NASA TECHNICAL NOTE NASA TN D-7448

NASA TN D-7448

BALL MOTION AND SLIDING
FRICTION IN AN ARCHED
OUTER-RACE BALL BEARING

by Bernard J. Hamrock

Lewis Research Center

Cleveland, Obio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION s WASHINGTON, D. C. s JANUARY 1974




. Report No.

NASA TN D-7448

2. Government Accession No. 3

. Recipient’s Catalog No.

. Title and Subtitle

5. Report Date
BALL MOTION AND SLIDING FRICTION IN AN January 1974
ARCHED OUTER-RACE BALL BEARING 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Bernard J. Hamrock E-7607
10. Work Unit No.
9. Performing Organization Name and Address 501-24

Lewis Research Center
National Aeronautics and Space Administration
Cleveland, Ohio 44135

. Contract or Grant No.

13. Type of Report and Period Covered
12, Sponsoring Agency Name and Address Technical Note
National Aeronautics and Space Administration -
14. Sponsoring Agency Code
Washington, D. C. 20546
15. Supplementary Notes
16. Abstract

The motion of the ball and sliding friction in an arched outer-race ball bearing under thrust

load is analyzed. Fatigue life evaluations were

made.

The analysis is applied to a

150-millimeter-bore ball bearing. The results indicated that for high-speed light-load
applications the arched bearing has significant improvement in fatigue life over that of a
conventional hearing. An arching of 0.254 mm (0.01 in.) was found to be optimal. Also,
for an arched bearing a considerable amount of spinning occurs at the outer-race contacts.

17. Key Words (Suggested by Author(s))

Ball bearing
Dynamic analysis
Life evaluation

Arched outer race
Lubrication

18. Distribution Statement

Unclassified - unlimited

. 15
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price”
Unclassified Unclassified 45 $3.00

* For sale by the National Technical Information Service, Springfield, Virginia 22151




BALL MOTION AND SLIDING FRICTION IN AN ARCHED
OUTER-RACE BALL BEARING
by Bernard J. Hamrock

Lewis Research Center

SUMMARY

The motion of the ball and sliding friction in an arched outer-race ball bearing under
thrust load is analyzed. This motion of the ball and sliding friction is expressed in
terms of the inertial effects on the ball and the frictional resistance resulting from in-
terfacial slip at the contact areas. The solution of seven simultaneous equations involv-
ing double integrals for which closed form solution cannot be found is required. Fatigue
life evaluations via Lundberg-Palmgren were made. The similar analysis of a conven-
tional bearing can be directly obtained from the arched bearing analysis by simply letting
the amount of arching be zero and not considering equations related to the unloaded half
of the outer race. The analysis is applied to a 150-millimeter-bore ball bearing.

The results indicated that for high-speed light-load applications the arched outer-
race ball bearing has significant improvement in fatigue life over that of a conventional
bearing. An arching of 0.254 millimeter (0.01 in.) was found to be an optimal. For an
arched bearing it was also found that a considerable amount of spinning occurs at the
outer-race contacts. '

INTRODUCTION

Aircraft gas turbine engine rotor bearings currently operate in the speed range
from 1.5 to 2.0 million DN (bearing bore in mm times shaft speed in rpm). It is esti-
mated that engine designs of the next decade will require bearings to operate at DN val-
ues of 3 million or more (ref. 1). In this DN range analyses (refs. 2 and 3) predict a
prohibitive reduction in bearing fatigue life due to the high centrifugal forces developed
between the rolling elements and the outer race.

An approach to the high-speed bearing problem is an arched outer -race ball bear-
ing. In this bearing, when centrifugal forces become large; the contact load is shared




by two outer-race contacts instead of just one outer-race contact as in conventional ball
bearings. A first-order thrust load analysis of an arched outer-race ball bearing that
considers centrifugal forces but that neglects gyroscopics, elastohydrodynamics, and
sliding friction was performed (refs. 4 and 5). The analysis was applied to a
150-millimeter-bore, angular-contact ball bearing. The results indicated that an arched
bearing is highly desirable for high-speed applications. In particular, for a DN value of
3 million (20 000 rpm) and an applied axial load of 4450 newtons (1000 1b), an arched
bearing shows an improvement in life of 306 percent over that of a conventional bearing.

The objective of the work described in this report was to conduct fatigue life analy-
sis of the arched outer-race ball bearing while considering the complete motion of the
ball as well as the sliding friction. A comparison will be made with a conventional ball
bearing as well as comparing the results of references 4 and 5 (where only centrifugal
force was considered) with the present analysis where the complete motion of the ball
and sliding friction is considered. The analysis will neglect elastohydrodynamics and
thermal effects. Furthermore, the approach to be used is similar to that used by Jones
(ref. 2) in analyzing a conventional ball bearing.

