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ABSTRACT

The effect of tidal friction on the inclination of the lunar orhbit to the earth's

equator for earth-moon distances of less than 10 earth radii is examined. The

results obtained bear on a conclusion drawn by Gerstenkorn and others which
has been raised as a fatal objection to the fission hypothesis pf lunar origin,
namely, that the present nonzero inclination of the moon's orbit to the ecliptic
implies a steep inclination of the moon's orbit to the earth's eqﬁatorial plane in
the early history of the earth-moon system. This conclusion is shown to be valid
only for particular rheclogical models of the earth. In the case of a viscous
earth, the results indicate that the problem of wrenching the moon out of an
equatorial orbit into an inclined orbit to account for the present tilt of the lunar
orbit to the ecliptic must be faced in thé accretion theory of the moon's origin
and possibly the capture theory, as well as in the fission theory. In this respect
all three theories are on the same footing. A solution to the inclination problem
is presented.

The treatment of tidal friction adopted here employs the ﬁpproach of George
Darwin and pursues his suggested solution to the inclination problem in great
detail. The earth is assumed to behave like a highly viscous fluid in response to
tides raised in it by the moon. The moon is assumed to be tideless and in a
circular orbit about the earth. The equations of tidal friction are integrated

numerically to give the inclination of the lunar orbit as a function of earth-moon
iii
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distance. It is found that if the radius of the lunar orbit is greater than 3.83
earth radii, then the inclination of the moon's orbit to the earth's equator will
increase if the moon is perturbed from an equatorial orbit, provided the earth's
viscosity is greater than 10'% poises. The present inclination of the lunar orbit
to the ecliptic can be explained if the moon's orbit is perturbed about 3° out of
the equatorial plane at 3.83 earth radii, provided that the earth's viscosity is
not less than 1012 poises. I is also found that if the viscosity is large (greater
than 1018 poises), then, under certain conditions, thef,-'radius of the moon's orbit
may actually decrease temporarily, and then increase; and further, that an
upper limit can be placed on the inclination of the lunar orbit to the earth's
equator when the mbon is 3.83 earth radii distant from the earth,.‘regardless of

the moon's prior history.
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PREFACE

Readers unfamiliar with tidal friction should find Chapter 1,
Section A and Appendix A of some value. A list of imﬁortant
quantities for this work is given in Table 4. A list of correc-
tions of misprints in Péter Goldreich's important paper "History
of the Lunar Orbit" is given in Appendix F. Page .numbers of
the reference '"Darwin (1880)" refer to Darwin's paper as it ap-

pears in Scientific Papers by George Howard Darwin, Volume II,

1908.
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INTRODUCTION

Men have speculated about the tides for centuries. An anecient Chinese
scholar suggested that the earth lived, that the ocean was its blood, and that the
tides were the beating of the earth's pulse (Darwin 1962, pg. 76). An Arabian
scholar explained the rising of the tide as being caused by the heating of the
ocean by sunlight and moonlight (Darwin 1962, pp. 77-79). Others also suggested
that the tides were somehow caused by the sun and moon (Darwin 1962, pp. 79-
85), but it remained for Isaac Newton to advance the correct explanation for the
cause of the tides (Newton 1966). Newton realized that the lunar tides were
caused by a combination of gravitational pull and centrifugal effects which would
make the water in the oceans collect on the sides of the earth directly under and
directly away from the moon, thus giving the earth a bulge. A similar argument
holds for the solar tides.

Newton's theory of the tides was carried forward, notably by Bernoulli,
Laplace, Darwin, and Kelvin (Darwin 1962, pp. 86-88) to explain the rise and fall
of the oceans on the earth. Their efforts culminated in the work of Doodson and
Proudman (Doodson 1958},

George Howard Darwin, son of the famous Charles Darwin, considered not
only the problem of the tides raised on the earth by the moon, but also a more
subtle problem: the action of the tides on the motion of the moon (Darwin 1880).
He included in his investigations not only ocean tides, but also tides raised in the
bulk of the earth as well; these latter tides are called earth or body tides.

Darwin recognized that friction attending the tides, whether they are raised in



the cceans or in the earth, would have profound effects on the moon's orbit. In
fact, tidal friction dominates the secular change in the moon's orbital elements.

Darwin assumed the earth to be .a homogeneous, incompressible viscous
fluid in which tides were raised by the moon; the moon itself was assumed to be
a point-mass. He expanded the tidal disturbing function in a Fourier series and
integrated the equations for the secular change of the moon's orbital elements
backwards in time inh an attempt to uncover the past history of the moon. Darwin
found that the moon orbited very close to the earth at some time in the distant
past. He speculated that the earth and moon were once a single primitive body,
and that resonance vibrations set up in the body by the sun caused the body to
fission, thus throwing the moon into orbit about the earth. Tidal friction then
caused the moon to move away from the earth to its present distance.

Jeffreys (1930) found that dissipation in the primitive body would be so
great that the vibrations would be damped out, making it impossible for the
moon to be torn out by the action of the sun. The fission theory of the origin of
the-moon fell out of favor. It has been reproposed in more recent times by
Cameron (1963), Wise (1963), and O'Keefe (1969).

Modern interest in tidal friction was rekindled by Gerstenkorn (Alfven 1963),
who invoked tidal friction in a new hypothesis of lunar origin: capture of the
moon. Gerstenkorn's analysis lead him to propose that the moon was once an
independent planet in an orbit which carried the moon close to the earth. The
tidal interaction between the moon and earth captured the moon in a retrograde
orbit, which subsequently flipped over into the prograde orbit we see today.
MacDonald (1964) supported a many-moon hypothesis of lunar origin to
overcome a time-scale difficulty in tidal evolution. Singer (1968) inves-

tigated the problem of prograde capture, while the analysis of Goldreich (1966)



lead him to favor accretion of the moon from a swarm of particles in orbit about
the earth.

The problems associated with the intimately connected questions of the
moon's origin and its orbital evolution are seen to be of surpassing interest
today. We will investigate here one of the problems of the early history of the

moon: the inclination of the lunar orbit.



CHAPTER 1

TIDAL FRICTION AND THE INCLINATION PROEBLEM

A. Qualitative Aspects of Tidal Friction

Some of the qualitative aspects of tidal friction will now be examined; for
fuller discussions see Goldreich (1972); MacDonald (1964); and Jeffreys (1962).
We will begin by dealing with a simplified picture of the earth-moon system.
The earth and moon are assumed to be the only two bodies in existence, with the
moon orbiting the earth in a circular orbit lying in the plane of the earth's
equator. In addition, the moon is assumed to be perfectly spherical, and the
earth to be without atmosphere or oceans, so that we are concerned only with
body tides in the earth.

Figure 1(a) shows the case where the earth exhibits no internal friction. In
this case if the earth behaved like a solid it would be perfectly elastic; if the
earth behaved like a liquid, it would have no viscosity. The tidal forces acting
on the earth cause it to bulge along the line joining the centers of the earth and
moon. The part of the bulge nearest the moon is raised by the pull of the moon's
gravity, which is greatest on the side closest to the moon. The part of the bulge
opposite the moon may be thought of as being thrown out by the centrifugal force
associated with the motion of the two bodies about their common center of mass.
In this case, there would be no evolution of the moon's orbit. The moon would
still revolve about the earth in a circular orbit, with only a slight change in the
earth's gravitational force from its value for an undistorted earth.

The situation changes, however, when friction is present in the earth; this

case is shown in Figure 1(b). In the simplest picture, the action of tidal friction



makes the axis of the bulge swing away from the line joining the centers of the
earth and moon and reduces the size of the bulge. From the viewpoint of inertial
space (a frame fixed with respect to the distant galaxies), the bulge may be
thought of as being carried around by the earth's rotation. Note that in this case,
where the angular velocity of the earth is greater than the angular velocity of

the moon (relative to inertial space), the bulge M the moon. The behavior of
the bulge may also be understood from the viewpoint of an observer standing on
the earth's equator. The observer would see the moon rise in the east and set

in the west because the angular velocity of the moon relative to the observer is
clockwise. In the frictionless case, a high tide would oceur when the moon
reaches the observers zenith. If friction is present, however, the high.tide doés
not occur until after the moon has passed the zenith, since friction causes a de-
lay. Hence to the observer standing on the earth, the tidal bulge h_gs behind the
moon. If two lines are now drawn, one along the axis of the bulge and one joining
the centers of the earth and moon, we get exactly the case shown in Figure 1(b).
The tidal lag angle is the angle between the two lines.

If the angular velocity of the moon were greater than the angular velocity of
the earth, as in the case of Phobos orbiting Mars, or if the moon revolved in a
sense opposite to that of the earth, as in the case of Triton orbiting Neptune,
then the bulge would lag behind the moon (as viewed from inertial spa.cé).

We return to the simple system shown in Figure 1(b). The moon's gravity
pulis on the nearer part of the bulge with greater force than it pulls on the
farther part of the bulge, producing a net torque on the earth. This torque acts
in a sense opposite to the earth's rotation; hence the earth slows down. By re-
action, the bulge will exert a torque on the moon, causing the moon to "speed up”

and move away from the earth. Thus the moon was closer to the earth in earlier



times. The total angular momentum of the system is conserved in this process,
but the total mechanical energy decreases as friction dissipates the energy into
heat.

Unfortunately, things are not as simple in reality as shown in Figure 1(b).
For one thing, the moon's orbit does not lie in the earth's equatorial plane; nor
is it circular but elliptical, which means the distance between the earth and
moon is continually changing. Also, body tides are present in the moon, com-
plicating the tidal interaction (MacDonald 1964). Further, the sun also raises
tides on the earth; lunar and solar gravity act on both the lunar and solar bulges.
The presence of the sun also creates a three body problem. The earth and moon
are not spherical even in the absence of tidal forces; the earth is flattened by
rotation, for example. Also, the actual shape of the tidal bulge is not necessarily
as simple as shown in Figure 1(b). The shape depends upon the model chosen
for the earth's properties. In general, the tidal forces distort the earth into a
figure resembling a {riaxial ellipsoid.

The present~day earth has ocean tides and atmospheric tides as well as body
t_ides. The varying depths_ of the oceans, the flow of tidal currents, and the
irregular shape of colast lines make the ocean tides quite complex. The ocean
tides may be responsible for most of the dissipation of energy (see below). The
atmospheric tide is an observed semidiurnal variation in atmospheric pressure
caused by solar heating and not solar or lunar gravitational forces. This tide
lags behind the sun as viewed from inertial space, so that the gravitational
torque on the atmospheric tide tends to speed up the earth. This torque may be
comparable in magnitude to the solar ocean torque, tending to cancel it (Jeffreys

1962).



Observational evidence for tidal friction comes from a variety of sources.
Body tides are observed with sensitive gravimeters (Tomaschek 1957) from
which the lag angle may be deduced (MacDonald 1964). The tidal bulge can be
observed by its perturbing effects on the orbits of earth satellites (Newton 1968).
Celestial observations, both modern and ancient (Newton 1969), reveal the secu-
lar acceleration of the moon and the deceleration of the earth's spin. Agreement
hetween the different methods is rough, but they indicate the following (Goldreich
1972): the present-day lag angie in the simple picture of Figure 1(b) is between
2° and 3°, with energy being dissipated at the rate of ~2.6 x 10!? ergs/sec. The
moon is moving away from the earth at the rate of 3 ecm per yvear, with the
earth's daily rotation period slowing down by 2 x 10~5 seconds per year. The
work of Miller (1966) suggests that two thirds of the energy dissipation takes
place in the shallow seas, but the figure is uncertain and the actual seat of most
of the dissipation (whether in the oceans or in the earth) is unknown.

Remarkable evidence for tidal friction in the distant past exists in the form
of daily growth bands found in fossil coral and shelifish. The work of Wells
(1963) on fossil coral suggests that the year was about 400 days long 380 million
years ago, which is consistent with the current rate of slowdown of the earth's
rotation. A constant rate of slowdown over this time period has been called into
question by the fossil evidence found by Pannella et al. {1968), however.

It should be mentioned that tidal friction is important not only in planet-

satellite systems but also in sun-planet and binary star systems as well.

B. The Inclination Problem

We will investigé.te i:nossible early histories of the inclination of the lunar
orbhit. The problem of the inclination in the early stages of the moon's history

has been cogently summarized by O'Keefe (1972).



Goldreich (1966) investigated the history of the lunar orbit using the
assumptions of a circular orbit and weak tidal friction; this latter assumption
entails either low viscosity or imperfect elasticity in the earth. Goldreich found
that if the moon were 10 earth radii distance from the earth the inclination of
the moon's orbit to the earth's equator would have been about 10°; at closer dis-
tances the inclination would have been even higher.

This result appears to rule out the fission theory of the moon's origin,
since if the rapidly rotating primitive body fissioned, the moon would be thrown
into an equatorial orbit around the earth, in contradiction to Goldreich's findings.

Darwin (1880), making assumptions similar to Goldreich's, came to much
the same conclusion; but Darwin originated the fission theory. How could
Darwin believe in a contradiction?

The crux of the matter is the assumptions that are made in modeling the
properties of the earth. Goldreich and other modern investigators (MacDonald
1964; Gerstenkoi'n (Alfven 1963)) considered the effects of weak tidal friction,
as did Darwin; but Darwin went on and examined the effects of high viscosity;
strong tidal friction (Darwin 1880).

Darwin found that if the moon were perturbed slightly out of an equatorial
orbit, then, under certain conditions, the tidal forces acting on the moon would
cause the inclination to grow. An earth which had a high viscosity in its early
history ,might then solve the inclination problem. Darwin seized upon this as
the answer and did not investigate the matter further.

We will follow Darwin's treatment in assuming a highly viscous earth in the
early stages of the earth-moon system and examine the inclination in more de-
tail; specifically, under what conditions the inclination will incfease for small

initial perturbations.



C. Proper Planes and the Inclination Problem

Let us now examine the inclination problem from the aspect of the proper
planes of the moon and earth. These planes were discovered by Laplace (1966)
and were used by Darwin (1880) in his treatment of tidal friction.

Laplace found that the plane of a satellite's orbit about an oblate planet
tended to maintain a constant ineclination to a plane which he called the proper
plane of the sétellite. We will follow Darwin and call this inclination J.

The proper plane lies intermediate between the plane of the planet's orbit
about the sun {the ecliptic plane for the earth} and the invariable plane (the plane
perpendicular to the total angular momentum vector of the planet-satellite
system). The angle between the ecliptic and proper planes Darwin called J ;

If a satellite orbits far from a planet, the sun’s influence dominates the inclina-
tion and the proper plane is nearly parallel to the ecliptic (J, & 0), so that the
satellite has very nearly a constant inclination to the ecliptic. If a satellite
orhbits close to a planet, the oblateness of the planet dominates the inclination
and the proper plane is nearly parallel to the invariable plane. In this case the
satellite tends to maintain a constant inclination to the equatorial plane of the
planet (as shown later).

These two limiting cases are referred to by Goldreich (1966), who found
that the transition between the two came at a distance which he called the criti-
cal distance. This is the distance where the torque exerted on the satellite by
the planet's bulge is equal in magnitude to the torque exerted on the satellite by
the sun. The critical distance is about 10 earth radii for the earth-moon system.

At the present time the moon is about 60 earth radii distance from the -
earth, so that the orbital plane of the moon keeps a nearly constant tilt to the

ecliptic. The angle J, between the proper plane and the ecliptic is about 8"
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{Darwin 1880) and the angle J between the proper plane and the moon's orbital
plane is about 5°9°'.

The ‘earth alsc has a proper plane; the earth's equatorial plane tends to
maintain a constant inclination to its proper plane. The angle between the two
is called I, by Darwin, with the angle between the earth's proper plane and the
ecliptic being I. At present I, is about 9" (Darwin 1880) and I is 23°27',

While the orbital plane of a satellite tends to maintain a constant angle J fo
its proper plane, the orhital plane precesses in space, so that the vector normal
to the orbital plane sweeps out a cone around the vector normal to the proper
plane. This is diagrammed in Figure 2(a). Likewise, the earth's axis sweeps
out 8 cone around the vector normal to its proper plane. Both precessions have
the same speed and direction.

At small distances between the planet and satellite (i.e. when solar influence
can be neglected), the poles of the two proper planes merge with the pole of the
invariable plane, so.that the orbital plane of the satellite and the equatorial
plane of the planet maintain a constant tilt to the invariable plane and each other,
as shown in Figure 2(b). Hence in this case the orbital plane of the satellite has
a constant inclination te the equatorial plane of the planet as mentioned earlier.

If the moon somehow formed or arrived in the earth's equatorial plane at a
distance of leas than 10 earth radii, then the orbhital plane, equatorial plane, and
invariable plane would all coincide and the inclination J of the moon's orbit to
its proper plane would be essentially zero. Subsequently, if tidal friction did
nothing to affect J as it pushed the moon steadily away from the earth, then at
the present time the moon would have essentially an ecliptic orbit (J and J, % 0).
However, the present value of J is about 5°9'. Thus, if it is assumed that the

moon did form close to the earth in the equatorial plane, then it must be
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explained why the moon's orbit now has a five degree tilt to the ecliptic and not
a virtually zero tilt.

To put it another way, if the present five degree inclination is extrapolated
back into the past, the plane of the moon's orbit would be steeply inclined to the
equatorial plane of the earth when the moon was close to the earth. Therefore,
those theories of the origin of the moon which postulate the moon's formation in-
the earth's equatorial plane must explain this discrepancy.

The effect of tidal friction in Goldreich's (1966) formulaticn on J, the in-
clination of the moon's orbit to its proper plane, can be extracted from his
Figure 7, which is reproduced here as Figure 3.

Goldreich's figure shows the inclination of the moon's orbital plane to the
ecliptic as a function of earth-moon distance. The inclination J ; of the moon's
proper plane to the ecliptic is so small at the present distance of 60 earth radii
that it is imperceptible in the figure, so that the moon's orbital plane appears
to keep a constant five degree inclination to the ecliptic for this distance. The
normals to the ecliptic, proper plane, and the cone swept out by the normal to
the lunar orbit for this case are shown in Figure 4(a). Note that the normal to
the ecliptic is inside the cone.

At about 30 earth radii the angle J, becomes large enough to be noticeable
in Goldreich's figure, so that the variation in angle between the eecliptic and
orbital planes is clearly visible and the curve branches, showing the maximum
and minimum inclination. This situation is diagrammed in Figure 4(b). Note
that the normal to the ecliptic still lies inside the cone. Reference to this figure
should make clear that the inclination J of the lunar orbit to its proper plane can

be found from Goldreich's figure by adding the maximum and minimum -
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inclinations and dividing by 2. The inélina.tion J, of the proper plane to the
ecliptic is then found by subtracting the minimum inclination from J.

At about 17.5 earth radii in Golldx;eich's figure the normal to the ecliptic
lies in the surface of the cone, so that the minimum inclination is zero and the
lower branch of the curve touches the horizontal axis. This is shown in
Figure 4(e).

Between 17.5 and 3 earth radii the normal to the ecliptic falls outside the
cone, as shown in Figure 4(d). The inclination J , in this region is then found by
drawing a curve equidistant between two branches in Goldreich's figure and
measuring from the horizontal axis to that curve. The angle J is half the differ-
ence between the two branches. .

Figure 20 shows J as a functioﬁ of earth-moon distance as extracted from
Goldreich's figure by the above process (dashed curvej; . Note that the inclina-
tion of the m.oon"s orbit to the proper plane increases as the distance decreases
below 13 earth radii. Darwin's small viscosity model gives a remarkably simi-
lar result {dotted line; see Chaptef IV). This indicates that small tidal lag
angles cannot be invoked to drive the moon out of the éafth's equatorijal plane;
if it could, then J w‘ould decrease as distance decreases for small distances,

instead of increasing.



CHAPTER II

DARWIN'S APPROACH TO TIDAL FRICTION

We will now briefly outline George Darwin's approach to the problem of
tidal friction (Darwin 1879, 1880). Although Darwin treats the case of a planet
attended by two tide-raising satellites (such as the earth attended by the moon
and sun, where the latter may be treated as a satellite of the earth), we will re-
strict the discussion in this chapter to the moon and earth as an isolated system;
i.e. the presence of the suh will be neglected.

The following assumptions are made by Darwin: the earth is a homogeneous,
viscous, incompressible sphere. Body tides are raised in the earth by the moon.
The moon is taken to be a point-mass without rotational angular momentum. The
tide-raising potential generated by the moon is a second degree spherical har-
monic., The tidal disturbing potential generated by the earth is expressed as a
sum of second degree spherical harmonics. The effects of inertia are neglected
when solving for the response of the earth to the tide-raising force.

We will further restrict the discussion to a circular orbit for the moon
about the earth.

Before plunging into & discussion of Darwin's treatment we will discuss the
effects of the earth's rotational bulge on the meotion of the moon.

Goldreich (1966) has shown in an elegant manner that the rotational flat-
tening of the earth produces no secular change in the magnitude of the orbital
angular momentum of the earth-moon system or in the earth's rotational angular

momentum; we denote these two quantities by Ly and L g, respectively.
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The orbital angular momentum L, of the system about the center of mass

of the system is

L, = MOQd} +mfd}

where
= mass of the earth
= mass of the moon
) = angular velocity of the earth and moon about the center of mass
d, = distance of the earth from the center of mass

(=N
1l

distance of the moon from the center of mass
Now by Kepler's third law

VG (M + m)

£3/2

0 =

where

o3 ]
i

universal gravitational constant
r = earth-moon distance

Also

We may now write

14
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Lg is easily seen to be

Lg = Cn
where
h = rotational anguiar velocity of the earth
C = polar moment of inertia of the earth.

We may show the constancy of other important quantities by using Gold-
reich's result of the constancy of L, and L.

Clearly there is no secular change in the earth-moon distance r if there is
no secular change in L. Likewise, there is no secular change in the rotational
angular velocity of the earth n if there is no secular change in Lz. Therefore r
and n are constant in the secular sense for the case of the rofational bulge.

We refer now to Figure 5, which shows the angular momentum triangle for
the earth-moon system. f.‘T is the total angular momentum of the system and is
constant in both magnitude and direction because the system is isolated. It is
clear from the diagram that if L, L, and L, are unchanging, then j, the angle
between the plane of the lunar orbit and the invariable plane, and i, the angle be-
tween the plane of the earth's equator and the invariable plane, are constant.
Thus the rotational bulge of the earth produces no secular change in r, n, j, or i.

The flattening of the earth does make the lunar orbit precess in space. It is
clear from Figure 5 that the earth must precess at the same rate and in the
same sense as the lunar orbit. By conservation of angular momentum I_:.‘T =
f"u + fE, so that the three vectors must lie in the same plane.

It should be clear, then, that if the longitude of the moon's node N is
measured along the invariable plane from the descending node of the intersection

of the earth's equatorial plane and the invariable plane, N must be zero.
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In this investigation we are chiefly concerned with secular changes in r, n,
j, and i; hence further consideration of the effects of the rotational flattening on
the moon's motion will be dispensed with.

It should be mentioned that the sun also causes no secular change in r, n, j
and i to the order of approximation carried out by Goldreich.

Let us now investigate the response of the earth to the tide-raising force
and the effect of the earth's response on the moon (see Appendix A for a deriva-
tion of the tide-raising potential and the tidal disturbing function).

The tide-raisihg potential at some point (x*, y*, z*) in the earth is given by

Equation (A-6) of Appendix A as

3 Gm r#\2 g 1
Vt —71_—'?- COSs 9—'5

and is the first equation of 4 of Darwin (1880} with some notational changes.
r* is the distance from the center of the earth to (x*, y*, z*) and the angle ®
(which Darwin calls PM) is shown in Figure 21.

