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BALL MOTION AND SLIDING FRICTION IN AN ARCHED 

OUTER-RACE BALL BEARING 

by Bernard J. Hamrock 

Lewis Research Center 

I SUMMARY I 

, The motion of the ball and sliding friction in an arched outer-race ball bearing under 
thrust load is analyzed. This motion of the ball and sliding friction is expressed in 
terms of the inertial effects on the ball and the frictional resistance resulting from in- 
terfacial slip a t  the contact areas. The solution of seven simultaneous equations involv- 
ing double integrals for which closed form solution cannot be found is required. Fatigue 
life evaluations via Lundberg-Palmgren were made. The similar analysis of a conven- 
tional bearing can be directly obtained from the arched bearing analysis by simply letting 
the amount of arching be zero and not considering equations related to the unloaded half 
of the outer race. The analysis is applied to a 150-millimeter-bore ball bearing. 

The results indicated that for high-speed light-load applications the arched outer - 
race ball bearing has significant improvement in fatigue life over that of a conventional 
bearing. An arching of 0.254 millimeter (0.01 in.) was found to be an optimal. For an 
arched bearing it was also found that a considerable amount of spinning occurs at  the 
outer-race contacts. 

, 
I , 

INTRODUCTION 

Aircraft gas turbine engine rotor bearings currently operate in the speed range 
from 1 . 5  to 2 . 0  million DN (bearing bore in mm times shaft speed in rpm). It is esti- 
mated that engine designs of the next decade wil l  require bearings to operate at  DN Val- 
ues of 3 million or  more (ref. 1). In this  DN range analyses (refs. 2 and 3) predict a 
prohibitive reduction in bearing fatigue life due to the high centrifugal forces developed 
between the rolling elements and the outer race.  

A n  approach to the high-speed bearing problem is an arched outer-race ball bear- 
ing. In th i s  bearing, when centrifugal forces become large, the contact load is shared 



by two outer-race contacts instead of just one outer-race contact a s  in conventional ball 
bearings. A first-order thrust load analysis of an arched outer-race ball bearing that 
considers centrifugal forces but that neglects gyroscopics, elastohydrodynamics, and 
sliding friction was performed (refs. 4 and 5). The analysis was applied to a 
150-millimeter-bore, angular-contact ball bearing. The results indicated that an arched 
bearing is highly desirable for high-speed applications. In particular, for a DN value of 
3 million (20 000 rpm) and an applied axial load of 4450 newtons (1000 lb), an arched 
bearing shows an improvement in life of 306 percent over that of a conventional bearing. 

The objective of the work described in th is  report was to conduct fatigue life analy- 
sis of the arched outer-race ball bearing while considering the complete motion of the 
ball as  well a s  the sliding friction. A comparison will be made with a conventional ball 
bearing a s  well as comparing the results of references 4 and 5 (where only centrifugal 
force was considered) with the present analysis where the complete motion of the ball 
and sliding friction is considered. The analysis will neglect elastohydrodynamics and 
thermal effects. Furthermore, the approach to be used is similar to that used by Jones 
(ref. 2) in analyzing a conventional ball bearing. 
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dm 

dm 
- 

E 

8 
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distance between raceway groove curvature centers 

left-side outer -race curvature center 

semimajor axis of projected contact ellipse 

f o  + f i  - 1 = A/D 

ball center, initial 

semiminor axis of projected contact ellipse 

initial position, inner -raceway groove curvature center 

inner -race bore 

ball diameter 

right-side outer -race curvature center 

raceway diameter 

pitch diameter, initial 

pitch diameter after dynamic effects have acted on ball 

defined by eq. (150) 

elliptical integral of second kind 
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defined by eqs. (123) to (129) 

force 

axially applied load 

elliptical integral of first kind 

r/D 

inner-race contact, initial 

amount of arching, or width of material removed from outer race 
of conventional bearing 

left outer -race contact, initial 

distance from top of arch to top of ball when bearing is in radial 
contact position 

polar moment of inertia of ball 

inner -race contact, final 

function of k defined by eq. (33) 

Jacobian defined by eq. (136) 

left outer -race contact, final 

load-deflection constant 

right outer-race contact, final 

a /b  

life, h r  

ball center, f inal  

frictional moments 

inertia moments 

final position, inner -raceway groove curvature center 

ball mass 

tip of arch 

rotational speed 

basic dynamic capacity of raceway contact 

bearing diametral clearance 

free end play 
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Q 
q 

R 

ball normal load 

x/a 
radius of deformed pressure surface in plane of major axis of 

pressure ellipse 

r raceway groove curvature radius 

- r 
- I . .n 

(R2 -X2 - (R2 - a2  + f  (5 - a2 

r' 

