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ABSTRACT 

We use the cumulant expansion technique of Kubo to derive an integro- 

differential equation for <f>, the average one particle distribution function for 

particles being accelerated by electric and magnetic fluctuations of a general 

nature. For a 7ery restricted class of fluctuations, the <f> equation degenerates 

exactly to a differential equation of Fokker-Planck type. Quasi-linear theory, 

including tne adiabatic assumption, is an exact theory for this limited class of 

fluctuations. For more physically realistic fluctuations, however, quasi-linear 

theory is at best approximate. The nature of the approximation is seen by 

ex2licitly comparing the usual quasi-linear diffusion coefficient Do (which is 

second order in the fluctuations) to the fourth order contribution D,. Quasi- 

linear theory is asymptotic in the ratio of the wave-particle coherence time fC 

to the fluctuation induced deviation time ?d or deflection time T,,. Since rC 

varies over phase space, quasi-linear theory may be valid for some regione of 

phase space and invalid for others. 
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QUASI-LINEAR THEORY VIA THE CUMULANT EXPANSION APPRGACH 

1. INTRODUCTION 

Jokipii and Lerche (1973) have recently studied the statistical behavior of 

charged particles in a random magnetic field of one special type. They find that 

zt differential equation of Fokker-Planck type exactly describes the evolution of 

the ensemble average ouc particle distribution function <f>  . They compare 

the exact equation with the equation obtained by making the quasi-linear approxi- 

mation. The equations are identical provided that the adiabatic approximation 

is also made on the equation derived via quasi-linear theory. 

This Jokipii and Lerche work shows that for their special model, at least, 

quasi-linear theory is a very good approximation. Is the Jokipii-Lerche result 

a consequence of t?teir model or  is it considerably more general? 

We answer this question by first deriving in  Section 2, from the stochastic 

Vlasov Equation the general integro-differential equation which < f > obeys for 

arbitrarily varying (in space and time) electromagnetic fluctuations. We do so 

by using the cumulant expansion technique of Kubo (1962, 1363). W e  then de- 

termine in  Section 3 the conditions which must be imposed on the fluctuations 

in order that < f >  exactly satisfy a Fokker-Planck or diffusion equation. The 

conditions are so restrictive that no physicazly realistic model of fluctuations is 

included. 
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In Section 4 we examine the quasi-linear approximation (Drummond and 

Pines, 1962, 1964; yedenov et al., 1961, 1962; Bernstein and Engelmann, 1966; 

Aamodt and Drummond, 1964; Frieman and Rutherford, 1964; Rogister and 

Obeman, 1969; Kennel and Engelmann, 1966; Galeev and Karpman, 1963; 

Galeev et al., 1965; Hall and Sturrock, 1967) to the general <f> equation in the 

context of the cumulant expansion. The quasi-linear approximation is shown to 

be a short coherence time approximation. The ratio of the neglected terms to 

the quasi-linear terms depends on the ratio of the coherence time T~ to the de- 

viation time Td or the deflection time T ~ ,  whichever is shorter. The coherence 

time is the time required for the random component of the force on a Ten 

particle to become uncorrelated; the deviation time is the time required for the 

random force to significantly alter the particle's position; and the deflection 

time is the time for this same force to significantly alter the particle's velocity. 

If the condition T~ 4 Td,TD prevails, quasi-linear theory 6escribes the evolution 

of <f> very well. when T~ is greater than either Td or T,,, however, we do 

not expect quasi-linear theory to be at all accurate. 
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2, STOCHASTIC VLASOV EQU:\TION 

We consider the one particle distribution function f(t,x,v) that satisfies the 

Vlasov Equation for particles which interact with a force F, 

- af +(Lo + L*)  f = 0 
at 

where 

is the non-stochastic Vlasov operator and L, 

part of the force (in general, <L,> f 0). We  assume that Lo is constant in 

time although L,  can, in general, be time dependent. 

