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SUMMARY

The experimental results of the program are presented. The object of
this program was to provide technology for fan drive turbines utilizing very

high stage loading. A four—-stage turbine was tested with and without outlet
turning vanes.

The four and one-half stage turbine achieved a total-to-total efficiency
of 0.853 at the design equivalent speed (N/J@Z} = 2171.2 rev/min) and design
total~to~total pressure ratio (PTllPT3 = 2.66).

The outlet turning vanes were successful in turning the turbine exit flow
to axial at all of the operating conditions investigated. The test results
indicate that approximately 0.5 percent loss in overall 4-1/2-stage turbine
efficiency at 100% speed and design work is attributed to the outlet turning
vane performance when based on measured turbine exhaust total pressures.
However, a difference of only 0.08 percent loss in performance was indicated
when based on calculated exhaust total pressure.

The 4-1/2-stage turbine radial efficiency profile showed high efficiency

in the pitchline region with a slight decrease toward the tip and a heavy loss
in the hub region.

Reynolds number testing, accomplished by varying the inlet pressure (density
level), indicated decreases in efficiency and equivalent weight flow with
decreasing Reynolds number. Radial efficiency profiles indicated the hub region
sustained the greatest increase in loss with decreasing Reynolds number.



INTRODUCTION

A twenty-one month analytical and experimental investigation program was
conducted to provide technology for fan drive turbines utilizing very high
stage loading. The technology is specifically applicable to multi-stage config-
urations for advanced high bypass ratio, direct lift turbofan propulsion '
system applications.

The expanding role of the turbofan engine stems from its inherent design
flexibility to exploit the cycle advantage afforded through a small gas gen-
erator core in conjunction with a fan selected to provide improved fuel con-
sumption and thrust characteristics. Advanced research investigations of the
" propulsion requirements for direct 1lift fan engine systems indicate these
systems will have high bypass ratio turbofan engines.

The size of a lift engine is as important as its weight. A V/STOL air-
plane will require twelve to fourteen of these engines to be mounted, involving
considerable pod area and weight. If twelve or more 1lift engines are installed
per airplane, it is apparent that engine cost will be a significant factor in
the total airplane cost. Since number of parts and components has an effect

on cost, there is an incentive to reduce the number of stages in a fan drive
turbine.

The foregoing considerations of V/STOL engine requirements suggest the
following fan drive turbine requirements:

1. Minimum number of stages (short, less cost)
2. Some SFC penalty acceptable (relative to cruise engine)

Combined with the low rotor speed (non-geared), these requirements imply
a fan drive turbine with meanline average loading (gJAh/2IU_2) in the 2-2.5
range and efficiencies in the 80% to 85% range for lift engine operation. A
fan drive turbine design of this type can save two to three stages with min-
imum impact on lift engine fuel consumption, while having a beneficial effect
on installation weight, drag, and cost.

The specific objective of this program was to design, build, and test a
very highly loaded four-stage fan drive turbine with outlet turning vanes.

The program was divided into two phases encompasssing eight task items of
activity. The first phase covered Task Items I and II. The purpose of Task I
was to investigate parametric turbine velocity diagram studies. Task II
involved selecting one turbine design for which detailed aerodynamic, mechan-
ical, and rig modification sub-tasks were performed. The results of Tasks I
and II were reported in Reference 1.

The second phase covered the remaining tasks of this program including
the following: (a) fabrication and procurement of turbine blading, casing



pieces, and running gear, (b) vibration bench testing and fatigue endurance
testing of rotor blades, (c) modification of turbine rig, (d) instrumentation
of turbine test section, (e) performance test of turbine, and (f) analysis of
performance tests and writing of performance report. The purpose of this
report is to present the results of the task items completed in Phase Two of
this program.



TURBINE

AERODYNAMIC EVALUATION

Requirements -~ The analysis and design of the 4-1/2-stage fan drive tur-
bine which was investigated are presented in Reference 1. The turbine design
requirements are presented below:

Constant pitch diameter
Number of stages
Equivalent weight flow
Inlet swirl.angle

Exit swirl angle with turning
vanes

Velocity leaving outlet turning
vanes related to inlet critical

velocity

D~-Factor of outlet turning
vanes at mean radius

Average mean radius loading
(gJAhlzzUPZ)

Equivalent specific work

W/TEYPT at inlet

N//E;

Equivalent mean blade speed
(constant for all stages)

19.00 in. (48.26 cm.)

4-1/2

25.07 lbm/sec (11.37 kg/sec.)
0.0 degrees

0.0 degrees

0.376

0.4
2.5

25.88 BTU/lbm (60242.32 joules/kg

38.85 1bm—-v° R/(sec—lbf/in2
(25.55 kg-v° R/[sec-n/cm?])

95.33

180 ft/sec (54.86 m/sec)

Configurations Tested - A 4~1/2-stage turbine with constant pitchline

diameter was tested in an air turbine facility to obtain detailed design and
off design aerodynamic performance data of the Very Highly lLoaded Turbine '

reported in Reference 1.

The design percent total energy produced by each stage

(Ahgtage/Ahturbine) was 28.5% on stage ome, 26.5% on stage two, 26.0% on stage

three, and 197 on stage four.

The corresponding aerodynamic pitchline loadings

(gJAh/ZZUPZ) for each stage were 2,85, 2.65, 2.60, and 1.9 for stages one,

two, three, and four respectively.

