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Section 1

INTRODUCTION

This manual contains a description of the Mission Analysis Evaluation and Space
Trajectory Operations program known as MAESTRO. MAESTRO is an all FORTRAN,
block style, computer program designed to perform various mission control tasks.

It is intended that this manual serve as a guide to MAESTRO, thereby providing
individuals the capability of modifying the program to suit their needs. Of most
importance to this'task, this manual contains descriptions of each of the subroutines
which comprise MAESTRO. These subroutine descriptions consist of inp_ut/ output
description, theory, subroutine description and a flow chart where applicable. The
programmer's manual also contains a detailed description of the commeon blocks, a

subroutine cross reference map and a general deseription of the program structure,



Section 2

MAESTRO STRUCTURE

MAESTRO is an all FORTRAN, block style, computer program designed to perform

various mission control tasks. These tasks include

Retro motor firing time and attitude determination, APROCH,
Midcourse correction determination, PROTO.

1
2
3. Verification of midcourse correction, MCVERF,
4 Lunar lifetime prediction, FOWARD.

5

Post-injection trim determination, ARMPIT.

The subroutines responsible for performing the mission control tasks are also shown
above. All of these subroutines are essentially self-contained except for PROTO which
controls the midcourse determination. The logic involved in this task is more complex

than the others, therefore, it will be discussed in detail later in this section.

All of the mission analysis tasks require a means of propagating the state forward in

- time. Subroutine FOWARD and its related subroutines accomplish this task. The
subroutines that make up subroutine FOWARD comprise the major portion of MAESTRO.
The second subsection describes the structure of FOWARD.

2.1  Main Control Logic

MAESTRO computation is initialized in the MAIN program. Figure 2.1.1 presents

a flow chart of this routine.

The first task of the MAIN program is to clear some common blocks and call subroutine
INPUTF. Subroutine INPUTF reads the input data cards and establishes INPUT and
FIELDM common blocks. MAIN calls subroutine CONTRL to initialize common blocks.
Most of the initialization is actually accomplished in subroutine SETUP2. After the
initialization process is complete, MAIN calls one of the mission analysis subroutines

to perform the desired analysis, The MODE flag of input common is used to key



the proper subroutine. The logic flow is returned to the input of data to initiate a

second case after the analysis is complete.

2.2 Trajectory Propagation, FOWARD

A call to subroutine FOWARD will propagate the state forward in time, The state will

be propagated by numerical integration or by the multiconic algorithm. Subroutine
MULCON is used when the  multiconic algorithm is employed to propagate the state.
Subroutines TIMEC, INTEG, EQNS, and ACCEL are employed for numerical integration.

Figure 2.1.1 presents a flow chart of the basic control logic involved in trajectory
propagation, The initial state is brought into the subroutines via STATE common.
The METH flag in INPUT common is used to determine the trajectory propagation
scheme. If the multi-conic technique is desired, subroutine MULCON is called and
the state propagated forward in that routine. If one of the numerical intregration schemes
is requested, subroutine FOWARD calls subroutine TIMEC to initiate the numerical
integration. As seen from Figure 2,1.1, the numerical integration logic consists of
looping through subroutines TIMEC, INTEG and RKSEVN or TWELVE. Each loop
through the subroutines numerically integrates the state one compute interval. The
size of the compute interval is determined in TIMEC. Thus, when flow returns to

" TIMEC at the end of a loop, the state in STATE common corresponds to the space-
craft's state at the end of the time step.

Subroutine INTEG is used to establish the integration array before integration and
determine the position and velocity vectors after the step is complete, An intermediate
array is used in the numerical integration subroutines RKSEVN and TWELVE. This
array is necessary because a variety of variables can be integrated. The trajectory
propagation flag, METH, determines which set of variables are transferred from
STATE common to the integration array in INTVAR common. After integration is
complete, the variables at the end 6f the state are transferred back into STATE
common. The position and velocity vectors are also determined because they are
needed for use in other auxiliary calculations after integration. The infegration array
separates the numerical integration logic from the trajectory propagation logic. Thus,

new numerical integration or trajectory propagation techniques can be easily added



without affecting logic in the other segment. Integration of other quantities can also
easily be included. For example, the equations which describe the state transition
matrix can be included in the numerical integration without any changes to the

numerical integration subroutines.

The actual integration that is carried out is a loop comprised of subroutines. EQNS,
ACCEL and RKSEVN or TWELVE, Subroutines RKSEVN and TWELVE are single

and multi-step numerical integration schemes. The derivatives of the quantities to

be integrated are determined in subroutines ACCEL and EQNS. EQNS contains logic
to determine the derivatives according to the trajectory propagation scheme employed.
The derivatives are transferred to the numerical integration routines via RATES of

INTVAR common.

There are many other subroutines besides the ones mentioned which are involved
in propagating the state forward in time. These routines are used in the determination
of shadow times, closest approach times, trajectory output and interpolation. Most

of the calls to perform these auxiliary calculations are made from subroutine TIMEC,

2.3 Midceourse Guidance Structure

The objective of the midcourse guidance package is to determine the velocity correction
which nulls a constraint vector at the target planet. The velocity correction is determined
through a generalized Newton-Raphson technique. The partial derivatives of the constraints

with respect {o the velocity correction are determined by finite differences.

The midcourse guidance calculations are initiated in subroutine PROTO, (see Figure 2.3.1).
PROTO's functions are to initialize constants, increment execution times, write the

midcourse tape and oufput displays.

The Newton-Raphson logic to determine the correction is contained in a loop inside
subroutine MDCORS. This loop uses subroutines SENSO, MCBURN and TARGET to
perform many of the midcourse calculations along with subroutine JET to pre-target.
Subroutine JET uses a variety of conic techniques to determine an initial value of the

correction velocity. This velocity is used as the initial guess in the Newton-Raphson



iteration process., The iteration process consists of the following steps in MDCORS:

1. The constraint vector is determined at the target planet. Subroutines
SENSO, MCBURN and TARGET are required. SENSO sets up the logic
to propagate the state to the target planet and calls MCBURN to apply
the current correction. SENSO next calls FOWARD to obtain the state
at the target planet and then TARGET to convert the state to the con-

straint vector.

2. Tests are made on the constraint vector to determine if each component
ig within tolerances. If the vector is within the desired tolerances,

the solution is converged and flow transferred back to subroutine PROTO.

3. The secant matrix is determied if the solution is outside the bounds.
The secant matrix is determined by incrementing each of the control
variables independently. The constraint vector is found for each control

variable in the same manner as described in step 1.

4. The velocily correction is found by inverting the secant matrix and
multiplying by the difference of the current constraint vector from the

desired constraint vector,

5. Tlow is transferred to step 1.

After the midcourse correction is determined, subroutine PROTO calls POST to
obtain auxiliary output quantities. These quantities along with the correction and the
pre-midcourse state are written on an output device. If more midcourse ekecutiou
times are to be analyzed, flow is transferred back to the call to MDCORS to evaluate
the next correction. After the last correction is determined, the midcourse tape is

read and the appropriate displays output.

There are subroutines involved in the midcourse calculation other than those already
discussed. Most of these are used to perform calculations necessary in JET, TARGET,
MCBURN and POST. A complete description of all the subroutines is presented

in Section 5.
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FIGURE 2.2.1
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Figure 2.3.1
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Section 3
CROSS REFERENCE MAP

3.0 Introduction

The MAESTRO system is comprised of more than 90 subroutines. It is difficult to
understand the structure of a program of this complexity without some sort of a
visual guide. The maps on the following pages are designed to meet this need. These

maps present a hierarchy of subroutine calls for each division of the program.

The program is divided into three sections for clarification. The first section consists
of the prime control logic. The second division presents the midcourse logic, while

the third section consists of the hierarchy of subroutine FOWARD.

3.1 Primary Control Logic

The primary control logic consists of those subroutines required for input, initialization
and selecting the analysis modes of MAESTRO, The cross reference map of the primary

control logic is shown in Table 3. 1.

3.2 Midecourse Logic

The midcourse guidance section comprises a substantial portion of MAESTRO, The
midcourse logic can be entered directly from the MAIN program by a call to PROTO or
from subroutine MONTE via calls to MDCORS, SENSO and MCBURN. A cross reference

map of the subroutines involved in the midcourse logic is presented in Table 3.2.