If the earth were a frictionless fluid the tide-raising force would raise a
tide on the earth, with the height of the tide o being given by (Darwin 1879,

Equation 13):

_ 15 Gm a? 2 1
% = 7 g 3 (cos 8-?)

where a is the radius of the earth and g is the gravitational acceleration at the
earth's surface. The earth would clearly bulge in this case as shown in Fig-
ure 1(a). Note that the height of the tide is inversely proportional to the cube

of the earth-moon distance.
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Darwin chose axes fixed in the earth and expanded (m)s2 8 - %—) in terms
of the direction cosines of both (x*, y*, z*} and the position of the moon (x, y, z).
Letting £, m and { be the direction cosines of (x*, y*, z*) and M,, M,, and M,

the direction cosines of the moon, then cos & = ¢£¢M; + nM, + [ M; and we

may write
2 2.
15 Gm a? £2 - p2 M - My
O't - T g— ;; {2§T)M1M2 + 2 75 p) + 27}CM2M3

(I1-1)

2 2 2
3 £24+92-2(2 M+ M 2 My
+ 26 IM My + 5 3 . 3

after some alpebraic rearrangemeni‘:s.

M,;,M,, and M, depend upon i and j, the respective angles of the earth's
equator and the plane of the moon's orbit to a fixed plane, which, in the two body
problem, we take to be the invariable plane; n, the rotational angular velocity of
the earth; Q, the angular velocity of the moon in its orbit; N, the longitude of the
node of the moon's orbit measured from the descending intersection of the
earth's equatorial plane and the fixed plane along the fixed plane; and t, the time.

For example, M, is given by Equation (20) of Darwin (1880) as
M, = PZpZcos (x-t -N) +P?qlcos (x +€ - N) + Q?pZcos (Xt t N)

+Q%q%cos (x - ¢ + N) + 2PQpq [cos (X + £) - cos (X - )]

= ’ _:.l.'. i = i l i = ..1_ 3 = 1 l 1 =
Here P = cos (2 1),Q 51n(2 1),p cos (23),q—sm(2]),x nt + x,
with x, a constant, and { = Ot + ¢, where ¢ is the longitude of epoch. M, and

M, may be written in a similar fashion. Notice that M, is expressed as a sum
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of terms periodic in time, whose periods depend on linear combinations of n and
(i; the same is true of M2 and Ma'

The combinations of M,, M ,, and M, that appear in Equation (II-1) (M, M,,
}Lzmg, etc.) can also be written as sums of simple harmonics whose angular
speeds are linear combinations of n and (i (Table 1 gives the total number of

angular speed;a which arise.) For instance, after considerable work Darwin

shows that M, M, may be written (Darwin 1880, Equation 25):

¥-1
MM, = 2 {,n4 e2V=1 (X~ 8) 4 272 k2 2V 1X 4 42V 1 (X +6)

(I-2)

-t e-zf:i' (X- 9y . 272 k2 e2VmLX P e-z\/:(X‘* 9)}

Here m = Pp - Qqe'”"1N; « = Qp + Pqe’ 1N, 7 = Pp - Qqe V"1N;

x=Qp + Pq e"f'—”'; and & = { + N. Darwin put the sines and cosines in
exponential form for convenience in later work.

Eguation (II-1) could now be writien

15 Gm a? y-1 - - -
o, = 7 ?}?{25”[' 3 (w“gz‘/_l_(x 9)+2n252e2mx+....}

by substituting in it the complicated expressions for M, M,, etc.

The equation above gives the displacement of the earth's surface when the
earth is composed of a frictionless fluid. What we now wish to find is the ex-
pression for o, when friction is present inside the earth.

It is assumed that the effects of friction are such that each simple time

harmonic that appears in the expression for o, is multiplied by a factor to re-

t

duce the amplitude of the harmonic, and its phase is altered by a certain lag
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angle. For example, M; M, now becomes in the presence of friction (Darwin

1380, Equation 33)

v;l {F1W4ev/:*f[2(}<a9)-2fl}+F2Trzﬁze\/'_f[2x'2f]

+ F, T [2(X+8)=28,] _ F, 7* o-V=1 [2(X~-6)- 2¢,]

- F2n?k2e’" 1 {~ax+a2t] _ F, «* omV-1 [2(x+8)- 2f23}

F,,F, and F, are amplitude factors and 2f , 2f, and 2f, are the respective
phase angles. (Table 1 gives the amplitude factors and phase angles for all the
speeds.)

Darwin calls the above expression XY. M? - M2 becomes A2 - Y2, etc.,

g0 that now in place of (II-1), we have

15 Gm a? £2 - p2 X2 - Y2
o, = -‘T?% {2§nf[‘y+2 3 7 + 270 YZ
(I1-3)
3§2+n2_2€2 92 + Y2 - 222

as the equation for the earth's surface in the presence of friction (Darwin 1880,
Equation 30).

The exact values of the amplitude factors and phase angles depend upon the
model chosen for the earth's properties. The model we are interested in is the
case where the earth is a fluid exhibiting Newtonian viscosity. Darwin (1879)
found the amplitude factors and phase angles for this case, which are given by

the following relations:
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: _ 194
tan [lag angle] = [angular speed] x Zga s
[amplitude factor] = cos [lag angle]

where o is the density of the earth and + is ifs viscosity.
An example of the above relations is

19y

t.'_-1n2f1 Tgap

2(n-0)

"y
|

1 = cos 2f1

for the angular speed 2 {n - Q).
Now that o, has been found, our next step is to find the tidal disturbing
function R, acting on the moon. It has been derived in Appendix A and is given

by Equation (A-15):

R (r,a,p') = %WG (M;m)f)a(i.)sat(a',ﬁ') (I1-4)
. T

where r' (which was (_:alled A in Appendix A) is the earth-moon distance, o' and
B' are the longitude and colatitude of the moon in the earth-fixed frame, and p is
the earth's density. Primes are placed on the variables for reasons discussed
below and in Appendix A. Note that o implicitly depends on r-3 (see Equation
II-3), so that the disturbing function is proportional to the inverse sixth power of
the earth-moon distance.

We now wish to know how the disturbing function changes the orbital ele-
ments of the moon. Here Darwin uses the Lagrange equations for the time
derivatives of the osculating orbital elements. These equations are derived e.g.
in Brouwer and Clemence (1961). Darwin uses four of the six equations in his

1880 paper, which we reproduce in his notation (Darwin 1880, Equations 1-4):



21

dec 20c¢? 3R
dt GM+m) de

de Qc 1-e% 3R 1 - e? (B_R g_g)
dt  G(M+m) e de e

_di G 1 1 3R, 1.(33 3_3)
dt ~ GM+ m) Vf——e—z sinj 9N tan 5 3 \3e * on

R

3
9]

Q¢ 1
G(M+m) 1= o2

The only quantities not defined by us thus far are c, the semi-major axis of
the orbit; e, the eccentricity; =, the longitude of perigee (not to be confused with
7 used elsewhere in Darwin); and R, any disturbing function in general. Since
we are interested in the effects of the tides on the moon, we set R, equal to R.

Darwin alters the form of the equations to make them more convenient to
use for his purposes. For example, in the case of a circular orbit the first and

third equations become (Darwin 1880, Equations 11 and 13):

1de _ oW
k dt de€
_¢£dp _ 1 ow 1 OW
k dt sinj oN ' ') 3¢

%
[ . . . :
where now & = (—c—) , with ¢, being some reference distance, and ¢ is now the
0

radius of the orbit; k is ﬁ-I?T_m , e,, with O, being the angular velocity of the
Mm 1

moon at the reference distance ¢,; and W is Mrim

B o as
157 F° 8

R, with C =~§-Ma2 -
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The next step is to express W in terms of &, i, j, N, and ¢ and evaluate the
derivatives of W to find the time rate of change of the moon's parameters.
Before we proceed, however, we must heed the warning given in Appendix A not
to confuse the moon's parameters as they enter in the role of tide-raising body
and in the role of tidally disturbed body, even though here the bodies are one
and the same (the moon). Let us therefore follow Darwin and place primes on
the parameters of the disturbed body (which we have already done ih Equa-

tion II-4). Our expression for W becomes (Darwin 1880, Equation 31):

: X2 - y'2 a2 - 92
W= [2x'y'?£‘3+2 +2Y' 2% ¢
a 2 2
. 12 12 2 i 2 . 2
+2X,Y,m+%x +Y3 222 ¥ +‘93 22]

where X', Y', and Z' are the direction cosines of the moon in its role as dis-

turbed body, 7 = T0/§5 with 7, = % G—I;“— (with a similar expression for 1),
c
.2z 0
and g = T

X' Y' is the same as Equation (II-2) save primed variables replacing the

12 _ 2
E(TY—, X' Z', etc. Primes must also

be placed on the parameters in the variational equations:

unprimed variables; and similarly for

148" _ W

kl dt ‘ael

£' djt 1 oW 1, 3W
- — = — —_
k' dt sin j' oN' tan 23 3¢

since they refer to the motion of the disturbed body. After differentiation the

primes may be dropped without fear of confusion. In fact, primes are not needed
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on X, £, (1, j, since these quantities are not differentiated in the above equations;
nor are primes needed on k and 7 ; hence primes on them may be dropped be-
fore differentiation.

Terms in W which remain periodic after differentiation and after the primes
have been dropped may be deleted at once from W, since we are interested in
only secular changes in the orbital parameters.

To illustrate the procedure the term

X?7-y2 q2-94
2 2

2X'Y'Y Y+ 2

appearing in W is (Darwin 1880, Equation 37)

i {F1W4£'4 e\/q [2(9'- 8y - 2f1] + 4F772 K2‘?T'2K'2 e-2=f V=1

4

4,4 o~v-1[2¢8-6)+ 2f2]} + 1 {Flg“ﬂ“‘ o-v"1[2¢8'-6)- 2£,)

F, & 1

+ 4Fm2 272 4'2 &1 2F 4 F, k% x' /-1 [2¢6'-08)+ 2t'z]}

Periodic terms have been deleted. If x and X' had been included in the
above expression 2 (x - x') would appear in the exponentials of the first-term in
curly brackets and -2 (x - x') in the exponentials of the second curly bracketed
term; but since primes are unnecessary on X, these terms disappear. Also,

9 =0t+e andg' = Q't + €' but 2 = Q', so that g' - § becomes ¢' - «.

We will now apply one of the variational equations to the terms in W in

which the lag angle 2{, appears:

=-T_2
8

e

LITH F, [W“w" 1 lace-ey-2eily e V"1 [2¢e-e)- “‘}]
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| de 3 Wg
To find this term's contribution to +~ 53 we must find 5

does not appear in 7%, 7'4, 7%, or 7'*, so that the derivative operates only on

1
. Now ¢'

the exponential terms. We obtain after differentiation

oW
25 = — Fl [TT4E'4 el/-"—l [2(6"5)'2f1]

X3 a 2]/-_1

Dropping the primes, we have

a4 ~V=1 [2(e'=- ¢y~ 2f1]]

-1 e

d Wae, 2

p— T .
3¢ E—Flsm 2f, mtat
where
7 = Pp-Qqe "IN, 7 = PP'Q_Qe-'/:_lN,
and
o2V 161 - a2/ 1gy
sin 2f, =

2 {1

N is equal to zero when the earth and moon are the only two bodies in
existence [as discussed earlier], so that # = 7 = cos [%— (i+ j)]. Also, in the

case of a viscous earth F, = cos 2{,, making the contribution of the W,; term

1 de
tO?aT

1 2
5 =7 sin 4 £,

8

The other terms in W may be evaluated in similar fashion to finally give
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.17
8

o.|n.
|\

1 1
T 5 [wssin 4f, - «®sin 4f, + 47%«2sin 2¢g,

(IT-5)

- 472 &% sin 2¢g, - 6 74 x4 sin-4h]

ag the secular rate of change of £, where « = sin [—21; i+ j)] .

Similarly
-£ di 2 1 1
—-—E—E]E :Iﬂ-—[5777Ksin4f1+w3x3sin4f+Eﬂx7sin4f2

3 1
to ik (m? - «k?) sin4h- S« n? - 3k sin2g

1 1 o
+ 5 Tk (72 - K2)2 sin 2¢ + 3 7 k3 (372 ~ x?) sin 2g2] (IT-8)

gives the secular rate of change of j.

Equations (II-5} and II-6) are respectively Equations (73) and (71) of Darwin
(1880).

The secular rates of change of the earth's angular velocity n and the inclina-
tion i of the earth's equator to the invariable plane can be derived from (II-5)

and (II-6) by application of the law of conservation of angular momentum:

d -72 [1 1
2 T {Enssin 4f, + 27t kdsin 4f + ) x® sin 4f, + "® k2 sin 2¢g,

+ 72 k2 (72 = «?)% sin 2¢g + 72 &% sin 2g{|

I-7)
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2 M 1
ng—i = IETI:E 77k sin 4f, = 73«3 (% -~ «%) sin 4 f - E'J’TKTSin 4f,

1 1
Ewsx(wz + 3x?%) sin 2¢g, - E'rrx(rrz - Kz)a sin 2¢g

-+

1 3
-é—'nrxs (372 + «?) sin 2g, - 5 73 3 sin 4h]

(I-8)

These two equations are the last two equations of §11 of Darwin (1880).

Equations (II-5) through (II-8) are central to our discussion.



CHAPTER III

TIDAL FRICTION AND LARGE VISCOSITY

A. Inclination of the Lunar Orbit to the Earth's Equator

In this chapter we discuss the secular motion of the moon for small
inclinations of the lunar orbit to the earth's equatorial plane for earth-moon
distances less than 10 earth radii. Equations (II-5) - (I1-8) are not valid beyond
10 earth radii because solar influence would have to be considered (see Chap-
ter I, Section C). The effects of the sun beyond 10 earth radii are considered
later in Chapter IV. , |

The viscosity of the earth will be assumed consatant throughout this discus-
sion. Variable viscosity is considered in Section D of this chapter.

Let us first write Equations (II-5} - (II-8) in slightly altered form.

From Chapter II the moon's orbital angular momentum is

G
L, = M+mMmc"

The earth's rotational angular momentum is

Ly = Cn
The constant k introduced on page 21 is

C
k = Gum ™ <o

We wish to express our results with reference to a particular earth-moon

distance ¢ ; hence we can rewrite the first equation as

27
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_ G y [ C "
Ly = M+mMmCo(g;“) = b¢
where
_ G
b = Mt m Mm cé*
Since ‘
_ C
k = GMm QOCO
bk = C c3/2

But by Kepler's third law

Hence
bk = C

Equations (II-5) - (II-8) may now be written as

dLM _ 1 2

T
T T 5 Ol sin 4, - i 46, + 47t sin 2,

- 472 8 sin 2¢g, - 6 7% «* sin 4h]

(II-1)
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d;j 2 1 1 1
—-lt- = —-;:— C"L; 57r7f<sin4f1+n3+<35in4f+Enx7sin4f2
3
+§W3K3(TT2-K2) Sin4h-"§ﬂ5K[W2-3K2] sin 2¢g,
1 2 2v2 o 1 5 2 2y o
ty e - k“) sin 2¢g + 7 7K (37% - «%) sin 2¢g, (TT1-2)
dLlg 72 1
T *TCI:Ewgsin4fl+2W4K4sin4f+§.t<asin4f2
(1I1-3)
+ 78 k2sin 2g; + 72 k2 (v? - «2)2sin 2¢g + w2 4% sin 2g2]
di 2 1 1
d—i = ;— LE [5777:( sin 4f, - 77«3 (7% - «%) sin 4 f - wa7sin4fz
E
1 1
+57‘.’5K(T:"2+3K2) sin 2g1-§77;<(712—f<2)3sin 2g
-"1'77 5(372 + «?) sin 2 “§“7T3K38in4h | -4
g TK P! ) . (IIl-4)

Let ¢ be the inclination of the lunar orbit to the earth's equatorial plane;

then

b= it

1
To= cos[i(i+j) = cos

CR

U b TN R
kK = sin 5(1-1'])_ = sin 5
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For small ¥ (on the order of a few degrees or less) 7 = 1 and « << 1.

Assuming small ¢ and keeping terms through «2, Equations (IlI-1) - (Il[-4)
become

17¢C 4
37T [#® sin 4 £, + 47° k% sin 2¢g,] (ITI-5)

L)

2

2
dj ~ 70 1 1 {1 , 1, 1 .
dt :_Q—Cq E;[EWTKSIHQgI—Eﬂ'?KSln‘QrfI* 5W5xs1n2g} (I11-6)

dLy o 1 |1 :l
> _— — | = B T 6 .2 1 5 2 1 —_ .
P a Cf” |:271 sin 4f, + 7° «x?sin 2¢g, + 7®«*sin 2¢ (IIX 7)

2C
di . 7o 1 1 |1 1 1
—1———"—[Ew7ksin2g1+5n7xsin4f1—5777Ksin2g:| {[II-8)

where we have explicitly written ,/£® for 7.

Using the approximations

= 3 llb - ...BP...
K s51n —2 A2 2
- Y 2
7 = cos F R 1~ g
We write Equations (III-5) - (III-8) as
dLy 1 7¢C 1
T 57 g [(1-¢2) sin 4, +y? sin 2¢g,] (II-9)
dj 176 .1 1
rL3 z T—Q—Cfu' ET; [sin 2gl—sin4f1“sin 2g]tp (II-10)
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dlg . -7¢ 1 [1 s iy v

at - g Cgl—z 2(1—¢)51n4f1+731n2g1+7 sin 2g| (OI-11)
di o~ 176 1 1 . | _
qr - 4—E“C'I;§—1'2‘[sm 2g, t sin 4f, - sin 2gl ¢ (III-12)

neglecting powers of ¢ higher than 2.
If Equations ([II-10) and (II-12) are added together we obtain the rate of

change of ¢ in time:

Note that

jaR JoR
*le
R
RS

so that for ¢ = 0, g% = 0.

If the moon orbits the earth exactly in the equatorial pl_ane, then the inclina-
tion will remain zero.

If the moon is slightly berturbed out of the equatorial plane so that J > 0,
then the moon will move toward or away from the equatorial plane depending

upon whether

1 + l)sin2 L 1) sin 4 f 1 + 1 in 2g (OI-14
Tt - |y -7 - |+ + ] sin -
L, Lg B TA\L, T L 1 L, "L g )
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is a negative or positive gquantity, i.e.

d

{a) Ei% < 0 if (III-14) is negative
d

(b) % >0 if (III-14) is positive

For case (a) an equatorial orbit would be stable since small perturbations
in ¢ would drive the moon back toward the eguatorial plane. In case (b) an
equatorial orbit would be unstable, because small perturbations in v would
cause the inclination to grow at a rate proportional to . It is this second case
in which we are mainly interested; we therefore want to examine ([II-14) in de-
tail to learn whether the tides can drive the moon away from the equatorial
plane.

We start with the coefficients of the sines of the lag angles.

1 1 : os
(L_u + f];) is always positive

(L_lu - LLE) is positive for ¢ < 21 earth radii

Thus both these terms are positive in the region of interest. We next turn
our attention to the lag angle terms. |

Equations (III-9) - (IfI-13) indicate that the tides which govern the evolution
of the earth-moon system for small inclinations are the tides with speeds n ~ 20,
2 (@ - (), and n, with the lag angles being g,, 2f, and g, respectively. These
tides are called O, M,, and K, in Darwin {1883).

To learn something of the nature of these tides we refer to Figures 6 and 7.
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Figure 6 shows {! and n as a function of earth-moon distance for ¥ = 0.
Here use is made of the equations

YG (M + m)

c3/2

which is Kepler's third law, and

L7 = L2+L2+ 2L, L, cos

which is derived from the conservation of angular momentum. From this latter

equation we obtain (remembering = 0)

G b4
_ LE LT_L'M LT-— M+m Mmc
T T T ¢ T C

Figure 7 shows the angular speeds of the tides as a function of distance.
The region to the left of the dashed line is inside the Roche limit (2.89 earth
radii} where the moon would be torn apart by the tidal stress if the moon lacked
cohesiveness; thus distances greatly inside the Roche limit are not physically
realistic. Note that both n and 2 (n - (i) are positive for distances greater than
the Roche limit, while n - 21 changes gign at 3.83 earth radii (dotted line).

The distance where n - 2{) = 0 makes a convenient reference distance (at
this distance the earth's rotation periced is about 5.25 hours and the moon's
orbital period about 10.5 hours). We henceforward take ¢, as the earth-moon

distance wheren = 2{1:

¢, = 3.83 - a
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where a is the present radius of the earth (6.37 x 10® em). All quantities with
zeros as subscripts refer to their values at this distance.

We now examine the sines of the lag angles. Using the identity

2 tan 8
sin 28 = —.—.—..an._._.
1+ tan2 @
and the assumption of viscosity we have
-0
sin 4f, = 4(n - D¢ (I-15)
1+4(n-m22
sin 2g = —2n % (II1-16)
1+n%{2
- 20
sin 2g, = ——@ =2 (II-17)
1+ (n-20)% (2 .
where
19 v
¢ 2gap

and use has been made of the tangent formula for the lag angles (see page 20).
The signs of (II-15) - (III-17) are of the same signs as the respective
speeds; thus sin 4f and sin 2 g are positive while sin 2g, is negative for n <20
and positive for n > 2Q.
From the above considerations we can assert that
d
a% £ 0 for c < g
for all values of viscosity since each of the three terms in (III-14) is negative.

Hence an equatorial orbit is stable at least up to 3.83 earth radii distance.
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The sign of (III-14) for ¢ > ¢, depends upon the viscosity of the earth. To
prove this, we examine this expression in the limit of low viscosity and then in
the limit of high viscosity.

In the limit of low viscosity
(- <« 1
where from Figure 7
(n=£8) 2 10-* sec.

This implies v << 10'% poises.

In this case Equations (III-15) - (III-17) can be written as

. 4(n -0 L -

sin 4f, = T+ a(n - 0)2 2 v 4dn-ML
2

sin 2g = 1—+_?1_2C—5 ~ 2n¢

sin 2g, = 2n-20) ¢ T 2(n-20) (

1+ (n-20)2 2
It is convenient at this point to introduce Darwin's notation (Darwin 1880)

0
A= —
n
M decreases monotonically as the earth-moon distance increases (still remem-
bering = 0) and obviously has value 0.5 at ¢,; see Figure 8.

Using this notation we have
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sin 4f, anf 4(1-2x)
sin 2g anl - 2
sin 2¢g, nl 2(1-2x)

and (III-14) becomes
1 1 1 1 1 1
n§[2 (“I:M“-P'L—E)(l—27k)-4(m—q) (1—?\)—2(L—M+L—E)]

This expression (see Figure 9(a)) was found to be negative by numerically '
computing the expression in square brackets for various distances. Thus, for

small viscosities %‘1‘? < 0 everywhere outside the Roche limit and an equatorial

orbit is stable.

In the limit of large viscosity for which
(n-0 T > 1
which implies
v >> 103 poises

Equations (III-15) - (III-17) become

N 4f. = 4(n~- 0 N 1 _ 1 1
et 1+4m-m22 (-0 T In \1-A
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Siﬂ2 :__2_9.€_ -\,_..2.—:_.1.'_.‘2
& 1+n2§2 ~ nl n{

i 2 _ 2(n-20) ¢ N 2 __1_ 2
8113 g1 - 1+(n._2Q)2£2""(n—2Q)€ l‘IC, 1-2A

This last expression holds only in the regions away from c; see Figure 9(b).
earlier sin 2g, = 0 at ¢, = ¢ while the expression above approaches infinity as ¢
approaches ¢,. The behavior of sin 2 g, near ¢, will be examined later.