'd 

effective rolling radius of ball 

bearing diametral play 

SX axial distance between final position of inner and left outer -raceway 
groove curvature center 

radial distance between final position of inner -raceway groove 
cruvature center and right or left outer-raceway groove curva- 
ture center 

sZ 

sl, s2, . . . , s8 initial guesses of V, W ,  6a, a', p ' ,  rbl, and r; 

T1 

t y/b 
U', V', W' 

U 

coordinate system defined in report 

number of s t ress  cycles per revolution 

V 

W 

radial projection of distance between ball center and outer-raceway 
groove curvature center 

axial projection of distance between ball center and outer -raceway 
groove curvature center 

x, y, z 
x ,  Y ,  z 

x', y ' ,  z' 

Z number of balls 

a radical contact angle 

alp' 

coordinate system defined in report 

coordinate system defined in report 

coordinate system defined in report 

angles defining direction of uB 
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I 
P 

6* 

e 
A 

h 

P 

a max 

7~ 

cp 

J/  
51 

w 

WB 
Subscripts : 

i 

axial contact angle, initial 

curvature difference 

D cos 

distance between raceway groove curvature and final position of 
ball center 

contact deformation 

axial displacement 

defined by eq. (39) 

ratio of depth of maximum shear s t ress  to semiminor axis 

([)k=1 

defined by eq. (10) 

defined by eq. (113) 

density 

modulus of elasticity 

coefficient of friction 

Poisson's ratio 

curvature sum 

maximum normal s t ress  

maximum orthogonal subsurface shear stress 

auxiliary angle 

defined by eq . (114) 

absolute angular velocity 

orbital angular velocity of balls about bearing axis 

relative angular velocity 

angular velocity of ball about its center 

inner race 

0 outer race 
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02 

or 

R 

S 

x, y, z 
x', y' ,  2' 

outer left 

outer right 

rolling 

spinning 

coordinate system defined in report 

coordinate system defined in report 

ARCHED -BEARING GEOMETRY 

Figure 1 shows how the arched outer race is made. A conventional outer race is 
shown in figure l(a) with a race radius of ro. Also shown in figure l(a) is the portion 
of the conventional outer race that is removed in  forming an arched outer race. Fig- 
ure 103) shows the arched outer race with the portion of length g removed. Note that 
there a re  now two outer-race radius centers separated by a distance g. With modern 
technology being what it is, an arched outer race can be machined in one piece. 

Figure 2 shows the arched bearing while in a noncontacting position. Here the pitch 
diameter d,, diametral clearance Pd, diametral play sd,  and raceway diameters di 
and do are defined. The diametral play is the total amount of radial movement allowed 
in the bearing. Furthermore, the diametral clearance is the diametral play plus two 
times the distance from the bottom of the ball to the tip of the arch when the bearing i s  
in a radial contact position. 

a t  one point at the bottom of the outer raceway, the ball contacts a t  two points separated 
by an angle 2a. From figure 3 the radial contact angle 01 can be written a s  

Figure 3 shows the arched bearing in a radial contact position. Instead of contacting 

A distance that needs to be formulated is the distance from the tip of the arch to the bot- 
tom of the ball when the ball and raceway a re  in the radial contact position (as shown in 
fig. 3). This  distance is defined a s  h .  From figure 3(b) and the Pythagorian theorem 
and solving for h the following equation can be written: 

6 



Note that, a s  one might expect, a s  a - Oo, h - 0. With h known, a number of conven- 
tional bearing parameters can be formulated from figures 2 and 3 .  The outer-raceway 
diameter may be written a s  

- 
do = di + Pd + 2D ( 3) 

where 

In equation (3) di is the inner-raceway diameter after centrifugal growth has been con- 
sidered. Using the centrifugal growth equation found in Timoshenko (ref. 6) the inner- 
raceway diameter will expand according to the following formulation: 

- 
d. = d. + 
1 

From equations (3) and (4) the diametral play can be written a s  

- 
sd = do - di - 2D - 2h 

The pitch diameter dill from figure 2 can be expressed a s  

- 'd = d . + - + D  dm 1 

( 5) 

Figure 4 shows the arched bearing while in the axial position. From this figure the 
distance between the center of curvature of the inner and left outer-race can be written 
as  

A = r  + r  - D  o i  

With f = r D and f. = r .  D t h i s  equation becomes 
0 0  1 1  

A = BD 

where 
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B = f  0 1  + f . - 1  