F, - a/av contains the stochastic 

Transforming to the interaction representation we have (Kubo, 1963) 

where 

and 

25 + St(t) g = o  
at 

Equation 2 may be formally integrated by means of the time ordered expo- 

nential operator 

(3)  
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In Equation 3 the time ordering operator T orders the !2 operators denoted by 

' the exponential such that the operator at the earliest time operates first, the 

next earliest second and so on, i.e. 

+ - - - - - -  (4) 

A s  long as the T operator stands to the left of an operator expression the oper- 

ators to its right may be treated as if they were commuting variables o r  c num- 

bers in any algebraic manipulations. This is so because the 'I' operator contains 

and preserves the information about how the operators are to be ordered after 

the manipulations have been completed. 

Equation 3 may ncw be averaged over an ensemble of L * s tu obtain 

where we I. . 

shown by Kubo (1962) that the averaged operator in Equation 5 may be written 

chosen go do) to be uniform over the ensemble. It has been 

as a general cumulant expansion 
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(6 Cont'd) 
where the brackets < >, refer to the cumulant average, i. e. 

<A>, = <A>;<AB>, = <AB>-<A><B> etc. 

(Kubo, 1962). 

The time ordering operator T applies to everything to its right including 

the expansions of the cumulant average <>c in terms of the conventional 

averages < >. For the cumu1ar;ts with n 2 3 the T operator notation becomes 

essential when expressing cumulant averages in terms of conventional averages. 

This can be seen as follows 

<ABC>, <ABC> - <A><BC> - <B><AC> 

- <AB><C> + 2<A><B><C>. 

One will note that in order to express all of the required correlated averzges 

using the conventional notation it was impossible to maintain the ordering, ABC , 

in all of the terms. An operator such as T standing to the left that tells in what 

order the various operators are to be applied removes this notational difficulty. 

If we introduce the notation 

t 
I$.,(t) I a dt, it' dt, lt2 dt, - - - -  dt, <!2(tl)S2(t2)SZ(t,) - -  - S2(tn)>c 

we may write 
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In an attempt to find a kinetic equation for <g> we differentiate Equation 7 with 

respect to time, noting that the time derivative commutes with T, to obtain 

This appears to  be as far a s  we can go maintaining full generality. We must 

now examine what exact conditions the statistical operators !22(t) must satisfy 

in order that Equation 8 be equivalent to a Fokker-Planck equation or what ap- 

proximate conditions they must satisfy in order that Equation 8 may be approxi- 

mated by 9 Fokker-Planck equation. 
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3. CONDITIONS FOR EXACT KINETIC EQUATIONS TO EXIST 

We note first of all that the operator aK,,(t)/at is an nth order differential 

operator. If we wishto obtain a kinetic equation of finite order the series in 

square brackets in Equation 8 must terminate at some finite n in general and at 

n = 2 in particular if we wish a diffusion or Fokker-Planck type equation. 

The only way to obtain this termination for all values of t is to require that 

all cumulant averages of the statistical operxor Wt) higher than the second 

vanish identically. This is equivalent to requiring Wt) to be a Gaussian process. 

It thus appears that the first requirement that the operator Wt) must satisfy is 

that it be a Gaussian process; in so f a r  as cunulant averages of 52 to powers 

higher than the second are  non-vanishing the kinetic equation will deviate from a 

Fokker-Planck type equation by the inclusion of derivativo yerators of order 

greater than the second. 

If we now assume that a(t) represents a Gaussian process Equation 8 becomes 

(9) 

Since t is the latest time in the expression the <at)> in the square brackets 

is alrew time ordertit! and may thus be brought to the left of the T operator. 
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So doing and using Equation 7 gives 

t <Q(t)><g> = T dT<Q(t)Q(r)>C exp{-K1 t K2} go . (10) 
axg> 

at 

Since the variable 7 in the integral above ranges over all times we may not, in 

general, commute the <SZ(t)Ct(r)>, and T operations to obtain a kinetic equation 

for <g>. The effect of the T operator in Equation 10 is to mix the a(?) operator 

with every term of the expansion of exp {-IC1 + K2) and keep us from having a 

clearly separate operator applied to <g>. 