The turbine design velocity diagram is

presented in Figure 1 and the flowpath is showm in Figure 2.



The turbine was also tested as a four stage configuration in order to assess
the design and off design performance of the Outlet Turning Vanes.

Photographs of the turbine blading used in the test program are presented
in Figures 3 through 16.

TEST APPARATUS AND INSTRUMENTATION

Test Facility ~ The two turbine configurations were tested in the General
Electric Company's Evendale Air Turbine Test Facility, which is a dual purpose
facility capable of evaluating either single stage high pressure turbine or
multistage fan drive turbine performance. Figure 17 shows a typical test
facility configuration.

Turbine air is supplied from the Central Air Supply System of the Com-
ponent Test Complex, which consists of an arrangement of five multistage
centrifugal compressors driven by synchronous motors through speed increasing
gears. Staging these compressors in series or parallel or using them as
exhaustors provides the various modes of operation normally required for the
turbine operation. The compressor discharge air is then directed through
various auxiliary systems in order to provide air that is filtered to ten
micron particle size, dried to minus 70° F dewpoint, and indirectly heated to
the desired temperature by passing it through a heat exchanger. Flow enters
the test section through a specially shaped scroll which smoothes out flow
disturbances and provides a uniform stream to the turbine inlet. Air enters
the first stage nozzle through a convergent bellmouth section and a constant
annular passage approximately three inches long. Turbine discharge air leaves
through a constant annular passage approximately nine inches long and expands
into the exhaust plenum.

The generated turbine horsepower is extracted by means of a low speed
waterbrake, specifically designed for this test series, which was directly
coupled to the turbine shaft by flexible couplings and a short spool piece.
This waterbrake design provides excellent speed stability throughout the entire
turbine operating map.

A two-level trip system is used to guard against overspeed and excessive
temperature or vibrations. The level 1 trip is signaled by an overspeed or
bearing over-temperature. Level 2 is signaled by excessive vibrations or
critical support system temperatures or pressures.

The turbine facility control console is located in the Test Cell Control
Room, illustrated in Figure 18. All the necessary controls and critical tur-
bine or facility monitoring instrumentation are strategically located to enable
one man control of the entire test facility. This feature is a direct result
of the utilization of analog closed-loop control circuits for setting and
maintaining all prime turbine variables. Turbine parameters of inlet temper-
ature, inlet pressure, speed, discharge pressure, and rotor thrust bearing load
can all be maintained automatically at pre~set values.



Data Acquisition System - The data acquisition system consists of a dig-
ital recorder linked to a paper tape and paper punch tape printer. A total
of 61 temperatures and 236 pressures, as well as other specific turbine per-
formance parameters, were recorded by the digital recording system.

Temperature measurements were obtained with precision manufactured
Chromel-Alumel thermocouple wire. Sensors in any one plane of measurements
use wire from one spool. Calibration samples of wire were cut from each sensor
lead and both samples and sensor leads were oven cured for 28 hours at approx-
imately 400° F. The wire samples were then calibrated over the expected tem-—
perature range against a Platinum Resistance Thermocouple which is traceable
to the National Bureau of Standards, resulting in correction curves which were
applied to the temperature measurements in the data reduction program.

Calibration curves were also established to determine temperature recovery
at various expected Mach number ranges and flow incidence angles using a
specially designed calibration stand with a 2.5 inch free jet nozzle capable
of a Mach number range from 0.2 to 1.0. Corrections were made in the data
reduction program using the calibration curves.

The thermocouple leads terminate in a Copper Alloy Thermal Sink (CATS),
which is thermally insulated to minimize temperature gradients. To arrive at
the absolute value of any temperature sensor, the absolute temperature of the
CATS block was measured, using both a water—ice bath reference and an electron-
ically controlled Ice Point Reference System. The latter was used to determine
absolute temperature levels, but both systems were continually compared. The
electrical output of each thermocouple was measured at this CATIS block and the
signal was amplified and directed to the digital recorder.

Turbine rig pressure measurements were obtained by the use of precision
strain gage pressure transducers which convert pneumatic signals to electrical
outputs. The pressures enter the control room pneumatically and terminate in
electrically controlled scanners which systematically direct each pressure
signal to a transducer. The transducer electrical outputs were amplified and
directed to the digital recorder. All transducers of this type have a common
excitation and output amplification. Each data reading contains the excitation
voltage sensed at the transducer, the transducer zero, and a known calibration
signal which was recorded through all its associated electrical circuitry. The
repeatability of these parameters was continually monitored to preclude any
measurement errors.

Pressure calibrations were performed prior to each test run using a
precision dead weight tester for above-atmospheric calibrations, and a quartz
manometer for sub-atmospheric calibrations. Both units were frequently cali-
brated and their precisions are directly traceable to the National Bureau of
Standards. All pressure transducers used have characteristic curves compiled

in a computer library file, to which each pre-run calibration was compared for
discrepancies. ’



The digital recording system is linked to the General Electric 635 Computer
by means of a GE Terminet 300 located in the Control Room. This feature

enabled reduced data to be printed out in the Control Room within five minutes
of the reading of a test point.

Instrumentation - Figure 19 shows the location of the instrumentation used
in the testing of the two turbine configurations.

