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ABSTRACT OF THE DISSERTATION

Optical Signal Processing: Poisson Image Restoration

and Shearing Interferometry

by

Yie-Ming Hong

Doctor of Philosophy in Information and Computer Science

University of California, San Diego, 1973

Professor Carl W. Helstrom, Chairman

Optical signal processing can be performed in either digital

or analog systems. This dissertation is concerned with the use of

digital computers and coherent optical systems in optical signal proc-

essing, such as image restoration, phase-object visualization, image

contrast reversal, optical computation, image multiplexing, and

fabrication of spatial filters.

Part I of the dissertation is concerned with digital optical data

processing. It deals with restoration of images degraded by

xiv



signal-dependent noise. When the input data of an image restoration

system are the numbers of photoelectrons received from various

areas of a photosensitive surface, the data are Poisson distributed with

mean values proportional to the illuminance of the incoherently radiat-

ing object and background light. In this model, the shot noise is predomi-

nant in causing random variation of the observed data. The noise is

signal-dependent. A nonlinear restoration scheme based on the prin-

ciple of maximum likelihood is derived, which is optimum for a broad

class of objects with preassumed average contrast and size of typical

details. The nonlinear estimation scheme can be solved by linear

iteration, or methods of nonlinear programming.

One-dimensional objects distorted by diffraction or motion blur

are estimated in computer simulations. The performance of the esti-

mator is measured by percentage squared error. When the background

illuminance is low, the maximum-likelihood estimate is much

superior to the linear least-squares estimate.

Part II of the dissertation is concerned with optical signal

processing using coherent optical systems. Following a brief review

of the pertinent details of Ronchi's diffraction grating interferometer,

moire effect, carrier-frequency photography, and achromatic holog-

raphy, two new shearing interferometers based on them are presented.

Both interferometers can produce variable shear.

xv



New methods for optical testing and phase-object visualization,

spatial differentiation, complex amplitude addition and subtraction,

image contrast reversal, two-dimensional photometry, image multi-

plexing, and fabrication of spatial filters can be achieved easily by

using these two new interferometers. All the new methods are com-

pared with the existing methods. They all have some definite advan-

tages in either flexibility, simplicity, light efficiency, or real-time

operation. Finally, a new method for focusing and alignment is also

developed.
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Introduction

Because of the two-dimensional nature of pictures, an optical

communication system can transmit much more information than

electronic systems per unit time interval. An optical system can be

thought of as a bank of parallel electronic communication systems. Due

to the problem of the already over-crowded radio communication chan-

nels, much effort has been put into the study of optical communication

systems, which afford wide temporal bandwidth and multiple spatial

channel capacity. Optical signal processing is as important in optical

communications as its counterpart in electronic communications. In

this thesis we will discuss methods of optical signal processing using

both digital computer and coherent optical systems.

In part I of this thesis we will present methods for the restora-

tion of images degraded by signal-dependent noise. Processing of radio

signals (deterministic or stochastic) degraded by a radio communica-

tion system is based on a linear model of signal formation, in which

the noise is independent of the desired signal and combined with it

additively; the sum of these constitutes the observed data. In signal

estimation, the data are passed through a linear spatial filter whose

transfer function is designed to reproduce the original signal within the

smallest possible mean-square error. This kind of filter is known as

the Wiener filter or matched filter. (1-3) This additive-noise model

has been used extensively with success.

1
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The signal processing techniques used at radio frequencies have

been extended to the optical frequency region. Methods for restoring

images degraded by an optical system are often based on a linear model

of the optical process: a two-dimensional object function has passed

through a spatial filter to whose output random noise has been added to

produce the observed data. (4-9) On the basis of these data and the

known filter transfer function, the original object function is to be esti-

mated with minimum mean-square error.

When imaging incoherent light, it is the radiance of the object

plane that is to be estimated, not the value of the light field itself. The

light field is a complex spatio-temporal Gaussian random process, to

whose mutual coherence function the radiance is related. This radiance

like its counterpart in the image plane, is a quadratic functional of the

field. Furthermore, linear filtering theory does not explicitly distin-

guish the two basic types of noise, that due to the inherent fluctuation of

the light fields of object and background, and that associated with the

process of recording the light. Instead, it makes certain assumptions

about the statistical properties of the noise, which is usually assumed

to be white and Gaussian and to leave such parameters as its mean-

square amplitude and its bandwidth to be measured separately. Such a

treatment is incapable of determining the fundamental limitations on

restoring degraded images.

(10)
Helstrom has shown how the statistical properties of the in-

formation-bearing quadratic functional of the light field modify the usual



3

Shannon formula(11) for the information transfer from an incoherently

radiating object. We will take into account the physical nature of the

light and the statistical properties of the recording process, and

analyze an imaging system in which the light from the object plane is

focused onto a photosensitive surface, from which it ejects photo-

electrons. The surface is divided like a mosaic into a large number of

small, insulated spots, from each of which the photocurrent can be

measured. The measured values of the photocurrent constitute the

data on which is to be based an estimate of the radiance distribution

function of the object plane, which corresponds to the 'true image'.

In chapter 1, we first describe the statistical properties of the

light field emitted by the incoherently radiating object, and then calcu-

late the statistics of the instantaneous illuminance in the image plane,

which is assumed to be a measurable quantity that provides the data on

which a linear estimate of the object radiance function will be based.

The object radiance function is considered as the sum of a uniform

background B 0 and one of an ensemble of spatial random processes,

which form the class of object to be estimated. The linear filter has

the same form as for the estimation of the signal degraded by signal-

independent additive noise. The equivalent noise spectral density con-

tains a contribution not only from the background white noise, but also

from the object-light fluctuation and the uniform object background, B 0.

This is very different from the model treated before. (5)
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In chapter 2, we will discuss the interaction of the light field

with the recording medium. When the product WT of the bandwidth W

of the incident light and the observation time T is much larger than 1,

the numbers of photoelectrons emitted from the spots of the photo-

electrically emissive recording surface are statistically independent

with Poisson distributions whose mean values are proportional to the

illuminance at the spots. The linear least-squares filter for the esti-

mation of the object radiance function has the same form as those

described by the Wiener filtering theory, but with an equivalent noise

spectrum equal to the sum of a constant term arising from the inter-

action of the uniform object background B 0 and the background white

noise with the recording medium, the shot noise, and a spatial variable

term due to the fluctuation of the light field produced by object and back-

ground noise. (12) In particular, it is shown that under normal circum-

stances the shot noise far exceeds the noise associated with random

fluctuations of the object and background noise. The shot noise is

signal-dependent. Linear least-squares estimation, which is optimum

for the situation when the signal is corrupted by signal-independent

additive noise, is inadequate for the restoration of images degraded by

signal-dependent noise. The principle of maximum likelihood ( 1 3 ) leads

to nonlinear equations for the estimates, which can be solved by linear

(14)
iteration or by methods of nonlinear programming. The nonlinear

estimator is signal-dependent and is asymptotically convergent to the

linear estimator, when the received light is strong.
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To provide the insights about the practical implications of the

analytic result for the maximum-likelihood estimator, computer simu-

lated experiments are performed to demonstrate the significance of the

nonlinear estimation scheme in chapter 3. One-dimensional objects

distorted by motion blur and diffraction have been estimated in com-

puter simulations. When the background illuminance is weak and the

contrast of the object is high, the maximum-likelihood estimate is

much superior to the linear estimate.

In part II of this thesis we will present new methods of optical

signal processing using only coherent optical systems.

Optics and electronics are means of information processing

which have many common features. Communication theory is well

developed in electronic signal processing. Recently it has been suc-

cessfully adapted by optical physicists, especially in the development

of holography ( 1 5 ) and spatial filtering. (16,17) Many optical phenomena

can be easily understood from the point of view of communication

theory. Modulation, demodulation, heterodyning, harmonics genera-

tion, and filtering have been used successfully in electronic signal

processing; we can find their counterparts in optics. In optics, modu-

lation can be achieved by carrier-frequency photography ( 1 8 ,19); gen-

eration of harmonics by grating diffraction; demodulation and hetero-

dyning by the moire effect; and filtering by spatial filters. Carrier-

frequency photography, diffraction by gratings, and the moire effect



all have their unique functions in optical signal processing. Two new

types of interferometers have been developed from the combined use

of those concepts.

Diffraction by gratings and the moire effect have been used

extensively in optics. Gratings have been used as beam splitters. (21)

Ronchi invented a shearing interferometer using a grating as a beam

divider, which has been used extensively for testing optical components

such as lenses. This technique is relatively simple and inexpensive.

But the use of just one grating results in many drawbacks, such as

(a) the fixed amount of shear, (b) the dependence of the fringe contrast

on the degree of equality in light flux between different diffraction

orders, and (c) the overlap of many diffraction orders. (21)

The drawbacks of Ronchi's interferometer can be overcome by

the use of two superimposed gratings instead of just one grating as the

beam divider. The amount of shear in Ronchi's interferometer is pro-

portional to the spatial frequency of the diffraction grating used. If we

can vary the spatial frequency, we can have variable shear. This can

be done by the moire effect of the two superimposed gratings. When

two gratings are superimposed, owing to the moire effect a variable

spatial frequency is produced by rotating the angle between their axes.

An interferometer, called the "grating interferometer, " has been

developed from two superimposed Ronchi rulings used as beam

splitters. All the drawbacks in Ronchi's interferometer are overcome.
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Carrier-frequency photography has some similarity to holog-

raphy. In particular, both are two-step processes, and diffraction

methods are generally used in the retrieval stages. Holography has

been used very successfully in interferometry. Holographic inter-

ferometry can be operated either in real time or in two stages. (22)

A hologram's ability to record both the amplitude and phase of

a wavefront is the reason for its success in interferometry. Carrier-

frequency photography can register the amplitude as well as the phase

variation of objects. When a grating is imaged through a complex

object, the resultant image is an amplitude-modulated version of the

grating with the slits shifted according to the phase variation of the

object. This kind of encoding scheme, involving both amplitude-

modulation and pulse-position modulation, called the "detour phase"

(23,24)
by A. Lohmann, is the essence of computer-generated holography.

It is very difficult to retrieve the information about the phase varia-

tion of the object directly from the distorted grating image. But if

we "beat" the distorted grating image with a regular grating (or

master grating), moire fringes appear which will reveal the phase

variation. A new type of interferometer, based on carrier-frequency

photography and the moire effect, has been conceived. It is called

the carrier-frequency interferometer. It can be operated in real

time or in two stages. The system is achromatic and white light can

be used.
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In chapter 4, we briefly review diffraction by gratings, the

moire effect, carrier-frequency photography, and achromatic holog-

raphy. This review will serve as the foundation of the following

chapter s.

The grating interferometer is the subject of chapter 5, and the

carrier-frequency interferometer is described in chapter 6. Many

kinds of masks can be used as modulation carriers in the carrier-

frequency interferometer. We use linear gratings, checkerboard

gratings, and circular gratings.

The applications of these two types of interferometers in opti-

cal information processing are presented in both chapters 5 and 6 for

each interferometer. New methods for optical testing, phase object

visualization, image polarity reversal and color complementarity,

two-dimensional photometry, spatial differentiation, complex ampli-

tude addition and subtraction, image multiplexing, pure spatial sinu-

soidal wave generation, fabrication of filters, focusing, and alignment

are presented. Some of the applications can be used in optical com-

puting, general image processing, and two-dimensional photometry.
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Part I. Restoration of Images Degraded by Signal-Dependent
Noise

In this part of the thesis we will discuss the restoration of

images degraded by noise that is neither Gaussian nor additive.

When imaging incoherent light, it is the radiance distribution

of the object plane that is to be estimated, not the value of the light

field itself. The object radiance function, like the illuminance in the

image plane, is a quadratic functional of the field. We are going to

discuss the effect of the quadratic rectification of the field and the

interaction of the light field with the recording medium in our imaging

system. The optical system used is an imaging system in which the

light from the object plane is focused onto a photosensitive surface,

from which it ejects photoelectrons.

We begin by describing the statistical properties of the object

light field and the image-plane light field. A linear estimator is de-

rived for the restoration of the object radiance function based on the

measured data which is assumed to be the illuminance in the image

plane. The interaction of the light field with the recording medium

is then taken into account. Linear and maximum-likelihood esti-

mators of the object radiance function based on the measured numbers

of photoelectrons emitted from the recording medium have been de-

rived. Computer simulations are performed to demonstrate the sig-

nificance of the maximum-likelihood estimate,which is superior to the

linear estimate when the light level is low.

11



Chapter 1

Statistical Description of Object Field and Linear Estimation

of Object Radiance Function Based on Measured

Image Illuminance

In this chapter, we will first discuss the statistical representa-

tion of the object field and derive the linear least-squares estimation

of the object radiance function based on the illuminance distribution in

the image plane, which is assumed measurable. The interaction of

the light field with the recording medium will be neglected here and

will be discussed in the next chapter.

The electromagnetic field emitted by the object is assumed to

be linearly polarized, quasimonochromatic, and represented by its

"analytic signal. " (1) The analytic signal of the object light field will

be considered as a circular complex spatio-temporal Gaussian random

process which is stationary, ergodic, and spectrally pure. Linear

scalar diffraction theory is used for wave propagation. The relations

among the covariance function of the object light field, that in the

image plane, and the point spread function of optical system will be

discussed. The radiance function of the incoherently radiating object

is considered as one of an ensemble of spatial random processes,

which form the class of the objects to be examined. The background

noise is assumed to be a circular complex spatio-temporal, white

Gaussian random process with spectral density N. The instantaneous

intensity of the light field in the image plane is assumed to be

12
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measurable and to constitute the data. A linear spatial filter based on

these data is derived for the restoration of the object radiance function.

1. 1. The Statistical Properties of the Object Light Field

The electromagnetic field emitted by the object is assumed to

be linearly polarized and quasimonochromatic. The light field radi-

ated by the object at point u = (u, u ) of the object plane can be
- y

specified by a scalar function

iO t
Uo(u, t) = 1R i 0 (u,t) e (1.1)

where 0 = 21r c/ is the central angular frequency, X the wavelength

at the central angular frequency, and 4,0 (u, t) the complex envelope

of the field. "RI " indicates the real part of a complex number.

in t
So(u, t) e is called the analytic signal. The object light field can

be completely represented by the complex envelope of the object light

field, O(u, t).

The complex envelope of the object light field is a circular

complex spatio-temporal random proc.ss with the complex auto-

covariance function

o(ul U ; tl' t) = (u0 1 t) (ut))

= 0 (u2'3 l1 ; tl,t 2 ) (1.Z)

where ( * ) denotes the ensemble average, and * means the com-

plex conjugate. The complex autocovariance function is proportional
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to the mutual coherence function with a factor exp[in (t 1 - t)]

Since the object is a circular complex Gaussian random process, the

following relations(3) hold:

(*o(U1 , tl) 1(u2 ,t 2 )) = 0 , (1.3)

and

o(u%1 t, t 1 0 u, t 2 ) *)0 3 , (t 3  0 (, (t4

(u, t 0 (U t2 )  0 (U3, t3) 4 (u4t4)

+ ( 0o(U1, tl )  
4 , 4't 4 ) ( 0 U 2 tz ) 0~o 3, t3 )

= 4 0 (u u; t i , t2 ) 0(u 3' 4 ; t3' t 4 )

+40 0(u 1, 4 ; tl, t4 ) 0 (3, u 2; t3, t2 ) . (1.4)

It can be shown that in general a quasimonochromatic wave-

field is spectrally pure. (4) The spectrally pure light beam is charac-

terized in such a way that the superposition of light beams will not

affect the spectral distribution; the covariance function is then reduc-

ible to the product of a spatial covariance function 0 (ul, u 2 ) and a

temporal covariance function X(t 1 - t), i. e.,

(u1l, u2 tt Z )  o(U1, U (t )  • (1.5)

As a temporal random process, the light field is considered as sta-

tionary and ergodic. The temporal covariance function is usually

normalized so that x( 0 ) = 1 .
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The bandwidth W of the object light field is defined as

W IX I f 1 X()2 d7

f XW dw/Zr] Z/ f= IX(w)l dw/2r (1.6)

where

X(w) = X (T) eiT dT , (1.7)
-O

is the Fourier transform of the temporal covariance function, or the

temporal spectral density. The bandwidth of the object light field is

so defined that if X(w) is constant over frequency range

1 1
- - W < w < - W and zero otherwise, then the bandwidth defined
2 2

in Eq. (1.6) equals to W. * 0 (u,t) and 0(u, t +W ) can be con-

-I
sidered statistically independent, and W is usually called the

correlation time. The correlation time of the signal is inversely

proportional to its bandwidth.

For a spatially incoherently radiating object, the mutual

coherence function takes the form

0 ,'2; tlt) = (214TT) B(ul) ~1 - u)X(t I - t Z )  (1.8)

where 6 (u) is the two-dimensional delta function. B(u) is the

radiance function of the object and can be decomposed as
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B(u) = B0 + b(u) (1.9)

into a known uniform background B 0 and a deviation b(u). The

deviation b(u) represents the scene of interest and is what we

want to estimate. The radiance is so defined that B(u)/4rr is the

power emitted per unit area per steradian in a direction normal to the

object plane.

Although the object light field is not spatially stationary, the

object radiance function is very similar to the spectral density of a

time series. (5,6) To estimate b(u) is equivalent to estimating the

spectral density in time series analysis. The variability and unbiased-

ness always conflict with each other. (6)

1.2. The Light Field in the Image Plane

The system we want to study is shown in Fig. 1. 1. An optical

observing aperture A is used to collect the light emitted by the object.

The coordinate variables u, r and x represent the object, aperture

and image plane respectively. The aperture contains a narrow-band

filter used to block the background light outside the spectral region of

the object light, and a lens to focus the light onto the image plane I.

The distances from the aperture to the object plane and image plane are

Z and Z. respectively, and satisfy the image-forming relationship
O 1

-1 -1 -1
Z +Z. = f

o 1

where f is the focal length of the lens used.
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u U

Lens --

f__ ----4

Zo Zi
0 A

Figure 1. 1. The object and image-processing system.
O = object plane, A = aperture, I = image

plane. A narrowband spectral filter for
obect and background light is not shown.object and background light is not shown.
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If the object, aperture, and image planes are assumed to be

far apart, and the aperture is not too big, then all light rays can be

considered paraxial, and it suffices to use scalar diffraction theory to

describe the wave propagation from the object plane to the aperture

plane and then to the image plane.

At point r of the aperture plane A, the total field is

(a(r, t) = ,t) + (r, t) , (1. 10)

where * n(r, t) represents the background noise, and

s (r,t) = 0(u,t) SO(, r; t) d2u (1. 11)
s 0

represents the component due to the object, or signal. Here

S(u, r; t) is the instantaneous amplitude point spread function describ-

ing the wave propagation from the object plane to the aperture plane,

and 0 indicates an integration over the object plane. The point

spread function S(u, r; t) can be a time varying function, such as in

the situation that the object light field propagated through a turbulent

medium, or when the object is moving relatively to the aperture plane

in the period of observation. For a diffraction limited system, in the

paraxial approximation, it is

SO(u, r; t) = S(u, r)

i(X Z0) -1 exp(iKZ + iK lu-rl/Z ZO ) , (1. 12)

where K = Zrr/X is the propagation constant.
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The background noise n (r, t) is a spatial and temporal white,

circular-complex Gaussian random process whose mutual covariance

function, after filtering by the temporal filter, is

n( 1,rl'z tl't 2 ) 2 n, (r ) n rZ' t))

= N 6(-r) X(tl-t2) ' (1. 13)

where N is the spectral density of the noise.

The field at the image plane is

i (x, t) = a(r, t) Sa(r, x) d2 r
A a- a
A

= si(X, t) + ni(x t) , (1. 14)

where S (r, x) is the amplitude point spread function between the
a- -

aperture and the image plane, and in the paraxial approximation

-12 2
S (r, x) = i(X Z.) I exp [iKZi + iK r - x 1 /2 Zi -iKr /2F . (1. 15)
a 1 1 j /(

The last term in the exponent is the quadratic phase factor introduced

by the lens.

The field due to the background noise is

(x, t) = * (r, t) S (x,r)d2 (1. 16)
nix, A n a- ,1

where A indicates an integration over the aperture plane. And the

field due to the object light is
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rsi(x,t) f s(r, t) Sa(r , ) dZr
A

f f2 2
= 0U, t) So(u, r; t) Sa(r, x) dr d2u

A 0

= 0(U, t) S(u,x; t) dZ2 u, (1.17)
0

where

S(u, x; t) = S (u, r; t) S (r, ) d 2 r  , (1. 18)
A

is the amplitude point spread function between the object and image

planes. For a diffraction limited system(13)

S (u, x; t) =S(u, x)

(X 2  -1 
u

= (ZZ.)- l exp[iK(Z +Z.)] exp i - + ,

0 1

x exp iK( U + x r dr (1. 19)
A o

If the aperture is large enough, the integral in Eq. (1. 19) will

approach a delta function located at x = -(Zi/Z )u, and the field at

point u will form its "geometrical image" at

x = -(Z/Zo) U
u (0)

= - Mu (1. 20)
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where

M = Z./Z (1.21)
1 0

is the magnification factor.

It is more convenient to deal with image coordinates having the

same scale as those of the object, and we will define a new coordinate

V = -(Z /Z.) x

-l

-M x . (1. 22)

The diffraction-limited point spread function, from Eq. (1. 24), in the

new coordinates is

2 - iT 2 2]
S(u,v) = ( Z Z.) exp[iK(Z +Zi)]exp T u Z + -L v

o 0 Z

fexp[iK(u-v) • r/Z ] d 2 r
A

= ( 2 ZZ)- 1 exp[iK(Z +Z.)] exp[ (u2 +Mvy 2 A (u-v)
o O0 O

(1.23)
where

9(u) = A f exp(2ri u r/ X'Z IA(r) d2r (1.24)• o (1. 24)
A

is the Fourier transform of the aperture indicator function

1 rEA

IA(r) = 0 r A
A , 1 r \



Since the noise background field n (r, t) and object light field

are independent, the covariance function of the field in the image plane,

from Eq. (1. 14), is

1 *
i vl,2; tl't 2Z = 1',tl)  i (2't2

1 *
si(vl'tl) (si(V2, tz })

1 *
+ ni(v , tl) (,niVZtZ)) . (1.25)

In the image plane the covariance function of the light field originating

from the object, from Eq. (1. 17), is

1 *
s (V , 2 tl t, t )  (= (siv1,
si ^J -2 * s i 1 si- z

= (Z/4) f B (u) S.(u, v; t) S(u, v 2 ; t ) dZu y (t-t 2) , (1. 26)
0

and for the diffraction-limited case

= (x 2 /4)( 2 ZoZ ) X(tl - tZ) exp i (v v 2

A2  B (u) .9 (u-v 1 ) (u-v 2 )d 2u (1.27)
0

2 -1 TiZ. 2 2
= (4rZ. ) A exp (v - v) x (t - t)i 2 2 2

BoJ.(v 1 -v) + (X Z )-z A fb(u1)( J .(u-v) d2 u
0 - o 0 " 1 - -2
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The background noise field *ni(v, t) has covariance function

1 *
ni(v1'v ; t t t ni1(V tl )  ni (V , t

2 )

-2  i -Z 2 2
N( XZ.) 2 exp i Z (v 2 A9(v - v

1 X2 1 -2 -1 -2

(1.28)

After combining Eqs. (1.25), (1.27), and (1.28), the covariance func-

tion of the light field in the image plane is

i (Vl vZ; tl t ) = i(V Vz) x(t l - tz )  , (1.29)

i- irZ.
2 1 2 2

{ V -Z f(47T Z vz d (v 1 v ,

(v - v Z ) + (kZ )A bu) g(u - ( )d u

(1. 30)
where

B = B + (4n/ Z ) N (1. 31)

is the equivalent background noise spectral density. Here we can see

that the uniform object background, Bo , contributes to the noise

spectral density. This is very different from the linear model of

signal formation, in which the noise and the object radiance function

are independent and combined additively. In the linear model, the

known uniform object background Bo does not contribute to the noise

spectral density. (7)
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1. 3. The Instantaneous Image Plane Light Field Intensity

In this chapter, we will assume that the instantaneous light

field intensity is the measurable datum. A linear least-squares esti-

mation of the object radiance function based on this measured datum

will be derived.

The light field in the image plane is not measurable and is not

of interest. The measurable datum is its intensity

1. (v,t) = .i (vt)l . (1. 32)
x~ 2 1

The mean value of the intensity is

( i(v,t)) = 1 i t) >)

= (v, v; t,t)

2 1 -2 2 2
=(4 Z A. B + (Z) A fb(u) J(u-v) d .

0

(1. 33)

The mean value of the image plane intensity is linearly proportional to

the object radiance function. For an incoherent imaging system, the

illuminance in the image plane is linearly related to the object radi-

ance with point spread function K(u,v) = 1 S(u,v)I.

The covariance function of I (v, t) is



25

cov Ii(vl' tl), i( V2 tz))

r ( I i , t= (i (V 1 tl) i( 2z t2 )) - Ii(v ) 1i(, tz))

1 * 2
S (i 1, t l) i (z2, t2))

=1 i 1' 2; t 1, t )2

2 -2 2 2 2 2
S(4T Z ) A I X (tl- B 1 -

+2? A(X Z ) f(v -v ) b(u) J(u-v ) * (u-v ) d
0

+ (XZ )4 AZf b(ul)b(u ) J(u-v l) -V J (u -V )9u -V

d2u d Uz  (1. 34)

and its variance is

Var (I (v, t) = ( v , v ; t, t) 12

= [ li(vt)) ] . (1.35)

Based on the statistics of the measurable data, li(v, t), a linear

least-square estimation of the object radiance function will be derived

in the next section.
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1.4. Linear Least-Squares Estimation

In this section we assume that the illuminance in the image

plane is available for linear spatial filtering, (9, 10) the result is

T

J(u) f L(v) I(u - t) d2v d t (1.36)
J(u) ~ xIu- ,

I 0

where I indicates an integration over the image plane, T is the

observation interval, and L(v) is the point-spread function of the

spatial filter. The output of the rectified and filtered image plane

light field J(u) is

T

(J(u)) = T L(v) ( I (u - v, t)) d 2 v dt
T -0 2

fL(v)(4TT Z.) - 1 A B +( Z )2 A fb(u') 1(u'-v) 2 d u ' d v
1 O _

I 0

S+ (4T Z2 Z.) 1 A ffL(v) b(u') I(u'-u +v)l d u ' d2v
B 0o1 ~

(1. 37)

where

JB (4nr Z. )-1 A f L(v) d v
B - I

is the contribution from the background. Equation (1. 36) can be re-

written as

(J(u)) = J +C A(u-u') b(u') d i' , (1.38)
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where

A(uJ)= L(v,) I 9(u' - v) 1 d2 v (1.39)

and

2 2 2 -1 2
c = (4. X Z  Z ) A

o 1

If we could choose a linear filter L(v) such that A(u) is a

delta function, then the estimate ( 1 1 )

^ -1
b(u) = C [J(u) - JB] (1. 40)

of the deviation of the object radiance function would have a mean value

equal to b(u) itself. Then the estimate b(u) of b(u) would be un-

biased, and the mean-square bias

eP= ( (b(u)) - b(u)l ) (1.41)

would be zero. But if we go too far in that direction, the mean-

square fluctuation

e = ( Ub() - ()) 2 > (1.42)

begins to increase. The mean-square bias and mean-square fluctua-

tion of the estimate b(u) conflict with each other as in temporal

(6)
power spectral estimation. We have to choose a linear filter L(v)

which achieves the minimum of error a + F . The mean-square

bias, calculated from Eqs. (1.37) and (1.40), is
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eb = b2 (u ) - 2 b(u) f (u - u ) b(u) d2u '

+ f f b(u) b(u) A -u' ) A(u- u) d2 u d2 u
0 0

and the mean-square fluctuation is

e = var (b(u))
V

-z
= c var (J(u)) . (1. 43)

The variance of J(u) , from Eqs. (1. 36) and (1. 33), is

TT

Var(J(u)) f f ff L(v ) L(v ) cov I.(u-v t ), I. (-vz' 2t)Var ((u)) = 0 2 2
T 0 0 II

2 2
d v d v dt dt
'1 2 dt1 2

= (WT) (4Z ) A If L(v1 ) L(v) B2 19(v -v )

-2 f( 2
+2(XZ ) BA J(v -v 2 ) fb() 9(u-u +v )  (u -u+v ) duo I 1 1 1 2 -1

+(XZ ) 4 A' ffb(u )b(u ) 9 (u -u+v )J 9 (u -u+v
00

* 2 d2 2
x (u2 -u+ 1 ) J(u -u+v )d du d v d v-2 - 1 -1 2

(1.44)
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Any signal processing system is designed for a particular class

of signal. The statistical properties assigned to the class reflect the

nature of the signal to be processed. The prior knowledge about the

statistical properties of signals is essential in signal processing. (7 , 12)

Here we will consider the scene of interest b(u) in the object plane as

a realization of a homogeneous stochastic process with mean zero,

and covariance function

Eb[b(u l ) b(u() }  = b(Ul - ) , (1.45)

and

a Cp (O) . (1.46)
b b %

Eb denotes the average over the ensemble of the spatial processes

b(u). The structure of the picture, i. e., b(u), is to some extent em-

bodied in the covariance function cpb(u), whose width will be of the

2 2
order of the average size of details in the picture. The ratio b /B 

specifies the mean-square contrast. By averaging over the ensemble

of possible pictures, we can express the mean-square error as

e, = E ( [b (u) - b(u)] ) }

= Eb( ([(u) -. (u)] 2 ) +([(u)) - b(u)]Z J

Eb fv +b 

= 81 + , (1.47)
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where

1 = Eb  ( [b(u) - ( (u)) ]2> = Eb &v 3 (1.48)

represents the mean-square error due to the fluctuations of the light

field itself, and

S= Eb ( u) [b(u) ) ]2  Ebe b (1.49)

represents the mean-square bias arising from the wave propagation

and the post-rectification filtering.