3.3 Subroutine FOWARD Logic

Subroutine FOWARD's sole aim is to propagate the state forward in time, This subroutine
comprises the major portion of MAESTRO and is called from many other subroutines,
Table 3.3 presents a cross reference map of the subroutines involved in this portion of

the logic.



TABLE 3.1

MAIN CONTROL LOGIC CROSS REFERENCE MAP

TRIM, M50MDT, QUIKIE, VIEW
APROCH TRMN, CROSS, MVTRN, PUTELS

ORBIT, VNORM, TOWARD, NUTATE
FOWARD ——= Seec Table 3.3

_COVERT——lCROSS

VNORM

RETRO~ MINV
MONTE MSOLEG NUTATE

MDCORS, MCBURN, SENSO See Table 3.2

VNORM, CALEND, CROSS, FOWARD ORBIT

PUTELS, FOWARD - TWOPIT - TRIM2 _I:

MVTRN
ARMPIT ~ AMSOMDT = TRIM - ROTATE
MAIN M50EPM [NUTAIT - ORBIT
M5 OLEQm-—--———[pNUTATE | I
LTUNA
MCVERF PLANET ————READE __PUTELS
| SOL

CROSS, FOWARD, PUTELS,

VNORM, CALEND

o
PROTO See Table 3.2
MCSET

PRINT
CONTRL ﬁE‘IND, MVTRN, ORBIT, NUTATE, M50MDT

NUTAIT, DVMAG, TRMN, DATE, OBLTY
PLANET —— SOL, LUNA, READE
SETUP2 — TRMN, INTEG, UPDATE

- CLOSE DVMAG, ORBIT

MS0EPM - M50MDT, NUTAIT

10 M50JPM - MS0LEQ, M50MDT, M50EPM




PROTO —

It

~=YISIB

—POST

—FOWARD

—MDCORS

—FIXATG =

—MVTRN

—CROSS

——~DOT

—M50LEQ

Tahle 3.2
_MIDCOURSE GUIDANCE CROSS REFERENCE MAP

DOT, MVTRN, DVMAG
M50EPM——M50MDT, NUTAIT

TRMN, MVTRN, VNORM, ORBIT, VISIB

|DOT, CROSS, ORBIT, VNORM
RETRO—MINV ORIENT, TRIM, DVMAG

—— See Table 3.3

DOT, SPER, MVTRN, MINTF, VNORM
FOWARD, CROSS, RETDV

TET ROSS, DOT, MVTRN, VNORM, ORIENT
ETDV, ROTAIT, TRMN, DVMAG

[FOWARD
SENSO TARGET CROSS, MVTRN, RETDV, VNORM, DVMAG
- ORBIT, RETRO, ROTAIT, M50LEQ
ORIENT, CROSS, DOT, VNORM
MCBURN-————DOT, DVMAG, FOWARD, BURND

M50MDT, NUTAIT

SENSO, FOWARD, VNORM



Table 3.3
SUBROUTINE FOWARD CROSS REFERENCE MAP

LUNA
—PLANET READE
SOL
[TRMN, MVTRN, ORBIT, M50MDT, DVMAG
M503PM, NUTATE, OBLTY,
SHORB2Z—— QUARTC, ROTATE

——~OUTPUT

[DVMAG, OUTPUT, TOBODY
- MULCON ~——|AVERGE, ORBIT, PLANET

(OBLATE — TRMN, ORBIT, DVMAG

[ORBIT
—INTEG —{RKSEVN -———— EQNS

TWELVE ———— EQNS, RKSEVN, DVMAG

GRAV, SOLP, PLANET, DVMAG, DRAG-ATMO

MOTORS ~— TABINT
OBLE —— M50MDT, ROTATE, NUTATE
:EQNS ORBIT, DVMAG, TRMN
AVEQNS ——ACCEL, ROTATE, ORBIT, TRMN

INTEG, UPDATE, PRINT, MOTORS, TRMN, ORBIT, OUTPUT

SADOUT— CALEND

CLOSE —— UPDATE, INTEG, TRMN, ORBIT, DVMAG

L TIMEC __ |{DOPLER~— ROTATE, DVMAG M50EPM
SHADOW—DVMAG, 'PLANET, DOT, INTERP

iPLANET, OUTPUT
ouTl INTERP ~—————TRMN, ORBIT

CRASH——INTERP, DOT, PLANET, DVMAG

gt

— PRINT, TRMN, ORBIT, DOT



SECTION 4
COMMON BLOCKS
Currently, there are 25 common blocks established in MAESTRO. Most of these

comnmon blocks are required for the numerical integration portion of MAESTRO,

The table below presents a list of the current common blocks:

Used in Numerical Used in Ephemeris Used in Auxiliary
Integration Calculation Calculations
AVG CETBL2 ANKOR
CNTRL CETBL3 ELMNT
CONST CETBLY © INPUTS
DUM MOON INTER
FIELDM MCCCM
GRAVTY OBSIT
INPUT PIT
INTVAR SHAD
INTVRX
PERT
PLNET
SAVE
STATE

The following pages in this section present a description of each of the above common
blocks. The descriptions include the usage of the common block, its length,' the sub-
routines which required the common block, and a description of each of the elements

that comprise the common block,
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Description:
Length:

Subroutines Using:

Symbolic
Location Name
1 ANKUE(6)

COMMON ANKOR

This common block contains the current anchor vector

6 8-byte words

CONTRL MONTE PROTO SETUP2

Description
Cartesian position and velocity vectors of the

current anchor vector in Earth mean equator
and equinox of 1950, km and km/see,

14



COMMON AVG

Description: This common block contains the weights and the
corresponding abscissa for the Gaussian quad-~
rature formulae,

Length: 156 8-byte words

Subroutines Using: AVEQNS, BLOCK DATA, MAIN
LOCATION SYMBOLIC NAME DESCRIPTION
1 WEIGHT (78) Weights for Gaussian gquadra-
ture formulae*
79 ABSCIS (78) Abscissa for Gaussian
gquadrature formulae*®

*See Searborough, James B, Numerical Mathematical Analysis, The Jobns
Hopkins Press, 1930, ’
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Description:
Length:
Subroutines Using:
Symbolic
Location _Name
1 ICW
2 ICENTR
3 IREQ(13)

COMMON CETBL2

This common block contains arrays that determine
which planets are desired in the disk or tape ephemeris
call using subroutine READE

15 4-byte integer words

MAIN GETTAP PLANET READE
SETUPZ

Description

Flag indicating the status of the common
block CETBL3

Central planet number defined as

1 Mercury 4 Mars 7 Urams
2 Venus 5 Jupiter 8 Neptune
3 Earth 8 Saturn 9 Pluto

10 Sun

11 Moon

12 QOddball

Array used to determine which planets the
ephemeris is desired. The planets ‘correspond
to the index of the array as described in ICENTR,
The value of IREQ is determined from:

IREQ(J) = ¢ no ephemeris

= 1 position only
= 2 position and velocity

16



Description:

Length:

Subroutines Using:

Symbolic
Location Name
1 TAB3(829)
830 NUT{204)
1034 CKSUM

COMMON CETBL3

This common block is used to transfer information read
from the ephemeris tape to subroutines GETTAP and
READE,

829 8-byte words followed by
205 real 4-byte words

MAIN GETTAP PLANET READE
SETUP2

De scrigtion

Array of raw data obtained from the JPL ephemeris
tape. Data contains 8 days of information.

Array of 4-byte real words describing the nutation
data obtained from the JPL ephemeris tape.

A 4-byte word used for checksum.

17



Description:

Length:

Subroutines Using:

Location

1

Symbolic

Name

JD1

TDAY |,

JDIF

IERR1

COMMON CETBLS

This common block contains quantities required in
the tape or disk ephemeris calculations.

3 8-byte words followed by
1 4-byte integer word

GETTAP READE

Description

Reference julian date of ephemeris call.

Time since reference julian date ephemeris
is desired, days.

Difference in the time of the desired ephemeris
minus the time of the ephemeris data read from

the tape or disk.