Temperature and pressure instrumentation was mounted on the leading edge of
the inlet strut frame, station 0, Figure 19, on each of ten struts which were
spaced 36 degrees apart, and located approximately 12 inches upstream of the
first stage stator., Temperature was measured with 25 Chromel-Alumel thermo-
couples mounted in high recovery stagnation tubes affixed to five of the struts
72 degrees apart. The thermocouples were grouped five to a strut and were
located radially at the area center of five equal annular areas. Total pressure
was measured by 25 Kiel-type probes located on five alternate struts, also 72
degrees apart, and located in an identical manner as the thermocouples. These
pressures were measured independently by means of the scanner-transducer
system and then arithmetically averaged in the data reduction program. They
were also pneumatically averaged, using a specially designed averaging block,
measuring an average output on a single pressure transducer. The temperatures
at this station were used for turbine inlet temperature.

Inlet static pressure was measured with five equally spaced static pres-
sure taps located on both the inner and outer casings in a straight annular
section about 2-1/2 chord lengths upstream of the first stage stator, Station
1.0, Figure 19. These static pressure taps were used to check the circumferential
uniformity of the flow and to calculate the turbine inlet total pressure. Five
Kiel-type total pressure probes were also installed in the inlet plane and

spaced 72 degrees apart to serve as a check of the circumferential uniformity
of the flow. '

Interstage static pressures were measured with four static pressure taps
installed 90 degrees apart at the leading and trailing edge planes of the
stator blade rows on both the imner and outer bands, Station 1.2 through 1.8.
The circumferential location of the pressure taps was selected to coincide with
the position of the mean streamline. A similar arrangement of static pressure

taps was used at the leading edge plane of the outlet turning vanes, Station
1.9 and 1.95.

Four turbine outlet static pressures were measured on both the inner and
outer casings at Station 2 and approximately one inch downstream of the outlet
turning vanes. These static pressure taps were spaced 90 degrees apart. Turbine
outlet total temperature, total pressure, and flow angle were also measured at
Station 2 over an angle subtending about 11 degrees by a radially and circum~
ferentially traversing combination probe. A fast response pressure differential
servo-system aligned the probe with the flow and provided an electrical output
proportional to the flow angle. Total temperature, total pressure, and flow
angle were recorded on X~Y chart recorders as functions of either radial immer-
sion or circumferential position. The instrumentation at Station 2 was used
to calculate outlet total pressure as described in Appendix A.



At Station 3, approximately four inches downstream of the outlet turning
vanes, turbine outlet total temperature and total pressure were measured with
six fixed circumferential arc rakes 60 degrees apart, located radially at the
centers of six equal annular areas. A total of 36 total temperatures and 72
total pressures were measured. Each rake contained twelve Kiel-type pressure
elements located side-by-side and six shielded thermocouple probes side-by-
side. The total pressures were averaged both arithmetically and pneumatically
in the same manner as the inlet pressure measurements. Six static pressure taps

were also installed on the inner and outer walls at this station and were
located 60 degrees apart.

Four turbine outlet static pressures were measured on both the inner and
outer casings immediately aft of the outlet turning vanes and approximately
one inch downstream of the outlet turning vanes. These static pressure taps
were spaced 90 degrees apart. Six static pressure taps were also installed

on the inner and outer walls about four inches downstream of the turning vanes
and were located 60 degrees apart.

Air flow to the turbine was measured using a calibrated circular arc
venturi which was operated at critical flow conditions. The venturi inlet
pressure and temperature were measured using wall static pressure taps and

Chromel-~Alumel air thermocouple probes, respectively, located upstream of the
venturi throat.

Three independent speed measurements were provided by an indicating system
consisting of a 60-tooth gear attached to the turbine shafting and three sta-
tionary magnetic sensors located very close to the gear teeth. Electrical
impulses resulting from the passing of each tooth provided an electrical fre-
quency proportional to turbine speed. Electrically time integrating this
signal provided the speed indication, accurate within + 1 rpm. During the
course of each data reading, twelve different samples of speed were recorded
and arithmetically averaged.

Two independent techniques were employed for the measurement of shaft
torque. The primary system consisted of a dual bridged shaft-mounted torque
sensor. The strain sensitive spool section was located between the turbine
shaft and the waterbrake shaft with a specially designed slip ring mounted
behind the waterbrake to transmit electrical signals to the digital recorder.
Each bridge was excited with its own independent electronics system and read
out or displayed through the digital data acquisition system. The secondary
torque measurement was obtained by means of a load cell located beneath a
lever arm attached to the cradled waterbrake stator housing. The load cell
also employed independent signal conditioning and readout electronics.

Torque calibrations were performed in place using a precision torque arm
and dead weights, whose weight values are traceable to the National Bureau of
Standards. Dead weight calibrations were conducted prior to each test run to
verify repeatability of torque zeros and bridge linearity. In addition, exten-
sive temperature calibrations were made to define torque zero and modulus

changes over the operational temperature range, even though these effects are
less than 0.25 percent.



TEST PROCEDURE

The turbine inlet conditions were set at 720° R and 45 psia, with the
exception of the test points noted in the table below. These test points

could not be set at the above conditions due to test facility and waterbrake
limitations.

P /PS Percent Design P, » psia Ty s °R
1l 3 Speed 1 0
2.28 60 45 700
1.97 80 38 705
1.97 90 38 710
1.97 100,110,120 38 717
1.78 60,80, 90,100,110,120 38 693

. The performance mapping of the turbine was accomplished by selecting
test points within the following range of variables:

® Speed - 60, 80, 90, 100, 110, 120 percent design speeds

® Total-to-total pressure ratio - from a maximum corresponding to 125%
design work at design speed to a minimum equal to the pressure ratio
that produces 60% design work at design speed.