From Eqs. (1. 48), (1. 43), and (1.45), after some calculation,

-2e = C -2  Eb ( Var (J(u)) ]

-ff -1 -2 2G-C(WT) -(4rrZ) 2 A2 ffL(vl)L(v ) L (v1 v2-i II

2 -4 *

0 0

* 2 2 2 2
X (-u +v ) J(u -u + ) d u du2 , d 2v d2v

-2 - -1 2 - -2 - -1

-1 4 -3 E2r 2 (2) 2
(WT) (X Z ) A IA (Zr) I (r) d r

A "-"
+ ffi A(r, , I4 "(. z d dZs] (1.50)

where

A(r) = L(u) exp(-iK u r/Z ) du (1.51)
I
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S(Z) )Zo-Z b(u) exp(-iKu , r/Z o ) d u (1.52)

(2)(r) A-1 I A(u) I (r + u) du , (1.53)
A A AA

(,s) = A IA(u) IA(u+r) IA(u +s) IA(u +r +s) d u
A A A ~ ~ A~~

A
(1. 54)

A(r) is the transfer function of the linear filter L(u). I(2)(r) is the

correlation function of the aperture function. Combining Eqs. (1. 50),

(1. 37), (1.40), (1. 51), (1. 52) and (1. 53), we find

z -Eb [ ( b(u)) - b (u)] ) ]2

r) (Xz2 -1 (2) 2 2

(b) [ 1 - (XZ A (r) A (r) ] dr , (1.55)

and the mean square-error is

e= ~ +e1 2

=fA(r) (XZo) 4A2b(r)[I(Z)(r)] +(WT) (XZ ) A 3B I(r
0o b A 0 r )

+ (s) I (r, s)ds dr

-2 RI (Z ) A1 A(r) b(r)I()(r) dr

+J%(r) dr . (1.56)
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Using the variational calculus, from Eq. (1. 56), we find that the linear

filter which gives the minimum mean-square error is

(Z ) A(2) (r) D (r) , r E A'
0 b A ~

A(r) ) Ae ()

0 , r A' (1.57)

where

(2) 1(2) (4) 2
D(r)= b(r)[I (r)] 2 +(WT)-1 A-[B2I (r)+ f (s)I (r, s)d s

b A b-A s - ,

(1. 58)

(2)and A' is the area where IA (r) 0 , or the so called convolved

aperture. The last term in Eq. (1. 58) is the noise spectrum. It is

clear that the bigger the time bandwidth product WT and the area of

the aperture A are, the smaller the noise is.

In our model, we do take into account the effect of rectification,

i. e., the measured data is the instantaneous intensity of the

in the image plane. The linear filter A (r) that we have obtained, as

shown in Eq. (1. 57),is different from the one using a linear model for

the formation of the measured data. (7) The first term in the noise

spectrum originated from the background noise and the uniform object

background B 0 ; the last term is from the fluctuation of the object

radiance function. In the linear model of image formation, only back-

ground noise contributes to the noise spectrum. (7)
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1When (WT)A (/B) ) -1When (WT)A(aBB >> 1, A(r) (NZ o ) A [A (r)] for

most of the convolved aperture A' , except for those parts near the

edge of the aperture, where A(r) increases to a finite value

(XZo) 2 A (o B B) (WT) instead of going to infinity. Since the diffrac-

tion-limited system is a bandpass filter, none of the object spectrum

outside the passband is recoverable,as can be seen from Eq. (1. 57).
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Chapter 2

Photon-Counting Statistics and Maximum- Likelihood Estimation

of Object Radiance Function

In chapter 1, we have assumed that the measurable datum is

the instantaneous intensity of the light field in the image plane. In

reality, the instantaneous intensity of the image light field itself is not

measurable, and it should interact with a recording medium from

which we can take data. (1-6) The recording medium usually used is a

photosensitive surface, for example, a photographic film or a photo-

multiplier tube. We will analyze an imaging system, as shown in

Fig. 1. 1. in which the light from the object plane is focused on a photo-

sensitive surface from which it ejects photoelectrons. The surface is

divided like a mosaic into a large number of small, insulated spots,

from each of which the photocurrent can be measured. These meas-

ured values of the photocurrent during an observation interval T will

constitute the data on which is to be based an estimate of the radiance

distribution function of the object plane. When WT >> 1, the numbers

of photoelectrons emitted from each spot of the photosensitive record-

ing surface are statistically independent with Poisson distributioris

whose mean values are proportional to the illuminance at the spots.(2-9)

In this model, the noise arising from the interaction between

the light field and the recording medium predominates in causing the

fluctuation of the measured data. This kind of noise, which is called

shot noise, (10,11) is signal-dependent. The linear filter for the

35
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least -squares estimation of the object radiance function has the same

form as we have derived in chapter 1, Eq. (1. 57), except that one more

noise term due to the shot noise has been introduced, and in normal

circumstance the shot noise dominates. The statistics of the measured

data are Poisson and as the noise is signal-dependent, the linear esti-

mator is no longer optimum. (12) The principle of maximum likelihood

leads to nonlinear equations for the estimates. The nonlinear esti-

mator is signal-dependent and is asymptotically convergent to the linear

estimator, when the received light is strong.

2. 1. Photon-Counting Receiver Model and Its Statistics

The photosensitive recording surface in the image plane of

Fig. 1. 1 is shown in Fig. 2. 1. The recording surface is divided into a

mosaic of small, insulated spots of area S. The numbers of photo-

electrons measured at each spot constitute the data. This receiver

may be considered as a matrix of photomultiplier tubes.

The photon counting statistics have been previously discussed

(3-9)extensively in literature. (3-9) We want to present a very brief descrip-

tion of the situation that the incident signal in the image plane r (x, t)

has large time-bandwidth product, WT >> 1.

To study the statistical properties of the number of photoelectrons,

n(xi), emitted by each photomultiplier tube centered at x. of the image

plane, we need to determine the probability P x(n; T) that exactly n

photoelectrons are emitted from that photomultiplier tube during an

observation interval of T.
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Area s

Figure 2. 1. A photo-counting receiver model.
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It seems reasonable to assume that the probability of emission

of a photoelectron during a given interval is statistically independent

of the number of photoelectrons emitted previously. We assume that

we can write the probability of the emission of a single photoelectron

in an infinitesimal interval At , P (1; At), as

P (1; At) = as I.(x., t)At , (2.1)
X. 1 1

where

a = n /h , (2.2)

and n is the quantum efficiency of the photodetector, h is

Planck's constant, v is the mean frequency of the incident light. The

intensity of the light field in the image plane, Ii(x, t), as described in

chapter 1, is

1 2
I .(x, t) =  (x, t) . (Z.3)

If we add the additional assumption of zero probability of multiple

occurrence in the infinitesimal interval A t (A t -+ 0) , we can write

the conditional probability distribution function ( 3 5,7) of the emission

of n photoelectrons in an observation interval of T,

P (n; TI Ii(x., t)) = [E(x.; T)f exp[-E(x T)] (2.4)
-1

where
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T

E(x; T) = as fI li(x, t) Z dt
0

T

= f as/ i(x, t) l 2 dt (2.5)

0

is the energy incident on the detector of area s centered at x, during

an observation interval of duration T .

The probability distribution function described in Eq. (2. 4) is

the conditional probability distribution function, conditional on a

particular realization I(x, t), t E [0, T] , of a random process whose

statistics have been discussed in section 1. 3. From Eq. (2. 4), the

mean value of the number of photoelectrons from the spot centered

at x is

(n(x)) = (E(x; T))

T

= 1 as *i ( x , t ) 2 dt
2 i

0

= asT .(x, x) , (2. 6)

where 0i(x 1 ,x 2 ) is spatial covariance function of the image plane light

field, given in Eq. (1. 30).

The covariance function of the number of photoelectrons

emitted from two different spots can be evaluated as in the semi-

(13)classical analysis of the Hanbury Brown-Twiss effect. We use the
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equality of the variance of the Poisson distribution of n(xi ) with its

mean value. The correlation function of n(x.) and n(xj) is

(n(x.) n(x.))

= (E(x.; T) E(x.; T)) + (E(x.; T)) . .j , (2.7)

where 6 . is the Kronecker delta. Combined with Eqs. (Z. 5), (2. 6)

and (2.7), the resulting covariance function is

Cov ( n(xi), n(x.))

= (n(x.) n(x.)) - (n(x.)) (n(x.))
"1 '- 'J

=cov [ E(x.; T), E(x.; T)) + ( E(x.; T)) 6..~- J ,1 1j

TT
(as)2 .i(x. x.; t ,t )ldt dt +acsT .(x, x.) 6 i.

( ~L ) f 1f Z 1 2 1 i ~ 1 i0 0

T T

S(s)z 1i(xi., x.)I2 f f Ix(-t 2 ) 2 dt dt Z + sT i.(x, x.) 6..
i 1 3 2 1 21 i ~1 13

S(Comparing) EsTW (x.x.) +and T (xwe find that the last term in8)

where W is the bandwidth of the object light field as defined in Eq. (1.6).

Comparing Eqs. (2. 8) and (1. 34), we find that the last term in

Eq. (Z. 8) is an extra term arising from the interaction of the light

field with the recording medium. The ratio of the first term to the

second term in Eq. (2. 8) is
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(a ) Ws 1 i X.) IZ2 i -1

W i~ xi )

(2. 9)

a s W- 1 x 2 /4rr)

X B  ss /4TT Wh << 1 .

If we consider a scene illuminated by moonlight on a clear night,

-3 -2 -1i
we have B/W equal to 1. 6 x 10 Wm I at X = 5150 . The

-13
ratio has the value 0. 8 x 10 r s which will be further diminished by

the reflectance of the scene. For illumination by full sunlight at the

same wavelength, the ratio is larger than that of moonlight by factor

of 10 . The shot noise arising from the interaction of the light field

with the recording medium is thus under most circumstances pre-

dominant in the covariance of n(x).

To find the unconditional probability distribution function of

n(x.), we have to calculate the ensemble average of P (n; TI I. (xi, t))

with respect to E(x.; T). The mean value and variance of E(x; T),
-1

can be calculated from Eqs. (1. 36) and (1. 38), are

(E(x; T)) = sT (I.(x, t)) , (2. 10)

and

22
Var [E(x; T)] = (a s)z TW 1 [( I.(x, t)) ] (2. 11)

The ratio of the variance to the square of the mean value of E(x; T) is
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Var [E(x ; T)] -1
= (WT) . (2. 12)

[(E(x; T)) ]

If the time-bandwidth product WT is very large and ( E(x; T) ) is

finite, then we can say that the random variable E(x; T) is convergent

to its mean in distribution, and

P(E(x; T)) - 6 (E (x; T) - (E(x; T)) ). (2. 13)

This can be explained by the law of large numbers ( 1 4 ,15) E(x ; T)

can be considered as a sum of WT independent identical random

variables. (16,17)

From the above argument, we conclude that the unconditional

probability distribution is, by (2. 4),

P (n; T) = P x(n; TI ( Ii(x; t)) )x x1~

-n! [ E(x; T)) ]n exp[- ( E(x; T)) ] , (2. 14)

if WT >> 1.

Under the general circumstances the numbers of photoelectrons

emitted from two different spots of the photosensitive recording riMedi-

um are statistically independent and Poisson distributed, if we can

neglect the classical fluctuation noise. It is clear from Eqs. (2. 8) and

(2. 9) that the classical fluctuation noise is negligible. So the condi-

tional joint probability distribution function of the numbers of photo-

electrons nl, n 2 ... nM emitted from the spots centered at
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x i, xV ...,xM  is

P(n, n2, . . . n M ; TI Ii(x' t), Ii (2z t) ,... i( M t)

M

=1 P (n.; T I.(x;t)) . (2. 15)
j=l ~i

For WT >> 1 , E(x.; T) converges to (E(x.; T)) in probability,
"'1 -1

and the joint distribution of E(x.; T) , i = 1,..., M, will converge to

M

(E(x.; T)) in probability, so that

i=l

M

P(nl, n ... nM; T) = P (n.; T I (I(x; t)) )
1 2 M x. M

j=1 ~J

M

= 1 [(E(x.; T))]n exp[- (E(x.; T)]. (2. 16)

j=1 1

The numbers of photoelectrons n. emitted from the spots x. are
1 1

statistically independent and Poisson distributed and have mean values

(ni) =(n(x.))

= (E(x.; T)) , (2. 17)

if WT >> 1.
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2.2. Linear Least-Squares Estimation of Object Radiance Function

Based on the Measured Numbers of Photoelectrons

We have derived a linear estimator for the object radiance func-

tion based on the measured image plane intensity in chapter 1. In this

section we are going to derive a linear least-squares estimator based

on the statistical properties of the measured data, the numbers of

photoelectrons emitted from the spots of the image-plane recording

surface.

Just as we have divided the photosensitive recording surface

into a mosaic of spots, we sample the object plane at a set of points

u. = (u. , u. ), and the radiance b(u.) is to be estimated as a linear
3 Jx Jy 3

combination of the numbers of photoelectrons received,

b. = b(u.) =  Ljm nm + Co (2. 18)
m

where C is a known constant, and the weighting factors L. intro-
o Jm

duced by the processing matrix L are selected to minimize the mean-

square error

= Eb( [ b (u) - b(u)] )

Eb[ j) - b (2. 19)

where Eb denotes the ensemble average over random process b(u)

The mean value of the estimator, from Eq. (2. 18), (2. 6), and

(1. 30), is
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(b(uj)) = L.m (n > + C
m

= C + asT .(u., u.)

2-1 -22 2= C +sT(4Z) A B+( A b(v) J(v-u
S0 0

= Cs IL. ffb(v) 1-(v -u )2 dv , (2.20)
m

where

C = aT (4rr Z.) ( Z )-Z A , (2. 21)
1 o0

and

C = -csTA(4rrZ.) B L. . (2.22)C -asT A(4Tr Z ).
o 1 jm

m

We assume that the area of each element in the image plane s is so

small, and the spots are so close together, that the summation in

Eqs. (2. 20), and (2. 22) can be approximated by an integral,

(b(u) = ffL(u w) (w, b(v) d2v dw ,

and

C = -aTA(4rZ.2 ) 1 B L(v) dz
O 1

Equation -aT J(2.21) is identical to E

Equation (2. 2l) is identical to Eq. (1. 40), except for a constant factor.
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The variance of b(u.) can be evaluated from Eqs. (2. 18), (2. 8),
"1

and (1. 30), and is

Var b(u.) L. L. cov J n 3
~ m

LZ Ljm(as) I(x ,x ) T/W + L asT 4.(x x
j m 1 m + - 1 -I

S(T/W)ffL(u. - v 1 ) L( V )0 i( V2 )Z d2 v d Zv
i'-11 - dv 1 dZ

+aT L2 (u.-v) i(v,v) d (2.23)

in the limit s -+ 0 . Comparing Eq. (2. 23) and (1. 49), we know that

the last term in Eq. (2.23) is the extra term in the variance of the

estimator when the measured data are the numbers of photoelectrons

emitted by the spots of the photosensitive recording surface through

the interaction of the light incident on the image plane with the record-

ing medium.

Applying the same analysis as we have used in chapter 1, we

find the linear filter which minimizes the mean-square error is

- 1 2 (2) -1
A(r) = C- ( Z )2 A (r)WI (r) D (r) (2.24)o b-A 1A-

where

D(r) = D(r) +4TrB (X2aTA) - . (2.25)

and
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(2) 2 - 1 -2(2) (4) l
D( r)=n (r)c I ()]I (r)( ] +A(s)I(T) (r,)d I (S)

The functions ( ( r) and I(4)(r, s) are defined by Eqs. (1. 53) and (1. 54)
A A-

and A is the area of the aperture. The optical system that we have

discussed here is assumed to be a diffraction-limited system.

Comparing Eqs. (2. 24) and (1.57), we find that the only differ-

ence between those two linear spatial filters is the shot noise arising

from the stochastic nature of the photoelectric emission. Under most

circumstances, as we have discussed in section 2. 1, the shot noise

arising from the quantum nature of light and its interaction with

recording medium is predominant in the noise spectral density of the

linear filter in Eq. (2. 24), so these two linear filters in Eq. (2. 24)

and (1.57) are basically very different. Equation (2.24) can be

approximated as

I(r) = C (XZ ) A b (r) I (r) (r)[I((r)] +4TTB (X TA) I

So b A b A

(2) -1 2 -1 -1 (2) -2C [IA (r)] [1 +4nrB(X aTA) 1b (r)[I (r)] I. (2.26)

The signal-to-noise ratio for this system is

y = 12aT(4rB) (2) 2Y = X a T (4TT ) (r) [I (r) ]Z (2.27)
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2. 3. Maximum-Likelihood Estimation

Under most circumstances the shot noise predominates in

causing the fluctuations of the numbers ni of photoelectrons emitted

from the spots centered at x . of the recording medium; the noise

arising from the fluctuation of the light field can be neglected. The

object that we discussed radiates incoherently; it is the radiance dis-

tribution of the object that is of interest, not the light field it radiates.

If the noise arising from the fluctuation of the light field can be neg-

lected, then we can deal directly with the object radiance instead of the

field which the object radiates. The transmission of the object radi-

ance function to the image plane can be described as incoherent image

formation. The illuminance in the image plane is linearly related to

the radiance distribution in the object plane by

I(x) K(x, y) B(y) d2y , (2.28)

where K(x) is the incoherent point-spread function. For a diffraction-

limited optical system

K (x-y) S(x, y) z , (2. 29)

where S(x,y) is the coherent point-spread function and is defined in

Eq. (1. 23).

For large time-bandwidth product, when the fluctuation of the

light field can be neglected, the.numbers n. are statistically inde-
p

pendent, discrete random variables with Poisson distributions and
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mean values given by

(n I B(y)) = asT I(x.) , (2. 30)

as has been shown in section 2. 1. Under these Poisson statistics, the

shot noise predominates in causing random variation of the observed

data. The shot noise is signal-dependent. Linear least-squares esti-

mation, which is optimum for the situation when the signal is corrupted

by signal-independent additive Gaussian noise, is inadequate for the

restoration of images degraded by non-Gaussian-distributed, signal-

(1)
dependent noise. We will derive a nonlinear estimation scheme

based on the principle of maximum likelihood. (18, 19) A nonlinear

estimator has to be solved iteratively. The estimator is signal-

dependent and varies in each step of the iteration. A digital computer

will be used, and we will derive our estimator in digital fashion.

Sampling the object plane at M points U. , we replace the

integral by a sum and write for the mean numbers of photoelectrons,

(n. [b.) ) asT (I + V.) (2.31)
3 1 0 3

where

m

Vi  = K..b., i = ,2,..., N (2.32)
j=1

b. = b(u )

M

1 i B K , i. (2.33)j1l *



50

Here Io is a uniform, known illuminance, to which background light

may contribute, the b.'s are the quantities to be estimated on the

basis of the observed numbers n. of photoelectrons, and K.. is a

point-spread matrix derived from the point-spread function K(x, y).

Equations (2. 31) and (2. 32) can be written in matrix form

<(nb) =asT (I 1+V) (2.34)~ 0
and

V = Kb , (2. 35)

where n is a (Nx 1) column vector with elements n. , V is a
1

(Nx 1) column vector with elements V., K is a (Nx M) matrix with
1

elements K.. and 1 is the column vector of l's.

The joint probability distribution function of n.'s is
1

n.
N [casT (I +V.)] n

P(fn.}([b.}) = n exp[-asT(I +V.)]. (Z.36)

i=1

This joint probability distribution function is conditional on a particu-

lar realization b(u), which is a spatially stationary random process

with zero mean value and autocovariance function b(u) . The un-

conditional mean value vector and covariance matrix are

(n) = E b (nj b) = csT Io , (2.37)

and
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(n- (n)) (n - (n)T)

= (asT) KK K T + asT I I , (2. 38)~b- o~

where I is the identity matrix, and b is the covariance matrix

Ob II ij II with

ij = Ob(ui- u ) (2.39)

the covariance of the radiance at point u. and u. . From Eq. (2. 38),

we can see that the first term in the right-hand side is related to the

signal and the second term is related to the noise. The signal-to-noise

ratio is equivalent to

2
R = asT (b /I ) . (2. 40)

S b o

A

The linear estimate, b , of b based on the measured data n

can be easily derived from Eqs. (2. 37) and (2. 38) and is

~' K~'K+-1^ T o T 1
b =~b K- +  0K sT (2.41)( asT ~ b asT n-I

The linear estimate b given by Eq. (2. 41) is identical to the one given

by Eq. (2. 24) if the noise arising from the light field fluctuation can be

neglected.

In using the method of maximum likelihood, which requires the

knowledge of the probability distribution of the estimate, we have

already assumed in applying linear estimation that the object radiance

function B(u) is a spatially stationary random process with mean value
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B and autocovariance function 0 b(u) . Here for simplicity we will
o0

assume that it is Gaussian distributed. The width of b (u) as a func-

tion of u represents the size of typical finer details in the object plane,

and the ratio Z (0)/B specifies a mean-square contrast. The size
b o

of the typical finer details and the average contrast are the most funda-

mental (and necessary) information to specify a scene. We are not

asserting that each object radiance distribution to be estimated will

actually look like the chaotic function by which we commonly picture a

Gaussian process. Our assumption is rather that a method that works

well for such an ensemble of objects will work well for most objects of

similar structure, and structure can seldom be specified in terms

less primitive than the size of typical details and the mean-square

contrast. (1, 20, 21)

The joint probability density function(22) of the estimanda b.

is then

P(( b.) = M exp - 1 b. bb , (2. 42)

where M is a normalization constant and the 4 ij are elements of

a matrix

-1
= (2. 43)

inverse to the covariance matrixb "

In the absence of a scene in the object plane, b(u) = 0, the

illuminance in the image plane is the uniform illuminance,and the joint
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probability distribution function of the numbers n. of photoelectrons is
1

n.
N (asT I ) 1

P (( n. i ) =n. exp(-asTsI) . (2. 44)

i=l

The likelihood ratio of the numbers n. , i. e., the quotient of
1

their joint probabilities in the presence and absence of an image, is

then

n.
N I +V.

A(fni)(bi]) = i 0~I 1 exp(-cs T Vi) (2.45)

i= 1  o

The maximum-likelihood estimate of the true image is given by the

set of values b. for which
1

A (ni.) = A ((ni.) b.) P((b.i) (2. 46)

is maximum. Maximizing A (fn. 3) is the same as maximizing its

logarithm, since the logarithm is a monotonic function. The maximum-

likelihood estimates of the b.'s are the set of values which minimize

F((b) = -In [A ([n.3)]

N MM

= - [niln(I +V)-sT (Io +V)] + I jk bb k , (.47)
i1 1 = 1 k= 1 jkik

from which terms independent of the estimanda f b ) have been

dropped.
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The set of values (bj. which minimize the negative logarithm

of the likelihood ratio, F( [bj) , can be obtained by solving the set of

equations resulting from setting the derivatives of F with respect to

each b. to zero. Differentiating F with respect to b. , we have
J J

(vF). -
j ab.

N M

= - as T k. - b = 0 . (2.48)
I +V.

i=1 o 1 m=l

Solving these equations for b , we obtain
m

M N

b = ep .k.. o1 asT , (2.49)
(n.M = 1 i= o 1 i 10 + V

where

M

V. = k.. b.
2 1 1 3 3

j=1

Equation (2. 49) can be rewritten by using

V. V 2
1 11 1

I +V. I 2 2
o o I (I + V.)

O O0 1

and becomes
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M N

5 k+ . k.. b.
Sm MI k 1 2 j

N N n.

1 n. - as T + k i (2.50)
S o= 1 (I + V.)O 1

where

M

k' 1= - .. . (Z. 51)
mi j= m =1

We can write Eq. (2. 50) in matrix form,

A -1 -1 C
b = A Y + A B (), (2. 52)

where

A is a Mx M matrix with elements

N
n.

a = . + k' .k.. - (2. 53)
mj jm 1  mi 13 2

o

Y is a Mx 1 column vector with elements

N

y = k ' - as T , (2. 54)
o

and
B(b) is a MX 1 column vector with elements

N 2n.V.
B = k ' 1 (2. 55)

m mi 2 + V
i = 1 I (I + V.)
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Examining matrices A, B and Y , we find both A and Y matrices

whose elements depend on the data but not the estimanda, and the B

matrix depends on the received data and the estimanda. Matrix Y

can be written as

Y = K n - as T 1 (2. 55)

and is very similar to part of the linear estimator in Eq. (2. 41).

Equation (2. 52) can be solved by a perturbation method. The pro-

cedure starts with the linear least-squares estimate of the b.'s,

which is given by Eq. (2. 41). Matrices A and Y are fixed for

given the measured data; only matrix B is changing in each step of

iteration.

2. 4. Comparison of Maximum-Likelihood Estimation and Linear
Least-Squares Estimation

The linear least-squares estimator given by Eq. (1.41) is an

eF timator independent of the estimanda, while the nonlinear estimator

is a function of the observed data and the estimanda because of the

Poisson distribution of the observed data.

