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HIGH -VELOCITY-OXIDATION PERFORMANCE OF METAL-CHROM IUM -ALUM INUM

(MCrA1), CERMET, AND MODIFIED ALUMINIDE COATINGS

ON IN-100 AND TYPE VIA ALLOYS AT 10)30 C

by Daniel L. Deadmore

Lewis Research Center

SUMMARY

Wedge bar test specimens of the nickel base superalloys IN-100 and NASA-TRW-

VIA were commercially coated with metal-chromium-aluminum (MCrA1), cermet, and

modified aluminide types of coatings. Various methods of application were used includ-

ing plasma spraying, slurry dipping, physical vapor deposition, pack cementation, and

combinations of these. The MCrAl compositions were FeCrA1Y, NiCrAl, and CoCrA1Y.

The FeCrA1Y and NiCrAl compositions were applied by plasma spraying; the CoCrA1Y

was physical vapor deposited. The cermets were applied by means of a slurry dip and

vacuum sintered; then, in several cases, they were given aluminizing treatments by a

standard pack method. Modified pack aluminide coatings were platinum-aluminum

(Pt-A1), where the Pt was electroplated on the substrate then aluminized by a pack

process, and, an aluminide coating containing embedded A12 0 3 particles.

All specimens were cyclically oxidized at 10930 C in a high-velocity gas flame

(Mach 1). The Pt-Al coating on VIA proved to be the most oxidation resistant, surviving

750 hours before the onset of a weight decrease. The second best coating was the

CoCrA1Y composition applied to the VIA alloy. This was protective for 450 hours. The

third best was an aluminized cermet coating on VIA with a protection time of 385 hours.

All other coatings offered less oxidation protection.

It was also observed that, in general, all coatings provided a greater amount of
protection for the VIA alloy. Most of the weight change-time data of the better coatings

followed a curve with a generally parabolic shape.

INTRODUCTION

Advanced gas turbine engines require higher metal temperatures in order to in-
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crease operating efficiency. For metal temperatures above 9800 C most nickel-base

alloys used as blades and vanes in engines must be coated to resist oxidation-erosion

and to extend their useful lifetime. The purpose of this study was to evaluate the high-

gas-velocity (Mach 1) oxidation resistance of various coatings applied by commercial

sources to two nickel base alloys: IN-100 and NASA-TRW-VIA. Wedge bar specimens

(see fig. 1) of each alloy were sent to various coaters with the request that they apply,
by any method, one or more coatings of their choice, either experimental or commer-

cial in nature. The coatings that resulted are of three general categories: metal-

chromium-aluminum (MCrAl), cermet, or modified aluminide. The MCrAl coatings

were iron- chromium -aluminum -yttrium (FeCrAlY), nickel- chromium- aluminum

(NiCrAl), and cobalt-chromium-aluminum-yttrium (CoCrA1Y). (The NiCrAl being of
proprietary compositions.) The cermet types were basically Ni-Cr alloys containing

hard particles of oxides, borides, silicides, and nitrides. Some cermet coatings were

also aluminized in a subsequent pack process. The modified aluminides consisted of

Pt-Al, and an aluminide coating containing embedded A12 0 3 particles. A variety of

application methods such as plasma spraying, slurry dip and vacuum sintering, electro-

plating and aluminizing, and pack cementation processes were used.

The coated bars were exposed to cyclic oxidation in the high-gas-velocity (Mach 1)

test facility at the Lewis Research Center. All tests were conducted at 10930 C using

cycles of 1 hour at temperature and 3 minutes cooling to room temperature. Perfor-

mance of the coating-substrate systems were evaluated on the basis of weight change,
thermal fatigue cracking, and various posttest microstructural examinations.

MATERIALS, APPARATUS, AND PROCEDURE

Specimens

The nominal composition of the substrate alloys are, for IN-100, nickel - 10-
chromium - 15-cobalt - 5.6-aluminum - 3-molybdenum - 4.2-titanium - 1. 0-vanadium
and, for VIA, nickel - 6-chromium - 7-cobalt - 5-aluminum - 2-molybdenum - 1-
titanium - 6-tungsten - 9-tantalum - 0.5-hafnium - 0. 5-niobium - 0. 4-rhenium. Both
alloys were cast in the shape of wedge bars that were nominally 2. 54 centimeters wide
by 0. 63 centimeter thick by 10. 16 centimeters long with a 450 leading-edge taper. The
exact geometry of these bars is given in figure 1.