For large viscosity (III-14) becomes
FU S U N TR 5 NS NS S S B O
In [\L, Lg/ 1-2x L, Lg/ 1-A L, Lg

The expression in square brackets is positive for ¢ > ¢,; see Figure 9(b).
We next inquire about the behavior of sin 2g, near c'o wheren = 2. We

make use of -

b %
LT———-c
%
_ YGM+m) ~ €9
= — n =
c3/2 C
Let
c T ec=-c¢ygtoey = Cyp ¥ x
where

x = bt~ ¢

X measures deviations in distance from c,. The expressions for  and n

become



b xy5
Ly - — ¢ (1+ ——) _ x|
T cH 0 o L, -b 1+c0
"o C ) C
¥ 2 << 1, then by Taylor series
Q
9]
~~ 3
0 = QO-EE—O—X
b
L, - b- X
-~ T 2C0 b
" C B R P
keeping only first order terms in x.
So we have
30
A b 0
n-20 = n°_2c0C x = 20, + o X
3 b
S Mo - 290*[ o 2coc}"
X
= 0+—C-'"é
where
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Equation (IIT-17) becomes

ie
|m
T
m |
e S

sin 2 g,

Note that this expression is antisymmetric in x.

If € << ¢, (v > 10!3 poises), then sin 2g, has the features shown in Fig-
ure 10. Sin 2g, ranges from -1at X =-cto0at X = 0to+lat X = +¢. The
peaks become sharper as the viscosity increases (and ¢ decreases).

Both sin 4f, and sin 2g are only slowly varying for » >> 1015 poises and
are virtually constant between x = -¢ and x = +e., Further, both sin 4f, << 1
and sin 2g << 1for v >> 1015 poises. Expression (I[II-14) is then seen to be

zero for ¢ slightly greater than ¢, and the zero approaches ¢, as the viscosity

0
increases; we may then speak of (III-14) as being zero for ¢ = ¢, and positive
for ¢ > ¢, with negligible error for large viscosities (>>10** poises).

We conclude that g—f becomes strongly negative for ¢ < ¢, and strongly
positive for ¢ > ¢,. Thus for viscosities >> 10!% poises an equatorial orbit is
unstable for ¢ > ¢, and the moon will be driven away from the equatorial plane
if perturbed.

The transition of (IlI-14) from negative to positive for ¢ > ¢, was found to
occur at a viscosity between 1015 and 10'° poises by numerical computation.

We summarize the major results of this section.

(i) % < 0for e < ¢, for all viscosities and an equatorial orbit is stable,
(ii) % < 0for c > ¢, for viscosities less than about 10'® poises and an

equatorial orbit is stable.
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(iii) -g—% 2 0for ¢ > ¢, for viscosities greater than 101% poises and an
equatorial orbit is unstable.
These results hold for small values of y (the inclination of the lunar orbit

to the earth's equator}).

B. Variation in the Earth-Moon Distance

Let us turn our attention to Equation (II-9) and write it as

1 'I’ch 1 . .
at 2 gb El"z' [(I-L/JZ) sin 4f, + y?sin le]

a -
Ve
e

(III-19)

to show explicitly that we are discussing essentially the variation of the earth-
moon distance in time and not the orbital angular momentum.
In the limit of extremely small angles the 2 terms can be neglected and

(III-19} becomes

’T02C 1
— sin 4 f

ab £12 _ 1

1
I = 3 (IT-20)

so that only one tide governs the variation in distance. If v << 10'% poises, then

d¢

by the approximations of the preifious section Ir = v and if » >> 10!% poises,

dé .1
then EE v .

The right side of Equation (II-20) is positive because sin 4 f, is positive;

d£

therefore the moon is driven away from the earth. Also, It is greatest when

015

sin 4f, = 1, which occurs at a viscosity of about 1 poises.

Equation (ITII-20) can be integrated to give
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1 13 _ s13y = 1 f2
13 (£, £;%) = 2 gb J;l sin 4 f, dt

If sin 4f, is only slowly varying, we have approximately

2C
~ To

1 1
13 €% -¢6% = 2 gb sin 4 f, (t, - t;)

for the dependence of distance on time.

Returning to Equation (III-20), if the equation is divided into Equation (III-10)

and into (IfI-12) we obtain equations which eliminate the time:

.El_j_ _ 1-13_ sin 2g1 sin2g
& T 2L, |sindf, "1 smag,| ¥
di _ 1 b [sin28 o sin 2g
d¢ 2 L |sin 4f, 1_sin 4f, ¥

If each side of these two equations is multiplied by kn, then

sin 2 g, :
[___1_ ﬁ_%s_]",,

dj 1L
sin 4 f, sin 4 f,

kn - L E
n o4z 2 L,

di 1 | sin 2¢g, sin 2
kn — = = |——p— +1- 01 B
"3z 2[sin4fl MR ¥ ]

where we have used kb = C and Ly = Cn.

Now because J = i+ j is very small, examination of Figure 5 shows that

Lgi & Lyj

giving
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o= i+ = i+LM'"“ 1+LE‘
= 1+t = = = — i
Ly’ Ly
Substituting, we have
Lg\ [sin 2 ]
e 4L o 1 TEY IR OB sin 2g | |
nge T2 V) |sindE, Tl sinag, |
di _ 1 Lg) |sin 2¢g, sin 2¢ | .
kn Gz ~ "f(“t;)_——sin“l”‘m_l
or finally
k d log j . 1 1+_L_E:_ I_Si"2g1+sin2g
" Tag T T2 L, sin 4f,  sin 4f,
" dlogi _ 1 1+ﬁ 1'+ sin221_ sin 2¢g
" TaE T2 L, sin 4f,  sin 4f,

Using our previous approximations for sin 2g p 8in 4f . and sin 2g in the limit

of low viscosity we obtain

d log j

kn az

dlogi

kn—‘cE'—

These equations are found in §19 of Darwin's 1880 paper (Darwin 1880 pg. 312).

In the limit of large viscosity
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dlog j 1 Lg 4 (1-A -
kn :;] : ) Cl+ fu_) [1 - ﬁl] (I1-21)

dlogi _ 1 Le 4N (1-2) ‘
kn dz = 3 1+q 1+—"—1—_—'2—)\— (ITI-22)

These last equations are found in § 20 of the 1880 paper (Darwin 1880, pg. 317).
Equations (IfI-21) and (III-22) will be discussed when analyzing Darwin's
theory of the moon's origin.

We now return to Equation (III-19) and write it as

1
= 5 sin 4f, - y?sin 4f, + y?sin 2¢
dt 2 gb &2 1 1 N
It is not generally true that

|ly:? sin 281| << |sin 4f,]

for small ¢ for viscosities greater than 1015 poises because | sin 2g,| may be

on the order of 1.

An example will illustrate this. Take

v = 1018 poises
sin 2g, = 1
Y = 3° = 0.0052 radians

n-{ = 1.66 x10-* sec—!

Then

1
Sil‘l.4f1 P~ -0 = 0.0022
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gb2 sin 2g1 = 0.0027
Y2 sin 4 £, = 0.000006
Obviously in this case
| y2sin 2g, > sin 4f,
The ¢? sin 4f, term is generally quite small and may be neglected giving

2
TOC

gber?

[a
Uy
ie

1
2

[a N
(o

[sin 4f, + 2 sin'2g1]

The point of this example is that even for small ¢ (on the order of a degree)
neglect of the 2 sin 2 g, term may lead to serious error. In fact, this term
may have profound effects on the lunar orbit. We demonstrate this by examining
some possible histories of the lunar orbit.

Figures 11, 12, and 13, show y; sin 4f |, y? sin 2g, and sin 2g,; and %
respectively as functions of x for a viscosity of 10%° poises. (All computations
for Figures 11-14 were carried out with the computer program described in the
next section.) The initial conditions are chosentobe y ~ 0.4°at x = -0.4 x 10-3

earth radii; it is labelled A in Figure 13.

Since
sin 4f, +y?sin 2g;, > 0

for the chosen starting condition, g—f >.0 at A and the radius of the moon's
orbit increases, so that the moon moves away from the earth (to the right in the
figures). As the moon moves toward point B, its outward rate of motion becomes

slower and slower as y? sin 2 g, becomes more and more negative. Past point B
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%% increases and reaches a maximum at ¢. From c¢ onward the rafe of motion
decreases. Note that i decreases for x < 0 and increases for x > 0.
Now if the radius of the moon's orbit is initially less than ¢, - ¢ and the

radius of the orbit is expanding, it must be that

&
Iv
o

at all points along its outward journey if the moon is to reach the outer regions

past ¢,. In other words,
sin 4 f, + L/J2 sin 2g1 > 0
Now at x = -¢, sin 2g, = -1 and the abhove condition becomes
sin 4f, —y? > 0

or

Y < Ysin 41,y

at x = -e.

Hence for initial conditions for which the radius of the lunar orbit is less
than ¢, - ¢ and expanding, the above restriction must hold: the inclination
must decrease below a certain value at x = -¢ for the moon to gain the outer
regions. Thus, if such an orbit has a large inclination, g—f becomes small as
the moon approaches x = -¢ and the moon "waits' hear X = -¢ until ¢y has

di

decreased enough to allow the moon past x = -¢ (a—t— is negative for x < 0)

and into the outer regions.
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The net effect is that the distance x = -¢ acts as a "barrier" and will not

let the moon through until ¥ has dropped below a eritical angle, which we label

e
: —
g = .I/sin4f1 R ]/(HT)E;

Critical angles for various viscosities are given in Table 2.

Information regarding the history of the inclinafion for orbits which have
Y >y for x < -¢ is lost at x = -¢, since y must be less than or equal to y_-
in all cases to get past the barrier.

Figure 14 gives an example of  initially so large that
sin 4f, + y¥sin 2g; < 0
so that now

dg
at <0

and the moon moves toward the earth. It continues to do so until
sin 4f, +y?sin 2g, = 0

d&

at point D in the figure. Here at changes sign and the moon moves away from
the earth. Thereafter the moon's possible motion is as described before. In
this particular case y is quite large as the moon approaches the barrier, so
that the moon must wait until ¢ drops below 2.7° (the critical ﬁngle for 1018
poises) before moving inte the region past x = 0.0,

The effect of the barrier and the moon's orbit shrinking and then expanding

can occur only if the radius of the lunar orbit is less than ¢ . If the moon
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formed or somehow arrived at a distance greater than ¢, then there is no
restriction on the inclination and the moon moves continually outwards, since
sin 2gy > Oforec > ¢g.

We summarize the major resulis of this section.

2
T4 C

n.la.
lad LA

{i) = % [sin 4 f,]

gb&t?
for equatorial orbits

2
1 76 C

Egbé:lZ

a S5 oz

vy

[sin 4 f, + y?sin 2¢g,]

[a N
-+

for viscosities greater than 101 poises and  on the order of a

degree

(iii) Y < ]/sin4f1 at ¢ = ¢, - €

for an expanding orbit

(iv) if sin 4f, + 2 sin 2g, < 0 (for ¢ < ¢,) an orbit will contract, and
1 1 0 _

then expand.

C. Computational Results

The integration of Equations (III-5) - (I1-8) was carried out numerically
with a FORTRAN computer program using double precision variables” The pro-
gram is given in Appendix C. It was run on an IBM 360/91 computer at the
Goddard Space Flight Center, as well as on a Univac 1108 at the Universgity of

Maryland.

“This program was also used to obtain results similar to those of Gerstenkorn {Alfven 1963},
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The program has the capability of integrating the full Equations (I[I-1) -
(II1-4}, but the contribution of the neglected terms was found to be insignificant
in the computations discussed below,

The viscosity v, time interval At, and the initial values of t, ¢, and £ are '
read into the program. From the initial data i, j, n, and {} are computed, as
well as L, and L.

The program then iterates equations (III-5) - (III-8) by computing the

changes in i, j, LE, and Ly according to the simple formula

dX
AX = g‘{"ﬁ\t

where X is i, j, L, or L. The new values become

X =

New xDld +AX

dx
dt

each step the new values of £, n, ¥, Q, i, and j are printed, as well as Ai, Aj,

is then recomputed from the new values and the process is repeated. At

and A,

After a certain chosen number of steps NQ At is adjusted so that the step
change in £ A £ is constant for the remainder of the run. The reason for switching
from constant At to constant A ¢ is to insure that the time intervals at the begin-
ning of the run are small enough so that the peaks in % near & = 1.0 are not
missed (most of the runs start near £ = 1.0). Later, as ¢ increases and the
change in ¢ and the change in angles i, j, and s in time become small, constant A ¢
is used to keep the run from becoming extremely long.

If at any step |Ai/i] or |Aj/j| exceeds some chosen fraction called CRIT

in the program the time interval for that step is halved and the step is repeated
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until both |{Ai/i| and |Aj/j| are less than CRIT. The purpose of introducing
CRIT is to avoid large changes in angle at any one step which would lead to
cumulative errors after many steps;

When £ exceeds some chosen value XIMAX, or the total number of steps
exceeds NLAST, the run is terminated. At the end of each run the {otal angular
momentum is computed from the values of the last step of the run and is com-
pared fo the initial angular momentum. This serves as a check on how well the
approximations used in writing (III-5) - (III-8) conserve angular momentum.

After a run is completed its accuracy can be checked by halving the time
interval of each step, doubling the number of steps, and repeating the run.

The program also has the capability of integrating backward in time as well
as forward.

The program was run for various viscosities for which the moon is per-
turbed from an equatorial orbit near ¢ = ¢,. The relevant data for these runs
is summarized in Table 3. All runs stopped when the moon reached 10 earth
radii distance from the earth; beyond 10 earth radii solar influence must be
taken into account. No viscosities above 1021 poises were considered because
of the unrealistically long time scales involved.

Figure 15 shows J as a function of earth-moon distance for an initial per-
turbation of 3° for viscosities of 10'5, 101¢, and 1017 poises at ¢ = ¢,. Note
that ., decreases as a function of distance for 10'® poises, but increases for
1615 and 1017 poises. This behavior is to be expected from the discussion
given in Section A of this chapter.

The program was run next for = atc = ¢, - ¢ for 10'%, 10'%, 102°

and 102! poises (Figure 16). This is the largest possible value y can have near
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¢ = ¢, without suffering some further perturbation from an equatorial orbit.
Smaller initial angles at ¢ = ¢, - ¢ invariably gave smaller final angles at
10 earth radii.

Finally, Figure 17 shows  as a function of distance for viscosities of 10!%
and 1021 poises for initial perturbations of 1°, 2°, and 3°. Figures 18 and 19
give i and j respectively for the given initial perturbétions. Curves for viscosi-
ties between 101!8 and 102! poises fall between the respective curves given in
the figures.

Note that only when the initial perturbation is about 3° does ' reach near
10° at 10 earth radii as required in Goldreich's model; or equivalently, does j

reach 6° at 10 earth radii.

D. Variable Viscosity

It was next assumed that the viscosity was not constant, but that the vis-
cosity' v was a function of absolute temperature T and that the earth was cooling
down from an initially molten state. The purpose in doing this was to see
whether the ea.rth.could cool off enough to be solid and have a high viscosity 'by
the time the moon moved from the ﬂoche limit (2.89 earth rfidii) to ¢, (3.83
earth radii). If so, the mechanism for driving the moon out of the earth's
equatorial plane may have been operative.

The dependence of »» on T was assumed to have the form

v = oy, eBt/kT (III-23)
where
v, = a constant
E* = activation energy per atom
k = the Boltzmann constant.
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A theoretical derivation of this equation is given by Glasstone, Laidler, and
Eyring (1941). We have ignored the dependence of v, on T and have assumed it
to be a constant. Experimental data shows that this equation holds fairly well

for silicate melts (Clark 1966), with
o = 107% poises

E* o 2-5eV/atom

Data on molten rocks are uncertain; the activation energy E* has approximately
the range given above, but v, may vary by orders of magnitude. |

A cooling law for the earth was required to give the temperature T as a
function of time t. The law adopted here is derived in Appendix B. From Egua-

tion (B-5) of Appendix B we take the form of the cooling law as

— To
T(t) = [1 A ZSLl'os t - to)]l/a
where
T, = temperature at time t,

_ surface temperature
average temperature of the earth

2
g - 12!:3p o
where
& = radius of the earth = 6.37 x 108 cm
o = Stefan-Boltzmann constant = 5.72 x 10~% erg em~? sec~! deg~*
M = mass of the earth = 5.98 x 1027 g

C, was taken to be 1.0 x 107 erg/g-deg, giving
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deg
sec

S = 1.46 x 10-20

The computer program given in Appendix D was used to give the moon's
distance, and the earth's temperature and viscosity, as a function of time. The
program differs from the program of Appendix C only in that the viscosity is
allowed to vary in time rather than i‘emain constant., The moon was initially at
the Roche limit and in the equatorial plane of the earth, with the earth at a tem-
perature T;. Various values of »,, E*, Z, and T, were used to see if the earth
could cool down near the melting point of rocks (about 1500°K) by the time the
moon reached ¢ .

The results may be briefly summarized. For E* 2 5 eV and v, > 10-*
poises the temperature of the earth at ¢, did not drop below about 1500° for
initial temperatures between 2000°K and 3000°K with Z = % to -;—; . For E*x
4.3 eV and ixc in the neighborhood of 10-4 poises, the temperature of the earth
could fall below 1250° for the same ranges of initial temperature and values of Z.
Apparently large values of E¥ and v, , which increase the viscosity at any given
temperature, hasten the moon past ¢, before the temperature has a chance to
fall very low.

Due to the wide variation in results and ignorance of the interval condition
of the earth, it appears that we can make no definite statement as to whether the

earth could cool down sufficiently from a molten state to have a large viscosity

when the moon reaches C4e



CHAPTER IV

SOLAR INFLUENCE

The history of the lunar orbit for distances greater than 10 earth radii,
where solar influence must be considered, will now be investigated. Our discus-"
sion will be restricted to the behavior of J, the angle between the plane of the
lunar orbit and its proper plane. The angle j', the angle between the plane of the
lunar orbit and the invariable plane, is essentially J for distances less than
10 earth radii (see Chapter I, Section C). Hence at 10 earth radii we will join
our previous solutions for j as a function of distance to those we obtain for J
as a function of distance.

Darwin obtains the rate of change of J with respect to £, with solar tides
included, in Section III of his 1880 paper. It was found by assuming the inclina-
tions of the earth's equator and the lunar orbit to the ecliptic are small and
applying the variations of parameters technique in solving di,fferential equations.

After a quite lengthy analysis he obtains (Darwin 1880, eq. 250, pg. 297):

dl 1 1 Ky toa
%;J = = {——— {"(K1+a)(a'—/3')—a'b e -b'a}

("(1"'(2)2
(Iv-1)
1 _gr A
+ m{ (K2+CL)+ (K1+Ct,)+bG_aD}
where
- Tl _ - kal }
a_m+72he a — m ﬁ_1+’r b =1
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sin 4f, - sin 2g, + sin 2¢g

1
E_'—Em

sin 4f1

' w2
(sin 4f, + sin 2g, - sin 2¢g) - 2(‘1“) sin 2¢g + (—:*) sin 4 f

T

2 sin 4171

(1

T'
+ —
T

)sin 2g - 2sin 2¢g,

sin 4 £,
:‘EE.. }\' = E = lﬁ
m T F n £ T 775
Ky + Ky :.—a‘-ﬂ Ky = Ky = = V(a*ﬁ)2+4ab
'TO 3GM0
T =—6 T = 2 s
£ )
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= mass of the sun

=
o]
I

It

¢y = earth-sun distance

The change of £ with time is given by (Darwin 1880, eq. 227, pg. 293):

1 72 |
- ‘Q'Ig‘“sinilfl . o av-g)

Uy

14d
k

[

t

This is juét the same equation as (III-20), where the only tide-raising body
was the moon. The two are the same because solar tides and the direct gravita-
tional force of the sun on the moon produce no secular change in the moon's
distance.

The computer program of Appendix E integrates Equation (IV-1) from 10 to
60 earth radii for any desired viscosity. It assumes a constant step size in £.

The angular velocity of the earth n is computed by assuming the total angu-
lar mdmentum of the earth-moon system is conserved and that the moon re-
mains in the equatorial plane of the earth. (The neglect of the frictional effects
of solar tides and inclination leads to only small corrections in the final results.)
These a.ssumptions make the right side of the equation independent of angle, so

that the solution of the equation has the form

£2
J, = edelFeOaE

where F (v, £) is the right side of the equation and J, is J at £,-andd, is J at
the initial distance &,. A graph of J versus earth-moon distance ¢ has'the same
shape for a given vismsity regardless of the initial value 6f J; Iarger.or .émall
initial values 6f J merely shift the curve up or down.

The progi-am wag first run for the present-day values J = 5°9' and £ = 3.96

(60 earth radii) for a viscosity of 1012 poises to obtain the small viscosity limit.
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The result is shown in Figure 20 (dotted line). Note the close agreement with
Goldreich's curve (dashed line), where the lag angles are assumed to be equai.
The program was run again for a Viscosity of 10!° poises. It showed negligible
difference in results from 102 poises, so that the dashed line indeed repre~
sents the small viscosity limit.

The program was run next for a viscosity of 10'® poises to extend the curve
for j shown in Figure 19 for an initial perturbation in ¢ of 3°. The resulting
curve is the upper solid line shown in Figure 20. The program was run again
for a viscosity of 10%! poises; it produced little change in the shape of the curve
from 10 to 60 earth radii; hence the curve shows the large viscosity limit in that
region. Note that the character c_:f the large viacosity curve is quite different
from that of the small viscosity curve.

If the earth behaved as though it had a large viscosity from the time the
moon was at 3.83 earf.h radii to the present time, then an initial perturbation in ¢
of about 2.5° at 3.83 earth radii would be required to give the present value of J
of 5°9'. This is shown as the lower solid curve in Figure 20. However, viscosi-
ties greater than about 10_17_ poises give time scales of the orbital evolution
greater than the age of the sola;r ystem.

What is more likely is that the earth behaved like a liquid with high viscosity
in its early history and then like an anelastic solid or liquid with low viscosity
later on, which is what is observed today; so that the inclination J in Figure 20
started on the upper solid curve at 3.83 earth radii and switched over to the
dotted line, possibly somewhere in the region where the two curves merge beyond
15 earth radii. Darwin (1880, §32, pg. 363) discusses the posgibility of this kind

of hehavior.



CHAPTER V

DISCUSSION

A, Critique of Assumptions Made

We shall now examine the important assumptions made in obtaining our
results for strong tidal friction.

One important assumption we have made is that the orbit of the moon re-
mains cireular throughout its history, i.e. the eccentricity e of the lunar orbit is
zero. The work of Darwin (1880, Section V), Singer (1968), and MacDonald (1964)
shows that weak tidal friction decreases the eccentricity as we look back into the
past until the moon reaches about 3 earth radii from the earth, where the eccen-
tricity undergoes rapid changes. Since the present value of the eccentricity is
0.055, this would imply that neglect of the eccentricity when the moon was at the
reference distance of 3.83 earth radii would lead to negligible error in con-
sidering weak tidal friction.

However, use of Darwin's treatment of the eccentricity for viscosities
greater than 10!7 poises indicates that e increases with time until the moon
reaches about 16 earth radii distance from the earth; at larger distances the
eccentricity rapidly decreases. This indicates that the eccentricity could have
been large for earth-moon distances of less than 16 earth radii. However, a
nearly circular orbit for the moon over its whole history is by no means ex-
cluded. The earth could have behaved as though it had a large viscosity when the
moon was less than 16 earth radii from it; beyond 16 earth radii the earth could

have behaved as though it had a small viscosity. If this were the case, then if the
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moon were in a nearly circular orbit at 3.83 ea_.rth radii, the eccentricity would
slowly grow to its present value as the moon moved outward to its present
distance.

Another assumption which we have made is that harmonics higher than the
second degree may be neglected in the tidal disturbing function (Equation II-4).