Equation (2. 49) can be rewritten by using

1 1 Vi
I +V. I I(I +V.)
O 1 O O0 1

and becomes
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N n. V. Nn.
b + k' . 1  1 = k' - asT . (2.56)

m mi I ( I + V.) mi Ii=1 o x i= o

If I + V. is very large, then by the law of large numbers,
o 1

n./(1 +V.) will converge to as T , and Eq. (2. 56) can be approximated
1 0 1

as

N N
asT V. n s

bk -1 k - sT , (2. 57)
mi I

i = 1 o 1=1 o

and can be reduced to

b asT b asT 0~

which is the linear least-square estimate. So for a strong object

radiance, the nonlinear estimator will converge to the linear estimator.

This can be explained by the fact that the Poisson distribution with large

mean value can be well approximated by a Gaussian distribution.

2.5. The Method of Steepest Descents

To find the minimum of F(bi. ]) as a function of (bi. , the

method of steepest descents can be used. We will treat the estimanda

([b I as coordinates of a point in an M-dimensional space; points for

which F((b. ]) is constant make up a level surface of the function to

be minimized.
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Starting at a trial point f(b° , one will get to the bottom by

always moving in the direction of the steepest slope. This direction is

specified by the gradient

8F
(VF). - (2. 58)

j ab.

For point ( b.j to be a minimum (or maximum) of F((b. ) , (VF)

has to be equal to zero for all components, as is shown in Eq. (2. 48).

The component (VF). is equal to the 'error' by which the j-th equation

in Eq. (2. 48) remains unsatisfied.

In the neighborhood of the trial point, F((b.) is expanded as a

multivariate Taylor series, carried through quadratic terms. The

next trial point is then

1 0
b. = b. - X (VF) , j = 1,2,...,M , (2.59)

where the number X is chosen to minimize the quadratic form

M MM

F(b.1 ) = F(bO) + e  (b- b) 1 - b0) (b -b 0 )

= 1 1 - j = 1

(2. 60)

approximating F in the neighborhood of b , where

aF
e. - = (V F).
1 8b. 1

Sb = b

and
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Cij 8b. ab.
1 J b =bo

The X minimizing Eq. (2. 60) is

M MM

S= e. e.c.. e. . (2.61)
i=l i= j=1 1

This procedure is repeated until the values of b cease to change

significantly.

The linear least-squares estimate is usually used as the initial

starting point. As radiance is a positive quantity, we want

B +b. 0 , V i , and at each stage of the iteration we therefore
0 1

replace any estimate b. that is less than -B by -B + e, where
1 is a very small positive constant.

e is a very small positive constant.
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Chapter 3

Restoration of Images Based on the Measured Photoelectron
Counts - Computer Simulation

The maximum-likelihood estimator of the object radiance func-

tion based on the measured numbers n. of photoelectrons is highly

nonlinear. Because of the lack of appropriate mathematical tools, it

is difficult to analyze and thus appreciate the nonlinear estimation

scheme directly from the estimator itself as shown in Eqs. (2. 49) and

(2. 52). As a result of this that solution tends to be highly specialized.

Both the nature of the signal and the nature of the noise affect the

validity and usefulness of the estimator. We have tried to make our

nonlinear estimator valid for a broad class of signals by specifying

only its average contrast, the size of typical finer details, and its

Gaussian probability distribution. The significance of the nonlinear

estimator could be best demonstrated by computer simulations, which

were performed on the Burroughs 6700 computer. Two particular

optical system functions considered were spatially uniform motion blur

and diffraction-limited image formation. The effects of various parame-

ters were considered.

3. 1. Generation of the Object Radiance Function and the Image
Plane Illuminance Distribution

In the last chapter, in the derivation of both the linear and

maximum-likelihood estimators, we have assumed that the object

61
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i adiance function b(u) is a stationary spatial Gaussian iandom process

with mean zero and covariance function b(u). For mathematical sim-

plicity, we will assume that the object radiance function is generated by

a first-order autoregressive process, (1)

b = r b. +z. , i =  1,2, .. , M -1 , (3. 1)
i+1 2 i+1

where ( z. i  are mutually independent Gaussian random variables with

zero mean and variance a 2 . The object has been assumed to be one-

dimensional. The constant r is the correlation coefficient of two

neighboring b.'s and has absolute value less than 1. It determines the
1

size of typical details of the object radiance function. The larger r

is, the smoother the object radiance function. The resulting process

( b.3 has a covariance matrix b with elements
Sb

2 ri-jI
= r (3.2)

ij b

where

2 C
b 2 (3. 3)

1-r

is the variance of the radiance function. ab represents the power of

the signal.

To generate identically distributed independent Gaussian random

variables ( z i. , we first generate two sets of independent random vari-

ables ( Rli and ( R2i uniformly distributed between zero and one.

By using the random variable transformation
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z.= a . [-2 In (R.l)] cos(2TT RZi) ,(3.4)

the set of values z. i  will be identically distributed independent

2 (2)
Gaussian random variables with zero mean and variance a .

After we generate the set of values ( b i , we add the uniform

background B to it to form the total radiance function ( B i =
o 1

(B +b. . The positivity constraint on (B. I applies here; negative
o 1 1

values of B. will be replaced by zero. In other words, if bi < -Bo

then we set b. = -B . A typical object ( B. ] is shown as the heavy
1 o 1

line in Fig. 3. 1. Since this hard-limited nonlinear transformation has

been applied in the generation of the scene ( bi , the object is not

necessarily a stationary Gaussian random process as described by

Eq. (3. 1). However, our assumption that the object radiance function

is a stationary Gaussian random process is mainly for mathematical

tractability. It is most accurate when the contrast is low. The im-

portant parameters related to the object radiance function are r, a b

and B ; r defines the size of typical details of the object, Bo defines

the uniform background radiance, and ob defines the mean deviation

of the radiance from its mean value B . The value of a 2 /(BZ + 2 Z
o b o b

is the mean-square contrast of the object radiance function, and

(c sT) a Z/B is the signal-to-noise ratio as shown in Eq. (2. 40).b o

After we have generated the true image vector B, we can

calculate the degraded image
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1 0, Distorted image

2 4 6 8 10 12 14 16 18 20

Figure 3. 1. Original object (thick line) and its noisy version (thin
line) as recorded after blurring by relative motion.
The object and data are generated by using random
number initiators (347, 5412, 3298, 9547, 2486) and
parameters (as T) = 10, 10 = 3, a = 25 and r = 0. 6.
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I. = I 1 +V
-1 o- -

= I 1 +Kb . (3.5)

Two incoherent point-spread functions will be used, one for motion

blur and the other for a diffraction-limited imaging system.

The motion-blur image degradation arises from the relative

motion of the object plane and the image recording plane during the

recording process. If the imaging system is perfect, and the relative

distance of motion between the image plane and the object plane during

the interval of recording time T is A, then the incoherent point-

spread function is(3)

-1

K (u) = (3.6)

0 , otherwise .

Here we have assumed that the relative motion is of constant speed.

In the digital system, if A is equivalent to D sampling points, then

the incoherent point-spread matrix can be rewritten as

1 0 0

1 1*

K=- X 1 .. N M+D-1

* D
0 .

M ) (3.7)
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M is the number of points in the object plane and N is the number of

points in the image plane.

We have assumed that the image recording plane is large enough,

and N = M + D - 1, so that all the light emitted by the object has been

available for restoration. A close examination of the matrix K has

shown that the sums K ij for different indices i are not all equal

to each other. This seems to contradict the assumption shown in

Eq. (2. 33). The fact of the matter is that we really have to extend the

K matrix into

~t4-- D--ij

1 1 ... 1

1 1 ' o . 1 0

K'=X \ \ N= M+D-1
~D

1 1 .. 1

M' M +ZD - 2 (3.8)

and the vector b has to be modified into a (M +2D - 2) dimensional

vector b' with elements

l bi+D , D i - M +D- 1

Sb. otherwise . (3.9)

The matrix K' has Kij equal to a constant for all different indices

i. Since we have the prior information that b' = 0 for 1 r i < D - 1 ,
1
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and M + D < i f. M + ZD - 2, the whole system can be fully represented

by the vector b and the matrix K

When the optical imaging system is diffraction-limited, the

(4, 5)incoherent point-spread function is

sin [W (x-Y)]
K(x-y) = c (x-y) (3. 10)

(x - Y)

where c is a constant, and W is the effective width of the aperture
o

of the optical system, or the spatial bandwidth of the optical system.

In matrix form K(x - y) can be written as

K.. = K..

= K..

sin [Wo(i - j)]

In the computer simulation we have truncated K. at some integer J,

so that K. = 0 for Ijl > J ; then the matrix has the form
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e 0 el ... e 0

e e \
e e0  e 1

1 0 

0 e ... e e
J 1 0

sin(Wi)
where e.i e-i = c, O1 21 ... , J (3. 13)

and
J -1

c = ei) (3. 14)

is the normalization constant.

The constant W is the spatial bandwidth of the diffraction-

limited optical system. The value of 4/W is equivalent to the number

of cells over which the light from each object point will be spread in the

image plane. For example, if W = 0. 8, then 4/W = 5. The elements

K.. of matrix K are (e, e = el , e2 = e , ... ) = (0.268, 0..215,

0. 104, 0. 021, ... ). We can see that only e 0 , el, e_ 1, e 2  e-2

are of significance. For W = 1.2, 4 /W = 3. 33, and (eO el, e, ... )

= (0. 395, 0.238, 0.031,...), so that only e 0 , el, e_1 are of signifi-

cance.
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A typical input object and its image distorted by a diffraction-

limited optical system are shown in Fig. 3.1. Note that the small

sharp peak between two big peaks has been completely smeared out.

If we assumed that the measurable data are the instantaneous

illuminances at points in the image plane, the linear filter for the

estimation of the object radiance function is shown in Eq. (1. 57). It

has been shown that none of the object spectrum outside the passband

is recoverable from Eq. (1. 57), and the small peak in Fig. 3. 1 is not

restorable, as will be shown in the computer experiment results.

The argument for modifiying the vector b and the point-spread

matrix K in the case of motion blur in order to keep K.. equal to

a constant for all different indices i can be extended to the situation

of a diffraction-limited optical system. In motion-blur image degrad-

ation, the light from the object plane has been all used in the restora-

tion of the object, but in diffraction-limited image degradation, some

lig'it emitted by the object has been wasted. From Eq. (3. 12) we can

see that the light emitted by b 1 has been wasted, but all the light

emitted by bJ has been collected.

3. 2. Poisson-Distributed Random Number Generation

The numbers n. of photoelectrons emitted from the spots of1

the photoelectrically emissive surface are statistically independent and

Poisson distributed with mean values asTsT (I + V. )
0 1
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After we have generated the image illuminance function

[ I + V.) , we specify the parameter as T and then start to generate
0 1

the Poisson-distributed integers m having mean values X . The

probability of receiving m photoelectrons is

m
X. -X.

1 1
Pr[ml X] m e . (3. 15)

Let ( Y. } be a set of independent random variables uniformly distri-

buted over the interval [0, 1] . The number of photoelectrons emitted

by the photomultiplier tube centered at point x. is n. whenever
1 1

P n Y. < P (3. 16)
n. 1 n. + 1

1 1

where

n-1

P Pr ( j < nI e x I x (3.17)
n j!

j=0

is the cumulative Poisson distribution with mean X. The probability

that Y. will lie in the interval described by Eq. (3. 16), and hence n.
1 1

photoelectrons will be emitted, is precisely given by Eq. (3. 15).

For computation purposes, we rewrite Eq. (3. 16) as

n.- I n.
1 1

vn.- = /j! Y. e . =  (3 18)
i 1 1 n.

1 j=0 j=O i

We generate the set of numbers f Y. ) and then form ( Y. e , and
1 1
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begin to generate the sum ( Q n , starting with n. = 0, Qo = 1, and
1

adding each time Xn/n! . The increment kn/n! can be generated

recursively by multiplying the previous value by a factor X/(n + 1).

As soon as Q exceeds Y. e , the computer registers the number n
n 1

as the number of photoelectrons received.

When the mean value X . of the Poisson distribution is large,

the Poisson distribution can be well approximated by a discrete ver-

sion of a Gaussian distribution with mean value X and variance . .

Therefore, n. can be generated by generating a random variable z.
1 1

with zero mean and variance X . , and then calculating X i + Z. and1 1 1

rounding it off to the nearest integer. The Gaussian random variable

z. can be generated by the method described in Eq. (3. 4). Two sets
1

ii
of independent random variables ( R 3 and ( R 3uniformly dis-3 4

tributed between zero and one were generated and substituted into

Eq. (3.4) to generate z. . We have used X = 25 as the threshold for
1

the use of Gaussian distribution.

The generated data, reduced to the scale of the image by

dividing by (a sT) are shown as the thin line in Fig. 3.2.

3.3. Methods of Nonlinear Programming

The equations for the maximum-likelihood estimate of the object

radiance function ( b. 3 are highly nonlinear with linear constraints.

We can either solve Eq. (2. 49) (equivalently Eq. (2. 52)) or minimize

Eq. (2. 47) to obtain the estimates I b. i of [ b. . The set of valuesEq.I
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Figure 3. 2. Original object (solid line) and its degraded image (dashed line) after
distortion by a diffraction-limited optical system. The object and
data are generated by using random number initiators (5431, 3214,
5438, 3654, 2495) and other parameters (as T) = 10, I = 3, a = 15
and r 0.2.
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Sb. ) are known to be subjected to the positivity constraint, i. e.,

b. + B > 0 for all i. Several methods such as linear iteration, the
1 0

method of steepest descents, and the method of conjugate gradients

have been coded in Algol computer programs to solve the problem of

nonlinear programming with linear constraints.

3. 3. 1. Linear Iteration

We can solve Eq. (2. 52) directly by the method of linear itera-

tion. From Eq. (2. 52), we have

i+1 = A-1 Y + A- B(bi)

where b is the estimate of vector b in the i-th iteration. Matrices

A and Y are not functions of b; hence they will not vary in the process

of iteration. Only the B matrix is variable, and it is relatively simple

to compute.

The positivity constraint applies at each step in the iteration.

Whenever b. +B < 0 in the iteration, we set b. = -B + e, where
1 o 1 o

e is a small positive number. The iteration process stops whenever

the increment of b. is smaller than a predesignated value. The con-
J

vergence of the linear iteration scheme is rather slow, and it took

approximately one hundred iterations to converge in typical cases.
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3. 3.2. The Method of Steepest Descents

The linear iteration method converges rather slowly. In order

to speed up the rate of convergence, we have tried second-order

methods such as the method of steepest descents. (6,7, 8) This method

has been described in section 2. 5 to minimize F(b) of Eq. (2. 47).

In this second-order method we need to calculate the gradient vector

V F and the Hessian matrix H of function F(b). The elements of the

gradient vector and the Hessian matrix are

e. = (v F) i11

OF

ab.

N n. K.. M
= - Sx - aS't KjJ + ijmbm, (3. 18)

i=l o i m= 

and

Cjk Hjk

a F
ab ab kJk

N Kij Kik jk . (3. 19)
i = 1 (I +V.i

The values for e. and c.. are then substituted into Eq. (2. 61) to
1 1J

evaluate X, and the new value for b is then obtained from Eq. (2. 59),
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b. = b -X e. j = 1,2,...M .
3 J J

The positivity constraint applies at every step; whenever b < -BJ o
i+1

we set b. -B + e.
J o

In this method, we have to update ( e. i and ( c. ) in each

iteration step. This takes more effort than the linear iteration method,

where we have to update only matrix B(b). The iteration stops when-

ever

M

> b i + lb b i

S33j= 1 -3
M 

10

bi +1

j=1 J

The method of steepest descents converges quickly and start

to oscillate when approaching the minimum point. (8)

3. 3. 3. The Method of Conjugate Gradients

To remedy the disadvantage of the method of steepest descents,

an attempt to use a more efficient computational method has been made.

We have used the method of conjugate gradients. The method of con-

jugate gradients has been well documented in the literature

for simplicity we will only present the algorithm we have used.

In the method of conjugate gradients, the major steps in the

algorithm are:
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1. At the initial point b compute the gradient vector

1
S= VF(b ), and set the vector d =

2. For i = 2, 3,..., M+2

i i-i i-i
(a) set b b + d , where- x~ i-1

(b) i 1 minimizes qil () = F(b i )

(c) compute g = VF(b ) ;

(d) unless i = M +2 set

i  i i - 1
d -g +yd

where

Y =(g) (g )/(g i-)T (gi-

and repeat (a).

1 M+2
3. Replace b 1 by b and restart the iteration.

We have applied this algorithm to minimize the functional F(b)

with Ujk - 0. By letting 0jk = 0, we use no prior knowledge about

the object. The elements [ e c, c of the gradient vector

i i a 2 F(b)
g = VF(b') and Hessian matrix i are shown in

ab.iabk8 b k b=bl

Eqs. (3. 18) and (3. 19) except with i4jk 0.

The above algorithm is for unconstrained minimization. Be-

cause our functional is constrained, the algorithm has to be modified.

The value of X in step 2(b) has been evaluated like the one in the

method of steepest descents in Eq. (2. 61). We have applied the posi-

i
tivity constraint in step 2(a), setting b. = -B + e whenever3 o
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b. < -B and at the same time changing d. to (-B - b.i-)/ . The
j o j o 3

stopping criterion we have used is similar to the one used in the method

of steepest descents.

The positivity constraint presents difficulty for the method of

conjugate gradients in our computer programming. The elements of

conjugate gradient vector d have been changed whenever the posi-

tivity constraint is violated; hence dx is no longer a conjugate gradi-

ent vector. All the analysis for the convergence for this method is

no longer necessarily valid. Up to now this method has not worked

well. A better way to handle the positivity constraint such as penalty

function method probably will be needed. (13)

3.4. Computer Simulated Experiment Results

In computer simulation, the one-dimensional object can be

generated either by the first-order autoregressive process as de-

scribed before or by just specifying any particular form. The parame-

ters such as the uniform background level Bo , the correlation coeffi-

cient r, the signal mean deviation c b , and the constant asT should

be given both in the processes of generation and restoration of the*

object. The parameters r and Cb used in the restoration process

are not necessarily equal to the values used in the generation of the

object; usually the prior knowledge about them is not complete. The

incoherent point-spread function used was that for either motion-blur

image degradation or diffraction-limited distortion as described by
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Eqs. (3.7) and (3. 12) respectively.

The likelihood achieved by the maximum-likelihood estimate is

higher than for the linear least-squares estimate for sure from the

definition of maximum-likelihood estimation. If the mean error-

squares of the maximum-likelihood estimate are smaller than for the

linear estimate, then we can conclude that the maximum-likelihood

estimate is superior to the linear estimate.

In the nonlinear estimation scheme, we use both the linear

iteration and the method of steepest descents to solve the set of non-

linear equations (2. 49). Prior knowledge of the positivity constraint

on the object radiance function is used. We use the linear estimate

T o 1
Lb K + I) K n -1 (3. 20)
L b asT b asT o

as the starting point in solving the set of nonlinear equations. When

2
we assume the signal is much larger than the noise, i. e., 0 -+ ,

the linear estimate in Eq. (3. 21) will reduce to the inverse filtering

estimate

I T 1 T (1
b (K K) K n - II (3.21)

I - 01 asT(3

The performance of different estimation schemes will be meas-

ured by a percentage squared error from the formula
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M

S(b - b.) 2

E = j-= IM =x 100 , (3. 22)

Zb 2

j=l 1

where b. is the estimate of b. We will compare the performances
J 3

of the maximum-likelihood estimate, the linear least-squares estimate,

and the inverse filtering estimate. For fair comparison the positivity

constraint on the object radiance was also applied to linear least-

squares and inverse-filtering estimates.

In a typical experiment, we used a set of five numbers (347,

5412, 3298, 9547, 2486) as the initial number for the random number

generator computer subroutine to generate random variables

( RI, R , Y. , R , R i. The object radiance function was de-1 2 i 3 4

graded by motion blur with a blur of four cells, i. e., D = 4 in Eq.

(3. 7). The parameters used in the generation of the first object and

data were (casT) = 10, Io = 3, a = 25 , r = 0.6. The generated object

and the measured data reduced to the scale of the object by dividing by

(acsT) are shown as the heavy line and the thin line in Fig. 3. 2

respectively. Hard rectification has been applied at six object points.

The measured data do not resemble the object at all.

Because of the hard rectification, the object radiance function

can no longer be described by a first-order autoregressive process

having the covariance matrix as shown in Eq. (3.2). We used the same
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values for the parameters r and ab in the restoration scheme as in

the generation of the data. The result is shown in Fig. 3. 3. The

signal-to-noise ratio is 5787 >> 1, so the inverse filtering estimate

is very similar to the linear least-squares estimate.

In the restoration of the object radiance function, we have used

values for parameters r' and a' that are not necessarily equal to the

values r and a b we have used in the generation of the object radi-

ance function. From Fig. 3. 4, we can see that different values used

for parameters r' and a' affect the linear least-squares estimate

more than the maximum-likelihood estimate. The maximum-likelihood

estimator is a function of the measured data; as can be seen from

Eq. (2. 52), this estimator tends to be adaptive and hence depends less

on the prior knowledge of the object radiance function than the linear

least-squares estimator. This can be demonstrated by using a = CO

in the restoration process; the restoration uses no prior information

whatever about the object, but only the Poisson character of the dis-

tribution of the data and the known point-spread function. The result

is shown in Fig. 3.5. The percentage error-square for the maximum-

likelihood estimate is 2. 69%, which is not too far from those results

for which the prior knowledge was used. Another interesting point

shown in Fig. 3.4 is that if the assumed correlation r is too large,

say r = 0. 99, the result of maximum-likelihood estimation tends to

go bad. This happens probably because if we assume that r is close
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Figure 3. 3. Original object and restored values.
o = maximum-likelihood estimate, o = linear
estimate, a = inverse filtering estimate;
r'= 0. 5, a' = 25.b
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Figure 3. 4. Percentage squared error as function of assumed corre-
lation coefficient r ; curves are indexed by assumed
standard deviation ob . Solid lines - linear estimate;

dashed lines - maximum-likelihood estimate.
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Figure 3.5. Original object and restored values. x = maximum-
likelihood estimate, o = linear estimate, a = c.
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to 1 and actually it is not, the maximum-likelihood estimator will tend

to closely correlate all the object points. In other words, the esti-

mator has been very confined. In general, over a reasonable range,

the bigger ab and the smaller r, the better the maximum-likelihood

estimator performs. Under this situation, the maximum-likelihood

estimator is not too confined and has the ability to adapt itself according

to the measured data.

The effect of as T is also examined. For an existing optical

system, as is fixed,but the observation time T can be varied. The

result is shown in Fig. 3. 6. Both the maximum-likelihood estimate

and the linear least-squares estimate perform better for larger aST,

since it is related to the signal-to-noise ratio, but the maximum-

likelihood estimate is not as sensitive to the change of aST as the

linear least-square estimate.

Anotherinput object radiance function tested is shown in Fig.

3.7(a). The parameters used in the generation of the object function

are r = 0.2, a = 15, and Io = 3. The resulting restoration is shown

in Fig. 3.7(b). Figures 3.8(a) and (b) show the percentage squared

error as functions of various values of assumed correlation coefficient

and standard deviation a. The maximum-likelihood estimate is seen

in this case to yield the closer fit to the true object radiance, the

greater the assumed value of a and the smaller the assumed value

of r.
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Figure 3. 6. Percentage squared error as function of (casT).
Solid line - linear estimate; dashed line -

maximum- likelihood estimate.
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Figure 3.7 (a). Original object (thick line) and its noisy version (thin
line) as recorded after blurring by relative motion;
(5431, 3214, 5438, 3654, 2495), Io = 3, acsT = 10,
r = 0.2, a = 15.
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Figure 3.7 (b). Original object and restored values. x = maximum-
likelihood estimate, o = linear estimate, Y = co
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Figure 3.8 (a). Percentage squared error as functions of assumed

object standard deviation ab ; curves are indexed

by the assumed correlation coefficient r. Solid

lines - linear estimate, dashed lines - maximum-

likelihood estimate.
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Figure 3. 8 (b). Percentage squared error as functions of assumed
correlation coefficient r; curves are indexed by
assumed standard deviation ob. Solid lines -
linear estimate, dashed lines - maximum-likelihood
es timate.
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There is, however, considerable variability in the performance

of both the linear and the maximum-likelihood estimators. We should

like the estimator to perform well in most of the cases. We took the

same blurred object, with the same set of mean values X i , generated

a number of independent sets of data ni , and applied our procedure to

each, with the resulting percentage errors shown in Table 1. The star

indicates the trial shown in the previous figure. In ten of the twelve

trials taking a2 = co gives a lower percentage error than when the

restoration procedure uses the prior information about how the object

is generated. In two trials out of twelve the linear least-squares filter-

ing was more effective than the maximum-likelihood estimation. Most

of the time, the maximum-likelihood estimate is considerably closer

than the linear one.

Table 2 shows a similar set of trials for a different object;

there is much greater variability, but in all but one case the maximum-

likelihood estimate was much closer than the linear one. Here in five

out of twelve cases using the prior information gave a closer fit to the

true object radiance. The starred case is shown in Figs. 3. 9(a) and

3. 9(b).

Deterministic signals were also used. A typical object radi-

ance function we used in the experiment has the form

b. = a(exp[- (i- 5)2/4] + exp[-(i- 9) 2/4] + exp[-(i - 16)2/4] , (3.23)1
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Table 1

Performances of both linear and maximum-likelihood
estimation of an object based on twelve different sets

of data. Parameters used to generate the object are

(R 1 ,R 2 ) = (5431, 3214), I = 3, acST = 10, r = 0. 2, = 15.

Squared Errors (percent)

=0s r =R 0-

Linear Nonlinear Linear Nonlinear

1 5.53 1.80 8.81 0.862

2 2.13 2.46 1.02 1.08

3 4.90 2.93 4.76 2.21

4 5.95 4.28 8.20 2.44

5 7.61 5.20 5.17 3.43

6 5.83 5.79 3.43 3.58

7 8.49 4.23 8.25 3.68*

8 6.02 5.64 3.97 3.69

9 5.49 3.67 9.77 4.76

10 9.84 6.22 8.69 5.17

11 7.84 6.36 7.24 5.63

12 12.59 9.39 12.36 9.56

Mean 6.85 4.83 6.81 3.84

Standard
Deviation 2.67 2.07 3.18 2.33

Illustrated in Fig. 3.7.
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Table 2

Performances of both linear and maximum-likelihood esti-
mation of an object based on twelve different sets of data.

Parameters used to generate the object are (R 1 , R 2 )
(842, 3248), II = 5, aST = 10, r = 0. 3, a = 15.