Bars of each alloy were sent to various commercial coaters who applied and proc-
essed their coatings. Table I lists the coating designations, coating application methods
and processes, and compositions when available.
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Of the MCrAl coatings, the FeCrA1Y and NiCrAl (A) and NiCrAl (B) were applied

by plasma spraying; the CoCrA1Y coating was applied by a physical vapor deposition

process. (See refs. 1 and 2 for further descriptions of the process. ) The FeCrA1Y

coating was plasma sprayed as Fe-25Cr-13A1-0. 8Y then oversprayed with aluminum

powder followed by a 6-hour sinter in an argon atmosphere at 11000 C. This resulted

in a coating thickness of nominally 0. 018 to 0. 019 centimeter. The NiCrAl (A) and

NiCrAl (B) coating compositions were proprietary. The NiCrAl (A) coating contained

no added oxides; the NiCrAl (B) coating contained yttrium oxide (Y2 0 3 ) particles.

These coatings were about 0. 01 to 0. 02 centimeter thick. The cermet coatings were

applied by dipping the wedge bar into a slurry of the coating composition then firing in

a vacuum for 1 hour at 11500 C. The cermet (1) composition was a nickel-chromium-

silicon alloy of unspecified composition containing titanium disilicide (TiSi2 ) and titani-

um nitride (TiN) particles. The cermet (2) composition was a nickel-chromium alloy

also of unspecified composition containing titanium diboride (TiB2 ) particles. These

coatings were about 0. 008 to 0. 013 centimeter thick. Coatings designated cermet 1A,
1B, and 2A were given an additional aluminizing pack treatment at Lewis after the com-

mercial cermet applications. This processing is similar to that described in refer-

ence 3, where coatings of nickel-chromium were flame sprayed on steel substrates and

then given aluminizing pack treatments. The pack used in the present study was com-

posed of 2 weight percent aluminum, 2 weight percent sodium chloride, and 96 weight

percent aluminum oxide (A12 0 3 ). The pack time was 15 hours at 10900 C in argon.

Cermet 1A had an aluminum pickup of 15.3 milligrams per square centimeter, cermet

1B 13. 0 milligrams per square centimeter, and cermet 2A 14. 3 milligrams per square

centimeter. These coatings ranged in thickness from 0. 012 to 0. 015 centimeter. The

modified aluminide types of coatings were formed essentially by pack aluminizing. In

the case of the Pt-Al coating a layer of platinum was first electroplated on the alloy sub-

strate to a thickness of about 0. 00076 centimeter. Then this was aluminized by an un-

disclosed pack process. This coating was nominally 0. 008 centimeter thick. The em-

bedded alumina particle aluminide (EAPA) coating was applied by a modified aluminizing

pack process which also entrapped A120 3 particles in the coating. (For more informa-

tion on this process, see ref. 4.) The resulting EAPA coatings were nominally 0. 003 to

0. 005 centimeter thick. Coating thicknesses produced by the proprietary aluminizing

pack process ranged from 0. 011 to 0. 013 centimeter.

High-Gas-Velocity Cyclic Oxidation

All test specimens were run in the same natural-gas-fueled burner rig operating
with a gas velocity at the burner nozzle of Mach 1. A detailed description of the burner
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conditions and photographs and drawings of the apparatus can be found in reference 1.
In each test cycle the specimens were rotated in the air-rich natural gas combustion

products for 1 hour at a metal temperature of 10930 C. The 450 tapered edges of the
specimens were closest to the nozzle. At the end of this hour the specimens were

lowered into a high-velocity (approximately Mach 1) cooling air blast for 3 minutes,
which cooled the specimens to room temperature.

Specimen Evaluation

Weight change. - The test specimens were weighed to the nearest 0. 1 milligram
before the test and after every 20 1-hour cycles. The difference between the initial
and subsequent weights of the specimen is the weight change used here. Up to 100 hours
the results are based on the average of two specimens; above 100 hours the results are
based on a single specimen.

Visual change. - All test specimens were also examined visually under a low-power
(x30) magnification microscope at each 20-hour inspection for the appearance of thermal

fatigue cracks and other surface changes. Macrophotographs were taken at appropriate

intervals.

Other evaluations. - X-ray diffraction, microhardness, electron microprobe, and

metallography were used to examine selected specimens both before and after testing.
All procedures used were standard and widely employed in this type of specimen char-
acterization; a discussion of them is presented in reference 1.