To show that this approximation is a good one, we note that the second degree
6

harmonics in the disturbing function are multiplied by (—:_i) , Where a is the
radius of the earth and r is the earth-moon distance; this may be seen from
Equations (II-3) and (II-4). If third degree harmonies were included in the dis-

' 8
turbing function, then they would be multiplied by (%)

: likewise, fourth degreé
harmonics would be multiplied by (%—) w0 , etc. Hence the third degree terms are
reduced by a factor of (%)2 from the second degree terms. Forr = 3.83a,

(%)2 = 0.068. Also, the contribution of the third degree tides to the rate of
change in time of the inclination is small compared to that of the second degree
tides (see the discussion in the last paragraph of this section). Thus the restric-
tion to the second degree terms in the disturbing function leads to only a small
error.

We have further assumed that the moment of inertia of the earth C had its
present-day value of 8.11 x 104° g-em? = 0.33 Ma?. This implies that the
earth's core had already formed. Darwin assumed that the earth was homoge-
neous (C = 0.4 Ma?), as well as incompressible, etc., for rea.so"ns of tractability
in solving for the response of the earth to the tidal force. Changing the moment
of inertia to its value for a homogeneous earth would lead to only slight correc-
tions in our results.

Heating of the earth by the dissipation associated with the friction does not
appear to be significant. The energy deposited in the earth as the moon moves

from the Roche limit at 2.89 earth radii to 3.83 earth radii amounts to 1.43 x
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103¢ ergs. Assuming a specific heat of 107 ergs/g-deg, the average change in
temperature of each gram of matter in the earth is only 24°K.

Our most crucial assumption was that the earth behaved like a highly
viscous liquid (v >> 105 poises). Whether the earth could have behaved in this
manner when the moon was at 3.83 earth radii depended upon the rheological
properties of the earth at that time; these properties are unknown.

O'Keefe (1972) points out that since the tidal potential varies like the in-
verse cube of distance {Equation A-6, Appendix A), the tidal forces acting on the
earth were 4000 times greater when the moon was at 3.83 earth radii than they
are today, so that the material in the earth may have been near the elastic limit.
In such circumstances the earth may have behaved like a highly viscous liguid.

At the present time the mantle of the earth responds to the tidal forces like
an anelastie solid, with the tidal lag angles being small (MacDonald 1964). How-
ever, the mantle responds to deformations of the earth's surface caused by ice
loads as though it had a viscosity of about 102! poises (Gutenberg 1959, Chap-
ter 9), requiring thousands of years to rebound after the removal of the loads.
(This may be explainable in terms of diffusion creep; see Kaula 1968, pgs. 101-
104). Now the period of the O tide with speed n - 2{1 is given by 2+ /(n - 20), so
that the period ranges from infinity to about 5 hours as fhe moon moves through:
3.83 earth radii distance. Hence if the earth has a characteristic response time
between these two extremes, then it should be excited by the .0 tidal force as th;.
moon passes through 3.83 earth radii. If the dissipation were great, then thé lag
angle of the tide would be large. Hence it i8 by no means clear that the earth
would not respond as we have assumed, even with the présent internal conditioﬁs

in the earth, where the characteristic response time is thousands of years.
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Our last important assumption was that the moon may have been perturbed
out of an equatorial orbit by 2.5 to 3° at 3.83 earth radii distance from the earth,
thus explaining the present inclination of the lunar orhit to the ecliptic. Whether
the moon could suffer such a perturbation is not clear; conditions at that time
may have been chaotic enough te produce it. However, several sources of the
perturbation may be ruled out. The first obvious source of perturbation is a
collision of a large meteoritic object with the moon. If such a collision occurred,
then large amounts of meteoritic nickel might be expected to spatter over the
moon's surface*. Large amounts of nickel are not observed in lunar samples,
The third degree harmonic in the earth's figure will not give rise to long period
perturbations in the inclination if the moon's orbit is circular. Further, it may
be shown from Equation 38 of Kaula (1964) that the tides associated with the third

~degree harmonics in the tidal disturbing function give % « 1, just as in the
second degree harmonics, but that these terms are much less important than
those discussed here. Also, the disturbance in the inclination caused by the pre-
cession of the earth's axis and the moon's orbit may be shown to be quite small

(<<1°). The question of the source of the perturbation remains open.

B. Relation of the Results to Theories of the Moon's Origin

We will now examine how our resulté rélafe to the theories of the origin of
the ﬁaﬁon. The thfee principal theories, nainely fission, accretion, and capture
are reviewed by Kaula (1971). o | o

Darﬁin (1880) proprosed that a; primitive body rotating with a period close fo
its natural oscillation period was disrupted into the earth and mdon by resonance

oscillations induced in it by the sun. (That this was not at all likely was shown

*I am indebted to Dr. O'Keefe on this point.
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by Jeffreys 1930.) The moon would necessarily be thrown out in the equatorial
plane of the earth. Darwin was forced to assume that the primitive earth had a
very high viscosity to solve the inclination problem. He derived Equations (II-21)
and (III-22) which give rate of change of inclination with distance in the limit of
infinite viscosity. After commenting on the absurdity implied by the equations
that the rate of change of angle was infinite when the earth rotated twice as fast
as the moon revolved, he assumed that the viscosity merely had to be very large
to increase the inclination of the moon's orbit to the equatorial plane from an
infinitesimal disturbance to an appreciable angle. Darwin took this as the solu-
tion to the inclination problem and let the matter rest.

Qur detailed analysis (Chapter IIT) shows that the initial perturbation in the
inelination of the moon's orbit to the earth's equator must be about 2.5-3.0° to
explain the present inclination, with the viscosity of the earth being greater than
10'7 poises.

O'Keefe (1969) in his version of the fission theory suggested that the p;'imi-
tive body had greater mass and twice the angular momentum of the present
earth-mooﬁ system. As the primitive body spun up, its figure progressed along
the sequence of the well-known Jacobi ellipsoids and pear-shaped figures (Jeans
1961) until it fissioned into the earth and moon. The system then lost mass and
angular momentum through intense heating. While taking over Darwin's results,
O'Keefe further suggested that even if the earth were molten after the moon and
earth separated, the moon's orbital evolution would not begin until the earth
cooled off appreciably, so that the moon would not arrive at 3.83 earth radii
until the earth's viscosity was quite high.

In Chapter III, Section D, we investigated the orhital evelution of the moon

as the earth cooled off for a number of different activation energies and coeffi-
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cients in Equation (III-23). In view of the wide variety of results obtained in the
temperature of the earth when the moon arrives at 3.83 earth radii, it appears
that the self-regulating mechanism proposed by O'Keefe does not exist.

The accretion théory states that the moon formed from a ring of particles
in orbit about the earth. The particles collided with each other and stuck to-~
gether, ultimately building up into the moon.

The ring of particles would be expected to lie in the proper plane. The
orbits of particles inclined to the proper plane would precess, thus lowering the
chances of collision; at least all the orbits would intersect the proper plane,
favoring accretion there. If the moon accreted from the ring mmch beyond 3.83
earth radii, then the moon would tend to remain near the proper plane, so that
its present inclination to the ecliptic could not be explained. However, if the
moon formed in the proper plane within 3.83 earth radii (essentially in the equa-
torial plane), then the mechanism proposed here for driving the moon out of the
earth's equatorial plane could have come into play.

At any rate, regardless of how the moon arrived at 3.83 earth radii in the
equatorial plane of the earth, whether by fission or accretion, if the viscosity of
the earth was greater than 107 poises, and the moon suffered a 2.5-3.0° per-
turbation in inclination at 3.83 earth radii, then the present inclination to the
ecliptic could be explained.

The capture theory has a simple answer to the inclination problem: the
moon was captured in a highly inclined orbit to begin with and tidal friction has
acted to decrease the inclination to its present value (Gerstenkorn 1969,
MacDonald 1964). Of course, these theories begin with the present inclination
of the moon's orbit to the ecliptic and solve the equations of tidal friction back-"

ward in time to discover the/moon‘s inclination at capture.
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These theories once again assume weak tidal friction with small lag angles.
However, if the viscosity of the earth is greater than 10® puises, and the moon
arrives at a distance less than 3.83 earth radii in an inclined corbit, then the
 inclination must drop below the critical angle y, before the orbit can expand
past 3.83 earth radii (Chapter II, Section B). Thus for large viscosities
(greater than 1017 poises) the orbit becomes nearly equatorial and we are faced

with the same problem as before.

C. Summary of the Important Results

Assuming that the earth behaves like a viscous liquid in responding to the
tidal force, and that the moon is in a circular orbit about the earth, with the in-
clination of the lunar orbit to the earth's equator <20°, then:*

(a) If the moon is less than 3.83 earth radii distance from the earth and

the inclination of the orbit to the earth's equator is steep, then the orbit
may contract and then expand, provided the viscosity of the earth is

07 poises. The orbit will expand monotonically if the

greater than 1
viscosity is less than 10!® poises regardless of the inclination.

(b) The inclination of the lunar orbit to the earth's equator will decrease
or remain.zero if the moon is closer to the earth than 3.83 earth radii,
regardless of the viscosity.

{c) The inclination of the lunar orbit to the earth's equator must be less
than 2.7° when the moon is at 3.83 earth radii if the earth's viscosity is
1018. poises; at higher viscosities the inelinaiion must be even lower.

(d) The lunar orbit will expand monotonically if the moon is at a distance

greater than 3.83 earth radii from the earth, regardless of the viscosity.

*<20° so that Equations (111-9) through (111-12) hotd.
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(e) The inclination of the lunar orbit to the earth's equator will increase,
or decrease (or remain zero) for earth-moon distances greater than
3.83 earth radii depending upon whether tﬁe’viscosity of the earth is
greater than, or less than 10'® poises.

(f) 1If the viscosity of the earth is greater than or equal to 1018 poises, and
the plane of the lunar orbit is perturbed about 2.5 to 3 degrees out of
the equatorial plane of the earth when the moon is just beyond 3.83 earth
radii, then the present five degree inclination of the moon to the ecliptic

may be explained.



APPENDIX A

DERIVATION OF THE TIDE-RAISING POTENTIAL

AND TIDAL DISTURBING FUNCTION

A. Derivation of the Tide-Raising Potential

Consider the top diagram in Figure 21. The center of mass of the earth is
located at point O; the center of mass of the moon is at @; and the center of méss
of the earth-moon system is located at point P. The earth and moon have
masses M and m respectively. The vector h is directed from P to O.

The center of mass of the system is taken to be at rest in inertial space,
with the earth and moon orbiting about P in circular orbits. The angular velocity
of either the earth or moon about P is Fl

The x* y* z* coordinate system has its origin at O and is rigidl_y attached to
the earth. The earth rotates about the Z* axis with angular velocity n with re-
spect to inertial space. The vector r* = (x*, y*, z*) is the position vector of
some unit mass element in the earth in the starred system.

The bottom diagram in Figure 21 shows that the moon is located at r =
(X, y, 2) in the starred system, and the angle between r* and r is §. s = r - r*
is the vector directed from the mass element to the moon. We take |8] = g,
|T*| = r* and |T| = r, so that the earth and moon are separated by a distance r.

We wish to know the forces acting on the unit mass located at position r*.
Let us denote the total force on the unit mass as ?T. Let us further write T, 1 88
the sum of two forces, one being the gravitational pull of the moon fm, and the
other being the sum of all other forces f (such as the earth's gravity, viscous

forces, etc.). Herce we have
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1
!

o= f+f (A-1)

—

f.. represents the total force on the unit mass as seen frém an inertial
ffame.

We now wish to find the forces acting on the unit mass in the frame in which
we have reduced the earth to rest, i.e. the forces_as seen in the starred frame.
Since the starred frame is non-inertial, fictitious forces will be introduced.

Following Symon, Mechanics, Chapter 7, we write
dn - dih

fo* = f.r-n-X(nxr*)—2n‘><V*-—c-1Txr*“—d‘F {A-2)

f,‘r* is the total force acting on the unit mass as seen from the starred
system. The second term on the right-hand side of Equation (A-2) is the cen-
trifugal force caused by the rotation of the earth on ité axis. The third term is
the Coriolis force, with v* being the velocity of the unit mass in the starred
system. The fourth term arises from any variations in n. The last term arises
from the earth's motion about the center of mass of the system.

The third and fourth terms on the right-hand side of (A-2) will be assumed
to be negligible, as they would be if the earth were changing its rotation rate
only slowly and velocities relative to the earth were small. Equation {A-2) be-

comes in that case

(A-3)

— —

where we have explicitly written f + f for .

Now
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dh — —
dc T 4xh
and
2h - oo
= Ox(Oxh
qc2 ( )
But O x ({1 x H) = ()2 % r, whereh = |h! = Mrfm r. By Kepler's third

law q2 = S (M +m)

so that we may write
T

o
8

r
dt2 rs M+m

|

d?h _ GM+m) = T
T

-
w

—

2
We could have written this directly by recognizing that dd—fl is just the

acceleration of the earth's center of mass due to the gravitational pull of the

moon.

Equation (A-3) becomes

— o - - — — Gm —
f'l'* = f+ fm -nx(nxr¥) - r—3 I {A-4)

Let us now examine the Em term in Equation (A-4). fn" is the gravitational

force of the moon on the unit mass located at ¥*. We can write E‘; as the gradient

of a potential:

Fm = UV (x*, y*, 2% x, y,2). (A-5)
Here
= 3 - 0 2
= Ky S Tk *
w a1 T dy* ! * 3 z* I

denotes the gradient operator operating in the starred system; ?*, -]?*, and E*, are

unit vectors along the x*, y*, and z* axes, respectively. V is the gravitational
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potential of the moon at T*. Note that V is a function of both the coordinates of

the unit mass and the coordinates of the moon, but that V* acts only on the

starred coordinates.

Taking the moon to be a point mass gives

We now proceed to expand V in spherical harmonics about the center of the
earth in the usual manner (Kaula 1968, Eq. 2.1.22):
Since

—F - —

_ -—I%_H — — — —_ — —D%
s = (s 8) = (rcrtr¥eot-2r - 1¥)

2
= (rz+r"‘2—2rr"‘r:(:ts@))l'4S = r(1+(—r‘) -2('1__) cos@)

We can thus write

Now

and
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Expanding (1 + q)" as a binominal series gives
nf(n- 1)

(1+q)“:1+nq+——"—'—ﬁ2! q2+

s0 that our expression for V becomes

_ GOGm ¥ 3 *\2 1
vV = T{1+(T)cos®+'2—(“‘r;“‘) [cos"’@—g]Jf }

*
where we have been careful to gather together terms in powers of —% . This is

nothing more than the familiar expression
_ Gm = r#\"
Vo= — {Z P_(cos 8) (T)}
m=0

where P (cos ®) is the Legendre polynomiai of order m.

* *
If rT << 1 we can ignore powers of rT higher than 2 so that we can

write
v = Gm ) (= 3 (oY 2g_ L
" cos@‘r2 p, cos 3
Let us set
_Gm 3/exN ], 1
v, = < Tl cos ®—§ {A-6)

which we will call the tide-raising potential. Note that V, ig a second degree
spherical solid harmonic function and [cos;2 e - %} is a second degree surface
harmonic.

We finally have
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Gm Gm [r*
v = ——+—““(T) cos @ + V,

r r

If we again write Em as the gradient of V we have

— —_ G — % —
f = V* (—m)+GmV*(r— cos®)+V*V
r r? . t
The first term on the right-hand side of the above equation is zero because

r? = x? + y2+ z2 and nowhere contains x*, y*, or z*. The function that the

. _
operator V* acts on in the second term can be written

r#* t#r cos O x*x + y¥y + z¥z
—— 0% @ = =
I'2 r3 3

so that

-t
W

We are left with

e

f, = Gm— + VY, (A-T)

m
r

Substituting the above equation in (A-4) gives

¥ = £+ Gm—— + VAV, - nx(nx*) - Gm —
1'3 !'3
or finally
% = 4+ VRV, - mox (mox 1) (A-8)
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Note that the first term on the right side of Equation (A-7) cancels the term
associated with the motion of the earth about the center of mass of the system in
{A-4), leaving the U V, term as the only term in (A-8) generated.by the moon's
gravity. We were therefore justified in calling V, the tide-raising potential.

We note in passing that the centrifugal force may also be written as the

gradient of a potential:
~nx(nx*) = v V, (x*, y*, z%)
where
C

1
V., = 5 n? (x*¥? + y*2)

witha = |ni.

In this case Equation (A-8) becomes

fi = 4 VXV, + VRV (A-9)

B. Derivation of the Disturbing Function

In this section we show how deviations from sphericity of the earth give
rise to a disturbing function.

Let us again take the starred coordinate system to be fixed in the earth with
its origin at the center of mass of the earth, and let § = ('J\i, Sr“, nz’) be the position
vector of some mass element in the earth and A = (x', ', z') be the position
vector of some point E exterior to the earth (see Figure 22). Let & = ]§| =
G+ +7) and o = [&] = x2+y2+ z'2)%, " = A - § is the vector

directed from the mass element to the exterior point E and has length I' = |T7.
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The gravitational potential at (x', y', z') is

G ~
UK.y, 2) = J'%’ av (A-10)
where p is the density and d’\MI the volume of the mass element, with the volume

integral evaluated over the volume of the earth.

The force on a unit mass at (x', y', z' } would be given by _V‘ U, where

Note that the gradient operator acts only on the primed coordinates.
We can expand ™ in a binomial series just as we did previously for s;

Equation {A-10) then becomes

U(x',y',.z') = J.Ef- {1+ (%) cos ¥+ %(%)2 [cos"l‘— -;—] + } d’{;.

where ¥ is the angle between 5 and A,

If we neglect powers of (%) higher than 2 we have

G ~ G 3 ~
Ux,y',2') = J.—Aﬁ dv + J"Tp (Z) cos ¥ dV
(A-11)

: 2
Sp 3 (3 2 R
CERE -3

The first term in Equation (A-11} is easily evaluated:

G ~ G ~ GM
f_p_ dv =—-J.pdV = X
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This term gives the inverse square force. The second term of (A-11) is zero
by virtue of having taken the origin of the coordinate system at the center of

mass of the earth. The third term is the disturbing function R ;:

Vo 3 G L
R (x,¥.2') = fp §2 [cosz'l'-—a*] dv (A-12)

Y
with the subscript I reminding us that _ﬁ"RI gives the force per unit mass in
inertial space.
Let us now write Equation (A-12) in spherical polar coordinates, with a and
E being the longitude and colatitude respectively of the mass element, and o'
and 8' being the corresponding longitude and colatitude of the exterior point;

then

[ ] = 3 G T ! & 2 2 1 2 : = VI
R, (4, a2, 8") = 5 f f p 8% |cos® ¥ - =1 8% sin 8 da dB d8
o "o

3
A%
where
— t b 1 ~ - ~ . f . ' . o~ . ™ nd
cos ¥ = cos a' sin 8' cos o sin § + sin a' sin 8' sin @ sin 8+ cos 3' cos B
and

o

dV = sin 8 52 d& dB ds

and r; is the distance from the earth's center to the surface of the earth.

Let us now write
ry(@h) = ato(ah)

where a is the mean radius of the earth and o (3:, E) the ""surface inequality"
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which accounts for deviations of the earth's surface from sphericity, regardless
of how those deviations arise.

We introduce several assumptions at this point: first, that p is a function
of radial distance & only and not a function of a and E; second, that ¢ << a;
and third, that o {3{, E) may be written as a sum of second degree surface
spherical harmonics me (SE, E) (¢ =-2). Of course any surface displacement in
general may be expreésed as a sum of surface spherical harmonics of all de-
grees. We retain only the second degree harmonics since these are the most
important.

The secﬁnd assﬁmption allows us to write RI (4, o, lﬁ") as the sum of two
terms, rwith the first term containing the volume integral evaluated over the

spherical earth and the second term faling care of the "surface inequality':

36 20 17 -~ ~
Ry (4,a, 8" =7§f J Jp32 [cosﬂw—g]sinﬁwciadﬁda
i} o 0 '

36 (7 .~ 1 ~ ~
+E - o(a, B) p. a? [oosz‘l’- =| sin 8 a? da dB
A3 o s s 3

where p_ is the density at the earth's surface.
The first term vanishes by the first assumption because the integral over

the angular part is zero. We are left with

Gp,
A3

T 2m . .
R; (A, d,B'Y = % at J. J- o (g, 2 [0052 p - %] sin 8 da dp
[} 0 ;

Now by the third assumption o (E, E) is a sum of second degree surface

harmonics; cos? ¥ - -:]-3'- is also a sum of second degree harmonics. We then
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recognize that the integral in the above equation is a sum of inner products of
spherical harmonies. By use of the orthogonality of the Y,f (g, £)'s and keeping
track of normalization constants we may finally write

4 a\’
R (8,0,8') = T7Gp,a (E) o (a’ 8") (A-13)

(See Kaula 1968, pgs. 65-67, for a general expansion in surface harmonics.)

The disturbing function R; at longitude o' and colatitude 3' is seen to be
proportional to the displacement of the surface at that same longitude and lati-
tude; hence a body in the vicinity of the earth is acted upon by a disturbing func-
tion which is proportional to the height of the displacement of the earth's surface
where the position vector from the center of the earth to the body piercesﬁ the
earth's surface.

If harmonics of degree n where n > 2 had been included in our expression
for the surface displacement, then they would appear ix: our expression for the
disturbing function correspondingly multiplied by (%)n 1 For distances far
from the earth (‘%) << 1, so that these higher order terms are less important

than the second degree terms.

C. Conversion of RI toR

Equation (A-13) gives the disturbing function as seen inertial space. Gen-
erally we want the disturbing function acting on the moon referred to the (.ac;
celerated) earth. We show how to find it below.

Let F'I be the position vector of the earth in some inertial coordinate 8ys-
tem. Likewise let ;‘2 be the position vector of the moon in this same coordinate

system. (We still assume that the earth and moon are the only two bodies in
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existence.) Let Ty, = T, - T, be the position of the moon as seen from the
earth.

If V is the potential of the earth, then by Newton's second law

Mr, = -mVV
m—r'2 = m_\_}V
and
o :M;mGV— —V’(M;'ﬂm )
".1;'-1 , 18 the acceleration of the moon as seerll from the earth, and M 1\-:[ LT

represents the potential of the earth as seen from the moon. It is then clear

that we must write

M+m

R(ﬁ,a‘,ﬁ') M RI

1

Sro(ac(foen o

as the disturbing function acting on the moon as seen from the earth.

D. The Tidal Disturbing Function

The forces acting in Equation (A-9) displace mass on the earth; the dis-
placed mass acts gravitationally on the moon and affects its motion. |
Assume that the earth responds separately to the centrifugal and the tide-

raising force so that we may write

~

c@H = o (@B *o @M
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where o is the displacement of the earth caused by the. centrifugal force and.o,
is the displacement of the surface caused by the tide-raising force. Equa-

tion (A-14) then becomes

RO, d,8) = R (A, d,8)+R (D, a,8)

where again the subscripts "¢ and "t' mean "centrifugal" and "tidal'' respec-

tively. We will call

4
R (0, d,08) = =7G

(M-l'm
5

3
) 8 (2) o8 (A-15)
the tidal disturbing function.

At this point we must take great pains to make clear the distinction between
the tide-raising and tidally disturbed body. The two are not necessarily the
same and must in any case be kept mathematically distinet to avoid incorrect
derivations. We explain this below.

Suppose we wished to find the action of the tides raised on Mars by Phobos
on Mars' other moon Deimos. In the above discussion Phobos (the tide-raiser)
is at point r= (X, y, z), and Deimos (the tidally disturbed body) is at A =

(x',y', z'). The force per unit mass on Deimos caused by Phobos' tides is

V'R, = L —Rt j* o+ Rt_
t 'axr ayl le

B

k*.

