinger" Equation With Sources

2™ "
JR"': +[u v M]R(u: SN (3-t6a)

dr“ M
where
V ® = (1 ?-'-'1)[-1‘39 "“] (-bb)
Stﬂ = -ﬂi[tL(t.uXL-\Xmi {I;[r(b-zm)Dm (3-“:)

¥ Z(hm)qn*(\‘-wl(ulul) Qm} .

Electric-Parity "Schrodinger" Equation With Sources

@ )
(R [0 BRS, =S5 6o
r

where
(© WO+ w4 18)u' T + 18’ ¢
V ") = (- ‘E‘)[ v (Xr +3m)? ] ()

R EREEE ) o
£ "f'&.%‘)lk (Ml)r"ﬂhr f‘u‘)c h’vl-\::::m‘)é‘m]

A= -0

The original radial functions ho’ h], HO’ H]’ H2, and K can now be derived
from RLM in (3-66) and (3-67). These relations as well as those for the
auxiliary source coefficients C], C2, and B are all given in Appendix Q.
Equations (3-66) and (3-67) are also referred to as "Zeriiii's Equations."”
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Upon evaluation of the coefficients of Appendix L for a Schwarzschild
geodesic, Eq (L-8), one finds that for a particle falling radially (say
along the z-axis) into the Schwarzschild geometry, all magnetic (odd or
L+1) parity contributions and all Q # 0 electric perturbations vanish. For
this case, the source function SLSLO in (3-67) reduces to

© _ AM [ i2h ] wTo
SL Araan ‘- v uﬁrﬁl‘\)]"' G-8d

[SL N -lst'lziu"r(") (38b)

where

EOET T rogn 5=t (TR 2] g

S=mEER Pl e
a2 Ty 504, +z\n\n!?7-g-§l‘\_ (3489

These equations are of current astrophysical interest, in that several
groups are evaluating them for higher L by numerical integration techniques,
as we shall see in Chapter 5.

Zerilli solves his equations in huv for L=0 and L=1 in the above case of
a particle in orbit about a Schwarzschild geodesic. The magnetic monopole
(L=0) is identically zero. The electric monopole (L=0) case correspond to
a mass perturbation which simply adds the particle mass m to the Schwarzschild

mass M (y. is a constant), depending upon the position r of the observer:

Jen_ [ M » P<RG)
- 2_(’_‘_*';“_'.\ , *>R@®

The magnetic dipole (L=1) contribution is the angular momentum of the

Yo

(3-693)

equatorial orbit assumed, which is

Le® (3-69b)
a= R’s 6§ I
while the electric dipole (L=1) represents a coordinate transformation of
9., by huv, as we know it should - but not contributing dipole radiation due
to conservation of momentum. For L>1, analytic solutions have not been obtained.
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The Bondi News Function & Multipole Expansions

An entirely different approximation technique is the method of multinole
expansions. Multipole approximations have historically provided a great
deal of insight into tne study of radiation theory, certainly in the clas-
sical vector theory of electromagnetic and gravitational radiation, as dis-
cussed earlier, Likewise, multipole approximations have found their place
in the tensor theory of gravitational radiation.

In order to illustrate the multipole approximation in General Relativity,
it is best to consider the work of Bondi (1960, 1962, 1965) who has been
expecially concerned about the meaning and the physical existence of grav-
itational radiation from gravitat.onally bound and otherwise isolated sys-
tems., On the basis of causality arguments, Bondi (1962) considers only re-
tarded solutions and he places great emphasis upon the requirement that
gravitational radiation must result in a loss of energy and hence mass of
tke source in order to be consistent with the spirit of General Relativity.
This means that for gravitational radiation from a mass quadrupole, there
must be a secular change in the mass monopolie. Thus the wmonopole must be
coupled to the radiative multipoles, such as the quadrupole, of the multi-
pole approximation.

Rondi's development (Appendix R) treats the stationary-radiative-stationary
transition of an outgoing gravitational "sandwich" wave (Figure 6) as it
passes through some retarded hypersurface "ust-r/c=constant" in an asymp-
totically flat rejion of space:

STATIONARY <+—— RADIATIVE ~=— STATIONARY

©

\ OQuteoInG
Ruugy # O
R“I‘P" 0 A R‘?‘P’ 0
(MINKOWSKI FLAT) X (MINKOWSKI FLAT)

(Ricct FLaT)

EIGURE €
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In Figure 6, regions 1 and 3 are stationary and Minkowski flat with no
curvature. Region 2, however, is radiative and empty, behaving in much the
same fashion as the Regge-Wheeler treatment presented earlier. Such a trans-
ition is assumed in order for the Bondi formalism to be consistent with
Huygens' principle. It is tantamount to the statement that c:avitational
waves in a stationary-radiative-stationary transition have no "tails":

FIGURE 7

|
‘ : |
® ® !0 ® I @ |0
' 1 '
(A) Bondi's (Huygens)Assumption (B)Gravitational “Tails"

The existence of "tails" (Figure 7b) means that the background geometry
continues to oscillate as a consequence of the "shock" perturbations induced
by the passage of the gravitational wavefront. It has since been demonstra-
ted, however, that Bondi's assumption of no "tails" (Figure 7a) is indeed
invalid. Papapetrou (1969) and Hallidy & Janis (1970) have investigated
the problem of the existence of a final stationary state (Region 3 of Fig-
ures 6 & 7a) and they have concluded that stationary-radiative-stationary
transitions cannot occur for axially symmetric (Bondi) radiation of a finite
multipole expansion. Nevertheless, it is informative to consider Bondi's
representation because Sachs (1962) has demonstrated that the condition of
axial symmetry can be relaxed, and the "tails" eliminated.

The critical and controversial question of outgoing radiation at infinity
is addressed by BSondi by choosing the axially symmetric (independent of ¢)
metric

Bondi's Axially Symmetric Metric

ds? = At + 2Bdudr -2 [0-Fadea wield] (>0

which is extremely well suited to the problem of the Sommerfeld radiation con-
dition. The Bondi coordinates are X'=(u=t-r,r,0,¢). Asymptotically the Bondi
metric reduces to its Minkowski form

JSE = cluz + ZJqu-!'a [JO‘"'“%G“‘] .
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For sufficiently large values of r, Bondi (Appendix R) assumes for the
arbitrary functions in his metric (3-70) or (R-1) the following:

Y= &+ 0(H)

F=£ +0(h (3-1)
B = [1+ 2]+ O(h)

A = [- 1]+ 0(w) :

He shows that f=b=0. Then he derives from the field equations Ruv =0
in Region 2 of Figure 6 a differential equation for the time r~ate of change
of the function M(u,0) in (3-71)

%m acY L d L & (csind) (3-72)
- - 1.-% —Lb (C sin .

m (ST. 3 56 30 sin (R-22)
Based upon correspondence arguments with the static case, the "mass aspect"
M(u,9) is shown to be related to the mass of the source m{u) by

.}
M) = -\I-S MW sindde (a1

Differentiation of m(u,©) in (3-73) with respect to u and substitution of
M, from (3-72) gives Bondi's result that

A.I'E =~ -{-r(%‘-u)zsin 040 . (-1

"~.di calls the function c=c(u,®) a "news function" because from it alone
can be determined the entire behaviour of his metric. In particular, from
relation (3-74) one can see that knowledge of c(u,O) on some hypersurfacc
u=constant would determine the secular change of the mass monopole source.
Furthermore, if the news function is not zero, then from (3-74) there must
be a monotonic decrease of the mass m(:) of the source. Bondi's method is
effectively a method of asymptotic linearization, and is illustrated in
Figure 8.

In a paper due to Penrose & Newman (1965) a set of ten geometrical quan-
tities, defined for asymptotically flat space-times, are shown to be conser-
ved during the emission of gravitational radiation. Orie of these quantities
js particularly relevant to the Bondi representation and states that a
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trensition between two stationary states (Figures € & 7a) is allowzd if
mQ=C d
D'~ mQ = Conserved | (318)

where D is the dipole, m is the mass, and Q is the quadrupole 'ioment of
tne source. (3-75) is not sufficient tc insure that the fina® statc is
stationary, however.

Bondi's work is generalized by Sachs (1962) who relaxes the condition
of spo.ial symmetry on the fields, allowing for two polarizations instead
of Bondi's one. Sach's generalization is lased upon a ccmplex rews function
¢, from which he determines the rate of joss of mass due to gravitational
radiation (Figure 8) as

m = -{&c*) (3-7)

which is identical to Bondi's (3-74), except that carets arc used to rep-
resent the integral or average over the sphere at infinity. Morge - & Peres
(1963) identify the Sachs news function with the m:.-s quadrupole tensor Qij
and then from (3-76) derive the relation

m=- Sg-ct Q‘*QW : (3-11)

in close agreement with the results of Einstein's linearized auadrupole
radiation (3-29) and of the EIH approximation (3-4.,. Sach's paper (1962)
has gained more significance with the work of Papap.trou (1969) and Hallidy

& Janis (1970) mentio. ad earlier because the problem of gravitations1 "tails"
in the Bondi represe:tation does rot exict if the condition of axial sym-
metry is removed.

tarly criticism of Bondi's approximation method is als. presented by
Bonnor (1963) and Bonnor & Rotenberg (1966, who make use ~nly of Bondi's
metric (3-70) & (R-1). Bonnor {(1963) argues that only part of the news func-
tion c{u,9), the linear part, is known to the observer in Bond:i's =»)proxima-
tion method. The nonlinear and .ri‘ical part is indeterminable. If you
plug only the linear part of <(u,.) for a quadrupole oscillator. as an
example, into Bondi's fcrmalism (R-7) the oscillator gces nst.. 'e. BEonnor
& Rotenberg (1966) eliminate this shortcoming of the Bendi method by using
instead Bonnor's (1959) "double series” approximation (3-9). Upun passing
to nonlinrar approximations, they demonstrate that under forced oscillations
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the source loses mass due to quadrurole-quadrupole interaction and exper-
iences radiation recoil under quadrupole-octupole interaction. They also
point out that the axial symmeiry of the Bondi method produces "taiis.”
Bonnor & Rotenberg conclude, furthermore, with the statement that the ex-
istence of radiation from a freely gravitating system is still an outstand-
ing problem (1965).

The error in Bondi'< original approximation and the basis of the origin
of the "tails" is a naive one. Using the multipole approximation methc' in

n dotarmine the <nlu-

the linear vector theory of ¢ o date
tions for a stationary-radiative-static an {Figurc 6) %y satis-
fying a finite number of linear conditions. Bondi errs, however, in extend-
ing this result to a nonlinear tensor theory of radiaticn. In the general
relativistic tensor problem, Bondi needs an infinite numher of nonlinear

conditions to make his approximation work for the axially symmetric case.

Nevertheless, the Bondi formalism and its association with the notion of
gravitational news or data on a radiative hvpersurface has inspired a great
deal of research into methods of a<ymptotic linearization - in particular,
the tetrad rormalisms of the next chapter.

The High Frequency Approximation

Relevant to any discussion of approximations in General Relativity is the
high-frequency approximation of Isaacson (1968) who arrives at an effective
stress tensor by analogy with the geometrical optics limit of electromagne-
tism. In the high-frequency limit the gravitational fields uncouple from
their sources and attain an existence all their own. The Isaacson stress-
tensor is gauge-invariant, second-rank, symmetric, and (most important)
not a pseudotensor (like the Landau-Lifshitz pseudotensor of Appendix C).
Treatments using the I.aacson approximation include Price & Thorne (1969, I1I),
Ipser (1971), and Thorne (1968).

The Isaacson effective stress tensor linearizes the radiation zone, placing
the burden of the nonlinearities upon the region of the sources - as does
the Bondi formalism.



CHAPTER IV

EXACT SOLUTIONS & ASYMPTOTIC APPROXIMATION

Looking for exact solution's of Einstein's nonlinear field equations is
very much 1ike taking & peak inside Pandora's box. 1In fact, one might sim-
ply make this statement and leave the whole thing at that. Nevertheless,

. cy s s o .
any treatise on gravitational radiation theory must assess the physical

“

meaning of radiative solutions, in particular these which have been found.

Indeed, it is precisely the physical interpretation of the exact solutions
which makes progress in the nonlinear theory of radiation extremely awkward.
A1l of the radiative solutions either contain naked singularities, or for
those singularities which can be identified with a source, there always
appear singular 2-surfaces which transport energy and/or momentum from in-
finity into the source, where it can then be radiated outwa-d 2gain. Con-
seqguently, the most orofound theoretical question about nonlinear gravita-
ticp2l radiatinon - that of energ) transfer -~ remains unanswered. And until
it is answered, the very existence of nonlinear tensor radiation will
remain in doubt.

Exact Plane Wave Solutions

Plane wave solutions of Einstein's empty space field equations Guv =0
or Ruv = 0 are invastigated by Brinkmann (1925) with the metric

is' = dufauy +(v‘-x')hmu}- [aear) @

although he does not characterize the solutions as radiation. They are more
formally addressed by Rosen (1937) whose metric is derivable from (4-1)

ds' = 2Ldudv- (F47464) @

or as stated by Bondi (1957)



Js' = n“(«l’r'-h')-t: { "J‘ u*«l! } (e-2n)

where u = t-¢, #=g(u), a=a{u), and au=aua=un5.
that the solutions of (4-2) carnot exist because they possess physical
singularities. That this conclusion is too severe is pointed out by Bondi
(1957) and Bondi, Pirani, & Robinson (1959) who maintain that Rosen does not

distinguish adecuately between coordinate singularities and physical singu-

Rosen concludes, however

larities. Rosen's metric is empty, and it is flat (Ra8y6=o) if

|lf\"‘ + :lllu. = uf'a;‘ i (4-0)

As pointed out by Bondi (1957), the coordinate transformation

x-¥=ct-x 3= Tax-gOA
| “'t" z2:=u32

is nonsinguiar for u G and {3-2b) becomes
ds' = datt - (Wedyedad) - Bl (AN it-00*  (4-5)
+2p, [opdy-adaedt- ) -(y* #elt-deffed)

which represents a non-flat region between two flat ones provided By #0in

“-9)

the last term. This is a "plane-wave" zone cf finite extent who.e amp]1tude
is determined by r=g{u). A more general p]ane-wave, with a variable plane
of polarization is given by Bondi (1957) a

de* = g“(m-az‘)-(et-z)‘[mzp(q"c ig) +
sinh28 520 (dy4") - 2einh 2B sin20dndf]
where 9=3(u). The empty-space condition for (4-5) is

d = (ct-%) [ﬁf* 6: sinh 2P] ] @-1)

A discussion of singularities is presented by Bonnor (1957), while Kundt (1961)
investigates the general nature of "plane-fronted" gravitational waves.

(4-6)

Recent work by Szekeres (1970, 1972) and Penrose & Kahn (1971) has made
significant progress in the study cf exact solutions for colliding plane

*
They are not really "plane” because the Jeparture from flatness R
depends uoon ¥ ard z, for propagation along x.
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waves {essentially a sort of “graviton-graviton" interaction). The nonlin-
earities are taken fully int0 account, which is of the utmost importance,
because the very notion of ~inear superposition (Maxwell's theory) is at
stake. Indeed, as we have seen in Figure 8, the Bondi-Sachs asymptotic
representation essentially iinearizes the field equations in the radiation
zone by virtue of the fact that there is uperposition of the rews functions
(c = ¢+ cz) - which places the burden of the nonlinearity upon the near
zone in the region of the soirces. Szekeres (1970, 1965) maintains that
superposition is simply invzlid for colliding “sandwicnh waves,” in confiict
with the Bondi-Sachs formalism. Penrose & Kahn employ impulsive &-function
plane-waves, arriving at simtlar results as Szekeres. In either case singu-
larities exist, which make the physical interpretation difficult to assess;
perhaps the singularities di:appear for more realistic, curved wave-fronts.

Exact Cylindrical Wave Soliutions

Exact cylindrical waves for Ruv = 0 are presented by Einstein & Rosen (1937)
and Rosen (1937, 1954, 1956, 1958), based upon the static axially-svmmetric
metric of Weyl (1918) and Levi-Civita (1919),

I = SrNe-2Npad - NP @e

which reduces to the Laplace equation (in culindrical polar coordinates)
v’w =Yy + ﬂv +%,=0 (4-84)
N ZP"" s = P“’, %) . (4-89

Rosen's cylindrical metric is obta1ned by mere]y interchanging the roles of
zand t in (4-8), whereby

dsl < 12'.2*(8' J.tk ‘rz)_ ;ﬂfi 4 *1 _:" 4*1 ' (4-92)
Substituting in Ruv=0, the Rosen metric (4-9a) gives
Y, - -‘F"" -L%,=0 (4-9b)

r
4= P[V’i""t] (4-9¢)
= ‘p W o . (429
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For the Sommerfeld radiation condition, the solutions of (4-9) for
k = wp/c are (Rosen (1954))

Y= AJ(Nessut + NMsmut
i- ﬂ‘k{m{ @ PRWN + X0+ T L )
Ry fu.,ool Alm..oo NN, 0] conut

+LL0N0 + NN .mz-t) Nt
The last term in (4—10) is a secular variation of the metric which can be

interpreted as a loss of energy due to radiation. Rosen (1956) objects to
this inter tation, claiming that there is no transport of energy and
momentum because the pseudotensor vanishes. Weber & Wheeler (1957) demon-
strate that it is nonzero. Marder (1958, 1961, 1969, 1972) studies exact
cylindrical waves also.

Although the singularity along the axis of symmetry can be identified with

a source such as a thing rod, which makes it more tenable, this rod is
infinite in Yength. Thus the nice cylindrical solutions which radiate en-
ergy outwards require an infinite source. Furthermore, there is reason to
believe that energy is transported back around and down the axis of symmetry
along the source singularity with zero net transfer of energy.

Exact Spherical Wave Solutions

Birkhoff (1927) proves that any general spherically symmetric solution of

the empty space field equations can always be transformed into the static
Schwarzschild metric. By virtue of Birkhoff's theorem, no spherically sym-
metric gravitational radiation can exist, an important result for astrophys-
ical theory. Spherical gravitational waves in the linearized theory have been
investigated by Boardman & Bergmann (1959) and Bonnor (1959). As stated by
Weber & Wheeler (1957), however, spherical gravitational waves can never be
truly spherically symmetric, just as is the case with electromagnetic ones
(the fixed point theorem of topology).

Robinson & Trautman (1960, 1961), nevertheless, have discovered a class of
exact solutions which correspond to a form of expanding radiation which they
classify as spherical gravitational waves.

Other Solutions

Additional solutions can be found in the work of Peres (1959) and Takeno
(1956, 1957, 1958). Takeno treats the problem of plane, cylindrical, and
spherical waves in the nonsymmetrical unified field theory.
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Invariant Formulation Of Gravitational Radiation Theory

As we have seen in some detail, coordinate or gauge transformations can be
used to create and destroy apparent gravitational radiation. But that radia-
tion which cannot be transformed away is cons’ lered physical. The Riemann
curvature tensor Rdgys likewise cannot be transformed away by means of a
change of coordinates. As a consequence, theoreticians - enchanted by the
prospect of relating the Riemann curvature tensor to the existence of
physical radiation - have begun to classify its radiative characteristics.

Recalling that the transversality of E-H = 0 and |E| = |Hjin the radiation
zone of electromagnetism can be expressed in terms of the null vectors k*
(defined by k“ka = 0) as

k“FuB =0 k“F;B =0 ,
it is argued that the Riemanr tensor possesses similar syrmetry properties.
Based upon a theorem due to Debever {1958) and Sachs {1961), a similar set of
null vaectors k¥ satisfy the following eguations {see Bonnor (1963) for a

discussion):

Petrov Metric Type Equations For Null Vectors No. Distinct Rays
I RAKK =
SAIHAD S

11 R k 1k"k" =0 3

agy s €] ay
D Rasy[dkc]kak =0 2

RuBY[Gmslm m =0
111 RaBy[ék EC] =0 2
N R k" =0 1

aByd

where the Petrov {(1954) types (Appendix U) have been applied by Pirani (1958)
as a means of classifying the radiative properties of the Riemann curvature
tensor. This can be stated in terms of a Penrose (1960) diagram:

I
N\ Penrose Diagram
D-1

oA
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which represents the substructure of the Petrov metrics. There are three
spaces (three vertical columns) which may or may not be composed of a sub-
space. The left-hand column (reading down) is composed of “Petrov-type I
nondegenerate,” “Petrov-type 1 degenerate" (D), and flat-space (0). The
middle column is "Petrov-type I1I," and "Petrov-type II null1" (N). A1l the
metrics are "algebraically special" except type I (the most general type).

The Riemann tensor has the form
[

r

or dropping the subscripts

R=NLI L L

Hence, Petrov-type N is radiative (it goes as r']). The same formalism also
applies to the Weyl tensor. In terms of the Bondi news function, the Petrov
types in Eq (4-11b) are (Trautman (1962))

m~;§3cm‘e X ‘D~2“t§.6'|k)

Appendix U contains details on all of the exact solutions discussed earlier
and their associated Petrov-Pirani classification.

' 3
N~ $5

3

The Petrov classification of fields using the Riemann tensor, then, is
introduced by Pirani (1957) into gravitational radiation theory with the
hope of constructin. an invariant basis for establishing the existence of
gravitational radiation. Referring to Appendix U, one can see that this
endeavor is not entirely successful.

Invariant Formulation & Asymptotic Approximations

The embodiment of the Pirani invariant formulation of gravitational radia-
tion using the Petrov classification can also be designated as a tetrad cal-
culus. Witten( 1959) and Penrose (1960) likewise develop a two-component
spinor formalism. The tetrad and spinor calculus are then combined together
by Newman & Penrose (1962) in a formalism with emphasis upon an expansion of
the Weyl tensor rather than an expansion of the metric tensor in inverse
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powers of r, due to Bondi ot al (1962). “Yopefully, the Newman-Penrose
method will offer a reconciliation of the invariant formulation with the

asymptotic approximation of Bondi.