RESULTS AND DISCUSSION

Oxidation Test Data Presentation

High-gas-velocity, cyclic-oxidation weight change and thermal-fatigue-crack detec-
tion times for the Pt-Al coating on IN-100 and VIA alloys tested at 10930 C are pre-
sented in figure 2. The shape of these curves is typical of most of the oxidation weight
change results of the coating-substrate systems studied. An examination of the curves
revealed a general and distinctive shape with certain distinguishable features. The first
is that at some time a maximum in the weight gain occurs and after this time the speci-
men always shows a weight decrease. Second, at some later time the weight change
curve crosses the zero weight change axis. Third, the slope of the curve between these
times varied depending on the coating-substrate system. Last, the maximum weight
gained and time to the first detectable thermal fatigue crack varied with the coating-
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substrate system. As a result of these general observations a schematic oxidation
weight change curve was constructed and several parameters defined. This schematic
curve is presented in figure 3. Parameter t 1 is the time to reach the maximum weight
gain, t2 is the time of crossing the zero axis, and the slope is defined as the slope of
the straight line connecting the weight change values at the t 1 and t 2 points. This
slope is given in units of milligrams per hour, and it has a negative sign since it always
represents a weight loss. Values of tl, t 2, slope, maximum weight gain, and time at
which the first thermal fatigue crack was detected were taken from the experimental

observations and the weight change curves of each coating-substrate system. These

values along with the metallographically measured nominal coating thicknesses before

oxidation are tabulated in table II. In this table the coating-substrate systems are ar-

ranged in increasing order of parameter t 1.
It will be noted in table II that in several cases the values of t 1 and t2 were not

determined. These are cases where a weight loss was recorded at the first inspection

time of 20 hours. It is probable that at least several systems may have exhibited a

weight gain in this initial 20-hour period and t 1 and t2 were very small. The slope

value reported in table II for these systems was calculated from the initial weight loss

of the specimens. These slope values are used as a comparative measure of oxidation.

Comparison of Coating-Substrate Systems

Since the primary objective of this study was to identify the most oxidation resistant

coating-substrate systems, some means of judging the performance of various systems

was needed. Since t 1 is the time at which the specimen begins to show a weight de-

crease (or shows a maximum weight gain), this is assumed to be the beginning of the

loss of coating protection or the onset of degradation of the coating-substrate system in

this series of tests. This weight decrease is caused by the fact that spallation or vapor-

ization is now great enough to cause a net weight loss of the specimen. The beginning of

degradation of the coating has actually been metallographically observed in several

specimens examined near t 1 . One such example will be presented in later discussion.

Assuming that t 1 is at or near the start of coating degradation, those coating-substrate

systems exhibiting the larger values of t 1 are judged to be the better systems. Since

the coating-substrate systems in table II are arranged in the order of increasing tl,
then the better systems are at the bottom of this table. Based on this argument the best

systems are the Pt-Al/VIA, CoCrA1Y/VIA, and cermet 2A/VIA systems. The preven-

tion of thermal fatigue cracking will be a secondary criteria. A long time to thermal

fatigue cracking is considered here to be a desirable but auxiliary factor. It could not

be used as a primary factor because the time to cracking was not determined in every
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case because of the termination of testing caused either by large weight losses or for

other reasons.

It is further interesting to note that the three best coating-substrate systems repre-
sent coatings of different types and application methods. The Pt-Al coating is a modi-

fied aluminide type applied by a dual process of electroplating followed by pack alumi-

nizing. The CoCrAlY coating is an MCrA1 type applied by physical vapor deposition.

And the cermet 2A is a slurry applied, vacuum sinter cermet coating followed by a pack
aluminizing. The only things in common are that they are all on VIA alloy and all con-

tain aluminum.

A plot of the parameters tl, t 2, and time to first detectable thermal fatigue crack
grouped on the basis of the substrate alloy is presented in bar graph form in figure 4.

From an examination of this presentation, it is easy to determine that most coatings

performed better when applied to alloy VIA than IN-100 with respect to both t 1 and

fatigue time. This difference in coating performance is believed to be due in part to the
relative oxidation resistance of the bare substrate alloys. The data in table II for the

bare IN-100 and VIA alloys show that alloy VIA has a smaller slope value than IN-100.

The difference in performance is probably also related to differences in chemical or

physical properties of the substrates which alter these interactions with the coatings.