Additional testing was done in the vicinity of the design point at 720° R

and inlet pressures of 25, 38, and 50 psia to investigate effects of Reynolds
number.

The following performance data were obtained at each test point:

) Turbine weight flow

® Rotative speed

] Torque

] Inlet total temperature

° Inlet total and static pressures

] Outlet absolute flow angles

] Outlet total and static pressures



] Outlet total temperatures
° Flowpath hub and tip interstage static pressures.

At each test point three complete sets of data were recorded and processed

through the on-line computer which permitted an immediate evaluation of the
reduced data.

Key performance parameters were continually monitored to insure accuracy
and consistency of the test data. The design point was periodically reset

throughout the testing to monitor the repeatability of the facility and the
. design point calculations.

One radial and three circumferential traverses were made at each test
point to record the turbine exit total pressure, total temperature, and
absolute flow angle. The circumferential traverses were taken at 10, 50, and
90 percent of the outlet turning vane height.

A detailed turbine exit survey was taken at the design speed and design
pressure ratio. The survey included three radial traverses at 0, 50, and
100 percent of the circumferential traverse sector which was an arc of 11.32
degrees, and seven circumferential traverses at 10, 20, 30, 50, 70, 80, and
90 percent of the outlet turning vane height.

DATA REDUCTION PROCEDURE

Turbine Overall Performance - Two calculation schemes were used to reduce
the overall performance data. The two methods differed in only one respect.
The preliminary test cell data reduction program used measured exit total pres-—
sures for all performance calculations whereas the final data reduction was
performed using calculated inlet and exit total pressures. This exit total
pressure was calculated from continuity using outlet total temperature, outlet
static pressure, measured weight flow, and outlet flow angle. The outlet total
temperature was derived from the inlet total temperature, specific enthalpy
drop obtained from the torque, speed and weight flow measurements. The outlet
static pressure was calculated as the average of the measured exit hub and tip
static pressures. The outlet flow angle was taken as an integrated average
flow angle from the traverses. A more detailed description of all of the cal-
culation procedures used in the data reduction may be found in Appendix A.

The following overall performance parameters were determined for each of
the three readings taken at each test point:

1. Calculated inlet total to outlet total pressure ratio as obtained
from indirect measurement.

2. Calculated inlet total to outlet static pressure ratio as obtained
from indirect measurement.

3. Equivalent speed.

4. Equivalent weight flow.
10



5. EQuivalent weight flow-speed parameter (product of equivalent speed
and equivalent weight flow).

6. Equivalent torque.

7. Equivalent specific work.

8. Ideal equivalent specific work.

9. Efficiency based on calculated total-to-total pressure ratio.
'10. Blade-jet speed ratio based on total-to-static pressure ratio.

These parameters are tabulated in Table I.

Outlet Turning Vane Exit Survey Calculations ~ The total pressure, total
temperature, and absolute flow angle, which were recorded during the turbine
exit surveys at the design point, were used in the construction of contour

plots showing local efficiency. The local efficiencies were calculated from
the following parameters:

° Measured inlet total temperature

o Calculated inlet total pressure based on continuity using measured
inlet static pressure and measured airflow

@ Local exit total temperature measured by the traverse probe

® Local exit total pressure measured by the traverse probe

Reynolds Number Calculations - The turbine Reynolds number was varied by
operating the turbine over a range of inlet pressures (densities) while main-
taining the design pressure ratio. A Reynolds number for each bladerow was
calculated on the basis of leaving gas velocity, throat dimension and suction
surface length of the particular blade as shown in the following expression
which 1s derived in detail in Appendix B.

R, ==(12wzz, >
1 Hn d° h

i

where:

measured airflow (1bm/sec)

suction surface length (inches)
bladerow exit viscosity (1bm/sec-£ft)
number of airfoils

height of blade at throat (inches)
blade throat dimension (inches)

ith stage

8 &8 @ u

Hon‘s‘w': o =
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- The turbine overall Reynolds number was obtained by energy weighting the
individual bladerow Reynolds numbers as follows:

m

m
R. = I Ah,
Ry = [ ong Ry

EXPERIMENTAL RESULTS AND DISCUSSION

% bh,
i=1 1

Turbine Overall Performance ~ The reduced data and calculated parameters
are presented in the following curves:

a. Equivalent torque versus calculated total-to-total pressure ratio.

b. Equivalent weight flow versus calculated total-to-~total pressure
ratio.

C. Equivalent specific work versus calculated total-to-total pressure
ratio.

d. Total-to-total efficiency versus blade-jet speed ratio.

e. Total-to-total efficiency versus calculated total-to-total pressure
ratio.

f. Equivalent specific work versus equivalent weight flow speed
parameter with lines of constant calculated total-to-total
pressure ratio, constant speed, and constant efficiency superimposed.

The above curves utilize constant values of percent equivalent design speed
as a parameter and are presented in Figures 20 through 25.

Figures 26 through 29 show comparisons of the reduced data for equivalent
torque, equivalent weight flow, equivalent specific work, and efficiency,
respectively, to the pre-test predictions originally presented in Reference 1.
The data show agreement with predicted trends but not with the predicted
absolute levels. The disagreement in magnitude was primarily due to the
selection of loss coefficients (such as bladerow efficiencies and rotor
and stator total pressure recovery factors) which are considered as constants
in the vector diagram performance calculations.