SYMBOLS
A distance between raceway groove curvature centers
o left-side outer-race curvature center
a semimajor axis of projected contact ellipse
B fo + 1, - 1=A/D
% ball center, initial
b semiminor axis of projected contact ellipse
€ initial position, inner-raceway groove curvature center
c inner-race bore
D ball diameter
2 right-side outer-race curvature center
d raceway diameter
dm pitch diameter, initial
d m pitch diameter after dynamic effects have acted on ball
E defined by eq. (150)
¥ 4 elliptical integral of second kind




defined by eqs. (123) to (129)

o

10 €9 - - s

force

G
o)

axially applied load

§

elliptical integral of first kind
r/D

9 inner-race contact, initial

=

g amount of arching, or width of material removed from outer race
of conventional bearing

r 4 left outer-race contact, initial

=

distance from top of arch to top of ball when bearing is in radial
contact position

—
o

polar moment of inertia of ball
inner-race contact, final
function of k defined by eq. (33)
Jacobian defined by eq. (136)
left outer-race contact, final
load-deflection constant

right outer-race contact, final
a/b

life, hr

ball center, final

frictional moments

inertia moments

final position, inner-raceway groove curvature center

ball mass

§B&g'g&rng\hl&\

tip of arch

=]

rotational speed

)

basic dynamic capacity of raceway contact

d
o

bearing diametral clearance

)

free end play

(0]




el

=)

ball normal load
X/a

radius of deformed pressure surface in plane of major axis of
pressure ellipse

raceway groove curvature radius

‘/Rz_x2_‘/;2 -a2+

effective rolling radius of ball

bearing diametral play

axial distance between final position of inner and left outer-raceway
groove curvature center

radial distance between final position of inner-raceway groove
cruvature center and right or left outer-raceway groove curva-
ture center

initial guesses of V, W, Ga, a', B Top and r!
To/ “max

(To/ oma}i)k:l

Y /b

coordinate system defined in report

number of stress cycles per revolution

radial projection of distance between ball center and outer-raceway
groove curvature center

_axial projection of distance between ball center and outer-raceway

groove curvature center
coordinate system defined in report
coordinate system defined in report
coordinate system defined in report
number of balls
radical contact angle

angles defining direction of wg



P X H ™

Subsecripts:
i

o)

axial contact angle, initial
curvature difference
D cos B/ dm

distance between raceway groove curvature and final position of
ball center

contact deformation

axial displacement

defined by eq. (39)

ratio of depth of maximum shear stress to semiminor axis
(S

defined by eq. (10)
defined by eq. (113)
density

modulus of elasticity
coefficient of friction
Poisson's ratio
curvature sum
maximum normal stress

maximum orthogonal subsurface shear stress

X2+Y2

auxiliary angle

defined by eq. (114)

absolute angular velocity

orbital angular velocity of balls about bearing axis
relative angular velocity

angular velocity of ball about its center

inner race

outer race



ol outer left

or outer right

R rolling

S spinning

X, Y 2 coordinate system defined in report
x,vy', 2 coordinate system defined in report

ARCHED-BEARING GEOMETRY

Figure 1 shows how the arched outer race is made. A conventional outer race is
shown in figure 1(a) with a race radius of r o Also shown in figure 1(a) is the portion
of the conventional outer race that is removed in forming an arched outer race. Fig-
ure 1(b) shows the arched outer race with the portion of length g removed. Note that
there are now two outer-race radius centers separated by a distance g. With modern
technology being what it is, an arched outer race can be machined in one piece.

Figure 2 shows the arched bearing while in a noncontacting position. Here the pitch
diameter dm, diametral clearance Pd’ diametral play Sd, and raceway diameters di
and d o are defined. The diametral play is the total amount of radial movement allowed
in the bearing. Furthermore, the diametral clearance is the diametral play plus two
times the distance from the bottom of the ball to the tip of the arch when the bearing is
in a radial contact position.

Figure 3 shows the arched bearing in a radial contact position. Instead of contacting
at one point at the bottom of the outer raceway, the ball contacts at two points separated
by an angle 2¢. From figure 3 the radial contact angle a can be written as

o = sin- <_g_> (1)
2ro -D

A distance that needs to be formulated is the distance from the tip of the arch to the bot-
tom of the ball when the ball and raceway are in the radial contact position (as shown in
fig. 3). This distance is defined as h. From figure 3(b) and the Pythagorian theorem
and solving for h the following equation can be written:

1/2

h = -123 - <r0 - 22>cos a + %[D(4ro -D) + (Zro - D)z cos? a] (2)



Note that, as one might expect, as o - 00, h—-0. With h known, a number of conven-
tional bearing parameters can be formulated from figures 2 and 3. The outer-raceway
diameter may be written as

dO:di+Pd+2D (3)
where
Py=84+2h (4)
In equation (3) Hi is the inner-raceway diameter after centrifugal growth has been con-

sidered. Using the centrifugal growth equation found in Timoshenko (ref. 6) the inner-
raceway diameter will expand according to the following formulation:

- Ad. n.T7w 2 d. 2 2
d. =d. + LSS ER N I J S (1-5.)+<9>(3+g.) (5)
L1 544 A\ 30 2 1 2 1

From equations (3) and (4) the diametral play can be written as

Sdzdo-di-ZD-zh (6)
The pitch diameter dm from figure 2 can be expressed as

- 54
d =d.+—=—+D (7
m 7,

Figure 4 shows the arched bearing while in the axial position. From this figure the
distance between the center of curvature of the inner and left outer-race can be written
as

A=r +r.-D
0 i

With fo =T D and f.1 =T, D this equation becomes
A =BD (8)

where




B=f0+fi-1 (9)

From figure 4(b) the following equation can be written

(10)
P
A - _d._ n
B = cosTH—2 (11)
A
The end play of an arched bearing is
Pe=2AsinB-g (12)

CONTACT GEOMETRY

From the experimental work of Haines and Edmonds (ref. 7), it is observed that the
arched bearing will initially operate with two-point contact at the lower speeds and then
with three-point contact at higher speeds when the centrifugal forces become significant.
When centrifugal force acts on the ball, the inner- and outer-raceway contact angles are
dissimilar; therefore, the lines of action between raceway groove curvature radius cen-
ters become discontinuous (see fig. 5). In figure 5 the left and right outer-raceway
groove curvature centers & and 2 are fixed in space, and the inner-raceway groove
curvature center ¢ moves axially relative to those fixed centers. Theinitial portion
of the analysis (given in ref. 5) is repeated here for the convenience of the reader.