From figure 4(b) the following equation can be written 

With 77 known the contact angle can be expressed as 

The end play of an arched bearing is 

Pe = 2A sin p - g 

(9) 
I 

CONTACT GEOMETRY 

From the experimental work of Haines and Edmonds (ref. 7), it is observed that the 
arched bearing will initially operate with two-point contact at the lower speeds and then 
with three-point contact at higher speeds when the centrifugal forces become significant. 
When centrifugal force acts on the ball, the inner- and outer-raceway contact angles a r e  
dissimilar; therefore, the lines of action between raceway groove curvature radius cen- 
t e r s  become discontinuous (see fig. 5). In figure 5 the left and right outer-raceway 
groove curvature centers d and 9 a r e  fixed in space, and the inner-raceway groove 
curvature center V moves axially relative to those fixed centers. Theinitial portion 
of the analysis (given in ref. 5) is repeated here for the convenience of the reader.  

curvature centers d or 9 and the final position of the ball center Y as:  
Figure 5 gives the distance between the fixed right and left outer-raceway groove 

8 

D 
2 

Aol  = ro - - + 6oz = (fa - o.5)D + 6oz  

Aor = (fo - 0 . 5 ) D  + 6, 



where 6, 
is the normal contact deformation of the right outer -raceway center. Similarly, 'or 

the distance between the final inner-raceway groove curvature center 4 and the final 
position of the ball center Y is 

is the normal contact deformation at the left outer-raceway center and 

A. 1 1  = (f. - 0.5)D t 6i (15) 

where bi is the normal contact deformation at  the inner-raceway center. 

groove curvature center is 
The axial distance between the final position of the inner and left outer-raceway 

% = A sin p + 6a (16) 

where 
the inner-raceway groove curvature center and the right or left outer-raceway groove 
curvature center is 

is the axial displacement. The radial distance between the final position of 

Sz = A COS (17) 

From figure 5 and equations (13) to (17) the following equations can be written: 

-1 -W por = sin 
[(f0 - og.5)D + 'or 

r 
W p o l  = - 0.5)D + 6o l  

0 

A sin p + bo - W 
p. = sin-' [ ] 
1 (fi - 0. 5)D + 6i 

Using the Pythagorean theorem and regrouping terms results in 

'or = i V 2  + (g - W)2 - D(fo - 0.5) 

aO1 = {V2 + W2 - D(fo - 0.5) (22) 

9 



6. = {(A cos p - v2 + (A sin p + 6o - W)2 - D(fi - 0.5) 
1 

The normal loads a re  related to the normal contact deformation in the following way: I 
I 

With the proper subscripting of i, o 2 ,  and or this equation could represent the normal 
loads of the inner ring Qi, the left outer ring Qo2 , or  the right outer ring Qor. 
Having defined the normal load in  terms of the load deflection constant, one needs next to 
develop the equations for the load deflection constants. 

LOAD -DEFLECTION CONSTANTS 

Figure 6 shows the position of the ball and raceway groove curvature centers and 
contacts with and without dynamic effects acting on the ball. In this figure the unbarred 
values represent initial locations, and the barred values represent final locations when 
dynamic effects have acted on the ball. From this  figure the pitch diameter when dy- 
namic effects have acted on the ball is 

r 1 

(fo - 0.5)D + ijod COS P O I  - 2(fo - 0.5)D cos p 
- 

m m  

The equations for the curvature sum and differences a r e  (from ref. 8) 

P o l = $ - ; -  2 y o  2 ) 
l + Y o 2  

10 



1 2yi  -+- 
f .  1 - y i  

1 2Yi 
fi 1 - y i  

1 r. = 
1 

4 - - + -  

I-02 = n-. 

fo +Yor 
ror = 

4 - - -  1 2Yor 

where 

D cos p Y =  - 
dm 

From reference 8 auxiliary equations (33) to (35), relating the curvature difference and 
the elliptic integrals of the first and second kind, can be written as  

k =  ip &(l tr) = J(k) 
q i  - r) 

.=/'I2 [1 - (1 - :)sin2 q] -1/2 d q  

0 

1 /2 
1 - (1 - >)sin2 p] d q  

(33) 

(34) 

(35) 
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where 

a 
b 

k = -  

l 
and where a and b a r e  the semimajor and semiminor axes, respectively, of the pro- 
jected elliptical area of contact. A one-point iteration method will be used in evaluation 
equation (33), where 

From reference 8 the load deflection constant can be written a s  

where 

The expressions for the semimajor and semiminor axes, respectively, are:  

With proper subscripting of i, o l  , and or in equations (38) to (41) three sets  of cor- 
responding equations can be obtained corresponding to the inner race and the left and 
right outer races.  

One design constraint is that the left and right outer-race contacts NOT to overlap. 

12 



The following inequality must be satisfied in order to prevent overlapping of the left and 
right outer-race contacts: 

D 
2 

a 2 cos Po 2 + a or COS Po, < -(sin po + sin por) 

If this inequality is not satisfied, then by increasing the amount of arching one can get 
the inequality to be satisfied. 