Even though R, depends on both X, y, z and X', y', 2' the gradient operator acts
only on the x', y', 2' coordinates. So much should be clear.
Now suppose we have the case we are interested in, namely the action of

the lunar tides raised on the earth on the moon itself. Here the tide-raiser is
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also the tidally disturbed body, and the positions (x', y', z') and (x, y, z) are the

same. We cannot drop the primes appearing in R, and apply the gradient

3 - 3 - —
Ta_x i® + -a-; j* + a—z k*
to find the force per unit mass of the moon however, since the gradient operator
can act only on the disturbed body's coordinates to retain the proper meéning of
force per unit mass; thus the distinction between the tide-raiser and tidally dis-
turbed body_ must be kept, even though they may be one and the same object.
Darwin keeps the distinction clear in his 1880 paper by introducing the in-
teresting artifice of.'giving the earth two satellites; the tide-raiser he calls

Diana and the tidally disturbed body is the moon. When considering the action

of limar tides on the moon, Diana and the moon are, of course, the same object.



APPENDIX B

COOLING OF A PLANET BY RADIATIVE LOSS

Let us suppose that a planet in empty space is cooling off by radiating heat
into space from its surface according to the Stefan-Boltzmann law. Solar heating
is neglected, and the planet is not surrounded by an atmosphere.

Let us assume that the temperature distribution inside the planet has the

form
T(r, t) = T (t) F(r) (B-1)
where
t = time
r = radial distance
T (r,t) = temperature at distance r and time t
T, (t) = surface temperature at time t
F (r}) = some function of radial distance

Note that the temperature distribution has spherical symmetry.
The planet radiates like a black body so that the amount of energy dQ given

off in a time dt is
dQ = -47 R THt) dt (B-2)

Here

=
Il

radius of planet

‘Stefan-Boltzmann congtant

q
It
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As the planet cools off, each element of mass dm inside the earth gives up

an amount of heat

dQ,, = Cp dT{(r, t) dm

in time dt, where C, is the specific heat at constant pressure.

The total amount of heat given off by the planet in time dt is then

dQ = f G dT(r, t) dm
Mass of

the planet

This must be equal to Equation (B-2), so
ijdT(r,t) dm = -47 Rro TH(t) dt (B-3)

Now from Equation (B-1)

dT(r, t) = dT,(t) F(r)

gives the change in temperature with time, so that Equation (B-3) becomes

n

fcp dT (t) F(r) dm = dT,(t) fcp F(r) dm

= =47 R%0 TJ(t) dt
Let

fch(r) dm = 1.

Note that if we assume p has spherical symmetry, we may write dm =

o (r) 47 r? dr to show dm as an explicit function of r.
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The above equation can be written

de(t) ~ 47 R o

TA(t) I

dt

This may be integrated to give

t 47 R3o
[z,
t

[+]

1
- F B - TG

_ 47 R?o
- I (t - ty)

which may be written

T (t) _ Ts(to) (B 4)
) 1‘+ 127 R%c 3 :IUS
1 T (tg) (t ~ to)

This expression gives the surface temperature as a function of time.

If F (r) is known, the temperature at any point r at time t is given by

~ T, (ty) - F(r)
T(r,t) = (B-5)

127 R?o T3 (t,) 3
1+ — I (t - tg)

Now suppose that Cp is a constant so that we may write

-
I

prF(r) dm = C, fF(r) dm

c, M f‘rs(t) F(r) dm
T (t) M




82

CPM fT(r, t) dm Tty

T (t) M S M T

where M is the mass of the planet and

T(r,t) dm
<T(t)> = ?

M

is the average temperature inside the planet weighted by mass.

Set

T, (t) _ surface temperature
<T(t)> average temperature

Z varies from ~1 to probably '\% for any plausible temperature distribution.

Also set

127 R%o
MCP

S has a characteristic value for each planet.

Equation {(B-4) becomes using this notation

_ Ts (tO)
Ts (t) - (B-G)

[1 +ZS T3(ty) (t - to)]l/a

To give an example, for the earth

6.37 x 10% cm

R

5.98 x 1027 ¢

=
1
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Cp ~ 1 x 107 erg/g-deg
d -3

S = 1.47 x10-20 28 _
secC

For Z = % and T (t,) = 3000°K T_ falls to half its value in about 1700 years.

To demonstrate that a temperature distribution of the form

T(r,t) = T (t) F(r) {(B-1)

is not unrealistic, we note that the adiabatic temperature gradient is given by

g -7 achg (B-7)
where
o = coefficient of compressibility
g = gravitational acceleration

The above equation may be rewritten as

If the right side depends solely on r, we have

T Tag
log(—‘) = -J-.—- dr
T R!Cp

or

T = T e-fédr = T, F(r)



where
T, = surface temperature

and

If the planet cools off in such a manner as to maintain the adiabatic tem-

perature gradient at all times, T becomes a function of time and
T = T,(t) F(r)

This is exactly the form which we assumed the temperature distribution

had.
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APPENDIX C

COMPUTER PROGRAM FOR CONSTANT VISCOSITY

The computer program given in this appendix is discussed in Chapter II,

Section C, and in the comments lilsted in the program itself.
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B LT T T T TP g Tt : e — e e e
CCRERR R g o o ok ek o
CHRREERTPLE S FIOEE— o n e

CaREF % THIS PROGRAM INTEGRATES DARWINS (13800 EQUATIONS 10 GIVE THE
G- EVOLUEEON- BOF - THE -MOONS € IRCULAR} DRBIT EOR A -CONSTANT-V16COSITY
C OF THE EARTha
G o BARW EN -4 BBO P
< CN THE SECULAR CHANGES IN THE ELEMENTS OF THE DJRBIT OF A SATELLITE
< REVOLVING ABOUT A TIDALLY CLSTORTED PLAMET. .. ... -
< IN
- o SCIENTIFEC PARERS —BY-SIA GECRGE HOWARD DARWINY VOL. 2, PR.208-382
[+ CAMBR IDGE UNIVERSITY PRESS,. 1908.
C G s o TR BB OUAT IONSARE ON- PGE- 240+ 241+ AND 242 (EQUATICNS T1le 73,
c AND THE Twh PRECEEDING EQUATION 75.)
i FHE- PAPER- CAN-ALSD BE FOUND— TN — —
[ PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY. VOLe 171, 1880,
'Y S TE ST P
< " THE PRCGRAM ALLOWS TWO APFROACHES — TO USE ALL THE TERNS IN
B —BARWENE- EQUATIONS + OR-KEER ONLY TERME-UP TO—AND-—INGLUDING - SECOND—
c CRDER IN K=SIN((T4J)/2)s THE LATTER WE CALL THE SECOND DRCER
—e———APEAG X IMATION o -
c . THE EQUATIONS CAN BE INTEGRATED FORWARD DR EACKWARD 1K TIME,
G DERENDENG WPON—SHETHER MTLMED L OR =le
c THE PROGRAM STARTS BY INTEGRATING WITH CONSTANT TIME INTERVALS
— € IT-DOES THIS FOR-NG. STEPS. AETER NG STERS LT SWITCHES OVER TO-—
c CONSTANT LM INTERVALS (CHOSEN IN THE PROGRAM TO GIVE DXI= TO ASQUT
G0t —ALL THISASSUMES THAT THE PER- CENT-.CHANGE IN-J DR-J IS
c LESS THAN CRETs IF THE FRACTIONAL CHANGE IS5 GREATER THAN CRITs THE
AN TERVAL 35— MALVED - UNTIL THE ERACTIOMAL- GHANGE 15 LESS THAN CRIT.
< CRIT wAS INTRODUCED. TO PREVENT LARGE CHANGES IN ANGLE TO AVDIC
e e o UM AT LV EAROR+— TME-STAATAGEM OF SWITCHING FROM CONSTANE DELT TL
c CONSTANT CLM IS TO KEEP THE ITERATIONS FROM TAXING FOREVER, SINCE
o AT LARGE X DX1-15-OUITE SHALL FOR CONSTANT CELT.
p :

—GCerrs +SCME OF -CARMINS NOTATION =
Cases+L-2ERD =REFERENCE DISTANCE

— e rresUMEGA=IERQ=CMEGA AT C=ZERD
CraessSMALL K=C#{CMEGA=ZERC I {(C~ZERD)/(BIG GIR{BIG MIE{SMALL M)

CessesTAU=ZERONR(IL2IN{DIG GIR{SHALL M)/{C=2FRO)EET .

CrenenGOTHIC SMALL G={2/S5)%ISMALL G)/{SMALL A)

—LveeesBIE GEUNIVERSAL GRAVIFATIONAL CONSTANY
CaseeoSMALL A=RADIUS OF THE EARTH

o CasssnsBlG MEMASS OF THF FARTH -
CesvesSMALL MaMASS OF THE MOON

— CeereeSMALL GRGRAVITATICHAL CONSTANT AT THE FARTHS SURFACE
CesenasW IS THE CENSITY OF THE EARTH

——CoesseedE HAVE SUBSTITUTED BIG G FLR DARWINSG MU ARGVE.
< : :

— CHRRARTHIS SECTION DEFINES THE MOST IMPORTAMT QUANTIYIES.
CeeesaXl IS SGRT{EARTH=-MUON OISTANCE/REFERENCE DISTANCE).

—CaeeesLZERD 1S THE REFERENCE DISTANCE. HERE TM UNITS OF EARTH BADIY. .
c AND WHERE NE2$0MEGA. '

— L onvs s DERSURTLDIERO o C—ZERORSMALL AMDS.
CovsssM 15 THE ROTATIONAL ANGULAR VELOCITY OF THE EARTH IN 10%%-4 /SEC
e [leEe MULTIPLY THE VALUE GIVEN 1N THE PQOGRAM BY 10&K-4 TO GET THE

C. . VALUE. IN CGS UNITS.} -
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LT T EOMEGA 15 THE ORD T AL ANGUL AR —VELOC T Y OF —THE MO TGN TS - OF———- -~
c 108%=8 /SEC, _

v v PSS - THE-ANGLE -BETWEEN THE -FARTHS EQUATORIAL OLANEAND THE —
c PLANE OF THE MODNS ORBET. PSI=L + J,

—Esr et IS5 HEANGL E-BETWEEN —THE—EARTHS—EGUATOREAL -PLANE AND - THE  —
c INVARIABLE PLANE.

—Crrr a5 FFEANGL E- -BETWEEN- FHE -MOONS ORBITAL PLANE —AND- THE - INVAREABLE - -

c PLANE «
—ErrrrvbB S Iy AN ARE— N RADTANS s HPST s XTI T+ ANDNJ- ARE THE SAME -ANGLES —
c IN DEGREES.

Crwre bR i Ll AND DI ARE—THE -CHANGES —TN—THE-RESPECTIVE ANGLES. - -
CevseeVIS IS THE EARTHS VISCOSITY [N UNITS OF 10%%16 CGS.

Cyerewb ¥ 1S THE DRBITAL -ANGULAR - NCMENTUM- OF THE SYSTEM IMN-UNITS OF
< 10%%40 CGSa

—CwweretE 15 FHE ROTATIONAL ANGULAR— MOMENTUM OF - THE EARTH-IN UNITS OF
c 10%KA0 CGSe LE=CEN, .
—CrvrrsCLMANG ELE—ARE - THE -RESPECTIVE—CHANGES I N LW _AND LE.
CewseslT 1S THEE TOTAL ANGULAR MOMENTUM OF THE SYSTEM IN UNITS OF

—e———— OO EES T
CeesssC IS THE WOMENT OF INERTIA OF THE EARTH IN LNITS OF L0844 CGS.

e E S WAL
CassesT 15 THE TIME JN UNITS OF 10%%9 SEC, DELT IS THE CHANGE IN T.

——EARRE R ENE—SEECTEON- - fpS—
[ .

v A IS SMALL- KR TAU-ZERG I E92 AL COTHIC SHALL G} (IN DARNING ——
< NOTATION) TIMES B (AS DEFINED HERE) IN UNITS OF 10%#31 CGS.

—Cxrr e B IS5 SAR T BT 6 GFSMALL A} A D6 MISMALL - M1 {816 MISLSMALL MIRDS N
< UNITS OF 10%%40 CGS. LM=PEXI,.

—Caar e A IS5 LI 2E LEMALL G L SMALL A S{LSMALL W I HIN-UNI TS0 100 0ald CO8o—
CossnehAd 15 SORTI(BIG GI®(BIG M+SMALL HIICSMALL AYEFT)/DSERT IN UNITS OF
o § R SEC » DMEGARAI/ (XIRE I }u

c
— kST L5 SECTION EXPLAINS THE INITIAL INRUT DATA,
CoesseNRUN IS5 THE NUMBER OF DATA CARDS TD BE READ. ALL INITIAL DATA FOR
A SINGLE RUM- 5 -CONTALINGD Gh A -BINGLE CARD .+
Ceass»CRIT IS THE MAXIMUM CHANGE PERMITTED IN THE ABSOLUTE VALUES OF .
—Crrr s T INE S+ - FOR-A-DATCH - OF RUNS THNTEGRATED FORWARD TN TIME+ AND -
c MT IME==1 FOR INTEGRATION BACKWARD IN TIME. .
————— DI AND LA TN A SINGLE - SFEP—
CusussANGLE = INITIAL VALUE FOR PSI=I + J 1IN RADIANS.
~Cwer o ki P INITIAL -VALUEOF X1+
CossnsVISF = VISCOSITY OF THE EARTH IN UNITS OF 10%%16 £GS.
e aw e DELTHE = SFEP- SILE 1T IME IN-UNITS OF 1 0%E9 SEC.

c DELTLF SHOULD ALWAYS BE POSITIVE.
—Cevvre X TMAN- -2 THE MAXIMUM VALUE. CF X1 TO WHICH THE PROGRAM INTEGRATES.
c THE RUN STOPS WHEN XI = XIMAX.

—C e et e TSTART = INITIAL VALUE OF - IIME . IN UNITS. OF 10889 SEC, . . . . . . .
CosnsaNP = TEE NUMBER OF ITERATICNS DESIRED USING CONSTANT STEP SIZE IN

G TIME,
CoesesoNF=1, NL=1 MEANS THE PROGRAM USES THE SECOND ORDER APPROXINATION.

—ca+++aHE=3+—NL32—HEANS—IHE—£QDGEAI_USES_ALL_IHE_IEBIS_IH CARMINS
c EQUATICNS 4

—CeveeeNEZL, NLAZ MEANS THF OROGRAM HUNS BOTH THE SECOND ORDER

[ o APPROXIMATION AND DARWINS FULL EQUATIONS ON THE INITIAL DATA.
—C e e NG 1nl GIVES A CHECK ON THE DATA RUNM FOR THE SECOND ORDER
< AFPROXTMATICN BY HALVING THE STEP SIZES AND DOUBLING THE NUMBER OF

—&———  STFEPE—AND AEREATING—THE RidMe—IF THE CHECK 16 - HOT DESIRED» NG00+
Cess+eNCZ PERFORMS THE SANME FUNCTION AS NCI FOR THE FULL EQUATIONS.
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—Ewsen s NLAST 15 - THE - TOTAL-MUMBER—EF -—STEPS - PERMI FTED TN--AMY ONE RUN- THE -~

C AUN TERMINATES IF NLAST IS EXCEEDED.
i CRRR R ENE—SEC T SOM .- [ e e e e e
c .
e - L R —— P - [V
ISN Q002 COUBLE PRECISIONM DZERG:C-LT'Al.nﬁZ-ABUA"EoANGLEoXIcVIS-LM;CCn
FLEAMN2OMECA vPaK s TEL 257 1 o TG 956 +T61 ¢ EG1vDLE» DM — —— LT ST »DELT DSy
2 XIMAX '
LB M- 0BOF e e DOUBLE- PRECESION AY4DT eBJeBELTA - i s o e s s
ISh 0004 ODOUBLE PRECISIDN TF4SF TFE.SFZ-TGZ-SGZ.TH'SH
08— DPOUBLE PRECISION PSI<BRSI- - e - e e

1SN 0006 COUBLE PRECISION x:F.vISF.nELT:F.TSTART
—L1SA0OOT - - - —  DOUBLE PRECISION. 711¥31T3+14115'T6+T?¢T&aTQ.!lOfT14‘1424I43otll+—
1 TlScT16|117.1l3|TlQ.TZOoT:l.T220T23-724.T25
o F G BBOB e - BB FRECESICN S5 eS8y de T e
ISN 0009 DOUBLE PRECISION L.Rl-nz.na.nll.DJJ
— 1800010 . - - . - COLBLE PRECISIOM Ll . - e
1SN 0011 CZERDO=3.8338730S0C
AEMN-OOLR . R ACD R e Lt h e e o
ISN 0013 qusa.zno .
1M OOIA . o e DEEDSORYACZERD Y e e e o s e n
I1SK 0015 AL=1+31Z IETDASC/DZERO**6
- EA-QOLE . . . A2=2. 75600 n o e am e et ————— i i e e e e - — P
ISk CO17 a=3.58110100tns
B S A-OOLB e e ABELZ + 45 1 £500 SADTZERO¥DS) U
" ISh 0019 UL=0,0C0 _
ESH 0020 ¢ o — — o READ AT E ) NRUN CRI TS MTIME—— e —
ISk 0021 ! FORMAT (I15:F1042415)
Y-, V-1 Deep—— T Y, Y- WP AT B WY TN - - N —
Coare¥THIS SECTION READS IN THE INITIAL CATAs ANGLE IS IN RADIANS.
e 1SN 0023 — o READ - ( Fa @ ) - ANMGLE + XIF ¢ VISF o DELTIF y XIMAXTSTART o MR o NE NL NCI 4 NC2,
L NLAST
15N 0028 - - 2. —FORMAT -409+24D011+2+4D1022+ 5441241 o o
. CRPEERENG SECTION. ’
o 2EMBORE e e DO -100 NAZNF AL . e e
1Sk 0026 LF (NA .EO. 13 NDaNC1
ISk 0028 e o IF AMA . JEQe 2} WD=NC2 . . D e — S
1S» 0030 NC= 1 + NOD
e ISA 003l e DO AOD NBEEONC . e,
1S» 0032 NCHECK==1 .
__I1Se 0033 a0 XISKLE. . e e i i . [
ISh 0034 NC=NP
1§54 0035 .. L. IF ANB LEQ..2) NOZ2¥NP.. .. S
ISs 0037 vIS=V1SF
. 1GM D038 .. . e DELTIEDELIIE . _ et e e e e ,, R
ISh 0024 T=T5TART :
~ISh 0040 s e - AAEVISEAZ. - ~-
CAREESTHIS SECTION WRITES OUT THE INPUT DATA.
- ESK 0041 . ... CMRITE (6.6} VIS . }
ISh 0042 &  FORMAT. (IH1 e/ 77+ 10Xs 1 OHVISCESITY=4010420 10H 10%%16CGS /77 }
1Sk 0043 .. WRETE (£418) OELTIE XIMAX NCsNE LML ¢ NC1aNC2 sNLAST..
ISk 0044 18 FORMAT (SN4+EFDELT 1201035 LXeSHI MR SEC 45X 46HXIMAX=+C10.325Xs

e A BHAG= 4 155X IHNF=a T 1o SXe IHM. =311 s SN AHNC] =2 T Lo SX 1 4HNC2 =3 T o 5Xn
. 2 GFNLAST=4I58//7)
-—1SM 00AS ) WRITE {5s52) CRITSMTIME
ISh 00AG £2 FURMAT {SX.SHCRIT'oFIO 4.5!06HMT!ME—|13-///)
- REE R BEND SECTICN. .. - e -
CH¥e*¥THIS SECTION ‘RITES THE HEAOING.
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S T CaweweALL GUANT ITIES PRINTED OUT AREIN-UNTTS GI VEN 1N -THE PROGNAM,

< NOTE THAT UNDER HEADINGS PSI. I, AND 3 XPSEs XIls AND XJ ARE
< —PRINFESY- FHUS GIVING ALL ANGLES N DEGHEES v ALSO, THE FIRST-DE-AND—
c CJ LISTED (READING FROM LEFT YO RIGHT) 15 FOR THE INFINITE
s — e € N SEO S Y IM T THE INFENITE VISCOSITY CHANGE-IN--ANGLE-IS- YO 8E
c COWPARED T0 THE ACTUAL CHANGE IN ANGLE (SECOND DIs DJ HEADING.)
LN BOAT - e WRETE P e o e o e
I1Sh 0048 7 FORMAT (sx.anlne.gx.szt-ﬁx.1HN.ax.5H P51 .3:.5HUHEGA.7x.2HD!.1ox

e s Ay e By By B - T B Sy T AED L S X+ ZHD I DN AHBRS T s AL L) e
CHEREREND SECTION. .
e — - CRRR T LS -SECTIOMN -COMPYUTYES - FHE - ENL-T1 AL VALUES DF- LE+ Ny-OHEGA+ I+ AND 4 -
ISh 0049 NT=0

i 5.’ .em . i ) .h-".-ﬂ‘*<‘7, . —_— . B - . e —— P
ISk 0OS1 CC=DCOS{ANGLE) )

~E5N 0052 - — - ~PST=ANGLE = - e
ISh 0023 XPSI=IE0.0*ANGLE/3-I415'5 C

—E5+ B054 - - 1S ——PELFEOEETF-r s em— - s e
ISk 0058 L7 CONTINGE

~ESR G056 28 - LES—LMECC 4+ -DSARTLLEMICCIEIZ —+ LTREZ = L Mik2) e o e
ISP 0057 RI=LM/E '

RSO ———————NWLEF € — : : e e
ISh 0089 ONMEGA=AI/F (X I%%3)}

1SN 0060 - —— - ——SEROSIN(ANGEE P o -— -
ISM 0061 SJ=SS/CSARY(SEx%¥2 4+ (CC + LM/LE )*‘2’

—ESh-O0ER - — IR EARE INC S} e
ISh 0063 T=ANGLE-J

S ASH D064 - — — e 180308 FA I AL 55 R : —
ISh GO6S XJ2180.0% 473, 14158

ot . A,A_cm“ END-S5ECT !e.n_.,. —_— — - e e e i e e =
Cesasslll 15 USED ONLY HERE TO FILL IN ZERGS. -

-~ EE N BOEE e e REFE {622 ¥ T4 X E Ny KP 51+ OMEGA v e N T e Mo o o s e -
CCRERREARRIRIRN ARSI RN o

P P A S — - [ — —

IS* 0067 s AYZ0,.S008PSI

1SN BO6B - IF(NA— Bt} GO-FO-26— - - -

CH¥*k$THIS SECTION COMPUTES ALL THE TERMS 1IN DARWINS EQUATIONS. ’

—15 00T — ————KeDSTh LAY ) e
1ss 0071 P=CCOS(AY)

B —— —E e v wCOMPUTE—THE - TANGENT Sv- S INE S -OF —THE - LAG -ANGLES. _—
Isp 0072 TFR2.04N4AS

e L L O T S | .5 T R TS £ 1 L+ — : e e
ISh 0074 TF232 0% (N+OMEGA ) #A A

50078 — . ER232 CHTF2/4 1.0+ TR2002) e
I5h 0076 TG2={N+Z . ORCMEGA ) ZAS :

—ISN00FT— - SCETP ORTGRAL 1 DAT e e
ISK 0078 THE2.0NOMEGARAS

A5 BT e GHEB R G QR THAL -} O+ THARZ) . : e e e P
ISh 0080 TF132 J0%{N~CMEGA ) #A S i

~15h-0081 — ——$F1=2 L0KTE LA 1. 0+TELRN2) i — I ‘
ISh 0082 VGENE A4 '

I3 00— L2 LTG/A L OATGARDY e
ISk 0084 TGIZ(Nm2 4 OROMEGA) 2AS

—FEM 0088 §GITRO0ATCLAC L OMTIGIRNZ) o

CuausunCCWFUTE THE TERAMS .