Figure 5 gives the distance between the fixed right and left outer-raceway groove
curvature centers & or 2 and the final position of the ball center ¥ as:

A D

Olzro--2—+éol=(f0-0-5)D+601 (13)

A=, -0.5D+5 (14)



where 6 ol is the normal contact deformation at the left outer -raceway center and
) or is the normal contact deformation of the right outer-raceway center. Similarly,
the distance between the final inner-raceway groove curvature center .4 and the final

position of the ball center & is
Ay =(t -0.5D+ 5 (15)
where 6i is the normal contact deformation at the innér-raceway center.

The axial distance between the final position of the inner and left outer-raceway
groove curvature center is

SX=A sin3+6a (16)
where ﬁa is the axial displacement. The radial distance between the final position of

the inner-raceway groove curvature center and the right or left outer-raceway groove
curvature center is

Sy = A cos B (17)

From figure 5 and equations (13) to (17) the following equations can be written:

Bor = sin™! g - W (18)
| (f0 -0.5D + Sor
Byl = sin™} (19)
_(fo -0.5D + 801
FA sing+6_ ~-W
B; = sin~} 0 (20)
_(fi -0.5D + Gi
Using the Pythagorean theorem and regrouping terms results in
5 = y/v2+(g-W)2-D(f - 0.5) (21)
or )

8y, = yv2.w2. D(f,, - 0.5) (22)




5. = ‘/(:COSB-V)2+(A sin 8 + 60"W)2'D(f1'0~5) (23)

1

The normal loads are related to the normal contact deformation in the following way:
Q=xs? (24)

With the proper subscripting of i, ol, and or this equation could represent the normal
loads of the inner ring Qi’ the left outer ring Qol , or the right outer ring Qor'

Having defined the normal load in terms of the load deflection constant, one needs next to
develop the equations for the load deflection constants.

LOAD-DEFLECTION CONSTANTS

Figure 6 shows the position of the ball and raceway groove curvature centers and
contacts with and without dynamic effects acting on the ball. In this figure the unbarred
values represent initial locations, and the barred values represent final locations when
dynamic effects have acted on the ball. From this figure the pitch diameter when dy-
namic effects have acted on the ball is

Em = dm + 2[(f0 -0.5D + Gol] cos B,; - 2(f0 -0.5D cos 8 (25)

The equations for the curvature sum and differences are (from ref.8)

2v.
p=tfe-1, 1 (26)
D f. 1 -y
1
2y
1 1 ol
Por =5\t TS ) (27
o Yol
2y
por=11; 4-1. = (28)
f0 1+'yor

10




r,=—1 i (29)

r -_2 (30)

where

y = D cos é (32)

dm

From reference 8 auxiliary equations (33) to (35), relating the curvature difference and
the elliptic integrals of the first and second kind, can be written as

K - 1/29* L e(+D) _ 0 (33)
e(1-T)
/2 -1/2
F = 1- <1 - l)sin2 Q do (34)
12
0
2
"/ 1/2
& - 1- (1 - -1->sin2 © dg (35)
2
0

11




where

i

(36)

o

i
and where a and b are the semimajor and semiminor axes, respectively, of the pro-
jected elliptical area of contact. A one-point iteration method will be used in evaluation
equation (33), where

ko,q=J) (37)

n

From reference 8 the load deflection constant can be written as

(38)
1-4F 1.2
3 + 2
)\B A
where
. 1/3
50 =2F[_T > (39)
™ \ex? &
The expressions for the semimajor and semiminor axes, respectively, are:
1/3
k2 £Q ( - “3123) (1-¢2)
a = + (40)
mp AB A
p=2 (41)
k

With proper subscripting of i, oZ, and or in equations (38) to (41) three sets of cor-
responding equations can be obtained corresponding to the inner race and the left and
right outer races.

One design constraint is that the left and right outer-race contacts NOT to overlap.

12



The following inequality must be satisfied in order to prevent overlapping of the left and
right outer-race contacts:

D,. .
2,7 COSB ;+a,  cosB . <2—(sm By + sin Bor) (A)

If this inequality is not satisfied, then by increasing the amount of arching one can get
the inequality to be satisfied.

INERTIA FORCES AND MOMENTS ON BALL

As was mentioned in the introduction, the analysis that follows is that of Jones
(ref. 2) with the exception that Jones analyzed a conventional bearing and in this report
an arched outer-race ball bearing is analyzed.

Figure 7 shows the instantaneous position of an element of ball mass of a high speed,
angular contact bearing. From Jones (ref. 2) the equations for the inertia forces and
moments on the ball can be written as

F,=0 (42)

F ,=
y' =0 (43)
F_,= m(—ﬂ 92 (44

VAR 9 c

M,, =0 (45)
_I\Ey, = Ipwp®,, sin o' (46)
M,, = -I,wgQ  cos o' sin g (47)

where wg is the angular velocity of the ball abqut its center (6 in ref. 2), Qc is the
angular velocity of balls about the bearing axis (¢ in ref. 2), m is the mass of the ball,
and IP is the polar moment of the inertia of the ball.