The lower predicted design point equivalent weight flow is considered
to be a mismatch between the stage one stator physical throat area and
the design intent.

Normalized interstage hub and tip static pressures versus axial station
are presented in Figure 30 for the design speed at each turbine pressure
ratio tested. These plots indicate that as turbine total-to-total pressure
ratio increases the first stage hub reaction decreases from positive to
negative. This downward trend was predicted but the absolute wvalue of the

12



measured reactions was lower than the level predicted by the Turbine Computer
Program.

Turbine Exit Survey - Figures 31 and 32 present the efficiency contours
of the 4-1/2- and the 4-stage turbine configurations as a function of percent
radial height and circumferential position. The local efficiencies were
determined from the radial and circumferential total pressure and total
temperature traverse surveys in the turbine exit plane. The 4-1/2-stage
efficiency contour plot covers an arc of 2.1 outlet turning vane pitches
and the 4-stage efficiency contour plot covers an arc of 1.56 fourth stage
stator pitches. These plots illustrate the large radial efficiency gradients
in the hub and tip regions of the flowpath. The 4-1/2-stage contours show
the pronounced outlet-turning vane wakes especially in the vicinity of the
tip. The low efficiency regions at the hub are considered to be the strong
secondary flow fields generated by the high turning stator and blade airfoils.

The reader is cautioned against drawing conclusions about the relative
performance of the two configurations from these plots since their degree of
accuracy is only sufficient to make qualitative but not quantitative judgment.

Figure 33 compares the turbine radial total pressure ratio distributions
for the two configurations. Caution should be used when interpreting this
plot since the two turbines were operating with slightly different equivalent
energy extractions. This accounts for the exit total pressure for the 4-1/2-
stage build being slightly greater than that for the 4-stage turbine.

A comparison of the radial exit swirl angle profiles for the two config-
urations are shown in Figure 34. The plot graphically shows the reduction in
swirl achieved by the outlet turning vanes which turned the flow from posi-
tive 30 degrees at the inlet pitchline to minus one degree at the exit
pitchline. These curves were drawn by averaging the radial swirl traverses

made at three circumferential positions for the major design point of each
configuration.

The design point radial total-to-total efficiency profile shown in
Figure 35 for the 4-1/2-stage turbine was constructed by mass weighting the

circumferential traverses of total pressure and total temperature at seven
radial positions.

The high efficiency at the pitchline is a measure of the full potential
of the turbine. The gradual fall-off in efficiency toward the tip and the
steep decrease toward the hub are indications of the effects of strong secon-
dary flow fields generated by the high turning bladerows. Additional improve-
ments in the hub and tip regions are needed to emable the bladerows to fully
utilize their potential.

Reynolds Number Effects - The turbine Reynolds number was varied for the
4-1/2-stage turbine by operating over a range of inlet pressures (thus changing
the density level) while maintaining a constant turbine pressure ratio.

13



In Figure 36, a plot of total-to-total efficiency versus blade-jet speed
ratio at constant total-to~static pressure ratio and with lines of constant
inlet pressure is presented. The plot illustrates the effects of varying inlet
pressure on turbine efficiency as the turbine operates through its speed range.
The increase in efficiency becomes smaller with each increase in turbine inlet
pressure (and corresponding increase in turbine Reynolds number) until at some
point, no further efficiency increase will result. The curves show that the

inlet pressure at which no efficiency increase occurs was attained in this
test. "

Radial efficiency profiles based on fixed rake data for two inlet pres-
sures are presented in Figure 37. The profiles were constructed for inlet
total pressures of 45 psi and 25 psi, corresponding to high and low Reynolds
numbers, respectively. Figure 38 illustrates the change in efficiency between
the low and high Reynolds number points. This figure indicates that the

greatest change in efficiency due to Reynolds number effects occurs in the hub
region. g

Plots of total-to-total efficiency and equivalent weight flow versus
turbine Reynolds number appear in Figures 39 and 40. Each point on the plots
represents data obtained at or near the design operating point. Both turbine
efficiency and equivalent weight flow increase with increase in Reynolds number’
up to a point where Reynolds number is approximately one million. Above this
value, efficiency and equivalent weight flow level off at a constant value.

Outlet Turning Vane Performance ~ Figure 41 depicts the total pitchline
turning done by the outlet turning vanes at the design and off-design operating
points. This curve illustrates that the outlet turning vanes were highly
successful in being able to turn the turbine exit flow to axial at all of the
operating conditions investigated.

Figures 42 and 43 show the results of two independent methods used to
determine the percent turbine performance loss attributed to the outlet
turning vanes. It is assumed that this loss is reflected by the difference
in efficiency between the 4~ and 4-1/2-stage configurations at a given
equivalent specific work extraction. Figure 42 was based on calculated exit
total pressure and it indicates approximately 0.08 percent additional loss
in overall efficiency at the turbine design point. Figure 43, however, was
based on measured exit total-pressure and it shows the 4-1/2-stage design
point efficiency to be approximately 0.5 percent below the 4-stage turbine.
This level of loss appears to be more realistic when compared with compressor
outlet guide vane performance.

Recommended Improvements - The analysis of the data acquired during the
air turbine testing of the 4- and 4-1/2-stage configurations indicate specific
areas of performance deficiencies in the 4-~1/2-stage very highly loaded fan
turbine. Several recommendations to improve the overall design and off design
performance based on these test results are outlined below:

] Utilize leaned stators as reported in Reference 2. This will
decrease the rotor hub inlet relative Mach numbers below their
current levels which are approximately 0.7. Leaned stators will

14



also decrease the leakage loss across the rotor tip shrouds by
decreasing the axial static pressure drop across the blade tip
section.