—ASH D086 - . TI=O0.SO0MRKRARSE] Ll R -
ISk 0087 T2x24 ORP R HAXK KR 4ESF _ :

-5 M0088 e F ARG ELOE R BRSE D - : PR —
IS* 0089 TA=PEPGEKRE 225G ] ’
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—FE 0090 T ESTRPERE AR R R PR KRR S A I SE e -

IS+ 0091 . TE=PENZFK AR LR SGE
IS DR — ——— — — FF AP ERSF—— s e
IS0 0093 TEB=KS£E%SF2
— 55k OPDh- TG M e GR P BRSIRE R EEG——— . - e s
ISh 0095 TLIO0=4 JO0¥PER 2RKERERS G2
SN 96 ———————— -T1 1 86 5 ORP IR AR K MRS R SH - ——r
Ish 0097 T1Z=0TDO0XP R 7RKESF
—ES 0098 —— - T1A=P R4 IFKEEIREF
ISk 0099 T1A=0 SO0 EKRETASF 2
—15hB100 e P B o BE O AR AR A A L PR R D K D p [
Ish 0101 T16%0 SO0FPERSRKE (PR D=3, ORKNE2 3 X561
T=0+S00SPEK 0L { PRk~ Kktd ) 02 }¥SG
ISK 0103 T1E=0 +S500FPHK ¥ SH (3. 0FPAR2~-KE%2 ) X552
OO e — e FHIE G BD R AR TR SR ]
15K 0105 T20=P ¥R KEJ V(PRI K IR 2 ) ¥ SF
— S 0108——————— FL=0-+ BROAREK SR TREFZ
tss 0107 T2230 +SOOFP XL ERKE(PER 243, 0kKEE2 )RS5
— 5O — —— TR INL . BO P RPN P e R R ) %A R SG —
156 010 T24=0 +S00IPRKIESHE (L 05PIS24KI X2 ) HSG2

[T TV TR Y. —— Y T VYT R T T T T
CRESRREND SECTICN » .
= THI6 SECTION COMPLTES THE -GCHAMNGES ITMNLE+ LM+ J+ AND T EOR OARWING —

c FULL EGUATIONS. ] .
IS, I - G EE= AL T T 24T 34T A T4 TS ISDEL T X R %12 )~ -
ISh G132 DLNM=0.500%A1R{T7=T8+T9=TLO=T11 IRDELT/{XI *&12)
— ISR 3 — D I A A TR T A T ST 6 T A L B D EL AL N T R 1 2}
ISH 0114 DI=ALS(TI9=T20=-T21+T22=-T23=T24=T25}#DELT/(LESXI¥N]12)
CHSEMEEND— SECT 10N S
ISk D115 GO YO 27 .
— PR rETHIS SECTIDON COMRUTES THE TERMS - IN--THE SECOND--QRDER ARRROXIMATION .-
I1SM 0116 26 K=DSIN(AY)
—H-—011 7 R=DCO-E LAY
Canss o COMPUTE THE TANGENTSs SINES OF THE LAG ANGLES.
IO - TR 2 O RN U MEGA I AL —
ISN 0119 SFL1x2 +0RTFLI/1 1,0 + TFL&N2)
—+500120 TG A
i1sh 0121 SCE2.0%TG/( 140 + TGH%R2)
's. uiaa ) IG':‘N_Z o‘c“s“\tll
IS6 0123 S5G1=2 d0*TG1/{ 10 + TGIH%2}
— IS OF2a — THI2.0K0MEGARAA
ISH 0123 SHEZ2 .QbTHI/( 120 + TH*RZ)
—ISMNOl28 —  TFx2.0kNBAM
IS8 0127 SF=2,CATF/{ 1.0 + TF%%2)
C COMAUTE ThE TERMS
ISh 0128 T1=20« 500WPERERSF 1
LIS h 0129 T2zPRAEEK Sk 2ESG] -
ISk 0130 TI=PESLEK®R 2% 56 '
—1SA 003  TAxPRBARSFE]
ISN ¢332 . TESxhe CRPRAIEBK B 205G
{ = 1
15 0134 TT=PELIRK 3k JXSF
SN OIS . TAE].SOORPERSEKER IR
ISh 0136 T9z=0+ SCOCPRATRKESG]L
i Fedl |
ISk 0138 T11=0,5D0%P &8 5EK*5G
4500130 F13aREkISKREINSS i

ISK 0140 T13n0 SLOFPEETRKESF |
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EENCOTELT T T T TLASPERSERR S THSE
ISh 0142 TL5=C . SDOP A& TRKKSG]
ESh 0443 — — —— - TFHEr e SOOP AL SRR IH561 o
ISN 0143 T17=0.5DO¥P# £ THKESG
G OIS - ——— =~ T O L s SOORPAREERAIIREG B
ISh 0146 T19=1.SD04P R IIKH$3HSH
e AR R ENE—SEC T 10N e ——— —
CH#e%*THIS SECTICN COMPUTES THE CHANGES IN LEs LMs Jo AND I FOR THE
< SECONE—CRDER -APFPRBRIMAT-LON-«———-
ISh 0147 36 DLE=—A1R (TL4TZ4T3I*DELT/(XI#%12)

~A5W G148 —DLMBA L H D SO0 TR+ TS IRDE LT AR R B

ISh D149 DJSAL¥0 . S00%( PEUTAKESG L ~PRE7EKRSFL=PEASGEKRSGIRDELT/(LNRXTI#8}2)

£S5 N 0150 B AL RG o SO O PR TRKRSG L 4PERTEK RS I~PE TR RS G I RDELF AL ES X TR 1 2)——
CHkkkdEND SECTIONS

IS @18 —— 27— CONFEINLE—

ChEdakTHIS sscrlnu INSURES THAT DI/1 OR DJ/J NEVER EXCEEDS CRIT.

5O R = 08 ) 161Gy 38 - R

IS 0153 33 IF (J - 0.0) 19415439
35 h-01 540 —— - -39 — RisbiA— e e e
ISh 0155 . IF (RI ~ 0.0} 4T.46.46
5015647 RieeR} —
ISk 0157 46  CONTINUE
2SBS0 RI=DIFS
ISK 0159 IF (RJ = 0.0) 49.48.48
190 1ED A ——rdw—R
ISH 0161 48  CONTINUE
~1E A EE—— AR ——CR T34y 3
1SN 0163 34 IF (R} - CRIT) 19,19,35
IS 0164 — 35 —BELTwDELtAEwE ——— —
ISh 0166 IFf (NA .EQ. 1) GO TO 36
A5 016F— —— —HF—{NA—~EGv- 2} G0-FB- 3T~ e
ISh 0169 15 CONTINUE
R ENE—SECTIONS ' -
WHEN NC1 OR NC2 EGUALS L.+ NCHECK

CHExe2THIS SECTION HALVES THE STEP SIZE
———— K E PS5 FRACK— mmm%—mmm —_—

ISh 0170 IF {NB +EQ. 2) GO YD 41
EETTN PE - SR Y- S D S
1Sh 0173 8F  NCHECK=—-NCHECK
SN OETA  — o I ANGHECK—+EQ e GO TO- 43
156 0176 G0 . TO 42
—ISH- 0172 — A DELFEREL T £ . e
iss 0178 IFf (NA .EG. 1} GD TO 36
ISR OLB0 - - I NA G2 ) GO-FO-—37
ISk 0182 42  CONTINUE

CHEEERENE - SECTION——
CHepEuTHES SECTION INCREMENTS THE IMPORTANT QUANTITIES.

. D)
—SKN 0183 ——— BPEI=DI—+DJ

I5h D164 1=f + CI
S h-01 85 Jay o £

1SN 0186 XII=180.081/3,1655%
—E6M—018F AL B0+ ORI+ 1A LES

ISH 0188 PS1=PSI + DI ¢ DJ
—IEMOl89 —  XRSIx180.0KRS1/3.14159

ISk 0190 LE=LE+DLE
SN O LE=LMADLM

1SN 0192 N=LESC

ISN Ol“ Xl=LMsB
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~ESN-OKIE———— —FRTHBELT
Coss s +NT=NUNBER CF ITERATIONS DONE SO FAR IN A RUN.
1 2 T - T : e -

CHSE*2ENL SECTION.
e — GRS TH LS - SECTION—COMPYT-ES - THE - CHANGES— !N——-i-— AND—— IN - THELTWT—-OF

C INFINITE VISCOSITY (DARNIN 1380 PAGE 317.)
s € n e w COMPUTATECN-- 15— HOT- BEGUN-UNTIL X121 .0001 TO AVGID DIVIDING BY 0.
ISk 0197 IF (X1 - 1.0001D0} 31,32,32
s &L o EE TR TR ¥ X £3.10.7.Y. 3 e
ISK 0199 CJJ=0+0D0
N LY WY LT,V VY . T 'y - % S - - S
1Sn 0201 32 LFICHOMEGAS(LT~LM} .
FENBROZ o ARy QLA L oDl A D= RO
ISr 0203 R270.SEO% (1.0/(LT-LM) + 1+0/LMI*{1.0 + R1)
CFEM D208 e RIReD (SO BTN 4 - L G MR ORI — —
ISt 0205 DII=OLMAR 2% |
-5 -B206 ——— — - EJIZDLMIRIEI - - S — ——
ISh 0207 33 CONTINLE

e e MRS END SECTION-e - ——- o —
CRERE2THIS SECTION PRINTS QUT THE NEh VALUES FOﬂ I'HE IMPORTANT
——— e G QUANTEITLIES .- m—
isn o208 WRITE {(6,3) T-xI-N-xPS!-OHEGA.DEIoDJJ.XII.KJ.DIoDJ-DPS!
-EM-0R09 - -3 - FORMAT L AXs D100t 1X 4021308+ 3%sD10.50 1K eF7 43,201 sDL 0253 3N o000 olbp
1 201Ky F5e312301Xs010.41))
.............. ChpekEND . SECTION e ———
CHEF#¥THIS SECTION DECIDES WHETHER CONSTANT DELY CR COKSTANT DLM SHOULD

- “ BE uUSED

Cusse o STATEMENT 12 GIVES CONSTANT STEF SIZE IN TIME.
e Crew v e STATERENT 13 -AND 50 CIVE CONSTANT STEP. SIZE TN LM

IS» 0210 _ IF (NT = NG)LZ412,13
S EEA0@t 33 - BELTRDABSLO 00208900 XIAKLI/AAIRD SOORTASTSII)
156 0212 IF (NA .EQ. 2} SO TO %0

— AN O GO ¥O- &1
ISN 0215 s0 osuta:ausco.oorzoagootxtttxz/tanto.soo*tT?—Taotg-rlo-rtlwni

IS O Bl GOATIMUE — R —
ISh 0217 GO TO 14

~— IS 0248 — - k2 DELT=DEARTI—— S —
ISr 0219 14 CCNTINGE

e CRMKABENE SECTIOM
CesessSFOULD INTEGRATION BE FORWARD OR BACKWARD IN TIME?
—1SMh 0220 .. IF (MTIME.-+EGe =1} DELT==DELY .
CosesslS NLAST EXCEEDED?
—ISA 0222 IF (NI=NLAST) &89 _ .., _ ) —
CeseselS XIMAX EXCEEDED?

—IEM 0223 b TJE (NI ALMAN) 5,508
CHE&¥H&THIS SECTION COMPUTES THE TO'I'AL ANGUL AR MIJNENTUH AT THE END OF THE

€ e RUMe 1T SERVES. AS. A CHECK CH HOW NELL THE JTERATION SCHEME WORKS. _
IS 0224 99  CC=DCOS(ASI}
—ISM 0226 . . ATCaDSORTALERSZLMERZ £2 OKLERL WRCC)
ISk 0226 WRITE (6:11) LT.LTC
—ISM 0227 11 _FORMAT (///10Xe1BHINITIAL AKGs MOMaZoDl4d LA, 10X, AGHFINAL AMNGa MOM.®
1e014.8)
— 3640328100 . CONTINUE
1Sh 0229 sTOP

IEh 0230 ENL._. . . e i




APPENDIX D

COMPUTER PROGRAM FOR VARIABLE VISCOSITY

The computer program given in this appendix is discussed in Chapter III,

Section D, and in the comments listed in the program itself.
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CCRREF AR AR R S AR
COM Ok sk e sk ol ok o
LCENAEETHIS IS TIDEZ e
CEA X%k THIS PRIGRAM INTEGRATES DARWINS (188C) EQUATIONS T0 GIVE THE
G ENOLUTION OF THE MOONS {CISCIN 49) ORRIT FO™ A VARIABLE VISCOSITY =
OF THE EARTH.
e . DARWIN (1880} IS5
ON THE SECULAR CHANGES IN THE ELEMENTS OF TME ORAIT OF A SATELL ITE
REVOLVING ABOUT A TIDALLY DISTORTED PLANET
IN

SCIENMTIFIC PAPERS BY SIR GEQRGE HOWARD DARWIN. ¥OL ., 2 PP 208-302
CAMBRIDGE UNIVERSITY PRESS, 1908,
e GJTHE  EQUATIONS ARE OM PGS 2402281 AND 262 [FQUATIONS 7i,e 73
AND THE TWO PRECFEDING EQUATION T75.)
.. . THE PAPER CAN ALSO BE FOQUND IMN e e
PHILOSOPHICAL TRANSACTIONS DF THE ROYAL SOC‘I ETYo VDL- l7l r 1880,
PP T13 — B91. . . .

THE PROGRAM ALLOWS TWO APPROACHES — TO USE ALL THE TERMS IN
-5 DARWINS EQUATIDONS, QR KEEP ONLY TERMS UP T3 AND INCLUDING SECOND

. H 13
nnnnnbnnnnnhn

c NRDER IN K=SIN((I+J)/2). THE LATTER WE CALL THE SECONO ORDER

€. . _APPROXIMATIONG ..

c THE EQUATIONS CAN BE IMTEGRATED FORWARD OR BACKWARD IN TIME,
G DEPENDING UPON WHETHER MTIME=#4]1 OR =l1. _

c THE PROGRAM STARTS BY INTEGRATING WITH CONSTANT TIME INTERVALS
L. . 1T DOES THIS FOR NG STEPS. AFYER NQ STEPS IT SWITCHES OVER TO e

c CONSTANT LM INTERVALS (CHOSEN TN THE PROGRAM TOD GIVE DXI=m TO ABOUT

< 04001 ALl THIS ASSUMES THAT THE PER CENT CHANGE IN_I DR 4 1S

c LESS THAN CRIT. IF THE FRACTIONAL CHANGE 1S GREATER THAMN CRIT: THFE
L€ . INTERVAL IS HALVED UNTIL THE FRACTIDMAL CHANGE IS LESS THAN CRIT.

C CRIT WAS INTRODUCED TC PREVENT LARGE CHANGES IN ANGLE TO AVDID
L CUMULATIVE ERROM, THE STRATAGEM OF SWITCHING FROM COMSTANT CELT TO

C COANSTANY DLM IS TO XEEP THE ITERATIONS FROM TAKING FOREVER, SINCE

C . AT LARGE XI DXI IS QUITE SMALL FOR CONSTANT DELT,.

c

o CasnasSOME DF DARWING NOTATION.
Casnsal~ZERD =REFTREMNCE DISTANCE
_ Cessen CMEGA=ZERND=IMEGA AT C=7ZERD
« SMALL K=CH{OMEGA-ZFRN)E(C«ZERN)/(BIG GI*(DIG M)¥{SMALL M}
2 TJAU~ZEROQ=(B/2)%(BIG GIR{SMALL M}/ (C-ZERQ)RX3
« GOTHIC SMALL G={2/5)%{SMALL GI/(SMALL A)
CeswesBIG G=UNMIVEISAL GRAVITATIOMAL CONSTANT
Cus aee SMALL A=RADIUS OF THE EARTH
Craes s BIG M=MASS OF THE EARTH
CeesseSHMALL M=MASS OF THE MDON
— CoessesBMALL GGRAVITATIOINAL CONSTANT AT THE EARTHS SURFACE
CaanssW 15 THE DEMSITY OF THE EBARTH B
CeeooseWE HAVE SUBSTITUTED BIG G FOR DARWINS MU AROVE.
< .
CReEsRTHIS SECTION DEFINES THE MOST IMOORTANT QUANTITIES.
Cavess Xl IS SORTIEARYH-MODN DISTANCE/RFFERENCE DISTAMCE),
CoupresDZERD IS THT REFERAENCE DISTANCE, HMERE IN UNITS NF EARTH RADII.
c AND WHERE N=2%0OVEGA.
Cos sy s DS=FART(DZEIN) » C-ZERD=SMALL A%*DSe
CoveseN IS THE ROTATIONAL ANGULAR VELNACITY OF THE EARTH IN 10¥k-4 /SEC
C (1.Fe MIATIPLY THE VALUE GIVEN IN THE PROGRAM AY 10%&-4 TO GET THE
[ VALUE TM CGS UNITS.)
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TCE R R OMEGA TS THT -~ ORSIT AL ANGULAR VELOCTYY OF THE MODON TN UNITS OF
C 10%%=4A /SEC.
~CosesePSL IS THE ANGLE BETWEEM THE EARTHS EQUATORIAL PLANF AND THF =

c PLANE DF THEZ MOONS ORBIT. PSI=l + J.
L oeesel 15 THE ANGLE BETWEEN THE FARTHS FOUATNRTAL Pt ANF AND THE
[ INYARIABLE PLANE.

LCoseesd IS THE ANGLE -HBETWEEN THE MONNS NRATTAL PLANE AND THE INVARIABIE
C PLANE .

Lo saaPSls Lo AND J ARE IN RADTANS. XOST.XTT. AND XJ ARE THE SAME ANGLES
c IN DEGREES. '

CarnaafBSTy NI, AND DJ ARE THE CHANGES IN THE RESPECTIVE ANGLES, e
CessesVIS IS THE EARTHS VISCOSITY IN UNITS OF 10%&16 CGS.

LasseslM IS THE ORBITAL ANGULAR MOMENTUM OF THE SYSTEM IM_UNITS OF
< 102440 CGS.

LonaaslE 1S THE PITATIONAL ANGULAR MOMENTUM OF THE FARTH IN UNITS OF .
C 104 %40 CG5. LE=CIN.

LasaseLM_AND DLE ARE THE RESPECTIVE CHANGES TN 1M AND | F. —
CesseelT IS THE TOTAL ANGULAR MOMENTUM OF THE SYSTEM IN UNITS OF

£ 1DERAD TGS

c.....c 15 THE MOMENT OF INERTIA OF THME EARTH IN UNITS OF 10%%44& CGS.

£ CESMALL KRR
CessesT IS THE TIME IN UNITS OF 10%%9 SEC. DELT IS THE CHANGE IN T.
CREXSHEND SECTIONe ... ...
c

Cessashl IS (SMALL K)IS({TAU-ZERDIRED FIGOTHIC SMALL G) (IN DARWINS
C NOTATION) TIMES B (AS DEFINED HERE) IN UNITS OF 10#%31 CGS.

LosseoB IS SORTIL{BIG GRSMALL A)/(BIG M+SMALL MIME(ATG MIS{SMALL MI&DS IN
C UNITS OF 10%%40 CGSe LM=D®XI.

Lossesh?2 1S 19,260 SMALIL_ GIE{SMALL A)S{SMALL WIRIN UNITS OF JD&=12 CGS.

CeeensA3 IS SORATI(BIG GI#{BIG M+SMALL M)/{SMALL A)*%3)}/D5#%3 IN UNITS OF

L 10Fk=& SEC, OMEGA=AI/(XIS%3},
C .

Lk AdnkYHE TIMF VARTATION NF THE VISCOSITY IS GIVEN BY
[ VIS=VISZAEXP{BB/TEMP)

Cos e MISISCOFFFICTENT OF VISCOSTTY TN UNITS OF 10%%186 CGS.
CoesssBBACTIVATION TEMPERATURE IN DEGREES KELVINS

CasessTEME 15 THE TEMPERATURE OF THE EARTH IN DEGREES KELVING

CaaseaTHE TIME VARIATION OF TEMPERAYURE OF THE EARTH IS GIVEN BY

£ TEMP=TEMPZ/( (1.04BRETARITEMPZE#3 )¢ {T-=TSTART )} #%0,333)
Cesses TEMPZ=TEMPERATURE OF THE EARTH AT TIME TSTART. GIVEN TN DEGREES K.

Cossee BETASAX(ARFEA OF FARTHIG(STEFAN-BATZ, CONSTI/(BIG MESPECIFIC HMEAT)

c TIMES

TLDIER IN THE EQUAT!CN FaRr TE"P. THEN TLOWER IS USED IN TME
£ 2 wISCOSITY EOUATTON. TENWER IN DEGREFS KELVIN,

<

ChbhkxTHIS SECTION EXPLAINS THE INITIAL INPUT DATA.

CosvaaNRUN IS THE NUNBER IOF RUNS TO BE MADE. ALL ITNITIAL DATA FCIR A RUN
L. . IS READ FROM Twl CONSECUTIVE {ARDS.

Coovsse s CRIT I5 THE MAXIMUM CHANGE PERMITTED IN THE ABSOLUTE VALUES GOF
L . DIfY AND DJI/J TN A SINGLE STEP.

Cavas+ MTIME=+1 FOR A BATCH OF RUNS INTEGRATED FORWARD IN TIMEs AND
£ MFIME=-] FOR INTEGRATION BAGKWARD IN TINE.

Cassss ANGLE = INITIAL VALUE FOR PSI=l + J  IN RADIANS.

LosaaaXIF = TNITIAL WALUE OF X1
Cesave VISF = VISCOSITY OF THE EAQTH IN UNLITS OF 108214 CGS5.
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- € VISF 1S NOT USED In-
CessneePELTIF = STFP SIZE IN TIME IN UNITS OF 104%9 SEC.

... DELTLE SHOIED ALWAYS BE POSITIVE.