Errvor return flag from subroutine GETTAP

18



Description:

Length:

Subroutines Using:

Location

10

11

Symbolic

Name

KTHRST

KDIS

KHALT

JC

KREAD

KNT

KDOPWT

KCA

COMMON CNTRL

CNTRL common is used to store flags that control
state propagation.

28 4-byte integer words

MAIN ACCEL APROCH AVEQNS
AVSTRT BELL CLOSE CRASH
DOPLER DRAG EQNS FIELD2
FIXATG FOWARD GETTAP GRAV
INTEG INTERP LUNA MCBURN
MCVERF MDCORS MONTE MOTORS
MULCON OBLE ouTPUT PLANET
PRINT PROTO RKSEVN SETUP2
SHADOW SOL TARGET TIMEC
TRIM2 TWELVE
Description
Not used

Thrusting flag., Set to 1 when an engine is thrusting.
Not used

Discontinuity flag. TFlag equals 1 when the current
time is a discontinuity time, otherwise set to 0.

Error return flag., Flag is set to 1 to cause an error
return from the numerical integration,

Central planet number,

Flag used to determine if the ephemeris tape or
disk is to be read at the current time.

Counter that contains the number of calls to the
derivative subroutine, EQNS.

Doppler write flag. Flag equals zero on the first call
to DOPLER, On subsequent calls this flag is set to 1.

Counter used in the closest approach iteration between

subroutines CRASH and TIMEC. KCA equals the
number of iterations.

19



Location

12

13

14-28

Symbolic

Name

KFIRST

IEVG

Description

First pass flag. Flag equals one on the first stép
of a numerical integration

Engine number of engine thrusting

Not used

20



Description:

Length:

Subreoutines Using:

LOCATION
1

9y o o B

17
29

411

42
43

45

SYMBOLIC
NAME

RAD
PI

Pi2

Au
GM(12)

RE(12)
WP(12)

THS

TSH

TDS

TSD
G

COMMON CONST

This common block contains physical constants -
and unit conversion factors

50 8-byte words

MAIN
AVERGE
CLOSE
EQNS
GRAV
LUNA
MDCORS
M50EPM
OBLTY
PRINT
SETUP2
SPER
TOBODY
TWELVE

APROCH ARMPIT
AVSTRT BLOCK DATA
CONTRL DOPLER
FIELD2 FIXATG
INTEG INTERP
MCBURN MCSET
MINV MONTE
M30JPM OBLATE
OREBIT OUTPUT
PROTO QUIKIE
SHADOW S0L
SUNMIN TARGET
TRIM TRIM2
TWOPIT VISIB
DESCRIPTION

Radian to degree conversion factor

Pi, n

Twice pi

AVEQNS
BURND
DRAG
FOWARD
JET
MCVERF
MULCON
OBLE
POST
RETDV
SOLP
TIMEC
TRMN

Number of kilometers in an astronomical unit

Gravitational coefficients of the planets, km3/sec?,
The planets are ordered in the array as follows,

1. Mercury 4.

2.
3.

Venus
Earth

5. dJupiter
6. Saturn

7. Uramus
#. Neptune
9, Pluto

16. Sun
- 11, Moon
12. Oddball

Equatorial radii of the planets, km. The order is the
same as the gravitational coefficients.

Rotation rates of the planets, rad/sec. The order is

the same as the gravitational coefficients.

Hour to second conversion factor

Second to hour conversion factor

Day to second conversion factor

Second fo day conversion factor
Gravitation acceleration at the surface of the
Earth, km/sec?



Description:

Length:

Subroutines Using:

YL.ocation

1¢

11

12

Symbolic

Name

A1S(3)
A25(3)

PM

AM
DT

AMO

COMMON DUM

This common block contains gquantities used to propagate
the state using the multi-conic scheme,

12 8-byte words

AVERGE MULCON OBLATE TOBODY

Acceleration due to the Moon's indirect term, kms/sec?
Acceleration due to the Sun, km/ sec2

Spacecraft's mean motion, rad/sec

Not used

Value of mean anomaly at end of a compute step, rad
Current multi-conic compute step, sec.

Value of the mean anomaly at the beginning of
the step, rad.

Not used,
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Deseription:

Length:

Subroutines Using:

Symbolic

Location Name

1 DATE

2 TIME

3 X(3)

6 DX(3)

9 ELM(6)

15 cov(21)

36-40 S

41 1D

42 ICOR

43 ICENT

44 ISET

45-48 -

COMMON ELMNT

This common block is used to transfer input data
read from the 24-hour hold file, It is also used for
writing data for GTDS retrieval.

40 8-byte words followed by
8§ 4-byte integer words.

APROCH FIND MCVERF PUTELS
SETUP2

Descrigtion

Epoch date in year, month and day
written as YYMMDD.

Epoch GMT time in hours, minutes and seconds
written as HHMMSS, S58,

Position vector, km.
Velocity vector, km/sec.
Orbital elements

Covariance matrix of the state. Upper triangle
presented,

Not used.
Satellite identification number.

Coordinate system of state.
1 = Earth mean equator and equinox of 1950.

Central body indicator.

1 = Earth
2 = Moon

Element set number of desired data,

Not used
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COMMON FIELDM -

common block contains constants that describe

Description: This
dthhn mamceridndiamal £541.3 AF o wwlansd
Lid 5). VAWILMSALLAL L1TIuU Vi @ FJ.CLI.J.L- La
Length: 297 8-hyte words followed by
2 4-byte integer words.
Subroutines Using: MAIN FIELD2 INPUTF OBSET
Symbeoelic
Location Name Description
1 ZONI{16) Zonal coefficients of the spherical harmonic potential
’ term. ZONL(i) = - CiO i=1,16
17 TSRI(16,17) - Tesgseral coefficients of the spherical harmonic
potential term.
TSRL(i,j)=cij i=1,16 0<jsi
TSRL (j, i+l) = Sij i=1,16 0O<j<i
513 SELNEQ(9) Rotation matrix from the Earth mean equator and
eguinox of 1950 to true equator and prime meridian
of the planet for which the gravitational field is to
be evaluated.
522 NMOD Maximum number of zonals used to define the
gravity field.
523 MMOD Maximum number of tesserals used to define

the gravity field.
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Description:

Length;

Subroutines Using:

Symbolic
Location Name'
1 POS(3) -
4 VEL(3)

COMMON GRAVTY

This common block contains vectors used in the
determination of the disturbing acceleration when
numerically integrating '

6 8-byte words

ACCEL AVEQNS DRAG EQNS
FIELD2 ~  GRAV OBLE SOLP

Descrigtion

Position vector with respect to central planet in
Earth mean equator and equinox of 1950, km

Velocity vector in same system, km/sec

25



Desecripfion:

Length:

Subroutines Using:

COMMON INPUT

This common block contains the data input to MAESTRO,

1000 8-byte real words followed by

100 4-byte integer words

MAIN
AVEQNS
BURND
CRASH
FIELD2
INPUTF
LUNA
MDCORS
MULCON
OuUT1
PROTO
SADOUT
SOL
TIMEC
TWOPIT

ACCEL
AVSTRT
CALEND
DOPLER
FIXATG
INTEG
MCBURN
MINV
OBLATE
PLANET
RETDV
SENSC
SOLP
TRIM
UPDATE

26

APROCH
BELL
CLOSE
DRAG
FOWARD
INTERP
MCSET
MONTE
OBLTY
POST
RETRO
SETUPZ
TABINT
TRIM2
VISIB

ARMPIT

BLOCKDATA

CONTRL
EQNS
GRAV
JET
MCVERF
MOTORS
OUTPUT
PRINT
RKSEVN
SHADOW
TARGET
TWELVE



MAESTRO INPUT ARRAY#*

FORTRAN ~ PRESET _
LOCATION SYMBOL USE**% VALUE DESCRIPTION
Error control for automatic integration
1 ERRC I - step size, If =0 assume in fixed-step
mode, '
Initial computer step when in automatie
2 DELTO I : - mode. Note: Need not be input when
' fixed-step.
. DELMN | I _ Minimum clom?ute interval, Note: Not
necessary in fixed-step mode,
4 TF 1 o Run stop-time.
Unit conversion factor for positions. The
value is determined such that, when PCON
multiplies the input units, they will be
5 PCON I 1.0 converted to KMS, The output units will
be scaled by 1/PCON so that the output
units will be the same units as input,
6 VCON I 1.0 ' Used the same as PCON except that
velocities are scaled to KM/SEC.
7 EMPTY
' Corrector convergence tolerance in
twelfth-order predictor-corrector
8 TOL ) § 0,0 integration scheme. Values used depend
on the accuracy requirements. They '
o range from 107" to 1077,
9 EMPTY C