° Use tandem stator airfoils in stages 2, 3 and 4. Reference 3 indi-
cates the performance of a highly loaded two-stage turbine was
increased 1.2 percent by installing a tandem stator in stage two.
Tandem airfoils alsoc increase the performance in the turbine hub
region.

] Redesign the outlet turning vane and remove the design criteria that
the diffusion factor equal 0.4. Parametric studies preceding the
design of the outlet turning vane indicated higher performance could.
be achieved with diffusion factors higher than 0.4.

The design point measured radial efficiency profile indicates a signifi-
cant loss in performance in the hub region of the turbine. It is suspected
that this is the manifestation of the strong secondary flow fields generated
by the high turning blade rows. In view of the experimental results it is
highly desirable to test additional configurations to isolate the performance
of the individual stages and to determine the nature of the low performance
in the hub region.

15



MECHANICAL EVALUATION

The rotor blades were vibration tested under laboratory conditions to
establish their fundamental and higher frequency modes. Fatigue tests were
conducted to establish the endurance capability of the blades while operating

in an air turbine enviromment. These tests substantiated the analytical
effort reported in Reference 1.

LABORATORY TEST OF ROTOR BLADE AIRFOILS

Vibration Testing ~ A series of vibration tests were conducted to sub-
stantiate the predicted natural frequencies reported in Reference 1. The
fundamental and higher frequency modes of vibration were determined for
fixed- fixed (restrained at the hub and tip) end conditions.

The top tangs on the shrouds were machined off and a steel block was
brazed to the top of the shrouds to allow for a tight clamping surface. The
clamping was done across the pressure and suction sides of the blade's shroud
region to simulate the "locking up" of the blade's shroud during air turbine
operation. Due to the tight clamping necessary to get a good frequency
response, the actual end condition imposed on the blades was a fixed end con-
dition. The dovetail-shank region was clamped in the same manner. In the
actual turbine, the blades will lock up in the tangential direction and should
be free to move in the axial direction. To get a rigid clamp of the blade in
the tangential direction at the shroud, and then allow an axial displacement
to occur, is not feasible in a laboratory setup. This is due to the mass of
the clamping setup and the lack of knowledge to the degree of displacement
necessary to simulate actual turbine operation. The predicted blade analysis
was done for each blade under fixed-fixed end conditions for comparison to the
experimental results and is presented in Table ITII.

Campbell Diagrams incorporating the most probable modes of vibration are
presented in Figures 44 through 47. The close agreement between the theoretical
results and experimental data for the fixed-fixed end conditions provides the
necessary credibility to the predicted axial modes.

Based on the theoretical analysis and the experimental results it was

concluded that the blades would not experience any excessive vibrations during
air turbine operation.

Fatigue Endurance Testing ~ Fatigue endurance testing was performed on
test specimens from each blade row. The top portions of the blades were cut
off which increased the first flex frequency response and shortened the fatigue
testing time. The blades were clamped at the dovetail and fatigued in first
flex to get an indication of the blade material endurance strength at an "A"
ratio (cgafom) of infinity. These stresses are shown on the Goodman diagram
in Figure 48. The stress levels experienced by the test specimens were measured
by strain gages located in the most likely regions of failure. First flex was
used since it is usually the easiest to instrument. Runout for a particular
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stress level was set at a million cycles before it was increased in increments
of 10 KSIDA. Considering testing time and the cyclic endurance strength of
the 410 stainless steel, a million cycles to failure would adequately indicate
the level of the endurance strength. The stage one blade failed at 80 KSIDA
in the trailing edge at 2.5% span. This is approximately 20 KSIDA less

than average properties. The reason was due to a sharp trailing edge which
caused a stress concentration in that region. Stages two and four failed

in the trailing edge region at the stress level depicted on Figure 48. Stage
three failed on the leading edge above the root fillet. Photographs of

the blade failures are shown in Figure 49. The blades would have experienced
failure at different points if they had been restrained at the tip, due

to a different strain distribution. It isn't the failure location that

is important in this particular test, but the level of stress at failure.

The last three stages exhibited an endurance level above the curve on the
Goodman Diagram. This curve is based on 107 cycles to failure and since a

million cycles were used as a limit before increasing the stress, the test
values would be above the curve.

Table IV illustrates the number of cycles run at the failure stress.
Stage one, two and three were started at 50 KSIDA with 10 KSIDA incremental
increases after 106 cycles until failure. Stage four was started at 70 KSIDA
with incremental increases until failure. )

The laboratory fatigue data compared favorably with the average fatigue
characteristics for the 410 stainless steel. The material in a machined
blade configuration suffered little or no fatigue strength deterioration relative
to the polished barstock specimens established as the norm. It was concluded
that the rotor blades had no inherently wesk points and had sufficient fatigue
endurance capabillity for successful air turbine operation.
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SUMMARY OF RESULTS

A four and one~half stage turbine was tested in order to evaluate the
performance of a very highly loaded fan turbine with outlet turning vanes.
The most significant results of the testing and analysis are summarized below:

1.

The four and one-half stage turbine achieved a total-to-total turblne

~eff1c1ency of 0.853 at the design speed and pressure ratio

(N/V6_ = 2171.2, Py,/Pp.= 2.66).