INERTIA FORCES AND MOMENTS ON BALL 

A s  was mentioned in the introduction, the analysis that follows is that of Jones 
(ref. 2) with the exception that Jones analyzed a conventional bearing and in this report 
an arched outer-race ball bearing is analyzed. 

angular contact bearing. From Jones (ref. 2) the equations for the inertia forces and 
moments on the ball can be written as 

Figure 7 shows the instantaneous position of an element of ball mass of a high speed, 

Fxv = 0 (42) 

Fy, = 0 (43) 

- 
Mx, = 0 

- 
My, = IpuBG?c sin a' 

- 
M,, = -I w G? cos a' sin p' P B c  

(45) 

(46) 

(47) 

where uB is the angular velocity of the ball about its center (0  in ref. 2), Qc is the 
angular velocity of balls about the bearing axis (3, in ref. 2), m is the mass of the ball, 
and Ip is the polar moment of the inertia of the ball. 

13 



RELATIVE MOTIONS OF ROLLING ELEMENTS 

Left Outer -Race Contact 

Figure 8 shows the contact of the ball with the left outer race. Assume that the ball 
center is fixed in the plane of the paper. Let the outer race rotate with angular velocity 
w The components of the ball rotational angular velocity, which lie in the plane of the 
paper, are wx, and wz,.  

According to Hertz, the radius of the deformed pressure surface in the plane of the 
major axis of the pressure ellipse for the left outer-race contact is 

0' 

2f0D 
Ror = Ro 2fo + 1 

- Rot =- - 

From figure 8,  due to the wo cos p, 
race has the linear velocity V i o l  or 

component, a point (Xo Yo 2) on the left outer 

or 

- 
dmwo - 

ro2Wo cos Po2 = -2 - 

where 

(49) 

Because of ox, cos p o l  and w z ,  sin poz ,  a point (Xoz, Yoz) on the ball has the linear 
velocity V i o l ,  where 

14 



1 
~ 

The velocity with which the outer race slips on the ball in the Y-direction is 

virol = T o 1  -viol 

Because of w 
on the ball of V;ro 

all points within the pressure area have a velocity of slip of race 
in the direction of the x'-z' plane and Vjro is taken as 

Y'  

~ VkO1 = -0 y' F 0 1  (53) 

I 

I 
i 
I 0 

Because of the components of velocity, which lie along the line defined by po , 
there is a spin of the race wsol with respect to  the ball. Because of component 
w sin p o l ,  the following can be written: 

w l O l  = -w sin p o l  (54) 0 

I 
i Because of the components cozt cos pol and ox? sin p o l  the following can be written: 
I 

0 2 0 1  = Uz' cos p o l  - WX? sin P o l  (55) 

Therefore, the spin of the left outer race with respect to the ball can be written a s  

Os01 = @lo1 - w201 

or 

Osol = -w sin p o l  - wz,  cos p o l  + ox? sin pol  (56) 0 

In a similar approach, making use of figure 8, one finds the angular velocity of roll 
of the ball on the left outer -race contact to be 

15 



Right Outer -Race Contact 

Figure 9 shows the contact of the ball with the right outer race. Due to w cos pOr 0 
a point (Xor, Yor) on the right outer race has the linear velocity Vior or 

dmwo - 
rorWo 'Os por Vior - -- - - 

2 

where 

Because of ox( cos por and wzl  sin Po,, a point (Xor, Yor) on the ball has the linear 
velocity Vior ,  where 

(60) 
- vio* = rOr(Ozl sin Po, - Ox? cos par) 

The velocity with which the right outer race slips on the ball in the Y-direction is 

or 

- dmWo - 
Viror - -- + ror(wX1 cos por - oz1 sin por - wo cos par) 

2 

Because of w all points within the pressure area have a velocity of slip of race 
Y" 

on the ball of Vior  in the XI-z' plane: 

Because of the components of velocity, which lie along the line defined by por, 
there is a spin of the right outer race,  uSor with respect to the ball. Because of the 
component wo sin Po,, the following can be written: 

wlor = w 0 sin por (6 3) 

16 



Because of the components ox, sin por and oz, cos por the following can be written: 

w 20r = ox? sin por + wzt cos por ( 6 4  

Therefore,the spin of the right outer race with respect to the ball can be written as 

%or = Wlor - %or 

asor - oo sin Po, - Ox? sin por - Uz? cos por (6 5) - 

In a similar approach, while making use of figure 9, one finds the angular velocity of 
roll of the ball on the right outer -race contact to  be 

%or = oxy cos por - wz, sin por - wo cos por (66) 

Inner -Race Contact 

Figure 10 shows the contact of the ball with the inner race.  The radius of curvature 
of the deformed inner-race pressure surface can be written as 