Squared Errors (percent)

=a , r = R aC4 =o

Linear Nonlinear Linear Nonlinear

1 7.91 6.70 7. 74 5. 42

2 9.69 7.07 8.11 5.70

3 14.93 8.84 11.82 6.59

4 13.57 7.23 15.79 6.90

5 9. 16 5. 10 11.55 7.51

6 13.94 8. 12 18.44 9.73

7 19.62 11.75 19.91 10.17

8 9.51 6.86 9.94 10.74

9 29.62 8.62 47.06 10.99

10 16.04 14.55 16.81 14.27

11 23. 18 18.07 24.70 17.02

12 22. 19 12.78 25.73 17.05

Mean 15.78 9.64 18. 13 10.17

Standard
Deviation 6.70 3.85 10.90 4. 11

Illustrated in Fig. 3.9.
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Figure 3. 9 (a). Original object (thick line) and its noisy version (thin line) as re-

corded after blurring by relative motion; (842, 3248, 854,

279, 657). Io 
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Figure 3. 9 (b). Original object and restored values. x = maximum
likelihood estimate, o = linear estimate, a = o
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where a is a positive number which corresponds roughly to the stand-

ard deviation of the object. The object radiance function consists of

three peaks of height a; two peaks are close together and one peak is

more isolated. The width of each peak is about four. For a = 90,

the object and the smeared image are shown in Fig. 3. 10. The object

has been smeared by a motion blur of four cells. It is clear from

Fig. 3. 10 that two peaks have been smeared into a broad peak. The

distance between those two peaks is four cells, which is the amount of

the motion blur.

A set of data using parameters asT = 3 and Io = 5 was gener-

ated for the Gaussian-shaped object with a = 90. A typical restoration

result using parameters r' = 0.5 and a' = 45 is shown in Fig. 3. 11.
s

Two peaks are well resolved for both linear and maximum-likelihood

estimate. The performances of both estimators as functions of (aST)

for the same object are shown in Fig. 3. 12. The effect of using differ-

ent assumed values of r' and a' is shown in Figs. 3. 13 and 3. 14.

Even though for some values of r' and a' , the linear estimate per-

forms better than the maximum-likelihood estimate, in most of the

cases the maximum-likelihood estimate performs better than linear

estimate. For deterministic signals, all the statistical assumptions

about the object are not valid any more; however, we can still have

good results. This demonstrates the usefulness of our estimator.

Image degradation by a diffraction-limited optical system has
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Figure 3. 10. Gaussian-shaped object (thick line) and its degraded image
(dashed line) after blurring by relative motion; a = 90.
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Figure 3. 11. Gaussian-shaped object and restored values.
A = maximum-likelihood estimate, o = linear
estimated; acsT = 3, ab = 45, Io = 5, r = 0. 5,
a 90.
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Figure 3. 12. Percentage square error as function of (casT).
Solid line - linear estimate; dashed line -
maximum-likelihood estimate.
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Figure 3. 13. Percentage squared error as functions of assumed object standard
deviation 0 . asT = 3, Io = 5, r = 0. 5, a = 90. Solid line - linear

estimate; dashed line - maximum-likelihood estimate.
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Figure 3. 14. Percentage squared error as function of assumed

correlation coefficient r . asT = 3, Io 
= 5,

a = 45, a = 90. Solid line - linear estimate;
dashed line - maximum likelihood estimate.
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also been considered. Figure 3. 15 shows the result of the restoration

of a stochastic signal. The original object has been discussed in sec-

tion 3. 1 and shown in Fig. 3.1. The passband width Wo in Eq. (3. 13)

has been set to 1.2. In this case, the object spectrum outside the

passband of the optical system cannot be recovered; hence the small

sharp peak between two big peaks is not restored. Figure 3. 16 shows

the performances of both linear and maximum-likelihood estimators

as functions of various assumed values for r and ob For ab = 120,

r = 0. 8, the percentage squared errors are 11.72 and 32. 60 for the

nonlinear and linear estimators respectively; and for smaller r the

performance of the maximum-likelihood estimator deteriorates some-

how, but the percentage squared error exceeds 100%. Owing to the

adaptive characteristic of the maximum-likelihood estimate, its per-

formance is rather insensitive to the assumed value of the parameters

used. We have used a' = - in our restoration scheme. The percent-
b

age squared errors for the nonlinear estimator are 24. 52% and 4880%

for the linear estimator. 24. 52% is about the best the linear estimator

can do as we can see from Fig. 3. 16. The nonlinear estimator always

performs better than the linear estimator in this case.

Figures 3. 17 and 3. 18 show the performance of the restoration

of a deterministic Gaussian-shaped object. The object has been de-

graded by a diffraction-limited optical system with Wo = 0. 8. It is

clear that maximum-likelihood estimator performs better than the

linear estimator.
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Figure 3. 15. Original object and restored values. A = maximum likelihood
estimate, o = linear estimate, r = 0. 2, a = 20, Wo = 1. 2.
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Figure 3. 16. Percentage squared error as functions of assumed
correlation coefficient r . Curves are indexed
by the assumed object standard deviation a .
Solid lines - linear estimate; dashed lines -
maximum-likelihood estimate.
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Figure 3. 17. Percentage squared error of the restoration of a

Gaussian-shaped object as function of asT.

Solid line - linear estimate; dashed line - maximum-

likelihood estimate; a = 15, Io = 10, r = 0. 5,

Wo = 0.8.
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Figure 3. 18. Percentage squared error of the restoration of a
Gaussian-shaped object as functions of assumed
correlated coefficient r. casT = 10, Io = 10,
O = 15, W = 0. 8.
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In summary, we have developed a method of restoring images

that takes account of the Poisson character of the recorded image data,

instead of making the assumption of Gaussian-distributed data that

underlies the usual linear least-squares procedure. The significance

of the new restoration procedure has been demonstrated by computer

simulations. In the great majority of trials the new method produced

a much better fit to the true object radiance than the conventional

linear procedure.
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Part II. Optical Signal Processing by Shearing-
Interferometric Methods

In part II, we are concerned with signal processing using

coherent optical systems.

Communication theory has been successfully applied to optical

signal processing, particularly in the areas of holography and spatial

filtering. Many optical phenomena can be easily explained using com-

munication theory. Carrier-frequency photography is an amplitude-

modulation (AM) process; computer generated holography is just a

pulse-width (PWM) and pulse-position modulation (PPM) scheme.

Diffraction by a grating is a harmonics generation process, and the

moire effect can be understood by modulation theory. Modulation,

demodulation, heterodyning, generation of harmonics, and filtering

have been integrated into communication theory. In optics, however,

there are as yet few connections between grating diffraction, the moire

effect, carrier-frequency photography, holography, and interferometry.

Here we want to integrate these processes and apply them to optical

signal processing.

Following an introduction and a brief review of the pertinent

details of grating diffraction, Ronchi's interferometer, the moire

effect, carrier-frequency photography, and achromatic holography,

two types of interferometers are presented. In these interferometers,

diffraction gratings are used at either the spatial-frequency plane or

108
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the object plane of a telecentric image-forming system. In the grating

interferometer, gratings are placed at the spatial-frequency plane as

beam splitters, and in the carrier-frequency interferometer gratings

are placed at the object planes of two cascade telecentric image-

forming systems as modulation and demodulation masks. These inter-

ferometers can produce variable shearing in both lateral and radial

directions. The operation of the grating interferometer is

in real time; the operation of the carrier-frequency interferometer can

be either in real time or in two steps.

Optical testing, phase-object visualization, spatial differentia-

tion, complex amplitude addition and subtraction, image contrast re-

versal, image complementary color reversal, two-dimensional

photometry, fabrication of filters, pure spatial sinusoidal wave genera-

tion, and image multiplexing can all be achieved by using these new

interferometers. The methods employing the new interferometers have

some definite advantages in terms of simplicity, flexibility, reliability,

light efficiency, or real-time operation in comparison with existing

methods.

Optics and electronics are means of information processing

which have many common features. Communication theory is well

developed in electronic signal processing. Recently it has been suc-

cessfully adapted by optical physicists, especially in the development

of holography and spatial filtering. Many optical phenomena can be

easily understood from the point of view of communication theory.

Modulation, demodulation, heterodyning, harmonics generation, and



110

filtering have been used successfully in electronic signal processing;

we can find their counterparts in optics. In optics, modulation can be

achieved by carrier-frequency photography; generation of harmonics

by grating diffraction; demodulation and heterodyning by the moire

effect; and filtering by spatial filters. Carrier-frequency photography,

diffraction by gratings, and the moird effect all have their unique func-

tions in optical signal processing. Two new types of interferometers

have been developed from the combined use of those concepts.

Diffraction by gratings and the moir6 effect have been used ex-

tensively in optics. Gratings have been used as beam splitters.

Ronchi invented a shearing interferometer using a grating as a beam

divider, which has been used extensively for testing optical components

such as lenses. This technique is relatively simple and inexpensive.

But the use of just one grating results in many drawbacks, such as

(a) the fixed amount of shear, (b) the dependence of the fringe contrast

on the degree of equality in light flux between different diffraction

orders, and (c) the overlap of many diffraction orders.

The drawbacks of Ronchi's interferometer can be overcome by

the use of two superimposed gratings instead of just one grating as a

beam divider. The amount of shear in Ronchi's interferometer is pro-

portional to the spatial frequency of the diffraction grating used. If we

can vary the spatial frequency, we can have variable shear. This can

be done by the moire effect of the two superimposed gratings. When



two gratings are superimposed, owing to the moire effect a variable

spatial frequency is produced by rotating the angle between their axes.

An interferometer, called the "grating interferometer, " has been

developed from two superimposed Ronchi rulings used as beam split-

ters. All the drawbacks in Ronchi's interferometer are overcome.

Carrier-frequency photography has some similarity to holog-

raphy. In particular, both are two-step processes, and diffraction

methods are generally used in the retrieval stages. Holography has

been used very successfully in interferometry. Holographic inter-

ferometry can be operated either in real time or in two stages.

A hologram's ability to record both the amplitude and phase of

a wavefront is the reason for its success in interferometry. Carrier-

frequency photography can register the amplitude as well as the phase

variation of objects. When a grating is imaged through a complex ob-

ject, the resultant image is an amplitude-modulated version of the

grating with the slits shifted according to the phase variation of the

object. This kind of encoding scheme, involving both amplitude-

modulation and pulse-position modulation, called the "detour phase" by

A. Lohmann, is the essence of computer-generated holography. It

is very difficult to retrieve the information about the phase variation of

the object directly from the distorted grating image. But if we "beat"

the distorted grating image with a regular grating (or master grating),

moire fringes appear which will reveal the phase variation. A new
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type of interferometer, based on carrier-frequency photography and

the moire effect, has been conceived. It is called the carrier-frequency

interferometer. It can be operated in real time or in two stages. The

system is achromatic and white light can be used.

In chapter 4, we briefly review diffraction by gratings, the

moire effect, carrier-frequency photography, and achromatic holography.

This review will serve as the foundation of the following chapters.

The grating interferometer is the subject of chapter 5, and the

carrier-frequency interferometer is described in chapter 6. Many

kinds of masks can be used as modulation carriers in the carrier-

frequency interferometer. We use linear gratings, checkerboard

gratings, and circular gratings.

The applications of these two types of interferometers in optical

information processing are presented in both chapters 5 and 6 for each

interferometer. New methods for optical testing, phase object visual-

ization, image polarity reversal and color complementarity, two-

dimensional photometry, spatial differentiation, complex amplitude

addition and subtraction, image multiplexing, pure spatial sinusoidal

wave generation, fabrication of filters, focusing, and alignment are

presented. Some of the applications can be used in optical computing,

general image processing, and two-dimensional photometry.



Chapter 4

Review of Diffraction by Gratings, the Ronchi Interferometer,
the Moire Effect, Carrier-Frequency Photography,

and Achromatic Holography

Gratings have long been used as beam splitters, particularly in

the Ronchi interferometer. The moire effect has been applied to

measurement processes, carrier-frequency photography has been ap-

plied to image multiplexing, and holography has been applied in inter-

ferometry. They all have their own unique applications to optical

information processing. However, few efforts have been made to inte-

grate all these techniques. It is the goal of this part of the thesis to

integrate them for use in optical information processing. In this

chapter we will review them briefly.

4-1. Gratings, Diffraction by Gratings, and Ronchi Interferometer

One type of grating can be represented as a periodic binary

mask. A grating with slits parallel to the y-axis can be represented

as

1, I(x-a)/d-NJ ! q/2
M(x) = , otherwise , N = 0, 1,2, ... (4.1)

0, otherwise

where d is the period of the grating, a is the shift from the origin of

symmetry, and q is the ratio of the size of the openings (of unit trans-

mittance) to the period of the grating. For the Ronchi ruling, q = 1/2,
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so that the size of the opening is equal to half the period of the grating.

M(x) is a periodic function, which can be expressed by means

of Fourier series, t

M(x) = A end , (4. 2)
n

where A = q sinc(nq) exp(2T ina/d) ,

sinc(x) = sin(TTx)/(rrx)

A =A
n -n

(here * denotes the complex conjugate). The binary grating M(x)

and its Fourier series spectrum for the case when q = 1/2, are shown

in Fig. 4. 1. No even harmonics exist.

If we rotate the grating by an angle e about the origin, its

transmittance function becomes

M(x,y) = Anexp [21ni n(x cose +y sing)/d] . (4.3)
n

The grating has the frequency cos 8 /d in the x-coordinate and sine /d

in the y-coordinate.

The periodic binary mask M(x) can be generalized to include

quasi-periodic masks, e. g. the circular grating,

From now on, C means summation over n from - 0 to +.
n
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(b)

Figure 4. 1. A Ronchi ruling and its Fourier spectrum
(a) The transmittance function of a Ronchi ruling.
(b) The Fourier coefficients of the Ronchi ruling;

no even harmonics exist.
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1 , r/a- NI q/Z
C(r) = , otherwiseN = 0,1,2,... (4.4)

0 , otherwise

When a monochromatic plane wave in z-direction is used as

incident wave, the wavefronts diffracted by a transparent one-

dimensional plane grating have their wave vectors in the plane of both

the original wave vector and the direction perpendicular to the direc-

tion of the slits (or in the direction of grating orientation). The grating

splits a wavefront incident on it into many diffraction orders, accord-

ing to the relation mX/d = sin e m , where m is the diffraction order,

X the wavelength, 8m the angle between the zeroth order and the

m-th order. The amplitude of m-th diffraction order is A .m

When a transparent one-dimensional plane grating is placed in

the spatial-frequency plane of a telecentric image-forming system as

shown in Fig. 4. 2, the grating acts as an amplitude-modulation mask

in the spatial-frequency plane. The grating will generate harmonics of

the object. By Fourier analysis, the field propagated through the

grating will split into many orders in the image plane. Ronchi invented

an interferometer using a grating as beam splitter. Figure 4. 2 is a

typical setup. A monochromatic plane wave illuminates the object.

The field just before the grating, owing to the Fourier transforming

property of lens L1, is

U(x, y; 2 fl - 0) = Uo(x/ fl , y/ f) (4. 5)



L OBJ L 1 F LZ  IMG

SOURCE

Figure 4.2. A coherent optical signal processor (or telecentric image-forming system).
OBJ is the plane where the input object will be located, F is the filter plane
where the spatial filter is located, and IMG is the image plane, fl and fz
are the focal length of lenses L 1 and L 2 respectively.
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where

Uo0 (x, y) = UO(x' , y') exp[-Zrri(xx' + yy')] dx' dy' . (4.6)

We have omitted an unimportant multiplicative constant. Applying the

Kirchhoff boundary condition to the field as it passes through the grating,

we have

U(x, y; 2 f + 0 ) = U (x, y; 2 f - 0) G(x, y)

=0(x/flf, y/) f 1 ) An exp(2Z i nx/d), (4. 7)
n

where G(x, y) A=  n exp(Z2ri nx/d) is the grating transmittance func-
n

tion. The field propagates through lens L 2 and reaches the image

plane. Owing to the Fourier transforming property of lens L and the

convolution theorem of Fourier transformation, the field at the image

plane is

U(x, y; 2 f +2 f2 ) = U(x, y; 2 fl +

= An U0 (-flf 2
1x-nX f 1 d , y) . (4.8)

n

The object field has been reversed, magnified f /fl times, and dif-

fracted into many orders with amplitude A for the m-th diffraction

order, and shifted over a distance mXf /d .

If the amount of shear, X f l/d, is smaller than the size of the

object, fields coming from different diffraction orders will overlap. As

all the fields from different diffraction orders are coherent, interference
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fringes will appear in the overlapped area. This interferometer has

been used extensively in optical testing.

4.2. The Moire Effect

The moire effect was described by Lord Rayleigh ( 1 ) as long

ago as 1874. When two high-spatial-frequency gratings are superim-

posed, by proper arrangement, a pattern with low-spatial-frequency

variation appears.

Two linear gratings T 1 (x, y) and T (x, y) have transmittance

functions

T 1 (x,y) = An exp[ZrTin( 1ix +pj 1y)]
n

and (4. 9)

T (x, Y) = B exp [2ni m(v x + py) ] ,
m

where (v 1' 1 ) and (v2' I2 ) are fundamental spatial-frequencies in

(x, y) of gratings T 1 and T 2 respectively. When they are superim-

posed, the resulting transmittance is

T (x, y) = T(x, y) T 2 (x, y)

= I AnBm exp fZri [(nv 1 + mv 2 )x + (nu 1 + mp 2 ) y] . (4.10)
m n

Examining the Fourier spectrum of the transmittance functions

of T 1 T2 and T, we see that T 1 has the fundamental frequency

(v, P) = (V1 ' 1 
) T 2 has (vz2 ' 2 ), and the resulting transmittance T

has (v1-v2 ~ 1 - 2 ), which is the beat frequency of T 1 and T .
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4.2. 1. Moire of Two Linear Gratings of Different Period,
Parallel Orientation

Two gratings T 1 and T 2 both have their slits parallel to

y-axis, and have spatial frequencies v 1 and v 2 respectively. The

total transmittance of these two gratings superimposed, by eq. (4. 10)),

is

Zrri(nvl +mV )X
T(x, y) =  A B e . (4. 11)

m
m n

When both T 1 and T2 are Ronchi rulings, q = 1/2, no even harmonics

exist. For the case that v1 2 , and q = 1/2, there are only two

1
diffraction orders (n= 1, m = 0) and (n= 0, m = 1) close to = (j ),

as shown in Fig. 4. 3.

4. 2. 2. Moire of Two Linear Gratings with Same Frequency,
Different Orientations

When the two gratings T 1 and T2 have the same period d,

but their orientations are different, one grating having its slits rotated

through an angle 8 from the x-axis, and the other having its slits

rotated through an angle -0 from the x-axis, the total transmittance is

T (x, y) = A n exp[2nin(x sin + ycos 0)/d]i

B exp[2r i m(-x sin +y cos 8)/d] }
m

= A B exp [Z i (x n + ypnm) , (4.12)
n m



Figure 4. 3. The Fourier spectrum of two superimposed Ronchi
gratings of different periods, parallel orientation.
There are only two diffraction orders (1, 0) and
(0, 1) that are nonzero and satisfy m + n = 1.

Figure 4.4. The Miller's indices. For Ronchi rulings there are
only two diffraction orders that are nonzero and
satisfy m +n = 1 and -1.
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where

-1
V = (n - m) d sin 8
nm

-l1
m = (n + m) d cos

nm

The Fourier spectrum of T(x, y) can be visualized in the (v, P)

domain with the aid of "Miller's indices" (n, m). Figure 4.4 shows the

location of different indices in the (v , 4) plane, for the case that both

T 1 and TZ are Ronchi rulings. The amplitude strength of each dif-

fraction order (n,m) is A B . All the diffraction orders with
n m

n + m = p are located at " = pd-1 cos @ , with a distance 2d-1 sin 8

between the neighboring diffraction orders. If we vary 9 , the distance

-l -I
Zd sin 9 is varied. The distance Zd sin 8 is the beat frequency

produced by T 1 and T2 superimposed. When both T 1 and T z are

Ronchi rulings, no even harmonics exist, i. e., A B = 0, for n or
n m

m an even number. There are only two diffraction orders, (0. 1) and

(1. 0), with m + n = 1 , as shown in Fig. 4.4.

4. 2. 3. Moire of One Regular Grating and One Distorted
Grating

When a regular grating Gl(x, Y) = a +b cos (v x) and a distorted

version of that grating G 2 (x, y) = a + b cos [vx + 9 (x, y)] are super-

imposed, the total transmittance is

Tp(x, y) = G1 (x, y) G2 (x, y)

=a + b cose +Zabcos ( cos x+2 + b cos(2vx +) ,

(4. 13)
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where 8 (x, y) is related to the distortion of position of the grating slits.

The information which we wish to observe, 8 (x, y), can be extracted by

spatial filtering if we let pass only the first diffraction order in

Eq. (4. 13).

If we add the transmittance functions of G 1 and G2 together,

the total transmittance is

b eeI e\
TA(x, y) = Za + cos vx + cos - (4. 14)

The addition of transmittances can be achieved optically by a double-

exposure technique. The information about the distortion function

appears as the envelope of the carrier wave cos(vx + 8/2).

4.3. Carrier-Frequency Photography

In communication, modulation theory has been used in connec-

tion with the transmission of information. Several signals can be

transmitted over a single cable at the same time, by either time multi-

plexing or frequency multiplexing. In optics, we can do essentially the

same thing for multiplex information storage, by which we mean that

more than one image is stored in a single film frame. By analogy,

optical image multiplexing can be achieved by either spatial multiplexing

or spatial-frequency multiplexing. Spatial multiplexing means each

single image occupies a certain part of the film frame, which can be

done by either a microfilm technique or image interlacing. In optical

spatial-frequency multiplexing, each single image is carried by carriers
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of different spatial frequencies. As a different orientation of the same

grating yields different spatial frequencies, we have a theta-modulation

system.

Holography can record both phase and amplitude of the object

wavefront and has been successfully applied in interferometry. Carrier-

frequency photography has some similarities to holography, but the

recording procedure is different. We will apply carrier-frequency

photography to interferometry.

The basic recording and reconstruction setups for carrier-

frequency photography are shown in Fig. 4. 5. In recording, the object

is imaged onto a film, and the modulation mask (a Ronchi ruling) can

be placed in either the film plane or the object plane. We can build a

camera with a grating in contact with the film plane. In reconstruction,

coherent light is used to illuminate the film, and a binary filter is

placed in the filter plane. This binary filter passes just one of the

diffraction orders.

If we want to store more than one signal, e. g. four signals of

intensity distribution functions II(x, y), I2(x, y), 13(x, y) and 14(x , y), in

a single film frame, we can use theta modulation. (3) Four exposures

are made, each exposure for a different object. Between each exposure,

the grating is rotated through an angle e = 45 , hence the designation

"8 -modulation. " The total exposure is
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OBJ G + FILM

(a)

OBJ +G FILM

(b)

FILM FILTER IMG

5-1 - -5

(c)

Figure 4.5. The recording and reconstruction setup for carrier-
frequency photography. (a) and (b) are for recording
and (c) is for reconstruction. The filter in (c) passes
only one diffraction order.
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I(x, y) = I(x, y) G(x, y; 0) + I (x, y) G(x, y; r /4) + 13(x, y) G(x, y; rr/2)

+ I4(x, y) G(x, y; 3TT/4) , (4. 15)

where G(x, y; 8) is the grating transmittance function rotated through

an angle 9 . When the film is developed in the linear portion of the

characteristic T-E curve, the amplitude transmittance of the film will

be proportional to I(x, y).

In reconstruction, the developed film is placed in the object

plane of a telecentric image forming system as shown in Fig. 4.5(c).

The spectrum of I(x, y) in the filter plane will be similar to the one

shown in Fig. 4. 6. The spectra of different objects occupy lines of

different angles e , each split into many diffraction orders. Each sig-

nal can be retrieved separately, or the signals can be combined by using

a binary filter to pass only the spectra of the images to be displayed.

This technique has been successfully applied to color photography using

only black and white film.(3)

Image multiplexing can be achieved by spatial interlacing as well

as by theta modulation. In spatial interlacing, the grating is displaced

a distance qd between each exposure; q as defined before is the ratio
-l

of the slit width to the period of the grating. We can record q signals

and retrieve them separately. For a Ronchi ruling, q = 1/2, we can

record two signals in one film frame. The total transmittance is



Figure 4. 6. The spectrum of a theta-modulated carrier-
frequency photograph.

Figure 4. 7. A double-exposure carrier-frequency modulated
photograph.
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I(x, y) = 1 (x, y) G(x, y) + 12 (x, y) G(x - d/Z, y)

= An [I1(x, ) + (-1) n I(x, y)] exp(Zr i nx/d) . (4. 16)
n

I(x, y) is shown in Fig. 4. 7. In reconstruction, we can put the modu-

lation mask in contact with the developed film to pass only either

11 (x, y) G(x, y) or 2 (x, y) G(x - d/2, y), and retrieve them individually.

Or if we use no mask, and if the filter F passes only the first diffrac-

tion order, Il(x,Y) - I(x,y)1 2 results. We create bipolarity by

spatial interlacing. This technique has been used in image subtrac-

tion ( 4 ) and image polarity reversal. (5)

4. 4. Achromatic Holography

Because of the annoying twin image, holography was not very

popular after Gabor invented it in 1948. The renaissance of holography

came after Leith and Upanieks showed that the twin image can be

eliminated by the use of an offset reference wave. The typical setup

is shown in Fig. 4. 8. A point source of illumination is collimated by

the lens L. The beam splitter BS divides the beam into two parts,

with one part of the beam striking the object, which is taken to be a

transparency with a complex transmittance O(x, y). The second por-

tion of the plane wave strikes a mirror and reflects into the film with

an angle 0 with respect to the optical axis of the lens L .



131

L BS OBJ HOLO

SOURCE

M

Figure 4. 8. A recording setup for holography. BS is beam

splitter, HOLO is hologram plane, M is mirror.

G +OBJ F H
L

Figure 4. 9. A recording setup for achromatic holography. The
filter F consists of a pinhole at the center of the
zeroth diffraction order and a binary filter at the
first diffraction order.
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The amplitude distribution across the film can be written as

U(x, y) = R e2 ia +a(x,y) e+i(, y)

where R is the amplitude strength of the reference wave, a(x, y) and

S(x, y) are the amplitude and phase of the wave originating from the

object, and a = sin e /X is the spatial frequency of the reference wave.

The intensity distribution across the film is

E(x, y) = U (x, y) 2

= R2 +a(x, y) 1 2 +ZR a(x, y) cos [2rr y- (x, y)]

Since a (and possibly a(x,y) and 0(x,y)) is dependent on

wavelength X, each wavelength X produces its own elementary fringe

system, and the systems of different wavelengths are shifted with

respect to each other. Monochromatic light is necessary.

If the interference fringes on the hologram are achromatic, a

broad-band source such as natural white light emitted from a xenon-arc

lamp can be used as illuminating source. To produce an achromatic

hologram, it is sufficient that (1) the interference fringes on the holo-

gram be achromatic, and (2) the diffraction pattern from the object be

fairly independent of wavelength X in the plane of the hologram. (6)

These requirements can be achieved by the optical setup shown in

Fig. 4.9.

The object U0 (x, y) is modulated by a grating G. By the
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Fourier transforming property of lens L 1 , the field at the filter

plane F, for each wavelength is

U(x, y;; 2f-0) =  A (x- n Xf /d, y), (4.18)
n

where f is the focal length of both lenses L 1 and L2 . If the illumi-

nating source is polychromatic, each diffraction order except the

zeroth order will exhibit color dispersion. We can use a binary filter

F to pass the +1 diffraction order as the object wave, and a small

pinhole in the center of the zeroth diffraction order to create the refer-

ence wave. The field after the filter plane is

U(x, y; X; 2f +0) = R6(x) + A U 0 (x- fd-1 , y) (4. 19)

where R is the strength of the reference wave. The object waves pro-

duced by light of different wavelengths are shifted with respect to each

other in the filter plane F, but they will be recombined if the wave

propagates to the hologram plane H as shown in Fig. 4. 9. The total

field in the hologram plane H is

U(x, y; X; 4f) = R + Al U 0 (-x, -y) exp(2rrix/d) , (4. 20)

which is X -independent. Thus an achromatic hologram is recorded.