13




RELATIVE MOTIONS OF ROLLING ELEMENTS
Left Outer -Race Contact

Figure 8 shows the contact of the ball with the left outer race. Assume that the ball
center is fixed in the plane of the paper. Let the outer race rotate with angular velocity
W, The components of the ball rotational angular velocity, which lie in the plane of the
paper, are w., and wz,.

According to Hertz, the radius of the deformed pressure surface in the plane of the

major axis of the pressure ellipse for the left outer-race contact is

2foD (48)
R = =R =R 48
ol 2fo +1 or 0

From figure 8, due to the w, €os B, component, a point (X

race has the linear velocity V'1 ol °F

d / 2
_ m 2 2 2 2 D 2
V'lol"wocos Bot 2 cos B l+ Ro'Xol - " Ro'aol + ('2"> =51
ol

ol’ Yol) on the left outer

or

d_w

lol =~ 5 2 = T51Wg COS Byg (49)

where

- l/ 2 o2 2 2 DY 2
ol = RO -X51 - Ry-agy * (_2_>2 -5 (50)

Because of w_, cos g ; and w,, sinp a point (X Yol) on the ball has the linear

ol’ ol’

velocity V'201, where

Vior = -Fol(wz, sin g, ; + Wy, COS 6ot) (51)

14




The velocity with which the outer race slips on the ball in the Y-direction is

V'

Yor = Vi

1ol 'V'Zol

or

w

Vi1 = - — 2+T (@, sin B ; +w,, cos Boz = @Wo 08 Byy) (52)

Because of w_, all points within the pressure area have a velocity of slip of race

on the ball of Vi(o 1 in the direction of the x'-z' plane and Vko 1 is taken as

Because of the components of velocity, which lie along the line defined by g ol’
there is a spin of the race Wgo1 with respect to the ball. Because of component
W, sin 8 ol the following can be written:

W17 = “Yo Sin By, (54)

Because of the components w,_, cos g ; and o

<! sin Bo1l the following can be written:

W7 = Wy COS By = Wy sin 8, (55)
Therefore, the spin of the left outer race with respect to the ball can be written as
“So1z = “101 ~ “201
or

Wgg7 = ~W, SiN By - @, COS By + Wy Sin B, (56)

In a similar approach, making use of figure 8, one finds the angular velocity of roll
of the ball on the left outer-race contact to be

WRo1 = Wxr COS By + Wy sin B, - w, €os B, (57

15




Right Outer-Race Contact

Figure 9 shows the contact of the ball with the right outer race. Due to w o €08 Bop

a point (X or’ ¥ or) on the right outer race has the linear velocity Vior °F
Emwo -
Vior = - 5 Tor®o €08 Bop (58)
where

- _ 2 2 2 2 D 2
Tor = V R -Xor = Y Bo-2gr+ (2_>2 ~4or (59)

Because of Wy 1 COS 301, and W, sin 8
3 1
velocity Voop» Where

a point (X Y or) on the ball has the linear

or’ or’

Vior = For(wz' sin B, - Wy, cos ;301,) (60)
The velocity with which the right outer race slips on the ball in the Y-direction is

V'

Yor = Vior -

2or

or

d w
- .m0, = - i -
Vior = 5 + ror(wx' cos B, - w,, sin B, - w_ cos Bor) (61)

Because of wy,, all points within the pressure area have a velocity of slip of race
on the ball of Vkor in the x'-2' plane:

53 (62)

' = =
VXor =-w or

y

Because of the components of velocity, which lie along the line defined by Bor>
there is a spin of the right outer race, Wgor with respect to the ball. Because of the
component w o sin g or’ the following can be written:

“1

or = @, Sin By (63)

16



Because of the components w,, sin Bor and W4 €OS B the following can be written:

Woop = Wy sin 3or +w,, cos B . (64)

Therefore, the spin of the right outer race with respect to the ball can be written as
“Sor = “1or ~ “20r

Wgop = Wo S0 By, = Wy, Sin B - w,, cos B . (65)

In a similar approach, while making use of figure 9, one finds the angular velocity of
roll of the ball on the right outer -race contact to be

@Ror = Wx' €08 By = W, SIN B - W €OS B (66)

Inner-Race Contact

Figure 10 shows the contact of the ball with the inner race. The radius of curvature
of the deformed inner-race pressure surface can be written as

, 2f.D
R, = —
1 of, + 1

(67)

Because of w; cos B;, a point (Xi’ Yi) on the inner race has the linear velocity V'li or

d w.
m”*i

5= - 5 + Fw, cos g; (68)

where

(69)

- _ 2 2 2 2
r; = ‘/Ri 'Xi"/Ri -a; +

Because of Wy, COS Bi and W, sin B, a point (Xi, Yi) on the ball has the linear velocity
V'2i or

V:‘Zi = Fi(wx. COS B + W, sin ﬁi) (70)

17



The velocity with which the inner race slips on the ball in the Y-direction is

- V!