Crawze XIMAX = THE MAXIMUM WALUE OF XI TO WHICH THE PROGRAM INTEGRATES.
idme .. .€ . _THE RUN STOPS WHEN XI. = XIMAX. . —

Cerrss TSTART 3 INITIAL VALUE OF TIME IN UNITS OF 10%%9 SEC. )

. CasnsaNP = THF NUMBER OF _HEEAI_I_QNS_DEWHSIAHLSI_EP__&IIE_!B_

c TIME.

i naaanWF=1s Mi=1 MEANS THE PROGRAM USES THE SECOND DRDER APPROXIMATIOMN.
CavenaNF=2, NL=2 MEANS THE PROGRAM USES ALL THE TERMS IN DARWEINS

RO B = EQUATIONS « -
ConsesNFal, NL=2 MEANS THE PROGFAM RUNS BOTHM THE SECOND ORDER

- C APPROXIMATION AND DARYING FULL EQUATIONS OM THE [NITIAL DATA.
CusassNCl=1 GIVES A CHECK ON THE DATA RUN FOR THE SECOND CRODER

R —— C APPROXTMATION BY HALVING. THE STEP SIZES AND NG THE NUMBER OF
c STEPS AND REPEATING THE RUN. 1F THE CHECK IS NOT DESIREDs NC1=0.

e e- . CannaaNC2 PERENRMS THE SAME FUNCTION AS NC)1 FOR THE FULL EOQUATIONS.
CavssoNLAST IS THE TOTAL NUMBER OF STEPS PERMITTED IN ANY ONE RUNe. THE

[N, AR LRUN TERPMINATES IF NLAST 1S5 EXCEEDED.
C‘#-*!END SECTION.
~1SN 0002 - M
1 LE«NsOMEGA+sPsKsTF13SF1 3 TGaSG+TG1+5G1 s DLE «DL My LTCo T+ DELT DS,
- 2 XIMAK
185N 0003  DDUBLE PRECIS!GN AY DI D JDELTI
_ISH £G084 DOUBLE PRECISION TFSESTF243F2:TG2+862,THySH
ISN 0005 DOUBLE PRECISION PSI,LDPS]
_T1SN HOROE " ONUALE PRECTSION XIF.YISF.OELTIF,TSTART
1SN 0007 DOUBLE PRECISION T1eT24T34TA TS THBT7 TR T2 T102T11+T12+T134T14,
Ll XYAB TS TITaT19:T19sTR202721,T722,723,724,7T25 e
ISN QD08 DOUBLE PRECISION SS.S04J.1
_1SN 0009 _ ___ . DOWBLE PRECTS10N L .RLsR2,R3,CI1,044
‘1SN Q010 DOUBLE PRECISION TEMP TEMFZ.BETA+TLOWER,BB,E},EE,VISZ
L r30500 i
1SN 0012 C=8.1100
ISN 0013 _T=38 200
ISN OOk4 DS=DSORT{DIERD)
L ISMN QO15 @00 Almi.31313704%C/DLEROQERS
ISN 001 & A2=2 4, 73600
._ISN 00T B=3,681701D0%0S
18M 0G1 8 A3=12+4918500/({DZERO*DS)
1SN ¢019 Ul=0400D0 .
ISN 002G READ (%.1) NAUMJCRIT.MTIME
_ISM 0021} 1 FORMAT (IS:F10+2:15)
ISN Q022 DO 100 NR=1.NRUN )
CRE¥rETHIS SECTJON READS IN THE INITIAL DATA. ANGLE IS5 IN RADIANS.
1SN G023 READ (542} ANGLE sXIF«VISFsDELTIFE 4 XTMAXy TSTART NP o NFyNLyNC1 s NCZ»
—_ . 1. _MLAST .
1SN 0024 . 2 FORMAT (D9¢24D114254D10222I5,412,17)
SN Q028 RAEAD (5,52) BR,VISZI.TEMPZ BETA,TLOWER
1SN 00268 L+ FORMAT (5D10+#%}
CHexEBEND SECTION.
I8N 0027 N0 100 NA=NF . HL
IF [NA- EGs 1) HO=NCI
188 0030 IF (NA +EQ. 2) NODaNC2Z
1SN 0032 HNCz 1 + ND
ISN 0033 DO 100 NB=1.HNC
__1SN 0034 _NCHECK=~]

1SN 0038

A0 Xi=XIF
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LS GOBE = e e NN - e R
1SN 0037 IF (NB +EQ. 2} NO=2%NP
SISMN. D039 . .. NISSMISE. .. . .
1SH 0040 DELTY=DELTIF
JJEN 0081 .. T=TSTART. . . ___ -
CRR®KXTHIS SECTION COMPUTES THE INITIAL VISCOSITY.
~-1SN.DOKZ .. ... .. .. . TEMPETEMPZ/{{] 0sAETAR(TEMOZEAA} & (T-TSTARTI RS0, A33)
1SN DOA3 IF (TEMP = TLOWER) 50.50,.51
-1SM . DOKS. .. ... 5O ... TEMP=TLOWER
1SN 0045 51 £1=BB/TEMP
1SN O0ASG ... ... ... .. EEsSDEXPIEL1). . _ .  _ . - I
1SM 00A7 VIS=VYISZ¥EE
R CChkxk&xEND SECTIONS. . . . e
ISN O0AE ARSVISHAZ
—_— e CRESYRTHIS SECTION . WRITES OUT THE NPT DATA
ISN 0049 WRITE (646) '
ISN Q0S80 . . ] FORMAT _{1H1)
I8N 0051 WRITE {6,531} BE.VISZ.BETA
- 1SH.D0%2 . ... B3  FORMAT(SX,3HBB=,.D1 =

1GSs5X e SHBETA=.D10.4 1K, LOH/1O%%9 SEC /)

—~—1%M-00683 ... - MALTE {fi,54) TENFZ . JTLONWER
ISN 0054 L1 FORMAT (SXsEHTEMPI=4DE0 e3¢ Ll X e THOEGREES ; SN+ 7HTLONER Z D 10484 1 Xy THDEG
o e - 1REES /LY .
ISN 00#5 WRITE (6418) DELTIF-XInAx.NO.NF|NL.NC1-choNLAST
CISN . D0S6... ... 1A . FORMAT ( = =
1 FHNQ=y IS o 5X s AHNF= o 11 o5X o IHNL =0 11 3 SN 4 8HNC 1=, T1 3 SN AHNC2=4 11+ 58X
B EBHNLASTR oIS e £ P}
ISN 0087 WRITE (6457) CRIT.MTIMNE
IBN 0088 .. . .87 . FORMAT {SXsSHCRITE 4F10,8 ¢ SN EHMT IME=, T X, /7/1
CRASREEND SECTION.
L CEEREETHIS SECTION WRITES THE HEADING.
CenneecAll QUANTITIES PRINTED OUT ARE IN UNITS GIVEN IN THE PROGRAM,
C -NOTE_THAT UNDER HEADTINGS PSYs T, AND J XOPST, XT1. AND XJ ARE
[ PRINTEDs THUS GIVING ALL ANGLES IN DREGREES.
-ISN 0OSa . . L - . MRITE {6.7) . _ [ ..
ISN 00660 T FORMAT (éx-iHTlMEggx.ZHKI-QK.IHN.BX.GH PSI +3XySHIMEGA, TX»3HVIS, 9X
,,,,, —e e L BHTEMP 4 SX e FH._ T +8Xe3H _ JBX. 2HD 129X 0 2HD J X 2AHDPS Y /XY
Chk k¥ xEND SECTIOM.
e e LRE X THIS SECTION COMPUTES THE INITIAL VALUES DOF L E, Ns OMEGAs Is AND J
1SN 0061 NT=0
L ISN Q082 LM=B¥X] . e e e o P
ISN 0083 CC=DCONS{ANGLE)
ISN. Q068 . __. . PSITANGLE
ISN 00&5 xXPS5I= la0.0tﬁNGLEIS 14159
—-ISN Qo686 18 . OELTsDELTL —————
ISN 0O&6T 7 CONT INUE
__ISN. QOB8. _ . 23 _ A\Fo-L NKCC 4 DSORT((LMRCCI®E®D + | THED — | Me%2 ) _
ISN 0069 X[=_M/B
~ISN 0070 .. NmESLC 0 e
ISN 0071 OMEGA=AZ/({XI%*3}
1SN GOTF2. . _SSgDSINCANGLE) S
ISN 0073 SJESE/DSART(SSH42 + {CC + LM/LE)%%2)
18N 0074 i L JdEDARSINISAY . -
1SN 0075 I=ANGLE~J
—ASN sO07s  KIT=3180,.0%I/3,18159 @
1SN 0077 XJZ180.00)/3, 14159

ChE kb REND SECTION.
15N D078 WRITE {643) ToXIeMsXPSI+OMEGAWVISTEMEy XTT NI




[TV ¥ S A YRty W R
C kAot ook o Aok ok ok o

ASK 0079 % AY=0.S5D0APST

CRESBEETHIS SECTION COMPUTES THE VISCNSITY.

ISH 00RO TEMP=TEMO? /L {1 OBETAR(TEMPZ XA} I{T-TSTARTIIRE0,333Y
ISN oof1 IF (TEMP — TLOWER) S5:55,56
ISN.00A2 .. W5 TENPTIONER.
ISN 0083 56 E1zBB/TEMP
1SN GOBA.__ . EFsDEXS{F1Y
ISM 0085 VIS=V1SZHEE :
e e _CERARREND SECTIONM ... .. -
ISH 0086 AASVISHAZ :
1SN 0087 . . . ... IF [NA JEQ. 1) 60.TQ 26
ChkexxETHIS SECTION COMPUTES ALL THE TE
_ISN 008D . XFDSINEAYY
1SN 0090 P=DCOS(AY)
o . faaaasCOMPUTE THE TANGENTSs SLINES OF _THE LAG ANGLES. . _.. . o
I15M 0091 TF=2.0%NxAA
1SN 0092 . SEFZLO*TE/LLO4TERSE2Y
ISN 0093 TFZE2 J0%{ N+IMEGA J R A%
_ISN 0094  SFI=2.0&TF2/({1.0+4TF2%¥2)
1SN 0095 © TG2=(N+2.0%DMEGA X A4
1SN 0OO&E 0 SGR=2.0¥TGR/{1.03TGRE%2)
IS5N 0097 TH=Z,0*(MEGA®AA
_ISN OO9R. . . SHEZ2.0%TH/{1 +0+THE%2}
1SN 00990 TF1=2.0%{ N-OMEGA ) EAS
LAISN 0100 0 SF1=2.,0%TF1/{1.04TF14%2)
1SN 0101 TG2NKAL
_ISN G102 56225 0% TG/{L+0+TGER2Y
ISN G103 TG1={N= 2, 0¥NMEGA )R AS
_ISMN 0104 . . _ __SGI=2.0%TG1/(104TGL¥¥2) I e
Ceeans COMPUTE THE TERMS.
_ISN 0305 0 T1=0a.5DOFPEKARSE]
ISN Q106 T2=P 0% PERARKERLUSF
I8N Q307 . CT3=0.500%Kxe8%S5F2
ISN 0108 TASPRESER RA2RSG]
_IsN O1C0S - _TE=PHEDEK RS 2R { PRE D=k P 1 %%2)*56
ISN o1t TE=PARZEKAKLKSG2
_ISN-0111 - T7=P*%8%SF |
ISN 0112 TOSKREAKSE2
LISN D113 L TS8O DRREINERZHEG] e
ISH 0114 T10=4 . O*kPER2ERK R BEESGE
ISN. 0115 T112620%PXkL EKERAR TH
ISN 0116 T12=0.5SD0FPA* T RKHGF 1
ISN G117 T13=P¥: ek IR se
ISN 0118 T14=0.5D0 SPKk KX RTHSF 2
LISN. Q119 L L T15= 1. S00XPREIRKIRXAR(PRRI—KEKD ) XSH
TSN 0120 T16=0.5D0RPXESHK #( PEE2=3 , ORKER2 IR5G1
VISH QA28 T17=0.5SDOkPrKk ([ PRE2-KNAZ)RRD }ESG
1SN 0122 TLE=0.500RPEKEETU{ 3, 04PN & 2=K* %2 ) %562
_ISN 0123 T19=0 4 SDOKPX X TEKASFL
1SN 0124 T20=PR*ARKES3 & ( PAR2=KEX2 } #SF
1SN 0125 T21=0.300%P* KEXTASF )
ISN 0126 T22=0.SD0KPARSHK KA PEE24D  OKKEX2 I RSG1
1SN 0127 L TP3=0.500%PE Kk ({PES2-KEk2) ¥%I ) ¥5G
1SN OI2B T24=0,500%PXKKkRSh( T, DEPELZ SKEKZ ) €552
SN D129 T25=1 o SPORPE kIS WHE INSH

CREFkNEHD SECTION.




T RN TRIS SECTION COMPUTES THE CHANGES TN LB M5 AND T FOR—DARWENS —
< FULL EQUATIONS, )
ISN 0130 . 37  DILEceAlk(T1+T22T34TA+IS+TEINDEI T/(XIRN]Z)
1SN 0131 DLM=0.SDO*AL#{ T7=TB+T9T10-T1 1) $DELT/{XI%%12)
ISN- 0132 . 0= ALA(TIPAT134TIA4 TIR-T 16717+ TIAVRDEI T /() MAXTEELD])
ISN 01332 DI=ALR(T13=T20~T21+T22=-123=T24~T25) DELT/(LERX I 4%] 2}
i CRE R REEND _SECTICON,
ISN 0134 GO TQ 27
ISH D135 25 K=DSINCAY)
SN Q136 e . P=DCOSCAYY
Cesans COMPUTE THE TANGENTS, SINES OF THE LAG ANGLES.
JISN DLAT o TE1=2 .0kl N=OMEGAMKAL
TSN D138 SF1=2.0%TF1/(1.0 ¢ TFlu%2)
1SN 0130 Toa=MEAL
1SN 0140 SG=2+0KTGE/ (1.0 + TGEE2)
ISN Q141 . . . ¥l s{N-2.0NMFGA}VEAL
ISN 0142 SG1=2.0%TG1/(1.0 + TG1¥%Z)
_ISN.OIAZ _  TH=2 .OKOMEGARAL
ISN O1A¢ SH=2+0%TH/(1.0 + THEkk2)
1SN 014S TER2 o Ak NKAS .
ISN 0146 SE=2,0*kTF/(1.0 + TF*%2)
—er— e Lt 22 COMPUTE _THE TERNS.
ISN 0147 T1=0.500%P%kaxSF |
—ISML 0148 . . TIxPRRAEKAEIESG]
ISN 0149 TI=PHSERAEIRSG
I SM.0150 TAzPKkRESFEL
ISN 0181 TS=h + OXPRSERK KNS G]
~IGHNORE2. . . _YE=0,SDOKPELZREASE]
I5N 0153 T7=PH¥IXK EXIREE
ISM D184 .. TO=1 25D 0Pk Sk KbAIRSH
1SN 01585 TI=0 . BDORPRXTRKRSG ]
—L15N 03185 A LES L L TET Y VEE KT TTcA]
15N 0157 T1120.SDOSPEES KK XSG
SISNLOLASE .. T12=PphxadKke3IASG
ISMN 015¢ T13=0.500%Pk R TRKESF1
VSN OISE . ... T14ASPEASHKkE IR SE
ISN 0161 T15=0 500%PKRTRKASG]
_1SM D162 T1A212SD08PkES S kN INSG1
ISN 0163 T1750.500¥PEETAKHSG
JISN 0164 . TIA=1JSDOSPERSEKRR IRSG
ISN D165 T19=1 « SDO R EEIRK LR IHSH

e LEEEEREND SECTIONa .
CheRdkTHIS SECTION COMPUTES THE CHANGES IN LE. LMs J¢ AND 1 FOR THE

o} SECOND CGRDFR APPROXTIMATI M.
ISN G166 36 DLE==A1%{T1+T24T2)HDELT/( XI*%12}
I8N _ORT o DAM=AL1%0.5008(TAFTEISNE| TAIXI®RELDP)
ISN 0168 DISALRG SDOE ( PRETRKESGL ~PRETEKESFI=PRSSAKASG) FDELT A (LMRXTRR12) |
——IsH Q18 DISAIS0JSNOR(PERTRKESGL+ PEKTEXESE]=DERTAKRSGIROELT A {LERXTIEX]D)
ISN 0170 27 CONT INUE
CREErNEND SECTIONS
CHk Ak THIS SECTION INSURES THAT DI/1 OR DJ/J NEVER EXCEEDS CRIT.
SN 0171 L LUIF (T - 0.0) .19.19.38
ISN 0172 38 IF {J - D01 19:19:39
1SN 01F3 . .38 RI=DI/I :
16N 0174 IF {RTI — 0.0) A7.45:46

—IsM 072 ... A7 RIz=R1
ISN 0176 845  CONTINUE
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ISN 0177 ©I=0JI7S - e e
1SN 0178 IF {RJ = 0.6} 49-48.AE

1SN 017C e ... 49 . _RI=S=SJ . -

ISN D1BC an CONTINUE

ISN 0181 . U 1F IRI -~ CRIT) 24.34.35 .. . ..
IsN ¢182 3 IF {RJ - CRIT) 19519.35

_ISN.01B3 ... 35 OELIsDELT/2.0..

TSN 0184 IF (NA .EQs 1) GO TO 35

ISN O1RE . . IF (NA _JEQ. 23 GO T 37

ISk D188 19 CANT ITHUE

Chk ¥ #END SECTION. . -
Creekk THIS SECTIDN HALVES THE STEP SIZE WHEN NC1 DR NC2 EQUALS 1. NCHECK

< KEEPS TRACK OF WHETHER _TME STEP STZE 1S5 HALVED FOR THE CHECKs
ISN 01B% IF (N8B .EQs 2) GO TO 41
ISN. D191 . . ... G0O_TO &2 —
ISN 0192 41 NCHEC K2=NCHECK
1SN 6193 IF (NCHECK +EQ. 1) GO TD &3 R
1SN 0185 GD Ta a2
ISN D196 a3 | DELT=DELT/2.0. __ . . . __ R
ISN 0197 IF (NA +EQ« 1)} GO TN 36
I8N 0199 .. . IF _[NA_ .EQ, 2) G0 _TO 37
1SN 0201 AR CONTINUE )

. CxERANEND SECYIOM.
CedxdxTHIS SECT JON INCREMENTS THE IMPORTANT QUANTITIES.

ISN 0202 . DPSI=DI & D) —
1SN 0203 iI=1T + DI
_1sN. o020 J=) +$ DS
ISN 0205 x!!*lﬁﬂ.@lllB.l“lSQ
ISN Q20¢€ XJ3=180.0% /3. 141359 S S
ISN 02C7 PSI=PST 4+ DI + DJ
1SN o208, . ... XPSIZIB0.0¥2S1 /318159 [T - e e
1SN 0200 LE=LE+DLE
1SN 210 o o LMELMEDIM e
I8 0211 N=LESC
_ISN @212 . OMEGA=A3/(XI%%3}. e e <t —
ISN 0213 KI=LM/B
ISN.O2Y& . T=TEDELY e - —

CHEXEREND SECTION.
L CoonssMT=NUMBER OF ITESATIONS DONE 50 FAR IN A RAUN.
ISN 0215 NT=NT+1

CeeReR THIS SECTION COMPUTES THE CHANGES IN I AND J TN THE _LIMIT OF
C INFINITE VISCOSITY (DARWIN 1830 PAGE BT

 CepessCOMPUTATION IS NOT BEGUM UNTIL X1=1,0001 TO_AVOID OIVIDING BY 0.

Covo i THIS SECTION 15 USED ONLY IN THE CONSTANT VISCOSITY PRDGRAM.
_1SN 021§ 60 TO 33 o
1SN 0217 IF (X1 ~ 1.0001D0) 31,32,32
_ISN 0218 3V D1I=20.0D0 e, L
1SN 0219 DJJI=0.000
LIsM ozeo . GO YO 33 . e et U
1SN 0221 32 L=CHOMFGA/{LT-LM]
1SN 0222 R1Z4 . 0FLR{120-L)/(140=-2.0%L}
ISN 0223 RE=0+SDOF(1407(LT=LM) &+ 1.0/LMI*(1.0 + A1)
__1SN 0224 R3=-0.5D0#(1+0/(LT=LM) + 1.0/LMI*{140-R1} e
1SN o22s O11=pLM*R2%]
LISM QRE6. . . DJJ=DLM¥R3&) e _ B
TSN 0227 33 CONTINUE

Caeke2END SECTION, —
Cxkxx&THIS SECTION PRINTS UT THE NEW VALUES FOR THE IMPORTANT
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e e e GUIANT LT 1R e e e e e e
1SN 0228 WRITE (643) ‘r.xl.N.xns:.quGA.vtﬁ.rFun.xrI.xJ.ohDJ.opst
ISHN. 0228 o« 3 . FORMAT . (1Xe310s8+1XseN1 308 1%eD1005s1XaF7a3e2{1NsD10a8)sIXeD10ulhy.. .
1 201%e FO3)+3(1%4D10%1)
CEEXENEND. SECTIONS . .. e e
Crekk&kTHIS SECTION DECIDES WHETHER COINSTANT DE—'I.T aRr CONSTANT OLM SHDULD
_ R~ e BE USED s e — S . e e s e o
C-..--“:‘TATEMENT 12 G:vEs CDNSTANT STED s:ze m ‘!‘IHE.
LoesesesSTATEMENTS 12 AND.&O GIME CONSTANT STEP SI2F TN M.
1SN 02306 IF (NT = NO)I2,12,13
SIS 2231 . . 13 _OELTEDARS{0.00720RQNOEKTI RSP/ (ALKN,SDOR(TALTSYIY . .
ISN 0232 IF {NA +EQ. 2) GO TD &0
CISM 0234 . . __ GO TD &1 . e
188 §2358 %) DELT= DAESle.oo'rzoagootxlum/tu*a.son*tr?-m+r9—no-nl)n
SN 0236 . Bl CONTINUE. . . P
1SN 0237 GO TO 14
.15N.0238 12 . DELT=DELTL . .. .
1SN 023% 14 CANT T NUE

c ChEdrrENMD SECTYIOMS. .. . . -

Casses SHIULD INTEGRATION BE FDRUAHﬁ OQ BACKWARD IN TIME?

— I8N Q28C.— IE (WMTIME oS0 =1) DEILI==DFIT

Cavese IS NLAST EXCEEDED?

1SN 0282 . 1F (MT-NLAST) 44899 _ ..
Caeens IS5 XIMAX EXCEEDRED?
ISN 0263 ... o IR L XTI NIMAX ]} SBT3
C! #xkxrTHIS SECTION COMPUTES THE T"JTAL ANGULAR MOMENTUM AT THE END OF THE
s ol BRI, 17 SERVES AS A CHECK ON_HOW WELL THE ITEQATION SCHEME WOBKS.
ISN N24 4 o CC=pCOS{PSI)
I8N 028 F LYICDSORT LS RE2 3L MEE2 L2, DXL BRI MECC) e
ISN C285 WRITE (811} LTHLTC
I8N 02&7 11 FORMAT (//710% 21 BHINITIAL ANGe MOM.S+D14. 910X I6HFINAL ANG. MOM.=
1+D14.8)
~IEN. 0248 ... 1DO0  CONTIMNUF . [
IS o289 eTDR
ISN p2EC

CEMD L L L el e e e e



APPENDIX E

COMPUTER PROGRAM FOR SOLAR INFLUENCE

The computer program given in this appendix is discussed in Chapter IV,

and in the comments listed in the program itself.
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CEFFFETHIS 1S TIDE#
CHRxEs THIS PROGRAM INTEGRATES THE FIRST OF DARWINS (1880) EQUATIONS
T 2SO T FIND THE ANGLE BETWEEN THE PLANE OF THE MOONS ORBIT ARG

€ ' THE PROPER PLANE FOR ANY CHOSEN VISCDSITY OF THE EARTH.

T 7 15 THE ANGLE BETWEEN THE PLARE U THE LUNAR DREBIT AND THE

c PROPER PLANE, '

T TARYIN TI8BUT IS

c OM THE SECULAR CHANGES IN THE ELENENTS OF THE ORBIT OF A SATELLITE
LT T REVOLVING TABOUUT A TTOACLY DT STORTEU PLANET

C ' IN
T T T SCIENT I P RAFERS BY STR GEORGE AOWARD DARWINT VOU:s 2 PP 208=382
C CAMBRIDGE UNIVERSITY PRESS, 1308.
ST T T THRE PRPER CAN ACSO BE FOUND TN
c PHILOSCPHICAL TRANSACTIONS OF THE ROYAL SOCIE'I"!‘. VOLe 171 1880.
T PP TII « 89T
c
L E R N R - -
c 38 EARTH RADII).
CeessvalF INTEGRATING FROM CARGE XI TO SMALL K], THE INTEGRALC IS FOURD BY
C SUBFRACTING THE NUMBER IN THE SUM COLUWM AT SMALL XI FROM THE
T T T RUMBER I TAE SOM COLUMN AT CRRGE X1+ THE ANGLCE J AT SWaACC X115
[ THEN THE EXPONENT OF THE INTEGRAL TIMES J AT LARGE XI.

T
Ckxd%xTHIS SECTION DEFINES THE MODST [IMPORTANT QUANTITIES.