White light can be used in holography. We will use the achro-

matic holographic technique in a new type of interferometry, which can

be used in several ways, especially for real-time image contrast re-

versal. Positive black- and-white images can be obtained directly from
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color negatives in real time without complicated photo-chemical and

electronic techniques.
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Chapter 5

Variable Shearing Interferometry Based on the Moire

Effect of Gratings - The Grating Interferometer

5. 1. Introduction

Shearing interferometry has been used to test instruments and

optical components. In this type of interferometry, the wavefront under

test is duplicated and displaced. The two resulting wavefronts are made

to interfere with each other, yielding a comparison of the wavefront

with a shifted image of itself. These interferometers typically used a

single beam-dividing element that is simpler than other interferome-

ters. (1) There are two ways of obtaining the shifted wavefronts. The

first method is to have the shift sufficiently large so that the displace-

ment between the duplicated wavefronts is larger than the dimension of

the wavefront under test. This is called "total shear, " since the

amount of shift is larger than the size of the object wavefront under

test. In the second method the shift is kept smaller than the width of

the typical details of the object under observation; this is known as

"differential shear, " owing to the similarity to differentiation. It is

desirable to have an interferometer which can vary the amount of the

shift.

The interferometer invented by Ronchi uses a grating as the

beam divider. This interferometer is simpler and cheaper than most

other methods and has been used extensively. However, as mentioned

before, the use of only one grating causes some inconveniences. These

136
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can be overcome by using two gratings as a beam splitter instead of

just one. Lohmann and Bryngdahl have described an interferometer

using two diffraction gratings in the spatial frequency plane of two

cascaded telecentric image-forming systems. 2)

5.2. Principle of the Interferometer

We are proposing a new shearing interferometer based on the

moire effect of two superimposed gratings. The optical arrangement

of the grating interferometer is schematically illustrated in Fig. 5. 1.

A plane wave falls onto the object plane OBJ, which is imaged

via telecentric image-forming lenses L 1 and L 2 onto the image

plane IMG. The two superimposed gratings G 1 and G are placed

in the spatial-frequency plane. Both gratings G 1 and G2 are linear

and have the same period d; one has its slits rotated through an angle e

with respect to the x-axis; the other has its slits rotated through an

angle - . The transmittance of the superimposed gratings, as

described by Eq. (4. 12), is

T(x, y) A B exp[Zi (x V +y )] , (5.1)
nm nm nm

m n

where

V = (n - m) d sin
nm

-1
nm (n +m) d cosSnm t

and A and B are the Fourier coefficients of gratings G 1 and G
n m 1 2



OBJ L 1  G 1 + G2 L IMG

1 11

Z = 0 Z = Zfl Z = 2f +2f2

Figure 5. 1. The grating interferometer.
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respectively. The wavefront diffracted by this composite grating will

split into many diffraction orders with the centers of each diffraction

order distributed like the "Miller's indices, " as shown in Fig. 4.4.

Variation of the angle of rotation 8 changes the distance between these

centers, and hence the amount of shift between the different diffraction

orders.

The object U0 (x, y) is illuminated by a collimated plane wave.

The field in the plane just preceding the grating, by the Fourier trans-

(3)
forming property of lens L 1 , is

U(x,y; Zf 1 - 0) = U0 (x/Xf l , y/ f) (5.2)

where fl is the focal length of lens L 1 . By the application of the

Kirchhoff boundary condition, the field just behind the grating is

U(x, y; Z f 1+0) C AnBmU0 (x/ fl y/ fl) exp[Zn i(xvnm+ ynm)]
n m

(5. 3)

This field will be once again Fourier transformed when it propagates

through lens L2 and arrives at the image plane. By the use of the

shift property of Fourier transformations, the field in the image plane

can be written as

f f

U(x,y; 2fl+2f) =  AnB U O , - - n Xf,
nm(5.4 2

(5. 4)
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where f2 is the focal length of lens L . Equation (5. 4) can be written

as

U(x, y; 2f 1 +Zf) =  U(x,y; p) ,(5.5)

P

and

U(x, y; p) = A B U (-M xnA , -M y- p )
n+p p-n x-nx

n z (5.6)

M f2 /fl

-1
A = fl d sin 8x 1

-1
A = X f d cos 8

and only A.'s and B.'s indexed by integers are meaningful; when p1 3

is an odd number, n must be an odd number, in order that An B

2 2

be meaningful. For diffraction orders located at the same y-

coordinate, the distance between each neighboring order is 2M A=
-1

2 f2 d- sin e . All the diffraction orders U(x, y; p) appear at the

same time in the image plane with their y-coordinate shifted by -MpA

The object field in the image plane has been inverted and magni-

fied by a factor M = f2/fl , and the center of the diffraction order

(n, m) is at x = (n - m) MA , y = (n +m)M A . If the dimension 6
x y y

of the object in the y-direction is smaller than A , all the diffraction

orders with m + n = p will appear separately from those with

m + n = p' , p' / p. We have achieved total shift in the y-direction.
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If we use Ronchi rulings, q = 1/2, then no even harmonics exist, i.e.,

A = B = 0, for n even. For diffraction order p = n + m = 1, (n, m)
n n

can have values (1, 0), (0, 1), (2, -1), (-1, 2). Only diffraction orders

(1, 0) and (0, 1) do not have even harmonics, hence can be nonzero, and

U(x,y; p = 1) = BU 0 (-M- x+A x , -M y-1 A

-1 -1
+ AB0 (-M - A, -M y-LA ) . (5.7)

The U(x, y; p = 1) diffraction order is centered at y = -M Ay . The

distance between the (0, 1) and (1, 0) diffraction orders is 2 M A x

which varies with the angle 8 . The new interferometer is thus a

variable shearing interferometer with only two diffraction orders over-

lapping. If gratings G 1 and G 2 are identical, I An = IBn I

hence I AOB 1 = A 1 B 0 1 ; the two diffraction orders (0,1) and (1,0)

have the same strength. The phase difference between An and Bn

can be adjusted by shifting either G 1 or G2 in the direction perpendic-

ular to its slits. All the inconveniences of the Ronchi interferometer

are overcome.

The total output image field is represented by Eq. (5. 5). The

p = 1 diffraction order represents a two-beam interferometer; so does

the p = -1 diffraction order. The p = 1 diffraction order is centered

at y = M A  (compare to p = - 1 diffraction order which is centered at

y= -MA) and has two components (m, n) = (-, 0) and (0, -1). The p = 0

diffraction order, centered at y = 0, is a multiple-beam interference.

All the different diffraction orders appear at the same time in the image
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plane with different y-coordinates. The p = -1, 0, 1 diffraction orders

are shown in Fig. 5. 2.

Two gratings of different period can be used. If a composite

grating consisting of two gratings of small period difference is

oriented along the y-axis, and each individual grating orientation makes

an angle 8 with the y-axis, but in opposite directions, the field of p = 1

diffraction order, as in Eq. (5.7), is

-1 -1
U(x, y; p= 1)AB U (-M +fd 1 sin 8, -My -xfl d1 cos 8 )

-1 -1
+ ABU0 (-x - kfl d sin 8 , -My - fl d cos 8 ) ,

(5. 8)

where dl and d2 are the periods of gratings G 1 and G respectively.

-1 -
The amount of shift in x and y coordinates is f(d1 + d-l) sin ,

-1 -1
and Xf2 (dl1 - d2 ) cos 8 , respectively.

For the special case, 8 = 0, gratings G 1 and G 2 have the

-1 -1
same orientation. The amount of shear is X f2 (d 1 - d2 ) directed

along the y-axis; this is the smallest amount that can be achieved by

two gratings of different periods.

Two circular gratings of different frequencies having their

center points in coincidence can also be used. The result is similar to

the case of two linear gratings of different frequencies and has the

same orientation discussed above. In this case, the shear is fixed for

a pair of circular gratings. It is a circular shearing interferometer

with constant radial shear.
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x
p=l

y

I 0p 0 I I iI I

p= -1

Figure 5. 2. The field in the output image plane of the grating
interferometer. Here we only show p= 1, 0, -1
diffraction orders, and in p= 0 diffraction order
we only show (-1, 1), (0, 0) and (1, -1) three diffrac-
tion orders. There are only two diffraction orders
in both p = 1 and -1 diffraction orders.
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5. 3. Variable, Purely Sinusoidal Wave Generator

Purely sinusoidal amplitude gratings are very difficult to con-

struct. By the use of the moire effect and spatial filtering, we can

easily generate a purely sinusoidal wave.

The optical setup is shown in Fig. 5. 3. Two superimposed

gratings G 1 and G2 are placed at the object plane of a telecentric

image-forming system. The field at the spatial-frequency plane is a

collection of peaks with their locations distributed like the Miller's

indices. A binary filter F is placed in the spatial-frequency plane.

If the filter passes only two diffraction orders, e. g. (0, 1) and (1, 0),

then the field at the output plane is

U(x, y; z = 4f) = ABI exp(4nrixd- sine) + A 1B 0 exp(-4rr ixd sin e)

-l

= JAoB 1 1 cos(4rrxd- sin e + p) , (5.9)

if I AOB 1 = I AIB 0 1 , or gratings G I and G2 are identical, where Cp

is a constant. The sinusoidal wave has the spatial frequency 4 d-lsin .

Any two diffraction orders can be used for sinusoidal wave gen-

eration. If the absolute amplitudes of those two diffraction orders

SAmBn and I Am , B , are equal, the generated sinusoidal wave

I(x, y) = I U(x, y; 4f)12 has highest contrast. If the absolute amplitude

The area of each peak is roughly (X f) /A, where A is the area of
grating being illuminated by the illuminating plane wave.



G 1 +GZ L1 F L IMG

0 0

Z = 0 Zf 4f

Figure 5. 3. Variable, purely sinusoidal wave generator.

L'
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strengths are not equal, the contrast will be reduced. We can vary the

spatial frequency of the generated output sinusoidal wave either by vary-

ing the angle 29 between gratings G 1 and G , or by passing different

diffraction orders in filtering plane.

The output image plane is conjugate to the plane where the grat--

ings are placed; hence the system is achromatic, although the spectral

width of the light source is limited by separation of the adjacent diffrac-

tion orders. A polychromatic light source can be used for illumination.

5. 4. Applications

Most methods for optical information processing are based on

interference. Interferometry is one of the most important methods in

optical information processing. The grating interferometer derived in

this chapter can be used in optical signal processing. New methods for

optical testing and phase object visualization, image contrast reversal,

spatial differentiation, complex amplitude addition and subtraction,

image multiplexing, and fabrication of spatial filters will be presented

in this section.

5. 4. 1. Optical Testing and Phase-Object Visualization

The Ronchi interferometer has been used extensively in optical

testing, since it is simpler and cheaper than most of the other methods.

But the Ronchi interferometer has some drawbacks. To overcome the

drawbacks of the Ronchi interferometer ( 4 ) is one of the motivations for
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our new interferometer. Optical testing and phase object visualization

can be achieved by the interference of the tested object wavefront with

either a standard wavefront or a replica of the wavefront of the tested

object with a shift. The grating interferometer can produce

variable shear, either total shear or differential shear, and hence can

be used in phase-object visualization. The new method is simpler,

cheaper, and much more flexible than most other existing methods.

The setup as shown in Fig. 5. 1 will be used in phase object

visualization. For simplicity, we will assume that lenses L 1 and LZ

have the same focal length f, and then the magnification factor M is 1.

5. 4. 1. 1. Phase-Object Visualization Using the Grating
Interferometer to Produce Differential Shear

The tested phase object U0 (x, y) = exp [i¢ (x, y)] is placed in the

object plane of Fig. 5. 1. The two superimposed gratings G 1 and G

have the same period d. The p = I diffraction order, centered at

y=-A , from Eq. (5.7), is

U(x, y; p = 1 ) = AB 1 U ( - x +A -y- A

+A1Bo Uo(-x - A x  - A

AoB 1lexp[i¢(-x +Ax ' - Ay)]

+exp[iO(-x-A , -y-A ) +ia]) (5.10)x y

if gratings G 1 and GZ are identical, where a is a real constant

depending on the relative shift of gratings G 1 and G
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For an object with dimension in y direction 6 y , the
y y

diffraction orders p are separated. Equation (5. 10) describes a two-

beam differential shearing interferometer. The amount of shear is

ZA X= 2 f d - 1 sin .

The intensity of the p = 1 diffraction order is

I(x, y) = U(x, y; p= 1)

SAB1 cos -(o(-x+A , -y- A )-¢(-x-A , -y -A )-a.
0 x y x y

(5. 11)

If Ax is smaller than the typical finer details of the phase object

tested, we can expand the phase variation function ¢ (x, y) in a Taylor

series and retain only the first two terms, i.e.,

0(-x+a -y-A ) - 0(-x-y-y-A ) +A ¢ X(-x, -y ) ' (5. 12)
xy y x y (5. 12)

where

0 (x, Y) - 0 (x,y) (5. 13)¢ x 8x

Equation (5. 12) can be rewritten as

I(x, y) = I AB 1I cos 2 ax x(-x -y - y) - "

= 1A 0 B1 2 1 +cos(ZAx (-x, -y-A ) -C) . (5.14)

The phase variation of the tested object becomes visible. The inter-

ference fringes show the contour of constant derivation of the phase
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variation of the phase object along the x-axis. If a = n , and Axe x << 1,

Eq. (5. 14) can be written as

I(x, y) = AoB1  (1 - cos (Axx (-x, -y- ))

- 1 A B 1 2 A 2 02 (-x, -y - A ) . (5. 15)
Z 011 x x y

The output intensity is proportional to the square of the derivative of

the phase object.

If the input phase object to be tested is a perfect lens, U0 (x, y) =

exp [ia(x2 + y2)], then the output image intensity from Eq. (5. 11) is

I(x, y) = I A 0 B 1 1Z [1 - cos (2a Axx) ] . (5. 16)

The interference fringes are straight lines parallel to y-axis. The

parameter a can be measured from the period of the inteference

fringes. If the input object is not a perfect lens, the interference

fringes are not all parallel to y-axis. We can use this method to meas-

ure the focal lengths of lenses and test the aberration of the lenses.

5.4. 1. 2. Phase-Object Visualization Using the Grating Inter-

ferometer to Produce Total Shear

If the input object U0 (x, y) consists of two non-overlapping

components U 1 (x - Ax, y) and U(x + A x, y),

UO(x,y) = Ul(X(x , y) + UZ(x +A x , y). (5.17)

The objects U 1 (x, y) and UZ (x, y) have dimensions 6 and 6 in x
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and y directions respectively, and x  x and 6 y A . The p +1

diffraction order in the image plane is

V 1 (x, Y) = A0 B 1 U0(-x + A, -y - Ay) +A 1 BO U0(-x - , -yA y

= AOB I [Ul(-X, -y - A ) + U (-x+ 2A, - - Ay

+A1BO[UI(-x-2Ax, -y-Ay) +U (-x, -y - Ay)]

= ( A0 B 1 UI(-x, -y -A ) +A I BO U2 (-x, -y - A y)

+A1BO U (-x - Z xx ' -y-A y) +A B1 U(-x+2A , -y-A )"

(5. 18)

The typical wavefield of V1 (x, y) is shown in Fig. 5. 4. The wave-

fronts of objects Ul(x, y) and U (x, y) overlap and are centered at

(x = 0, y = -A ) as can be seen from Fig. 5.4. The intensity in the
y

area where U 1 and U2 overlap, when A B 1 = A B 1 exp(ia), is

I(x, y) = IAB 1 12 I Ul(-x, -y -A y) + ei  UZ(-x , -y - y)

(5. 19)

If U (x, y) = exp(i0 1(x, y)) is the phase object under test, and

U 2 (x, ) = exp(i0 2 (x, y)) is the standard with which the object Ul(x, y)

is to be compared, the intensity I(x, y) will show the deviation of

1 (x y) from 2 (x, Y). If 1 (x, y) equals 0 (x, y), I(x, y) is just a

uniform field.
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x

Figure 5. 4. The typical wavefield of V1 (x, y).
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Usually the standard object U2 (x , y) is an object that creates a

uniform field, or a pjane wave. The plane wave standard wavefront

can be created by simply passing the light through the position of object

U2 (x, y). When U2 (x, y) = 1, then

I(x, y) = I AoB11 2  1 - cos (0 (-x, -y - W))} , (5.20)

if a = rr. For objects with small phase shift << 1 ,

I(x,y) ' I AOB12 2 (-x, -y - A ) . (5.21)

The output image centered at (0, -A ) is proportional to the square of

the phase of the phase object, if the phase object has small phase shift.

This is equivalent to what we get from the conventional phase-contrast

(5)
microscopy.

Total shearing interferometry can be achieved by using only one

grating as a beam splitter, i.e., we can use the Ronchi interferometer

to produce total shearing for phase object visualization. The tested

object Ul(x,y) and the standard wavefront U2 (x,y) are placed in the

object plane with their centers separated by a distance Xf /d in the

direction of grating orientation. The result is the same as we have just

discussed.

5.4. 2. Spatial Differentiation

Optical spatial differentiation may be desirable in optical signal

processing. In the performance of this operation, the principal problem
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encountered in a coherent optical data processing system is the fabrica-

tion of the spatial filter. A compound filter consisting of an amplitude

filter and a phase filter to obtain the required transmittance function jw

has been reported. (6) One serious difficulty encountered in the fabrica-

tion of this compound spatial filter is that the dynamic range of the

photographic film is limited between zero and one. The alignment of

the amplitude filter and the phase filter might be difficult. Computer-

generated holograms(7) and double exposure composite holograms (8)

have been used to bypass these difficulties. Birefringement elements

such as Savart plates and Wollaston prisms have been used as beam

splitters in a differential-shearing interferometer to perform the

spatial differentiation.

Differentiation can be approximated by a difference equation

with a differential step e in the direction of differentiation, if the

differential step e is smaller than the typical finer details of the

object to be differentiated,

O(x, y) [Uo(x + , y) - UO(X,Y)] , (5.22)

if e : hx , where hx is the size of typical finer details of the object

in x direction. Or equivalently, in the Fourier domain

SN U 0 (xy) I U0 (v, ) sin V , (5. 23)

if

-1
U 0 (v, p) = 0o, for lv I h-X
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In the region v h- sin v , so that a sinusoidal grating

can be approximately used as the filter for spatial differentiation.

The essence of spatial differentiation is the creation of bipolar-

ity (positivity and negativity) and the shift of the object wavefront. The

grating interferometer can produce differential shear and bipolarity,

hence can be used in spatial differentiation. Computer-generated

holograms and double exposure composite holograms for spatial differ-

entiation all can produce fixed differential step e . The new method

uses the grating interferometer, which can produce variable differential

step e to fit the various kinds of objects.

The optical setup is as shown in Fig. 5. 1. The object U0 (x, y)

is placed in the object plane. The field of p=1 diffraction order,

centered at y = -A , from Eq. (5.-10) is

U(x,y; p= 1) = AB I U(-x +A , - - y

+A1BO U0(-x - x  - -

oI AB (2 ) x U (-x, -y - ) , (5. 24)

-1
if 2 A = 2 X f d sin e is smaller than the typical finer details of thex

object. If we rotate the composite grating (G1 + G2 ) 90*, we can have

spatial differentiation along the y-axis, and if the orientation of the

composite grating is 450 to the x-axis, we can evaluate 8U 0/x -

aU0 /ay
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5.4.3. Complex Addition and Subtraction

In optics, two functions can be multiplied by using the

Kirchhoff boundary condition. When two films are superimposed, the

resulting transmittance is the product of their transmittances. Addi-

tion of two images can be achieved by double exposure. But subtraction

and division are difficult. Our grating interferometer can be used for

real-time complex addition and subtraction.

Many methods for subtraction using only optical elements have

been already described. They are all based on the interference of the

input signals. When they interfere constructively, we have the addition

of the input signals; if they interfere destructively, we have the subtrac-

tion of the input signals. The first method utilizes interferometry,

either coherent holographic interferometry, (9) total shearing inter-

ferometry, (10) or incoherent holographic interferometry. (1) The

second method uses a previously prepared hologram as a filter in a

(12)
Fourier hologram recording geometry. The third method uses

carrier-frequency photography to encode the polarity of each input sig-

(13, 14)
nal by shifting the modulation carrier-frequency half a period. ,

The carrier-frequency modulation masks can be regular carrier-

frequency masks or random diffusers.

The methods that have been discussed either need very skillful

laboratory technique or a 1800 phase plate to achieve the bipolarity, or

the grating must be shifted between exposures. Most of them are not

real-time operations and are inflexible.
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One method uses a prefabricated sinusoidal grating as a beam

splitter in the Ronchi interferometer. (10) The operation is in real time.

The sinusoidal grating can be replaced by a Ronchi ruling. Our grating

interferometer can be used as a total shear interferometer, since it can

be used in addition and subtraction. By proper arrangement of the sig-

nals to be added and subtracted, we can add and subtract four signals at

once without using any phase plate, and the operation is in real time.

For the addition and subtraction of two signals, one grating will

be used as a beam splitter in the spatial-frequency plane of Fig. 5. 1.

This method has been discussed in which a sinusoidal grating is used as

a beam splitter. (10) The input signals Ul(x, y) and U2(x, y) are

centered at x = f/d and x = -Xf/d respectively, that is

U 0 (x,y) = U 1 (x - f/d, y) + U2 (x +)f/d, y) . (5.25)

The field centered at x = 0, y = 0 of the output plane is

V(x,y) = AUl(-x, -y) + A_ 1 U2 (-x, -y) . (5.26)

The grating is real valued, hence Al = A_1. Subtraction is possible

if we shift the grating in the x direction, so that A-1 = -A . Then

Eq. (5. 26) can be written as

V(x,y) = A1 [U 1 (-x, -y) - U(-x, -y)] , (5.27)

which is the subtraction of U2 from U 1 . No phase plate has been

used, and the operation of addition and subtraction is controlled by the

shift of the grating, which is independent of the incident light



157

wavelength X.

For more than two signals, more gratings will have to be super-

imposed for splitting the beams. For four input signals with dimensions

in x and y coordinates smaller than min(A , A ), centered at
y

(x = A y = A), ( - , (-A , Ay) and (-A, -A ), i.e., the

input object U0 (x, y) is

U (x,y) =U (X +Ax, y +A ) +U (x +A , y- A ) +U (x-A , y+A )

+ U (x - x, - Ay) (5.28)

the output field centered at x = 0, y = 0 of the output image plane is

V(x, y) = AOB_ UI(-x, -y) +A_ 1 BU 2 (-x, -y) + AB OU3(-x, -y)

+AB1U4(-x, -y) . (5. Z29)

The relative phases between Al, A_1, Bi, B_1 can be adjusted by

shifting the gratings G 1 and G2 in their orientation directions.

For adding or subtracting just two input signals, the use of two

gratings as a beam splitter offers some advantage. From Eq. (5.29),

if U 3 = U 4 = 0, the output field is
3 4

V(xy)=AB [U(xy) +AB0 U2(-x,-y)I . (5.30)
AIB

0
(x,y) = ABI U(-X, -Y ) + A0B_ -1

The distance between the centers of two input signals U1 and U2 is

2 Ax , which is adjustable. The ratio (A_1 B 0 )/(Ao0 B 1 ) can be adjusted

by choosing different space-to-period ratio q of the binary gratings G 1
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and GZ , as can be seen from Eq. (4. 2).

5.4.4. Real-Time Image Polarity-Reversal and Two-

Dimensional Photometry

Several methods for complete or partial reversal of the polarity

of images have been proposed. These are alternatives to the traditional

photographic method. (15) Image polarity can be reversed in carrier-

frequency photography by using the nonlinearities of recording media, a

combination of spatially modulated signals, or reconstruction from the

zeroth diffraction order. (16) It is also possible to reverse the polarity

of an image by using carrier-frequency holography and making the signal-

to-reference ratio greater than 1 in the recording of the hologram, or by

(17)
using the zeroth diffraction order in the reconstruction. All these

alternative methods are two-step processes, and they are not superior

in either convenience or image quality to conventional photographic

polarity-reversal. To my knowledge, there are as yet no real-time

optical methods for image polarity reversal.

Image subtraction is the essence of image polarity-reversal.

Our grating interferometer can be used in addition and subtraction,

hence can be used for image polarity-reversal.

In this method, a Ronchi interferometer is used as a total shear-

ing interferometer. Only one grating is used as a beam splitter in

Fig. 5. 1. Both the object U0 (x, y) and a uniform field C I(x- I A, y)

of limited extent are placed in the input object plane. The centers of

U 0 (x, y) and the uniform field are separated by a distance IA = I Xf/d
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in the x direction, normal to the grating slits, where I is a nonzero

integer. C is an adjustable amplitude level of the uniform field,

ICI : 1, and I(x,y) is an indicator function,

1 if I xl < 1/2 6 , and y) lz/2
I(x, y) =

0 otherwise

where 6 and 6 are the maximum dimensions of the object in x and
x y

y-directions respectively.

The input object is U0 (x, y) + C I(x - JA, y). The total output

field is

U(x, y) =  [AnU0(-x-nA, -y) + C An_- I(-x-nA, -y)]
n

= Vn (x,y) , (5.31)
n

where

V (x, y)= AU (-x-nA, -y) +C An-1 I(-x-na, -y) . (5.32)

If the object size 6 is smaller than A, then for different n's the
x

functions Vn(x, y) appear in the image plane separated in space and

centered at (-nA, 0). The different diffraction orders Vn(x, y) have

different image-transfer characteristics. Here, the image-transfer

characteristic is the relation between the transmittance of the input

object U0 (x, y) and the absolute value of the output field amplitude

I Vn( x , y)l . The image-transfer characteristic has the shape of a "V",

and intercepts the U0 -axis at point b (if b > 0). The slope is -I to

the left of this point, and +1 to the right. The value b is the polarity
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level. For output image IVn(x,y)I centered at (-nA, 0), from

-l
Eq. (5. 32), the polarity level b is -A (C An 1 ) 1 . From the defini-

tion, it is clear that the image-transfer characteristic and hence the

polarity level are functions of C and the A 's. Therefore, the polar-
n

ity level can be adjusted easily by rotating two superimposed polarizing

sheets placed over either the object U0 (x, y) or the reference window

I(x -I A, y). If the polarity level b is greater than max U0 (x, y), the

polarity of the object U0 (x, y) is completely reversed, but if

min U0 (x, y) < b < max U0 (x, y), the polarity is only partially reversed.

For 0 < b < min U0 (x, y), the polarity is not changed, but the contrast

has been enhanced.

Typical input and output for I = 2, A = q • sinc(nq) • exp(inrr /Z),n

as shown in Fig. 5.5, are

V (x, y) = AnU 0 (-x-nA, -y) +C An 2 I(-x-nA, -y) , (5.33)

VO(x,y) = q [U 0 (-x, -y) - C sinc(Zq) I(x, y)] , (5.34)

V 1 (x, y) = iq sinc(q) [U0(-x-A, -y) - C I(-x-A, -y)] , (5. 35)

V2 (x, y) = q [-sinc(2q) U 0 (-x-2 A, -y) + C I(-x - 2 A, -y)] . (5. 36)

The polarity levels for V 0 , V 1 , and V2 are C sinc (Zq), C, and

C/sinc(Zq) respectively. The image-transfer characteristics for VO,

VI1 and V2 are shown in Fig. 5. 5. We have outputs with different

polarities at the same time.
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a d

b
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1

Figure 5. 5. The image-transfer characteristics.
(a) The polarity level b > 1, total image
polarity reversal. (b) 0 < b < 1, partial
polarity reversal. (c) 0 < b < min UO ,
no polarity reversal, contrast enhance-
ment. (d) b < 0, contrast reduction.
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The input (the object U0 and the reference window) can be

shifted through any desirable transverse displacement. The output

image pattern will follow the movement of the inputs.