‘The four stage configuration was tested to isolate the performance

of the outlet turning vanes. The test results based on measured
turbine exhaust total pressures indicated a 0.5 percent loss in four
and one-half stage turbine efficiency can be attributed to the outlet
turning vane performance. However, a difference of only 0.08 percent

loss in performance was indicated when based on calculated exhaust
total pressure. '

The outlet turning vanes were successful in turning the turbine exit
flow to axial at all of the operating conditons investigated.

High efficiencies in the pitchline region were indicated by the radial
efficiency profiles. Efficiency drops were noticed toward the hub
and tip with the effect more pronounced in the hub region.

Reynolds number testing showed that total-to-total efficiency and
equivalent weight flow decrease with decreasing Reynolds number.
Radial efficiency profiles indicated the greatest increase in loss
with reduced Reynolds number occurs in the hub region.



APPENDIX A

OVERALL PERFORMANCE CALCULATION

Exit Flow Angle - In order to evaluate turbine performance on the basis of
turbine exit total pressure calculated from continuity, an average turbine
exit flow angle, I', was determined. This angle is the absolute value of the
deviation from axial direction, irrespective of sign. The turbine exit flowpath
was divided into streamtubes, and measured values of swirl angles, total pres-
sure, and total temperature were used to satisfy continuity within each stream-
tube. The turbine exit measured static pressure was assumed to vary linearly

from hub to tip. The determination of the average turbine exit flow angle
proceeded as follows:

m
(p V Aann cos r)avg = 151 g Vi Ai cos Pi
(.‘I:._) -1
here: o, V, =P [YE |2 (ﬁ) Y/, (fg) Y
i ,/RT y=-1 P P
gV, 54 N8

PT = Measured total pressure at center of i~th streamtube.

PS = Static pressure at center of i-th streamtube based on
linear variation in measured static pressure from hub
to tip

-TT = Measured total temperature at center of i-th streamtube

T = Swirl angle

p = Density

) = Absolute velocity

A = Area

m = Number of streamtubes

i = Subscript denoting streamtube valué

ann = Subscript denoting value for total annulus

avg = Subscript denoting average value for total annulus

The average velocity representing the turbine exit flow field was calcu-
lated by conserving the axial and tangential components of momentum, such that
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Vu = Tangential component of absolute velocity
Vz = Axial component of absolute velocity
Wi = Weight flow through i-th streamtube

The average turbine exit total temperature was determined through an
energy balance of the annular streamtubes.

( m m
T =z W T 5 W,
Tavg i=1 Ti> i=1 *

The average density at the turbine exit was obtained from the equation
of state. \

PS
N - avg
avg R TS
avg
v2
where T = T - _av.
S T
avg avg 2g Jc

20



Calculated Outlet Total Pressure - After obtaining the average turbine
exit flow angle, the exit total pressure was calculated in the following
manner:

Turbine exit Mach number, M3, was determined from the following relatiomnship:

W /R TT
3 ¥-1 ,2
Yyg M 1+ M
PS A.al cos ravg 3 2 3

Turbine exit total temperature, 'I'T , was determined as follows:

3
Ah
TT3 Tp =2
o P
21 Nt
where Ah 60 Jv

N = Turbine rotative speed
T = Measured torque

Tr, = Measured turbine inlet total temperature

W = Measured turbine weight flow

Inlet Total Pressure - Turbine inlet total pressure was calculated in the
same manner as the turbine exit total pressure. The calculation used measured
alrflow, measured inlet total temperature, the average of measured hub and tip
static pressures, and the assumption of zero inlet swirl angle.

Performance Parameters - The remaining parameters used in the overall
performance calculation were obtained as follows:

s = PT /14.696

1
ecr = TT°/518.688
€ = 1.0 (for vy = 1.4)

Equivalent Speed, N EQV = N/VBcr
Equivalent Weight Flow, WA EQV = Wecr e/é

Weight Flow-Speed Parameter, WAN EQV = WNe/606
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Equivalent Torque, TQ EQV = te/$

Ah 27 Nt

ecr 60 J ecr

Equivalent Specific Work, DH EQV =

Ideal Equivalent Specific Work, DHI EQV

x-1

P Y
4h = ¢ T 1-[ T3
P P

)
6 r) o cr
€L /ideal T,

Total-to-total Efficiency, ETA TT =

_ ( Ah)/ Ah>

it (e (e
cY cr /.,
1

Blade-Jet Speed Ratio, U/CO =

deal

9 1/2

v o= P l'i
Y



APPENDIX B
REYNOLDS NUMBER CALCULATION

The turbine Reynolds numbers were based on the energy weighted Reynolds
numbers of each blade row as. defined below:

_ <1n ) ///m
= z Ah z Ah
& g=1 1 fy f=1 I

where

R, = <12wz
1 wnd, hJy
and Ahi = Equivalent fractional energy extraction of i-th bladerow.