Vi = Vi -V

1i

or

d w,
m i

2

VY = - + Fi('wx\' cos B - w,, Sin B, + w; cos By (71)

Because of W1 all points within the pressure area have a velocity of slip of the
race on the ball of Vi(i in the direction of the x'-z' plane

Vi = -wY.Fi ' (72)

Because of the components of velocity, which lie along the line defined by By there
is a spin of the inner race Wgi with respect to the ball. Due to component w; sin By
the following can be written:

wy; = w; Sin B (73)
Because of the components Wy sin Bi and W, COS 3.1,

w2.

j = ~W,0 COS B + W

' Sin B, (74)

Therefore, the spin of the inner race with respect to the ball can be written as

Wi = Y11 T “oi

or

wg; = ; Sin B + W, COS f; - Wy, sin B (75)

In a similar approach, making use of figure 10, one finds the angular velocity of roll
of the ball on the inner-race contact to be

WRj = ~Wxr COS B; = W, sin B; + w; cos B ('76)

From figure 7 the following equations can be written:

18



= wpg €os a' cos B' ()

wp cos o' sin g' (78)

W, = wg sin o (79)

Substituting these equations into equations (52), (53), (56), (57), (61), (62), (65), (66),
(1), (72), (75), and (76) gives

d w w w
' __ mo, = B _. ' e B .
VYol = - +rolw0<——sma sin Bol + —cos a' cos 8' cos Bol - cos Bol)

2 W, wo
(80)
wg\ _
Vi1 = | —|Fo1@, €08 @' sin g (81)
w
)
wB wB
w507 = @4 ;—cos a' cos ' sin g ; - = sin o' cos B, - sin g, (82)
0 o
. wg
WRoy = Wo|COS By + —(cos a’ cos p' cos B, + sin o' sin B ;) (83)
0
Hmwo 5 wp
V¥or = - . +T 0, w—(cos a' cos B' cos Bor = Sin a' sin Bor) - cos B, (84)
)
“p
VXor = === Top@, C0S o' sin g’ (85)
w
o
. “B : ;
Wgor = @oSin By - ~ (cos a' cos p' sin B + sin ' cos B (86)
0o
“B
“YRor = Yo| €08 Byr + 0 (cos a' cos ' cos B, - sin o' sin ) (87)
o

19



Ew. w

mi, = B ' . : -
Vi, = - 5 + T, 0, |cos g, - = (cos o' cos B' cos B; + sin a' sin B,) (88)
i
wg _
Vi = -—— I;@; cos o' sin g’ (89)
.
i
“B
wg; = w; {8in B; + —— (sin a' cos ; - cos &' cos §' sin By (90)
wi o
“B
Wp; = Wj[cos B; - — (cos @' cos g' cos g; + sin o' sin B;) (91)
i
From figures 8 to 10 there is some radius denoted as r!' ol or’ and ri, respec-

tively, called the effective rolling radius at which pure rolling occurs. These radii are
not necessarily restricted to points that lie on the deformed pressure surfaces if gross
slip between the ball and races occurs. At these effective rolling radii r! ol or’

and r; on the ball, the translational velocities of ball and race is the same. There~
fore, from figures 8 to 10 the following equations can be written:

d
-w_cos f +r',)=-r",(w_,cosB , +w,sing ;) (92)
0 ol 3 cos Bol ol ol‘7x' ol z ol
—a-m
~w,, €08 B | ———— + ree] =16 (wz, sin B, = W, cos Bor) (93)
2 cos B
m ( ) (94)
-w cos B, ——— -1} =ri(w,_, cos B, + w_, sin B,
i\ o cos B ivx i z i

Making use of equations ('77) to (79) and rearranging terms result in

20



+ coS
wg 2ry Bot
B — (95)
w, Cosa'cos g cos B, +sina’sing ,
)
— + Cc0S 3
wg ori. or
B — (96)
w, cosa'cos g cos g . - sino’ sing .
Em
- — +co0s B,
wg 2r} 1
. (97
w; cos o' cos B'cos g + sin a' sin B;
From equation (96), solving for rz)r, the following equation can be written:
Im
- 2
rl = ” (98)
;P- (cos o' cos g' cos B . - sin o' sin B_) - cos B .
o

Making use of equations (95) to (97), equations (80), (84), and (88) can be rewritten as

d w {f , -r',)
Vi = m-o o’l ol (99)
zrol
d. w r., -r.)
V%(or __mo Of or (100)
2rOr
ve. - m®;i T - 1))
Yi ™

(101)
2ri

If, instead of the ball center being fixed in space, the outer race is fixed, then the
ball center must orbit about the center of the fixed coordinate system with an angular
speed of Qc = ~w,.

Therefore, the inner race must rotate with an absolute angular

21




speed of Q; = w; + Qc' Using these relations the relative angular speeds w o and w;
can be described in terms of the absolute angular speed of the inner raceway. From

equations (95) and (97) the following can be written:

d
w, | -2+ cos g, | (cos o' cos p' cos B,; + sin o' sin 8 7)
i\ gpr i 0 o
r!
i
o- T7_
d
" +€0S B, (cos @' cos B' cos B; + sin a' sin B;)
r
ol

(102)

Therefore, one can write the relative angular velocity in terms of the inner-race abso-

lute angular speed by the following equations:

w
o, B
wO
wi=
“B_“B
Wo Wy
“B
i -
wo_ 1
“B_“B
wo w.l
w [63]
o BB
— wO wl
Wey =
B @ W
“s_“B
wO wl

Sliding Friction at Pressure Surface

(103)

(104)

(105)

Figure 11 is an enlarged view of the pressure area at any of the race contacts as

viewed from outside of the ball.
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Because of the spin velocity wg and the linear slip velocities V&. and Vk, an
element of area dA at coordinates (X,Y) has resultant velocity of slip V of the race on
the ball acting at the angle ¢ with respect to the X~direction.