2fiD 
Ri = - 

2fi + 1 

Because of ai cos pi, a point (Xi, Yi) on the inner race has  the linear velocity V i i  or 

d w .  - m i  
2 

(68) Vii  - -- + F.U. cos p. 
1 1  1 

where 

Because of wx, cos pi and wzf sin pi, a point (Xi, Yi) on the ball has  the linear velocity 
Vi i  or  



The velocity with which the inner race slips on the ball in the Y-direction is 

Vki = Vii  - Vii  

or 

Because of w all points within the pressure area have a velocity of slip of the 
Y" 

race on the ball of Vki in the direction of the x'-z' plane 

Because of the components of velocity, which lie along the line defined by pi, there 
is a spin of the inner race wsi with respect to the ball. Due to component wi sin pi 
the following can be written: 

wli = wi sin pi 

Because of the components wx, sin pi and wz,  cos pi, 

w2i = -w cos p. + ox, sin pi 
Z 1 

Therefore, the spin of the inner race with respect to the ball can be written a s  

(73) 

(74) 

or 

wsi = oi sin pi + wz,  cos pi - wx, sin pi (75) 

In a similar approach, making use of figure 10, one finds the angular velocity of roll 
of the ball on the inner-race contact to be 

wRi = -ox, cos pi - wz,  sin pi + wi cos pi 

From figure 7 the following equations can be written: 

18 



Substituting these equations into equations (521, (53), (56), (57), (61), (62), (65), (66), 
(71), (72), (75), and (76) gives 

Vkoz = -(?)Fez o 0 cos a' sin p' 

usoz = wo [$ cos a' cos p' sin poz - - wB sin a' cos poz - sin 

@O 

1 OB 

O O  

+ -(COS a' COS p' COS po + sin CY' sin p, z) 

CY' COS p' COS pOr - sin a' sin par) - cos p,, 1 
- 

- dmWo Vkor - -- 
2 

- "B - w cos cy' sin p' VJror - -- ,or o 
wO 

(cos CY' cos p' sin p,, + sin a' cos pol,) 1 
r 1 

J w Ror = wo[-cos Po, + - WB (cos cy' cos p' cos p,, - sin cy' sin Po,) 

wO 

(87) 
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- 
*B 
0. 
1 2 

p. - - (cos CY' cos p' cos pi + sin CY' sin 

WB - = -- r.0. cos CY' sin p' 'ki 1 1  
1 

(sin CY' cos pi - cos CY' cos p' sin 

(91) 1 = w. cos p. - -(cos OB CY' cos p' cos pi + sin CY' sin p$ WRi I[ 1 w. 
1 

From figures 8 to 10 there is some radius denoted a s  rbz,  rbr, and r;, respec- 
tively, called the effective rolling radius at which pure rolling occurs. These radii a r e  
not necessarily restricted to points that lie on the deformed pressure surfaces i f  gross  
slip between the ball and races  occurs. A t  these effective rolling radii rbz ,  r&, 
and ri on the ball, the translational velocities of ball and race is the same. There- 
fore, from figures 8 to 10 the following equations can be written: 

1 -  \ 

(92) 

(9 3) 

Making use of equations (77) to (79) and rearranging terms result in 

20 



wo COS a' cos p' cos pol + sin a' sin pol 

wo cos a' cos p' cos por - sin a' sin pOr 

dm - - + cos pi 
2 r j  

- -- 
w. cos CY' cos p' cos pi + sin a' sin pi 1 

From equation (96), solving for rbr, the following equation can be written: 

(9 5) 

(9 7) 

2 

OB - (cos (Y' cos p' cos p, - sin a' sin par) - cos por 
wO 

- 
rbr - 

Making use of equations (95) to (97), equations (80), (84), and (88) can be rewritten as 

- 
dmwi(Fi - ri) 

2rj 
Vki - - 

If, instead of the ball center being fixed in space, the outer race is fixed, then the 
ball center must orbit about the center of the fixed coordinate system with an angular 
speed of 0, = -wo. Therefore, the inner race must rotate with an absolute angular 

2 1  



speed of Oi = wi + aC. Using these relations the relative angular speeds wo and w. 1 
can be described in  terms of the absolute angular speed of the inner raceway. 
equations (95) and (97) the following can be written: 

From 

Therefore, one can write the relative angular velocity in terms of the inner-race abso- 
lute angular speed by the following equations: 

wB ai - 
wO w. = 

1 
OB *B - - -  
wO *i 

*B ai - 
w. 1 - 

O O  - 
wB OB 

w O  Oi  

- - -  

*B wB ai - - 
wo 

wO 1 

OB = 

wB wB - - -  
w. 