The only circumstance under which Equation 10 becomes a purely differential 

equation for i g >  is when the T operator is unnecessary. This occurs when the 

order in which the SZ operators a re  apFlied is unimportant. This can be so only 

if we have 

[Wt , ) ,  W * ) l  = 0, t, f t, ( 1  1) 

the S2 operators must commute with themselves at different times. 

We have thus az?.-ived at t5e second condition that must be mtt by the statis- 

tical operator Q(t). We r.4d1 see immcdiatply that these two conditions, Gaussir t 

statistics and commutivity d different times, are sdficient to guarantee that 

<f >, the ensemble averpyed distribution function, satisfies exactly a Fokker- 

Planck type kinetic equation. However, upon cloeer investigation the require- 

ment of commuti-r'ty, though simply expressed in Equation 11, wil l  turn out to 

impose stringent requirements on the physical systems. 

8 



If Equation 11 is satisfied we may disregard the T operator in Equation 10 

to obtain 

+ <Q(t)><g>(t) = <n(t)n(7)>, d7 <g>(t) a t  

Leaving the interaction representation, we may express Ewe-tion 12 in terms 

of <f> a8 

The operator L,(t) represents the effect of tke fluctuating force F, at time 

L, (7)e-Lo(7-t) represents t at a phase space pdnt x, v. 

the effect of this force at time T and at the point in phase space where a particle 

at x, v at time t w d d  have been at time r if it were undergoing the unperturbed 

motion generated by the operator Lo. If the statistics of L, are stationary in 

time (which we shdl assume hereafter) and if there I s  a time re such that L I:) 

L O W ,  The operator e 

-L ( 7 4 )  
L1(r)e O become uncorrelated for t-r > 7c , the integral f? and eL,(r-t) 

Equation 13 become8 independent of t for t % rc an5 our kinetic equation becomes 

a Fokker-Planck equation with constant coeificieata. Note that this 108s of cor- 

relation can come about eithor through an intrinsic time vririation in L, (t) o r  

L o ( r - t )  through the proagator e removing the partic'res a distance over which 

the fluctuating force is spatially uncorrelated or both. 
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Turning to the conditions that must be met by a system such that Equation 

13 is an exact kinetic equation for <D, we can say little abut the assumption 

of Gaussian statistics. It is a common assumption, partly because the central 

limit +-?ern (Feller, 1968) states that a tendencg towards Gaussian statistics 

is a common occurrence, but mainly because of its mathematical tractability 

which most other types of statistics do not share. The requirement that Wt,) 

and at,) commute for t, # t,, on the other hand, has some rather severe 

impl.ications. 

One way of fd f~ l .hg  this requirement is to demaud W,) = Wt2? for a t , ,  

t2. This implies 

-L t Multiplying from the left with e 0 and fram the right with eLot yields 

aL1 - + [Lo, L1l 
at 

= 0 (14') 

or in other words L, is a amstant ofthe motion generated by Lo. 

A physical model af such a system could probably be constructed, but one 

suspects that such a model d d  be rather artificial. Also note that in this 

case the integral in Equation 12 or Equation 13 will  grow linearly in time 80 

that a time-divergira; diffusion coefficient results. 
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Another way of fulfilling the commutivity requirement is to have 

and 

[L,,L,(t)l = 0 forallt 

[L,(t,),  L,(t,)l = 0 for all t , ,  t2 . 