Exact Solution For A Gravitationally Bound Sys .m

An exact radiative sclution from a system representing a bound self-
gravitating state is now available, and is of great importance in that it has
physically meaningful singularities associated only with the material sources
and constitutes the first exact solution of any kind for a system in motion.
It is the work of Bonnor & Swaminarayan (1964), Swaminarayan (1966), and
Biddk (1968, 1971). It is an analogue of the classical Born (1909) problem
of the uniform acceleration of two charges (see also Rohrlich (1965), 118).

The solutiun is “Petrov-type I, nondegenerate." It comes from the
metric (Bi€dk, 1971)

ds’ =2 J, r.t“# » G- t'){(!‘!’ Y g
-2 - ') 2et (- ) hlt}

/A=-%-%+ = % + Ink
A= St -pta t*)[-wis] %w E‘m""“

;‘3('\- W ‘+2f'h; , (21,0) R= 4,(’ . 2kt')
{a ﬁ; {p‘(z'.t‘) + (R-p-WYR-p*h,) - R.'\z}

and where a], a2, h]>0, h2>0, and k>0 are arbitrary constants. The solution

where

describes two pairs of mass points which are represented by the world lines

t

f: 0
(4-\3)
2‘3 4 ’t’ 1-1‘\.-‘
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and are thus uniformaly accelerated by :./(Zhi) in a Minkowski background.
There are four Rossible cases for partic]e‘mass:

a,= —'1;-&‘:)- = -Q-\';‘;"} k=) @-u3)

2, = k) 3,>0 kel -
3, arbitrary =- Q‘-fi‘-'hl'): K up[w-%\ @-Ue)
4,>0 i
a 20 aaog } . U-ud)

Eq (4-14a) corresponds to two mass dipoles (positive and negative mass);

Eq (4-14b) corresponds to four masses of positive mass with stresses;

Eq (4-14c) corresponds to a pair with negative mass moving under stress, while
the other two particles move freely; and Eq (4-14d) represents only two
particles with the same positive mass, connected by stress.

Transforming to spherical coordinates, the line element (4-12) becomes very
involved, but Bildk gets for the Bondi news function

| SRl ew

z- -?i—;:l - 1_&:- (=9, «) (4-15h)

W; = Jul + 2h;3m"0 b5
p,&_y{u+a+{\x‘m‘0 \}H\t\ﬂ{%.; %} {u‘ z::u\m

The Bondi news function (4-15) begins with an asymptotic expansion contain-
ing r’l, irrespective of the choice of 355 hi’ k (that is, for all cases 4-14).
This is to say, ithe asymptotic expansion of the Riemann tensor tetrad is rad-
iative according to Bundi's method. Bi¥dk (1971) demonstrates that the radia-
tion pattern, furthermore, for the Born solut1on of electrodynamics is

(aPAn), ., = j, 2 “*(:h?p o i (4-%a)

while that for the Bonnor-Swaminarayan solution of gravitational radiation is

(deAn), = (4PA0),  ta'e .  G-ky

Bicdk, in addition, points out that the particle masses in the Bonnor-
Swaminarayan solution are the same as those occurring in Bondi's (1957) paper
on negative mass in general relativity. There is strong evidence that the
particles in the Bonnor-Swaminarayan solution are gravitational monopoles.

where u = t - r and




CHAPTER V

GRAVITATIONAL RADIATION IN ASTROPHYSICS

Let us turn now to astrophysics. A wealth of astrophysical applications
exists for the linearized solutions of the tensor theory of gravitational
radiation - even though the exact, radiative sclutions which are known have
been difficult to interpret. Such applications must be astrophysical in
nature simply because the order of magnitude of the radiation is so small
(6/¢c® = 2.7x107%0) . For quadrupole radiation alone,

- L G Gy . G

Until exact solutions which are physically meaningful are established, it is
nevertheless informative to adopt the linearized theory, to forget any contro-
versy which may exist in regard to radiation from the Kepler probiem, and to
consider the observable phenomena which might result.

Gravitational Radiation From A Spinning Jacobi Ellipsoid

Consider a spinning Jacobi ellipsoid (triaxial inertias 111’ 122, 133 and
semi-axes a, b, c) whose body axes are chosen to coincide with the principal
axes and whose angular velocity « is along the x3—axis. The Einstein-
Eddirgton quadrupole radiation foranula (3-30) becomes in this case

"% = % ';G-; Iiez.ﬂ‘ (513
G Iné -
-4k = 2 SN (s-14)

where I = I]]+122 and e = (111—122)/1 = (a-b)/v(ab) is the equatorial ellip-
ticity. For an ellipticity of unity (e=1, 122=0) this formula reduces to the
original quadrupole radiation (3-30) for a spinning rod. On the other hand,
if I]1=122 the Jacobi ellipsoid degenerates into the Maclaurin spheroid and
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ceases to generate gravitational radiation because it has zero ellipticity
(e=0 in 5-1).

The radiation reaction torque acting o the ellipsoid due to gravitational
radiation would appear to contribute a loss in angular momentum L by an

amount JL . la 32 , 5
it aat 's'%(l.rl.,)ﬂ  (s2)

For the triaxial ellipsoid, this is (Chandrasekhar, 1970)

%t'[(f fc')ﬂ]" -5 92;1 @-vyQ°, G®

Naively treated, Eq (5-2) should result in a spinning down of the ellipsoid.

n

Consequently, the exponent n of @ in -d€/dt is known as the "slowing expon-

ent" and has been used to indicate the presence of multipole radiation
mechanisns,

P= ['32? ~ “ i ‘-53 m"’;‘]m *"j} lﬂm 2

The Crab pulsar has been observed to have (e.g. Ruffini & Wheeler, 1969)

5.76 + 0.65 (Optical)
3.6 +0.6 (Radio)

n

n

which would imply the existence of a quadrupole radiation mechanism (n=6)
such as (5-1). Assuming a mass of 0.786 Mg» a mean radius of 9.75km, and
eccentricity of 8x10'4, and a period of 33 msec, then a “neutron" star spin-
ning as a triaxial ellipsoid in (5-1) can account for the observ-d rate of
change of the Crab pulsar's period of 4x10']3sec/sec. The power radiated
would be

-d€/dt = 2 x 1038 erg/sec.

However, energy dissipation and angular velocity cannot be related in this
fashion. Chandrasekhar (1969, 1970) has pursued the evolution of the Jacobi
ellipsoid under gravitational radiation in the context of the "postz's-
Newtonian" (EIH} approximation. He has arrived at the surprising result that
a triaxial ellipsoid increases in angular velocity as it loses angular momen-
tum and radiates energy (5-1). It asymptotically approaches the Maclaurin
spheroid, whereupon it ceases to radiate, at the point of bifurcation (see
Figure 9). The Maclaurin spheroid is then dynamically unstable under
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gravitational radiation reaction, exhibiting the possibility of fragmen-
tation.

o} — —JBCLARIN _

(1 - /A = KlE-T"r

(QM- ’nJ) = K2E—[rh

t—
FIGURE 9

The dissipation of energy, then, under gravitational radiation can be
derived from potential and internal energy, and reed not be at the expense of
rotational kinetic energy. Chandrasekhar's results have significance for
gravitational collapse and the formation of "black holes"* in astrophysics,
because asymmetries during collapse should be radiated away as gravitational
radiation if his approximations are applicable. The collapsing object
should evolve into a spheroidal (Maclaurin), nonradiating "black hole" -
which is secularly and dynamically unstable. It could fragment and even
bifurcate under this EIH analysis, in contrast to the results of Penrose
(1972) and Hawking (1971).

Figure 9 also explains the "glitches" or sharp drops in the rotational
periods of pulsars. Starquakes briefly create a Jacobi ellipsoid which
quickly becomes Maclaurin.

Gravitational Radiation From The Kepler Problem

Another system of astrophysical interest is the wwo-body Kepler problem which
has already been discussed at some length in the EIH approximation. It is
particularly interesting because it is a case of a self-gravitating system
not undergoing forced oscillations but yet experiencing a time-varying
quadrupole moment.

*"Black hole" is the acroaym attributed to the gometry in (3-53) yhen the
radius of the mass M is less than the Schwarzschila radius 2GM/c‘.
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Recalling for a circular orbit that :22=G(m]+m2)/r3 ana that the ellipticity
is unity (e=1), ther (Landau & Lifshitz, 1962) Eq (5-1) becomes

dE _ 32 ' (mm)i(mrmy)
mTsd &

This formula should represent the grav ional mass quadrupole radiation
from a stellar binary, provided such radiation exists and boundary conditions
allow for it. HNoting that the total energy of a Keplerian conic is

£=-50m i.(.&!.'.. 4c (s-4)

2r Gmwm, /7 ¢t °
then substitution of {5-3) into r of (5-4) gives
3
. A G mm,(mem,) -
- o o> K — .s
“ = [ cs ;l!— R (s )

which represents the rate of decay of the binary - but cialy approximately
because the circular orbit assumption must be treated adiahatically as the
conic starts to collapse. Eq (5-5) is often used hy 3.trophysicists whep
considering the lifetiwes or relaxation ~imes of b 1y systems undergoing
gravitational radiation. Such arguments, for examp:e, are used to dispel
binaries as possible pulsar mechanisms bacause they collapse too rapidly.
This interpretation of gravitational radiation reaction (binary collapse)
effectively ignores or considers invalid the results of Hu.(1947), Peres (1959),
Havas & Goidberg (1962), and Havas & Smith (1965) who all find adilatation of
the binary system under gravitational radiation - which is consistent with
the behaviour of observed pulsar periods. Thinking of the binary as an
ellipsoid, however, it should increase in angular velocity (coliapse) under
Chandrasekhar's interpretation «f the EIH method.

The first adequate treatment of the general Kepler problem subjected to
gravitational radiation is due to Peters & Mathews (1963) and Peters (1964),
who study the case of eccentric orbits using Mathews' (1962) tensor harmonics.

*
Hu also argues that such a behaviour of gravitational radiation reaction
should account for the cosmological expansion of the Universe.
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Instead of Eq (5-3), they obtain

4
. 2gommmdy,
where L+ G%)Ea t(§)€4

T — (5-6v)

. ?

fo=

while "¢" is the eccentricity and "a" represent~ the semi-major axis or apse.

If we let
P=i Ec; @-“‘tﬂ}ﬂ“ﬂ (549

the (5-6a} is simply

df _ 3
..:;i:r .Jég!: !::).F:<i§) . (?;L*LG‘)

But recalling our circular orhit assumption, where the enhancerent factor
f(e=0)=1, P, in (5-6c) is actually

TN (572

which is equivalent to (5-1) (and 3-30 for e=1):

%_8_ 32“‘ P e (5.-".)

In terms of (5-7a), the Einstein-Eddington-Park power formulae (3-33) and
(3-31) that we obtained earlier can now be abbreviated as

£,P64) = Bl4wdo sz
=55 PO) = 4R [wss +Farte] = §R[1scadoradd] Go
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The results of Peters & Mathews {1963) reduce identically to these angular

power distributions in the caso of gravitational radiation from a circular
orbit. The circular Kepler orbit, then, Tike the spinning rod of Einstein,

is represented by Figure 1.

For the more realistic case of an eccentric orbit, the emhancement factor
f(c) becomes important, as shown in Figure 102. The power radiated in the
nth harmonic, Figure 10b, is

Phm) = 3" 3(n €) (s-9a)

where g(n,e) is derived from the Sessel functions J,(ne) as (5'35)

gd= Sl c2el ATl ] .]+(vt’>[Ul*LI’§f}.

The enhancement factor f{c) is merely the sum of all of the harmonic con-

tributions in (5-9b):
Fo) =Y qoe (5:92)

ns|
Figure 10 illustrates the important result that most of the power radiated
is emitted at the higher harmonics for greater eccentricities.

Before leaving the question of gravitatio al radiation from the freely
gravitating Kepler problem for two or more bodies, the role of tidal friction
must be issessed. The treatments presented so far have been adequate only
for point masses (actually, they are even marginal for point masses - if we
recall Appeindix G). Ccnsequently, the energy dissipation represented by the
radiation - d€/dt in (5-3) necessarily exhibits itself as a less in orbital
angular momentum. However, for macroscopic bodies tidal phenomena marifest
themselves, providing an energy dissipation mechanism deriving from spin-orbit
interaction. The resultant tidal friction has the opposite effect on the
binary system as does gravitational radiation reaction (Appendix S). The
mechanism of tidal friction, furthermorc, cannot be difforentizted from
variations in the velocity of propagation of gravitational radiation, as we
have already stated (Appendices G & S).

Gravitational radiation and tidal friction remain in ecuilibrium urtil the
spin angular momentum of the primary is etinguished. Acting as a primary
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in a binary system, a "black hole" can play host to another companion which
will radiate away its angular momentum as gravitational radiation, and the

system will not collapse. Local nonlinear effects can vary the velocity of
propagation and cause the same result.

Gravitational Bremsstrahlung & Synchrotron Radiation

A natural extension of the bound (<1, £<0) two-body Kepler problem just
treated is the hyperbolic scattering of asmall mass m as it passes in the
vicinity of a large mass M such as a "black hole, at an impact parameter b
(Figure 11a). On the basis of an electromagnetic analogy, one expects from
the linearized tensor theory of gravitation that he small mass m should emit
a "burst" or "splash" of multipole radiation as it experiences a trancverse
acceleration due to M.

L

(@ M@\~ ™ (c)

\ S (b
FIGURE I

Such an analysis is presented by Peters (1970) as a generalization of the
non-relativistic bound orbits treated by Peters & Mathews (1963). Peters
removes the "slow-motion" assumption employed in the derivation of the quad-
rupole radiation (3-29), (5-1), and (5-6), and he considers the re'ativistic
case of high velocity - assuming that the impact parameter is large enough
(b>>M), which keeps the scattering looking like the classical one of Figure
iia ratner than the general relativistic behaviour at small impact parameters
13M<h<EM) such as depicted by Fiqure 11b. (The orbital theory of Figure 11b
is due to Forsyth (1920), Morton (1921), and Darwin (1959) who qualify the
conditions for capture, stability, and scatter.*)

x* -
See also de Felice (1968) tor a gravitational Stormer-type representation of
general relativistic orbit theory. Also read Ruffini & Wheeler (1969, 1971).
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Peters develops his own representation of relativistic radiation at high
velocitias, different from the "fast-motion" approximation which has already
been discussed. In fact, his paper (1970) presents an excellent critique of
the "fast-motion” method used by Smith & Havas {1965), who treat the Kepler
problem by improperly neglecting the stresses .n .ne system.

In the “slow-motion weak-field" limit, Peters shows that the energy
radiated in Figure 1la is (2<<1 or vi<c

)
AE = a%gglsi::|’fl“n‘14%3 , v« (5-10)
=

which can be derived trom the Einstein quadrupole radiaticn formula (3-29)
by calculating the quadrupole tensor Qij of the mass m from its Schwarzschild
geodesic in Figure 1la. The same result is obtained by Ruffini & Wheeler
{1969}, being discussed further by Ruffini (1973). However, for the relativ-
istic case Peters' approximation gives
3 __.2 2
P~ SNm
bc a-gM"
c;zx',‘l";l
AE ~ m (s-ub)

for the radiated power P and energy AE, where the precise coefficients of

(s-13)

Eqs (5-11) must be determined by numerical integration. The results are
given in Figure 12, evaluated in the eauatorial plane (¢ = =/2 on the angular
distribution of the bound conic in Figure 1) of te hyperbolic orbit. The
forward beaming or bremsstrahlung is manifest in Peters' anmalysis.

In light of Peters' relativistic gravitaticnal bremsstrahlung, the next
reasonable question to consider is that of the highly relativistic (high vel-
ocity) bound conics in close circular orbits about a massive object M, such
as a Schwarzschild "black hole." The tighter *the circular orbit, the higher
its angular velocity (neglecting the Roche 1° - and consequently the greater
its chances of behaving 1ike a rotating "searc.. 1ht," radiating out Peters'
bremsstrahlung (Figure 11c). Such a mechanism constitutes gravitational
synchrotron radiation.

Circular Darwin (1959) orbits are aliowed for radii r»3M, although they
are unstable in the region 3M<r¢4M. Consequently, Misner et al (1972) have
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made the suggestion that gravitational synchrotron radiation should be
emitted by such orbits, although they are unstable and rapidly plunge into
the "black hole" under radiative perturbations. Nevertheless, Misner and
associates present an analysis of sca]ar* gravitational synchrotron radiation
based upon the Regge-wWheeler-Zerilli formalism, using standard JWKB methods.
They obtain the result that particles in high relativistic orbits which are
coupled to a scalar gravitational field radiate strorgly into narrow
synchrotron beams at high harmonics of the ovbital frequency.

Because of the importance of the synchrotron mechanism in the experimental
verification (the energy of the source can be much less) of gravitational
radiation, Misner's work on the scalar theory has prompted Davis, Ruffini,
Tiomno, & Zeriili (1972) and Breuer, et al (1973) to investigate the general
problem of scalar (Spin-0), vector (Spin-1), and tensor (Spin-2) synchrotron
radiation from r = (3+¢)M circular, unstable orbits. If wme  is the freq-
uency of the radiation and represents the frequency of the orbit o =/(M/r3).

then the power emitted is given in all three cases (scalar, vector, tensor)by

P)=2 & R L+ Rl (s-1)

R]m are of magnetic

in the Regge-Wheeler formalism. The functions R}a) and
(odd) and electric (even) parity respectively, being defined explicitly in
Appendix R. They are computed in the asymptotic region (r » +=) from a
Green's function technique using the solutions u(r*) and v(r,) of the

"Schrodinger® equations (3-66) and (3-67) without sources:

{-é + (0-Vgdu =0 5
by 4 (@-V)v = O

~|
u must be outgoing at r, = + = and v r.ust be ingoing at r, = - = (into the

“black h~le" at r=2M). The structure of V;ff depends upon the field

(scalar, vector, tensor).

The results of Davis, et al (1972) are given in Figure 13, which represents
the power radiated at a circular orbit r=3.05M (5=.05). The scalar spectrum
corroborates that of Misner et al (1972), determined by the JWKB method, but
the vector and tensor power spectra do not at all behave as do conventional

*-——_—— 13 3
Scalar radiation occurs in the Brans-Dicke (1361) treory. See also
Morganstern & Chiu (1967).
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FIGURE 13
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synchrotron mechanisms. Synchrotron radiaticn is enhanced ¢t high multipoies,
which accounts for the beaming effect. From Figure 13 the vector and tensor
contributions are significant at lower multipoles with an associated radiation
at wider beam angles. As a consequence, vector (electromagnetic or gravita-
tional) and gravitational tenscr radiation do n.: concentrate energy very
effectively into the orbital plane of the source.

The critica! frequency « is defined as

crit

= < 2 - A
Gt Ot = T FE . W

The power spectrum P(w) in (5-12) is found to vary as

Pw) ~ ' " epl-20k,] €

for all three spins: s=0 (scalar), s=1 (vector), and s=2 (tensor).

Particle Falling Into A Schwarzschild Black Hole

Also of wide astrophysical interest has been Zerilli's (1965, 1970) study
of the radiative behaviour of a particle falling radially into a Schwarzschild
"black hole," deriving from his spectral decomposition of the Regge-Wheeler
and Peters formalisms into tensor harmonics (Chapter 3). This particular prob-
lem is very much like Peters' relativistic gravitational bremsstrahlung of
Figure 11a, except that Zerilli is treating a geodesic which is captured
(impact parameter b<3M) - more like trajectory 2 of Fiaure 11b. In particular,
Zerilili treats a radial, unperturbed Schwarzschild geodesic (Eq 3-68, along
the z-axis) to characterize his particle (which neglects and avoids the crit-
ical issue of radiation reaction). This i5 the case of zero impact parameter
(b=0 in Figure 11a).

Zerilli's equations (the electric, even parity ones in 3-67) have been
numerically integrated by several authors. Davis & Ruffini (1971) and Davis,
Ruffini, Press, & Price (1971) investigate the asymptotic behaviour of the
outgoing burst of gravitational radiation due to a particle falling from rest
at infinity - as suggested by Zerilli. The results are given in Figure 14 for
the effective potential, the energy flux, and the tidal stresses of the
Riemann curvature tensor (these are of interest to experimentalists). Forward
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bremsstrahlung is not manifest (Figure 14d) as it is in Peters' analysis of

L]
larger (b>>M) impact parameters (Figure 12).
radiated energy of

Davis, et al find an outgoing

E." o.oum(ﬂ-)n\c" (5-163)

where mc2

i1s the particle's rest energy and M is the mass of the "black hole."”
The energy radiated into the "black hole" proves to have contributions at
all higher multipoles L (hence divergent), but assuming a cutoff Lmax=n/2 (M/m)

the total ingoing radiation is finite:

E ~ (l)m (s-164)
" 8
which is independent of the mass of the "black hole" (?). (Ein+Eout) in

(5-16) is still a small percentage of the particle's rest energy mcZ, however
which is an important result due to the Schwarzschild geodesic assumption.
This is to say, neglecting radiation reaction (by assuming the radiated
energy is small enough for a sufficiently small mass m) results in a small
loss of energy - if you can rationalize away the ingoing divergence. The
spectrum of gravitational radiation which Davis, et al obtain is given in
Figure 15a for the quadrupole (L=2) contribution.