- * unless otherwise stated, the units of the input quantities are: KM, SEC, KG,degrees
** preset value depends on program operating mode '

ek

OB > -

integration v Midcourse verification
approach analysis L Lifetime analysis
midcourse analysis P Post-injection trim

Monte Carlo analysis
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FORTRAN PRESET .
LOCATION SYMBOL USE VALUE DESCRIPTION o
10-12 'TMETH(S' 1 w3 Times for meihod iuble. See KMETH
(location 1036) for description.
13-19 EMPTY
20 XMONL)
21 DAYL '
22 YRL '
59 HRL I - Launch epoch
24 XMINL
25 SECL '
26-29 EMPTY
30 Input initial conditions as orbital
31 elements., The order is a,e,f,w, i, 2.
32 ELM(6) 1 _ The in%t?al conditions- may be accepted
33 as position and velocity vectors (see
34 locations 40-45). The ccordinate system
35 is defined in KINPT (location 1019),
36 EMPTY _ )
37 DIL Modified julian launch date. Not a program
input,
38 WTO I 331.40 Initial weight
Ephemeris time correction. If no input,
the ephemeris time correction will be
39 ETC I - calculated from ETC = 38.66 + ,0025921DJ
where DJ is the number of days since
the julian date of 2440000.0.
40 Initial conditions as position and velocity
41 X(3) I - vectors or spherical coordinates, When
42 spherical coordinates are used the order
iz velocity, flight path elevation angle,
: flight path azimuth angle, radius, geocentric
43 ; . . .
a4 DX(3) I _ latitude, geocentric longitude. The input
45 coordinate system is defined by KINPT -
{location 1019)
46 DJO Modified julian launch date. Not a
program input.
41 RA I - L
: Initial right ascension and declination
in Earth equator and equinox of 1950
48 DEC I -
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FORTRAN PRESET :
LOCATION SYMBOL USE VALUE DESCRIPTION
50 XMONO
51 DAYO Initial time
:2 EHI:E 1 - Input is month, day and year,
94 MINO hour, min, second (GMT).
55 SECO '
Upper right-hand triangle of the
tracking covariance matrix loaded across
the rows. Can be input in mean equator
and equinox of 1350 or in a local tangent
- ' lane. Location 1085 determines the system.,
6- - p
56-76 cov C. When mean of 1950 is used, the order is
X,Y,Z,%X,Y, 7. When local tangent plane is
inpuf.the order is the position components as
R, {RxV) x R, RxV and then the velocity
components along the same axes,
77-99 EMPTY -
. Gravitational coefficient. The order of the
- L £ 3 4 b ;
100-111 GM(12) I planets is defined in locations 1001-1012,
112-123 RE(12) I ok Planetary radii.
124-135 WP(12) 1 Kk Planetary rotation rates
136-169 EMPTY _
‘ Compute interval table when in fixed compute
: _ interval mode, (loc (1) = 0.).
170-179 TCOMP(10) I ** Compaute interval = DELT ()
_ whenr TCOMP(I-1) <T < TCOMP(I) or
180-18% 0 **
80-18 DELT(10) I‘ Compute interval = DELT (1)
when T <TCOMP(1l). Complete compute
interval table must be loaded when
alterations are made to preset values.
190-192 KMEGN(3) I | _ Initial position of Moon if osculatl.n.g
‘ elements are used for Moon's position;
193-195 DXM@@N3) 1 - Earth radii and Earth radii/ mean solar day.
196 TMM 1 - Moon's epoch in modified julian date.
197 SPRESS 1 4.7(10)-5 Solar pressure at 1 AU, (iiynes/cfn2

_#%% See Table 3.3 of User's Manual
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FORTRAN PRESET

LOCATION SYMBOL USE VALUE ‘ DESCRIPTION
198 REFLK I 0.2 Solar pressure reflectivity coefficient
199 EMPTY _
, Tabular thrust history of Motor 1,
TF1{20) are times since ignition and
- : *kk
200-219 Tr1(20) LA,M,V F1(20) are the thrust values {(newtons)
260-279 F1(20) IL,A,M,V Fokok at the corresponding’'times. For the .
o RAE-B application, this motor is used
as the midecourse motor.
220-239 TF2(20) 1 -
Thrust table for motor 2.
280-299 F2(20) 1 Ce
K 240-259 TF3(20) I - } Thrust table for motor 3.
300-319 F3(20) 1 - ]
o ' Tabular weight flow rate for motor 1.
320-329 TWDOTI1(10) I, A, M,V * Aok TWDOTL is the time past ignition and
WDOQOT is the flow rate at the corres-
- ok ok
350-359 WDOTI(10) LA,M,V ponding time. The flow rate is in
. ' ' KG/sec.
330-339 - TWDOT2(10) X . - Flow rate table for motor 2.
360-369 WDOT2(10) I -
340349 TWDOT3(10)‘ I B Flow rate table for motor 3.
370-379 WDOT3(10y . I - :
'3 80-382 TIG(3) _ L,V - Ignition times for motors 1, 2 and 3.
383-385 . TBH(3) L,V - Burnout times for motors 1, 2 and 3.
386-399 EMPTY First and lagt trial retro firins
400 TPIREL A _ irst and last tria re rq iring time on
an approach analysis. Time reference
401 TFIRE2 A - to liftoff epoch, Used when KAPOPT =3
_ . (location 1055)
402 DTFIRE A - ~ Increment in retro firing time.
403 RAO A - Initial right ascension and declination
404 DE co A used in the attitude sweep in the approach

analysis. If both zero, velocity vector
at closest approach is used,

*#**  See Table 3.3 30



FORTRAN

PRESET

) |

LOCATION SYMBOL USE VALUE DESCRIPTION
405 DELRA A - Increment in right ascension and
' declination in attitude sweep.,
406 DELDEC A } Used when KAPOPT = 2 or 3
407 EMPTY
408 CAR1 v 4.0095D8 Telemetry carrier frequency No. 1
409 CAR2 v 4.0D8 Teleinetry carrier frequency No. 2
410-419 OBSLON(10) A,M,V ok Obse.rvatmn site geocentric longitude
: for sites 1-10,
420 PSID(1) M 2838. Lunar radius
421 PSID(2) M 116.5 inclination w,r.t. target -
planet equator, Midcourse
422 PSID(3) M .396D6 time of flight w.r.t. \ analysis
f A
Liftotf desired end
423 PSID(4) M 0,62 Hyperboli¢ excess speed conditions
424 PSID(5) M 0.0 circular excess speed }
425-429 PSID(6-10) M Empty
Impulsive velocity of engines 1 to 3,
Used when KFM@N (location 1047) is set
0-432 -
430-43 DV(3)‘ : I to 2, Velocities are added at ignition
times in location (380-382).
Area of the spacecraft used in solar
433 SOLARA I. 13560 pressure calculation, square centimeters
434 DELTMC M 7200, Increment in execution time
435 SIGATM C,M 0.7 One sigma pointing error during
midcourse maneuver, '
436 SIGDVM C,M 0.02 One sigma percentage error of
' midcourse velocity. Loaded as percent/100.
437 SIGATR C 0.7

One sigma pointing error during retfro.