(15) 

(16) 

Most models discussed to date are of this type. Expressing Lo and L, in con- 

ventional variables Lo = v - d!ax + F, . a/& and L, = F, - a/av we see 

that Equations 15 and 16 imply 

The above expressions are quite complex and no general solutions have been 

found but one can make some general statements abou' them. First of all the 

coefficients of the velocity derivatives must vanish. One could merely require 

t h ~ t  the distribution function have no velocity gradients in these directions but 

distributions functions + h t  are unbcunded in velocity space are extremely un- 

physical. Fortunately this is not quite so true for spatially unbounded systems 

or we would be forced to require F, = 0 and the entire problem would evaporate. 

One can therefore require spatial homogeneity to the extent that is needed to 

keep F, e a/ax = 0. This homogeneity w i l l  be more or less isotropic depending 

on to what extent, if any, F, is constrained in direction. 
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The coefficient of the velocity gradient in Equation 15' can be considered as 

a partial differential equation for a general velocity and space dependent force. 

However, if we limit our discussion to electromagnetic forces the velocity de- 

pendence is specified and terms of different orders in v must be set equal to 

zero separately. This gives 

Eo XB,  = E, XB, (17) 

v - (VE, + BIB, - BOB1) = 0 ( 1 8) 

V - V B ,  X V  = 0 (19) 

Since the velocity is a free parameter and generally not constrained in magnitude 

or direction the coefficients of v must vanish order by order. Thus 

VE, +BIBo-B,BI = 0 

VB, = 0 

Similarly from Equation 16', it follows that 

We may add the full set of Maxwell's Equations to Equations 17, 18'. 19'. 

20 and 21 above and ask what arrangement of fields a re  then allowed. It is 

straightforward to verify the following: 

a. B, must be parallel to Bo ; 
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b. 

C. 

B, must be spatially homogeneous and constant in time; 

E, must be spatially homogeneous and only the component of E, that is 

parallel to Bo may vary in time. E, thus represents an infinite wave- 

length plasma oscillation in which the plasma currxit exactly cancels the 

displacement current. 

This case of one dimensional plasma oscillations was treated by Lerche 

(1972), who assumed Gaussian statistics for the fluctuating electric field and 

derived an exact equation of the form of Equation 13. For this completely 

spatially hamogeneous situation Lo = 0 ,  L, = (q E,(t)/m) - a/av, <I = 0 

and from Equation 13 

a* <D 
av* 

t 
a<f> q2 - = - 

at m* 
dr<E, (t)El (7) > 

0 

where <El(t) E,(r)> is here the correiAion function for the fluctuating electric 

field. 

Lerche has compared his exact result, his analogue ob Equatim 22, with the 

time asymptotic diffusion ewation derived by quasi-linear theory. He finds 

that the diffusion coefficients in the two equations differ by a fact(.- li .\. a re- 

sult in contradiction with the later' conclusions of Jokipii and Lerche (1973) and 

with our own findings in the next section. We have found in Lerche's original 

work an algebraic error which accounts for the discrepancy. 
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While this elementary system is the only one in which both the commutivity 

of C2(tl) and sl(t2) and Maxwell's Equations are  rigorously satisfied, further 

latitude is available if we require the commutivity of C2( t ) and 52( t *) by fields 

which only approximately satisfy Maxwell's Equations. The model considered 

by Jokipii and Lerche (1973) falls into this latter category. 

Jokipii and Lerche consider a situation in which the only superposed electro- 

magnetic field is a time fluctuating, spatially homogeneous magnetic component 

gz B,(t) (Eo = E, = Bo = 0). The induced electric field required by Maxwell's 

Equations V X E, = c-l aB, /at is assumed small and negligible, although it is 

cleay . as the authors admit, that E, can not be small everywhere in the infmite 

space. With the additional assumption that spatial variations be only along B, so 

that v = e2 a/az, L, = v2 a/az, L, = o , ( t )  alae, and Equations 15' and 16' are 

satisfied. %re w1 is the cyclotron frequency q Bl/mc and 8 = tan-' v,,/vx is 

the ?yrophase. In the main bo@ of their paper, Joldpii and Lerche take Gaussian 

statistics for B, , assume <B,> = 0, and come up with the identical result 

which we obtain from Equation 13. 