From Jones (ref. 2) the equations for the friction forces and moments can be directly

written as
1 Y1
3Qp Vi-o®-t?cos wdtdg (106)
m
1 J Y142
1 Ay 12
—%E / Vi-o®-t?sinydtdg (107)
T
_1 _‘, 1_q2 .
M, = 3_%&% ‘/ -¢2 - Q2 + _cos(a,u -0dtdg  (108)
i
-1 1-q
1 VI-q2
_3Qu FY1-q®-t? sinydtdg (109)
w
-1 J-y1-4®
Mp, = _li// 1 q - t2 cos ydt dg (110)
Vi
where
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q=X (111)
a
t =b1 (112)
o = tan'1<i_> (113)
K
¢ Y%
-1 k¥ awg
Y =tan"| — = (114)
V'
q+ —
aws

With proper subscripting of i, ol, and or in equations (106) to (114) three sets of
corresponding equations can be obtained for the inner-race, the left, and the right outer-
race friction forces and moments.

The coefficient of friction p will be assumed to be 0.065 (ref. 2) for the calcula-
tions.

EQUILIBRIUM CONDITIONS

Figure 12 shows the moments acting on the ball. From this figure the following
equations can be written:

'MRol sin Bor * Mg, ; €08 B,; +?/Iz, + MRi sin B; - MSi cos B; + MRor sin g8 ..

+ MSor cos B, = 0 (115)
'MRol cos f,; - Mg ; sin g ; + MRi cos g, + Mg, sin g; - MRor cos B

+ Mg . sin B, =0 (116)

-M_, -M_,. =0 (11
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Figure 13 shows the forces acting on the ball. From this figure the following equa-
tions can be wwitten:

Q,; cos Bot =~ Fxo1 Sin Byy = Qop €08 By + Fxor Sin By + Fjr +Q; cos B

+Fy,; sing =0 (118)
Qyy sin By - Fxqy €08 By - Qqy sin Bor = Fxor €08 Byp = Q; sin

+ FXi cos B; = 0 (119)

Fyor + Fyor * Fyy = 0 (120)

»

Ball bearings subject to a pure thrust load have the following relation:
. Fa
Qi sin g, - Fy. cos g, - - =0 (121)
Note that, because of equation (121), equation (119) can be rewritten as

F
Qy; sin Bor =~ Fxo1 €08 By = Qqp Sin By - Fxor €08 Bor - ‘Zi =0 (122)

Therefore, the seven equations that are necessary for the solution of the seven un-

knowns V, W, 5a’ a', B', oy, and r: are the following:

'MRol sin Bor * MSol Cos B, + l\_/Iz, + Mg, sin B - MSi cos Bi + MRor sin Bor

+ MSor cos . =€ = 0 (123)
'MRoZ cos B,; - MSo.l sin Bor * MRi cos f; + MSi sin B; - MRor cos B,

+ MSor sin . = e, = 0 (124)

M‘-M'
y

yol'M

ylor ~ My'i =ey=0 (125)
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3/2 . 3/2 .
Kot 0,7 €08 Byy - FXol sin B, - Kor 6or cos Bop * Fxor S0 Bop *+ Fyn
3/2 : e =

+ K, 577 cos ; + Fy;sinpg =e,=0 (126)

K 63/2 in -F cos -K 63/2 in -F cos B -F—a—e =

ol %1 Bol Xol ot or Jor S1 Por Xor or ~ Y57
(127
Fyor * Fyor + Fyj =€ =0 (128)

F
3/2 . a_ . _

K, 5, " sin g; - Fy, cos g, - - en =0 (129)

NUMERICAL ITERATION OF SEVEN SIMULTANEOUS NONLINEAR EQUATIONS

The approach to be used is to first obtain good estimates for V, W, and éa. This
is accomplished by using the arched bearing computer program used to obtain results in
references 4 and 5, where only the centrifugal force acting on the balls is considered.
In equations (126), (127), and (129) this amounts to neglecting the friction forces. By
doing this we should have a good approximation of the true value of V, W, and éa,
since the friction forces are small in comparison with the applied forces acting on the
contacts.

Having good initial estimates for V, W, and Ga, we must next determine good ini-
tial estimates for r;) 7 and r{ . These radii are the radii where there is zero transla-
tional slip of the race on the ball. From figures 8 and 10 and equations (50) and (69),
one obtains an understanding of what is meant by the barred and primed radii. Equations
(50) and (69) can be written in general form as

T= ‘/;2-a2q2 - VR2 -a2+

(130)

The initial values of r' are

(131)

=

r' =

q=0.3
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This will assure us that there is some radius such that zero translational slip of the race
on the ball occurs.

Having good initial estimates for V, W, Ga, rz)l, and r and letting o' =8'=0,
we can now get to the problem of solving equations (123) to (129). The basic approach
will be to express these equations in Taylor's theorem in seven dimensions. Considering
only the first two terms of the expansion and rearranging terms in matrix notation, one
finds that the equations now are seven simultaneous linear equations. By introducing a
two-step algorithm, one is then able to describe the iterative solutions of the seven

simultaneous linear equations.