FORTRAN PRESET :
LCCATION SYMBOL USE VALUE DESCRIPTION

One sigma percentage error of

438 . SIGDVR C 0.0003 retro velocity. Loaded as percent/100,
439 TMC1 | C 36000, Time of first correction
440 T™MC2 c 324000, Time of second correction
441 - ASPMC A,M,C 226.0 Midcourse motor specific impulse
442 ASPR AM,C 282.5 Retro motor specific impulse
443 WRETRO A,M,C 71.44  Mass of retro fuel
444 RO A,M,C,P 2838. Desired lunar orbit radius used in trim
' maneuver
5 Circular velocity at RO. Program
445 ve 4, M,C, P calculation, not to be input,
446 CI10 - A,M,C,P 116.5 Desired lunar orbit inclination w.r.t.
3 ' lunar equator used in trim maneuver
447 BVD(1) M 6000, Desired B+ T Mldf:ourse analygl?
desired end conditic: .
. Used when IBTR flag
2 . .
448 BVD(2) M 6000 Desired B+ R set to 1. (loc 1062)
Tolerance band on inclination correction
) ' during post-injection trim. If inclination
449 TRINC M,C, . ' i
, ) G, P 0 change is less than TRINC, no inclination
adjustment is made.
450-459 TOUT(10) I TOUT(1)= Print table
1.D20
Print interval = DTOUT(1) when
460-469  DTOUT(10) I DTOUT(l)= TOUT(I-1)< T < TOUT(I) or print
: 18000, interval = DTOUT(1) when T < TOUT(1)
470 ATFULA C 6.0 Available attitude control fuel and constant
to determine attitude control fuel, KG/RAD-
471 AFUEL C 0.1678 Attitude fuel used = AFUEL * attitude
: angle change.

472 FTOT o 20.4 Total midcourse fuel available
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FORTRAN PRESET

LOCATION  SYMBOL USE VALUE DESCRIPTION
473 WDRC A M. o Retro drop weight. Weight dropped
' P ’M’_C - 18T after retro firing. '
Cone angle used in approach analysis.
. _ . ; ) ) 1
474 CONE A, M 5.0 The attitude range is this cone angle

about the velocity vector or input attitude
when KAPOPT=1 (loc 1055). Algo used
in midcourse fixed attitude scan.

True anomaly range for trial retro firings
: in approach analysis, deg. Trial retro
475 TRUE AMC 20 firings are made from -True to +True
' true anomaly on the approach hyperbola.
Used when KAPOPT =1, Also used as
firing range in retro optimization,

476 _ BURNT v - Midcourse motor burn time. Used when

o . the initial state is not obtained from a
477 . EMPTY ‘ midcourse analysis. :
478 TMC M 7200, Initial execution time
479 . DINK M 0.0003 " Secant partial step size in midcourse

analysis also veldeity increment when
_ o using the fixed attitude mode.
480-489 OBSLAT(10) A,M,V k¥ Observation site geocentric latitude

. . for sites 1-10 o

490 THL(1) M 10, ©  B-T .
- 491 TOL(2) M 10. B-R ‘ .| Midcourse
492 TQL(3) M 10. time of flight _
493 T¢L(4) M . 0001 hyperbolic excess speed = | analysis
494 TOL(5) M . 0001 circular excess speed tolerances on
495 ~ TOL(6) M .02 Total fuel optimization .
496 TOHIAT) M 5. closest approach radius desired end
497 TOLA8) M . .2 inclination conditions
498-499 TPL(I, 10) o .~ Empty o
Spheres of influence of the planets used
. to determine the central planet. If the
500-511 RSWTCH(12) I . distance from the planet is less than the

value in RSWTCH the planet is the central
planet, If none of the planets are central,
then the Sun is considered central.

*#¥% Sae Table 33 a3



FORTRAN

34

PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

512 RBURN A 20, Retro burn time

513 TCATST 1 0. Time to begin closest approach
testing logie.

516 SPNRA I 12.0 Spin rate, RPM.

517 PTI I 238.0 Initial-midcourse motor tank
pressure, PSIA,

518 TPI I 20, Initial midcourse motor
temperature, °C.

519 FMC I 20.4 Current midcourse motor

: fuel, ke.

520 FMULT I I Thrust rultiplier,

521 WMULT | 1, Weight multiplier.

522 WDOTT M . 0183 Midcourse motor weight flow used
with Hamilton Standard thrust in
midcourse targeting.

- 523 DTM M 0, Compute interval during motor

burn in midcourse targeting,
Compute interval equals burntime
when value is zero,



LOCATION

FORTRAN PRESET
SYMBOL USE VALUE

DESCRIPTION

1601-1012

1013

1014

1015

1016

1017

1018

KP(12)

1001
1002
1003
1004

Note:

I - - Bodies in system, Set to 1 if only

position is necessary, 2 if both
position and velocity are desired.
The order is as follows:

MERCURY 1005 JUPITER
VENUS 1006 SATURN
EARTH 1007 URANTUS
MARS 1008 NEPTUNE

1009 PLUTO
1010 SUN
1011 MOON

. 1012 ODDBALL

1003 =2, 1010—1 1011 =2 are preset

METH

KINT

JL

ENGID

JMN

KOBLTE

I

35

}

Current trajectory propagation method.
Not a program input,

Numerical Integration Scheme
3. Tth-Order Runge-Kutta

5, 12th-Order Multistep,

single step size only
Launch planet number, .

Engine number of the retro motor.
Used in a MODE=1 analysis,

Lunar and solar ephemeris flag

1. Mean elements

2. Mean elements for Sun
Mean elements + lst-order
corrections for Moon

3. Ephemeris tape

4. Mean elements for Sun, osculating
elements for Moon (loaded in
locations 190-196)

5. Ephemeris tape using Goddard'
direct read feature

Set to 1 for Earth oblateness., Should be
set to 0 when 1029 = 3,



FORTRAN
LOCATION SYMBOL

e g g ey

PRESET
USE VALUE

DESCRIPTION

1019 KINPT

1021-1028 EMPTY

1029 KOBL

1030 KOuUT

1031 JT

1032 KCRASH

1033 EMPTY
1034 JOCC

1035 MODLEM

1036-1038  KMETH(3)

I, L .

I dek

36

"Input coordinate system flag

i. Mean equator and equinox of 1950

2. Mean equator and equinox of date

3. Mean ecliptic and equinox of date

4, True equator and prime meridian
of launch planet

5. True equator and equinox of date

6. True lunar equator and node.

7. FEarth spherical, See location 40-50
of INPUT common

Set to the number of the planet in which
the gravitational field is to be simulated
using FIELD2. See location 1035.

If 1, output according to print table. If
zero, output only at beginning and end of
run. If -1, no output.

Target planet number
Closest approach flag

0 No closest approach test
1 Continue after closest approach
2 Stop on closest approach

Occultation flag. Set to the planet
number where the observer is located,

Lunar gravity model flag

1 for Houston L1 model of Lunar field

2 for Earth J2,J3,J4

3 for JPL 15 by 8 Lunar Field
§ zeroes initial field so new field can be
input
10 Used field set in last case

Trajectory propagé.tion method
T <TMETH(1) METH = KMETH(L)
If TMETH (I-1)<TC<TMETH{)
METH = KMETH(I)
TMETH is in location 10.

Cowell

Encke

NICE/True

NICE/Mean

Averaged Equations of 4
Multiconic, fixed stepsize only
Integrals e cos w, w+f{
Equations 7 are used in averaging

- .
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LOCATION

FORTRAN
SYNBOL

USE

PRESET
VALUE DESCRIPTION

1039-1040

1041
1042

1043

1044

1045
. 1046
1047

1048

1049

KOUTPT(2)

JRA
JDEC

KFIRE

MODE

KDYP

KAPOUT

-KFMOD

KAPSAD

KSADOW

ALL

A

A

-

10

15 be less than 16. Also used in mideourse

Output coordinate systems - Launch and
target planets

1. Mean equinox and ecliptic of date

2. True equator and prime meridian

3. Mean Earth equator and equinox of 1950
4. True Earth equator and equinox of date
5. No output

3,2

Number of right ascensions and
declination angles used in the attitude
sweep of the approach analysis. Must

fixed attitude analysis,

20 Number of trial retro firing times on
approach analysis less than 20

Program mode

Fly to TF or closest approac
Approach analyses :
Midcourse analyses
MonteCarlo analyses _
Midcourse verification mode
Lunar lifetime mode
Post-injection trim

Q10 WO

0 Set to one for doppler analysis

Set to one if retro firing time analysis
is to be output for each attitude

Thrusting mode

0 0 Tabular thrust / weight

2 Impulsive velocity
3 Hamilton Standard subroutine

1 Set to one for lunar orbit shadow

calculations during approach analysis.