In their appencbx Jokipii and Lerche take a different statistical model for 

B, . Here B, has the same initial value bo in each realization d the ensemble 

but otherwise vanes randanly such that the probability distribution P(B1 ,t) 
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at a later time satisfies an Omstein-Uhlenbeck (Uhlenbeck and O m t e i n ,  1930) 

equation 

Their assertion is that the &tatistics of B, in this case need not be Gaussian. 

However, a quantity whose probability distribution satisfies Equation 24 

a Gaussian process; in fact it is a Markovian, Gaussian process (Doob, 1942) 

so no violation of our basic conditions is actually found here. 

If B, (t) is an Ornstein-Uhlenbeck process with initial value bo it is a 

Gaussian process with <B,(t)> = bo exp - t/Tc. The time integral Jt Bl(T)  dT 

0 
is also a Gaussian process; Ublenbeck and Ornstein (1930) give expressions for 

the mean and mean square of this integral. Recalling that the diffusion coefficient 

is one h&€ the time derivative of the second cumdant averagc of 

we readily obtain 

Equation 25 differs from that of Jokipii and Lerche (1973) by the numerical coef- 

ficients on the terms of the diffusion coefficients and the algebraic sign of the 

first order d-derivative term. We attribute this difference to algebraic errors 

on their part. Our diffusion coefficient reduces to zero at t = 0, as it should, 
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while theirs does not. Also, only the minus sign on the a/aO term is consistent 

with a clockwise gyration uf electrons as viewed in the direction of B, 

We see that the cumulant expansion method very quickly yields kinetic 

equations when they are exactly derivable, and it further makes quite explicit 

the rather stringent requirements that must be fulfilled in these cases. We 

shall now see how the quasi-linear approximation f i ts  into such a scheme and 

estimate the order of magnitude of the error that is involved. 
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4. APPROXIMATE KINETIC EQUATIONS 

If we return to Equation 10 and insert the appropriate expressions for K, 

and K, we may write it as  

[ 1 0') 

where Qrl )is the operator 

We note once again that it is the mixing of the operator S ~ ( T )  with the exponential 

as  required by the operator T that prevents us from immediately writing down an 

exact kinetic equation for <g> and hence for <D. All of the difficulty arises 

from that region of the integration over r1 where t 3 r1 3 r for when e 3 r1 the 

operator n(r)  is already properly ordered and T may be brought through to act 

directly on the exponential operator. 

If it can be shown that the region of the r1 integration where t 3 r1 a r is 

relatively unimportant an approximation m a y  be based on this fact. Such a situa- 

tion may arise if it can be ehown that the operator < n(t) n(r) >,goes to zero if 

7 is sufficiently different from t. If a "correlation time" 7, e~ddets such that 

<n(t) a(r)>, + 0 for t - r rc and if t rc the slgnificaut contribution to 
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the T integral will came from those values of T within a few correlation times of 

t. Hence only for t > 7, > t - N T ~ ,  N = O(1) will there be a problem with the 

T operator and this region of rl, being small compared to t - NrC > r1 B 0, 

may perhaps be neglected . 
The effect of the region t > rl > t - NrC may be neglected in at least two 

different ways. The first would be to neglect the effect of the T operator in this 

' region and move it through to the exponential operator as a approximation. This 

approach, of course, leads to Equation 13 but this time as  an approximation 

rather than an exact equation. The difficulty with this approach is that it is vir- 

tually impossible to tell just what has been neglected and thus estimate the va- 

lidity of the approximation. 

The second method does not suffer from thts defect. Note first of all that 

since the T operator gives the complete prescription as to how the S2 operators 

are  to be ordered in any expansion we may treat them a8 e-numbers as long as 

the3 are  to the right of T. We therefore may write 
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The apprordmation consists of neglecting the second term of the right hand side 

of Equation 26 and keeping only the first term. 