For example, the VIA alloy may provide a diffusion barrier to slow the diffusional
destruction of the coating. In any event the same coating applied to different alloys does
not perform in the same way.

These conclusions give no consideration to coating thickness variations between
systems or application methods. It can be argued that, for other coating thicknesses or
methods of application, the results would have been reordered. For example, the plas-

ma sprayed FeCrA1Y, NiCrAl (A), NiCrAl (B), and unmodified cermet coatings on both
substrates peeled off rapidly in the highly erosive, high-velocity atmosphere used here
because of the porosity, cracks, and low adherence of these coatings. Based on these
observations it is probable that the use of other application methods or even different
plasma spray or cermet coating parameters would change the ranking of these coating-
substrate systems. Also, the use of other criteria for judging or ordering the systems
could produce different conclusions as to the best systems. However, the criterion used
here is reinforced by the metallographic observation of actual cases of coating breakup
at or near t1.

General Results

As an extension of the specific considerations of the parameters in table II, an
examination of this table for any general interrelations of these parameters was made.
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This was done by cross-plotting the parameters. Two relations were found, and they
are presented in figures 5 and 6. Figure 5 is a plot of parameters t 1 against t2.
The slope of the line in this figure is approximately two. Therefore, a general or
approximation relation of t2 = ~ 2t 1 exists between these two parameters. Pursuing
this observation a little further on a geometric basis leads to the conclusion that most
of the weight change results can be represented by a parabola opening downward with
the axis of symmetry at t1 . For example, using the values of tl, t2 , and the maxi-
mum weight gain given in table II for the EAPA/IN-100 system, the following polyno-
mial was determined:

y = -8.8x10- 4 x2 + 0.238x

where y is the weight change of the specimen and x is the time in hours. These ob-
servations may be useful, in more sophisticated form, as a part of a predictive method
that could be used to estimate life remaining in the coating-substrate system from cur-
rent or short time data.

Figure 6 is a plot of the weight change slope parameter against the time to thermal
fatigue crack detection. Even with the considerable degree of scatter of the points, it
appears that a relation exists between these parameters: a decrease in slope leading
to an increase in time to thermal fatigue. Since the slope parameter, in physical terms,
is weight change per unit time (mg/hr) and since its value is negative, or a weight loss,
the/slope parameter may be a wearout factor of the coating-subst ate system due to
,diffusional-spall destruction of the coating layer. Therefore, this would suggest that
the more slowly wearout occurs, the greater the time to the thermal fatigue crack.
This discussion would appear to preclude thermal fatigue cracking before tl, but
crack times less than t1 were observed for three systems, the Pt-A1/VIA, EAPA
IN-100, and NiCrAl (A)/VIA. All the other systems have thermal fatigue crack times
greater than t 1 and some are equal to or greater than t2 . No explanation for the three
exceptions can be given, but coating brittleness may be a factor for future consideration.
Also, at the other extreme of thermal fatigue cracking, that is, cracking occurring at
times far in excess of t 2 , a clear explanation cannot be given. This would imply ther-
mal fatigue protection is provided long after total coating destruction.

Detailed Results for the Pt-A1/VIA System

Since the Pt-A1/VIA system proved to be the best system tested, a further analysis
of the pretest and posttest properties appears warranted. Metallographic, microhard-
ness, X-ray diffraction, and electron microprobe examination results of a pretest
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specimen and a specimen tested for 1020 hours in the high-gas-velocity test rig will be

given. A detailed discussion of the second best system, namely, the CoCrA1Y/VIA

system, can be found in reference 1. However, a photomicrograph of the as-coated and

oxidized structure of this system will be presented later for convenience. A photomi-

crograph of the third best system, the aluminized cermet, in the as prepared and oxi-

dized condition will also be presented later.

The microstructure of the pretested Pt-A1/VIA specimen is presented in figure 7(a).

It is a multilayered structure similar to many coatings. X-ray diffraction of the surface

of the pretested specimen revealed two phases to be present: the major phase was plat-

inum aluminide (PtAl2 ) and the minor phase was of a f-nickel aluminide (0-NiAl) struc-

ture. The first layer has a microhardness of 500 Knoop at a 50-gram load. The second

layer has a hardness of 520 Knoop, and the diffusion zone adjacent to the substrate is

905 Knoop, both at a 50-gram load. The integrated scan (160-1m scan width) electron

microprobe traces are presented in figure 8. Figure 8(a), for the pretested specimen,
reveals a surface layer rich in platinum-aluminum and some nickel. On progressing

farther into the coating, the platinum, aluminum, and nickel increase, suggesting a layer

of PtAl2 and NiA1 extending up to 20 to 30 micrometers into the coating. Further into

the coating the platinum decreases very rapidly and is not detectable at about 40 micro-

meters. At the same time, the nickel and aluminum are reaching a peak. This suggests

a narrow layer of NiA1 centered near 30 to 40 micrometers. The chromium content

increases rapidly at depths from 40 to 50 micrometers, and the nickel and aluminum

levels are decreasing to the concentration levels of the substrate.

