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PREFACE

The work described in this report was performed by the Propulsion

Division of the Jet Propulsion Laboratory.
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ABSTRACT

The exhaust products of a solid rocket motor using as propellant 14%
binder, 16% aluminum, and 70% (wt) ammonium perchlorate consist of
hydrogen chloride, water, alumina, and other compounds. The equilibrium
and some frozen compositions of the chemical species upon interaction with
the atmosphere were computed,

The conditions under which hydrogen chloride interacts with the water
vapor in humid air to form an aerosol containing hydrochloric acid were
computed for various weight ratios of air/exhaust products, These compu-
tations were also performed for the case of a combined SRM and hydrogen~
oxygen rocket engine. Regimes of temperature and relative humidity where
this aerosol is expected were identified. Within these regimes, the con-
centration of HCI in the aerosol and weight fraction of aerosol to gas phase
were plotted.

Hydrochloric acid aerosol formation was found to be particularly likely

in cool humid weather.
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I. INTRODUCTION

This report discusses the interaction of the exhaust of a typical solid
rocket motor (SRM) with the atmosphere. The assumed propellant is
ammonium perchlorate and aluminum in a hydrocarbon binder, It deals with
two aspects of the problem: composition and concentration of the chemical
species and conditions for the formation of hydrochloric acid aerosol. The
purpose of determining these chemical interactions relates to the effect upon
the environment, In particular, the atmospheric conditions of temperature
and relative humidity conducive to the formation of an HCI aerosol upon
interaction with SRM exhaust and also with the combined exhaust of an SRM
with the exhaust of a hydrogen-oxygen engine are presented in detail. The
latter case is modeled after the proposed propulsion system of the Space
Shuttle (Refs. 1 and 2}).

Until recently, the primary concern over the interaction of the exhaust
products with the atmosphere dealt with the problem of electromagnetic wave
attenuation through the exhaust plume and its effect on ground-rocket com-
munication {Ref. 3); other earlier studies dealt with the rocket exhaust
composition, with the view of improving the specific impulse of the engine
(Ref. 4). However, there has been recent concern about the toxicity of SRM
exhaust gases by NASA (Refs, 1, 2, and 5), with the primary erﬁphasis
placed on the toxic aspects of HCI,

The general topic of hydrochloric acid pollution, including toxicity,
HCl emission sources, etc., has been covered quite well in two reviews

{(Refs. 6 and 7).
II, RESULTS AND DISCUSSION

The first part of this study was concerned with the estimation of the
composition and concentration of the chemical species of the exhaust gases
at the nozzle exit plane and subsequently upon mixing with the atmosphere,

The solid propéllant was assumed (Ref, 8) to consist of 70% (wt)
ammonium perchlorate, 16% aluminum, and 14% binder (epoxy-cured PBAN,
empirical formula Gg 497 H9. 028 ©0.628 No. 218 AH-160 kcal/kg). The
composition and temperature of the exhaust gases at the nozzle exit plane

were calculated by a NASA-Lewis computer program (Ref, 9) modified for
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use in the UNIVAC-1108, The equilibrium compositions closely matched
published values (Refs. 1,2) and are presented in Figs. 1-4 (for weight ratio
air/exhaust products = 0).

The equilibrium composition and concentration of the species resulting
from mixing the exhaust products of the SRM were computed. Calculations
were also carried out for air mixed with the combined exhaust of the SRM
and liquid H,-LOX engine, where the SRM exhaust products comprise
78.4 wt %. As for the proposed Space Shuttle (Ref. 1), the results are shown
in Figs. 1-4, The equilibrium compositions were calculated with the NASA-
Lewis program (Ref. 9), using as input the equilibrium composition at the
SRM exhaust plane and the composition of air as in Ref. 10, p. 3076. In
Figs. 1-4, the concentrations are plotted vs weight ratio air/(exhaust
products) in logarithmic decrements over the range 10-1 to 10°. The con-
centration of exhaust species in the stabilized exhaust cloud has been esti-
mated at a weight ratio of 104 {(Ref. 2}, so the assumption is made that the
actual weight ratio is in the range 103-105.