5. 4. 5. Fabrication of Filters

We have already shown that the grating interferometer can be

modified into a variable, purely sinusoidal wave generator, and a

purely sinusoidal grating can be used in spatial differentiation. In this

section, we want to use the sinusoidal wave generator to fabricate

spatial filters for some optical signal processing.

Spatial filters for spatial differentiation, subtraction, and corre-

(8,10,18,19)
lation have been fabricated by the multiple-exposure technique.

For example, in the fabrication of the Laplacian operator 8 / Dax +

a 2ay , five exposures are made. A phase plate or movement of the

recording film between each exposure is needed in order to produce the

bipolarity. Film nonlinearity can create troublesome crosstalk, and

the mechanical shift between each exposure is undesirable.

All the filters fabricated by the multiple-exposure technique can

be fabricated by the use of the sinusoidal wave generator. Only one

exposure is needed. The relative sign of each point source in generat-

ing the sinusoidal gratings can be controlled easily by the shift of the

modulation gratings in their orientation direction. No phase plate is

needed, and the mechanical movement between exposures is eliminated.
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Several spatial filters for mathematical operations such as

8/8x, 8z/ax, z/ax + /ay , 2/axy can be fabricated. We

observe some mathematical identities that

8u- lim U(x, y)* fl(x, Y)]
8x h4 0

where

f 1 (x, y) = (x + h) - 6(x) , (5. 37)

and * is convolution and 6 is the Dirac delta function;

8u + 8u lim I u (x, y) * f (X, y) ,8x ay h-*

where

f2 (x, Y) = (x + h, y) + 6 (x, y + h) - 2 6 (x, y) ; (5.38)

2 2
au au 1 1

2 + lim [ U(xy) * 3 (x,y)
8x ay h-*+ 0 h

where

f 3 (x,y) = 5(x +h,y) +6(x-h, y) + (x, y+h) + (x, y-h)-4(x, y) ;

(5. 39)

8Zu 1- lim - U(x,y) * f4 (x,Y)
8x8y h -+ 0 2

h

where

f4 (x, y) = 6 (x +h, y +h) + 6 (x, y) - 6 (x +h, y) - 6 (x, y +h) . (5.40)

By the use of the convolution theory of Fourier transform, we know that

the spatial filters for mathematical operations 8/8x, 8/8x +a8/y,
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2 /ax + a /y , and a /2xEy are fl 2, 3, and f4 respectively,

and the filters are composed of sets of gratings.

The spatial filters can be recorded holographically. The optical

setup is shown in Fig. 5. 6. The left portion of the setup is identical to

the sinusoidal wave generator in Fig. 5. 3. The field in the filter plane

is a set of peaks (approximated to delta functions),

UF(x, Y) = I I ABm 6 (x - Ax y - m ) , (5.41)
n m

where A = Xf d- sin 0 , and = X f d cos 0 as defined before.
x y

We can adjust the angle 0 and the orientation direction of the composite

grating to obtain the desirable array of peaks. The relative signs of

different diffraction orders can be adjusted by shifting the grating along

its own orientation direction, and the amplitude A B can be con-
n m

trolled by using proper space-to-period ratio q of the grating. We use

a binary filter that passes only diffraction orders yielding either fl '

f2 f3 or f4' and they will interfere with an offset plane wave to record

a Fourier hologram. The recorded Fourier hologram is the spatial

filter.

The gradient correlation filter:

If the input to the coherent data processing system is U(x, y),

and the output of the system is

g(x y) = ffgrad U'(x, y) • grad U *(x' - x, y-y) dx' dy' . (5.42)
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M

G 1 G L1 FILM

BS
Z=0 Zf 4f

Figure 5. 6. Fabrication of filters. The plane indicated by
dotted line is the plane where the object U (x, y)
is located in the fabrication of filter f 5 ana f 6
In the fabrication of filters fl, f 2  f 3 and f4
the object is replaced by a pinhole.
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which is equivalent to

g (x, Y) lim I [6(x+h, y)+6(x-h, y)+6(x, y+h) +6(x, y-A)

gU,(X Y) Y)
h- 0h

- 46(x,y)]* U0 (x,y) * U0(xy)

= lim 2 5 (x, y) * UO(x, y)
h-+0 h

where

f 5 (x, y) = [6(x +h, y) + 6 (x - h, y) + 6 (x, y +h) +6 (x, y - h) - 46(x, y)]

* U (x , y) . (5.43)

This gradient correlation filter is useful in signal discrimination. (21)

The subtraction correlation filter:

If the input is U l (x, y) and U (x, y), the output is

[U 1(x, y) - U2 (x, y)] * Uo(x, y). The required spatial filter is

f 6 (x,y) = [6(x,y) - 6 (x +s)] *U 0 (x, Y) , (5.44)

where s is the separation between the centers of Ul(x,y) and

U2 (x, y).

Filters f5 and f6 can be fabricated holographically, similarly

to the fabrication of filters fl fZ f 3, and f4 . The diffraction orders

pass filter F to interfere with the spectrum U 0 (x, y) instead of an

offset plane wave as shown in Fig. 5. 6.
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5.4.6. Image Multiplexing

In conventional carrier-frequency image multiplexing, as dis-

cussed in section 4. 3, a grating is in contact with either the object or

the film. The image of the object is an amplitude-modulated version of

the object. Between each encoding of each image, the grating was

rotated at angle e . Each object is encoded in different e -coordinates,

the so called "theta modulation. " The modulation mask is usually a

binary grating. The spectra of different objects occupy lines of different

angles e , each split into many diffraction orders. Only one object can

be recorded at that particular angle e . The number of objects that can

be encoded on a single film frame is limited by the angle cp occupied by

the spectrum of each object. If we can use a perfect sinusoidal grating,

then no high harmonics exist. The spectrum of each object will just

occupy part of the space in any 9 -coordinate. And many objects can be

encoded in the same e orientation; if we have sinusoidal gratings of

different frequencies, then more images can be encoded into a single

film frame.

We have already shown that purely sinusoidal gratings of vari-

able frequencies and 8 -orientations can be generated easily. This

variable, purely sinusoidal grating generator can be used in image

multiplexing.

The optical setup is shown in Fig. 5. 7. A telecentric image-

forming system images the grating plane into the object plane, and the
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Figure 5.7. An optical arrangement for variable-carrier-frequency photography. The
frequency and orientation of the carrier frequency are variable by rotating
grating G 1 and G 2 , and passing different diffraction orders in filter F.

00
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object plane is imaged by a lens into the image plane. A binary filter is

used in the spatial frequency plane to pass only two diffraction orders.

A sinusoidal grating will appear in the object plane to modulate the

object. The contrast and the frequency of the generated sinusoidal grat-

ing can be controlled easily as described in section 5. 3. The system is

achromatic and broadband source can be used.

In principle, the number of objects that can be encoded into one

single film frame is determined by the resolution of the grating and the

size of the spatial spectrum of object encoded. We can use the generated

sinusoidal gratings of different angles 0 and different periods to modu-

late the encoded images in such a way that the modulated spectra of the

images do not overlap and can be retrieved separately. In reality, film

nonlinearity and limitations on the dynamic range of the film could be

troublesome.
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Chapter 6

Variable Shearing Interferometry Based on Carrier-Frequency
Photography - The Carrier-Frequency Interferometer

6. 1. Introduction

Carrier-frequency modulation and demodulation have been very

successfully applied in many branches of electronic signal processing.

In communications, the signals to be transmitted are real-valued.

Many modulation schemes have been used to transmit real-valued func-

tions, such as pulse-position modulation, pulse-amplitude modulation,

and pulse-width modulation. Only one kind of modulation is needed to

transmit a real-valued signal. In optics, the signals in general are

complex-valued. A modulation scheme for complex signals takes twice

the effort of that for real-valued ones. Diffraction gratings can be used

as the modulators. For a pulse-modulated complex signal, the ampli-

tude of each pulse is proportional to the amplitude, and the shift of the

position of each pulse from the sampling points is related to phase of

the signal at the sampled points. It takes both pulse-amplitude modula-

tion and pulse position modulation to register a complex-valued function.

This can be done optically by carrier-frequency holography or carrier-

frequency photography.

In carrier-frequency photography, a grating is imaged through

the object, which is interposed between the grating and the film as

shown in Fig. 6. 1. The image will register information about both the

171



Figure 6. 1. Different optical setups for double-exposure carrier-
frequency interferometer. (a) Using one lens (LZ) ,
(b) using two lenses (L 3 and L 4 ), (c) using no lenses.
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amplitude and the derivative of the phase of the object along the orienta-

tion of the grating. If the object is a pure phase object, the image is a

distorted grating, and the distortion is related to the derivative of the

phase of the object in the direction of grating orientation. The distor-

tion of the grating is very difficult to detect. But if the distorted grating

image is superimposed on a master grating, moire fringes will appear

that reveal the information about the phase variation of the tested object.

The encoding and decoding processes are shown in Fig. 6. 2.

The effect of a distorted grating has been used by Rowland and

Lord Rayleigh ( 1 ) in their explanation of the grating ghost, that a lateral

displacement of some grating grooves causes a deformation of a dif-

fracted wave, i. e., a phase shift. The so called "detour phase" effect

has been used by Leith and Upatnieks () in holography and by Brown and

(3)
Lohmann in computer holograms.

Carrier-frequency photography has been used in image subtrac-

tion(4) and phase object visualization, (5, 6) both by non-real-time

double-exposure techniques. Like holographic interferometry, real-

time signal processing can be performed if a reference wavefront is

available. If the reference wavefront is the shifted version of the object

wavefront, or a plane wave, the reference wavefront can be created by

another grating which is identical to the grating used to encode the ob-

ject wavefront. The second grating is used as a beam splitter and

recombiner.
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Figure 6. 2. Encoding and decoding of phase object.
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The encoding process can be done by an image-forming system

or by the Talbot effect of regular gratings. Regular linear, checker-

board, or circular gratings can be used in the Talbot interferometer.

The Talbot interferometer as described by Lohmann and Silva ( 7 ' 8) is

for observing the derivative of the tested phase object, but not the phase

of the phase object itself. A random diffuser can be used as a modula-

tion mask if an image-forming system is used. The new carrier-

frequency interferometer can be used to observe either the phase or

the gradient of the phase object tested. Natural white light and a larger

source can be used when an image-forming system is used in the encod-

ing process.

The carrier-frequency interferometer can produce variable

shear. It can be applied to visualization of a phase object, spatial dif-

ferentiation, addition and subtraction, image polarity reversal and color

complementarity, and equidensitometry.

6. 2. Double-Exposure Carrier-Frequency Interferometry

In the last section we have already shown that carrier-frequency

photography can register both amplitude and phase information of ob-

jects. In particular, phase objects can be visualized by carrier-

frequency interferometry. In this section we will show the detailed

mathematical analysis of double-exposure carrier-frequency interferom-

etry.
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Three different optical setups as shown in Fig. 6. 1 can be used

in double-exposure carrier-frequency interferometry. A point source

located at (x', y') of the front focal plane of lens L 1 will produce a

plane wave exp [- 217 i (xx ' + yy ')/k f] to illuminate the carrier-frequency

encoding mask (EM). The encoding mask can be a linear grating, a

checkerboard grating, a circular grating, or even a random diffuser.

The recording film is placed conjugate to the plane in which the encoding

grating is located, i.e. , the grating will form an image on the film.

The image of the encoding mask (grating) is created by the image form-

ing lens L as in Fig. 6. 1(a), a system of telecentric image-forming

lenses L 3 and L 4 as in Fig. 6. 1(b), or the Talbot effect of a regular

grating as in Fig. 6.1 (c). All the different setups in Fig. 6. 1 have

certain advantages and disadvantages. Spatial filtering is possible in

the setup of Fig. 6. 1(b), but two lenses are needed. No lenses are

needed when the Talbot-image property is used, but the requirements

on the size and spectral purity of the illuminating source are more

severe.

The carrier-frequency interferometer is a shearing inter-

ferometer. When linear gratings and checkerboard gratings are used

as the encoding mask, it is a lateral shearing interferometer; when

circular gratings are used, it is a constant-radial-shearing inter-

ferometer. A random diffuser is used as the encoding mask because of

the convenience when a large size encoding mask is needed.
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6.2. 1. Linear Carrier-Frequency Interferometry

The optical setup is shown in Fig. 6.1 (a). The encoding

mask used is a linear grating with transmittance function

G(x) = A exp(2rrinx/d). The film is placed in the plane conjugate
n n

-1 -1 -1
to the plane in which we place the encoding mask, i.e., d0 +d. -f =0,O 1

where do is the distance between the grating and image-forming lens

L 2'd. is the distance between the film and lens L2, and f is focal

length of both lenses L 1 and L2 . Two exposures will be made. In

the first exposure, the object U0(x, y) is placed at a distance D to

the left of the grating.

The field just before the grating is a tilted plane wave,

U(x, y; -0) = exp[2ri (ax + p y)] , (6.1)

where

a = -x'/Xf

= -y'/Xf

where x' and y' are the coordinates of the point source in the front

focal plane of lens L 1  The reason for the oblique illumination will

be clear later. The incident plane wave will be diffracted into many

plane waves by the linear grating. The field just before the object

U 1 (x, y), as shown in Eq. B. 1, is

U(x,y;D-0)= C exp 27ix - * exp(-ZTiyy'/Af) (6.2)
n

where

P')
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C ex[ D (12+ 2) exp TiT n D exp[22i n Dx'n n Xf2 d 2  d f (6.3)

The field is made up of many tilted plane waves with direction cosines

in x and y n - x - ) and amplitudes Cn. Those tilted plane waves

illuminate the object. The field V n(x, y; x, y') in the image plane

created by the plane wave of direction cosines - , L ), according

to Eq. (A. 12), is

'ii+ -l 2 ixxc Y Y

Vn(x, Y; x,y) Aexp (M-)(x + ) exp ~ y
1

2 rin x nXD x'D - 'D
xp X) U L _ - .exp Md xU 1  M+ d f ' M f

(6.4)

if D is small enough that the integration in Eq. (A. 9) , can be per-

formed by the method of stationary phase. M = d./d is the magnifica-1 0

tion factor. D has to be smaller than 2/X, where 5 is the size of

the typical details of the object U0(x, y).

The total field at the film plane is

V(x, ,y) = A exp ir (l + M-) 2 2exp (xx
n 1

exp(-2ninx/Md) U 1  M+ IXdvxD -y y "

(6.5)

Each diffraction order of the grating has produced an image on the film

with lateral shift nXD/d. The intensity of the first exposure is
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E (xy; x ' ' x , ZEl(xY; x,y )= IV(x,y;x ',y')

xm D x'D - 'D - (6.6)

1d f 'M £

In the second exposure, the second object U 2 (x, y) is used to replace

U 1 (x, y), and the grating is shifted laterally by a distance s in the

direction of its orientation, i.e., G 2 (xl) = G(x +s) =I Bnexp(2TTinx/d),

and B = A exp(ZTrrins/d). The intensity of the second exposure is

E(x,y, x, y) B B exp[-2 i(n-m)/Md]
nm

x nXD x'D - y D x mXD x'D -y D
U -,M d f ' M f 2 + d f 'M -)

(6. 7)

The total exposure is

E(x,y;x',y')= E 1 + EZ I p(x,y)exp(-2rripx/Md) , (6.8)

where
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r x (m+p) D x'D -y y'D
I (x,y) = A A Id y
p m+p L d f M f

m

* x me D xd'D -y y 'D
1  d f 'M f

+ exp[2nips/d] UZ -4 +  'M -f

xmXD x'D -y + y (6.9)X 2 M - d f 'M f

The only effect introduced by the oblique plane wave illumination

is the shift of the image by x 'D/f and y'D/f in the x and y directions

respectively. The size of the illuminating point source, A s , has to be

small enough that As << f 6/D. From now on, we will assume normal

plane wave illumination, x' y = 0, and Eq. (6.9) becomes

I (x,y) = m+pm ( ( + (m+p)D -y) * x mXkD
Ip ,y) + M d ' M 1 M d 'MI

(m+p)XD -y -

+ exp(Zrrips/d) U 2 - + U +M

(6. 10)

If the film is developed in the linear region of the T-E curve

of the film, the transmittance of the developed film is

T(x,y) = t0 + tl E(x,y) , (6.11)

where to and t1 are constants, and E(x,y) = E(x,y; 0,0).
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To extract the information, the developed film is placed at the

input object plane of a telecentric image-forming system. Each diffrac-

tion order I will form an island in the spatial-frequency plane of the
P

telecentric image-forming system. If we use a binary filter to pass

only one diffraction order, e.g. the pth, the field at the output plane is-

f(x,y) = I (-X, -y) . (6. 12)

The output field is a function of the distance D between the grating and

the object. The output field f(x, y) is the interference of object

U 1 (x, y) and U2 (x, y). The object U2 (x, y) can be a uniform field,

U2 (x, y) = 1, or a shifted version of Ul(x, y), U2 (x, Y) = Ul (X-x, y-y ).

The carrier-frequency interferometer can be a two-beam or

multiple-beam interferometer, depending on the A 's. If the setup in
m

Fig. 6. l(b) is used for recording, spatial filtering is possible, and we

can eliminate the unwanted diffraction order A .
m

This interferometer can be applied to the visualization of phase

objects, spatial differentiation, image polarity reversal, and subtrac-

tion of images.

6. 2.2. Checkerboard Carrier-Frequency Interferometry

Checkerboard (or cross) gratings can be used to replace the

linear grating as encoding masks. In a linear carrier-frequency inter-

ferometer, the direction of shear is fixed by the orientation of the

grating; the checkerboard grating can give more directions of shear.
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A checkerboard grating can be represented as

G(x, y) =  Anm exp(2r i nx/d x ) exp(ZT i my/dy) , (6. 13)
n m

where A is the Fourier coefficient, dx and dy are periods of the

grating in x and y directions respectively.

For simplicity, we assume this grating is illuminated by a

normal incident plane wave. Two exposures are made, one with object

Ul(x , y), the other with object U2 (x, y). By the same calculation as in

the last section, the total exposure of the film is

E(x, y) = C (x, y) exp(-Zrr i mx/Mdx) exp(-Zrr i ny/Md y).
m n

where

C mnCC A~* x (m+l)XD -y (n ) D
S Am+,n+p , p M d d

n p x y

* x +ID -y +pDx U + (6-.
1 M d FM d

x y

+x(2r i imA 2rrinA2) ( (m+)D -y (n+p)D X
exp d U - d 'M d

x y x y

* x LXD -y +pXD
x U2 M d ' M d ) I

where A 1 and A are the displacements of the grating in x and y

direction between two exposures.

The film is developed in the linear region of the T-E curve,
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and placed at the object plane of an telecentric image-forming system.

A binary filter passes only (n, m)th diffraction order. The field in the

image plane, from Eq. (6. 14), is C (-x, -y). Shearing in both x

and y directions can be obtained depending on the diffraction order

(n, m) chosen in the filtering plane. Visualization of the gradient of

phase objects in many directions and with different sensitivities is

possible from one recorded film.

6. 2. 3. Circular Carrier-Frequency Interferometry

Linear gratings and checkerboard gratings can produce lateral

shifts as shown in the last two sections. For circularly symmetric

objects, radial shearing is more convenient for the interpretation of

interference fringes. When circular gratings are used as the encoding

masks, the interferometer is a constant-radial-shearing interferometer.

Circular gratings are very similar to linear gratings, espe-

cially at the region far from the center. A circular grating of period a

can be written as

C (r) =  C e r. (6. 15)
n

A normally incident plane wave illuminates the circular grating. The

field at a distance Z behind the grating, as shown in Appendix A,

Eq. (C. 8) is

U(r,c p ; Z) C exp(-irr Zn /a ) exp(ZTT i nr/a) , (6.16)
n
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which is very similar to the diffraction of a plane wave by a linear

grating, as shown in Eq. (6. 2). Using the same calculation as in the

last two sections, we find that the field at the image plane is

V(r, cp) n exp (1 +M-1)r r exp(Z i nr/a)U(+ n D  )
1

(6. 17)

where U 1 is the object placed at a distance D right after the circular

grating.

The total exposure from double exposures, one with object

Ul(r, cp) and the other with object U2 (r, p) , is

E(r, cp) = C' (r, ep) exp(Zr i rp/Ma) (6. 18)

p p

where

m r (m p) 1 D * r m D

C'(r, p) = C U r + ( - cp U1(M , -p
P m

+r (m+p)XD )*r +mXD - (6.19)
+U2 M a ' - p U'M d -

We can put the developed film in the object plane of a coherent signal

processing system, and pass only the diffraction order P. Then in

the output image plane the field is C' (r, -p ). The interferometer is
P

a constant radial-shearing-interferometer. The amount, p XD/a , is

proportional to D and is variable. It can be used for testing lenses.
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6.2.4. Random Carrier-Frequency Interferometry

Random diffusers have been used in holography to illuminate the

object when recording holograms. In holography, coherence between

object wave and reference wave is essential, but as it introduces strong

coherent noise, it is undesirable. Holograms made of diffusely illumi-

nated objects can be scratched, spotted with dirt, and even broken into

pieces without serious loss of information. The diffused-object holo-

gram has less coherent noise, (9) but requires larger bandwidth; other-

wise the annoying speckle noise will be introduced. (10)

Random carrier-frequency photography has been used in image

subtraction, phase object visualization, image multiplexing, and image

contrast reversal. (11) Double exposure has also been used. Theoreti-

cally, everything random carrier-frequency photography can achieve,

can also be achieved by regular carrier-frequency photography, and

probably better. But sometimes for convenience, random carrier-

frequency is more desirable.

Random carrier-frequency interferometry is especially good

for simple objects, e. g. for the measurement of the transverse move-

ment of a rough surface. (13)

6.2. 5. Lensless Carrier-Frequency Interferometry

We have shown in the appendix that regular gratings can create

self images. In all the interferometry we have discussed in previous

sections, lenses are used to image the grating into the recording film.
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We can also use the self-imaging property of gratings in carrier-

frequency interferometry.

The recording setup for the lensless carrier-frequency inter-

ferometry is shown in Fig. 6. 1(c). A linear grating is illuminated by

a normally incident plane wave, a recording film is placed at a dis-

tance Z to the right of the grating, and the object is interposed

between the grating and the film. The distance between the object and

the film is D.

The field at the plane just to the left of the object plane, by

Eq. (B. 1), is

U(x,y : Z -D-0) =  A exp[-irr (Z -D) n /d ] exp(Z i nx/d) , (6.20)o n o
n

By the use of the Kirchhoff boundary condition, the field just behind the

object is

U(x, y; Z -D+0) =A n exp[-irrx(Zo-D)n 2/d] exp(Zrri nx/d) Ul(x, y)
n

(6. Z21)

where Ul(x, y) is the transmittance of the first object. When the wave

propagates a distance D and arrives at the film plane, the field is
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U(x,y; Zo) = U(xl, Yl; Zo-D+O) exp {D [(x -x)2 1 (yY)] dxldY1

(6. 22)

S A n exp(-irrX Z° n2/d2) exp(2n i nx/d)
n

U(xl' 1) expi [(x x-x + n +XD) 1 -y ) Idx dyl

(6. 23)

If the distance D is smaller than 62/ , the method of stationary

phase can be applied in the evaluation of Eq. (6. 23), and

U(x, y; Zo) =  A exp(-iTr Z n /dZ ) exp(ZTTi nx/d) Ul x - n
n

(6. 24)

6 is the size of typical fine details of the object. The intensity of the

first exposure is

E 1 (X, y; Z ) = U(x, y; Z 0 )1 (6. 25)
o

nA exp[-iT X Z (n -m )/d ] exp[2Tri(n-m) x/d]
n m o

n m

nXD ) U*(X mD, Y) (6. 6)
"& - d ' (6.26)

After the first exposure, the grating is laterally shifted a distance A x

in the direction of the grating orientation, and the object UZ (x, y) re-

places Ul(x, y) for the second exposure. The total exposure is

E(x, y; Z) = Ip(x, y) exp(2ri px/d) , (6. 27)
p
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where

I (x,y) = A Am exp[in XZ p(p+Zm)/d ]

p m+p m 0m

[U1(x_ (m+p) XD VY)U( mXD

+exp(Zrri pA/d) U2 (x (m D , y ) U * mX D  )]

(6.28)

The total exposure for the lensless carrier-frequency interferometry

is very similar to the one when lenses are used, except that the mag-

nification factor is 1, and a phase factor exp[irrX Z (n -m2)/d .

6.2.6. Discussion

Three different optical arrangements can be used in the double-

exposure carrier-frequency. An image forming lens is used in the

first setup as shown in Fig. 6. l(a). A telecentric image-forming sys-

tem is used in the second optical setup as in Fig. 6. 1(b), and spatial

filtering to eliminate the unwanted diffraction orders is possible. This

system is very flexible. The lateral shift of the image due to the tilted

plane wave illumination, from Eq. (6. 9), is x'D/f . If the illumination

source is not a point source, every point source will create its own

image, and they are shifted with respect to each other, the resulting

image will be blurred. For good results, the size of the source B

must be less than (f6)/(MD), where 6 is the size of typical fine details
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of the object. If D = 0, the images resulting from different point

sources will coincide, and a spatially incoherent source can be used.

In the third optical setup, shown in Fig. 6. l(c), where the self-

imaging property of the grating is used, the coherence requirement for

the Talbot effect has to be met, besides the requirement for using an

imaging forming system.

6. 3. Real-Time Carrier-Frequency Interferometry

Carrier-frequency interferometry can be performed by a double-

exposure technique as shown in section 6.2. Two objects with trans-

mittance functions Ul(x, y) and UZ(x, y) can be registered in a single

film frame by two consecutive exposures. The interference pattern

between U l (x, y) and U2 (x, y) can be obtained by reconstruction from

the developed film as in double-exposure holographic interferometry.

The double-exposure technique is suitable for the situation when the

objects Ul(x, y) and U2 (x, y) exist in time sequence.

There are some objections to the double-exposure technique.

Film nonlinearities and grain noise may cause some difficulties, and

the exact control of all parameters in both exposures is difficult. We

have always assumed that the distance D between the object and the

modulation mask is small enough for the method of stationary phase to

be applicable. All these difficulties and restrictions can be removed

by real-time operation.
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In the double-exposure process, if the tested object is a pure

phase object, the intensity distribution of the first exposure, with the

object present, is a distorted version of the grating transmittance func-

tion used as modulation mask. To visualize the phase information, we

make another exposure on the film with the object removed. The moire

fringes resulting from the sum of the distorted grating image and the

undistorted grating image will reveal the phase information of the

tested object. This procedure is similar to the one shown in Fig. 6. 2.

The moire effect of the product of distorted and undistorted grating

images will produce the same moir fringes in the first diffraction

order as the moire effect of the sum of those two grating images. This

is shown in section 4. 2. The two grating images can be added by the

double-exposure technique, while the superimposition of two grating

images (distorted and undistorted) can be implemented in real time and

will be shown in this section.

By real-tine operation we mean that there is no time consum-

ing process, e.g. developing a film, involved in the whole process after

the system has been set up. We put the tested object in and obtained the

result at the same time.