Shadow calculation flag during trajectory

propagation:

0 No shadows determined.

1 Shadow time determined by interpolation
while numerically integrating trajectory.

2 Osculating orbit used to determine times.

Note: KSADOW=1 should not be used when

averaging.
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LOCATION

FORTRAN
SYMBOL

USE

PRESET
VALUE

DESCRIPTION -~

1050

1051

1052

1053
1054

1055

1056

1057

1058

MCOUT

JMC

KMONTE
KMAX

KSTART

KAPOPT

NGRAPH

KREAD

KOUT?Y

I,L

0

10

50
17

* %k

38

Extra output flag in midcourse analysis.

1. Qutputs targeted solution irom PROTO

2. Prints AV, constraint errors for each
iteration,

3. Prints jet iteration information along
with 2.

Number of midcourse execution times
simulated

Monte Carlo deseription flag

1. retro only
2. mideourse and retro
3. two mideourses and retro-

If negative, the first correction will be
calculated from the nominal assuming that
the tracking data is good.

Sample size of Monte Carlo analysis,

Random number starter,

Approach analysis option flag,

KAPOPT = 1 Firings made between an
input range of true anomaly about perigee
on the approach hyperbola, The attitude
rarge is an input cone angle about the
velocity vector at closest approach,
KAPOPT =2 Firings made from asymptote
to asymptote on the approach hyperbola,
The attitude range is input as initial right
aseension and declination, increment in
right ascension and declination, and number
of attitude angles.

KAPOPT =3 Firings made between input
times. The attitude range is input as in 2.

If positive, Element set number, for MAEST
graphics data base.
If negative, replace [NGRAPHI element set.

Integer used to obtain initial conditions from
a midcourse analysis, KREAD corresponds
to the midcourse correction number desired.
If KREAD is zero, this option is ignored
and the initial state must be input.

Auxiliary peripheral output unit number



: FORTRAN PRESET |
LOCATION _ 'SYMBOL _ USE VALUE DESCRIPTION

Extra output flag. Used when KOUTS #0

0. Orbital elements printed
1058. KTERM LL 0 1, Position and velocity vectors
’ ‘ printed
2, BothOand1

Input array write flag

1060 INPWT I 1 0 no write
. S 1 wnte
1061 ‘MCUNIT A,M;‘V 11 Unit number of aumh'try mldcourse
- | ’ output unit,

Miss vector option flag in Midcourse
Analysis

1. Use B+T and B-R loaded in BVD
2. Use PSID(1) and PSID(2)

1062 IBTR M 2

Midcourse guidance law

1. Minimum fuel

2. Fixed time of arrival
3. Fixed target energy

4, Variable target energy
5. Total fuel optimization

1063 " KGLAW M 2

1064 NGROPT M 1 Number of trials for which secant matrix
' is recomputed in Midcourse Analysis,

1065 NT M 10 ' Number of trials allowed in Midcourse
(_:.cnvergence . '

1066 JET M 1 If set, preliminary targeting w111 be done
o - in the Midcourse Analysis,

) ) Limiting factor in the Midcourse Analysis.
1067 MCLIM M 100 The midcourse correction is limited o
' : MCLIM * DINK (KM/SEC) on each iteration.
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FORTRAN PRESET

LOCATION SYMBOL USE VALUE DESCRIPTION

1068 NORD LL 6 Number of ordinates in averagmg -
less than 16,

180 neT LL 3 Numhbhary of intervals in a erggl_ —
less than 16

1070 KPROB M a5 Output probability for midcourse
execution error, Second midcourse
execution time and errors are input
through locations 440, 435, and 436,
Negative or zero skips error propagation,

1071 IBURN M 6 Trajectory propagation method during
finite burn of midcourse motor. Impulsive
calculations are used when set to zero,

1072 KROUT M, C 0 Extra output flag during retro optimiza-
tion calculations,

1073 KORECT I 0 If set nonzero, the derivative at the
end of an integration step will not be
calculated,

1074 KMTOUT  C 0 Flag used to output initial state for
each sample in a Monte Carlo analysis,

1075 KMETHP M 6 Trajectory propagation method when
generating partial derivatives,

1076 IFIND All - Element set number of the anchor vector {o
be transferred from the differential
correction program,

1077 KTFr M 0] Flag used to determine the type of

40

Midcourse analysis,

=0 One-dimensional scan of midcourse
execution times

>0 Two-dimensional scan of mideourse
execution times and flight times, Flight
times are scanned in KTT one-hour steps
beginning at the desired fhght time in
location 422,

<0 Two-dimensional scan of midcourse .
execution times and midcourse impulsive
velocity, The impulsive velocity is
centered about value, loaded into 426 and
varied in ~KTF steps of size DINK
(location (479).



LOCATION

FORTRAN
SYMBOL

USE

PRESET

VALUE

DESCRIPTION

1078

1079

1080

1081

1032

1083

1084

1085

1086
1087

IVTI

KHIGH

NORMIN

NREV

KAPWT

NAPUNT

KSOLP

KCOV

IDATT

M

P,L

0

11

431

Overburn option key

0. in-plane retro antiparallel at
periapsis,

+ 1. variable inclination procedure
approaching above or below desired
inclination

+ 9, variable periapsis procedure cir-
cularizing in-plane before or after
periapsis.

Farthest approach flag, If set, furthest
approach will be found.

Retro optimization flag

0 in-plane at periapsis maneuver for
underburns, according to IVTI for
overburns

+ 1. optimize retro to trim inclination
in PROTO

2. Same as 1, but in TARGET also,

Number of revolutions the transfer orbit
completes before stopping at closest
approach in an approach analysis

Flag used to write information from the
approach analysis in an auxiliary unit. It

' is set to the output unit number when the

option is desired.

Unit numbers where initial conditions
are stored from a previous approach
analysis on post-injection trim analysis,

Solar pressure flag,

0. no solar pressure

1. pressure in radial direction only
(s/c assumed to be sphere)

2. spacecraft assumed to be a cylinder
spinning along attitude vector, '

Coordinate system of covariance matrix

0. mean Equator and equinox of 1950.
1. local tangent plane

Used in PEST version

Element set number of attitude file.
Used when attitude is to be input via
read from ADP.



FORTRAN PRESET

LOCATION SYMBOL USE VALUE DESCRIPTION

1ngs MATIINT all 12 IInit nimher of attitude data.

1089 IDSAT all 1234567 Satellite identification number,

1090 INIT all 0 Initial line number of MAESTRO's
space allotted on the director's display,
If INIT is zero, no writes are made on
the director's display, This option is
only used during real-time operations,

1091 KPIT P 0 Flag used to indicate post- injection
trim targeting.

1092 ISET all 0 Element set number when using sub-
routine PUTELS to fransfer state to
GTDS program, '

1093 KPLOT all 0 Set to the plot unit number when

' plotting,

1094 NMOD IL 0 Maximum number of zonals and

1095 NMOD L 0 tz::sserals used to define the gravity
field,

1096 Used in PEST version.

1097 KATMOS I 0 Atmosphere drag flag. Set to 3 for
Earth Drag,

1098 KASTRT all 0 Ilag used to initiate start-up procedure
to obtain average elements from
osculating elements.

1099 KTIST I 0 Flag used to detérmine thrusters used

42

in Hamilton Standard program

0 both thrusters ‘
1 first thruster only
2 second thruster only



COMMON INPUTS

Description: This common block contains the saved input array.
This common block is required to stack cases.

' Length: 1000 8-byte real words followed by
100 4-byte integer words

*y

Subroutines Using: MAIN INPUTF

This common block is essentially the same as INPUT common,
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Description:

Length:

Subroutines Using:

Symbolic
Locafion Name
1 X(10)
11 POS(6,10)
71 ACL{6, 10)
131 INT

COMMON INTER

This common block contains quantities used in the
interpolation logic of state propagation by numerical
integration,

130 8-byte words followed by
1 4-byte integer word

CLOSE INTERP TIMEC UPDATE

Table of times corresponding to the saved values

Array of saved values of the integration variables
at the times corresponding to X.

Array of derivatives of the integration variables at
the times corresponding to X.

