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PREFACE

The work described in this report was performed by the Propulsion

Division of the Jet Propulsion Laboratory.
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ABSTRACT

The exhaust products of a solid rocket motor using as propellant 14%

binder, 16% aluminum, and 70% (wt) ammonium perchlorate consist of

hydrogen chloride, water, alumina, and other compounds. The equilibrium

and some frozen compositions of the chemical species upon interaction with

the atmosphere were computed.

The conditions under which hydrogen chloride interacts with the water

vapor in humid air to form an aerosol containing hydrochloric acid were

computed for various weight ratios of air/exhaust products. These compu-

tations were also performed for the case of a combined SRM and hydrogen-

oxygen rocket engine. Regimes of temperature and relative humidity where

this aerosol is expected were identified. Within these regimes, the con-

centration of HC1 in the aerosol and weight fraction of aerosol to gas phase

were plotted.

Hydrochloric acid aerosol formation was found to be particularly likely

in cool humid weather.
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I. INTRODUCTION

This report discusses the interaction of the exhaust of a typical solid

rocket motor (SRM) with the atmosphere. The assumed propellant is

ammonium perchlorate and aluminum in a hydrocarbon binder. It deals with

two aspects of the problem: composition and concentration of the chemical

species and conditions for the formation of hydrochloric acid aerosol. The

purpose of determining these chemical interactions relates to the effect upon

the environment. In particular, the atmospheric conditions of temperature

and relative humidity conducive to the formation of an HC1 aerosol upon

interaction with SRM exhaust and also with the combined exhaust of an SRM

with the exhaust of a hydrogen-oxygen engine are presented in detail. The

latter case is modeled after the proposed propulsion system of the Space

Shuttle (Refs. 1 and 2).

Until recently, the primary concern over the interaction of the exhaust

products with the atmosphere dealt with the problem of electromagnetic wave

attenuation through the exhaust plume and its effect on ground-rocket com-

munication (Ref. 3); other earlier studies dealt with the rocket exhaust

composition, with the view of improving the specific impulse of the engine

(Ref. 4). However, there has been recent concern about the toxicity of SRM

exhaust gases by NASA (Refs. 1, 2, and 5), with the primary emphasis

placed on the toxic aspects of HC1.

The general topic of hydrochloric acid pollution, including toxicity,

HC1 emission sources, etc. , has been covered quite well in two reviews

(Refs. 6 and 7).

II. RESULTS AND DISCUSSION

The first part of this study was concerned with the estimation of the

composition and concentration of the chemical species of the exhaust gases

at the nozzle exit plane and subsequently upon mixing with the atmosphere.

The solid propellant was assumed (Ref. 8) to consist of 70% (wt)

ammonium perchlorate, 16% aluminum, and 14% binder (epoxy-cured PBAN,

empirical formula C 6 . 497 H 9 . 028 00. 628 N 0 . 218 AHf-160 kcal/kg). The

composition and temperature of the exhaust gases at the nozzle exit plane

were calculated by a NASA-Lewis computer program (Ref. 9) modified for
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use in the UNIVAC-1108. The equilibrium compositions closely matched

published values (Refs. 1, 2) and are presented in Figs. 1-4 (for weight ratio

air/exhaust products = 0).

The equilibrium composition and concentration of the species resulting

from mixing the exhaust products of the SRM were computed. Calculations

were also carried out for air mixed with the combined exhaust of the SRM

and liquid H 2 -LOX engine, where the SRM exhaust products comprise

78.4 wt %. As for the proposed Space Shuttle (Ref. 1), the results are shown

in Figs. 1-4. The equilibrium compositions were calculated with the NASA-

Lewis program (Ref. 9), using as input the equilibrium composition at the

SRM exhaust plane and the composition of air as in Ref. 10, p. 3076. In

Figs. 1-4, the concentrations are plotted vs weight ratio air/(exhaust

products) in logarithmic decrements over the range 10-1 to 10 5 . The con-

centration of exhaust species in the stabilized exhaust cloud has been esti-

mated at a weight ratio of 104 (Ref. 2), so the assumption is made that the

actual weight ratio is in the range 103-10

Figure 1 shows the anticipated fate of the hydrogen-oxygen species; it

is seen that 02 and H20 are the only anticipated species for air/exhaust >10.