Sliding Friction at  Pressure Surface 

Figure 11 is an enlarged view of the pressure area a t  any of the race contacts a s  
viewed from outside of the ball. 

22 



I Because of the spin velocity ws and the linear slip velocities V+ and Vir, an 
element of area dA at  coordinates (X,Y) has resultant velocity of slip V of the race on 
the ball acting a t  the angle I) with respect to the X-direction. 

From Jones (ref. 2) the equations for the friction forces and moments can be directly 
written as 

where 

23 



X q =- 
a 

Y t = -  
b 

e = tan-'(&) 

3 / =  

With proper subscripting of i, 0 2 ,  and or in equations (106) to (114) three sets of 
corresponding equations can be obtained for the inner -race, the left, and the right outer - 
race friction forces and moments. 

The coefficient of friction p will be assumed to be 0.065 (ref. 2) for the calcula- 
tions. 

EQUILIBRIUM CONDITIONS 

Figure 12 shows the moments acting on the ball. From th is  figure the following 
equations can be written: 

-MRo sin p, + MSo cos po + MZf + MRi sin pi - MSi cos p. 1 + MRor sin por 

+ MSor COS Po, = 0 

-MRo cos p, - MSo sin po + MRi cos p. + MSi sin pi - MRor COS Po, 1 

+ MSor s in  por = 0 
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Figure 13 shows the forces acting on the ball. From th is  figure the following equa- 
tions can be wbitten: 

+ Fxi COS p. 1 = 0 (119) 

Ball beari 

FYol + Fyor + Fyi = 0 (120) . 
gs subject to a pure thrust load have the following relation: 

(1 21) Fa Qi sin pi - FXi cos pi - - = 0 
Z 

Note that, because of equation (121), equation (119) can be rewritten a s  

(122) Fa Qoz sin poz - FXoz cos poz - Qor sin Po, - Fxor cos por - - = 0 z 

Therefore, the seven equations that a r e  necessary for the solution of the seven un- 
knowns V,  W, 6,, a', p ' ,  rbz, and ri a r e  the following: 

- 
-MRoz sin poz + MSoz cos poz + M,, + MRi sin pi - M . COS Pi + MRor sin Po, s1 

+ MSor cos por = el = 0 (123) 

+ MSor sin por = e2 = o (124) 

(125) 
- 
Mf - Mytoz - My,or - Myti = e3 = 0 

25 



-Ko2 63/2 o l  cos Po2 F ~ o ~  sin Po2 For 63/2 or cos por + F~~~ sin por + F ~ ,  

+ K. 6?/2 cos p. 1 + F~~ sin p. 1 = e4 = o 
1 1  

NUMERICAL ITERATION OF SEVEN SIMULTANEOUS NONLINEAR EQUATIONS 

The approach to be used is to first obtain good estimates for V, W, and 6,. This 
is accomplished by using the arched bearing computer program used to obtain results in 
references 4 and 5 ,  where only the centrifugal force acting on the balls is considered. 
In equations (126), (12’71, and (129) th i s  amounts to neglecting the friction forces. By 
doing th is  we should have a good approximation of the true value of V, W ,  and 6a, 
since the friction forces a re  small in comparison with the applied forces acting on the 
contacts. 

Having good initial estimates for V ,  W ,  and 6a, we must next determine good ini- 
tial estimates for rbl  and ri. These radii are the radii where there is zero transla- 
tional slip of the race on the ball. From figures 8 and 10 and equations 
one obtains an understanding of what is meant by the barred and primed 
(50) and (69) can be written in general form a s  

(50) and (691, 
radii. Equations 

The initial values of r’ a r e  
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This will assure  us that there is some radius such that zero translational slip of the race I 

I on the ball occurs. 
Having good initial estimates for V, W ,  6a, r '  and r; and letting cy' = p' = 0, 

we can now get to the problem of solving equations (123) to (129). The basic approach 
will be to express these equations in Taylor's theorem in seven dimensions. Considering 
only the first two terms of the expansion and rearranging te rms  in matrix notation, one 
finds that the equations now are seven simultaneous linear equations. By introducing a 
two-step algorithm, one is then able to describe the iterative solutions of the seven 
simultaneous linear equations. 