Since n(r) and the retained term of Equation 26 are now properly time or- 

dered we may bring the T operation through to the exponential operator to obtain 

after some algebra. 

t 
($+Lo  +<Ll( t )>)<f , ( t )  = <L1(t)eLo('-t)L1(rj>C<f>(r) d7. (27) 

It can be readily seen that we have arrived at the standard quasi-linear 

approximation to the kinetic equation for <f>. The term that we have neglected 

may be expanded in a systematic manner by first expanding the exponential in 

square brackets in a power series and then breaking up the second exponential 

into two regions of r2 as  was done before. This process may be continued in- 

definitely to produce the standard series although this method of generating it is 

more difficult than is the standard approach. We shall return shortly to a more 

detailed analysis of this remainder term. 

It is interesting to note that if starting with Equation 27 we make the addi- 

tional apprordmation ueually referred to a s  the "adiabatic hypothesis", namely 
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replace <D(T) by <D(t) and shield it from the free streaming propagator 

in front of it, one obtains Equation 13 that we eLo(7 - by placing e 

previously obtained directly by simply neglecting the effect of the T operator in 

the region T~ > 7 .  We see therefore that the "adiabatic hypothesis" is on an 

equal footing with the quasi-linear approximation itself and it would be inconsis- 

tent with the spirit of the scheme to accept one and reject the other. In all like- 

lihood the two approximations stand or  fall together. 

-Lo(? - t )  

We must now address ourselves to the question of the validity of our neglect 

of the term given by expression 28. We have assumed that a correlation time T~ 

exists such that the 7 integral cuts off for t - 7 9 rC . This implies that the 

integral in the exponent 

tbe hope is that this contribution will be in some sense small. Since 6 ( r 1  ) con- 

dT1 (?(TI ) will extend over at most a few times rc and (t 7 

tain derivative operators that operate on the distribution function as well as the 

force field function the operator can not be bounded in any rigorous sense. To 

proceed we must therefore make some assumptions about the distribution func- 

tion. We shall therefore assuma that the gradients in phase space of the distri- 

bution function are  negligible compared to the gradienta of the random force 

function. This is well within the spirit of diffusion theory where one expects to 

be able to describe the evaluation of a distribution function only on time and length 

scales that are  lmge compared to the correlation scale of the random forces. 



On making this assumption one can now write the right hand sick of Equation 

10 as a diffusion operator 

where Do is the quasi-linear diffusion coeffic5ent and D, , D, etc, are correction 

terms generated by the quasi-linear series. For the sake of simplicity we shall 

set <a> = 0 in the following and compare the terms Do and D, ( D, is now = 0). 

Before continuing we will need to introduce some additional notation. We 

(x, v) and a shall emplay the six-dimensional phase space position vector z 

six dimensional force vector F, E (v, F,) , F, = (0, F, ) . With this notation we 

have 

and 

Furthermore since we will need scalar products of quantities that may be sepa- 

rated from each other in an expression we will occasionally make use of a corn- 

ponent notation with summation of repeated indices implied, i.e. , 

'0 
we may turn to Equation 28 and expand the exponential in  equare brackets kaeping 
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only the lowest order term to obtain the approximate expression for the neglected 

term. 

We see that for the range 0 < T~ Q T %e T operator once again mixes a(',) wi?h 

the exponential. We may treat this problem as  we did before by neglecting the 

region between T ~ -  T in the exponent integral whenever T~ < 7 . 