Ruffini (1973), however, has addressed the more practical case of Zerilli's
problem wherein the particle is assumed to possess a nonzero kinetic energy
at infinity. Solving Zerilli's Equation (3-67) for a Fourier-transformed
source Séﬁ given by

0)
S »-xtid drsan 4] deach, 5‘:‘%"%%"&\@ (s

where % iwTw
L e M = L
w2 (R A (s1)
¥ = (1-®)dt/ay ’ (5-nd)

Ruffini demonstrates that the spectrum does not vanish at low frequencies
(as it does in Figure 15a for v=1). His results (Figure 15b-d) illustrate,

*Ihis result appears contradictory if one allows Peters' scattering problem of
Figure 11a to evolve into trajectory 2 of Figure 11b (cipture, » 13M) ard fin-
ally lets b=0. But for b=0 there is no curvature of ih: trajectory.
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in fact, that large amounts of energy are emitted there. In Figure 1%b,

his comparison of quadrupole (L=2) contributions for varying v demonstrates
the dramatic effect of assuming that the particle has a velocity at infinity
(v>1). Furthermore, as shown in Figure 15c-d, the gravitational tenmsor rad-
iation emitted outward is flat at the lower huimonics for quadrupole (L=2)
and higher multipoles. This further substantiates the earlier discussion
(Figure 13) of the inefficiency of tensor radiation as a synchrotron mech-
anism. There is :0 bremsstrahlung in the sense of Figure 12.

Umklapp & Gravitational Dipole Radiation

The multipole expansions considered earlier contain dipole contributions
which are usually argued away, based upon the Newtoniar principle of equiv-
alence that irertial and gravitational mass are the same. This means that
if the gravitational-to-inertial mass ratio is identical for all components
of a massive system, gravitational dipole radiation vanisheg in the center
of momentum system - due to conservation of linear momentum. Although neither
the Newtonian nor the Einstein theory of gravitation assumes that mass must
be positive-definite, introducing the concept of negative mass does not nec-
essarily change this argument against gravitational dipole radiation (the
sign of the gre.itational constant G is also important). Nor is the question
made simple it we recall Bondi's multipole representation wherein the mass
monopole, dipole, and quadrupole are all non-zers and coupled together, as
seen in the Newman-Penrose conserved quantity Dz-mQ in Eq (3-75), or in
tq (R-15).

To certain observers momentum simply need not be conserved, and in such
frames gravitational dipole radiation may serve a meaningful purpose. The
quickest example of such a process is found in solid state physics where
thermal resistance cannot be accounted for by the normal convention of mom-
entum conservation. The notion of “umklapp," due %o Peierls (1929, 1955)
must be invoked.

Conventional conservation of energv . . *ementum in the linear quantum
theory are represented by (assume o . s-vectors)
S-1
fo, + by = %o, (s-18a)

*This does nov rule out mass dipole pulsations, however (Campolattaro
& Thorne, 1970).
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If you now consider a crystal, and you feed momentum into one side of it

in the laboratory, then according to the norma® process of (5-18) all of

that momentum has to come out the other side. There is nothing "n the theory
which accounts for the thermalization of phonons; the crystal lattice, hence,
has infinite thermal conductivity or zero thermal resistance. Eq (5-18b)
cannot explain ihe known behaviour of crystals for an observer in the
laboratory center-of-momentum frame.

Admittedly, this equation for momentum conservation is a linear one,
implying the need for a nunlinear mechaniem to account for the thermaliza-
tion of phcnon populations.* But Peie ‘ls presents a linear mechanism in-
stead of (5-18b), which works, and it is known as "umklapp":

= §-18¢)
K|+k~t k‘+§ ) (

where G is a reciprocal lattice vector. One way of visualizing umkiapp is
to recall moments in old Western movies when the wagon wheals appear to spin
backwards. This is an oversimplification, *wever, because thermalization
and entropy are real.

For a periocic lattice, the wave-vectors k3 and (k3+G) are indistinguish-
able. Normal momerntum conservation (5-18b) and umklapp (5-18c) are repre-
sented in figure 16 for the 1St—Bri11ouin zone i. two-dimensional k-space.

Ky FIGURE 16 K

K -
b —He= (=%
% K, ' K- \\\‘\-

3P
)+ b by " 36

(a) Normal (b) Umkiapp

Whensoever the normal process of momentum conservation (5-18b) exceeds the

e
The Maxwell-Dirac theory (second quantization)is nonlinear, for example.
There, Eqs (5-18a,b) are inadequate due to photon-photon interaction.
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voundary of the 1St~Bri11ou1n zone, umklapp ensues and brings it back into
the zone, as ‘n Figure 16b. Umkl=pp destroys mome: um 2nd avtuaily changes
the direction of .ne "Poynting vector" or eergy flow of Eq (5- 8a). The
onset of umklapp also <cnstitutes the onset of an increase in system entropy.

The notion of umklapp can also ssrve as a iinearization of soie of the
nonlinear effects of nonlinear radiation theory - and herce, its apy' .
to gravitational radiation. The nonlinear wave-wave interaction of ¢J11id’ 1g
plane waves can be treated in such a fashica (Figure 1€b). The nonlinear
scattering of gravitational radiation can be analyzed this way. Anc, in
fact, scattering of gravitational radiation from the background geometry it-
self (such as the Schwarzschild background; can occur wit'. an umklapp mech-
anism_  lastly, it can be used to analyze gravitational "tails."

Umkiapp does not necessarily have to be gravitational dipole radiation; it
simply provides for a nonlinear source ¢ mome *um in a linea' fashion.
Hence, it has a meaningful piace in the astropnysical theory of thermaliza-
tion due to gravitational interaction. If a deity feeds ponlinear gravita-
tional plane waves into one side of a crystal (periocic structure) Universe,
no one expects them all to come out the other siue. There i3 also an obvious
implication of a lattice structure in geometrization itself, which can be
characterized by gravitatioral umklapp. The perturbations huv due to one
graviteiional wave give the background geo—etry a periodic structure, which
behaves 1ike a grating or moving mirror and scatters other gravitational
waves (Brillouin scattering, 1927). Thus, there is a Bragg condition for
gravitational waves.

Gravitational umklapp, however, draes readily treat dipole radiation mech-
anisms. Two particular problems come to mind: Motion of the enter of ma_.s
in two-body svstems (which is known to exist in certain theories), and
theories which dispel the Newtonian principle of equivalenc= (ml#mg).

Acceleration of the center of mass of the two-body problem is cocnsidered
to exist in generai relativity by Levi-Civita (1937), but this 18 demonstrated
tu be in error by Rooertson (1938) and Rokt_rtson & Noonan (1968). : wever,

many other theories of uravitation do predict such an effect. “ing K as
e
K - I_ G ".ma.(“\-’“l‘) (5.,9)
¢ [ma@-em}™*

then from Whitrow & Morduch (1965) the parameterized ‘iio-ria2g compare as
*See also Schild (3262).
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Cravitation Theory Acceleratior Of Center Of Mass

Ger -~al Relativity 0
Ne Js‘rom (1912) -x

Scalar Potential (Variable c) 3K or 5K
Vector Potential - Parameteri.od (p) pK
Kustaanheimo (1957) ]
Birkhoff (1943) K
whitehead (1922) K

Whitehead - Parameterized (b, (1-4.)K
Poincaré (19G4, 1905) 0

All of the theories which exhibit an acceleration of the conter-of-mac<
in the w.0-body problem also emit gravitaticnal dipole radiation as a con-
sequence of radiation reaction and conservation of momentum. The background
metric can be thought of a recoiliny under gravitational umklapp.

A breasjown in the equivalence principle (mass 15 a tensor, not a scalar:
m;a#méas) also results in gravitational dipu:e radiation, in addition to
producing mass anisotropies. Recent work by Nordtvedt (1968, 1969), Dicke
(19€9), Wiil (197}), Thorne & Will (1971), and Will & Nordtvedt (1972) studies
mass anisotropies in the motions of massive, self-gravitating systems. This
"Jdordiveut effect“results in gravitational dipole radiation and gravitational
umtT ., if the e‘fect exists.. In particular, Brans-Dicke-Nordtvadt
e «les" should zmit dipole radiation during coliisions.

Backscatter (Parker, 1972}, like gravitational “tails,"” and gravitational
shock waves are aiso admirably treated by gravitational umklapp. Umklapp can
also occur in the peri-dic lattice of a neutron star. This is pertinent not
only for gravitationai radiation but aisc for the propagation of optical and

acoustical (sound} phonon branches there.

Sravitational dipcle radiation and umklapp are discussed further in Appen-
aix U, based upon angular momentum conservation laws in general relativity.

Gravitational Zitterbewegung

Standing waves are important in physics, ror example in characterizing the
electrical nroperties of insulators in solid state physics (the electron vel-
ocities form standing waves). Standing waves are also important in the theory
of waveguides. Furthermure, they manifect themselves in the theory of gravitation.

*See also Hawking {1972).
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The standing wave solutions cf the scalar, vector, and tensor wave
equations in radiation theory give rise to zitterbewegung. The assumption
of both incoming and outgoing radiation at infinity for boundary con”itions
results in advanced (Ritz, 1908) and retarded (Lorenz, 1867) solutions which
together conprise standing waves with no outgoing radiation at all. The
classical hydrogen a* m, for example, is stable for standing wave soiutiors;
quantum mechanics is not necessary on this basis alone.

Standing waves iikewise occur in gravitational radiation theory. A small
mass in the presence of such standing waves will go into a jittering oscilla-
tion between the nodes of the standing waves and resonate at twice (quadru-
pole) the frequency of the radiative source.

Gravitational standing waves appear in the analysis of cylindrical waves
by Marder (1958, ii} as well as the work of Thorne (1969, III) on nonradial
pulsations of neutron stars using the Regge-Wheeler formalism. Thorne (1968)
also presants a rigorous treatment of jravitational radiation damping in
terms of a standing wave analysis which concentrates attention on the poles
of the S-matrix (the complex frequencies .= +i/1 at which the incoming rad-
jation vanishes). For all resonances in the quadrupole standing-wave normal
modes of various neutron star models, the poles all lie in the upper half of
the complex frequency plane - which corresponds to damping (and not anti-
damping) of the exponential exp(iwt). If a particle is ir the presence of
such an astrophysical object, zitterbewegung ensues and the smaller particle
oscillates in resonance until it radiates itself away.

Scattering & Absorption Of Gravitational Radiation

A generalization of the vector (electromagnetic) scattering problem to en-
sor plane-waves results in an optical theorem and scattering cross-section
for gravitational radiation. If we consider the xattering of hpv in (3-33)
from a tensnr scattering center f““ {an antenna, for example)

er ; it
hea~[e 552000, 6

a Gegenbauer expansion of the incident plane-wave part gives in the usual
fashion (using the Einstein polarization tensor ¢ ,

- = 4x I"li.e_h'&" *“? “"v}
tet o (eb'e»_ * “xa‘a)

(s-2)
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which is the optical theorem for tensor scattering. For an antenna with an
axis of circular symmetry, the antenna cross-section reduces to {see Weinberg,
1972, or Ruffini & Wheeler, 1969)

L sy r/a g (
C‘M re [(GPW}P%]S“‘ o . (’n)

where =, is the natural frequency of free oscillation of the antenna,: is

s,

the total decay rate of free oscillation, Toray
§

oscillation due to the re-emissionr of gravitational radiaticn, and “=Fgrav/:'

This cross-section is maximum when the antenna is perpendicular to the
gravitational wave (9=n/2).

is the decay rate of free

The significance of an optical theorem {alsc known as the Ewald-Oseen
Extinction Theorem or the Bohr-Peieris-Placzek relation) for linearized tenscr
radiation is that it represents a unitarity of the scattering-matrix. It
alsoc constitutes Huyghen's principle, which we know is not valid if there
exist gravitational tails - from our discussion of the Bundi news “unction.

An idea of the behaviour of gravitational tensor scattering is represented
by Figure 17 from Price & Thorne (1969), for a neutron star.

it is interesting to note that the scattered spectrum of Price & Thorne is
identical to (5-8) for the Kepier problem and the spinning rod of Figure 1,
provided L=2 and M=2 for even-parity, quasi-normal pulsations. Vishveshwara
(1970) also considers such scattering from the effective potential of Figure
5, maintaining that the scattered radiation contains the signature of the
Schwa' 2schild "black hole." The scattering of scalar gravitons from rotating
Kerr "black holes" is discussed by Misner (1972) and Press & Teukolsky (1972)
with the interesting conclusion that the scalar wave is amplified as it
scatters off the hole.

In the vector theory of gravitation, ¢/ course, there are the direct ana-
Togues of electromagnetic scattering phenomena such as Mie scattering of
gravitational (Spin-1) waves.

Detection & Experimental Verification Of .ravitational Padiation

If you recall from Newtonian mechanics that for any nonuniform gravitational
there exist gravitational gradients, you realize that you can readily disting-
uish between gravitational and nongravitational acceleration effects. If you
are in free-fall in an inverse-square field (in an elevator, if you wish), a
measuremant with inertial sensors of the gravitational aradient ccmponents ir
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your elevator frame will not only distinguish such accleration from non-
gravitational cnes, but it will give you the value of the field as well.
Einstein's principle of equivalence, important for correspondence with the
Minkowski frames of restrictad relativity, is valid only in a uniform
gravitational field. {"fictitious" forces arising frcm the choice of coor-
dinates and hence g are not questioned here). But such uniform fields
are not known to exgét in astrophysics; hence his principle is a tautology.

The Riemann curvature tensor R . 1ic essentially a glorified version of
the same thing, the Newtonian gra;:iational gradient or tidal component in
classical mechanics. Instead of taking the gradient of the scalar field
intensity with multipoles (quadrupoles, etc.) in Eq {2-3}, tidal stresses
can be determined from the Rioio components of the Riemann tensor (Eq -2
of Appendix A} in the tensor theory of gravitation. These tidal forces or
Riemann stresses lie at the basis of the construction of gravitational
radiation detectors. To first order in the linear perturbations huv of 9

Appendix A determines that

)
Ruis® t1he et hie s Pt Pn] 6529

wppy L e o, qv,” vl
From Einstein's quadrupole radiation in (3-26) and (3-27), which lead to
the linearized quadrupole power formulae (3-29) and (5-1), the non-zero
Newtorian ti !e producing components due to a gravitational plane wave prop-
agating in the X]-direction are caused by h23 and (hzz-h33) in (3-26) or
(3-37). From Eq (5-23) above, using /2-24),

o =i = & (G D

= -R? (5-24)
z 0“ ? L1
R = Rlno'"tﬁ' '3"'§Q”/'
i 1 2 3 _. .
Nete that R oio has zero trace (R me+R 020+R 030—0) vwhich means that the

quadrupole detector Qij responding to the Einstein-Fddington-Weyl plane-wave
(in Chapter 3) maintains a constant volume under the Newtonian tide compon-
ents of stress. These components of transverse stress simply deform the
object by exciting its quadrupole moment Q A cylinder (Figure 18a), for
example, has two transverse modes of po]arization. separated by 45° due to
quadrupole symmetry. A disk (Figure 18b) also exhibits a radial stress
which i< indicative of a scalar component of radiation. No detectors have
been designed for measuring stresses due to electromagnetic (vector) theories

¥Einstein (1911) did not understand this when he first established the principle.
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of gravitation, nor is there consideration of dipole mechanisms.
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FIGURE I8

Experimental work on gravitatioral radiation has bean primarily fostered
by Weber, et al (1960-1972), who measure responses of a gravitational
quadrupole antenna to supposed radiation sources. Although they have
found coincidences between their two cylindrical antennas, these measure-
men*: have not been duplicated. The unusually large flux (104 ergs/cmz-sec)
given by Weber's measurements (Figure 19) indicates unphysically short 1ife-
times of astrophysical objects such as the Galaxy, and consequently a great
deal of theoretical work on tensor synchrotron mechanisms is a direct re-
sult - as we have seen. One should also note in Figure 19 that the coin-
cidences occur not only when the galactic center is in view but also 12
hours latar when it is occulted by the earth. Others (Beron & Hofstadter,
1969) present arguments that high-energy cosmic riys can excite phonon
oscillations of quadrupole symmetry in gravitational antennas {c.: telescopes)
and be mistaken for gravitationally induced oscillations (which are of the
order of a nuclear radius!).. Some work on the generation of gravitatioc.al
radiation in the laboratory is available (Weber, 196C; and Forwarc, 1966),
although the quadrupole power factor of 10'6] erg/sec in Eq (3-29) is move
than enough to discourage the most ardent experimentalist. A good survey of
experimental work is presented by Logan (1973).

Attempts other than synchrotron mechanisms to explain the high fluxes
measured by Weber include the amplification of gravitons upon scattering
from rotating Kerr "black holes" (Misner, 1972; and Press & Teukolskv, 1972!

*This suggestion is rebuffed by Ezrow, et al (1970), however.
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as well as the collision of black heles which cannot bifurcate (Hawking,
1972). Hawking's mechanism is reminiscent of using a power saw tc cut
saplings.

But rather than build detectors, som. observers have been using natural
gravitational antennas - for hundreds of years. Hooke (1671) considers the
attraction of two spheres, that is, gravitati.nal attraction itself, as 2
"gravitational antenna" indicating the existen e of gravitational waves in
order to explain the mechanism of gravitation. Laplace uses the planetary
orbits of the solar system as a means of determining perturbaticns caused
by finite velocities of propagation of fields, and hence of waves. And now
experiments are being performed using the quadrupole modes of the ea. th,
the moon, the earth-moon system, and the Mariner 6 spacecraft as gravitational
antennas. Dyson (1969), in the process of considering the seismic response
of the earth to gravitational rad*ation, makes the wggestion that coinci-
dences might be autocorrelated between seismic data and astrophysical pul-
sars. This suggestion gives negative results from some authors (Wiggins
& Press, 1969), but an interesting flury of experimental work is being
carried out by Dror Sadeh /1972), who claims to have correlated terrestrial
and lunar seismic activity with pulsar CP 1133 - much to the consterration
of seismologists such as Mast et al (1972).

In order to make this discussion of the tidal stresses complete, it is
worthwhile to conside’ the Riemann stress components in the Regge-Wheeler-
Zerilli formalism For a wave propagating along the X]-axis as before, the
asymptotic tide-producing, transverse components are

3 x - % 1)
R oS0 =-R 0= g‘ REOW, éo,»/zr (5253)

where
w‘. "?"): (-)—);‘ - cot@% - ;:\Ta %ﬁ) Y:':0,0) (5-54)

which appears in the tensor harmonics of Appendix K. The physical inter-
pretation of these stresces is found by referring to Figure 13h. Tidal
acce® -:tions are also discussed by Finley (1971). Tidal deformation is
tre © 1 by Manasse (1963).
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Astrophysical Miscellania

There are numerous sources of gravitational radiation in astrophysics
which have been examined with the “heoretical results of Einstein's nonlinear
tensor theory of gravitation. The nonradial, asymmetric pulsations of stars,
in particular neutron stars, have been studied quite extens: - by Thorne
et al (1967-1970), using the familiar Regge-Wheeler formals:. bu* applied
to general relativistic hydrodynamics. The odd-parity perturu.tions des-
cribe differential rotation, while the even-parity periurbations desc *ibe
the pulsations. Thorne's work is a thorough treatment of the damping of
stellar oscillations under gravitational radiaticn and a study of the as-
sociated relaxation times. However, it is limited in that Ruderman (1968,
1969) has presented moaels of neutron stars with crystalline mantels which
support shear stresses. Ipser (1971) extends these investigations to
slowly rotating neutron stars.

Pulsating stars prove to have another significance in the astrophysical
theory of gravitation, as pointed out by Morganstern & Chiv (1967). In the
Brans-Dicke (1961) theory a transverse scalar (Spin-0) component o the
radiative Riemann tensor is predicted, whose source is a monopole oscilla-
tion (see Robinson & Winicour, 1969). For a radially symmetric pulsation,
scalar waves can be radiated away but not tensor waves. Such scalar radia-
tion, furthermore, damps out the radial pulsation of the neutron star in a
matter of seconds. The existence of the scalar field can hence be ruled out
if neutron stars are found to pulsate.

Gravitatfonal collapse with asymmetries is another aspect of gravitational
radiation theory which has astrophvsical importance. Symmetric collapse, of
course, does not radiate tensor radiation due to Birkhoff's theorem. A<ym-
metric collapse is treated by de la Cruz, Chase, & Israel (1970) who deter-
mine that ingoing radiation (down the Schwarzschild "black hole") causes
external asymmetries to decay quickly with a brief relaxation time on the
order of 26M/c3. They conclude that "black holes" cannot serve as tensor
synchrotron mechanisms, a result consistent with Chandrasekhar's triaxial
Jacobi ellipsoid of Figure 9 wherein asymmetries are quickly radiated away
¢ ring collapse and the "black hole" becomes a Maclaurin spheroid. The
radiation of such asymmetries is also discussed by Israel (1971), Penrose &
Floyd (1971), and Penrose (1972).
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Excited "black hc]es"* are discussed by Fackerell (1971), Peres (1971),
and Goebel (1972). They are also relevant in the context of "black hole"
collisions, wherein the gravitational radiation is entirely tensor radia-
tion according to the analysis ¢f Hawking (1972). This is simply because
Brans-Dicke "black holes' nave no scalar field Hence, no Brans-Dicke scalar
radiation can be emitted during the collision of two “"black holes."