Consequently, afterburning of H 2 is predicted. The presence of H 2 in rocket

exhaust prior to mixing with air has been established experimentally (Refs.

4, 11), but H2 was absent in the rocket plume consisting of exhaust products

mixed with air (Refs. 12 and 13).

Figure 2 shows that both CO and CO 2 are present in the exhaust gas

and that chemical equilibrium indicates afterburning of CO to CO 2 . Published

experimental results (Ref. 12) indicate a substantial, but not complete, con-

version of CO to CO 2 . A reaction kinetics analysis is indicated here.

Figure 3 indicates the anticipated fate of nitrogen species. Equilibrium

calculations indicate that the mole fractions of all but NO 2 drop to <10 - 10 for

weight ratio air/exhaust >100. Nitrogen oxides were observed experimentally

in SRM exhaust (Refs. 12 and 13). Plotted in Figure 3 is the hypothetical

case where the NO is frozen for air/exhaust >3 after attaining an equilibrium

at weight ratio air/exhaust = 3. Under these circumstances, the concen-

tration of NO would be on the order of 1 ppm at a weight ratio air/exhaust of

104. Although it is beyond the scope of this paper to discuss the kinetics of

the nitrogen-oxygen reaction (Ref. 14), the problem of formation, and con-

centration of NO x may justify further investigation.
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Figure 4 shows the anticipated fate of chlorine-HC1 species under

various conditions. HC1 was found in SRM exhaust (Refs. 11, 12, 15 and

16), although C12 was not observed. Very likely, Cl and Cl2 are present in

small concentrations and HC1 reaction with 02 from the air is frozen at

weight ratio air/exhaust >10, in spite of the predicted (on an equilibrium

basis) predominance of C12 at air/exhaust >102. Whether or not C12 is the

predominant species under these conditions is an open question; on the basis

of environmental input it would be very worthwhile to determine this ex-

perimentally. In this work, however, it is assumed that the HC1 does not

further react (frozen flow).

Although the fate of aluminum compounds was not emphasized in this

study, equilibrium calculations indicated that for weight ratio air/exhaust

a10, solid A1 2 0 3 is the only aluminum species. Further discussion on the

fate of aluminum species will occur later in this report.

The second part of this discussion deals with the interaction of

hydrogen chloride (as an exhaust product) with water vapor in the atmosphere

(present as atmospheric humidity plus that emitted as a rocket exhaust

product). Hydrogen chloride interacts very strongly with water to form

aqueous hydrochloric acid. Although there is extensive literature regarding

the interaction of water with hydrogen chloride, the gas-liquid system

(water vapor/hydrogen chloride/aqueous hydrochloric acid) is well sum-

marized by Schmidt (Ref. 17) and in Perry's Handbook, pp. 268-269 and

166-167 (Ref. 18). In this portion of this work, the objectives are to identify

the regimes of air ambient temperature and relative humidity whereupon

interaction with hydrogen chloride from SRM exhaust yields the aqueous

hydrochloric acid phase (presumably as an aerosol) and, within the regime of

aerosol formation, to show the concentration of HC1 in the liquid phase and

the weight fraction of liquid phase. The objectives were met through com-

puter analysis and the results shown in Figs. 5-22.

The following is a brief discussion of the procedure used for computing

these results. The published data (Refs. 17 and 18) of the vapor pressure of

water and of hydrogen chloride vs temperature and hydrochloric acid con-

centration in the aqueous phase were entered into computer storage. Using

the weight ratio air/exhaust as an independent variable, the temperature,

water vapor pressure (from the rocket exhaust and from the ambient relative

humidity), and partial pressure of hydrogen chloride of the air plus rocket

JPL Technical Memorandum 33-659 3



exhaust mixture were determined; from this and the above computer-stored

data, the conditions for HC1 aerosol and HC1 concentrations were calculated.