Integer used to indicate the current value of the
arrays X, POS and VEL,
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Description:

Length;:

Subreoutines Using:

Location

14

Symbolic
Name

X

Y(8)

RATES(6)

COMMON INTVAR

This common block contains the variables used in
numerical integration

14 8-byte words

MAIN ARMPIT AVEQNS AVSTRT

CRASH EQNS FIELD2 FOWARD

GRAV INTEG JET LUNA

MOTORS OUTPUT ouUT1 PLANET

POST RKSEVN SETUP2 SHADOW

SOL TIMEC TWELVE UPDATE
Description

Independent variable of the numerical integration,
usually time {sec)

Dependent variables of the numerical integration.
The quantities depend upon the trajectory propagation

technique in use.

Derivatives of the dependent variables with respect
to the independent variable

Compute interval is used, same units as X.
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Description:

Length:

Subroutines Using:

Symbolic
Location Name
1 Z
T QATES
13 | NQ

INTVRX is used in averaging osculating elements.

12 8-byte words plus
1 4-byte integer word

AVSTRT EQNS RKSEVN

Osculating elements, Method 7
Time derivatives of Z

Number of elements to be averaged (6)
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COMMON MCCOM

Description: This common block containg variables pertaining to
the midcourse correction analysis.

Length: 150 8-byte words followed by
50 4-byte integer words

Subroutines Using: APROCH BELL BURND FIXATG
JET MCBURN MCSET MCVERF
MDCORS MINTF MONTE POST
PROTO SENSO SETUP2 TARGET

Symbolic
Location Name Description
1 ALIMIT Maximum allowable change in midcourse veloeity

on each iteration, km/sec.

2 TR Epoch of target planets state XS (location 32 in
- MCCOM common), seconds since state epoch,

3 PRX Probability level of midcourse execution errors,
percent,

4-5 - : Not used.

6 XMC(6) Midcourse pre-maneuver state. Cartesian position

and velocity vectors in Earth mean eguinox and
equator of 1950, km and km/sec.

12 DV(3) Midcourse impulsive velocity correction vector
in Earth mean equator and equinox of 1950, km/sec

15 DVS(3) Spherical components of midcourse velocity DV.
Magnitude, declination and right ascension,

respectively, km/sec and deg.

18 TMCS Midcourse correction execution time, seconds
since state epoch.

19 BVD{(2) Desired impact parameter vector at target planet,
B+ T and B:R, respectively, kms,

21 XSUN(3) Vector from the spacecraft to the Sun in
Earth mean equator of 1950.
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Location

24
R

25

26

27

30

31

32

38

39

40
41

42

43

44
45

Symbolic

Name

DVR4

DVRET

EXTUEL

TV(3)

DVT

FUELT

XS(6)

PTAC

DJIDIF

SIGOUT(1)
SIGOUT(2)

SIGOUT(3)
SIGOUT(4)

SIGOUT(5)
SIGOUT(6)

Descrigtion

Midcourse impulsive velneity correction on

previous correction, km/sec.
Impulsive velocity of retro motor, km/sec

Expected second midcourse fuel due to {first
midcourse errors (kg)

Unit vector along the spin-axis at retro maneuver
time (true equator and prime meridian of target
body)

Required post-injection trim velocity, km/sec.

Fuel required for the post-injection trim
maneuver, kg,

Cartesian target planet state resulting from current
midcourse maneuver in true equator and prime
meridian of target planet, km and km/see.

Midcourse variable target energy g“uidance constant.
Set to

PFAC = ASPR * WRETRO/ASPMC

where
ASPR  is the retro motor's specific
impulge,- gec.
ASPMC is the midcourse motor's specific
impulse, sec.
WRETRO is the retro motor's fuel, kg.

Time from liftoff to state epoch, sec.

Time, sec. w

Hyperbolic excess speed, errors at
km/sec

Arrival cireular excess target planet due
speed, km/sec & to midcourse

Required post injection
trim fuel, kg,

Radius, km errors.
Inclination, deg.

execution
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TL.ocation

46

47

48

49

50

80
81
82
83
34

-85

86

90
91
92
93

94

95

Symbolic

Name

FFIRE

WTF

TMC2

EXVZ

DPT(3, 10)

PSID(1)
PSID(2)
PSID(3)
PSID(4)
PSID(5)

PSID(6)

PSID(7)

TOL(1)
TOL(2)
TOL(3)
TOL{4)

TOL(5)

TOL(6)

Description

True anomaly of retro-fire on the approach
hyperbola (rad)

Spacecraft weight after midcourse correction, kg.

Time of second midcourse, seconds since state
epoch,

Expected magnitude of second midcourse
correction, km/sec

Partial derivative matrix, This matrix represents
the partial derivative of the output variables with
respect to the midcourse correction velocity.

The order of the output quantities is the same as
the PSI Array starting in location 100.

~
Radius, km. -
Inclination, deg. Desired end conditions
Time of flight, sec. at target planet. Array
Hyperbolic excess speed, > is ten long, only six
km/sec. are currently in use.
Circular excess speed,

km/sec.

Total fuel, kg. y

Central velbcity value for fixed- attitude guidance
scan (km/sec)

N
BT, km,
B«R, km. , Convergence tolerance
Time of flight, sec. L on end conditions. Only
Hyperbolic excess speed ; six locations of a ten
km/sec long array are currently
Circular excess speed in use,
km/seec.
Minimum gain in total
fuel, kg.

/
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Location

104

105
110
120-129
130

133

136-139
140
141
142-150
151
152
153
-154

155
156
157
158
159
160

161
162

Symbolie

Name

PSI(1)
PSIZ)
PSI(3)
PSI(4)

PSI(5)

PSI(6)
DW(10)

XMCOM(3)

XEARTH(3)

EC
SEMT
NT

KM
JUMPTF
KBURN

13
KENTRY
IT

IR

KMC

NP

KT

Description

BT, km ]

B-R, kun Consiraint error
Time of flight, sec, vector. Difference
Hyperbolic excess ) between the desired

veloecity, km/sec.
Circular excess

velocity, km/sec
TFuel expended y

Expended weight table - See MCSET, MCBURN (kg)

parameters and the
actual parameters,

Not used

Vector from s/¢ to Moon in Earth mean
equator of 1950

Vector from s/c to Earth in Earth mean
equator of 1950

Not used

Eccentricity of post trim orbit

Semi-major axis of post trim orbit

Not used

Maximum number of iterations allowed
Minimum total fuel return key

Minimum total fuel (MINTY) logic indicator

Midecourse motor burn computation method

=0 impulsive

=]1~8§ corresponds to the trajectory propagation
methods, See location 1013 of INPUT
common

Indicator for third constraint parameter in MDCORS
Entry key for MDCORS - skips initialization
Current iteration number

Return key set b§ subroutine MDCORS

. Mideourse execution counter

Number of constraints

= 2 when minimum fuel guidance is used
=3 otherwise

Flight time scan counter

Not usged
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Location

163

164

165

166

167

169

172

182

Symbolic
Name

NGROPT

KGLAW

ICB

ISP

IBTR

TPD(3)

KEL(10)

KELR(10)

Description

Number of trials to recompute secant matrix

Guidance law

= 1 Minimum fuel
2 Fixed time of arrival
3 Tixed target energy
4 Variable target energy
5 Minimum total fuel

Central body number of XMC state in
location 6.

Key to determine if gradient has been computed,

Miss vector option key
=1 B.-Tand B-R

2 Radius of closest approach and inclination

Constraint indicator array - constraints pointed
out by this array are tested against tolerances
for convergence.

Array of elevation angles of the spacecrait
at the midcourse execution time. The array
corresponds to observation sites 1 - 10,
(deg / 10)

An array similar to KEL except at the retro
firing time.
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Description:

Length:

Subroutines Using:

Symbolic
Location Name
1 ELMMN(12)
13 TMOON
14 PM
15 FOM

COMMON MOON

This common block ig used to describe the Lunar
ephemeris when the Moon is represented by osculating
elements,

15 8-byte words

LUNA SETUP2

DescriEtion

Osculating orbital elements of the Moon and their
sines and cosines, km and rad

Epoch of the orbital elements, days since
2400000 julian date

Mean motion, rad/sec

Mean anomaly of osculating Moon at TMOON
epoch, rad.
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Description:
Length:
Subroutines Using:
Symbolic

Liocation Name

1 DOBS(10, 2)

21 X0OBS(10, 3)

51 OBSROT(9, 10)

COMMON OBSIT

This common block contains quantities which describe
the location of the observation sites on the Earth.