THEOREM
7
Given the real functions E e].(V,W, 6,081, ,ri) such that
=1, ...
ae]./av, e, aej/ar{, j=1, . . ., Texist and are continuous over defined intervals

of the seven parameters, then the seventh dimension Taylor expansion, while neglecting
third and higher terms, can be written as

7

ey

ej(sl’ Sy, - - .,S7) ~ ej(sl, Sgy + + +s s7) + y (Si'si)
g _
Si—si
i=1,. )
j=1,2 ...,7 (132)

where s; initial estimates of V, W, 5a’ a', B, r;)l, and ri and Si= vV, W, 6a,
at, g, r'ygs ¥y for i=1,2, . .., 7, respectively.

Expanding equation (132) gives

oe.
o 1 -
ej(Sl, Sz, .. ,S,7) ~ej(sl, Sgy s s,.{)+ - (Sl Sl)

1 S.=s

i1
oe, ge.

+ —1 (Sg - sg) + +—L (Sy = s1) j=1,2,...,7 (133)

oS oS
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Now in equation (133) we wish to find (Sl’ 8o, - - v s S7) such that the left side becomes
zeros. Therefore, we are led to

oe. Je.
O%ej(sl,sz, C e, s,7)+—3- (Sl-s1)+——3- (Sz-sz)
aS1 aS2
Si=si Si=s.1
ce.
+.. . +—L (Ss, - ¢ j=1,2, ..., 7 (134)
T 7
887
§;=8

If the approximation that only the firsf two terms in the Taylor's expansion is valid, then
our system of equations goes from being nonlinear to linear, and, using matrix notation,
the linear system can be written as

. _ —
0 el(sl, Sgy + v v s s7) S, - s]
0 e2(sl, Sy + + « s s,7) S, - Sg
- +3(Sy, Sgy - v v s S"’)‘s— (135)
. . =S,
i i
0 E7(Sl, Sgy + v v s s,7) LS7 - 8q
where
2e_1 ae1 ae1
g ——, . y —
881 8S2 8S,7
b R ]
_ 831 882 837
381y Sgy o o -4 S =] e e (136)
ae,7’ ae.7 ae,7
—_— Ty e e s —
jSl 852 as7_
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The elements of the Jacobian were derived analytically, and, because of the number of

equations required to derive them, they will not be shown. If J(Sl, Sz, C e ey, S7)
Si=s.1
is nonsingular, then
S - - _
8, s, eq(sys g, -+ -, s,ﬁ
S, So ez(sl, Sy« v ey s7)
- -T N8y, Sy, .., 8y ‘ (137)
S.=s.
i
_S’Z_ f..L 57(s1, Sgs + + v s s7_)_
This equation can be rewritten as
—Sl— —sl— —él(sl, Sgs - - - s s7)_
S s _ e,(8, S, . . ., Sp)
2 2l 3T, s,,...,S) 271 "2 T
1’ "2 $ T S.=s.
= -— 1 1 (138)
det J(S, Sy, + - -, s,{)ls=s
i’i
l—S,7_ Ls,z_ L(3.7(51, Sgy + o s s7)_

Therefore, from the iterative method described, one is able to obtain values of V,
W, 5, o', B, roL and ri, which satisfy equations (123) to (129). With V, W, Ga,
a', 'y Ty, and ri known and given equations (18) to (20) and (24), the contact loads

Q;, Q,;, and Q_ . and contact angles 3;, 8., and g . can be evaluated.

DERIVATION OF FATIGUE LIFE-
From the weakest link theory, on which the Weibull equation is based, we get the

relation between life of an assembly (the bearing) and its components (the inner and outer
rings):
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9/10

12n. 10/9 10/9 10/9
1 .L + _.1._ + _l_
1><106 Li Lol I"or

(139)

(ol L

In this equation life L 1is expressed in hours. A material improvement factor of five
(to be consistent with other investigations, e.g., ref. 8) has been assumed; however, no
adjustment factors for reliability or operating conditions have been added. For point

contact
3
L=(2 (140)
Q

Therefore, equation (139) becomes

_ 1x108 1

12n,
i Qi 10/3 Qol 10/3 Q 10/3

—_ + | — 4+ —

Pi Po

L (141)

0.9

l or

The contact loads are defined by equation (24). From Lundberg and Palmgren (ref. 9)
the following can be written:

3.1 0.4 2.1

T 0.3
p-(2.75x08p!-8{ 1) (L) (3£} 0 7R 4173 (142)
T ¢,/ \aDp d

With proper subscripting of i, ol, and or this equation can represent the dynamic load
capacities of the inner ring Pi’ the left outer ring P ol’

Variations of the T and ¢ functions with curvature over the range from 0.52 to
0.54 are 2.3 and 0.8 percent, respectively. The variation of the product of these func-
tions over the curvature range from 0.52 to 0.54 is less than 2 percent. Therefore, for
the range just described, the products of the T and £ functions can be considered to
be constants in equation (142), or

and the right outer ring P or”
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VO (E) -o.s (143)

The number of stress cycles per revolution for each contact is, to a good approximation,

2,
u=2(1--25 (144)
Q.
i
2
u, = 7 (145)
Q.
i

Substituting equations (143) to (145) into equation (142), one can write the dynamic load
capacity at the inner ring and left and right outer rings as

2.1 -1/3
8 /2&.\° Q
d?'3 TPy 2,

2.1 -1/3
8 /2¢ : Q

L9TX .
P, - 1 9; ;0 o) 0.7z ¢ (147)

d ' \"Pol !