Figure 1 shows the anticipated fate of the hydrogen-oxygen species; it
is seen that O, and HZO are the only anticipated species for air/exhaust >10.
Consequently, afterburning of H, is predicted. The presence of Hy in rocket
exhaust prior to mixing with air has been established experimentally {Refs.
4,11}, but H, was absent in the rocket plume consisting of exhaust products
mixed with air {Refs. 12 and 13).

Figure 2 shows that both CO and COZ are present in the exhaust gas
and that chemical equilibrium indicates afterburning of CO to CO,. Published
experimental results (Ref. 12) indicate a substantial, but not complete, con-
version of CO to COZ' A reaction kinetics analysis is indicated here,

Figure 3 indicates the anticipated fate of nitrogen species. Egquilibrium
calculations indicate that the mole fractions of all but NO2 drop to <10719 for
weight ratio air/exhaust >100, Nitrogen oxides were observed experimentally
in SRM exhaust (Refs. 12 and 13). Plotted in Figure 3 is the hypothetical
case where the NO is frozen for air/exhaust >3 after attaining an equilibrium
at weight ratio air/exhaust = 3. Under these circumstances, the concen-
tration of NO would be on the order of 1 ppm at a weight ratio air/exhaust of
104. Although it is beyond the scope of this paper to discuss the kinetics of
the nitrogen-oxygen reaction (Ref. 14), the problem of formation, and con-

centration of NO, may justify further investigation.
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Figure 4 shows the anticipated fate of chlorine-HCI species under
various conditions. HCIl was found in SRM exhaust (Refs. 11, 12, 15 and
16), although Cl, was not observed, Very likely, Cl and Cl, are present in
small concentrations and HCI1 reaction with 02 from the air is frozen at
weight ratio air/exhaust >10, in spite of the predicted (on an equilibrium
basis) predominance of Clz at air/exhaust >102‘. Whether or not Cl; is the
predominant species under these conditions is an open question; on the basis
of environmental input it would be very worthwhile to determine this ex-
perimentally. In this work, however, it is assumed that the HCI] does not
further react (frozen flow),

Although the fate of aluminum compounds was not emphasized in this
study, equilibrium calculations indicated that for weight ratio air/exhaust
210, seolid A1203 is the only aluminum species. Further discussion on the
fate of aluminum species will occur later in this report.

The second part of this discussion deals with the interaction of
hydrogen chloride (as an exhaust product) with water vapor in the atmosphere
(present as atmospheric humidity plus that emitted as a rocket exhaust
product). Hydrogen chloride interacts very strongly with water to form
aqueous hydrochloric acid, Although there is extensive literature regarding
the interaction of water with hydrogen chloride, the gas-liquid system
(water vapor/hydrogen chloride/aqueous hydrochloric acid) is well sum-
marized by Schmidt (Ref, 17) and in Perry's Handbook, pp. 268-269 and
166-167 (Ref. 18). In this portion of this work, the objectives are to identify
the regimes of air ambient temperature and relative humidity whereupon
interaction with hydrogen chloride from SRM exhaust yields the aqueous
hydrochloric acid phase (presumably as an aerosol) and, within the regime of
aerosol formation, to show the concentration of HCL in the liquid phase and
the weight fraction of liquid phase. The objectives were met through com-
puter analysis and the results shown in Figs. 5-22.

The following is a brief discussion of the procedure used for computing
these results. The published data {Refs. 17 and 18) of the vapor pressure of
water and of hydrogen chloride vs temperature and hydrochloric acid con-
centration in the aqueous phase were entered into computer storage, Using
the weight ratio air/exhaust as an independent variable, the temperature,
water vapor pressure (from the rocket exhaust and from the ambient relative

humidity), and partial pressure of hydrogen chloride of the air plus rocket
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exhaust mixture were determined; from this and the above computer-stored
data, the conditions for HC1 aerosol and HC1 concentrations were calculated.