In the many and varied efforts to study the behaviour of nonlinear tensor
gravitaticnal radiation, low frequency and high frequency approximations
have been made. Low frequency work, of course, is what leads Ruffini (1973)
to the important conclusions of Figure 15. Likewise, low frequency analysis
is the basis of Bergmann's (1971) i..vestigation and of the Mariner spacecraft
tracking studies of Anderson (1971) (see alsu Gibbons, 1971) in an effort to
observe scintillations due to gravitational waves. bigh frequency approx-
imations. on the other hand. are discussed by Isaacsorn {1568} as well as
Halpern (1971), Isaacson & Winicour (1972}, ars Kafka (1970). The signifi-
cance of Isaacson's work has already beer stated in the discussion of his
resultant stress-tensor. Kafka assumes the possibility that gravitational
radiation might be of primordial origin. Primordial gravitational radiation
is further pursued at very long wavelength by Rees (1971) and critiqued by
Jackson (1972). This work all emphasizes the cosmological significance of
gravitational radiation.

Misner's (1968) mixmaster univer.: is another interesting embodiment of
gravitational radiation in relativistic astrophysics. It essentially treats
the Universe as a gravitational waveguide, much like the work of Campbell &
Morgan (1971) which employs a gravitational Debye potential formalism and
the work of Marder (1958, II) on cylindrical st~nding waves. Lastly, Lapedes
& Jacobs (1972) maintain that tachyons shuuld produce gravitational Cerenkov
radiation, although tachyonic systems ave not very popular among astro-
physicists.

Meditations Upon A Few Thoughts From Classical Fhysics

There are a number of topics in the classical astrophysics of gravitational
radiation which must not go unnotized. They are controversial. And yet we
know that controversial thought ° . traditiorally wherein lie many of the
great advancements in human s-ience. Ccnsequently, it is a greater heresy

* They can be excited by a particle falling into the geometry, as in the
Zerilli problem.
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to ignore such thoughts than to weigh their merit - although many of them
should not be dignified by a great deal of detail.

The coricept of mass is fundamental to any theory of gravitation and hence
to any theory of gravitational radiation. But is mass positive-definite,
or does Nature provide for states c¢f negative mass (FBpp], 1898) and negative
matter or anti-matter (Schuster, 1898)? We know, for example, that there
exist negative energy instabilities in nonlinear plasma theory (Sagdeev &
Galeev, 1969). Can the Cirac theory of negative energy states be re-inter-
preted, perhaps, in terms of negative mass* (using the negative mass shell
of pzqnz),and if so are there such things as negative energy photons and
gravitons (e.g. Misner, 1972) associated with jumping the energy gap? Such
conjectures have been made in explaining the behaviour of quasi-stellar
sources. Indeed, in view of the negative mass solutions manifesting them-
selves in the only known .. ~t radiative solution of Einstcin's nonlinear
theory, we are forced to address this problem. It is no longer a metaphys-
ical whim of Arthur Schuster.

It is likewise believed that mass and energy are equivalent in relativity
theory, as stated by Eq (3-4). This assumption results in an epistemological
contradiction with the related postulate of classical electrodynamics that
charge is invariant. Gravitational radiation is produced by mass, and it
transports mass (according to Einstein's theory), while electromagnetic
radiation is produced by charge - but does not transport charge. This
irreconcilable difference is just cause for rejecting any grounds for an
electromagnetic analogy in the linearized tensor theory of Einstein. It is
an epistemological flaw of the first magnitude and deteriorates any founda-
tion for a unified field theory based upon geometrization. The linear
Mavwell theory and the noniinear Einstein theory of energy transport cannot
be reconziled.

Also, we must note that negative energy densities characterize all gravita-
tion theory. There is nothing intrinsic in the scalar, vector, or tensor
theory that denies this. Time-symmetric arguments (Brill. 1960) for positive-
definite energy are taitological in the sense that they assume a reversal of
the Poynting vector (gio' 'gio) under time-reversal (reversal of incoming and

outgoing radiation conditions). They assume what they attempt to demonstrate.

*Ve1ocity is anti-parallel to momentum for negative mass. The helicity gp/p
of anti-particles is directly accounted for if anti-particles possess negative
mass. However, see Morrison & Gold (1957) and Schiff (1958) or this point.
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Furthermore, mass is assumed to dilatate as stated by Eq (3-5), in the
Einstein theory of relativity. The Structure of gravitational radiation
theory must not collapse just because this single postu’ate proves to be
untenable if there are future developments in electrodynamics. Likewise,
there is a "second postulate of general relativ'ty." In other words, con-
vention has it that the velocity of a photon iz independent of the velerity
of its source.* If the nonlinear tensor theory of gravitational radiation
is allowed to be lineari.ed and characterized witn all of the other attri-
butes of electromagnetic radiation, then must not gravitons likewise be
independent of the velocity of theii source? In contrast, there is a
ballistic theory of gravitational radiation. The Ewald-Oseen Extinction
Theorem {the Optical Theorem) retiders the second postulate indeterminable
by experimental method for both photons and linearized gravitons.

Is a gravitational wave stable? The contribution of the Regge-Wheeler
(1957) study of the stability of the $hwarzsch 1d metric is the implication
that no physical theory can be considered seriously until it has been demon-
strated to be stable. Whence, if the integrity of oy is questioned then
why not question the stability of the gravitational waves huv? Thc regen-
erative nature of seif-interaction in the nonlinear theory of general
relativity is important in such considerations.

I~ the gravitc. stable? This aspect of the question of stability is taken
irom the quantized linear point of view rather than the general nonlinear wave
and resonance instability discussed above. It becomes important if experi-
mentalists fail to detect such radiation or if there exists a "cosmological
redshift" of the gravitational raciation power sp=.trum (which there should
be in order to avoid an Olbers-Ches 3aux-Halley parado.). Decay mecanisms
for gravitons, with and without rest-mass, can be readily i.provised. The
dispersion relation for vector (Spin-1) gravitons includes an effective mass
term from the Proca theory or from the propagation of gravitons throivgh matter
using the Weyl tensor (in direct analogy with "plasmons," whichk aie photons
of effective mass propagatine through an electron gas). The vectsr (Spin-1)
massive gravitor is readily extended to the tensor (Spin-2) theary by addinc
Proca terms to the tensor ave enuation.

Lastly, we mention that there is w.rk in the literature on compo. .: ..eld
theories, such as the neutrino theory of light. A candid discussion of
these is presented ..ithin the context of gravitaticnal radiation theory in
Appendix V.

This postulate has marginal experimental basis (Wilson, 1972).
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lonlinear Effects In Astrophysics

Several aspects of the nonlinear nature of the tensor theory cf gravita-
tiona! radiation are signi®icant and must e kept in mind as nne interprets
the astrophysical properties of the Universe. The first characteristic of
Einstein's geometrized theory of gravitation which asserts itself is the
remarkable feature that it has no radiation reaction problem, as does the
linear, classical theory of :.axwell and Lorentz. This is originally due
to Einstein's geodesic postulate, but actually it is a consequence of the
fact that the EIH equations of motion follow from the noniinear field equa-
tions because of (3-38). Referring to Figure 20, an empty Schwarzschild
geometry is traversed by a geodesic on the bachknrround LS

1,‘,

Roduotion

FIGURE 20

towever, upon inserting a partinle of small masc m intn the Schwarzschiid
geometry, the particle does not follow the geodesic 1+ - "y but rather that
for s + hp‘. The perturbations huv are those imp--.cu upon the st-ucture
of the backgrourd by m and are determined by the very existence of m in the
geometry. It you can 2ver solve Einstein's nonlinear field equations you
get as a dire.. dividend the new geodesic. Radiation reacticn is automat-
ically accounted for by tie noniinear nature of the theory. Linearizations
of Einstein's theory, however, such as the Regge-Wheeler-Peters-Zerilli
formalism are confronted with the problem of radiation reacticr because they
neglezt it. Zerilli's treatment of the particle falling in, if you recail.
assumes the particle folluws n, which 15 not he trajectory it actually
takes. Only for varishingly sma]‘ mass ...s0) is the 1i .earized treatment
tenable,



The regenerative feature of Einsteir's nonlinear field equi ions is
another crucial aspect of thair properties. The fields act as their own
sources (Gupta 1957; Thiriing, 1953, 1361).

Having emphasized the nonlinear nature of the tensor radiation theory,
we must fin31ly ask ourselves what it means to trcat the tneory in a linear
fashion, as with energy and momentu: relations like Eqs (5-18a,b) f-om
quantum theory. Surelv we can write for en' rgy

€ = h(2v) (5-26)

but what does that mean? From the work of Pauli & Fierz {1939) and Guyta
(1954, 1962) tensor radiation is 3pin-2, in = linearized theory of grav-
itation. Howevei', this does not mean th = Sp* -2 "giavitons" exist in
Einstein's nonlinear theory, for it nas never huer juintizeu. A casual

look ot che hehaviour of cclliding plene wavas {Szekeres, 197¢, 1972; ana
Penrose & Kahn, 1977} and radiation scattering (Tor ‘ence & Janis, 1967)
illustrates the naiveté one must have in «.der to consider energ, and momen-
cum in the normal lYinear fashion (superpcsition)

W, + W, = W, (5-183)
K+ k = ky | (s-18b)

The self-interaction (See e.g. Tcrrence & Couch, 1970) of nonlinear radia-
tioi. and the behaviour of gravita.icnal "tails" \DeWitt & Brehme, 1260;
Couch ¢t ai, 1968; and Hallidy & Janis, 1970) also are formidable problems
- aithough significant progress nas beer made since the cdvent of Bondi's
asymptotic appro-imaticn (Rondi et al, 19€¢z) and cf the Newman-Penrose
tetrad formalism (Newwan & Perrose, 1962)

We can invoke gravi-ational umklapp {(5-182) but we .usc ac' ourselves
questions about gravitational dispersion of the frec:ency v in Eq (5-26).
Gravitatinnal radiation must traverse interstellar distances through a
"medium" of nonlinear wave-wave 1nter.ctions. It would be foolish tn sup-
pose that the frequenc:. Jdetected by a terrestrial ohserver . would be the
theoretical one for quadrugole radiation (3-29), ramely: .'=2.. Fur ‘his rea-
son optica’l and radic (see Charman et 11, 1970) correlations with yravita-
tional radiation detec.. coincidences are. of major signif’cance bec.ui.2 they
can help ascertain the dispersive natured inteigslactic space t. ars “ta-
tional radiaticn.



90

The failure to find any electromagnetic and gravitational coincidence*

so far is a basis {assuming the gravit:.tional data are real) for maintaining
that there is a high degree of shift in frequency - meaning that the freq -
uency or the source v (and hence its angule. momontum) can be much less than
that measured here on earth. Synchrotron mechanisms are then unnecessary

in order to rationalize Weber's data. One over-estimates the energy of the
source because he misinterprets the energy density of te gravitational wave
- due to the linearization of the theory.

Ancther way of presenting the problem of ronlinear radiation is to turn again
to Eq (5-26). What is Planck's constant** “h" for gravitational phenomena
(which have never been quantized in the tensor theory)? Is it constant?
S*mply be increasing the ratio hgrav/hem one can easily account for apparent-
ly high quadrupole fluxes.

And what about the uncertainty principle? 1Is there an uncertainty principle
for gravitational phenomena?

AXAP > H (&-21)

Again, what is h? How do we know that we can even measure gravitational
radration?

Indeed, one must not abuse relationships for the Maxwell theory and the
quantum theory which have not yet been established for gravitation theory.
The closest thing yet to gravitational quantization is the tensor harmonic
decomposition of the linearized field equations.

With this we end our query on the nature of gravitational radiation theory.

*E1ectromagnetic and gravitational coincidences are further complicated by
the assumption that their velocities of propagation are equal - which may
not be true,

*x
To demonstrate the epistemological inconsistency in gravitational and quan-
tum physics, one can use the identical Bohr quantization condition employed to
quantize the orbital angular momentum of the Coulomb Kepler problem, and derive
h for the gravitational Kepler problem (the solar system). On the basic of the
orbit of Mercury (this is really the second "Bohr" orbit if Bode's law is rel-
evant), h=mva 21039 joule-sec, rather than 10-34, 1In making this analogy, one
sees another distinctive feature of the gravitational quantization problem;
charge is quantized and so is its field theory - while wass fs not, neither
is its gravitational field, at the present time. )

o



CHAPTER VI

CONCLUSIONS

Gravitational radiaticn theory has been discussed from the point of view
of its scalar, vector, and tensor counterpa.ts. This discussion has not
ventured to ascertain the existence of such radiation in gravitation theory
but rather to take a candid look and to explore its meaning in the context
of contemporary physics.

We have found that there is a theoretical basis for such radiation in the
vector and tensor theories of gravitation, but in doing so we have been forced
to address all of the fundamental ~uestions about radiation thecry. These
include the notions of radiation reaction, the behaviour of advanced and
retarded solutions, the choice of boundary conditions, the transport of
energy, the meaning of energy, the nonlinear nature of radiation - and even
the meaning of a wave. We have made analogies with classical radiation theory
which are sound in the linear electromagnetic (vector) theory of gravitation,
but they become unsuitable when extended to the nonlinear tensor theory of
general rzalativity. Therc they have as yet no experimental basis. Nonlinear
electromagnetism, on the other hand, does have some foundation in experimen-
tal fact, such as Maxwell-Dirac spinor electrodynamics and nonlinear optics
(both employ nonlinear constitutive relations 2-14). This in turn provides
reason for analogy with a nonlinear vector theory of gravitational radiation.
Nevertheless, we know and understand very little about nonlinear gravitational
waves.

To be sure, superposition must be sacrificed in the nonlinear theory. The
linearization, furthermore, of the nonlinear field equations inherently des-
troys any possibility of accounting for the interaction of the gravitational
field with - tself.

The exact radiative solutions of the ®nsor theory of gravitation likewise
do not yet render an adequate understanding of the problem. Themly exact
solution for moving sources in general relativity allows for negative mass,
which 1ike the concept of negative energy densities, may be very metaphysical
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in nature. Indeed, enchantment with nonlinear tensor theory teaches us
more about the tyranny of mathematics than it reveals about the physical
nature of gravitational radiation.

However, by means of linearized tensor radiation theory, we have studied
the behaviour of mass quadrupole oscillators such as the Jacobi ellipsoid
and the two-body problem. As paradigms in astrophysics, they have taken a
useful place in the 1ife and death of neutron stars, binaries, and "black
holes."

By means of linearization, we have also gained insight into characteristic
features of the tensor theory which can eventually lead to a decision as to
which of the scalar, vector, and tensor theories is most consistent with
experimental data.

Perhaps there has been undue interest here in the vector theory of grav-
itational radiation, but it is intimately consistent with classical physics,
quantun mechanics, and the quantum theory of radiation - which the nonlinear
ten<or theory is not. There is...mmmme. a prodiguous amount of comparison
of physical phenomena with electromagnetism - and there always will be.
Accordingly, an understanding of the real rature of the vector theory is
of fundamental significance.

Nevertheless, this query on the nature of gravitational radiation has led
us to understand better the characteristics of linear and nonlinear radiation.
With a Tittle bit of luck, we may even be on our way towards a unified
picture of the nature of the physical world.
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APPENDIX A:  LINEARIZATION OF RIEWINIAN GEDMETRY

In an arbitrary geometry one is concerned with its affine connections. If
the geometry is Riemannian, these affine connections are represented by the
Christoffel symbols

P;v = { ;v} * ‘i‘i"[ ot 3"}.’. ﬂrv.p] . -0

The Riemann tensor for this geometry is defined as

o L « d e d €
=, - + - A-2)
The geometry is “flat" if ROlu
the Ricci tensor Ruv

Ry =R ™ T Tpoe tTG e - el

- - a :
g, = 0- When contracted (a=8), R Loy gives

pte - piy PV

For a "weak~field" approximation of the metric tensor

0= Wt W (-4

then to fivst order in h=hxx=nakhcx, the two right-hand terms in (A-2) and
(A-3) are negligible, giving for (A-2)

()]
Rupo = [ bp oyt Pyng i gl - )
and instead of (A-2),

W) o

® -t Y .
R = Rouo= Ty T, 00

Evaluating (A-6) by taking the appropriate partiail derivatives of (A-1) gives
o _ _th T, 1
R;w - ﬂ m‘P “»»\' h "\r" h?": ()
to first order 1; h. This may be re-written as
Q A A 1 IR .
Ry, = 4 abu- (oW (o i), @8
M
RY «-4h R T L2
‘t[ﬂ\‘-;n"‘!;'l[‘\;.v* \\",.‘\'p"l (-9)
to second order in h. 't[h,lph.)_,'h»_'][h'_‘kQ\",."\*."l .

Similarly
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APPENDIX B: COORDINATE CONDITIONS & GAUGE INVARIANCE

Gauge Invariance

If one considers an infinitesimal coordinate transformation
/= x* + Y (8-

the metric tensor is changed as follows

R ) o
t’ " = 15;;: qsaa’ fs‘fb . (jirlo

Because, furthermore, g"%&n"“-h*" (raising indices) then
» v Ay _v .
K= W -y Al -3 ,r‘l”.. ®-3)

Hence, if h is a solution of the wave equation {A-6)

uv R(l) - O (',4

2
then so is

\\)’w = “,.,‘(3 ,y*],, ) (-5)

This demonstrates the gauge invariance of the field equation (B-4). If
the perturbation of h in (B-5) is null
AV

3}‘:’ ¥ 3”! =0

one has what are referred to as "Killing's Equations." A gauge transformation,
then, is comprised of inhomogeneous Kiiling vectors.

(8-¢)

Einstein Coordinate Condition

Einstein (1916, 1918), in his original derivation of the gravitational
radiation associated with linearized General Relativity, chooses to define

a tensor wave function
L A I
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subject to the following coordinate condition
v
}"‘ =0 (8-8
»v *

It appears to ve a common misconception that r¢ .ation (B-8) is due to
de Donder (1921), and the latter is often associated with his name. It
should be more properly credited to Einstein.

The virtue of the Einstein coordinate condition (B-8) is realized if one
recalls the first-order linearized Ricci tensor in Appendix A. With (B-7)
and (B-8), Eq (A-6) simplifies directly to

Q)
=410 (8-9)

If " does not satisfy (B-8), then one can always find a y'"" and hence
h'*Y which do, by performing a gauge transformation (B-1) where Q¢"=y""

Harmonic Coordinates

Another coordinate condition much like (B-8) due to Einstein is the
"harmonic¢ coordinate" condition employed by de Donder (1921) and Lanczos (1922),
and later exploited by Fock (1939, 1959). It is defined as

r‘da ,’r\ﬂ '-"-O (B.'o)
=91, ’
which is not generally covariant and which thereby destroys the general
covariance of the theory. It is "harmonic" because the coordinates themselves
satisfy QX"=0 due to (B-10). Defining a metric tensor desity §“=/(-g)g"",
there {s the condition

a0 L e

equivalent to (B-10). The difference between (B-11) and (B-8) is a very
academic one.
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APPENDIX C:  ENERGY MOMENTUM PSEUDOTENSOR

The energy-momentum pseudotensor is demonstrated by Landau & Lifshitz
(1962) to be

4
- e { (27T r?prfa“ru P&X:’ W 1""9")
U AT A A AV A
vl z
v (MArETL ¥ PAr A
SR MU S
Defining a metric density §"V=/-gg"’, this is also

4 AP A N IR ] AYd
et S daad - s 4 a4

yd AS 1 | A" A
(579,43 $3 k% 3 ¥
v V4 ) - AN
*Sui’ff.ﬁ $ +§ly 36"3"3 leﬂq kw 'ﬂJ}'
In the weak-field linear perturbation approximation, however, the pseudo-

tensor tuv can ! found more directly than by Eqs (C-1) or (C-2). The pro-
cedure is mentioned, for example, by Weber (1962). Multiplying the wave

Eq (3-16)

€

by h‘“,u one arrives at

=- 1m0 .
h‘QFuY"- MW, T, ©

The covariant divergence in (3-3) of the stress energy tensor is



T, = (17 +7),= £(T7R), -3, 7%- 0 -

Furthermore, the stress energy tensor density T”“ and the stress energy
pseudotensor density " are related by

Fro ¥ ,=0 €
>y ’

From (C-5) and (C- 4). then
‘t" - '13'9.’1"“ Lh’/‘r""
”T‘Pz-lt," . co

Hence, (C-3) can be re-stated, with (C-6), as
A
¢ O | N c)
= +4xt (
il M
Expanding the left-hand side of (C-7), one obtains (c-8)

‘:! [‘\q’;sji‘gg‘“yl‘\ﬂf'] ==[);4:’J|:;f'1f'!;r‘tqp,c‘:'qiiﬂi,n azﬁsj‘il“Jiy:]m,

Direct comparison of (C-7) and (C-8) - recalling Eq (B-7) for v*> - gives
the first-order stress energy pseudotensor density t'V=/-g t*V: (€9)

?.;= + [ h‘P h" ,,h" t ‘l; (t\\eh"' ‘w,s \""")].

For the particular case of a perturbation huv propagating in the X] direction
(discussed in Chapter 3, Eq 3-25), and noting that v/-g=1 for a flat back-
,0) ccmponent of t " in (C-9) is

SN RS

Whence, the gravitational energy flux (Poynting vector) is determined by

t = P.s'.‘“)“ éﬂgtﬁ‘s ] (c-n)

The first-order pseudotensor tuv in (C~9) provides the basis for studying
radiation spectra and energy radiated in this approximation.

ground Ny the
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APPENDIX D: CONSERVATION OF MOMENTUM & THE EQUIVALENCE OF
GRAVITATIONAL & INERTIAL MASS

Angular Momentum & The Pseudotensor

Maving addressed the Landau-Lifshitz pseudotensor jn Appendix C, Eq (C-1)
and (C-2), we need to assess its relation to conservation laws. The conser-
vation law

S eg(Tmiem)=0 @
is satisfied by the 4-momentum P¥

P e TR, @

which can be written in the form of a 3-space intejral

Pretlep(Trowdav, 09

Because the quantity in the integrand of (D ?2) js symmetric in t:e indices
u,v we obtain a conservi tion law of angular momentum

(D-4)
M {ictap™Xapt) = & AT lds,

for a closed gravitating system in General Relatjvity. Because of this
conservation condition, one can define a center of inertia system moving under
uniform motion. The -enter of inertia is defined by M7= const in (D-4),
whereby its coordinates are determined by

RY = DX(Tu)egd
JOT %94V

By performing gauge transformations such as (D-5) one can create or annihi-
late the pseudotensor t"V, which characterizes the energy and angular momen-
tum of gravitational waves - the argument of Scheidegger & Infeld. However,
t"¥ does not vanish globally under such transformations.