The microstructure of the coating after 1020 hours of high-gas-velocity testing is

presented in figure 7(b). The coating is in some intermediate stage of degradation, it

is no longer a continuous coating layer but has broken up into islands dispersed in a

matrix. The islands have a Knoop hardness or 420, and the NiCrAl matrix has a hard-

ness of 600, both at a 50-gram load. After 1020 hours the specimen is between the

weight change parameters of t1 (750 hr) and t2 (1400 hr) (sec table II): This micro-

structure agrees with the premise given previously that the parameter t 1 is the time

at which coating degradation begins. X-ray diffraction of the surface of this specimen

revealed Al20 3 as the major phase with some Ni (solid solution). The integrated scan

microprobe results are presented in figure 8(b). A thin surface layer rich in aluminum

and oxygen, which is due to the A12 0 3 scale, was detected. The platinum, nickel, and

chromium in the surface layer are very small, but at about 10 micrometers these ele-

ments increase rapidly in abundance, while the aluminum decreases. The abundance of

nickel, chromium, aluminum, and platinum remain constant out to approximately 50 to

60 micrometers where nickel, chromium, and aluminum become equal to that in the sub-

substrate. The platinum decreases beyond 60 micrometers but does not become zero
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even at 120 micrometers. These results indicate that the islands are probably PtAlx
with a surrounding alloy of NiCrAl alloy.

Figure 9 presents macrophotographs of the side surface and trailing edge surface of

the Pt-A1/VIA specimen after 424, 840, and 1020 hours of high-gas-velocity cyclic test-

ing. At 424 hours no leading- or trailing-edge cracks were detectable to the unaided

eye; however, at a magnification of x30 a small trailing-edge crack was detected. By

840 hours of testing both a leading- and trailing-edge crack were clearly visible. The

trailing-edge crack appeared to be more of a tear in the coating than a crack that ex-

tends into the metal substrate. By 1020 hours both the leading-edge crack and the

trailing-edge tear had increased in extent and some pitting of the trailing edge was now

also present.

The microstructure of the second best coating system, namely, the CoCrA1Y/VIA,

in the pretested state, is presented in figure 10(a). It is a rather thick coating com-

posed of P-CoAl and Co (solid solution). Figure 10(b) shows the structure after 600

hours of cyclic oxidation. It is apparent that the coating has undergone degradation.

Some localized regions exhibited oxidation attack deep into the coating. Aluminum oxide

was generally observed as the major surface oxide.

The microstructure of the third best coating system, the aluminized cermet (Cer-

met 2A) in the pretest condition is presented in figure 11(a). A layer of 3-NiA1 is

present at the surface with a complex structure beneath. The coating structure after

622 hours of cyclic oxidation is presented in figure 11(b). It is evident that considerable

degradation of the coating has occurred, but islands of the -NiA1 phase are yet present.

SUMMARY OF RESULTS

This work was initiated to evaluate the oxidation performance of some current com-

mercial and experimental coatings on two nickel-base substrate alloys, namely, IN-100

and NASA-TRW-VIA. The objective was to identify the most oxidation resistant coating-

substrate system procurred. Three general types of coatings were applied: the metal-

chromium-aluminum, cermet, and modified aluminide types. Methods of application

used were plasma spraying for the FeCrA1Y and NiCrAl coatings, physical vapor depo-

sition for the CoCrA1Y, slurry-dip followed by vacuum sintering for the cermet coatings,

and modified pack aluminizing processes for the EAPA coating. Testing was done in a

high-gas-velocity (Mach 1) burner rig using a natural-gas fueled burner. Tests up to

1020 hours at 10930 C using 1-hour exposure cycles followed by air blast quenching were

used. Oxidation resistance was judged on the basis of weight change, as the first-order

criterion and thermal fatigue crack resistance as a second-order criterion. The best

coating-substrate system was judged to be the one with the greatest time to the maxi-

mum weight gain, t1 . The following results were obtained:
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1. Both bare alloys have t 1 values of less than 20 hours and thermal fatigue crack

times of 40 hours.