The real-time decoding can be achieved by the use of another

grating G2 at the conjugate plane of the encoding grating G 1 as shown

in Fig. 6. 3. A telecentric image-forming system added to the right of

the decoding grating G will provide the necessary filtering. The

observation plane will be the plane conjugate to the plane where the
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Figure 6. 3. The carrier-frequency interferometer.
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object is placed.

6. 3. 1. A Quantitative Analysis

The standard optical setup for the real-time carrier-frequency

interferometer is schematically illustrated in Fig. 6. 3 For simplicity,

we will assume that the focal lengths of all lenses used in Fig. 6. 8 are

f. The system consists of two cascaded telecentric image-forming

systems. The object planes of the first and second telecentric systems

are conjugate. The gratings G I and G2 are placed in the first and

second object planes, respectively. The object is placed at a distance

D to the right of the grating G 1 and forms an image at Z = 8f + D.

Two spatial filters F I and F 2 are used.

A normally incident plane wave illuminates the grating G 1

The light field after the grating G 1 consists of many plane waves,

which illuminate the object. At the plane Z = 4f where the grating G2

is located, the wavefront is the sum of many laterally shifted object

wavefronts with a defocus of distance D. Each shifted object wave-

front propagates in a different direction. If a filter F 1 is used to

pass only finite diffraction orders, then only those orders passed by

filter Fl will reach the plane Z = 4f. The grating G 2 further dif-

fracts the incident wavefront into more diffraction orders. Those

wavefronts traveling with the same direction cosine can be extracted

by a binary filter F 2 located at Z = 6f , and the final image is formed

at plane Z = 8f + D. As the field at the image plane is the sum of
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many laterally (or, with circular gratings, radially) shifted replicas of

the object wavefronts, this interferometer is a shearing interferometer.

6. 3. 2. Theory

For mathematical simplicity, we assume that a point source

located at the origin of the front focal plane of lens L0 is used to

illuminate the whole optical system. A pair of linear gratings, checker-

board gratings, circular gratings, can be used as modulation and de-

modulation masks. In this section, a pair of linear gratings is used.

The field just before the object, from Eq. (6.2), is

-inXD n /d Zni nx/d
U(x, y; D -0) A e - i X D  e . (6.29)nx/d

n

By the Kirchhoff boundary condition, the field just behind the object

UO (x, y) is

U(x, y; D +0) U(x, y) An e-iXD n /d2  n/d (6.30)
n

The wave propagates through lens L 1 and arrives at the first filter

plane Fl . The field at the plane just before the plane Fl , by the

Fourier transforming property of lens L 1 , as shown in Appendix A,

is

U(x, y; 2f - 0) = exp iTD (x2 +y) An U0 (
Xf n

x exp (-irrXD n2/d2) . (6.31)
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The phase factor in Eq. (6.31) is due to the fact that that object is at

a distance D to the right of the front focal plane of lens L 1 . If the

fundamental spatial frequency of gratings G 1 and G , I/d, is higher
N (x n Y ) will be

than the bandwidth of the object U0 (x, y), U f d ' f will be

separated into separate islands for different diffraction orders n .

A filter with transmittance function F 1 (x, y; n) is placed at the n-th

island of the filter plane F 1 . The transmittance function F l (x, y; n)

may be 0 (opaque block), 1 (open window) or a pinhole. The field after

the filter F1 is

U(x, y; 2f +0) A exp- (x +y 2

n Xf

exp(-irrXD n/d ) W n ( d' - (6.32)

where

W f d , = U0 ,x n F (x,y; n) . (6.33)

The field at the plane just before the grating G. , by the Fourier trans-

forming property of lens L2 , is

U(x, y; 4f-0) = An e-2 1 i nx/d Wn(Xlv Yl )
n

x exp - [(x 1 +x - -XD) + (y+y)Z] dxldyl

(6.34)
where
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W n(x, y) = Wn(xV, y2 ) exp [Zrri (xx2 +yy)] dx 2 dy2 . (6.35)

The second grating has the transmittance function

G (x) = Bm exp(2Zr i mx/d). The field just after grating G2 is
m

U(x, y; 4f +0) =  A B e TT i(nm) x/d
n mn m

x f Wn(x,y) exp - D x +xl d + Yl) dxldyl

(6. 36)

From Eq. (6. 36), we know that if the wave propagates a distance D

it will form an image of W n(x, y). It is clear from the geometrical

optics that the plane Z = 4f + D is the image plane for Z = D. The

field at Z = 4f + D is

U(x, y; 4f +D) =  AB W(-x + mXD -n mn d
n m

x exp[-ZTi(n-m) x/d] • exp i[1m)

= I (x, y) e -2 T i px/d (6.37)

p

where

-iXD 22
I (x,y) = ABn-p W(-X +- XD, -y) e . (6.38)
p
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If the second filter F2 is a binary filter and only passes the p-th

diffraction order, then the field in the final output plane Z = 8f + D

is

V(x, y) = I (-x, -y) (6. 39)

= exp(-iXD p2/dZ) I ABn Wn(X +n-P XD, y ). (6.40)
n

The final output field is a sum of many laterally shifted signals

W x + - D, y with amplitude strengths A B .( n n-p

6. 3. 3. Lateral Shearing Interferometer with Variable Shear

The real-time carrier-frequency interferometer can be used as

a two-beam or multiple-beam shearing interferometer depending on

how many diffraction orders that the filter F 1 has passed, or on how

many A 's are not zero.n

If the filter Fl is a binary filter which passes only the 0-th

and 1-st diffraction orders, and filter F2 is also a binary filter that

passes only the diffraction order p 1, the field at the image plane

Z = 8f + D, from Eq. (6. 40), is

V 1 (x , y) = A0 B 1 UO(x + d , y) + A B U0(x, y) , (6.41)

where an unimportant phase factor exp(-iirXD/d 2 ) has been omitted.

This interferometer is a two-beam shearing interferometer.

The amount of shear, XD/d, is easily varied in real time. If two
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gratings G 1 and G2 are identical, JAn = IBn I for all n, and

A1B 0 = AOB_1 exp(ica); the two beams have equal strength. a is a

constant depending on the relative lateral shift in the x-direction. It

can be adjusted so that a = TT , and then AIB 0 
= -AOB_1'

If the filter F 1 passes only diffraction orders 0, 1, and -1,

and F 2 passes only diffraction order p = 0, the final output field is

V (x, y) = A 1 B U 0 x + XD , y)+AOBOU.(xy) +A B UO(X XD y)

(6. 42)

This is a three-beam interferometer. It can be used in high-order

differentiation as will be shown in the later section of this thesis.

6. 3. 4. Real-Time Image Holographic Interferometer

If the filter F 1 passes only the +1 diffraction order and has a

pinhole at the center of the island of zeroth diffraction order, and F 2

passes only the p-th diffraction order, the field in the output image

plane is

V(x,y) =aAoB +ABpU 0 x + L2 XD , y (6.43)

where

a ff U(x, y) dxdy

is the total transmittance spatially integrated over the whole object.

For p = 1

V(x, y) = aAoB_ + A Bo U 0 (x, Y) . (6.44)
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This interferometer is a two-beam total shearing interferometer; the

output field is independent of parameters X and D . This optical sys-

tem is achromatic, and natural white light can be used.

The real-time image holographic interferometer can be applied

to image contrast reversal and phase object visualization.

6.3.5. Real-Time Carrier-Frequency Interferometry with
Checkerboard Gratings, Circular Gratings, and Random
Diffusers as Modulation and Demodulation Masks

All the modulation masks used in the encoding process of double-

exposure carrier-frequency interferometry can be used in real-time

carrier-frequency interferometry. The optical setup is identical to the

one shown in Fig. 6. 3 except that the gratings G 1 and G2 are re-

placed by checkerboard gratings, circular gratings, or random diffusers.

The mathematical analysis and results are similar to those for linear

gratings. Here we omit the details of the derivation and just present

the results for checkerboard gratings and circular gratings. They have

certain applications.

For checkerboard gratings with period d in x direction and
x

d in y direction the field at the plane Z = 4f + D is
y

U(x, y ; 4f +D) = A mB p exp[-i(m-)x/dx - 2i (n-p) y/d ]
m n I p

exp iXD(m-6 W 5x + y +
2 2 mn d' d'

(6.45)
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where

Wmn(x, y) =ffW mn(x 1  ) exp[Zrri(xx 1 +yy 1 )] dx 1dy1 , (6. 46)

Wmn(x,y) = U0 (x,y) F 1 (x,y; m, n) , (6.47)

and A and B are the Fourier coefficients of the transmittance
mn ip

functions of gratings G 1 and G2 , and F l (x, y; m, n) is the filter

transmittance function for the island of index (m, n) in the filter plane

F l . Equation (6. 45) can be rewritten as

U(x, y; 4f +D) = I (x, y) e -ni x/dx e-ZTipy/dy , (6. 48)
m p

where

I (x, y) = exp -iTTD + m A B W
£ P 2 2 mn m-1, n-1 mn

dx d y mn

m-i n-p-x + M XD , -y + ! XD (6.49)
x y

If the filter F 2 passes only the (2, p) diffraction order, the output

field is

V1, p(x, y) = If, (-x, -y)

= e i ' AI) B W x m-D y + n-p D)

mn m-1, n-p mn d dmn x y

(6. 50)

where p(, p) is a function of I and p only.
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For circular gratings, if the filter F 2 passes only the p-th

diffraction order, the final field is

V(r,cp; p) = A B W r -np XD , ep) exp(-inrXD p2/a) , (6.51)
n

where a is the period of the circular gratings.

The interferometer using checkerboard gratings can be used

as a multiple-beam lateral shearing interferometer, and it becomes a

constant radial shearing interferometer when the circular gratings are

used. They can be used in spatial differentiation.

6. 4. Applications

The carrier-frequency interferometer is a variable shearing

interferometer. It can be applied to phase-object visualization, image

contrast reversal and color complementarity, spatial differentiation,

and complex addition and subtraction.

The spatial frequency of the gratings used in the carrier-

frequency interferometer has to be higher than the bandwidth of the

object spectrum in order to eliminate the aliasing and satisfy the

sampling theorem. The size of the input object is not a limiting factor.

But in the grating interferometer, the size of the object is limited to

Xf/d, where d is the period of the grating used. This is the main

difference between the grating interferometer and the carrier-

frequency interferometer.
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6. 4. 1. Phase-Object Visualization

6. 4. 1. 1 Phase-Object Visualization Using Double-Exposure
Carrier-Frequency Interferometry

Double-exposure carrier-frequency photography has been used

in phase object visualization. Linear gratings,(5) circular gratings, (6)

and even random diffusers ( 1 3 ) have been successfully used as the

modulation carriers. In this section we will only present the cases of

circular gratings and linear gratings used as modulation masks to

encode phase objects.

The optical setup is as shown in Fig. 6. l(a). For simplicity,

we assume that M = 1, i. e., d = d. = 2f . Two exposures are made,
o 1

one with the phase object under test Ul(x, y) = exp(i (x, y)) present,

the other with the standard object U2 (x, y) present. The standard

object can be a plane wave, a known wavefront, or the shifted version

of the phase object under test.

When the modulation mask is a circular grating, the total

exposure, as shown in Eq. (6. 18), is

E(r, cp) = C'(r, p) exp(Zrri rp/a)

pp

where

C'(r,cp) = CC U (r + (m+p)XD -cp) U r + XD -CP

+ (r a -cp) U r + , -cp . (6.52)
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The most often used standard wavefront is a plane wave, i. e.,

U (x, Y) = 1. Then before the second exposure, the tested phase object

is just removed. Equation (6. 52) becomes

C'(r, cp) = C IC r +(+Ul(r + (mp)XD, -p)U ( +mD -,p)
P mp m $ a a

(6. 53)

Let us consider the situation when A= nXD/a is small, and

the Taylor series expansion of the tested object U l (r -A, ep) =

ei¢(r-A - ), = exp i[¢(r, -p)-A (r, -cp) + --. ] can be well approxi-

mated by only the first two terms, where 0r(r, ep) = -r ¢(r, cp). Equa-
r 8r

tion (6. 53) becomes

C' (r,cp) = C C + e r ) (6.54)
p m+pm

= C 1+ip Ar (r, -cp)

C(l +e r)

= C exp p AOr(r,-p))cos( pAr(r, -cp)) (6.55)

where C is a constant. We can place the developed film in a tele-

centric image-forming system and pass the p-th diffraction by using a

binary filter in spatial frequency. The intensity of the output field at

the image plane of the telecentric image-forming system is

I(r,cp) = I C(r, -cp)l = c cos P  r(r, ep)

=c [1 +cos (pAO (r, cp)) (6. 56)
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The intensity reveals the radial derivative of the phase variation of the

tested phase object.

If the modulation mask is a linear grating, and the standard

object is U (x, y) = 1, then the total exposure, from Eq. (6. 10), is

E(x, y) = Ip(x, y) exp(-Znipx/d) ,

P

where

I (X, y) = A A [exp(Zri ps/d)
pm mp mm

+U + (m+p) XD (6.57)
d -  U 1 (-x + d y (6. 57)

We place the developed film in the object plane of a telecentric image-

forming system to perform spatial filtering. If the system passes only

the +1 diffraction order, the output field is

V(x, y) = I (-x, -y)

=AA 1 exp(2nis/d) +U 1 (x + d , y) U(x,y)]

+A 1A 0 exp(Zni s/d) +Ul(X,y) U 1 x - d

SA0Al[exp(2ZTi s/d) +exp(iZACx(X,y))] , (6.58)

if A = XD/d is smaller than the size of typical fine details of the phase

variation, where x(x,y) = 8q0(x,y)/8x, and s is the shift of the grat-

ing between exposures. The intensity of the output field is
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I(x,y) = I V(xy)2 = A0Al 2 cos (2A x(x,y) + 2rr s/d ) . (6.59)

The gradient of the phase variation, 0x(x, y), is revealed in the inter-

ference fringes. The result is similar to Eq. (5. 14) of the grating

interferometer.

Double-exposure carrier-frequency interferometry can be per-

formed via the use of an image forming system, or by using the Talbot

effect. Lensless carrier-frequency interferometry can be used in

phase object visualization; the result will be identical to Eq. (6. 56),

and (6.59) if the modulation mask is a circular grating or a linear grat-

ing, except that the contrast is reduced by a factor cos(XZnr/d2),

where Z is the distance between the grating and the recording film.

If Z = 2 Nd2/X , the Talbot distance, then cos(XZrr/d ) = 1, and there

is no loss of contrast; N is an integer.

6.4. 1. 2. Phase-Object Visualization Using Real-Time Carrier-
Frequency Interferometry

The real-time carrier-frequency interferometer can be used

as a two-beam interferometer. For phase-object visualization, if the

filter Fl is a binary filter which passes only the zeroth and first dif-

fraction orders and F 2 passes only first diffraction order, the field

at the image plane Z = 8f + D, as shown in Eq. (6.41), is

V(x, y) = AOB_ U0(x + A, y) + ABO 0 U 0 (x, Y) . (6.60)

We have assumed that linear gratings are used. If gratings G 1 and
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G2 are identical, then IAnI = IBnI , for all n, and AB_ 1

ia
AIB 0 e , a is a constant. The intensity of the output field is

I(x, y) = V(x, y)i2 = 2IAOB_11 [ 1 +cos [¢(x +A, y) -(x,y)-C])

2 1AOB_ 1  [ 1 +cos [AOx(x,y) -a ]) (6.61-)

if A = XD/d is smaller than the size of fine details of the phase varia-

tion 6 . The phase a can be adjusted by laterally shifting either

grating G 1 or G2 . For a = n/2, Eq. (6. 61) becomes

I(x,y) = IAo B- 1 1 sin2 ( x(x,y))

SIAB_I x (x , y ) 2 (6.62)

1
if I A 0(X, y) << 1. The output image is proportional to the deriva-

tive of the phase variation. The interference fringes can be inter-

preted as the contours of the derivative of the phase object along

x-axis.

For observing the phase variation instead of the gradient of the

phase variation of phase objects, the real-time image holographic

interferometer can be used. If the filter F 1 passes only the first

diffraction order and has a pinhole at the center of the zeroth diffrac-

tion order, and F2 passes only the first diffraction order, the field

in the output image plane, from Eq. (6. 44), is
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Va(x,y) = aA B_ +A BOU 0 (x,y) , (6.63)

The intensity is

I (x, ) = Va(Xy, Y)Z

= AOB _11 s in ¢(x,y)) , (6.64)

if coefficients Al and B have relative phase difference rr, and

a = 1 . It can be achieved if the images of grating G 1 and grating

G are laterally shifted by half a period. The interference fringe is

the contour of phase variation. As parameter X does not appear in

Eq. (6. 63), the system is achromatic; natural white light can be used.

For an object with small phase variation ¢(x,y) << 1, Eq. (6.64) can

be rewritten as

1 2

Ia(x,Y) ao B_ 1 0(x, y) .

It is similar to phase-contrast microscopy.

In the above discussions, we have always assumed that gratings

G 1 and G2 have the same orientation with their slits parallel to y-

axis. For phase-object visualization using carrier-frequency inter-

ferometry, the results are shown in Eqs. (6. 56), (6. 59), (6. 62) and

(6. 64). The interference fringes do not reveal the information about

the sign of the phase variation (or gradient of the phase variation).

The loss of sign results from the fact that what we observe is intensity,

not the amplitude.
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If a reference can be provided, the information about the sign

of the phase variation (or gradient of the phase variation) can be pre-

served. We rotate grating G 1 through an angle e with respect to

y-axis, and rotate G through an angle - e . Following the same

analysis as in section 6. 3, the field in the final output plane Z = 8f+D

of Fig. 6. 3, is

V p(x,y) = exp(-iirDp2/dZ)A n n-p (x+ (n-p)A ; y+ (n-p)A )

exp [2TTi (2n-p) y sin e /d] , (6.65)

where

A = Xf cos e/d and A = Xf sin 8/d
x y

If the tested phase object is placed in the input object plane of

Fig. 6. 3, and if the filter F 1 passes only diffraction orders 0 and +1,

and F 2 passes only the +1 diffraction order, the field in the final out-

put plane is

V(xy) A AB_ - A A ey- ZTri y sin 0/d

+ A 1 BOU 0 (x, y) e2i y sin/d (6. 66)

and the intensity is

I(x, y) = IV(x,y) 2

a! AB- 1 2os'1 y sin /d 2 Ax (x,y)+ 2 ay y (x,y) ,

(6.67)
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if A and A are smaller than the fine details of the object. In
x y

Eq. (6.67) a reference sinusoidal wave cos(2Try sin O/d) serves as a

reference.

When the filter Fl passes only the +1 diffraction and has a

pinhole at the center of the zeroth diffraction order, and F 2 passes

only the +1 diffraction order, the field in the image plane is

V(x,y) = aoB1 e y sin + A OU0 (x,y) e2ni sin /d (6.68)

it is the interference between the tested object and a tilted plane wave.

The intensity is

I(x,y) = la 0 B 1 
2 + JA 1 B 0 

2 + ZIA 1 B 0 a 0 B 1 cos(4rry sin 0/d+ ¢(x,y) +a),

(6. 69)

where a is a constant. For 0 = 0, Eq. (6. 69) is equal to Eq. (6. 64).

6.4. 1. 3. Experiment

An experiment on double-exposure circular carrier-frequency

interferometry has been performed. A helium-neon laser was used as

a source whose beam was expanded to 50 mm. The circular grating

used as the modulation mask had a period of 0. 25 mm. The object was

placed 1 mm behind the grating, and a camera was used to image the

grating onto the film. An eyeglass lens was used as a test object.

Figure 6.4 shows the result of testing the lens. Two bright fringes

in the shape of concentric circles were observed. Another lens with a

drop of plastic resin in its center was also tested. Figure 6. 5 shows

the lens under test.
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Figure 6. 4. An eyeglass lens under test. The white fringes are
fringes of equal radial phase derivative. The fine
circular lines belong to the circular grating.

Figure 6. 5. An eyeglass lens with a drop of resin in its center
is the tested object.
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6. 4. 2. Spatial Differentiation

6.4. 2. 1. Spatial-Differentiation Using the Double-Exposure
Carrier-Frequency Interferometry

Double-exposure carrier-frequency interferometry has been

used in image subtraction, since it can produce bipolarity. Bipolarity

is essential to subtraction. Differentiation is a special kind of sub-

traction.

The modulation mask (grating) can be placed either in the object

plane or in the film plane of an image-forming system as shown in

Fig. 4. 5. Incoherent light can be used and is preferred to coherent

light for it eliminates the coherent noise. To achieve the bipolarity,

the grating has to be shifted half a period between exposures. It is diffi-

cult to move it exactly half a period. This mechanical movement of the

grating can be eliminated if a polarization grating is used instead of an

ordinary grating as the modulation mask. A polarization grating con-

sists of mutually orthogonal stripes of polarizing material as shown in

Fig. 6. 6. A polarization plate serving as an analyzer is placed in front

of the grating. If the input light is unpolarized, natural light, and if the

analyzer passes only polarized light in the x-direction, then the light in-

tensity distribution in the film will be a binary grating consisting of

black and white stripes. If we rotate the analyzer 900, the grating

image shifts half a period. By rotating the analyzer we can shift the

grating half a period and create bipolarity.

Two exposures are made. In the first exposure, we image the

object Ul (x, y) onto the film. In the second exposure, we rotate the
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Figure 6. 6. A polarized grating. Here t means polarized
in y-direction, -- + mean polarized in x-
direction.
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analyzer 900 and image the second object U 2 (x, y) onto the film. The

total exposure is

E(x, y) = I (x, y) G(x) + IZ(x, y) G(x - d / Z)

= A exp(2nii nx/d)[Il(x,y) + e- Iz(x,y)] , (6. 70)

where Il(x,y) and I2(x,y) are intensities of objects U 1 and U 2 .

We can place the developed film in the input object plane of a coherent

signal processing system and extract only the n = 1 diffraction order;

the final image is proportional to Il(x, y) - IZ(x, y) , the difference

between I I and 12

If the second object U 2 (x, y) is equal to Ul (x - A, y), the

first object with a shift A in the x-direction, as when the object

U 1 (x, y) or the camera set (film and grating) is shifted between expo-

sures, Eq. (6. 70) becomes

E(x,y) = An exp(Zni nx/d ) [Il(x,y) + e-n 1(X - A, y)]. (6.71)

The first diffraction order is proportional to

I l (x,y) - I(x - A, y) A 8I(x, )

if A is smaller than the typical fine detail of the object.

Spatial differentiation along another direction can be obtained

by shifting the object along that direction between exposures. Higher-

order differentiation can be achieved by multiple exposures. The



polarity and intensity strength of each exposure is given in Eqs. (5. 38),

(5. 39), and (5.40) for the evaluation of a8/8x + I/8ay , 82I/8x +Z a y

and 8 2I/8xay .

6.4. 2. 2. Spatial Differentiation Using the Real-Time

Carrier-Frequency Interferometry

As the real-time carrier-frequency interferometer can

produce differential shear, it can be used in spatial differentiation.

The optical setup in Fig. 6.3 is used. The object to be differ-

entiated is placed in the object plane OBJ which is at a dis-

tance D to the right of grating G 1 . The field in the final output plane

Z = 8f + D, from Eq. (6.40), is

V (x, y) AB W( x+ n2p XD, y , (6.72)
p n n-p n dn

where

Wn(X+ -P XD , y) = U 0 (x+ -p D, y)

if the n-th diffraction order passes the filter Fl , and

W x + X XD, y) = 0 , if the n-th diffraction order has been blocked

by the filter Fl

For spatial differentiation, we can vary the filters Fl and F 2

for a particular kind of spatial differentiation. For example, we can

have filter Fl pass only the diffraction orders n = 0 and 1, and F 2

pass only diffraction order p = 1 . The output field is



216

V l (x, y) = A 1 BOU 0 (x, y ) + A 0 B- 1 U(x + A, y)

A A 1B A 8- U0(x, y ) (6. 73)

where A= XD/d . We have assumed A B-1 = -A BO , as can be

achieved by shifting the image of grating G 1 in the plane of grating

G 2 by half a period with respect to grating G 2 . For example, if the

gratings G 1 and G2 are Ronchi rulings, the transparent part of the

grating G 1 will image onto the opaque part of the grating G . There

is complete darkness after the plane where the grating G 2 is located.

For second order differentiation, the filter F 1 passes only the

diffraction orders n = -1, 0, 1, and F 2 passes only the diffraction

order p = 0. Then the field in the image plane is

V2(x,y) = A_-BIU0(x + A, y) + ABU0(xy) ,y) + A 1BU0(x- A, y)

(6. 74)

2 a
I A1B1 ) ,ax

if

A0B0 = -2A11 = -2A 1B1 . (6.75)

The equality in Eq. (6.75) can be achieved by shifting either the gratings

G1 and G2 and choosing gratings with the particular ratio q of space

to the period of a binary grating that produces AO = 12 IA 1 .
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For higher-order differentiation, we have to use checkboard

gratings as modulation and demodulation masks. The field in the out-

put image plane, from Eq. (6.49), is

V I(x, Y) = A B W (x + (p-m) A, y+ (e-n) A),
n n m-1,n-p mnm n

(6. 76)

if filter F Z passes only diffraction order (1,p) , where a multiplica-

tive constant has been omitted. W (x + (p-m) A, y + (f-n) A)
mn

equals U (x + (p-m) A, y + ( -n) A) if diffraction order (m, n) passes

filter F 1 , and equals zero if diffraction order (m,n) is blocked.

For the evaluation of the Laplacian, the filter Fl passes dif-

fraction orders (m, n) = (1, 0), (0, 1), (0, 0), (-1, 0) and (0, -1), and

F 2 passes only diffraction order (,p) = (0, 0). The output field, from

Eq. (6. 76), is

V(x,y) = A 1 0 B 1 0 U 0 (x - A, y) + A 0 1 B 0 1 U 0 (x,y - A) + A0 0 B 0 U0 (x,y)

+ A 1,0B1, OU0(x + A, y) + AO, B0,-1U0(x, y + A)

-,0 1 2  0 80,-x 820-

A0B 2 +2 U0 (x, y) , (6. 77)
10 210 2 ( 23 0

if

1
A B A B =A B A B -!A B (6.78)
10 10 01 01 -1,0 -1,0 0, -1 0,- 4 00 00

The relation in Eq. (6. 78) can be achieved by shifting the gratings and

choosing proper grating space-to-period ratio q.

For the evaluation of 2U 0 , the filter F 1 passes diffraction
axa y
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orders (m,n) = (1,1), (1,-1), (-1,1), (-1,-i), and F2 passes only

diffraction order (i,p) = (0, 0) .

6.4.3. Real-Time Image Polarity-Reversal, Color-Complementation,
and Two-Dimensional Photometry

6.4.3.1. Real-Time Image Polarity-Reversal and Two-

Dimensional Photometry

Image polarity reversal is equivalent to subtracting the

image U 0 (x,y) from a uniform background b to form

b - U 0 (x, y) . The constant b is the image polarity level. We have

shown in section 5.4.4 that the grating interferometer can be used for

real-time image polarity reversal and two-dimensional photometry.

Here we will show that the real-time image holographic interferometer,

discussed in section 6. 3.4, can be used for image polarity reversal

and two-dimensional photometry.

The optical setup is the same as shown in Fig. 6. 3 and is dis-

cussed in section 6. 3.4. We will assume that the illuminating source

is monochromatic and the object U 0 (x, y) is black, grey, and white.