®-s)
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Equivalence Of Gravitational & Inertial Mass

Landau & Lifshitz consider the purely gravitational case (T'"V=0) and

RSP 00

whereby P* in (D-2) is an ordinary 3-space integral (i=1,2,3)
L L g pod 0-1)

Demanding that the metric 9, must be asymptotically flat (Minkowskian) at
infinity, they evaluate (D-6) for the metric (where M is the total mass of
the system; 1t is a unit vector along )

9o - 50 &z;"xa{ W a0 (08
which gives h*% =0 \..“‘.‘g :‘: “: ('D‘”
and (D-7) becomes

P=0 PP=Mc, @9

~

In the center-of-inertia asymptotically-flat frame (D-8a), 4-momentum is
determinable and it is conserved. This is a statement of the Newtonian equi-
valence of gravitational and inertial mass discussed in the text. There is
no outgoing or ingoing gravitational dipole radiation at infinity because

]Pm'v Pz =0 (-w)

~ »

from (D-9).

Failure Of Conservation Laws

One cannot always formulate a principle of conservation of angular momentum,
whereupon the notion of a center of inertia loses its mathematical basis.
Such is the case for certain interactions, or if the intearand in (D-2) is not
symmetric in the indices u,v - which is precisely what happen: when one
includes the Electromagnetic stress-energy tensor (T'“V#0). Landau & Lifshitz
determine (p. 311) that (D-2) becomes



f;=%S{T;'+ﬁ[és;+r;’,s“,;nia‘;]}as,,

(D-w)
¢:R{(MArSTR). oW

This result is relevant to an inequivalence of gravitational and inertial
mass. Eq (D-11) is an expression for gravitational umklapp.

where
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APPENDIX E: POST-NEWTONIAN GENERAL RELATIVITY

We are concerned with the equations of motion {3-45)
[ J (J
.x'}‘ - - r‘)l y"xP (3.45)
‘ ’
0) (c)P
in the EIH approximation of Figures 2 & 3 to some order ¢" = ¢™". The equa-

tion of motion (3-45) represents a geodesic defined by the affine connections
™™ which can be expanded as follows:
af P (j&")

X" = -Th-2M - TR o[ 1 2 ih X X
) €) @) (c“‘g) € )

The powers of € on the right-hand side of (E-1) reflect the order to which
the Christoffel symbol must be expanded in 9 in €q (A-1). Note that each
time-differentiation (the dots) lowers the order of c by .

Newtonian Approximation 0(;?) A4)

This is the left-hand 1ine of Figure 2 in the text. Analyzing (E-1), to
¢rder 0(52.A4) there are the following contributions:

e:
opApt
€: Mol .

20

ve_ A ° .’.] Y B
ST 37 A P U
From (A-1) for a stationary field to 1°*-order in h

Poo * '%-' ﬂrvnu.vz 'znphu,v,
X =4Vh, =50,

Correspondence with Newtonian mechanics gives, then,

S

whereby from (A-4) 3“‘ _(“_ z‘/e). (5.3)

Thus, Eq (E-1) is
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Post0* 2-Newtcnian Approximation Q(EE,AE)

As depicted in Figure 2, there is no contribution at order 0(53,A5).
This is due to the conservation of enargy and momentum.

Post’ * O-Newtonian Approximation ngf,gf)

]'O—Newtonian forces manifest themselves as the second line of

They are comprised of the metric contributions 900’ ok’ and 95k
Frcm the equation of motion (E-1), we require 4 3 2

4 A o
E' P" l Pdf;r‘of
,,,I" €: F‘P

Calculating the Christoffel symbols r to these orders of ¢!

{‘fif S,

The post
Figure 2.

using (A-1):

? .. t(?-.& (E-9
‘:: = 0O
For the Ricci tensor gR!3) t? this order of 54,.one has )
= ¥
io “Vag (E-S)
R., \“
g?ii = ‘ff‘
Plugging (E-4) inco (E—S) we get the fo]lowing Ricci equations:
o0 = ’i?a,:qfa-.a* ’fv'sf- ’i?.&., ?z;.;?-.a* t?-ﬁ?u.& *"?Q.s?q.a
Ric‘ *g) "o = 'i'g;%i-} - ‘Hq.&o 4V ﬁ.
Rt 475 (E-¢)

LTI N LS LTI WIS )
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Transforming (E-6) to harmonic coordinates (B-10), the Ricci equations
simplify to

Re= V8 AT 2485 165
R.:= Vs,
Ru= 7R (e-7)
R;.;""- tV'?:,

Einstein's field equations now follow from (3-14), using (E-7). Taking

caution with the c;'2 factors in the stress-energy tensor T, substitution
of (E-7) into (3-14) gives to order 0(:4,x6):

O R B L P o ™ e

o
@ POST™-HENTONIAN _
63’. =-S5 T FIELD EQLATIONS (&89

5 ”5'3"3%"“" o

From Eq (E-8¢c) we arrive at the Newtonian result in (E-3)

) !;i .
3“--2.‘ . (e-3)
The Newtonian potential ¢ is that defined b{ Poisson's Eq (2-6)
2 °0
Vé = 4vGT

9.y r.ist be asymptotically flat. Hence, in order that‘af)o vanish at infin-
ity, the scalar potential ¢ is idertical to (2-8)

= -6[LT (E9)
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3
The solution of (£-8b) is the vector potential Ay =95, -

A =-45 [':IR &£y’ (e-10)

A c

which is identical to that in the electromagnetic theory of gravitation
discussed in Chapter 2.

In order that éij vanish at infinity the solution of (E-8d) is

cs,.‘i - -28;*% (E'“)

The remaining field equatinn (E~8a) is solved using (E-3') and (2-6')

T W[ 28] Afe (e )

If we assume (Weinberg, 1972, following Mgller, 1962) g

Goo = -2(8)-2¢ | (E-)
AT -::;[tb,- + 4w ('?‘..’?“i (E-w)

which has the scalar solution

p=-8 [.—;g¢...+‘?-+‘?~]

jx-x

then (E-11) becomes

(€-)

The harmonic condition used earlier imposes the following relation be-
tween the scalar potential ¢ and the vector potential A:

4 ):t, +tVA =0 | (E-%)
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Using (E-3'), (E-11), and (E-13) in conjunction with the solutions
¢, A, and v, the Christoffel connections (E-4) become

P = [28Fey], + A,
r':-, = 'i'[";.{ A;,I»] - 8.';‘ (g),o
fle = x4,

Ri = &b, (-
P:; = #*ﬁ. .

Substituting (E-17) back into E-1) we obtain the "post"o—Newtonian“
equations of motion: (E°|e)

c X = -Y [Q \{ 2(%)'+Cz‘q- %%!t + !x(‘lﬁ)
+2y % ray(ey V09

Posrl'o—mrmmm EQUATION OF MOTION

Note carefully that these are simply scalar and vector potentials. Further-
more, note that Eq (E-18) contains the Lorentz equation of motion (2-15)
from the electromagnetic theory of gravitation in Chapter 2.
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APPENDIX F:
SOME FEATURES OF THE ELECTROMAGNETIC THEORY OF GRAVITATION

Having derived the equations of motion for the "post"o-Newtonian" approx-

imation of the tensor (Einstein) theory (Appendix, Eq E-18), we observe the
remarkable sipilarities which exist between 1t and the vector (electromag-
netic) theon;’of gravitation - primarily the use of a vector potential.
This sort of correspondence also manifests itself in the matched asymp-
totic expansion method which decomposes the tensor field equations into
scalar, vector, and Maxwell stress-tensor components in Eq (3-49).

The Classical Basis For The Vector Potential In Gravitation Theory

A simple hydrodynamic argument constitutes the teleological basis for
invoking a vector potential into the Newtonian field equations (2-5) of
Chapter 2. These equations for ¢ are irrotational. Hydrodynamically, a
pirticle orbiting in an irrotational fluid acquires no intrinsic spin. If
it does, the fluid is rotational, possessing a curl. Now extending this
argument to the solar system, one is struck by the experimental fact that
all of the planets possess an intrinsic angular uiomentum (§) in addition to
their orbital angular momentum (L).

Of course, we know that a ponderable, elastic body (with Love numbers)
which is some form of ellipsoid (fcrmed cosmogonically) will acquire an in-
trinsic spin § which is commensurable with its orbital angular momentun L in
the scalar potential ¢ ~ r'] of Newtonian theory. This is due to the grav-
itational gradient, inductive energy dissipation, and the spin-orbit inter-
action mechanism of, say, tidal friction (Appendices G & S). In other
words, just because planets spin one does not necessarily need a vector
potential to supplement Eq (2-5).

Nevertheless, the gravitaticonal hydrodynamics of the snlar system does
establish an experimental basis for invoking a ve. r potential, and thereby
achieve an electromagnetic theory of gravita.ion, as in Eq {2-12). The
vector theory of gravitation in Eq (?2-12) becomes even more interesting
when one considers the origin of magnetic fields and the nature of the
Coriolis force.
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Rotation Of Mass & The Origin Of Magnetic Fields

H.A. Wilson (1921, 1923) points out that there may exist a correlation
between the rotation of mass and the origin of magnetic fields - basing
his query upon the experimental fact that the ratio of the magnetic mom-
ent to the angular momentum for the sun is the same as it is for the
earth. Wilson also investigates a similar line of reasoning in the elec-
tromagnetic theory of gravitation by supposing the "relativity" of grav-
itational fields. In the same fashion that a uniformly moving electric
charge exhibits an apparent magnetic field, then perhaps a moving neutral
mass possesses an apparent magnetic field. Wilson then performs an ex-
periment, but measures no such effect.

Blackett (1947) pursues Wilson's ideas and advocates the Hrmula

P=-—p§.‘.‘.u (]:-0
~ c -~
as the linear relation between the angular momentum U and the magnetic

moment P (where 8 is a dimensionless constatn of the order of unity).
Fuchs (1948) generalizes (F-1) as

P =t pule6 U= poplt |
where u is the gravitational permeability, ¢ is the permittivity, and g

is the Bohr magneton.

The Lorentz Force & The Coriolis Term

e ———  ———— — A— ——————————— ——

Wilson's conjecture is too naive - as his experimental results determine.
That is, re considers the analog of the lLorentz force stated in Eq (2-15)

= vxb

t r[3+~x~ (2415)
~

and surmises that the axial vector b for the "gravitational induction" field

is a magnetic field B - just as in Maxwell's relations (2-11).

However, from classical mechanics we already have a force term exactly like
the Larmor-Lorentz term in Eq (2-15), namely the Coriolis force

.= +2pUry = -p yx (2), (F-3)

Whence, we can make the identity t)

D = ":!93 (F-4)

)



108

whereby the Lorentz force (2-15) becomes

feplyeves),  ®

Result (F-5) consists of the Newtonian (Coulomb) force and the Coriolis
force.

A re-interpretation of Wilson's conjecture, then, is to state that there
is a relation between mass in uniform motion with spin and the Coriolis
force. Likewise, in the same fashion that one has motionally induced
electric fields

E=-vxB (F-¢a)

~ ~

for equilibrium states (F=0 or high conductivity), one also achieves
motionally induced gravitational fields

q=-Vx(a) (-

Eq (F-6b) is the electrodynamic way of stating that "fictitious forces"
behave like gravitational ones and are both characterized by 9v in rtv
(Eg A-1) of the equation of motion

“4 P Xx'=0 (3-45)

It should also be transparent that the electromagnetic theory of gravita-
tion is Machian* in nature, attributing inertia to the inductive effect of
distant cosmological matter.

The gravitational vector potential A in Eq {(2-19) arises in the presence
of a hydrodynamic mass current

J = py e4)

~N

*
Epistemologically speaking, however, the Machian school of thought finds its
principal experimental basis in electrodynamics. Hence electrodynamics and
the electromagnetic theory of gravitation stand on their own. Mach's work,
in fact, is a philosophical derivative of Maxwell's electromagnetism -
particularly in light of Maxwell's work on gravitation, available to Mach.
The vector theory of gravitation does not have to answer to Mach.
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in Eq (2-16). If v is rotational, that is, if
V= 0xtr
~ -~

2w = VxV

we have directly from (2-19), i7 v can be moved through the integral sign,

gl < o gy

-8)

b=Vh= Ligp-2oy = (O

F)

In order to establish a basis for the origin of magnetic fields in rota-
ting mass, one should turn to the continuity equation (2-27d). For nedstral

matter (p_=0)
e b ) .
V= -y - ft‘ , @2d")

Ore can then argue that electromagnetic currents i arise in the presence
of mass currents j. This sort of reasoning can be used to justify Blackett's
relation (F-1).

The Coriolis Vector Potential & Gravitational Radiation

If we now temporarily adopt Eq (F-9) as a definition of the gravitational
vector potential A, from which derives the Coriolis force, we can quickly
surmise the behaviour of the field equations.

First of all, the energy density in (2-23a) is
y |

Fh * (2£§!?=‘ ‘Eet' QF‘\\&)

while (from plasma theory) the pressure of matter p is related to it by
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P ¥ oy =lml (F-uw)
(P 4 % . Cemt.)

The cyclotron frequency (eb/m) becomes

(.)cz -wl':-’- :b: 2(,), «-D.)
while the Larmor frequency is
R A

The spin g of the vector gravitational field is precisely the Larmor
frequency of electromagnetism.

The ExB drift velocity perpendicular to y or b is

v,= 2 2_’.‘_""1 (F-14)

while there is an adiabatic invariant (Coriolis mirror) given by

S singd | L .
L 2, Const, (r-18)

Likewise, a "piasma oscillation”" follows in the usual fashion from the
Maxwell equations (2-12) and the continuity equation (2-17),

la)r'-' \‘Im = ]n‘k. lhrc "ms Z.eFrT; (F‘u)

(o )

The magnetic moment is precisely the mechamca1 angular momentum L

L= Ji[f (3x)4v (F-v)
(A £pGr)bv)

The torque acting upon a spmning mass of angular momentum E in the Coriolis
field 2y is
T= Lxb (F-18)
(T= ax®)
~ ~




m

The Poynting vector is §$ = g x h in Eq (2-18), or

S= -'-3xb 3xu (F-19)

where the polarization of S is determined by g

Finally, it should be pointed out that the field intensity g is derived
from (2-13a)

q=-Vé - % (2-53)

¢ is really a centrifugal potential, containing both the Newtonian ¢
as well as centrifugal effects due to rotation of the source of the field.
3,A then includes the time-dependence of the Coriolis term.

Arbitrary Vector Potential

There is nothing implicit in the field equations (2-12) that demands a
strict identification of the gravitational induction b with the Coriolis
effect 24, although it should be consistent with it. One can consider a
ring current j of mass, using the vector potentials from electromagnetism,
and determine~the gravitational induction field b in spherical coordinates
as a solution of (2-19) (Smythe, p. 294-295),

2L s () RwaRlad) ()

where the ring is at some colatitude o, and a is the radius of the mass.

For roa, h‘.._ ’wGJ_Z( |) N( )IMI.
F(E 6

Then integrating the current loop over the volume of the spherical mass,
which is simply the moment of inertia of the mass, one gets approximately
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T
r 52: :ue (F-a)
bO 5T T -

This is the yector gravitational induction field about a mass spinning
at angular velocity w.

The orbital angular momentum L of another particle orbiting about this
spinning mass interacts with E, creating a spin-orbit and a spin-spin inter-
action. First, there is a precession of the Kepler conic by an amount

Q.- <b>

for a polar orbit. Averaging over the orbit (where I is the Keplerian
moment of inertia I=Mr2/2)

[} 3_2:;1 u,____cr\ W (F-3)
. e ar L.

There is likewise a spin-spin interaction, similar to the gyroscopic effect
predicted by Schiff (Phys Rev Lett 4, 215, 1960) in post-Newtonian General
Relativity (Appendix E). If the second particle (satellite) possesses an

intrinsic spin angular momentum §=I'3s’ it experiences a torque due to b of

T = -'i §x§ (F'IA')

N

which results in a precession of the spin axis of
In an equatorial orbit

Compiling (F-23) and (F-25)

NS ) :
A=-Fu- 350, 0

which is Schiff's result, except that the first term must be multiplied by -3/2.
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Generalized Ohm's Law

The classical relation for Ohm's Law (2-16) generalizes as follows:

.ﬁ. +4x\g ='°[g+!x|3] -rV-? ‘ F-27)

where y represents a pressure of matter. For the Coriolis interpretation,
this ic

?;ﬂx(w)‘ f[g*'!*(':)i -pvy.

MacCullagh's Equations & Gravitational Radiation

It is pertinent to remark that MacCullagh's (1838) equations can be used
to derive Maxwell's Equations for electromagnetism. Likewise, they can be
used in the vector theory of gravitation. MacCullagh's theory, in effect,
is a hydrodynamic theory of electromagnetism, and in this context, of grav-
itation. He assumes that velocity y is given by our (F-7)

VvV = 20 -

where w = $. His equation of motion is then assumed to be

P%: ‘Vxé. (F-29)

T2
(F-7) and (F-29) are subjected to the zero divergence conditions ( inccmpres-
sibility or transversality)

¥ =
VY=0 (F-30)
v'é =0 .
From (F-7), (F-29), and (F-30) one can derive the source-free Maxwell equa-

tions ( with displacement current in 1838.). If you recall the hydrodynam-
ics of current

é:f)\:: G’E ’ (l-l‘)
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then we have the implicit use of sacCullagh's ideas if we simply state from
(2-1€) that

V= 4',-,- E (F-31)

For arbitrary constants of proportionality «,E,
Case () V=taE  f=3pl

(F-)
lxe () Yetall % =2pE

we obtain Maxwell's relations (2-11) for p=0 and £=0. We can identify
Gu@ Gk ek (F-9
Came(® 28 pff24p

Sources can be readily included. The purpose in going into this dis-
cussion of MacCullagh's theorv is to dermonstrate that all of the "magneto-
hydrodynamic" analogies in the vector theory of gravitational radiation are
not magnetohydrodynamic at all. Magnetohydrodynamics was established by
MacCullagh over a century ago. Again, the electromagnetic theory of grav-
itation goes back to fundamentals.

A Generalization Of Bateman's Equations

Starting with Maxwell's Equations (2-11), Bateman (1915) makes a simplifi-
cation which in effect is reminiscent of the original MacCullagh theory.
Bateman assumes a complex electromagnetic field

M= E+iH (F-34)

N ~ ~N

whereby Maxwell's Equations reduce to and derive from

VMtf

N

v -i i
These are simply a complex formulation of MacCullagh's Equations (F-29)
and (F-30), with sources. (E.g. Tet M=y + ig ).

(F-3s)



115

The neat thing about Bateman's Equations is that they provide a simple

way of synthesizing vector electromagnetism and vector gravitation, as a
complex unified field theory. Let

M=+l O

£=Evig (F-%)
f = Hash

P=I’e‘il’m J .

Substitution of the complex fields (F-36) into the Bateman Eqs (F-35)
gives the vector Maxwell Equa‘%
A

for gravitation. The Lorentz

Fp, (Eortl) 4p, (geveh) -i['_r.,.'\%%:v!)-re(gs*m)] . E-a

Or

ons (2-11) for electromagnetism and (2-12)
55*5) has a complex component,

E= € -i,0-kel 6w

One is interested only in the real part of F in (F-38).

The interesting feature of this approach is the implication that charge
and mass are the real components of the same thing - a single complex
quantity. That is, the Newtonian and Coulomb forces are unified into a

single complex operation. The same is true for the Larmor-Lorentz term.

The field intensities are determined by
‘éi - ‘Et + 2
]
Al
1 L S
H=H+h
There is no neg?tive energy density.

£~ Bl (7 40)

(F-39)
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APPENDIY G: TIDAL FRICTION & THE VELOCITY OF PROPAGATION

Eddington (1920) jiscusses an important physical application of the
retarded Lienard-Wiechert potentials when he considers the question of the
existence of a couple or torque acting on the ..o-body Kepler problem. Re-
ferring to Figure G-1, Eddington points out that the acceleration 3 acting
on the present position of either component must be in the direction of
the other binary component

(OPresent Position
("‘Retarded *

or a resultant torque T acts upor the system. Assuming 4 phise lag ¢
between the retarded and present positions, this osculating torgue is

T o (dh)od = Sl mlrmi

where (G")
= d+d) +2dd, cosd

d:msd dedod, , dpo
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Note that this is an inductive energy dissipation mechanism (it goes
as r']), characteristic of scalar (Newtonian) gravitation theory. Accord-
ing to the Lienard-Wiechert scalar potential

b =64 ()
(A=-3[2%)

the force per unit mass or field intensity g = -v¢ in Eq (2-3) (assuming
zero vector potential 5) acting on either component in Figure G-1 is

9.= G"ﬁr Gy 6

where M=ym for a circular orb1t and where ? is a un1t vector directecd to-
ward the present position and not the retarded one r Hence,

$=0 6-49)
and there is no torque.

However, this equilibrium condition (no couple or torque) derives from
the fact that the velocity of propagation of gravitatioral information c is
just right. If we perturb the velocity of propagation

C’= c+é€ (G-S)

the gravitational action is no longer in the "present" direction ?;, s #0,
and a torque manifests itself. The conic then dilatates or contracts until
once again it is in equilibrium, whereby the phase angle disappears and the
torque vanishes. These results apply to point masses.