Figures 5-11 (each figure corresponding to a given value of weight

ratio air/exhaust, ranging from 103, Fig. 5, to 105, Fig. 11) show the

boundary and region of anticipated aerosol formation for an SRM under the

assumption that no afterburning of H 2 and CO occurs. The independent

variables are ambient air temperature and relative humidity. Figures 12-14

present this information under the assumption of afterburning of CO and H 2

(the afterburning produces higher water vapor pressure and higher cloud

temperature). In these figures, the family of solid lines represents the

weight percent HC1 in the aerosol, or liquid phase; the dashed lines repre-

sent the weight fraction (ppm) of aerosol in the aerosol-air mixture.

Figures 15-22 deal with the combined SRM + LH 2 -LOX rocket exhaust

system such as that proposed for the Space Shuttle. Figures 15 and 16 show

the predicted aerosol parameters (for air at an ambient temperature of

298*K) vs weight ratio air/exhaust and relative humidity; Fig. 15 assumes

no afterburning; Fig. 16 assumes afterburning. Figures 17-22 present these

aerosol parameters vs ambient temperature and relative humidity; each

figure represents the case for fixed weight ratio air/exhaust. Figures 17-19

represent no afterburning; Figs. 20-22 represent the situation where after-

burning of CO and H 2 is assumed. The data in Figs. 15-22 supersede that

in a previous report (Ref. 19), wherein frozen flow was assumed from

throat to nozzle of the LH 2 -LOX engine.

Several observations can be inferred by inspection of Figs. 5-22. At

a weight ratio air/exhaust of 104, there is a substantial region of ambient

air temperature and relative humidity where HC1 aerosol is expected. The

weight percent of HC1 in the aerosol depends upon temperature and relative

humidity, but in any of these cases, the aerosol is that of a strong acid

(e. g. , 5% HC1 is 1. 38 N). For a given weight ratio air/exhaust, the aerosol

data curves for each of the rocket exhaust alternatives (i. e. , SRM with or

without afterburning and SRM - LHZ-LOX rocket exhaust with or without

afterburning) are fairly similar although not identical. Afterburning pro-

duces higher temperatures and water vapor pressure in the exhaust cloud;

higher water vapor pressure favors liquid-phase (aerosol) formation,

whereas higher temperatures favor the gas phase at the expense of the

liquid phase. Apparently the two effects approximately cancel each other.

4 JPL Technical Memorandum 33-659



The figures indicate that aerosol formation is favored by lower

ambient temperatures and higher relative humidity, as may be expected.

This suggests that midday launches may be preferable to those in the morning

or evening if avoidance of aerosol is desired.

Although Figs. 5-22 indicate the conditions under which aerosol is ex-

pected, based on the system liquid-gas phase equilibrium, the actual forma-

tion of aerosol depends upon droplet nucleation. It has been reported (Ref.

20) that HC1 aerosol will not form (at ambient temperatures) below a relative

humidity of 78%. The issue of nucleation raises an interesting conjecture,
i. e., the possibility of HC1 aerosol nucleation on the A12 0 3 exhaust particles,

since the SRM exhaust consists of 28% (weight) A12 0 3 (Ref. 1). In the

course of particle-size distribution studies, it was reported (Ref. 21) that

the smaller particles are y-A12 0 3 , and that y-A12 0 3 is soluble in aqueous

hydrochloric acid. Consequently, the question is raised as to what portion

of the HC1 aerosol actually consists of droplets of AlC13-HCI solution; this

issue is complicated by the fact that, in addition to the co-existent A1203
there are a variety of other types of nucleation sites already present in the

atmosphere (Ref. 22).

III. CONCLUSIONS

Hydrogen chloride, present in the exhaust of an SRM can interact with

humid air to form an aerosol of hydrochloric acid. Aerosol formation is

favored by low temperature and high relative humidity, particularly as found

in the morning and evening. Experimental verification of certain of these

computed results is indicated; for example, determination of the HC1/C12
ratio, the CO/CO 2 ratio, and the H 2 present in the exhaust/air mixture.
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