2. Most of the coatings studied provided better oxidation protection for alloy VIA

than for IN-100 both on a time to t 1 (weight change basis) and thermal fatigue cracking.
3. Based on time to t 1 (750 hr) the Pt-Al coating on VIA alloy was judged to be the

most oxidation resistant system tested. This coating, however, does not provide supe-

rior thermal fatigue cracking protection. The second and third best systems were

CoCrAlY coating on VIA and a cermet plus aluminide coating on VIA alloy. The times

to maximum weight gain t 1 were 450 and 385 hours with thermal fatigue prevention to

>600 hours and 600 hours, respectively.

4. The plasma spray applied FeCrA1Y and NiCrAl coatings, as well as the slurry

applied cermet coatings, exhibited poor adherence and failed by peeling from the sur-

face, while the best coatings, as Pt-Al and CoCrA1Y, failed by the slower, more com-

mon diffusion-spall process.

5. The weight change curves for the better systems are approximately parabolic in

shape. That is, the weight of the specimen increases for a while - to time t 1 - and then

decreases after reaching some maximum weight gain. The onset of the decrease in

weight is associated with the start of the breakup of the coating layer, which leads to

spalling. At a time t 2 = - 2t 1 , the weight change curve crosses the zero axis and large
weight losses occur. In general, thermal fatigue cracking occurred at times greater

than t1.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, September 10, 1973,
501-21.
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TABLE I. - DESIGNATION, APPLICATION, AND GENERALIZED DESCRIPTION OF COATINGS

Coating Method of application Composition of coating materials General description of coating layer

used and heat treatment

MCrAl coatings

FeCrA1Y Plasma sprayed Fe-25Cr-13A1-0.8Y spray pow- Fe (solid solution) outer layer with

der, oversprayed with Al then /-NiAl, I3-FeAl beneath; cracks and

sintered 6 hr in Ar at 11000 C porous

NiCrAl (A) Plasma sprayed Proprietary composition, no Coating porous (spongy); major sur-

added oxide face phase, 3-NiAl with minor

phase ),-Ni 2 Al

NiCrAl (B) Plasma sprayed Proprietary composition, Y 2 0 3  Coating porous; major phases,

addition -NiA1 and a-A12 0 3 ; Cr 2 Si may be

present

CoCrA1Y Physical vapor de- Co-22Cr-14A1-0.1Y, deposited Co (solid solution) with elongated

posited layer - sintered 4 hr in H 2 at -CoAl grains dispersed

10800 C

Cermet coatings

Cermet (1) Slurry dip TiSi 2 and TiN particles dis- Ni (solid solution) containing TiN

persed in NiCrSi alloy; sintered and Nil6Cr 6 3i 7 dispersed

1 hr in vacuum at 11500 C

Cermet (2) Slurry dip TiB2 and A12 0 3 particles dis- Ni (solid solution) containing A1 2 0 3
persed in NiCr alloy; sintered and TiB2 dispersed

1 hr in vacuum at 11500 C

Cermet (1A)/IN-100
a Process for cer- Al pack was 2 wt. % Al, 2 wt. % a-A12 0 3 dispersed in -NiAl sur-

met (1) then Al pack NaC1, and 96 wt. % A120 3 heated face layer

at Lewis for 15 hr at 10900 C in Ar;

15.3 mg/cm
2 Al pickup

Cermet (2A)/VIA
a  Process for cer- Same processes for cermet (lA); /3-NiAl surface layer formed

met (2), then Al 14.3 mg/cm
2 

Al pickup

pack at Lewis

Cermet (1B)/VIA
a  

Process used for Same process as for cermet (1A) /-NiA1 and a-A12 0 3 surface layer

cermet (1) then an coating; 13. 0 mg/cm
2 Al pickup

Al pack treatment

at I ewis

Modified aluminide coatings

Pt-Al Flectrodeposition Electroplated Pt (0. 00076 cm) Pt-Al rich outer layer over a CrNi

and aluminiding and aluminided alloy inner layer; layer sequence is

PtA12 , PtA12 + -NiA1, O-NiA1,

then Cr, Ni, Ti, Al layer at metal

surface

EAPA Pack cementation Modified Al pack so that A12 0 3  NiAl containing about 15 vol. % of

aluminiding as well as Al are deposited 2-um A120 3 particles

Aluminide Pack cementation Proprietary Al pack for 6 hr 3-NiAl and Ni 2AI 3 layer formed

aluminiding at 9800 C with some cracks

aApplied only to designated alloy. All other coatings applied to both VIA and IN-100 alloys.
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TABLE II. - WEIGHT CHANGE PARAMETERS AND THERMAL FATIGUE DATA ARRANGED