The first matter that needs to be dispelled is the misconception of Laplace
(1829) and others that variations in the velocity of propagation € necessar-
ily manifest themselves as anomalous behaviour of the Kepler conic. This is
not true, because the retardation effect above cannot be distinguished from
the mechanism of tidal friction (Appendix S) in the case of real, ponderable
bodies. The second matter of importance is the assumption of a constant vel-
ocity of propacation c in the derivation of the Lienard-Wiechert potential
(G-2). In the presenze of an index of refraction n (n = 1 + 2m/r for light
in a Schwarzscnild background) whereby ¢' = c¢/n, the two-body problem
expands or contracts until the torque disappears.
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Hence, the effective inductive friction in the two-body problem due to
retardation behaves a great deal like tidal friction, except that it
occurs for point masses as well as elastic bodies with Love numbers. 1In
turn, both of these regulate the behaviour of gravitational radiation
damping (or anti-damping). Curthermore, a non’ inear field theory can
affect the velocity of propagation c', producing retarcdation, and in turn
neutra’izing radiation reaction mechanisms. By means of this orbit-orbit
interaction a nonlinear mechanism can vary the velocity of propagation in
the vicinity of a "black hole" binary; there can be gravitational radia-
tion (assuming it exists for the Kepler problem); ard there does not have
to be collapse.
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APPENDIX H: DIFFERENTIAL EQUATIONS FOR PERTURBATIONS
OF THE SCHWARZSCHILD METRIC

The differential equations representing the nonspherical perturbations
of the Schwarzschild metric

SR},=—$F£.'+SI"P , (%

3R,,= 0= R}, (35t3)

are first derived by Regge & Wheeler (1957) with a number of errors wi.ich
are later corrected by Vishveshwara & Edelstein (1970). They are der.: 1

using spherical harmonics and are comprised of odd-parity and even-pa.itv
solutions.

0dd-Parity Equations

In the case of odd (magnetic) parity (—1)L+1, Eqs (3-56b) take the
following form in the canonical Regge-Wheeler gauge (3-58):

SR> 13 s Taow i+ bR ™
SRe ks Tl [ - m-(m-n]u}-o B

3R ={i1 i ,n\t["‘l % Lh- -;(',.*\u)‘\] “(’p"k)%’ ()
+(‘ Loy- %!)h.}ﬂ‘sz

where the subscripts (such as Vr) represent derivatives (vr=dv/dr).

Eqs (H-1) are then set equal to zero in order to determine (3-56a). For
L=1, al} of the angular factors in (H-1) vanish. Also for L=1, 8R,4=0.
For higher L, Eq (3-56a) implies the terms in brackets vanish, providing
three radial equations. The second-order radial equation resulting from
(H-1c) is actually derivable from the other two, provided

(-t O ALHN] ¢ 4O=0, (b

which indeed is the case for the Schwarzschild metric where
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”: ixz |"‘€-'- . (3]

From these other two radial equacions (H-la) and (H-1b), ho can be
eliminated, resulting in a single second-order radial equation

+[%(';\r) ﬂ“*{i(ﬂ)ﬂ*&m‘ M an=0,

If one defines - (“.‘)
Q=% 53
vz re2min|i-i| (n-5)

then from (H-4) one obtains the odd-parity "Schrodinger" equation first
given by Regge & Wheeler

2
49, ¥y, )e=0  ®o

dr*’

where veff is an effective potential given by
k
_ L) 3 d (300 .
Vess = »l v ];‘(‘ ) -2)

In the case of the Schwarzschild background

Vegg = [ 4432 %k" m), 9

Even-Parity Equations

Continuing in the Regge-Wheeler gauge, and using upper-case letters to
represent the even (electric) parity (-1)L radial functions in order to dis-
tinguish them from the lower-case odd-parity functions, the first-order
perturbations of the Ricci tensor in (3-56b) are

S T 4t o TR 2 +-——-"l]H}P4 (w93

SR LN - e B R o
R [ 4 Lo ] 4F e



SR ‘{‘Lk‘(“ﬁﬂ()hh)[ -4y *g_'t_\t Ry-s %&
"l. “'-l + y._.r,.,x[*r\v \'_;g %‘_ _9;_
SR

R, ) 2 o4 - (-
(e '_)llk 5 x r)&? “’% '-\“,]‘ii‘u (+04)
SR~ {.x\?::xm, BTy POE (Lvtl L
H(ErN S -2 )‘K 'r["u (BT ]\\;
*{t“i‘ (x A)-2 Q{L(Lﬂim-ip 2 ‘_.L(“ M" p it (“_sa

Derivatives of the Legendre polvnomials vani<h for L=0., For L=1, the two
angular factors in 6R22 of (H-9f) are not independent.For L>1, substitution
of (H-9) into (3-56a) gives the following even-parity radial equations:

“!“ ‘“g (“'N

9o roew-B0-WK-1530=0  (wow
{-[u.a_)u]nk(u.x) o (#-109

tich, + (-0 - 4)+ 2mH=0 (wod

(p%:)‘e\}“p .%(Mg)% KH-L 00 32) !r!,mkn&mk(n-%l)ﬁt(ﬂ.) ®
-2WK-2(-ma &k -0
I{r{(‘ )[4 ¢K) -er]} LeK + K- 3K - 2ikeH, = O O 09
2k (- )4 . 2ikm by - Kl + (-2 )‘[-}\ﬁ(""{-'-) AL64N] o
tepRi- e ello
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Eqs (10e,f,g), of second order, can all be derived from (10b,c,d), of
first order, provided (“ “)

Fi)=- [ em . (;.-«Lﬂ)] R +fcaned » 2= 2o !I!) (!' K
+|2ike- !'-'%ﬁ%] H =0,

This relation (H-11), in conjunction with the first-order equations
(H-10b,c,d), gives one second-order differential equation: (““‘l)

J 5 =+ [(\. =L4d)+ 3]‘ (- 3—) D‘O) ﬁ, * {T(‘* -,!—w(»%)[ai‘
" i} 220 502} 22e0)5 -0

where § = (I-z-;-‘-)%‘ (w
= ;;‘ xiz ’/Ill\ T('mk ("ﬁ

DW= & v2ledd) -2(fvkV)Z) . W=

The second-order even-paiity differential equation for S=H]/r is then

‘!T% + {7 + iLﬂ L-lx:.ﬂ)+%]%(l- %)} -:—i-‘ (”‘“)

+ {1 S o0 400 B2 sy g, ol

Further details are provided by Edelstein & Vishveshwara (1970). It is
safer to follow their development as it does not contain the errors made
in the original Regge-Wheeler (1957) paper.



124
APPENDIX 1: REGGE-WHEELER GAUGE

Recall from Appendix B that in Einstein's field equations for the
first-order perturbations, huv remain invariant under the gauge transforma-
tion

!

hy = by - (3,43, ,). @-5)

0dd-Parity Gauge
Upon consideration of h,, in (3-57a), Regge & Wheeler let

X = %'=0
¥ Aenetd Y o

whereby (B-5) transforms (3-57a) into (3-58a). &4 is arbitrary.

@9

Even-Parity Gauge

Similarly, if for arbitrary Mys M1, and M one selects
"
3, = MY (o9
¥, = MEDY ey (T-2)

3, = Mend Y ag
=M (t,");:'efﬂ:_o,q-)

then (B-5) transforms (3-57b) into (3-58b).

N
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APPENDIX J:  EVEN-PARITY “SCHRODINGER" EQUATION

Zerilli's (1970b) derivation of the second-order "Schriodinger" equation
for the even-parity Regge-Wheeler perturbation problem is as follows. He
substitutes kR=H, in the first-order even-pari.y equations (H-10b,c,d)
and the algebraic relation (H-11), and then uses (H-11) to reduce (H-10b,c,d)

I = [aomeklc faomkR |
1R = [ Yomk]K + [Se0 dmk]R

where a,8,y, and & are functions of r,L, and M ~ but not k=w. Next, the
following transformations are assumeds,

R=!(r)K+3mﬁ (¥2)
dr = neydr® = (1-awm/A)det | (F3)

n{r) in (J-3) is Eddington's (1920) refractive index. Zerilli lets
p.(m)r +Nwr ¢ 6-‘

fin= 0w s 3m) )
§¢)= |
o= B 0 (P
where i —:(%;T )
A= 4 (-iXev2) (3-5)

noting that throughout the L and M subscripts on all radial functions have
been suppressed. By virtue of (J-4), (J-5), and the integral of (J-3)
which is (H- Sb) then

K _ A .
TR A {w‘) e 50

These may be re-written in second-order as

'

] A
—=F + [k-VomlK =0 (3-1)
2RO+ + 6N mrt e 180w 18 .
vl.(r) = (“ 3':""'1' [ r(Ar+3m)y : (+8)

where angular momentum L and azimuth M have been re-instated.
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APPENDI¥ K: TENSOR SPHERICAL HARMONICS

The following are the orthonormal set of tensor hammonics in 4-space as
developed by Zerilli (1970a,c):

000 o0Y.00 (00 00
& Y&"o oo Do x.}:"oo a =| ©Y,0 o]
*m loooo]| » swm\"Floooo] » *Tm|o0o OO
ocoooo 0000 0o 0O
4 Oo\m):n" .*.00 o o
b = irfaeei)} 22 : : ) bm' ubel] :2;'3" )
20 O o o o ©
0 0 Y, -y, oo o ©
(o) Y . 4
¢ =]’ 199 9 o |, %;tM [g :.—.‘.;ov.-uﬁox,,
40 o ° o o o
.*00 o - ] '.oooo
<. . 00 o o =
e AP R
00 = “‘xﬂl 00 Omb

where
Xm’ 237@6' ®6)X,,, Wine (%" do}%’ ﬁbé)Ym

a, b, and ¢ are orthogonal to the 2-sphere (0,¢). ¢» g and }) are tangent.
£~(%+ L’) and 2«.(% - h) are, however, orthogonal. Thus {g.g.g.g.g.g} is an
orthonormal set. Upon generalizing to a 4-dimensional pseudo-Euclidean space,
we obtain 4 more tensor harmonics: g}o). gé]), 2}0)’ 2}0). Regge & Wheeler

L

use ¢ in place of f. Hence, theirs is not an orthonormal set.
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APPENDIX L: COEFFICIENTS OF SOURCE DECOMPOSITION

Any symmetric covariant tensor can be expanded in terms of the tensor harmon-
ics in Appendix K:

ST Z{ o (o) 0 m +A w )

CRAATE TRLLTY Ty mbm (%))
(o) QD)
+Qm M * O mﬂ I-H* Dm slﬂ+ Fm bm
The coefficients ALM ..... FLM are determined by the inner products
(T,8)={{T:540 (-2
where

T: §__ = 't,:)"vx T, vSu, (-3)

and LT is the background metric. Accordingly,

o= (@, T)
A"‘ -2(a}, T)

(o _ ©
BLn - L(u»l) L T)

i 1-4)
T) (

L(w) ( WM, =

(@ - o)
Q= (e T)

L(lsﬂ) "111)

Qm = m (i'l-H,T)
Gm = t'*(am."')

DLP\ L(u\XL-\XLﬂ.) (-:m T)
Fin™ s (0 T)
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Now, the coefficient of g,y is Ay = ( 3wl ). So from (L-2) through (L-4)

Am(';t)z " y‘l‘fyl"(gtn) ,T-— in. (L-5)

Thus, from Appendix K

Am(".t) =HYL:(I1) T“ n (-6)

But from Appendix N, if the Schwarzschild geodesic postulate is assumed,

'T'u‘ ° T; (r-zm)‘ (Jt) S(F-RM)S (- .Q(t)) ()

Hence, letting y = dT/dS® (and similarly for the other coefficients):

A, 0= mY(48) 21y 0

A‘:,gnt)- m X“‘WS(r—R(») Y, (o)

Noro=-amd SRy *(0e)

Bt:""") 2m.¥(rmn)s(, R(ﬂ)[ 3Ym «I@ 5Ym J'i]

B, 9= L(L+l)(" Ay R“‘)dt[ 5%” %Q -)% &1

o ¥ X210 . o
Q= Tyl a«){‘ : smO-;iéﬂ%‘]
o BN 5 w2 4

u\- L ﬂttl Lr1) ( n ]éb‘ﬁ(% dtO

Jr - Rm)sné(gm de%n .-'-\»)‘Ym)%%}

Foo Bt .xm){“ii( " “‘GY W4

(g -ol ST =o]
m.Xr & (r-Rew)) [(d@) + 31 @(-&\ ]Ym }
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APPENDIX M: DIVERGENCE CONDITION FOR SOURCES

The divergence of the source stress-energy tensor 6T in Eq (3-61) must
be zero. Since (GT )’“ is a vector, expaading it in ten,or harmonics gives

S )"w ) g {d"‘ LY. mi'XmJ' ’LYY.*&.#Ym}

Because of (3-61) (r\“)

then VLM
“m = P = b = Sm=° . ()

iR I B0 0 )
Bur (- V- A 0B, 136,20
b 1R -0 (08 46, Bt 20
s R SRR, ()0, htled 2O

DIVERGENCE CONDITIONS

Upon integration of these conditions (Appendix C of Zerilli's thesis) one
obtains the equations of motion for a point particle falling alon3 a geodesic
of the Schwarzschild geometry N, " demonstrating consistency with the
geodesic postulate.
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APPENDIX N: TRAJECTORY OF PARTICLL & STRESS TENSOR

The stress-energy tensor due to Peters (1966) in Eq (3-62) is

0
v @ Y P
r -— z Al
TH=n) S eaddys )
ds 4s
-9
where 5(4) is the invariant delta function defined by ffff6(4)(x)/(-g)d4x = 1.
s is the affine parameter along the world Tine z(s) of the particle. In
the case of the Schwarzschild metric

(- 3) 202 an 0= r'snd

o = $6)8(x) . (N2)

Carrying out the integration (N-1), using (N-2):

T m, & dftp > S(P;EM) lots

where @ = (0,4) and 5(2)(9) = 5(cos0)s(s).

R{t), o(t}, #(t), and T(t) are the position of the perturbirg particle in
the Schwarzschild coordinates r,&,4, t.

This is the very criti. tion in the P..ers-Zerili analysis which
adopts the Schwarzschild geodesics oz the path of the radiating parti:le -
in order to evaiuate Tuv as stated in (N-3). Radiation reaction is thus
unaccounted for.
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APPENDIX O: RADIAL EQUATIONS WITH SOURCES

The following radial equations are a consequence of the Zerilli tensor har-
monic decompositions (3-64) and (3-65) of the Peters field equations (3-60):

Magnetic-Parity Harmonics
PR
W -5 - R - 40 s wrled G
) it
% - % + %k + (- )(uea)r-2m) %\ = Niteodfirod) Qun
_ 3
6-p) - (-2’ ¥+ 2 h = wirfpeening D,

e

Electric-Parity Harmonics

(- L P - (- 3 - (S -been
(3 + Hem-Bgr0- 4w, = A,
(- BN 3 - G) 3 4 B it kteny- WA,
£fo-1mn)- &) = -wirfrrowi] BY,
-3 ¢ (-0 420+ (SR h) = Abamfnni' B,

(22 B e AR - (- e o2 B - (- R
+ 2 0-B - DY Lo mE- D)= G,

¥ (“.' H,)= ~Ar'ioe: 'x‘"it Fim
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APPENDIX P:  FOURIER TRANSFORMED FIELD EQUATIONS

We may write the Fourier transfcrm of the field equations in Appendix 0 as:

Magnetic-Parity Equations
W h.,,,-‘m%» +2i0nn - (o iy -iu&u-ﬂ*(v-oqnm

e o o 2o Yo [ S0 = A [ Qb
emydba iofy 2o o oifyuesanaft e Dwn

Electric-Parity Equations

B LIRS LT [MTE ST TR
-3t el o) it i TR A uA e
-l b Bi-w-cetih = iz Ko
£[0-2H]vinfrr) = -Wiftan]'rB o
ol 2H,+ (- (1K) + - B UGN =N amiB g

A1) s e rtv-amia - ) -2iuar 4 - ior (-0 )1,
+2(r-2m) %-'-: -r-p)dth rfemrilh - f Lo W) = -nER G 8"

i, h,) = assandFn
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APPENDIX Q: THE AUXILIARY RADIAL FUNCTIONS

Having determined the auxiliary radial functions RLM as the solutions of the
“Schrodinger" equations (3-66) and (3-67), one can derive the original Regge-
Wheeler radial functions and determine huv witl. the following relations:

Magnetic (0dd) Parity Pertur .iions

(=)
h Ln = r-m R (Q")

- bH) SR, o0

Electric (Even) Parity Perturbations

m.:[*‘**‘?:&:tz:.;‘m RO EOERE

H, =-io YRt IRY - ir £ RE (@4
_[rf-2m)-0ormé-3m) mw)-o'v -

H°m- (r-2m)(\r 4 3m) ]Km+ [iﬁk‘(h‘ §3\\\)\H‘ Bu\ s

H’m= Homi- ZXT"[{-L(L‘}IXL-\xul)].t Fm . @

Auxiliary Source Functions

. Iy m
= ‘Kt; : :2{ +[{um5} } (\‘ﬁm)"“ (@

X j( ()
Ciw® "ol {-Bm @-8)

. [,::. [t:_(::ﬂ' 1 © (r_m) B, . @9

o
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APPENDIX R: THE BONDI 'EWS FUNCTION

Bondi's representation of gravitational radiation begins with his inves-
tigations into negative mass in General Relativity (1957a) - negative mass
originally being considered by Foppl (1896) and Schuster (1898) although
being discussed again by Einstein & Infeld (1949) - and his rediscovery of
certain plane-fronted waves (1957b, 1953). He publishes in 1960 the first
results of his multipole approximation method, and then in 1962 in conjunc-
tic~ with van der Burg & Metzner. Bondi establishes a radiative solution for
an isolated axisymmetric system whose mass decreases sionotonically due to
outgoing radiation.

Bondi's Metric & The "Main Equations”

Bondi's metric for axial symmetry is
i = (v P u' et o + 24P auae
+2Ur e dudo - (8 + sid0d )

for coordinates (u=st-r, r, €,¢).

(R-Y)

That is to say,

(¥ l"—]?r'n") P g ]
- o o
3}"' r;n.“ o o O R-2)
o o o e
[ o, n:: o, O )
\J -2 ~ o _
3’ = | % \‘{'I'z“"; .Il’% o (R-3)
| o o o -2Auide),

Bondi assumes throughout a stationary-radiative-stationary transition

as depicted in Figure 6 where the radiative solution is represented by

Einstein's field equations in vacuo,

Ry

\Y) = () )

just as is assumed in the Regge-Wheeler formalism.

upon a contraction of the Bianchi identities

3“6}“,."

=0,

(3-54)

Using arguments based

(R-4)
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with g°¢ 11 Eq (R-3), Bondi reduces the field equa:ions R, =0 to the
"main equations” R]] = R12 = R22 = R33 =0

Bondi's "Main Equations"

0=R,=-4[g- L]+ B=d

0 =-2rR =[*a¥PU] -2r'{p Lr2ll 207 -20et8] (W)

0= R fPRAR 2P= 2V, + §r' O PU - P U, - AU, Ut (250
-4rlfcat® + 24¢ "[ -1-(3%; AM-L#&*AHY,(I‘ Dl

0=-Rah= 2rfl), (V- ("Y-"\W"‘(""‘.)u:“’(de'm (r-5d)
+r(lr¥.,+ﬂ,+r!,ut0-3d°)ﬂ¥n V[1- Ol L 20

plus two supplementary conditions (Appendix 2 of Bondi, vd Burg, Metzner)

Roo= Roz =0 (R-C)

and the trivial equation RO] = 0. The various subscripts in Eqs (R-5)
correspond to ordinary derivatives: (0,1,2,3)«>(u,r,0,¢). The Eqs (R-5a)

and (R-5c) are referred to as the "hypersurface" equations because they in-
volve only differentiation in the retarded hypersurface u=t-r=const, while
Eq (R-5d) is known as the "standard" equation. Only the standard equation
contains a derivative with respect to u.

Numerical Inteqration Scheme

Bondi's iterative solution of the "main equations" (R-5) consists of

>Given § (for some hypersurface u)

Y
(51523-'P (R-7)

[e* 4P - GN(u,8)
(E‘Sb)-.{ U + LMkO

(&tsc)——v
(Eg5d)—-J, +c At

New v « New u « Y,




136

The functions of integration
H(w,9), Nu8), L1,0), M(u,8), c(u8) (R-8)

provide all the information or "news’ as Bondi calls it, about the be-
haviour of the source. The functions (R-8) can be reduced to one single
“news function."

Multipole Expansion & Sommerfeld Radiation Condition

Based upon causality arguments, Bondi assumes an expansion of ¥ in his
metric (R-1) as

X = Htp-r) . a(:-p . (R9)

in terms of retarded time u = t - r, which is equivalent to an outgoing
(Sommerfeld) radiation condition.