02 ' I 
I 

THEOREM 

Given the real  functions e.(V,W, ba, cy', p',rl,2 ,ri) such that 
1 

j = l , .  . . 
ae./aV, . . . , ae./ar;, j = 1, . . . , 7 exist and are continuous over defined intervals 
of the seven parameters, then the seventh dimension Taylor expansion, while neglecting 

J J 

third and higher terms, can be written as  

7 (132) j = 1 ,  2 , .  . . , i= l , .  . . 

where si initial estimates of V,  W,  Ga,  cy', p ' ,  rb2,  and r; and Si = V, W, ba, 

a', P', rtol, r; for  i = 1 , 2 ,  . . . , 7, respectively. 
, 

Expanding equation (132) gives 
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Now in equation (133) we wish to find (S1, Sa, . . . , S7) such that the left side becomes 
zeros. Therefore, we a re  led to 

If the approximation that only the first two te rms  in the Taylor’s expansion is valid, then 
our system of equations goes from being nonlinear to linear, and, using matrix notation, 
the linea 

where 

system can be written a s  

s7’l s. =s. 
+7(S1, s2, . . . , 

1 1  

ael ael - ael 
9 - .  . . . . - 

asl as2 

ae2 ae2 - ae2 
9 -  , - * - ,  - 

asl as2 
. . .  

. . . .  
. . .  

ae7 ae7 - ae7 

- asl as2 as, 
- 9 - ,  . . . , 

- 
s1 - s1 

s2 - s2 

- s7 :I - s7 

(135) 
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The elements of the Jacobian were derived analytically, and, because of the number of 

s. =s. 
1 1  

9 

equations required to derive them, they will not be shown. If J(S1, Sa, . . . 

is nonsingular, then 

- -1 
9 -s 

- J (S1, Sa, . . . 
i- i 

This equation can be rewritten a s  

det J(S1, S2, . . . , S ) I si'si 

(137) 

Therefore, from the iterative method described, one is able to obtain values of V, 
W,  $, CY', p ' ,  rbz, and ri, which satisfy equations (123) to (129). With V,  W, lja, 
CY', p ' ,  rbz , and ri known and given equations (18) to (20) and (24), the contact loads 

Qi, Qo and Qor and contact angles Bi, p o l ,  and por can be evaluated. 

DERIVATION OF FATIGUE LIFE 

From the weakest link theory, on which the Weibull equation is based, we get the 
relation between life of an assembly (the bearing) and its components (the inner and outer 
rings) : 
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9 /lo 
10/9 

139) 

In th is  equation life L is expressed in hours. A material improvement factor of five 
(to be consistent with other investigations, e .  g. , ref. 8) has been assumed; however, no 
adjustment factors for reliability or operating conditions have been added. For point 
contact 

L = ($ 
Therefore, equation (139) becomes 

The contact loads are  defined by equation (24). From Lundberg and Palmgren (ref. 9) 
the following can be written: 

2 . 1  

With proper subscripting of i, 02, and or this  equation can represent the dynamic load 
capacities of the inner ring Pi, the left outer ring Po2 , and the right outer ring Por. 

0 . 5 4  a r e  2 . 3  and 0.8 percent, respectively. The variation of the product of these func- 
tions over the curvature range from 0 . 5 2  to 0 . 5 4  is less  than 2 percent. Therefore, for 
the range just described, the products of the T and ( functions can be considered to 
be constants in equation (142), or 

Variations of the T and < functions with curvature over the range from 0 . 5 2  to 
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The number of stress cycles per revolution for each contact is, to a good approximation, 

u. 1 = z k  3) 

u o = z -  % 
‘i 

(144) 

(145) 

Substituting equations (143) to (145) into equation (142), one can write the dynamic load 
capacity at the inner ring and left and right outer rings as 

Therefore, from equations (24), (141), (146), and (147) the life (in hours) of the arched 
bearing can be obtained. The equations for a conventional bearing can be directly ob- 
tained from the arched-bearing analysis by simply letting the amount of arching be zero 
(g = 0) and by not considering equations related to the right outer race. 

DISCUSSION OF RESULTS 

A conventional 150-millimeter-ball bearing operating under pure thrust load was 
used for the computer evaluation. Bearing parameter and results such as  life, contact 
loads, contact angles, spin-roll ratio, cage to shaft speed ratio, and maximum compres- 
sive s t ress  a r e  shown in tables I and 11. The initial diametral play Sd (fig. 2) was set  
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fixed while varying the amount of arching; that is, for a given applied axial load and a 
given inner ring speed, the amount of diametral play sd  (fig. 2) was held fixed while con- 
sidering different amounts of arching. In an arched bearing the free contact angle p 
becomes larger than that of the conventional bearing even though the diametral play is 
held constant. The greater the amount of arching (the larger the g) , the higher the free 
contact angle. 

The following observations can be made from the results in tables I and 11: 
(1) For high speed-light loads there is substantial increase in life for an arched 

(2) A n  optimal amount of arching, when considering fatigue life is 0.254 millimeter 
bearing over that of a conventional bearing. 