We then have two terms 

We may now relabel the variables in the flrst term by interchanging the 

labels 7 and r2 and Interchange the order of integration to reinstate the original 
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order to obtain 

+ <n(t)n(7,)><n(7,!n(7)> (g> (7) . 1 
kserting the appropriate expressions for the SZ factor and converting from <g> 

to <f> we obtain for the second order diffusion coefficient D, the expression 

whsre the primed brackets means that in taking the aqxage only two of the three 

possible correlations are included, i.e. < t, 71, 7,' 7>' E <t, r2> < T ~ ,  7> 

+<t, 7> < T ~ ,  r2> 

the ordering of the operator. 

where here the groupings indicate correlations only and - nct 

Expresafon 31 as  it stands is not very transparent and it would be difficult 

to estimate the relative magnitude of D, with respect to Do from it in this form. 

We will therefore transform it to a more recognizable form so that it will be 

easier to visualize what rtysical parameters govern the sjze oi D, as  compared 

to Do. 

It will be useful to first review the algebraic properties of the Lie operator 

p o t  ahd the characterictic solution z*(z, t) and zo(z,t) . z* and 7 0  are  
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solutions of f i e  respective differential equations 

-+ Lo + L, z*(z,t) = 0 
(:t ) 
(4+ LJ zo (2, t) = 0 

with the common initial value 

(32) 

(33) 

z*(qo) = zO(2,o) = 2 (34) 

It is readily seen that z* and zo are  the phase space positions at a time -t 

of a particle which is moving in the force fields F, + F, and F, respectively and 

is at the point z at t = 0 . Equation 33 may be solved by the Lie operator as 

-L t zo(z, t) = e 0 z 

and hence the effect of this operator on +he derivative operator is 

And cle&'-y 

It should be further noted that any function of z*(zo) is itself a solution of Equa- 

tion 32 (Equation 33). 

Equation 32 may be cast as an ir?tegral equation using the solution to 33, zo 

and the Lie operator as  

. I  

z*(t,r) = zO(t-r) - ,' ., L: 
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This integral equation may be solved by iteration in a straightforward manner. 

The result may be expressed in terms of the deviation of the Vlasov trajectory z* 

from the free streaming trajectory zo as 

z*(t,r) - zo( t i )  E Az(t,r) = A d  + Az2 + Az3 + . . . 

where 

a 
Az2(t,r) = - drle-Lo(t-T1)Fl(rl) - - az Azl(rl,r) I' 

a t 
-L ( T  dr2e 0 1-T2)F1(r2). - az z0(s2-r) 

(39) 

-L (t-T ) drle 0 1 F1(r1). - 

etc. We shall return to these equations shortly. If we now return to Equation 31 

we note that the expression can be broken into two terms, one proportional to 

a F, ( T ) / ~ z  and the other proportional to a2 F, (r)/az2 . Adopting the convention 

that parentheses bound the range of the Lie operators and the derivative operator 

and noting that 

-L t (e-Lot A B C .  . .) = (e-Lot ~ ) ( e  0 ~ ) ( e - ~ o '  c). . . 
we obtain 
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(40 Cont'd.) 

and Equation 35, we may move azo,(r2-r)/azj in the second term to the right 

through the operator e-L @(' 1 -72 )  to obtain for the second term 

The last step waa justified by the symmetry of the integral under the exchange 

rl  * r 2 .  
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Since the integral over rl  and r,  in the first parentheses OI Equation 40 is 

just equal to expression 39 for Az2(t,r) and the first two parentheses of €..pres- 

sion 41 are each equal to Az'(t.r), we may write Do - and D, together as  

1 (42) 

2 
+ - (AzLj(t,r)Azlj(t,r)) 

Do is evaluated by propagating F,(r) along the free streaming orbits zo(t-r) ig- 

noring the effect of F, on the orbit. Clearly D, is trying to ccr red  this neglect 

to second order in F, via a Taylor's series in the orbit corrections Az (t,r) . 
This picture is not strictly correct because of the prime in the averaging brackets 

meauing that one of the terms that would be present in the normal average is not 

present. 