Boundary conditions require that L(u,8) = 0, eliminating one of the func-
tions in (R-8). Hence, the leading terms in the iterative scheme (R-7) are

®
I= 9-9-,'-.'24- <:_(_:_,r0)+m (R-102)
p= Ru®-3é/r* + ... (R-10b)
U= 2h % (R-100)
V= efieanaos e 2, )e o (Reiod)

given by

Under coordinate or gauge transformations which do not change the Bondi metric
(R-1), H(u,”) can be eliminated. Furthermore, by virtue of the Sommerfeld ra-
diation condition, Bondi argues that g(t-r) in Eq(R-9) or g(u,o) in (R-70a)
must vanish. Thus, he arrives at the following canonical form of the "main
equations,” noting that ¢ = c(u,8) - and not the speed of light:

Bondi's Canonical "Main Equations"”
¥z e/ +[Cu0-AY/S & .o (R-n3)

-3 2
U= -(cge2e &M + [3N(l..)§ R “'“1" *ﬂ&’mﬁg“‘:; c",-ﬁ* -

V = ©-2M00)- [N 4Nk -cj-deey st k(118!
- 41 3C,0a0-28 HoNEr+ 2 0D Belchrdee, v S B s
AG = 2¢¢, +2:M + NelO-N, . (v-vd)
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The News Function c(u,0)

On the basis of the canonical form of the "main equations” (R-11), the
supplementary conditions (R-6) reduce to

Supplemertary Conditions

=2 .
M = = +f(c,+3ct0-2) (R-12a)

-3 N° = Ml* 3CC“+ 4CC°C0t0 +CS . (R-126)

If M and N are given for one value of u (that is, on some hypersurface

u = const), and ¢ = c{u,0) is given, the entire solution is determined.
For this reason, Bondi calls c(u,o) the "news function." Another appro-
priate name might be the "data function."

Correspondence of Bondi's equations with a static, non-radiating case re-
veals the physical nature and meaning of the functions of integration M, N,
and C. An empty, axially symmetric metric such as Bondi's (R-1) can always
be reduced to Weyl's form

dd=¢ *dtz - .:11' I (Jr' +d') + fl&b’] (R-13a)

-,3'; _._W ?S:* 0 (R-131)

Letting o represent the transformation parameter between (R-1) and (R-13),

definec by
c= "1!.'(“11- dz“te) ’ (R-14)

then one obtains (static case)

where

Bondi's Monopole M(ﬂ.@) = m
Bondi's Dipole N (w,0) = Dsinb - mo,
Bondi's Quadrupole (“‘e) = L’.Qs‘:e - qznsine + *md: \

(R-15)

where m, D, and Q are the mass monopole, dipole, and quadrupole respectively.
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Depletion Of Mass Menopole & Radiation

M(u,0) in the "main equations" (R-11), based upon the correspondence
to the static case (R-15), is called the “"mass aspect." The mass of the
system is defined as the mean value of M{u,0) over the sphere

x
m(u) = ‘{'j M (u,8) sin8 d6 R-16)

Note that for the static case My = 3M/.u = 0 and (R-16) gives m(u) = m,
as it should. Differentiating (R-16) with respect to u and using (R-12a),

m= & | [-cis %(cm).]'-‘“

o
That is ' §
2,
m,= - '{-I c, sin6d8 (R-173)
°
or re-instating the derivative
m 1 [73cy
m \ Bc) .
5. -zl = )sin (R-170)
" =-1](32) =00 .
°

The mass m of the source or radiating system, then, is constant if and only
if there is no "news":

€. g
ou
If co#O on some hypersurface u=const (Figure 8), then Mo is negative and m
decre..es monotonically.

Qutgoing radiation depletes the mass of the source, then, according to this
formalism. The news function c(u,0) of Bondi is generalized to include another
polarization c(u,0,4) by Sachs (1962) while cylindrical gravitational news
is addressed by Stachel (1966).
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APPENDIX S: GRAVITATIOMAL RADIATION & TIDAL FRICTION

The inductive friction due to retardation and variations in the velocity
of propagation in Figure G-1 of Appendix G must be contrasted with tidal
friction, which constitutes spin-orbit interac..on:

O=->

@"@

N, o
R,
FIGURE S-1

It occurs in the earth-moon system and is due to imperfect elasticity with a
resultant energy dissipation which characterizes reai matter. Neclecting the
eccentricity of the orbit, the rate of change of expansion of the conic éT

i~ [BAER sinzlsl]a® (&0

where the Love ;.umber k2 is defined in terms of the inertias C and A as
Jl - :"; (;?"l (5}_ )
2 ﬁi‘lﬂ' .
Tidal friction (S-1) has the opposite effect as does gravitational radiation
(that is, if gravitational radiation collapses the hinary), which is given in
Eq (5-5) as

is approximately

a.=-[2 -f; Mm(Mem)]a > (s-3)

The critical value of the apse a. where gravitational radiation and tidal
friction remain in equilibrium is given by equating (S-1) and (S-3):

s hsin2811% R2 _
Sl & il e, O

Q.=
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For a binary system of two solar masses, for example, this fis

[( )& sin 2IS\]"s

G v‘ (s-5)

or

-16 . 2
= 225110 [hsin2Bl] %R, 60
An optimization of ksin2|s| with k. = 3/2 and s = 1/4 gives
2
o= 128 R, (s
<
where RO is the mean radius of the primary in Figure S-1.
A binary system collapses under gravitational radiation until it reaches a
sizc of the order of (S-7) and then it attains a stable orbit, radiating away

the angular riomentum ¢f the primary component until the latter's angular
velocity « in Figure S-1 is exhausted.
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APPENDIX T: SCALAR, VECTOR, & TENSOR SYNCHROTRON MECHANISMS

The work of Davis, Ruffini, Tiomno, & Zerilli (1972) as well as Breuer,
Ruffint, Tiomno, & Vishveshwara (1973) analyzes the power emitted from
a particle in a circular orbit r = (3 + §)M about a Schwarzschild "black
hole." The treatment is general, so the vector case can readily be modi-
fied to treat vector theories of gravitation as discussed in Chapter 2.
The even (-1)L or electric and the odd(-l)L+]
the power in Eq (5-12) are respectively:

or magnetic components for

scalar
fm ?
Rem = B2 Yy 96,
Rf:l'd + Nowe
Vector

R 0 62
R = =6 Y, 19G

Tensor

Im o
R =41 Yy 00 [ a6 4 . 062
R"" z4vp u’Y‘?{ YHUDE : fm
odd 1 ®O RS S (nel)
L TN O LN S,
u(%) 1%5155*[“*’% 'ﬁ’g?]' zn‘-“ Sy pe)- InAg
The Green's function terms are ) ‘
GG giatr -5;:— 1y ‘F“*““ F(t.*u)a‘“‘"_' )
B B G I pg g

Coven ® 144p+Imi3 2ps L)
e": t 3 3{"*”‘ ) 1" l’H-‘ o

where
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APPENDIX U: THE PETROV-PIRANI CLASSIFICATION

The Petrov types in the

(Most General) I

o

(Radiation) D‘

(F1at) 0)

Penrose diagram break down as follows:

[Cylindrical Waves (Einstein8Rosen, Roser, Marder,
Bonnor, Weber & Wheeler)

Axisymmetric field of Weyl (1918), Levi-Civita(1919)

Empty space-times

Isolated, bounded sources (oscillators)(Bonnor,1963)

A1l real fields (Pirani, 1962)

LFie]d of an actual isolated system

3

Robinson & Trautman (1960)
Peres (1959)

Schwarzschild Metric
Robinson & Trautman (1960)

Semi-far fields
Robinson & Trautman (1960)

Plane Waves (Brinkmann,1925; Rosen,1937;Takeno,
Kundt)

"Plane-Fronted" Waves (Robinson, 1956)

Any radiating system of sources

Far radiation zone fields

Robinson & Trautman (1960)

Flat space-time

sy PP by, P qu———

It should be apparent from these results of the Petrov-Pirani classifica-
tion that the method is much too general.
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APPEIDIX V:  GRAVITATIONAL RADIATION & CAMPOSITE SIELD THEORY

One can consider the linearized graviton in the context ° composite field
theory. The composite nature of electromagnetic quanta is suggested by
Jordan (1928) using statistical arguments. de Broglie (1932, 1934, 1936)
suggests that a photon is composed of a neutrino and an anti-neutrino,
establishing the basis of the neutrino theory of light. This is one form
of a more general idea that elementary particles are composite pai-ticles
built up out of a fundamental Spin-1/2 fermion, such as the nev*rino. If a
Spin-1/2 neutrino and a Spin-1/2 anti-neutrino couple together and form a
Spin-1 boson, it is a photon (emission or creation); and if they mutually
couple and cancel out they annihilate (absorption of a photon). In terms
of hole theory, a neutrino jumps the energy gap of the neutrino sea, crea-
ting a neutrino-antineutrino pair (emission of a photon).

Jordan (1935) originally treats the de Broglie postulate in terms of a
four-component neutrino theory, using a neutrino of momentum k and an anti-
neutrino of momentum p - k (producing a Raman effect for neutrinos) However,
this four-component work is brought to an xbrupt end by Pryce (1938) when
he demonstrates that it is not invariant under spatial rotation or arbitrary
Lorentz transformation. Perkins (1965), however, overcomes this short-
coming in the Jordan-Pryce treatment and establishes an interesting four-
component neutrino theory of the photon, formulated from two two-component
Heyl equations. Perkins' four-component model is invariant under spatial
rotation, although his resultant photon operators are not strictly Bose
commutation relations, due to additional terms. However, Planck's radia-
tion law still follows as it does from Bose statistics.

From the vector (Spin-1 boson) electromagnetic theory of gravitational radia-
tion, then, there is a neutrino theory of the vector graviton - in direct an-
alogy with the work of Jordan, de Broglie, Pryce, and lerkins. One can like-
wise construct a neutrino theory of the graviton compriczd of four coupled
neutrinos or two coupled photons, for the linear Spin-2 tensor theory of
gravitationu] radietion. This implies, of course, that 1inear gravitons can
decay into four neutrinos or two photons - e.g. upon interaction with matter
or absorption. Wave resonances due to interaction between gravitons and
photons both travelling at th~ same velocity of propagation (Gertsenshtein,
1962) are easily visualized from the aspect of composite field theory. Care
must be taken, however, to account for the interaction of photons with
charge and gravitons with mass.
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One can speculate, furthermore, in a candid way with the bold coniecture
that given a fundamental Sp*n-1/2 quantum (such as a Spin-1/2 boson) ha
could construct a unified field theory using composite fieid theory. If
this quantum were a ronlinear Spin-1/2 graviton, for example, he could ex-
plain g-decay, u-meson and n-mescn decay in terms of gravitational radiation
without need for the neutrino. Weber's high fluxes might then be (ue to
u-meson decay in the earth's atmosphere.

There is another reason for pursuing this line of reasoning. The creation
and annihilation of photons is ccmpletely compatible with the Dirac treat-
ment of hi: negative energy states, namely with positron-electron pairs.
However, Dirac explicitly assumes that the infi.ite sea of negative energy
exhibits no gravitational effect (if it does, we have Maxwell's postulate
of an infinite sea of gravitational energy, in 1865). But if gravitatfonal
radiation exists and if we are to have a consistent quantum theory nf radia-
tion, then there must be a gravitational dual of Maxwell-Dirac spinor eiec-
trodynamics -~ for gravitons. Such a model mav be afforded by aneutirino
theory, or by invoking (regative) mass conjugation rather than o as well as
charge conjugation in the Dirac theory.
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APPENDIX W: SPIN-2 & GRAVITATIONAL RADIATION

The sixteen (16) independert variables h oy in Einstein's field equations
(3-1) and (3-6) must be coupled to a ter<or source T ,+ Generally speaking,
a tensor TW consists of Spin-2, three Spin-1, and two Spin-0 admixtures:

[T,]—=> 2elelele0e0 (W-1)

BEOHE6 6 & -«

where the numbers in parentheses under £q (W-1) represent the various spin
components or helicities of each spin group. If T | is symmetric,

T Ty (w2

then (W-1) loses six (6) degress of freedom or two of the vector Spin-1
admixtures and reduces to

[T]+26|0000 ,(\43)
BHE 6 Q-

['T P] —» O (W-4a)
[T,’] — |60 (W-4b)
'P"_\-—r o) . (W)

The dot is placed in the zero components of (W-4b) and (W-4c) to distinguish
them as the same tensor Spin-0 contribution, distinct and different from the
scalar Spin-0 in (W-4a) which is coupied to the trace of T . Note that (W-1)
through (W-4) are not equations but group-theoretical relations It is (W-4z)
which causes inconsistencies in massive radiation theory (Appendix X, Eq X-32),
where Tu"#O provides an excitation of the Spin-0 degree of freedom.

The spin parts are

If energy is assumed conserved, then

19.‘
0 (W-5)
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This means there is no source to which the Spin-1 and Spin-0 components in
(W-4b) can couple. Energy conservation, then, causes these helicities to

vanish, reducing the degrees of freedom by four (4) - eliminating namely:

+1, 0, and 0. (W-B) also dictates that

Tw?'=0 (w-¢)

is true. (See Fronsdal, 1958, on higher spins.)

Symmetry (huv=hvr) and energy conservation have thus reduced the 16 un-
knowns to six (6). Invoking the Lorentz gauge condition

h - =0 (W-7)

on huv eliminates four (4) more ,"vector" gravitons) and reduces the degrees
of freedom to two (2). These are the pure massless Spin-2 helicities, with
all other spin admixtures removed. This re,ult constitutes the so-called
"transverse-traceless" gauge (Appendix Z).

In massive radiation theory for Spin-2 (Appendix X), on the other hand,
the Lorentz (also called Hilbert-Lorentz) gauge condition does not produce
four additional constraints, but rather it reduces the field equations in
conjunction with energy conservation to provide a relation between the trace
n = h”u and the trace T = T“u of the energy-momentum tensor. This gives
only a fifth constraint, thereby reducing the six (6) independent variables
to five (5), or 25+1, where S is the spin. (See Eq X-28.)

In addition to the above group-theoretic representation of the gravita-
tional Spin-2 probiem in terms of reducible groups, we can recall the tensor
spherical harmonics of Appendix K. Spin-0 is comprised of (0). gé]). and 3
Spin-1 of ‘bgfo), g, ;(0), and S and Spin-2 of 3' [ and ‘f' This representa-
tion, however, is often confusing because the respective harmonics consist
of lTower-spin admixtures and are reducible.
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APPENDIX X: MASSIVE GRAVITATIONAL RADIATION

Massive radiation theory is an embodiment of the screening potential e M
due to Laplace (1846). It concerns itself with wave equations such as (2-7),
(2-25), and (2-32) which include a finite rest-mass in the form of Klein-
Gordon equations (R=c=1):

(O-m)g =-xp
(O-m)A* = I (X-1)
(O-m)A” = T .

The subscripts on the masses m, (i = 0,1,2) correspond to Spin-0, Spin-1,
and Spin-2 for the respective scalar, vector, and tensor wave equations.

Radiation theory with quanta of finite rest-mass hus been well developed
in electrodynamics, based upon the de Broglie postulate (1924) of a finite
photon mass and its subsequent incorporation into Proca's vector meson
theory (1936). The resultant massive electrodynamics is well-behaved since
it reduces to Maxwell's theory as the photon mass goes to zero.

However, such is not the case with conventional treatment- of massive grav-
itational radiation theory using Einstein's General Theory of Relativity.
An assumption of a graviton rest-mass does not reduce to Einstein's theory
in the massless limit, indicating either that (i) Einstein's theory is
particularly unique, or that (ii) conventional representations of massive
radiation theory are inadequate and bolder hypotheses may be justified.
Einstein's theory is said to have no "neighbors," meaning it does not tolerate
neighboring theories with a finite rest-mass.

Massive radiation theory is the contemporary expression of the cut-off
potential of Laplace, later investigated by Neumann (1874, 1896), Seeliger
(1895), and Yukawa (1935). That is, an assumption of a finite rest-mass m
for the scalar wave equation in (X-1) modifies the classical Newtonian po-
tential with an exponential cut-off-

¢ = “‘ =9 2 (x-2)

0

In this fashion, the Newtonian or (Hulombic field is screened and does not
have an infinite cross-section, an artifice also employed in plasma theory.
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Massive Electrodynamics

Massive electrodynamics is important because it is manifestly covariant, a
feature which is not true for the massless Maxwell theory. It has been

developed by many authors, among them Wentzel (1943), Kallen (1972), Jauch
& Rohrlich (1955), 3jorken & Drell (1965), and Bogoliubov & Shirkov (1959).

de Broglie (1924) has demonstrated that if one assumes the photon to have
a finite rest mass my, then the energy relation

E=fy= '?r% )

necessarily implies that the vacuum has a refractive index

nsﬁ'zl l—",:,—:;‘; ~ I+’,-('i-‘-‘)2\;2 (x4

and behaves as a dispersive medium. This idea is important because it is
the basis of Proca's extension of Maxwell's equations for massive quanta.

The massive Maxwell-Proca equations take the form
V-E =4wp - p'd
VxE =-13W4 (x-5)
vi=o
Vi = LT+ 1% i

where p = moc/ﬁ. These equations represent a massive vector field coupled
to a conserved current,

F;‘P_‘," :5.!‘-3'
po o (%-6)

Their wave equation is
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with a Poynting vector

$=m(ExB+pM)  (x-8)

and an energy density

= g‘;—[g" + ‘1" + ;(Q’-f¢‘)] . (X-S)

The addition of the massive quanta to the Maxwell theory increases the
number of degrees of freedom in the field due to the fact that the Lorentz
condition no longer reduces these degrees of freedom. Instead,

FIX)-T, o

relates current conservation and the Lorentz condition. In addition to the
two transverse polarizations of the photon, there are now a longitudinal
photon and a scalar (time-like) photon due to the presence of a photon
rest mass. (See K311€T.)

From all of the above equations it is apparent that the massless limit
u2 = m,z = 0 reduces to the Maxwell theory. However, massive radiation
theory is not as simple as this because the most significant relation above
is (X-9) for the energy density. The massive energy density must be
positive semi-definite or everything will collapse into any negative energy
states that happen to exist.*

For this reason, massive radiation theory is usually developed using an
action principle. Provided the action I is expressed in a canonical

1= j L% = | (pa- Wk

then the Hamiltorian energy density W can be readily identified in the Lag-
rangian density § and hence examined for negative energy states.

*This problematic feature of Lagrangian field theory can be alleviated by
a massive exclusion principle, discussed in the final section of this
appendix.
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AR T TRV LY Sy

has been decomposed by Deser (1972) into its transverse and longitudinal
parts, demonstrating that the longitudinal mode constitutes a scalar field
decoupled from the current. The energy density is

o~ LT (s AT + 4 (e5+ S ois])
im0 Bve-37) . (%)

The "T" and "L" superscripts represent “transverse" and "longitudinal®
respectively. The second term in braces is non-Maxwellian in that it re-
mains coupled to gravitation in the m=0 1imit, which may have implications
about the frequency dependence of the gravitational deflection of light

(See e.g. Woodward & Yourgrau, 1972).

Massive Gravitational Radiation

The current dilemma in the theory of massive gravitational radiation can
be best characterized in terms of the source theory (Schwinger, 1970)
associated with the Feynman amplitudes of quantum electrodynamics, One
can represent the gravitational interaction as the exchange of a Feynman

propagator D . between one source T*V(X) and another T*B(X'):

i ad T

Dyorep

FIGURE X-I
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This propagator is given in a momentum space representation by

el
D (= -l-r—i)- (%-13)

)w,dp P +mi-ie

where u;v a8 is known as the spin projection operator. These are stated
by Ogievetsky & Polubarinov (1965).

The resultant propagator for a massive gravitaon is (van Dam & Veltman,
1970, 1972):

Dm:; = J‘(S'“s";a%'s.::)_ésg‘s* (x44)
which reduces in the massless limit (m=0) to
F’-"F . Hludy 515*') Sl (k)

In contrast, the graviton propagator for the massless case is

. [l @")' 3,00 ”
i P '

Comparison of the second term in the numerator of (X-15) and (X-16)
demonstrates t: 't the two theories are incompatible. If we take the case
where the delta tun..ions are all unity, the numerators of (X-15) and (X-16)
are respectively

foyey v 04t

This means that

Do =2D . (%-+7)

mass
whereby the deflection of light & is changed as
™ = af (x-183)
massive 4 9magsless



152

the massive radar time delays are likewise 3/4 of the massless theory,

(i00)

and the precession of the perihelion a8 is
(m->o)

AB T = 2,0

massive 3 " massless .

The Jordan-Brans-Dicke (Brans & Dicke, 1962) scalar-tensor theory gives
similar results when its dimensionless parameter w=0.
8 - (2w+d

l’ﬂli.- Ei;;:;]i:> !;“hlihus Einslein (>e1£li>
Ae”’» (&M-L)wﬂagl.,. Einslein . (x-19%)

w=edin (X-19) gives the Einstein theory. The Eddington-Robertson metric

b AP M- Y]

comparatively speaking is

a=p=y=] Einstein (Massless)
a=g=] =k Einstein (Massive, m=0)
a=R=1 v=(w+1)/ (wt2) Brans-Cicke

for these three representations. Drawing further upon the w=0 analogy be-
tween the Brans-Dicke and the massive theory, the massive Eddington-Robertson
metric in the massless limit (m=0) is:

Ax‘=(.-a.;n+zi;,f+...>w-(ue,;-u--.xa,’.,m) (x20)
This is not the Schwarzschild solution. *

Massive Gravitational Action

Many of the problems associated with massive gravitation theory have been
addressed by van Dam & Veltman (1970, 1972), Zeldovich (1970), Boulware &
Deser (1972a, 197 b), Deser (1973), van Nieuwenhuizen (1973), Vainshtein
(1972), Sexl (1967), Freund, et al (1969), and Ogievetsky & Polubarinov (1965).
Massive two-tensor theories have been investigated by Isham, Salam, &
Strathdee (1971), Aichelburg et al (1971), Aichelburg & Mansouri (1972),

Aragone & Chela-Flores (1972), Aichelburg(1973), and Lawrence & Toton(1972).