The viscosities uy were obtained from Reference 5.
The equivalent fractional energy extraction of each bladerow is derived

as follows. The velocity diagram energy for each stage can be divided into
two constituents assoclated with the stator and rotor leaving energies.
This division of the total stage energy is illustrated on the following

enthalpy-entropy diagram:

Enthalpy

Entropy
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The energies Ahj and Ahy can be expressed in terms of the stage velocity
diagram parameters as shown below:

A
Vi/ |11
Vy
1 VUZ
a1l
R2 U,
From the sketches,
Ah = & (u, v +U,V )
stg gJ 1 u 2 'u
1 2
Ah = 1 (U, V. sin + U,R, sin B, - U 2)
stg” gl ‘"1 '1 01 T FaRp S By Ty

With the appropriate combination of terms and algebraic manipulations
the above expressions can be simply expressed as:

Ul2 - U22
Mhgrg= Bhy + dh, + 5
where
2
v U U
my = oL (VA)(ZSiml-Vl.)
& 1 1
and
2
R U U
- 2 2 : __2
Ah2 = g7 R, 2 sin 82 R,
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2 2
v R,
The terms —2-53- and —2-;]- are the energy equivalents of velocity leaving

the stator and rotor respectively.
'U v U U
The terms [(%) 2 sin @y - %)] and [(-1-{2-> (2 sin 62 - EZ)]
1 1 2 2
are properties of the velocity diagrams at the stator and rotor exit planes.

‘The velocity diagram parameters used in this analysis for each blade row
were calculated using the Turbine Computer Program described in Reference 6.
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APPENDIX C
LIST OF SYMBOLS

Area (in}z, cm?)

Specific heat at constatnt pressure (ftzlsec2 °R, mz/sec2 °K)
Diameter (in., cm)

Throat dimension (in., cm)

Turbine energy extraction (Btu/lbm, joules/kg)

Stage energy extraction (Btu/lbm, joules/kg)

Height at bladerow throat (in., cm)

Blade or vane suction surface length (in., cm)
Mach number

Number of bladerows, streamtubes, or stages

Rotational speed (rev/min)

Number of vanes or blades

Static pressure (psia, newtons/cmz)

Turbine exit static pressure (psia, newtons/cmz)

Total pressure (psia, newtons/cmz) _

Turbine inlet total pressure, station 1 (psia, newtons/cmz)
Turbine exit total pressure, station 2 (psia, newtons/cmz)

2 °R, m2/sec2 °K)

Gas constant (ftzlsec
Rotor exit relative gas velocity (ft/sec, m/sec)
Reynolds number

Energy weighted overall Reynolds number

Static temperature (°R, °K)

Total temperature (°R, °K)

Turbine inlet total temperature, station 0 and station 1

(OR’ °K)



v
W
Ah/@cr

we  efs
cY

N g
cY
WNe /606

gJAh/ZU2

TT

cr

Turbine exit total temperature, station 2 (°R, °K)
Spacing (in., cm)

Wheel speed (ft/sec, m/sec)

Absolute velocity (ft/sec, m/sec)

Mass flow rate (1lbm/sec, kg/sec)

Equivalent speci%ic work (Btu/lbm, joules/kg)
Equivalent weight flow (1bm/sec, kg/sec)

Equvalent rotative speed (rev/min)

Weight flow - speed parameter (1bm/sec2, kg/secz)
Loading factor

Vane inlet absolute flow angle (degrees)

Vane exit absolute flow angle (degrees)

Blade inlet relative flow angle (degrees)

Blade exit relative flow angle (degrees)

Stage leaving swirl angle (degrees)

Turbine out flow angle (defined in Appendix A)
Specific heat ratio

Ratio of turbine pressure to pressure at standard sea level
conditions .

Yor §ry+a] Y/ - Ifrgptt YSL//(YSL_l)
Function of v defined as —;— [———]

2 2

Total-to-total efficiency

Squared ratio of critical velocity at turbine inlet temperature
to critical velocity at standard sea level temperature

Viscosity (1bm/sec~-ft, kg/sec-m)
Blade-~jet speed ratio

Density (in., cm)

27
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T
eq

Subscripts

a

B

Alternating stress (ksi, newtons/cmz)
Mean stress (ksi, newtons/cmz)
Torque (ft-1bf, m-newtons)

Equivalent torque, Teq ” te/§ (£t-1bf, m-newtons)

Alternating

Relative to rotor blade

Hub

Current axial station, stage, or streamtube,yor ideal
Mean

Pitch

Relative

Radial component

Tip

Tangential component

Ax1al component
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0,185

PITCH

Numbers Shown on Velocity Diagrams are Angles in Degrees and Mach Numbers

0.821 0,141 0,702
.58
0,796 0,145 0,700 0,135

o
58.6 I
0.818 0.147 0.669 62.8 44,3
. \ 54.5 53.3
0.684 60.0
/ 62.6 \ 55.2 \ 0,494
59.1 } 0.639 _\__\_ 0,596

/ 60.0 .
, o
. 0.582 0.760 0.139
0.144

, 63.8 0.706
57-!7 } 0.592 0.146

Figure 1. Turbine Design Velocity Diagrams.
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Four Stage Turbine Rotor Assembled.

Figure 3.



Stage One Rotor Assembled.
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F

»\M«n o

-

o

-

-

o

-
- -

e

ST

Stage Two Rotor Assembled

igure 5.

F

41



42

Figure 6,

Figure 7.

Stage Three Rotor Assembled.

Stage Four Rotor Assembled.
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Equivalent Torque, Teq, Ft-Lbsy
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Equivalent Weight Flow, Kg/Sec
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Equivalent Specific Work, Joules/Kg
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Equivalent Specific Work, Joules/Kg
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Equivalent Torque, Teq, Ft—Lbf
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Equivalent Weight Flow, Kg/Sec
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Equivalent Specific Work, Joules/Kg
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Total-to-Total Efficiency, Mgpp
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