The field in the output image plane, from Eq. (6.44), is

F(x, y) = C a 0 (X) A 0 B_1 + A1BOU0(x,y; X) , (6.79)

where

a 0 () = f/U 0 (x, y ; ) dxdy (6.80)

is the measure of the X spectral amplitude of the whole object (spati-

ally integrated over the whole object). C is the transmittance of the

pinhole. U 0 (x, y; X) is the X -amplitude component of the light field at
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point (x, y) of the object plane when the object is illuminated by a unit

amplitude monochromatic plane wave of wavelength X. For a black-

and-white object (no color), each X-component U0(x, y; X) has the

same amplitude distribution (as a function of x and y) as the object

U 0 (x, y) itself, i. e., if we disregard the color, U0(x, y; X) is identi-

cal to U (x,y) for every X. The A 's and B n'S are the Fourier

coefficients of gratings G 1 and G 2 . Constants C, a0(x), A 0 and

B 0 are all real and positive (we have assumed the object U 0 (x, y) is

real and positive), and the phase of Al and B 1 can be varied by

shifting the gratings G 1 and G 2 along the direction normal to the

grating lines. They can easily be adjusted so that Al and B_I are

out of phase; then Eq. (6. 79) becomes

V(x,y) = A 1B 0 [b(X) - U 0 (x,y; X) ] , (6.81)

where

b() = AB -1 ff U 0 (x,y ; ) dxdy , (6. 82)

is the polarity level. For black-and-white objects, b(X) = B for all

X, where B is a positive constant.

It is clear that the output image will have the same color as the

illumination monochromatic source. Positive images, negative images,

or partial reversal of the grey scale of the object can be obtained, if

we control the image polarity level. Image-transfer characteristics

similar to those shown in Fig. 5.4 can be obtained.
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The constant C can be controlled by placing a neutral-density

wedge or two superimposed polarizers in front of the pinhole for real-

time adjustment. C is confined in the region between 0 and 1. To

increase the amplitude of the reference beam, we can increase a 0

by passing some direct beam through G 1 and U0(x, y), and focusing

it by lens L 1 into the center of the zeroth diffraction order in the

filter F1 *

6.4. 3. 2. Real-Time Image Color-Complementarity and
Polarity- Re ver sal

In the last section we have shown that a monochromatic posi-

tive image can be obtained directly from a black-and-white negative

film. In this section, we will consider the situation when the input

object is a color object and the illumination source is polychromatic.

The real-time image holographic interferometer is achromatic

and can be illuminated by a polychromatic point source. Here we will

assume a 'white' light spectrum W(X) uniformly distributed with

density equal to a constant a between blue and red. Positive color

images can be obtained directly from color negatives, if the illuminating

source of the system is a white point source, and the color object itself

or the modification of it is color-balanced. For a color-balanced ob-

ject b(X) = B , a constant, i.e., the object U (x,y) consists of the

same amount of different colors. A black-and-white object is color-

balanced.



For example, let a color object -U 0 (x, y) = U 0 (x) be one-

dimensional and consist of three equal regions of different colors. The

first region is cyan (minus red), the second region is magenta (minus

green), and the third is yellow (minus blue). The amplitude of the first

two regions vary linearly, and the third region is constant as shown in

Fig. 6. 7, where we have decomposed the object U0(x, y) into three pri-

mary colors, red, green, and blue. The amplitudes U 0 (x, Y; Xr),

U0(x,y; X ), and U0(x,y; Ab ) are the amplitude components of the ob-

ject light field when the object is illuminated by a unit monochromatic

source of red, green, or blue light respectively.

If the system is illuminated by a monochromatic light source,

the object light field will be U 0 (x,y; X), where X is the wavelength of

the monochromatic point source. For example, if the monochromatic

point source is red, the object light field is shown in Fig. 6. 7(a), if

the input object is the object we have just discussed. Following the

same analysis as in the last section, the intensity of the light field in

the image plane, from Eq. (6. 81), is

I(x,y; X) = jV(x,y; r) 2

= IA 0 B 1 2 [b(X r ) - U 0 (x,y; Xr)] , (6.83)

where

b( r U(x, ) dxdy (6.84)
r ABii
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b(A) is the X-component of the image polarity level, or the X -

component of the reference beam. From Eq. (6. 83) it is clear that

polarity reversal for U0(x, y; Xr) has been achieved. If b(Xr) = C 1 '

the output field IV(x, y; X )I is shown in Fig. 6.8(a). The output image

appears reddish.

Because different X -components are incoherent with each other,

when the object U 0 (x, y) is illuminated by a polychromatic point source,

we have to treat each X-component independently and then sum them up

incoherently. Spatial coherence for each X-component is still main-

tained, since the source is a point source. If the color object U 0 (x, y)

is illuminated by a polychromatic source of red and green light, then

the image we observe will be IU 0 (x,y; Xr)2 + U0(x, Y; X )l , which

consists of three regions of green, red, and yellow. The color of the

third region, yellow, is the incoherent sum of red and green. The image

we observe is different to the original image. If this red and green

source is used to illuminate the interferometer, the image we observe

will be

I(x, y; X ) + I(x,y; )= I V(x, y; X r) + IV(x,y; X )l

= IA 0 B1 2 [[b(Xr)-U 0 (x,y; Xr) 2 +[b(X )- U0 ,y; X )]Z (6. 85)

In the example we have, as shown in Fig. 6.8(a) and (b), we will observe

an image consisting of three regions of reddish, greenish, and yellowish

color. Comparing Fig. 6. 7 and Fig. 6. 8, we can see that the polarity
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U 0 (x, Y; r )

C

------------------------------ C

1

------ -------- C

2

U0 (x, y; b)

----------------------------
Cl

-- -- ------ C 2

2

Figure 6.7. The three primary color transmittances of the object.
Dashed lines represent the amplitude strength of
reference beams C 1 and C2
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V(x, y; X r)

I v(x, y; r)l

ex

IV(x, y; Xb)I

Figure 6. 8. The three primary color transmittance of the output
field IV(x)l when the reference strength is C 1 *
Color-complementary and polarity-reversed image
is obtained.



of each primary color has been reversed. That is, if at point (x, y) of

the color object U0(x , y) there is no green (or red), then at point (x, y)

of the output image plane there will be a lot of green (or red), and vice

versa (here we have assumed that the green-component of the reference

beam is larger than max U 0 (x,y; X )) .

If the object is illuminated by a polychromatic source of equal

amounts of red, green, and blue, the image of the color object is the

color object itself as shown in Fig. 6. 7. If we use this source to illumi-

nate the interferometer, the output image intensity is

I(x,y) = V(x,y; X r) 2 + IV(x,y; g)+ V(xy; b)

= jA 0 B 1 2 [b(Xr)- U0 (x,y; Xr)] + [b( ) - U 0 (x,y; Xg)]2

+ [b(%b) - U 0 (x,y; Xb b)2 . (6.86)

The object we have, U0 (x, y), has equal amounts of red, green, and

blue; it is color-balanced, and b(X) = B . For if b(k) = B = C 1 in

Eq. (6.86), the output field IV(x, y; X)I is shown in Fig. 6.8. It con-

sists of three regions of reddish, greenish and bluish color. The color

of the output image is the complement of that of the input object U 0 (x, y).

A color-complemented and polarity-reversed image is thus obtained.

For a polychromatic point source with white spectral density

W(X), the X -component intensity of the image of the interferometer,

from Eq. (6. 83), is
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I(x,y; )- = V(x,y; X) I = JAOB1I Z S(X) [B -U0(x,y; X)]

if the object is color-balanced, and b(X) = B 0 . For each wavelength

X, the polarity of the point (x, y) at the image plane is reversed.

Polarity-reversal in every X-component is the color-complementarity.

If point (x, y) of the object passes only red light, then the image of that

point from the interferometer will consist of all other colors except red

(minus red), which is complementary to red.

If the object is black-and-white, it is color balanced so the

reference wave appears to be white. There is color dispersion in the

first diffraction order. The period of the gratings G1 and G2 must

be small enough to separate different diffraction orders after the color

dispersion. The binary filter in the filter plane F 1 passes only

the first diffraction order of all X wavelength components. Positive

black-and-white images, or images with partial reversal of the grey

scale of the input object can be obtained.

If the object is red, even though the illuminating point source

is white, the light after the object will appear red due to the spectral

filtering effect of the object. The reference point source at the pinhole

of the filter FI then appears to be red too. Image polarity reversal

can be achieved, but not color-complementarity in this case. The final

image is red but with contrast reversal.

To obtain color-complementary images, the reference point

source has to be white. In general, some adjustment in the input object
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plane will have to be made to achieve this. This can be best understood

by an example. Let us consider the object with its three primary color

components as shown in Fig. 6. 7 but with the third (yellow) region elimi-

nated. This object is not color balanced; blue light is dominant, so the

reference point source appears to be bluish. To obtain a white refer-

ence source, we have to modify the object by adding a third region of

yellow color (minus blue) to achieve color balance. After we add the

third region of yellow color, this modified object is then identical to the

object shown in Fig. 6. 7. Following the same analysis as given before,

a color-complemented and polarity-reversed image is thus obtained for

the modified object and hence for the input object. Only optical ele-

ments, such as gratings and lenses, are used. No complicated and

expensive photochemical process or electronics TV technique is

required.

The contrast level can be changed independently of the color by

varying the strength of the reference beam, b(X ) = B 0 , as explained in

the last section. To understand this possibility, let us consider a

second example, in which we have adjusted the strength of the refer-

ence beam so as to equal C 2 as shown in Fig. 6. 7. The resulting

image is shown in Fig. 6. 9. In this case, the image of the object is

color complemented, but only partially polarity reversed.
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IV(x, y; b)l

Figure 6. 9. The three primary color transmittances of the out
field IV(x)( when the strength of the reference beam
is C 2 . Image color has been complemented, but
only partial contrast reversal.
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6.4. 3. 3. Comparison of Various Methods for Image Polarity-
Reversal

Two methods for real-time image polarity reversal have been

discussed in this thesis, one using the grating interferometer, the other

using the real-time carrier-frequency interferometer. In the first

method, monochromatic light is necessary, but white light can be used

in the second method. Spatially coherent light is necessary. The size

of the object should be smaller than X f/d in the first method, and the

dimension of the spatial frequency of the spatial bandwidth of the

-1

object should be smaller than the frequency of the grating used, d-

in the second method.

The achromatic property of the second method enables us to

obtain a positive black-and-white image directly from a black-and-white

negative film, and a positive color image directly from a color nega-

tive. Gratings of higher frequency are needed to ensure that the spatial

spectra of different diffraction orders do not overlap after the color

dispersion effect.

Previous methods 1 6 ,17,18) using two-stage carrier-frequency

photography require a different carrier-frequency photograph to be

prepared for each different output image polarity. Good skill in photo-

graphic process control, or precise control of grating movement is

necessary in those methods. A carrier-frequency photographic negative

can be used as the input object in the real-time carrier-frequency inter-

ferometer, and it will still provide images with continuously variable

polarity from the same carrier-frequency photograph.
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Since the polarity level can be easily varied continuously in real

time, both methods discussed in this thesis can be used for two-

dimensional photometry. (19)

This real-time image-polarity reversal technique is applicable

to any image processing such as photography and xerography, photome-

try, spectral analysis, interferogram analysis, and image evaluation

in aerial photography, electron microscopy, and medical diagnosis.

6. 5. Focusing and Alignment

In the previous sections, we have often had to place a point

source in the front focal plane of a lens, and an object, a grating, or

a random diffuser in the back focal plane. It is difficult to place them

exactly at the position we want. New methods for focusing and align-

ment will be presented in this section.

The self-imaging property of a regular grating, or Talbot imag-

ing, is a well known phenomenon. A point source is used via a lens to

illuminate the grating as shown in Fig. 6. 10. If the grating is illumi-

nated by a plane wave, the Talbot image is identical to the grating itself.

Cowley and Moodie (2Z)have shown that if the wavefront incident on the

grating has curvature 1/ZC , the position of the self-image of the

grating Z = Z N is given by

-1 -1 -1
ZN +Z = (NZ) , (6.87)

where N is an inte = the Talbot distance. The

where N is an integer, ZT = 2d / X the Talbot distance. The
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Figure 6. 10. A Talbot image forming system for focusing
and alignment.
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image will be magnified by a factor

Mn = + ZN/ZC . (6.88)

The relation between the curvature of the incident wavefront and the

magnification of the self-image has been used to monitor the beam

collimation. By beam collimation, we mean placing a point source in

the front focal plane of a lens, so that the wavefield after the lens is a

-1
plane wave, i.e., Z C  0 . To monitor the beam collimation we place

two identical linear gratings to the right of the lens, one after the other.

If the incident wavefront to the first grating is not a plane wave, the

Talbot image of first grating will have a period different from that of

the grating itself by a factor M , defined by Eq. (6.88). This self-
n

image magnification can be detected by the moire effect of two gratings

of different period. This method of beam collimation and its sensitivity

have been analyzed. (20)

We have shown in Appendix C how the Talbot effect occurs for

circular gratings. As Eqs. (6.87) and (6. 88) also apply to circular

gratings, circular gratings can be used in beam collimation. A circular

grating can register the position of its center. Owing to this property,

circular gratings can be used in alignment. Two circular gratings are

placed to the right of a lens as in Fig. 6. 10. The coincidence of the

centers of the second grating and of the image created by the first

grating will show the alignment of two centers of the gratings and the

point source. The collimation can be checked by the moire fringes
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created by the second grating and the image of the first image. The

sensitivity of this method is similar to what we can get when linear

gratings are used.

In beam collimation, we test the flatness of the incident wave-

front. We want to place a point source in the front focal plane of a lens

to create a plane wave. In certain situations, we want to place some

objects, such as gratings, diffusers or spatial filters, in the back focal

plane of a lens, i. e., we want to put an object where the wavefront

incident to it has infinite curvature, or Z C = 0. If the grating is suffi-

ciently close to the focal point, the area of the grating which is illumi-

nated by the incident beam is about (B Az/f) , where f is the focal

length of the length, B the size of the incident plane wave, and Az

is the distance between the focal plane and the plane in which the grat-

ing is placed. If the area (B Az/f)Z is small, the wavefield illumina-

tion of the grating no longer can be approximated by a infinitely wide

wavefield. The Talbot effect has somewhat broken down. Equation

(6.88) can be explained from the point of view of geometrical optics

and will remain valid even when the Talbot effect has broken down.

Experimentally we found that if the finer detail of the object is

smaller than the size of the Airy disc Xf/B, which is the smallest

spot size we can focus our incident plane wave into, we can always

place the object in the back focal plane. We can identify the focal

plane by shifting the object around the focal plane. We can see a

speckle pattern at a distance Z from the focal plane, and the closer
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the object is placed to the focal plane, the bigger the speckles are.

The change of the size of the speckles is approximately inversely

proportional to AZ .
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Appendix A. Imaging and Fourier Transforming Properties
of Lenses

A. 1 General Input, Output Relationship

The object U 0 (x, y) is located at a distance ZO in front of a

positive thin lens L 1 of focal length f. The tilted plane of illumina-

tion is created by a point source located at coordinate (x', y') of the

front focal plane of lens L , as shown in Fig. A. 1.

For simplicity, we will use only one-dimensional notation. It is

straightforward to extend this discussion to the two-dimensional case.

Coordinates x I , x 2 , and x refer to the object plane, lens plane,

and observing plane respectively. The illuminating tilted plane wave

can be expressed as

U(x 1 l1 ; z = -0) = exp[ Z1i (cx +py)]

where

a = -x'/k f , = -y'/Xf (A. 1)

By the successive use of the Kirchhoff boundary condition, and

the Fresnel diffraction formula, the field at the observation plane is

Ui(x) ffU0 (x 1 ) exp (Zn ia xl) exp 1 (x1 -x 2 exp Ih- x z

x exp [d(x 2 x)dxldx2 , (A.2)
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Source L Object L 1  Output

xz

Figure A. 1. An optical system. x' = source plane, xl = object

plane, x2 = lens plane, x = output plane.
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where a multiplying constant is omitted. The consecutive phase factors

in Eq. (A.2) are due to the tilted plane wave illumination, propaga-

tion from the object plane to the lens plane, the quadratic phase factor

of the positive thin lens, and propagation from the lens plane to the

observation plane.

If we assume that the lens aperture is large enough, the integra-

tion limits over variable x 2 can be well approximated by (-m , )

Equation (A.2) can be rewritten as

U. (x) = exp(inx /Xzi U (x) exp Zriax +2 Lx)1 J Xz 0  1

X exp x +2x 2  +) a dx 1 dx

(A. 3)
where

1 1 1 1
+ 

a z0  z. f

We can perform the integration over x 2 by completing the square of

the quadratic phase factor of x 2 . By the Fresnel integration formula,

we have
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irr x )

U.(x) = exp(irrx 2 / z.) U (x) exp ZTTiax + X )

-inT a 1 + x2
X exp + Z dxzi

iTrr a ab ) Z] [ i ab 2
= exp - x exp o a 'x-irrbaXz zi 2 z zS10

x Uo(x 1l ) exp i - x 1 +b Xa- a 2 dx1 (A.4)

where

-1 -1 -1 -1
a =z + z. - 0 (A. 5)

0 1

-1 -1 -2
b = z 0  -a z 0  . (A. 6)

It can be shown, after some algebra, that

1 1 1
z-- + (A. 7)

1

i. e., if the object moves a distance b closer to the lens, then it will

form an image at the observation plane. Or, we can say that the object

is out of focus by a distance b.

Equation ( A. 4) can be extended into two-dimensional cases

easily,
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a ab 2 2
U. (x, y) exp 1 . (x +  )

1 z .1 Z

/p2 i ab 2

expax +y) - i ax db

U 0 (x1 Y 1
) exp x +b I+b zz 0) +b z z 0 dx11

(A. 8)

If we place our object at z0 = dO - D, and the observation plane

is the image plane of the plane z 0 - d , i.e., zi = di , and

-1 -1 -1
d +d1 = f , then a = do(d - D )/ D , and b = -D . The field at

z. = d. is

S0(x )exp  x - D d y - Xa D dxdy

(A. 9)

i.e., if the object field U 0 (x 1 , y 1 ) propagates a distance -D from

where it is located,then it will form an image at z. = d .
1 1

-1
There are two interesting special cases: (1) a = 0 , the

observation plane is the image plane, and (2) z. = f , the observation
1

plane is the back focal plane of the lens.

A. 2 Imaging Property of Lenses

-1
If the observation happens to be at the image plane, then a = 0.

We have no quadratic phase factor in the integration over variable x 2 in
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Eq. (A. 1. 3). Integration over x 2 yields a delta function 5 d d.

Subsequently an integration over xl yields, in two-dimensional nota-

tion

(x, Y) = exp i- (1 +M- )(x2 +y 2 ) exp[-2TTi(ax + y)/M]U0 ()
1

(A. 11)
where

M = d./d 01 0

The field at the image plane has been reversed and magnified M times.

The introduction of tilted plane wave illumination yields a phase factor

exp[-2rr i(a x +0 y)/M] in the image field. When the image is detected

by a square-law detector, such as film, the phase factor is not impor-

tant. The angle of the illuminating plane wave has no effect on the final

image. Consequently, point-source illumination is not necessary, and

spatially incoherent illumination can be used.

If the distance D in Eq. (A. 9) is so small that X D is much

smaller than the typical finer details of object U0 (x, y), then we can

apply the method of stationary phase to perform the integration ever

x I and yl in Eq. (A. 9), and

V(x, y) a, exp . (1 +M- (x z + y Z ) exp [-Zi(ax + y) /M +iD(a + 2)]

x (, (A 12)SU 0 - +aD , - +XPD) (A. 12)
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The image has been shifted an amount No.DM in the x-direction and an

amount XADM in the y-direction, because of tilted plane wave illumi-

nation.

A. 3 Fourier Transforming Property of Lenses

The other case of special interest is when z. = f - the observa-
1

tion plane is the back focal plane of the lens.

When zi = f, then a = z 0 , and Eq. (A. 1. 8) can be rewritten as

U.(x) exp 1 (2 UO - a ,(A. 13)

where

U0 (x, y) = U0 (x1 , yl) exp[2rri(x 1 x + yly)] dxldY1 . (A. 14)

The field at point (x, y) of the back focal plane of the lens is

related to the Fourier spectrum of the object field at frequency

(x/k f - a , y/k f - p ). There is a quadratic phase factor, which will

vanish if z 0 = f , i. e., if the object is located at the front focal plane.

The tilted plane illumination introduces a shift of amount (ax f, P X f)

in the observation plane. Spatially coherent illumination is needed for

spatial filtering.



Appendix B. Spatial and Temloral Coherence Require-
ments of Talbot Effect

B. 1 Talbot Effect

A monochromatic point source located at point (x', y') of the

front focal plane of a lens is used to illuminate the grating located to the

right of the lens as shown in Fig. B. 1. The grating is illuminated by a

tilted plane wave exp[-Zrri (x'x + y'y)/A f] which is created by the point

source. The incident tilted plane wave will be diffracted by the grating

into many plane waves, each of which propagates with different phase

angle and phase attenuation. By the use of the Fresnel diffraction

formula, the field at distance z beyong the grating is

U(x,y; x,y z)= ZAn exp[-irrz(x2 +y')/f

exp [-2Zni(xx' +yy')/Xf ] exp [-irr zn2 /d 2 ] exp(Zrin(x/d +zx'/fd)]

(B. i)

where G(x) = Aexp(Zrinx/d) is the grating transmittance function,
n

) the wavelength of the monochromatic source. The first two phase

factors are from the tilted incident plane wave, the third phase factor

is the phase attenuation of the n-th diffraction order, and the fourth

phase factor is the n-th diffraction order with a phase shift zx'/f due

to tilted plane wave illumination.

For simplicity, we assume that the grating is a pure sinusoidal

grating, i.e., A = , A= A . We are only interested in the
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y L y y

Z=0

Figure B. 1. A Talbot image forming system.
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first harmonics of the image at distance z beyond the grating. The

image is

3 2
I(x,y; x',y'; X; z) = +Z cos(TXz, ) cos[Zrv(x +zx'/f)]

1
+ cos [4n v (x + zx'/f) ] , (B.2)

where v = 1/d. The first harmonic is

(x,y; ', '; X; z)= 2 cos ( z 2) cos[Z (x +zx'/f)]. (B. 3)

The constant factor cos (17n z v2) is the reduction factor of the con-

trast. Three cases are of interest:

2 M /X = ZT

Z =  (ZM+ )v /k = Z C  (B.4)

(ZM+Z)v 2 /X = Z0

They correspond to cos(ZT) = 1, -1, and 0. The image at Z = ZT

is a replica of the grating itself, the image at Z = ZC has contrast

reversal, and the one at Z = ZO has zero contrast. The image has

been shifted by Zx' /f. This interesting feature of sinusoidal gratings

holds also for Ronchi rulings.

B. 2 Spatial Coherence Requirement - Source Size

If the source is not a single point, then each point of the source

will produce a fringe. The fringes produced by each point source are

shifted relative to each other, as can be seen from Eq. (B. 3). The
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contrast of the resulting fringes will be- reduced if the source is too

big. For a source of size B, the image in the first harmonic is

B /2

I(x, y; z) = f 1(x, y; x', y'; ; z) dx'
-B/2

= ZB sinc(BvZ/f) cos(n Zv 2) cos(ZTTvx) . (B.5)

The constant sinc(Bv Z/f) is the reduction of the fringe contrast due

to the broadness of the source. For good fringe contrast,

sinc(BvZ/f) > 2/1n, the size of the source B should be smaller than

f/2 v Z ,

B ! f/2 Z . (B. 6)

B. 3 Temporal Coherence Requirement - Monochromaticity

For different wavelengths the Talbot distance varies according

to Eq. (B. 4). If the point source is not monochromatic, then color

dispersion will appear. For good contrast, the spectral width of the

polychromatic light must be limited.

For a polychromatic source of spectral width AX , and mean

wavelength X, the resulting image in the first harmonic is

11 (x,y; x'=, y'= 0; z) = Z cos(rT v Z) sinc(A2 Z)os(2vx)

(B. 7)
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2-
Let Z = 2 Md /T, the Talbot distance for wavelength X, then

I, = 2 sinc (MA /X ) cos(Zrrvx ). (B. 8)

For good contrast, MAX /1 : 1/6 . (B. 9)



Appendix C. Talbot Effect of Circular Gratings

A circular grating C(r) = Cn exp(ZTi nr/a) is illuminated by
n

a normal incident plane wave. Using the Fresnel diffraction theory,

we find the field at a distance Z behind the circular grating is

U(r,cp; Z) C f f exp(ZT inr 1 /a)
n 0 0

exp [r2 +r - Zrr cos(cp-pl r dr dp

Cn r 1JO(z exp irr rZ+r +2 Z nr 1]}drl

n O

(C. 1)

The exact evaluation of Eq. (C. 1) is usually impossible, but reason-

able approximations can be obtained. The Bessel function can be

asymptotically approximated as

x x
xn 1 4(n +) for x<< 1 (C. 2)
2nn 4(n +1)

J (X)

1/2(2 nos x - for x >> 1 . (C. 3)
Tx 2 4

2rrrr1  Z
For r in the region such that << 1, i.e., r << , we

XZ 2rTTr

will use Eq. (C. Z) in Eq. (C. 1), and
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U(r, cp; z)-- Cn [ 1 l( exp [nr ldrl

(C. 4)

The point of stationary phase is located at rl = -mX Z/a (note that

XZ
m can be a negative integer). For r = -mX Z/a , r << Z

a a i

rr < -  , i. e., the integration in Eq. (C. 4) only contributed

to r < a/6 . The area r < a/ 6 is so small, that it can be neglected.

Equation (C. 1) can be approximated as

I1 1/Z

U(r,cp; z) = Cn I ) expr [r2+rl a nr}
n 0

cosZrr 1-) dr (C. 5)
o Z 4 1

We can expand the cosine term as the sum of two exponential functions.

There are two points of stationary phase, one for each exponential term

of the cosine function, one is r+ = r - nX Z/a , the other is

r = -r - nX Z/a . Since rl >0 , not every diffraction order (n) falls

into the region of integration. We can divide r into a set of zones

Z(m), given by Z(m) = [mX Z/a, (m+l)XZ/a] , m 2 0 integer. For a

given zone Z(m), if m n then only r+ is inside the region of inte-

gration, if 1-(m+l)< -n then only r is inside the region of integration.

Using the formula for the method of stationary phase, Eq. (C. 5) can be

written as
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U(re Z(m), cp; Z) = Cn exp[2rninr/a -inrZn /a] 1 a r
na ar

n < m

1/2

+ C1 exp. ZTinr/a -inTTXZn /la 2)(-i nXZ
n s - (m + 1)

(C. 6)

Changing the index n to -n in the second term of Eq. (C. 6), we have

U(r, =p; Z) C - n Z exp(-iX Zn2/a exp(Z.inr/a) .
n ar

(C. 7)

For r >> X Z/a , then

U(r, cp; Z) = C exp(-irrZn /a ) exp(2rri nr/a) . (C. 8)

The result is similar to the Talbot image property of linear

gratings as discussed in Appendix B. Fol Z = 2Ma /X, the field is

the self image of the circular grating. From Eq. (C. 8) we can con-

clude that each spherical wave propagates independently from the other

spherical waves and with relative retarded phase exp(irnX Zn2/a2) for

order n, as in the case of plane waves.