IN THE ORDER OF INCREASING VALUES OF PARAMETER t1

Coating Substrate Time to Time till weight Weight Slope, Time to first Nominal coating

designation alloy maximum change curve gain at mg/hr thermal thickness before

weight crosses zero tl, fatigue crack oxidation,

gain, axis, mg TTFC, cm

tl' t2 , hr

hr hr

Bare VIA aND ND --- -1.1 40

IN-100 --- -2.7 40

Cermet (1) VIA --- -7.5 > 100 0. 011

IN-100 ---- 9.2 >100 .013

Cermet (2) VIA --- -14 60 .008

IN-100 ----- --- -25 60 .008

Cermet (1A) IN-100 20 184 70 -. 43 225 .018

Cermet (1B) VIA 20 67 140 -2.9 >180 .015

Commercial IN-100 20 220 25 -. 12 200 .011

aluminide

NiCrAl (A) IN-100 40 68 130 -4.6 194 .023

Commercial VIA 60 190 35 -. 27 >300 .013

aluminide

EAPA VIA 60 205 11 -. 08 > 400 .005

FeCrAIY IN-100 80 156 116 -1.5 >200 .019

FeCrAlY VIA 100 180 116 -1.5 180 .018

NiCrAl (B) VIA 100 325 340 -1.5 477 .023

NiCrAl (A) VIA 120 230 180 -1.6 100 .015

EAPA - IN-100 140 270 17 -.13 120 .003

NiCrAl (B) IN-100 150 b2 9 0  350 -2.5 240 .010

CoCrAlY !N-100 160 245 27 -. 32 >300 .020

Pt-Al IN-100 380 725 44 -. 13 c4 2 5  .008
d760

Cermet (2A) VIA 385 440 14 -. 25 d 6 0 0  .012

CoCrAlY VIA 450 b10 0 0  47 -.08 >600 .014

Pt-Al VIA 750 b1 40 0  48 -.07 c4 2 5  .008

d600

at1 and t2 not determined (less than 20 hr).
Extrapolated value.

cTE means crack observed on trailing edge of test bar.
dLE means crack observed on leading (beveled) edge of test bar.
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Figure 1. - Wedge bar test specimen. (Dimensions are in cm (in.).)
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Figure 2. - Comparison of high-gas-velocity cyclic oxidation be-
havior of Pt-Al coated IN-100 and VIA alloys at 10930 C
(20000 F).
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Figure 3. - Schematic diagram of weight change curve for high-gas-velocity
cyclic testing of coated superalloys. Time to maximum weight gain, tl;
time at which weight curve crosses zero axis, t2; slope is the slope of the
straight line between t1 and t2; TTFC is the time at which first thermal
fatigue crack is detected.
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Figure 4. -Comparison of the oxidation parameters.
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Figure 5. - Relationship between parameters
t1 and t2.
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Figure 6. - Thermal fatigue cracktime as a function of slope parameter of weight
change curve for coated and bare IN-100and VIA alloys cyclically oxidation
tested at Mach 1 and 10930 C. (Note: Arrows indicate that TTFC is greater than
time shown.)
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(a) As coated. (b) After 1020 hours of cyclic oxidation at 10930 C
using 1-hour cycles.

Figure 7. - Photomicrographs of Pt-Al coating on VI A alloy. Knoop hardness numbers for 50-gram load.
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(b) After 1020 hours of cyclic oxidation.

Figure 8. - Electron microprobe analysis of Pt-Al coated VIA alloy substrate.
Integrated scan width, 160 micrometers.
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Figure 9. - Pt-Al coated VI A alloy after high-gas-velocity cyclic oxidation at 10930 C using 1-hour cycles.
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la) As coated. (b) After 600 hours cyclic oxidation at 10930 C using 1-hour cycles.

Figure 10. - Photomicrographs of CoCrAIY coating on alloy VI A.
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Figure 11. - Photomicrographs of cermet 2A coating on alloy VI A.
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