T Leesss X1 1S SIRTIEARTH-MOORN DISTANCEZREFERENCE UISTARCETY,
ConsseDX] IS THE CHANGE IN Xl
T Ceees+OZERC IS THE REFERENCE DISTANCE; RERE TN UNITS OF EARTH RADIT:
C AND WHERE N=250MEGA.
L] v =SMALL—A*D ST

CassasN IS THE ROTATIONAL ANGULAR VELDCITY OF THE EARTH IN 10%%—4&4 /SEC
e IREs MICTIPLY THE VALUE GIVEN IN THE PROGRAM BY Ih*+=§% TO GET THE
[ =4 VALUE IN CGS UNITS.)
TR s e s OMEGA IS THE IRBITAL ANGULCAR VELOCTTY OF THE MOON IN UNITS OF
C 10%&—4 /SEC. .
T e e e VIS IS THE EARTHS VISCOSITY IN UNITS OF 10% 15 CGSs
CeoeaslT IS THE TOTAL ANGULAR MOMEMTUM OF THI SYSTYEM IN UNITS OF
S S 8 L L L 2 e T
Cesonel IS THE MOMENT OF INERT[A OF THE EARTH IN UNITS OF 10%844 CGSae
T CESHALL K¥Bs
CooaeaB IS SARTI(EIG GESMALL A)/(BIG M+SMALL M))*(BIG MI*(SMALL M)}*DS IN
— U TS0 1 Ok 0CASy L M=0EX]y
CoannesAZ IS5 19/7(2%{SMALL GI®(SMALL A}*{SMALL W))}IN UNITS OF 10%%-12 CGS.
— e e s AT I SIRT B0 OB 10 M SMAL L M7 CSMALL A FEI ) /D3RI I N-UNTITS - OF
[ 10%%k=8 SEC. OMEGA=AI/(XI*%3),
O FFEND SECTIONS
C
TCE e e e s SONE DF DARY INS NOTATIONS
CoeseaaC=ZERD =REFERENCE DISTANCE
—CE e e s DOMESA=IERT=OMNEGR AT CHEERD
CesnwaSMALL K=Cx{OMEGA-ZERO}I*(C~-ZERDI/I(BIG GI*{BIG M)*(SMALL M)

[EEX] =

CoaessGOTHIC SMALL G={2/5)2{SMALL G)/(SMALL A)
“Cereas DI G=UNIVERSAL GRAVITATIONAL CONSTAMT —

CanessSMALL MARADIUS OF THE EARTH
TCeeasaDIG M=MASS OF THE EARTH

CosvasSMALL M=MASS OF THE MOON
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Tass s SMALL GEGRAVITATIORAL CUNSTANY AT THE EARTHS SURFACE e
CasseeW IS THE DENSITY OF THE EARTH

Tesvs+WE HAVE SUBSTITUTED BIG G FUR DARWINS WU ABOVE.
C
" Caews«CORRES FONDENTE BETWEEN OUR NOTATION AND DARWINS.

C OUR XI IS5 DARWINS GREEK LETTER XI.
T TP - TAJ PRIME
c TZERD =~ TAU ZERD FOR THE MOON
T GG = GOTHIC SMALL G ]
c LDA - GREEX LETTER LAMBDA
T E - GUYHIT SWALL E
[ T - GREEK LETTER TAU
T W GUYHIC SMALL ™
Cc K1 - KAPA SUB-1 , K2 = KAPPA SUB-2
¢ )
IS8 0002 DOUBLE PRECISION DXE VIS XI 2DZEROGC oL ToDS5 A2+ TP TZERDsGG1AIsBeAL,
T SyOMEGR s Ve LDASE s ToMa Ve TG oSG s TG+ SG1 s TF o SF s TFT 2 5F 15 ALPHA; A BETA,
2 BLeALPHP AR sBETAP ¢BRP ¢ GAMDELTA s TERMK] s K22 X1 X2 s X39Z1l o X4 o XB o XE»
3 ZZ,DL06)
ISN 0003 DX1=20,. 0025D0
TABN OUU¥ ~— T DIERO= L B3I307305DT
ISN 0005 C=R,11D0
TSN UOUETT T T LT3R, T
1S9 0007 OS=DSQRT{DZERD)
TsN oo T T TTRZEZ L THBDU
E39 0009 TP=5.945692D-14 ’
TSN G010 TZERDED, 2BAIND=T /IO ZERUEFIF . T T
IsN 0011 GG=6. | S6B62D-7
IS99 aoiz "RIETIZ ¢ MOTRASDUZTDZERDEDS Y 7 - T
I5N 0013 B=3.6817010D0#DS
T T T YT e e aNVIS TS THE NURBER OF VISCOSITIES TO BEZ READ. 777 7 77—
ISN 00L& READ { S,4) NVIS
TSN DD1S R ETRMAT [ Y o T e o e e e e
13N 0016 DO 3 J=1,NVIS

2« VIS IS THE CH)SEN VISCOSTTY OF THE EFARTH, o
+READ IN THE VISCOSITY.

TN OTT R By W TG - T S e e
ISN 0018 5 FORMAT {(D10.5)
CTSNCORIS T OWRITE (BT T T T T s e e e e T
ISN 0020 1 FORMAT (1M1}
TISNTOD2YITT T T T TTTUWRITE S B VS WIS T o - I
"IS5N QD22 .S FORMAT (///, 2OX.IOHVISCOSIT'|'*,DIO.5.1 Xy mmotne CGS.IIII
TISHN U0 T T WRITE &Y T wrmT———
ISN 0024 T FORMAT (/772 15Xs2HXT ¢ 11X SHDLOGJ+12Xe34SUMe/ 7/ )
“ISH U025 AR=VIS AT
CrvnesEVALUATE THE INTEGRAL,
TSN 0028 SO0
ISN 002T AXInI.9ED
TSN 0028 - DO 3 I*1%1188 E—

ISN 0029 OMEGA= A3/{ X1 4+#3)
) T+ ve ANGUCAW MOMENTUNM OF THE EARTH = C®H; -
+ORBITAL ANGULAR MOMENTUM = B¥X].
CeessasN IS TONPUTED BY ASSURING THE MOUNTSTAYS IN THE EQUATURTAL PLANE.
ISN 0032 N={LT~-BEsX1)/C

O3 CDA=ONEGAZN S R
15N 0032 En(QoaS5D0 pE(N*E2)%],00=-8/¢GG)
TISW D033 TETZEROZ TXT¥¥GY

ISN 003a MICtNI Bxxl}
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13"'"0035__'_' Y=1Fr1 o T T T T T T T T e s e
CasasssHERE THE TANGENTS AND SINES OF THE LAG ANGLES ARE COMPUTED.
TSN 0036 TGENYA'S T
ISN 003T SGZ2,09TG/ (140 + TGhk2}
TSN DOFF~ —  TGISIR=Z.0F0ONEGA J*A¥ - T
ISN 0039 SGI=2. TG {140 + TGl%%2)
“I5N OO&D TFEZ, D WN¥AE i " I —— -
ISN 0041 SF=EZ2.00TF/(1 .0 ¢+ TE%x%2)
TSN 002 T T TR R IN=UREGA Y S AR
I5M 0043 SFLI=2.0¢TF1/{1.0 + TF1l¥%2)
I T CaswesHERE THE TERMS IN THE EQUATION ARE CTOMPUTED: THE NOTATION 1S ———
< STRAIGHTFORWARD &
TSN QURR T T ACPHASN ¥ YR [ 107 (2 ONCDAEE Y — - e
IS8 ONaS AmM
TSN OURS BETAST 7 ¥+ ¥ T
ISN QOAT BL=1.0
TISNOwET— ALPHP=Mr (Y {30712 0FLDRAREY V=1 2. 0% 1 OF Y2 ¥ 720%MY Yy~ - — —
ISN 0049 - AP=-ME (240%( 1 0+YHEZ) & TL08M)
TSN OOSY TT T T T T BETARTSI IR0 F Y F Y2 # YEEZ F S0¥MY)
ISN 0051 BP=—{140 + Y**2Z 4 &.0%M)
TSN 0052 GAME {0 S00 VMt SFI=SGI¥FSG Y7 SF1
154 0053 DELTA=(SF14SGLl~5G—2+ QeYASCH+{VES2 ) $SF ) /(2. 0¥SF1)
TISNTROSE T T  TERME O SOOW R L 25 0k U L S OF Y RS G=2 0 SG T 7 51
ISM 00SS KI=s{=ALPHA-BETA-DSORTI{ALPHA-BETA) EX2 44 (ORALBL) ) /2.0
TISNOO0SS T T K2 = AP A BE TR FOSUR T U CALPNA=BE TR ¥k 2 ¥ s 0RRXDL Y1 720
ISN 0057 Xiz={K1+ALPHAI®{ ALPHP-BETAP )
“ TSN 0059 X2r=AP ML UK TF AL PR Y 7 TR ZF ALPHAY
IS4 0D59 X3==-8P 3
TISNOOBT T T 2=t TR FEXI IR TSR —
ISN 0061 X4=GAM X K2+ALPHA)
158 0063 K&E=TERM
WW'MfAD Y/TER1I=K2Y
CoeeeeDLOG) IS5 THE CHANGE IN LOG J AT ANY ONE STEP.
1S 00&S DEOSI=EZIF 22 DX iCPNYy —— -
CesneeSUM IS THE SUHMATION OFf THE DLDGJ S (loEo THE INTEGRAL » )
“ISH 0068 - T SESF KOG
ISN. 00T WRITE (6+8) X[.0LOGJ.S
CISNTOOSS S RMAT T IO Xy DT 2 Se 3N T0 12 ‘S-r‘.!x—&tt—s-}—— .
ISN 0069 XI=XI-DX1
S8 00T0 3 CONTINUE ) .
i158 DOTL STOP

ISN-OOT2 *ND - e —— [




APPENDIX F

ERRATA FOR GOLDREICH (1966)

The following are corrections of misprints in "History of the Lunar Orbit"

by Peter Goldreich as the article appears in Reviews of Geophysics, vol. 4,

pgs. 411-439, 1966. I do not claim to have caught all the misprints; some of
the corrections may result from my own misunderstanding; but this list should

be of use to readers of this classic paper.

pg. 416: Equation (9) should read:

I 1
cos S = coszicos (®' = u) + sin? 3 cos (@' +u)’’

pg. 417: Equation (12) is derived from Equation (7} by using the approximatior
cos I = 1-73%2.
If this approximation is not used, then the expression in braces in
Equation (12} will read

1 3 3 3
“E-_B_ﬁ2+(z*§ﬁ2) C082¢IEDS2U

3 : : 3 3
+ 4 cos I (sin 20 sin 2u)+~g,82 cos 2¢'+§ﬁ2 cos 2u "’

The derivation of Equation (13) is still permissible, since the terms
containing (cos 2®' cos 2u) and (sin 2 ®' sin 2u) are periodic, so long

p B
as ¢' # u.
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pPg. 417:

pg. 419:

Pg-

pg-

Pg-

PE-

pg-

Pg-

419:

420:

423:

423:

425

426:
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Equation (14) and the line below it: How M /N enters into the discus-

sion is not apparent (fo me).

Equations (19) should read:

.. d(Ha)  d(hb)
mdt = .. and '—"—'—"“dt

= 19
-

Equatirons (22), (23), (43a), and (43b) likewise need parentheses arocund

Read " GM " for " " in the equation for K, in Equations (21).

.Two lines above Equation (29):

K

1
' ... be derived by multiplying 2 & - ¢) g into equation 25,

K

- - 2 — —*
2(d -c) N into equation 26, 2 (a - b) L into equation 27 ... "'

Equation (41): Here " M+m

right side. Clearly the author ignores the " m " since

The fifth line down from Equation (40) should read:

" of (39) having ... "

The next to the last line should read:

-

=3

" ... Next, dotting % into equation 43a and into ... "

The line above Equations (51) should read:

" Using (1}, (2), (6), and (21), we observe ... "

‘the whole quantity appearing in the differentiation operator.

_rp_« 1.

M

b
' should be substituted for " M " on the



pg. 426:

pg. 426:

pg. 427;

pg. 428:

108

The first equation of (51) apparently uses

dKl ~ 1 dQ@ ~ 1 d(CQe) _ 2K1 dH
ac - o g T 2K En, Tar T OH dt
d)
dC P
This implies Qp 77 << C

® dt dt

The equation above (55} resolves vector T along two independent sets of
orthogonal coordinates; this procedure is ambiguous. Equations (69) -
(74) show that the expression for % is really the sum of the lunar and
solar torques, with theffirst three vectors being the lunar torque re-
solved along (Eli, 3*2, 33) and the last three vectors being the solar torque

-+ =

resolved along (Ei’ i, 1;).

Equation (58): MacDonald (1964) has sign q' = sign _Hﬁ_‘“_m using
(1= 2%)
Goldreich's notation.

The right sides of the last two equations of (63) should read:

. _ 2m A ]
- P qgB(qg) sin 28 "'
T a

ZmA
36

|

q'F(q) sin 28"

Confusion arises here because Goldreich corrects errors in Equa-

tions (42) and (44) of MacDonald (1964), but inadvertently includes "n"

in the last two equations of (63). I must confess that I do not know if the signs
of the two equations in my correction are right, since they depend on

MacDonald's derivation, which I could not follow in places.



pg. 428:

pg. 428:;

pg. 429:

pg. 429:
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The author uses slightly different notation from Kaula (1964) in Equa-
tion (65); " m* " is brought outside of " B, ' and written explicitly in

Equation (64).

Following the notation of Kaula (1964), " q ' has been set equal to zero

in Equation (68).

The right sides of Equations (67) and (68) should both be multiplied by

" m ' (the lunar torque) or "Ji " (the solar torque}.

The second term of Equation (69) and of (71) should each be multiplied

by L k2_11_



110

TABLE 1

The angular speeds, phase lag angles, and amplitude factors for the seven

tides are given. Adopted from Darwin (1880).
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TABLE 1

Angular

2n-Q) i 2n 2nh+0) | n~20 n+20 | 2Q
speed
Phase lag

21, 2f 2f, g, g, 2h
angle
Amplitude

F, F F, G, G, H

factor
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TABLE 2

The critical angle _ for various. viscosities is given. ¢ is the distance

from c,, where sin 2g, is zero, to where sin 2g, = +1.
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TABLE 2

Viscosity R c

(poises) (degrees) o
1017 8.5 8x10-3
1018 2.7 8 x 10~*
101° 0.85 8 x 1075
10%° 0.27 8 x 10°°
102! 0.085 8 x 107
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TABLE 3

Summary of computer data for the curves shown in Figures 156, 16, and 17.
The computer program itself is given in Appendix C. The column labelled "y"
refers to its value when the moon is at or near 3.83 earth radii distance from
the earth. The column labelled "Time" gives the time required for the moon to
move from 3.83 earth radii to 10 earth radii. The quantities 4t, NQ, A&, and

CRIT are explained in Chapter III, Section C.



TABLE 3

Figure Viscosity ¢ Time At
NQ Ag CRIT

number (poises) (degrees) (Years) (sec x 10~9)
15 1015 3 570 2.5 x 10-6 600 5 x 104 0.05
15 10'® 3 3600 2.5 x 1075 600 5x 104 0.05
15 10"’ 3 3.6 x 10% 2.5 x 10~* 600 5 % 10-* 0.05
16 1018 2.68 3.6 x 10° 5% 10-* 600 2.5 x 10-* 0.05
16 10'° 0.85 3.6 x 106 5 x 10-3 600 2.5 x 10-4 0.05
16 1020 0.268 3.6 x 107 5 x 102 600 2.5 x 107 0.05
16 1021 0.085 3.6 x 108 2.5 x 10-2 2400 2,5 x 10-4 0.05
17 1018 1 3.6 x 105 5x 10-¢ 1200 1.25 x 10-* 0.025
17 1018 2 3.6 x 103 5% 10~ 1200 1.25 x 10-*% 0.025
17 1018 3 3.5 x 10° 5x10-* 1200 1.25 x 10~* 0.025
17 102! 1 3.6 x 10° 1x10-2 1200 1.25 x 10-* 0.025
17 1021 2 3.5 x 108 1x10-2 1200 1.25 x 10-4 0.025
17 102! 3 3.5 x 10° 1x 102 1200 1.25 x 1074 0.025

STT
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TABLE 4

The important quantities used in this work are listed.



Symbol

TABLE 4

Description
mean radius of the earth

Ly/&

- earth-moon distance

3.83 earth radii
eccentricity of the lunar orbit
lag angle of the fide with speed 2 (n - Q)

gravitational acceleration at the surface
of the earth

lag angle of the tide with speed n
2 g
5 a

lag angle of the tide with speed n - 20

angle between the invariable plane and the

earth's equatorial plane

angle between the invariable plane and the

moon's orbital plane

C Qo ¢,
G Mm

mass of the moon

angular velocity of the earth

radial distance measured from the center

of the earth
time
C - co

polar moment of inertia of the earth

117

Numerical value

6.37 x 10 cm

7.21 x 1040 §zem?
sec

2.44 x 109 ¢cm

——

980.7 cm/sec?

6.16 x 107 sec~2

1.14 x 104 sec

7.35 x 1025 ¢

8.11 x 10*% g-cm?



Symbol

TABLE 4 (Continued)

Description

universal gravitational constant

angle between the ecliptic and the earth's
proper plane

angle between the earth's proper plane
and equatorial plane

angle between the moon's proper plane
and orbital plane

angle between the ecliptic and the moon's
proper plane

rotational angular momentum of the earth

orbital angular momentum of the
earth-moon system

total angular momentum of the earth-
moon system

mass of the eafth
disturbing funection

absolute temperature of the earth

£ {373 2¢c, Cl

o} 0

19
2gap

sin%(i+j)

Numerical value

_g cm?3

6.67 x 10-° —Z s

34.2 x 1040 8-om’

Sec

5.98x10% g

- Cy
7.98 x 1014 —
b

2.76 x 10-12 v
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Symbol

TABLE 4 (Continued)

Description
CoSs % i+ i)
density of the earth

displacement of the earth's surface

Gm To

viscosity of the earth

angle between the moon's orbital plane
and earth's equatorial plane = i+ j

critieal angle = ]/Sin 4f,

orbital angular velocity of the moon
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Numerical value

5.5 g/em?

= 3.37 x 10-10 gec-2
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FIGURE 1

The earth and its attendant tidal bulge is shown on the left and the moon on
the right in the figure. The moon orbits in the equatorial plane of the earth

in the same direction that the earth rotates. No friction is present.

Friction is present. The diagrams are not to scale.
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FIGURE 2

(a) E is a vector normal to the ecliptic, 1_5 normal to the proper plane of the
satellite, and M normal to the plane of the satellite's orbit. M sweeps out a
cone about P. J is the angle between Iﬁ and E, and J, is the angle between

ﬁ' and f;

) I'is normal to the invariable plane of the planet-satellite system, A normal
to the planet's equaterial plane, and I\-;I normal to the satellite's orbital
plane. Aand M sweep out cones about I when solar influence is negligible,

with all three vectors lying in a single plane.
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FIGURE 3

Figure 7 of Goldreich (1966), showing the inclination of the moon's orbital
plane to the ecliptic. Precession of the lunar orbit causes the inclination to

oscillate between the two branches of the curve.
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FIGURE 4

(a) E is normal to the ecliptie, P normal to the moon's proper plane. J, is
small compared to J so that the two vectors are nearly parallel and the

inclination of the moon's orbital plane to the ecliptic is nearly constant.

(b) J, becomes appreciable so that the orbital plane clearly does not maintain

a constant inclination to the ecliptic.

(c) E lies in the surface of the cone swept out by the vector normal to the

lunar orbit and J, = J.

(d) E falls outside the cone.

The diagrams are schematic only.
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FIGURE 5

The upper diagram shows the moon orbiting abouf. the earth. I_:'M is the
orbital angular momentum of the system and is perpendicular to the moon's
orbital plane. E'E is the rotational angular momentum of the earth and lies
along the earth's axis, perpendicular to the equatorial plane. ' is the angle
between the orbital and equatorial pla.neé. The lower diagram shows the angular
momentum triangle. f"'r is the total angular momentum of the system. The

magnitudes of .Ei; and I_:'M are denoted by L, and L, respectively.
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FIGURE 6

The rotational angular velocity of the earth n and the orbhital angular velocity
of the rhoon Q are shown as a function of earth-moon distance. The orbit of the
moon lies in the equatorial plane of the earth. The dashed line is the Roche

limit and the dotted line is the distance ¢, where n = 20 (3.83 earth radii).
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FIGURE 7

The angular speeds of the three prinbipél tides are shown as a function of
earth-moon distance. Speeds n, 2 (n - (), and n - 2() correspond to the Kl,
M,, and O tides, respectively. The orbit of the moon lies in the equatorial
plane of the earth. The dashed line is the Roche limit and the dotted line is the

distance ¢, where n = 2() (3.83 earth radii),
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FIGURE 8

A =0/n as a function of earth-moon distance. The orbit of the moon lies

in the equatorial plane of the earth.
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FIGURE 9

Expression (I11-14) divided by n{ as a function of earth-moon distance in
the limit of low viscosity. The moon's orbit lies in the equatorial plane of

the earth.

Expression (III-14) multiplied by n{ asa funétion_of earth-moon distance in
the limit of high viscosity. The moon's orbit lies in the equatorial plane of

the earth. The function is discontinuous at c;.
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FIGURE 10

Sin 2g, as a function of x for large viscosities (>> 10!° poises). The

function reaches its extreme values at -¢ and +e¢,
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FIGURE 11

The inclination v as a function of x for two different initial values of  for
a viscosity of 102° poises. In both cases ¥ must fall below _ at x = -¢
(marked by the dot with the arrow) before the moon can pass to the outer regions.
The solid line is discussed in th_e text. The dotted line shows different initial

starting conditions. The lines are not displaced for clarity.



0.6°

0.2°

0.0 0.2

X  (earth radii x103) —

0.4

5T



142
FIGURE 12

? sin 2g , sin 4f , and sin 2 g, as functions of x for the case of the solid
line shown in the previous figure. Sin 2g 1 is not to scale; it is reduced by a

factor of 10° compared to the other two functions. Sin 4f; is nearly constant.
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FIGURE 13

—g—f for the case of the solid line shown in Figure 11,



0.6

f

d¢
4i 04

{sec-1x1013)

0.2

I | 1 !

X

0.0 0.2
(earth radii x 103) —

0.4

S



146

FIGURE 14

The inclination  as a function of x for 10!® poises for a large initial
value of i, The moon moves toward the earth until it reaches point D. There-
after it moves away from the earth. i must drop below the critical angle ¢,

(marked by the dot with the arrow) before the moon can pass into the outer

regions.
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FIGURE 15

The inclination ¢ as a function of earth-moon distance for viscosities of
1015, 101¢, and 10'7 poises for an initial perturbation of 3° at ¢, (3.83 earth

radii).
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FIGURE 16

The inclination ¢y as a function of earth-moon distance for viscosities of

108,101, 102°, and 102! poises. In each case y =y, atc, - €.
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FIGURE 17

The inclination  as a function of earth-moon distance for 102 poises
(solid lines) and 10%! poises (dashed lines) for perturbations of 1°, 2°, and 3° at

¢, (3.83 earth radii).
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FIGURE 18

The angle i as a function of earth-moon distance for 10'® poises (solid lines)
and 102! poises (dashed lines) for perturbations in ¢ of 1°, 2°, and 3° at Co

(3.83 earth radii).
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FIGURE 19

The angle j as a function of earth-moon distance for 1018 poises (solid

021

lines) and 1 poises (dashed lines) for perturbations in y of 1°, 2° and 3° at

¢y (3.83 earth radii).
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FIGURE 20

The ineclination J of the moon's orbital plane to its proper plane for various
formulations of tidal friction. The dashed line is derived from Goldreich (1966},
where the three principal lag angles are equal to each other. The dotted line is
Darwin's result for low viscosities (<<10!5 poises). The upper solid line shows
J for a perturbation in ) of 3° at ¢, (3.83 earth radii) for a viscosity of 1018
poises. The lower solid line shows J for a perturbation of 2.5° in y at ¢ (3.83
earth radii) for a viscosity of 1018 poises. The dashed line, dotted line, and
lower solid line all give the present value of J at the present distance of 60 earth

radii.
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FIGURE 21

The point O is the center of mass of the earth and Q the center of mass of
the moon. The earth and moon circle P, the center of mass of the earth-moon
system, with angular veloecity 5 The earth rotates about the z* axis with
angular velocity n. Vectors n and E are displaced for clarity. T and r* are the
position vectors of the moon and mass element, respectively. @ is the angle

— —
between r and r*.
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FIGURE 22

The position vector of the exterior point E is A. 5 is the position vector of

a mass element in the earth. The angle between A and 3 is Y.
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