Therefore, from equations (24), (141), (146), and (147) the life (in hours) of the arched
bearing can be obtained. The equations for a conventional bearing can be directly ob-
tained from the arched-bearing analysis by simply letting the amount of arching be zero
(g = 0) and by not considering equations related to the right outer race.

DISCUSSION OF RESULTS

A conventional 150-millimeter-ball bearing operating under pure thrust load was
used for the computer evaluation. Bearing parameter and results such as life, contact
loads, contact angles, spin-roll ratio, cage to shaft speed ratio, and maximum compres-
sive stress are shown in tables I and II. The initial diametral play S q (fig. 2) was set
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fixed while varying the amount of arching; that is, for a given applied axial load and a
given inner ring speed, the amount of diametral play S d (fig. 2) was held fixed while con-
sidering different amounts of arching. In an arched bearing the free contact angle B
becomes larger than that of the conventional bearing even though the diametral play is
held constant. The greater the amount of arching (the larger the g), the higher the free
contact angle. A

The following observations can be made from the results in tables I and II:

(1) For high speed-light loads there is substantial increase in life for an arched
bearing over that of a conventional bearing.

(2) An optimal amount of arching, when considering fatigue life is 0.254 millimeter
(0.010 in.) for an axial applied load of 4450 newtons (1000 1b) and 0. 381 millimeter
(0.015 in.) for axial applied load of 22 200 newtons (5000 1Ib). However, these are not
strong optimals.

(3) In an arched bearing there is considerably more spinning than in a conventional
bearing.

(4) At shaft speed equal to 12 000 rpm the arched bearing has made contact with the
outer right race.

(5) As the amount of arching is increased. the outer-race spin-roll ratio increases
significantly. Therefore, for an axial applied load of 22 200 newtons (5000 lb), one
might change the optimal amount of arching to 0. 254 millimeter (0.010 in.).

(6) For a conventional bearing the spin-roll ratio of the inner-race contact is con-
siderably larger than that of the outer-race contact. However, for an arched bearing the
spin-roll ratios are of the same order for the various contacts.

(7) Because of the coordinate orientation, the right outer-race contact spin-roll
ratio is of opposite sign from that of the left outer race.

(8) The advantage of using an arched bearing is less at high loads.

In trying to choose the best amount of arching to use, one is confronted with the
following constraints:

(a) The amount of arching must be large enough so that overlapping of the left
and right outer-race contacts does not occur; that is, inequality (A)
must be satisfied. For example, for the bearing considered 0 <g <0.127
millimeter (0.005 in.) did not satisfy inequality (A).
(b) With arching greater than 0.381 millimeter (0.015 in.) there can be an order
of magnitude more spinning occurring at the outer-race contacts.
Therefore, in lieu of the above, an # mount of arching equal to 0.254 millimeter
(0.01 in.) is the best when considering fatigue life and the amount of spinning.

Figure 14 shows the effect of speed on outer-race normal ball load Qo’ for an
arched bearing and a conventional bearing. The axial applied load is fixed at 4450
newtons (1000 1b). It is seen how the arched outer race shares the load between the left
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and right outer-race contact. As the speed is increased and more centrifugal force acts
on the ball, it is seen in this figure that the value of the normal ball load for a conven-
tional bearing is considerably higher than the left or right outer-race normal ball load
of an arch bearing. The result of reducing the outer-race normal load from one large
load to two smaller loads is life improvement for the arch bearing.

Figure 15 shows the fatigue life percent of improvement for an arched bearing over
that of a conventional bearing for axial applied loads »f 4450 and 22 200 newtons (1000
and 5000 Ib). A comparison is also shown between the present results and those of ref-
erences 4 and 5 where only the centrifugal force is considered. The ordinate E of fig-
ure 15 is defined by -

Ll,0.254 mm - Ll

L|g=0

E - g=0 » 100 (148)

Figure 15 shows that the fatigue life improvement over the conventional bearing is sig-
nificant for the high-speed light-load condition. This increase results because the load
is shared by the two outer-race contacts. Furthermore, this figure shows that there is
little difference between the fatigue life analysis of this report and that of references 4
and 5. :

Figure 16 shows the effect of speed on the absolute value of spin-roll ratio for an
arch bearing and a conventional bearing. The applied load is held fixed at 4450 newtons
(1000 1b). This figure shows that for an arched bearing the outer-race spin-roll ratio
of the arched bearing is an order of magnitude larger than that of a conventional bearing.
Therefore, one might speculate that there is more heat generated in an arch bearing.

SUMMARY OF RESULTS

The results indicate that for high-speed light-load applications the arched outer -
race ball bearing has significant improvement in fatigue life over that of a conventional
bearing. An arching of 0.254 millimeter (0.01 in.) was found to be optimal. For an
arched bearing a considerable amount of spinning occurs at the outer-race contacts.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 23, 1973,
501-24.
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Figure 1. - Bearing outer race geometries.
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Figure 3. - Arched ball bearing radially loaded.
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Right outer race—\\

Figure 9, - Contact of ball with right outer race.



//—Inner race

Figure 10, - Contact of ball with inner race.
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Figure 11. - Enlarged view of pressure area at any of the contacts,

Figure 12, - Moments acting on ball.
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Figure 13, - Forces acting on ball.
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Absolute value of spin-roll ratio, wglwg
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Inner ring rotational speed, nj, pm

Figure 16. - Effect of speed on absolute value of spin-roll ratio for
arch bearing and a conventional bearing for axially applied load of
4450 newtons (1000 Ib).
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