153

The definitive work at present has proceeded with the Hilbert-Palatini
formulation of the action principie (Arnowitt, Deser, & Misner, 1962)
which represents the fuli Einstein action as

I =j(‘R)J‘X "'j(“"jﬁa; -NR'-NR'MX | (2)

where Latin indices vary over 3-space and where n'J is the conjugate
momentum:

SO SIPI T tF
"'R. = 3R * a.t ('ﬂr’.'“““})

The linearized massless action {including the coupling to the source
ghwr“") is

T w0 = [{ i, - rP, -4 e 20T,
*i"\.(v‘h;;-h.-j ,;j):R + -& h;jT“
T + 4, T, (1)

In this action (X-22), Ni and hoo constitute Lagrangian multipliers - upon
whose varjation are recovered the auxiliary conditions (h=hii)

2 - .YV g
V h - ‘\u'.’ - ‘T' (Xﬁa)

AT L (e

Alternatively, one can vary with respect to N and Ni in (X-21) and recover

the constraint
R)' -0 (x-24)

(x2L5)

Hence, the field equations following from (X-21) or (X-22) consist of
16 unknowns which are reduced to 10 upon the assumption of symmetry
(huv=hvu). These 10 are reduced to 6 by energy conservation



T.,=0 (x:23)

and further reduced to two (2) by the auxiliary conditions (X-23) or (X-24).
Thence, the massless graviton has two (2) degrees of freedom (:2 helicity).

Now, the Fierz-Pauli (1939) massive action In (X‘:‘)
L7405 ] =- Lt Wezni 2
m 4 }pv o 4 i 't'» b

can be added to (X-22) to give a total massive action
I=1-+1,

The immediate consequence is that variation of Ni and hoo in (X=27) no
Tonger gives the massless auxiliary conditions (X-23) but rather

Vheb . +T=mh  (x289)
2 emN =TS, (amy

(x-28b), as a constraint, simply recovers Ni itself

Nz w(ewd o) e

and does not eliminate three (3) other variables. Hence only (X-28a)
constrains the six (6) degrees of freedom subsequent to energy conservation
in (X-25). (Xx-28a), then, reduces the degrees of freedom by one, to

five (5). The massive theory has five (5) or 25+1 helicities associated
with a Spin-2 graviton of finite rest mass.

(27

Orthogonal Decomposition Of Massive Action

Boulware & Deser (1972) have considered an orthogonal decomposition of hij

hy = by + i+ b s 4RIz (e

v



155

which in turn decomposes 1 in (X-27) into a “transverse-traceless" (ITT)’
a "vector" (Iv), and a "scalar" (Is) part:

I=1 +I+I, . (30

This is further decomposed by rescaling the action in order to eliminate
problematic m"2 singularities and to get it in a canonical "p& - H" form:

T= I ¢(@)e 1))+ (112) | e

T

IC represents instantaneous Coulomb contributions, while the superscripts
correspond to spin components or helicity. .11 contributions in (X-31)
uncouple and vanish as the graviton mass m»0 except the first and last

(r2) @
=0)= -
Imo)= T '+TI° . (x32)
Hence, the massive theory retains a scalar component coupled to the trace
T“a of the energy-momentum tensor (See Appendix W). This massive theory,
then, is a scalar-tensor theory. It is the Spin-0 or scalar contribution
which creates the inconsistencies. The right-hand term in (X-32) is that
which derives from the trace in (W-4a).

Speculations On The Problems Of Massive Limits

The Titerature has investigated ways around the incompatibilities which
arise in massless limits, using such techniques as indefinite metrics,
indefinite probability, broken symmetries, Goldstone bosons, and the
cosmological term (Appendix Y). As remarked earlier, bolder hypotheses
may be warranted due to the inadequacies of the conventional massive theory.
Therefore, some additional approaches are stated here.

(A) One can suppress the Spin-0 helicity coupled to the trace T”u#O by
employing both cdvanced and retarded Green's functions in the determination
of the graviton propagator in Figure (X-1). This {is tantamount to removing
the Sommerfeld -~adiation condition for the Spin-0 exchange, and constitutes
a rejection of the Feynman propagator.

(B) The Bel-Robinson tensor has zero trace in empty space. It is possible
that a massive gravitation theory (following Einstein) could be developed
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around it, guaranteeing that no source can couple to the problematic Spin-0
component. This tensor is fourth-order, but such a theory would be based
upon its contracted, Spin-2 form.

(C) Recalling the gauge conditions discussed Appendix W for the Spin-2
problem, a new gauge prescription may provide possibilities. In £q (W-5),

the conservation of energy
T =0 (w-5)
»Y

forces the Spin-0 helicity of TV to be zero:

T™ =0 (v6)
‘)AV L
In other words, the Spin-0 contribution in the tensor source Tuv is de-

manded to be zero. Instead, this tensor Spin-0 component could be used
to cancel out the scalar Spin-0 component coupled to the trace T=T“u.

That is, let
T=-T" v# (x-33)

This gives a new gauge prescription

1(Tﬂf +TF vyu = Tfp (39

instead of the Hilbert-Lorentz gauge studied by Cgievetsky & Polubarinov
(1965). In their notation, the spin projection operator for Spin-0

H,fj}’ P Sl 2+ - FAAAY (o

is broken up into two Spin-0 admixtures P(O) and P(O)

scalar tensor "Sing the
Hilbert gauge (q is arbitrary)

m(h P»)‘ﬂh"' =0 (c34b)
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such that

()] @ L0 _ y
P =P +P =1 . %9

The suggestion here is to use (X-34) and suppress P(O) entirely:

PPe Pl =0 o

®__pw© y
Pi=-P" . (x340)

whereby

The price for this approach is that TV is no longer conserved:*
T7 #0 ,

(D) Lastly, one can speculate on the existence of negative mass (Wilson,
1972). In the Stuckelberg-Feynman representation of Quantum Electro-
dynamics, the positron in a negative energy s-.ate s equivalent to a
positive energy electron travelling dackward i1 :ime. This view is opased
upon the fact that changing .he sign aof charge - and time s in the equation
of motion (X-36) does not. change the electromagnetic behaviour of the

particle: dj&) T " (x.“)

mnr)‘ze“”F;;y .

However, the equation of motion (X-36) is also not changed under a mass-time
reversal. By attributing the characteristic of negative mass to anii-matter,
then, a particle of negative mass in a negative ene~ygy state behaves like a
particle of positive mass in a positive energy state, electromagnetically
speaking.

Hence, by adopting an exclusion principle based upon intrinsic rest mass,
only particles of negative rest mass can o:cupy the negative energy mass
shell in Figure (X-2), Rest mass cannot change mass shells (if ﬁ0=0).

x )
Rastall (1972) treats the case T“v,u=kR .

sV
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FIGURE Xx-2

As a consequence, a Lagrangian such as (X-26) and (X-27) can have a
Hamiltonian energy density containing negative energy states and not under-
go collapse of positive matter intc t'ose states., Instead of the Fierz-
Pauii - _.ssive action (X-26), we can adopt the foli.wing one

I =\&%(%)

where

¥-= im"(hﬁ: - h‘) - #(h;mz h) (x37)

which gives the correct 1imit as m»0, namely Einstein's thcory. Although
the right-hand term in (X-37) is negative, nu collapse of particles
occupying pasitive energy states can occur into negative energy states,
due to the exclusion principle invoked above. Problems associated with
"ghosts" (as particles associated with these negative states are called)
are eliminated.

A more rigorous treatment of the above conjecture must treat gravitational
behaviour under mass-time inversion. This invariance ndy be surmised from
the radiation reaction equations of Lind, et al (1972, Eq 11).
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APPENDIX Y: THE COSMDLOGICAL TERM g GRAVITON REST MASS

The fiela equations (3-1) of General Relativity have numerous cosmological
implications among them gravitational collapse and an expansion of the
Universe. Concerned ibout the latter, Einstein {1917) has considered a
more general form of the field equations which still satisfy the contracted
Bianchi identities and energy-momertum conservation:

R)w i *S}VR ¥ Aﬂ,v =-X r‘;,. (Fla)

or in terms of the £instein tensor Guv.

G + Agyy =Ty | (¥l

The most general spherically symmetric solution (by virtue of Birkhoff's
theorem) of (Y-la) is the exterior Schwarzschild form with A#0, namely

ds’ = -: it + ler' )y (YI)
={C
= !-ag-—%-\“zzg'x

which for m=GM/c2=0 is

ds' = -(-§We (TR widl . (FI)

Because photons foilowing geodesics in (Y-1d) do not travel at the speed of
light ¢, A#0 implies a photon rest mass. Furthermore, the orbital equation

is
a -
%—3; +U = % + 3mu -%i,us (Y-le)

and an additional precession af the nariapsic annearg ag

AQ = 2w (-k%) = Av%‘; ()

The cubic e”=0 now has two positive roots: r=2m and r=v/(3/A). For A not to
effect Mercury's orbit by more than one arc sec per century,



i ¥ e > A& fgasgesilel

Teleologically speaking, the additional "cosmological term" governed by
the “cosmological constant” i is meant to offset the expansion of the Uni-
verse, However, Hubble's (1929) interpretation of the cosmological red-
shift as a Doppler effect has been invoked as a reason for rejecting* the
term, maintaining that General Relativity predicts a cosmological e#xpansion.

Nevertheless, a meaningful basis for retaining the cosmological term may
be found in the problems associated with the theory of massive radiation
(Appendix W). In such a context, the question before us is whether or
not the cosmological constant A in {Y-1) is equivalent to or can be related
to a graviton of non-zero rest mass. Some say yes (E.G. Tonnelet, 1965;
Peak, 1972;: Kurdgelaidze, 1965; and Freund et al, 1969) while others say no
(Treder, 1968; Polievktov-Nikoladze, 1967)., At the same time, some main-
tain that A cannot alleviate the inconsistencies of the massless limit in
Appendix W (Boulware & Deser, 1972).

The wave equation for gravitational radiation on a non-flat background
containing the cosmological term foilows from the formalism of Peters (1966),
Isaacson (1968), and Zerilli (1970) employed in Chapter 3. The variation
of Eq (Y-1) for a stable** background n V=g£8) is the following:

L™ buy™ ¢ --1+') [hi- b
th, ®2) -, h,, R?- -mST (¥2)

This equat1on can now be simplified by deflning the function F (this is
the same as v, in App. B, (B-7), and (3-10) except that the backgrOund

is arbitrary)
h.=h -‘i%h %)

WS ey

*

See, however, Eddington's (MTR,1922,p.154) interesting argument for A#0. A
provides a fundamental length. "An electron could never decide how large it
ought to be unless there existed some length independent of itself for it
to compare itself with."

Stab111ty of the background " , Must be taken for granted in order that
sT can be assumed small.



161

and its divergence

1”5 h}w"' . (v-4)

Re-grouping terms and substituting (Y--3) and (Y-4) in (Y-2) ve get a
relation similar to (3-€0)

g - (6. f,*)qp R TR Y o
~h.R'+h ZA)-n,,.,, P-miT, . 49

Now we impose the Hilbert (Einstein-deDonder in Appendix B) gauge which

sets (Y-4) to zero
f,=h,7=0 (v-6)

and supprasses the vector gravitons. (fu#O can be retained for further
simplification in some cases of Nv? although problematic negative energy
states may be associated with these degrees of freedom.) Wave Eq. (Y-5)
hereby reduces to

g™ = 2R Mg~ BT, ~h R, -1, b R
,(R-zA) = -21(3'[;,, (v7)

In an empty (*‘A =0), Ricci-flat (R = 0) space with no .osmclogical constant
(R=4A=0), (Y-7) reduces to

- ‘ P - —
) U
h}‘ AR l\ =-2%)'| v s (x8)
he ¢
which is the starting point of the Regge-Wheeler-Zerilli formalism in
Chapter 3,
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However, since A#0 we know that the field eguations (Y-la) demand that

AA-R =AT (o)

whereby (Y-la} becomes

Ry = Ag, =M Tyt 9, T]. e

For an empty Universe (Tuv=0 and T=0), (Y-10) reduces to
R,Av= Aﬂ o (Vi)
R=4A . (e

Substitution of (Y-11a,b) into (Y-7), using (Y-3), shows that the con-
tributions due to A#0 are now of second order in hu . Neglecting these
terms (particularly if A is very, very small ) (Y-7) simplifies to

hysa = 2RC,,Ph, ‘P=-2u3'l;, (v

and (Y-9) to

Note that one can arrive at (Y-12) to first order in huv by using g, as

a raising and lowering operator rather than the background Ny " @ result
which leads Treder (1968) to the conclusion that A terms cancel out of the
gravitational wave equation. Furthermore, note with caution that (Y-12)
and (Y-8) are not the same wave equation.

Overtly, the cosmological terms nave vanished from (Y-12), like (Y-8)
whare A=, but the character of the Riemanr  -sor R“ B is significantly
differcnt in the two relations. For a space - constant curvature K='!/RZ
the cosmological constant A#0 is still manifest, That is, the Riemann tensor

*Tolman (1934) places a lower limﬁt A£J0'57 cm‘2;31o'2‘ (1ight yt'zalr's)'2
upon A, which gives a ratio (Ar¢/3)/(2m/r)~707'~ at Neptune's orbit.
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Rypvs ~*K (32»3,3‘ S (v3)

reverts to

Rd)w’ =+ (3“’3’ A j‘fsfv) (Y:4)

for use in (Y-12). This substitution (raising and lowering with n, ) into
(Y-12) now gives a K and a A term contribution

- 2K (hn R)(R, )- h.,‘\ ‘!\,..'lﬁg)]

+A[2 'Hl,w .¢] ()

to second order in huv. Recalling th t K is related to A by

K=A/3 |, (v-16)

(Y-12) is to first order

o 30, + 309 k= 20T, 0

h=h (l-’fv!) (v8)

then a traceless gauge h = 0 means that

h=0 = h=0 or 'i‘fZ. (¢t9)
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Whence, (Y-17) reduces (na°#2) to

h)‘\';:‘ N %A- =T, )

in a traceless-Hilbert gauge:

h, V= (Y-¢)
h?=0 (¢19)

At this point it is necessary to determine if the wave equation (Y-20) can
be put in a Klein-Gordon form

(@ - )by, =T, | G2

a

To do so we must investigate hw,cl in the curved background (Y-1d) where
]

g

W (-‘ o ..a.-.:o) - («ll m) )

and determine if the A#0 term in (Y-20) gets cancelled out. To simplify the
computations, assume da=0 and note the e -1 and e'»1, as r0, We wish to
determine if h v ® goes to a flat-space d'Alembertian in a locally flat
region of (Y- 22) we can write

P L DR (AR R

Define

h)w; "l]h h; /*VC)W (r24)
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Ohy, = B (v-4)

R S S TR 1 S

By = =) iy - () e fea4)

Cyo = LR Tl T ey e B Tl 240
A R T R e ek )

Bu“ is the term of interest. Au“ and Cuv contain terms of second order,

or terms that vanish in locally flat space (r¢€1). Furthermore, only the
first-order second derivatives in Buv remain as r+0. These terms are

* o P O\ o
By’ =1 Tha a1 M a5 ) s

which we can define as

¥
B")’-"d = P+t | (250)

E - Toohg (k] 25
o .(lre

Gf*‘"*f'['lﬂ’.f’ hey+ ety hye] (¥254)

Next we note in this gﬁ::’uz?::[:h¢",‘ h€V+10’,X" h’(] d ,\"m)

l:"="i§l i:‘f‘-ii' ‘7" :f.

where

where

O => V= - 20/3
U')“—’V"]“ w2 /3

The results in (Y-26) are not :2A because of the type of expansion in (Y-24).

(Y-2¢)
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We find that

Er 1o e -t e @ h,]  Geam)

whereby (all other terms do not contributgl -
Fo=-1 )b ]=-4Ah,, (¢27)
Pt ook -4k, | e

G;:.vz "2 1“ [’ltl,):| Ev"’ ']u,v" r')u] , (v283)

whereby (all other terms dc not coniribute)

G, =30k,  G-¥hh.  Gm-RAR, | (28
.(....

Hr® ﬂ'h%; w¥ 'h ]

whereby H o “o‘ *‘A,Eo ,
b, = $AR, Ho=¥A b, . (Y =)

Substituting (Y- 29b), (Y- 28b\ (Y-27b,c) back into (Y-Z5b), we find that
G. +H =0. That is, B = F
uv uv

* -
=-§Ah,,, «=-5Ah, (30
Substitution of (Y-30) and 2? -C *0 into (Y-24) dets;mines that
O- $A)h,, =-248T,,
(ﬂ' %A) hy ‘3‘21'[8‘?“ . (“30

The d'Alembertian in (Y-31) is not arbitrary because curvilinear (e.g. spherical)
coordinates cannot be used. Curvilinear transformations have been lost in the
expansion (Y-24). What is important is that the sign of Buv in (Y-30) and F;v

n (Y-20) is the same, with no cancellation.

The s1gn1ficant result is that there is not a constant term hidden in a decom-
position of h v,a * which removes the potentially massive term 2A/3 h in (v-20).
The cosmo]og1ca1 term A#0 does apoear to constitute a massive contr1bution to
the linearized gravitational wave equation (Y-20) in a traceless-Hilbert gauge.
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APPENDIX Z:  TRANSVERSE-TRACELESS GAUGE

Upon consideration of the nature of the spin admixtures inherent in
tensor radiation theory (Appendices W & X), we know that the linearized
massless theory of Einstein (1916, 1918) and Fierz & Pauli (1939) is a pure,
transverse Spin-2 with no longitudinal Spin-0 scalar contribution. This
scalar Spin-0 couples to the trace of Tuv, that is T=T“u, as in (W-4a).
Hence, the massless graviton huv and its energy momentum tensor Tuv must
be traceless in empty space.

Recalling the Regge-Wheeler perturbations of the Schwarzschild metric
(3-57) or (3-58), however, it is not readily apparent that huv is traceless.
It is, on the other hand, true for the plane-wave discussed in (3-33) and
(3-37). Of course, as in electrodynamics, such a transversality condition
holds only in a source-free region of space-time.

The transverse-traceless (TT) gauge, then, is that coordinate condition
(B-1) whereby the solution

h,, = h;: (Z-)

has zero trace. That is,

h=h =0 (2-2)

Furthermore, it is transverse in the sense treated for the plane-wave of
(3'24). (3-33). and (3"37)-

Note that in the transverse-traceless gauge, Yoo of (3-10) and (B-7) and
the Hilbert function (Y-3) are identical with huv, except for possible
scale changes. The Hilbert-Einstein-deDonder coordinate condition (B-8)
and the Hilbert gauge (Y-6) are likewise simplified.
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Including a current J, (F-35) is 3?4
V)=p WM=-i(J+35) . (F3)

Bateman's Equations, reminiscent of classical six-vectors and quaternions,
provide a simple way of synthesizing vector electromagnetism and vector grav-
itation. As such they are the teleological basis of a complex unified field

theory. Let “ -l
eory. Le = E.‘-iﬂ P-Penzfm

A a4 A
- F-36
A-~+§ ~= §,+ih Q.:Q"i{m R ( )

Substitution of the complex fields (F-36) into the Bateman Eqs (F-35') gives
the vector Maxwell Equations (2-11) for electromagnetism and (2-12) for

gravitation. The convention
E - p[+iaxi’] Fepferind] S
= = 1 ]
~@ fe & ] ~ ~m Pm ~ tia (F'38)
provides the complex Lorentz force relations. One is interested only in
the real parts of F in (F-37 and F-38).

Gr 2

.4

The interesting feature of this approach is the implication that charge
and mass are the real components of the same thing - a single complex
quantity. That is, the Newtonian and Coulomb forces are unified into a
single complex operation. The same is true for the Larmor-Lorentz term.

The field intensities are determined by

£= 52._. E‘1+ éz - (gz* ‘_fw) N (31*' ha.) . (F-39)

The above formulation is not derived from a Lagrangian, however.

A Quaternion Formulation Of Maxwell's Equations

Recalling the rule of multiplication of two quaternions A?a+ﬂ and B=b+B,

AB=2ab-AB+aB+bA + AxB (F-40)

then Bateman's representation of Maxwell's Eqs is simply

¥M=J, omd. #G=J _ (F-4)

where *3 b;iY
Me Esit
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A Unified, Vector Field Theory

A derivation of the Maxwell Eqs. (2-11) follows from the Euler-Lagrange Egs
for a variation of the Lagrangian density

el RE « Th, .

To get the gravitational Maxwe]] Egs. (2-12) one must change the sign of either
the first or last term in (F-42). However, reversing the sign of Fqu“ gives
a negative energy density in the radiation field; hence, one must change the
sign of the current coupling term J“Au. But in order to derive the Lorentz
force (2-15) and get a Newtonian rather than a Coulombic interaction, the
signs of both of the last two terms in (F-42) must change. This argument,
however, then results in the wrong sign for the middle, kinetic term.
Nevertheless, if we adopt a complex vector potential

where | M}*= (Ap*ia})ﬁ (F-43)
AP= (l'l; N;)A'z' Q= (n; ”;)Ai
and where G M n v (F.“)

¥=-46,6"- mﬁ?‘% + J"M+J M )
results in the e]ectroma netic Maxwell Egs (2-11)
TR 2 (F-46)
and the gravitational Maxwell Eqs (2-12)
g AT M (F-47)

as well as the corresponding Lorentz fo ce equat1ons

F = 6"™J, F =Gpd ” . (F48)

The current for Mu ” . " . *'; .
I =-3(M_M7-M7M,) (F-49)

is conserved and does not transport charge or mass, The equations are linear
as in the Maxwell theory. Interchanging M: and Mu in (F-49) reverses the
direction of the current, basic for the gravitational interaction. To make
the theory nonlinear (transporting charge and mass) one simply adds the
complex Klein-Gordon charge- mass terms (where p = + 1p ) to (F-45)

T L ‘-(pe'ffm)ﬂ W, (Fs)

then