dr <F, (z,t)F, (z*(t-r),r)> (43) r' D,+D,+D,+  ... # 

However, the correction terms do appear to be proportional to fhe trajectory cor- 

rections to the approprlate order such that if Az = 0 or if E', were not dependent 

on z, Do would be exact. 
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5. DISCUSSION 

Our assertion in ths Introduction that quasi-linear theory is a short coher- 

ence ~ i m a  qproldmation now has clearer meaning. W e  see from Equation 42 

+hat 

tnat contributes significantly to the integrand. For the spatial components of 

2, ihz a/az F, I,, 3 IF, I,, 

over which the average particle's actual position deviates by an amount the order 

of one correlation length xc from its zeroth order position. For the velocity 

components of z, IAz a/az F, I,,, 2 IF, I,,, defines the deflection time rD, 

that interval over which the average Av becomes of the order of the unperturbed 

v. The cut-off time of the integrand is produced by the incoherence of F, (t) and 

F, (7) for times t - T > rc. Thus D2 Q Do requires Td, rD sTc. 

Do provided that IAz a/az F, I,,, Q IF, I,,, for the length of tirue 

defines the deviation time Td, that interval 

For those restricted physical systems which satisfy Equations 17-19 and 

thus lead to an exact Fokker-Planck description of <f>, tiie fluctuating force 

F, is independent of phase space position and thus both rd and TD are infinite. 

For realistic physical systems rd and/or TD are finite and quasi-linear 

theory provides at best an approximate description of a>. For any given 

system, however, quasi-linear theory may not be a uniformly adequate approxi- 

mation, since 7c can vary over phase space and become arbitrarily long in 

certain regions. 
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Kaiser, Jones, and Birmingham (1973) pointed out this fact iq their paper 

discussing diffusion in the presence of only a static, spatially fluctuating mag- 

netic field 8 ,  b(x). (x, y, z are Cartesian csrdinates here. ) Zeroth order 

orbits are x ( r )  = x(t) + v cos8 ( 7  - t), v = (vy2 + vx2)* = const. (where 

tan8 = v,,/vx) in this 2 dimensional model. For particles with no initial vx, 

i. e., cos8 = 0,  F [x(t)l and F, [x( T)] are correlsted for an arbitrarily long 

time so that T~ + m . Quasi-linear theory is useless for describing these particles. 

This same inadequacy of quasi-linear theory maaifests itself in the problem 

of magnetically induced pitch angle scattering (Hasselman and Wibberenz, 1968; 

Kulsrudand Pearce, 1969; Jokipii, 1971,1972;Klimas and Sandri, 1971,1973), 

where the pitch angle 8 is defined with respect to a uniform average background field 

Bo@,. For this situation Ap 2 @/B, ( p  = cos8 ). A x  2 6B v t/B, and thus rd = 

Bo xc/6Bv. But rc = xc/pv and hence rc/rd = 6B/pBo. If.this ratio is to be 

smaL, AB/pB0 41: quasi-linear theory is applicable only to particles which 

have p S 6B/B, (Jones, Birmingham, rad Kaiser, 1973). 

The shortcomings of quasi-linear theory can be improved upon by incorpora- 

ting some effects of the fluctuations in the lowest order orbits zo (hpree,  1966; 

Weinstock, 1968, 1969; Birmingham and Bornatid, 1971; Mikhailovskii, 1964; 

Al'tshul' and Karpman, 1965; Orszag and Kraichnan, 1967; Aamodt, 1967; 

Gaieev, 1967; khtmaru, 1970; Rudakov and Tsytovich, 1971; Volk et al., 1973). 

The fluctuations thus assist in removing particles from correlated regions of 
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phase space. Jones, Kaiser, and Birmingham (1973) propose a partial averag- 

ing procedure and show that for the pitch angle scattering problem ordinary 

quasi-linear theory is modified by the replacemeut of c1 by ( p2 + 6B2/Bo2 )'. 

The correlation time q / v  ( p 2  + 6B2/BO2)' is thus finite for all regions of phase 

space. 
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