(0.010 in.) for an axial applied load of 4450 newtons (1000 lb) and 0.381 millimeter 
(0.015 in.) for axial applied load of 22 200 newtons (5000 lb). However, these a r e  not 
strong optimals. 

bearing. 

outer right race.  

significantly. Therefore, for an axial applied load of 22 200 newtons (5000 lb), one 
might change the optimal amount of arching to 0.254 millimeter (0.010 in.) .  

siderably larger than that of the outer-race contact. However, for an arched bearing the 
spin-roll ratios a re  of the same order for the various contacts. 

ratio is of opposite sign from that of the left outer race. 

(3) In an arched bearing there is considerably more spinning than in a conventional 

(4) A t  shaft speed equal to 12 000 rpm the arched bearing has made contact with the 

(5) A s  the amount of arching is increased. the outer-race spin-roll ratio increases 

(6) For a conventional bearing the spin-roll ratio of the inner-race contact is con- 

(7) Because of the coordinate orientation, the right outer -race contact spin-roll 

(8) The advantage of using an arched bearing is less  a t  high loads. 
In trying to choose the best amount of arching to use, one is confronted with the 

following constraints: 
(a) The amount of arching must be large enough so  that overlapping of the left 

and right outer-race contacts does not occur; that is, inequality (A) 
must be satisfied. For example, for the bearing considered 0 < g - < 0.127 
millimeter (0.005 in.) did not satisfy inequality (A). 

(b) With arching greater than 0.381 millimeter (0.015 in.) there can be an order 
of magnitude more spinning occurring at  the outer-race contacts. 

Therefore, in lieu of the above, an 7 mount of arching equal to 0.254 millimeter 
(0.01 in.) is the best when considering fatigue life and the amount of spinning. 

arched bearing and a conventional bearing. The axial applied load is fixed a t  4450 
newtons (1000 lb). It is seen how the arched outer race shares the load between the left 

Figure 14 shows the effect of speed on outer-race normal ball load Qo, for an 
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and right outer-race contact. A s  the speed is increased and more centrifugal force acts 
on the ball, it is seen in th i s  figure that the value of the normal ball load for a conven- 
tional bearing is considerably higher than the left or right outer-race normal ball load 
of an arch bearing. The result of reducing the outer-race normal load from one large 
load to two smaller loads is life improvement for the arch bearing. 

Figure 15 shows the fatigue life percent of improvement for an arched bearing over 
that of a conventional bearing for axial applied loads 3f 4450 and 22 200 newtons (1000 
and 5000 lb). A comparison is also shown between the present results and those of ref - 
erences 4 and 5 where only the centrifugal force is considered. The ordinate E of fig- 
we 15 is defined by 

- _ _  

x 100 Ig=O. 254 mm - Ig=O E =  

Figure 15 shows that the fatigue life improvement over the conventional bearing is sig- 
nificant for the high-speed light-load condition. This increase results because the load 
is shared by the two outer-race contacts. Furthermore, this figure shows that there is 
little difference between the fatigue life analysis of this report and that of references 4 
and 5. 

Figure 16 shows the effect of speed on the absolute value of spin-roll ratio for an 
arch bearing and a conventional bearing. The applied load is held fixed at  4450 newtons 
(1000 lb). This figure shows that for an arched bearing the outer-race spin-roll ratio 
of the arched bearing is an order of magnitude larger than that of a conventional bearing. 
Therefore, one might speculate that there is more heat generated in an arch bearing. 

SUMMARY OF RESULTS 

The results indicate that for high-speed light-load applications the arched outer - 
race ball bearing has significant improvement in fatigue life over that of a conventional 
bearing. An arching of 0.254 millimeter (0.01 in.) was found to be optimal. For an 
arched bearing a considerable amount of spinning occurs a t  the outer-race contacts. 

Lewis Research Center , 
National Aeronautics and Space Administration, 

Cleveland, Ohio, July 23, 1973, 
501-24. 
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(a) Conventional. (b) Arched. 

Figure 1. - Bearing outer race geometries. 

E 
h--+a--J 

(a) Radial contact position. 

Bottom 
of ball - 

(b) Details of contact. 

Figure 3. -Arched ball bearing radially loaded. 

Figure 2. - Arched ball bearing in noncontacting 
position. 

Left outer-raceway 
curvature center 

'! - 
(b) Axial contact position of top ball. (a) Details of contact 

Figure 4. -Arched ball bearing axially loaded. 
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Figure 9. - Contact of ball with right outer race. 
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nner race 

Figure 10. - Contact of ball with inner race. 
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Figure 11. - Enlarged view of pressure area at any of the contacts. 

\ 
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Figure 12. - Moments acting on ball. 

F i  gure 13. - Forces acting on b all. 
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Figure 16. - Effect of speed on absolute value of spin-roll ratio for 
arch bearing and a conventional bearing for axially applied load of 
4450 newtons (loo0 Ib). 
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