Figures 5-11 {each figure corresponding to a given value of weight
ratio air/exhaust, ranging from 103, Fig. 5, to 105, Fig. 11) show the
boundary and region of anticipated aerosol formation for an SRM under the
assumption that no afterburning of H, and CO occurs, The independent
variables are ambient air temperature and relative humidity. Figures 12-14
present this information under the assumption of afterburning of CO and H,
(the afterburning produces higher water vapor pressure and higher cloud
temperature). In these figures, the family of solid lines represents the
weight percent HCI in the aerosol, or liquid phase; the dashed lines repre-
sent the weight fraction (ppm}) of aerosol in the aerosol-air mixture.

Figures 15-22 deal with the combined SRM + LHZ—LOX rocket exhaust
system such as that proposed for the Space Shuttle. Figures 15 and 16 show
the predicted aerosecl parameters (for air at an ambient temperature of
298°K) vs weight ratio air/exhaust and relative humidity; Fig. 15 assumes
no afterburning; Fig. 16 assumes afterburning. Figures 17-22 present these
aerosol parameters vs ambient temperature and relative humidity; each
figure represents the case for fixed weight ratio air/exhaust. Figures 17-19
represent no afterburning; Figs. 20-22 represent the situation where after-
burning of CO and H; is assumed. The data in Figs. 15-22 supersede that
in a previous report (Ref. 19), wherein frozen flow was assumed from
throat to nozzle of the LH,-LOX engine,

Several observations can be inferred by inspection of Figs. 5-22. At
a weight ratio air/exhaust of 104, there is a substantial region of ambient
air temperature and relative humidity where HCl aerosol is expected. The
weight percent of HCI in the aerosol depends upon temperature and relative
humidity, but in any of these cases, the aerosol is that of a strong acid
(e.g., 5% HCl is 1.38 N), For a given weight ratio air/exhaust, the aerosol
data curves for each of the rocket exhaust alternatives (i. e., SRM with or
without afterburning and SRM + LHZ-LOX rocket exhaust with or without
afterburning) are fairly similar although not identical. Afterburning pro-
duces higher temperatures and water vapor pressure in the exhaust cloud;
higher water vapor pressure favors liquid-phase {(aerosol) formation,
whereas higher temperatures favor the gas phase at the expense of the

liquid phase, Apparently the two effects approximately cancel each other.
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The figures indicate that aerosol formation is favored by lower

ambient temperatures and higher relative humidity, as may be expected.
This suggests that midday launches may be preferable to those in the morning
or evening if avoidance of aercsol is desired.

| Although Figs. 5-22 indicate the conditions under which aerosol is ex-
pected, based on the system liquid-gas phase equilibrium, the actual forma-
tion of aerosol depends upon droplet nucleation. It has been reported (Ref.
20) that HC1 aerosol will not form (at ambient temperatures) below a relative
humidity of 78%. The issue of nucleation raises an interesting conjecture,
i.e., the possibility of HC] aerosol nucleation on the A1203 exhaust particles,
since the SRM exhaust consists of 28% (weight) A1203 {Ref, 1}). In the
course of particle-~size distribution studies, it was reported (Ref. 21} that
the smaller particles are y-A1203, and that \/-AIZ‘O3 is soluble in aqueous
hydrochloric acid. Consequently, the question is raised as to what portion
of the HC] aerosol actually consists of droplets of AlCl3-HC1 solution; this
issue is complicated by the fact that, in addition to the co-existent A1203,
there are a variety of other types of nucleation sites already present in the

atmosphere (Ref. 22).
III, CONCLUSIONS

Hydrogen chloride, present in the exhaust of an SRM can interact with
humid air to form an aerosol of hydrochloric acid, Aerosol formation is
favored by low temperature and high relative humidity, particularly as found
in the morning and evening. Experimental verification of certain of these
computed results is indicated; for example, determination of the HCl/CJl2

ratio, the CO/COZ ratio, and the H2 present in the exhaust/air mixture.
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