140 8-byte words

DOPLER MCVERF SETUP2 VISIB

Veloeity of the 10 observation sites in the Earth
true equator and prime meridian, km/sec.

Position vector of the 10 observation sites with
regpect to the center of the Earth in Earth true
equator and Greenwich, km.,

The nine elements of a rotation matrix for each of
the 10 tracking stations. The rotation matrix
transforms a vector in the Earth true equator and
Greenwich to an observation site local with the
X-axis north, Y-axis west and the Z-axis up.
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Description:

Length:

Subroutines Using:

Location

7-9

10

22

23

24

25

Symbolic

Name

RCART(3)

RSW(3)

REFORB(12)

EN

TREF

RECT

DOM(6)

COMMON PERT

This common contains quantities which have to do with
the evaluation of the disturbing acceleration and the current
Encke reference orbit.

30 8-byte words

MAIN ACCEL AVEQNS DRAG
EQNS FIELD2 GRAV INTEG
INTERP MOTORS OBLE ouT1
PRINT SETUP2 S01.P TIMEC
TWELVE

Descrigti on

Perturbing acceleration in Earth mean equator and
equinox of 1850, km/sec?

Perturbing acceleration with respect to orbit plane,
In radial, circumferential and normal to orhit
plane, kms/sec?

Not used

Orbital elements and sine and cosine of orbital
elements representing Encke's reference orbit,

km and rad.

Mean motion of Encke's reference orbit, rad/sec

Epoch of Encke's reference orbit, time since state
epoch, sec.

Parameter used to determine when to rectify Encke's
reference orbit.

Current position and velocity vectors of Encke's
reference orbit, kms and kms/sec.
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COMMON PIT

Description: PIT is used for communication during orbit
trim calculations

Length: 20 8-byte words
Subroutines Using: ARMPIT TRIM2
Symbolic
Location Name Description
1 CIF Cosine of final orbital inclination.
2 SIF Sine of final orbital inclination.
3 DVi First trim maneuver's velocity impulse,
6 DV2 Second trim maneuver's velo;:ity impulse,
9 Dv3 Third trim maneuver's velocity impulse.
12 XS Initial state vector.
18 DMGG Storage vector of length 3.
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Description:

Lengths

Subroutines Using:

Location

1

73

85

89-100

Symbolic

Name

XP(6, 12)

_DST(12)

NUT(4)

COMMON PLNET

This common block contains quantities that describe
the position and velocity of the planets with respect to
the central planet.

100 8-byte words

MAIN ACCEL APROCH ARMPIT
AVERGE CLOSE CRASH DRAG
FIXATG GRAV JET LUNA
MCVERF MDCORS MULCON OBLE
OUTPUT ouTil POST PRINT
READE SETUPZ SHADOW SOL
SOLP TARGET UPDATE VISiB

De scrigtion

Position and velocity vectors of the planets with
respect to the central planet in Earth mean equator
and equinox of 1950, km and km/sec. The first
index denotes the vectors while the second index
denotes the planet number. The order of the
planets is,

1 Mercury ‘b Jupiter 9 Pluto
2 Venus 6 Saturn 10 Sun

3 Earth 7 Uranus 11 Moon

4 Mars 8 Neptune 12 Oddball

Distance from the central planet to the planets,
except that DST (JC) is distance to spacecraft
where JC is central planet number,

Earth nutation variables. Only available when
tape ephemeris is used,

Not used
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Description:
Length:

Subroutines Using:

Location

14
28

34-39

40

41

Symbolic

Name

SAVE(6)

TSAV

SAVEL(6)

SAVE2(14)

SRATES(6)

TOUTL

RSAV

COMMON SAVE

This -common bloek is principally used to save various
quantities for use in restoring the state.

45 8-byte words

MAIN CRASH FOWARD ouUT1
PRINT SETUP2 TIMEC

Description

Saved position and velocity vectors in mean equator
and equinox of 1950, km and km/sec

Epoch of saved variables, time since state epoch, see

Saved integration variables at time corresponding
to TSAV.

Saved Encke's reference orbit, mean motion and
epoch of reference orbit.

Saved derivatives of the integration variables
at TSAV.

Not used

Last time ti'ajectory output was obtained during
numerical integration, sec. since state epoch,

Last sine of the ﬂight path angle with respect to target

planet. Used during closest approach iteration of the
numerieal integration,
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Description:

Length:

Subroutines Using:

Symbolic
Location Name
1 DSAD(3, 5)
16 TSAD(3)
1¢ TSX(10)

COMMON SHAD

This common block contains quantities used to
determine the times of umbral and penumbral crossings,

28 8-byte words

FOWARD SADOUT SHADOW

Description

Saved distances from the shadow cone, km. The
first index corresponds to 3 back times. The
second index corresponds to the type of shadow
as follows:

1. launch planet umbra

. launch planet penumbra
target planet umbra
target planet penumbra
occultation

U W N

Times of the 3 back values of the DSAD array

Times of crossings, seconds from state epoch,
This array is segmentated into groups of 2, The
first of a group is the entrance time while the
second is the time of exit from the shadow cone.
The 5 groups are ordered in the same manner as
the DSAD array.

58



COMMON STATE

Description: STATE common contains information which describes
the state of the spacecraft at the end of a numerical
integration step.

Length: 40 8-hyte words

Subroutines Using: APROCH ARMPIT AVEQNS | AVERGE
AVSTRT BELL CIL.OSE CONTRL
CRASH DOPLER EQNS FIELD2
FIXATG FOWARD INTEG JET
LUNA MCBURN MCSET MCVERF
MDCORS MONTE MOTORS MULCON
OBLATE OBLE OUTPUT OUT1
PLANET POST PRINT PROTO
SADOUT SETUP2 SHADOW SOL
SOLP TARGET TIMEC TOBODY
UPDATE MAIN '

Symbolic

L.ocation Name - Description

1 X(3) Spacecraft's position vector in Earth mean equator
and equinox of 1950, kms,

4 DX(3) Spacecraft's velocity vector in Earth mean equator
and equinox of 1950, kms/sec.

7 D2X(3) Spacecraft's acceleration vector in Earth mean equator
and equinox of 1950, kms/sec?,

10 T Epoch of the above state, second since state epoch.

Note: state epoch in location 46 of INPUT common,

11 ATT(3) Unit vector along spacecraft's attitude in Earth mean
equinox and equator of 1950,

14 ELM(6) An array of quantities that describe the current state.
Location 13 of INPUT common. METH, determines-the
quantitieg:

METH = 1. not used
2 Enckes variables
3,6 Orbital elements
4,5 Orbital elements with mean anomaly, y
7 Orbital elements with e cos ¢, e sin g

and f +ew.
8 Same as 7 except {+M instead of f + ¢
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Location

20-25

26

27

28

29

30-31

32

33

34

35

36

Symbolie

Name

EJO

TRU

EJT

TCA

UJT

THRUST

WT

W

SOL

ACL

60

Description

Not used

Modified ephemeris date of state epoch,
days since 2400000 julian date.

Contains true or mean anomaly according to
the setting of the METH flag in location 1013
of INPUT commeon.
METH =4,5 mean anomaly
METH =8 true anomaly plus argument|
of perigee !

Current ephemeris time, days since 2400000
julian date. Also valid at intermediate times
of integration,

Time of closest approach, seconds since
state epoch,

Not used

Current modified julian date, days since
2400000, Also valid at intermediate times
of integration,

Engine thrust, newtons.

Spacecraft mass at engine ignition, kg.
Current spacecraft mass, kg.

Solar pressure constant.

= golar prescure rvea X solar pressure
at 1 au from the Sun x au? x 1 (10}“8.

Magnitude of thrust acceleration (km/ secz)

Not used



SECTION 5

Input/Cutput Units

This section deséribes the purpose of the input/output units required for the
operation of MAESTRO. A description of these units is shown in Table 5.1,
Some of the unit numbers are program inputs. If the unit number is greater
than 1000, the number under unit number specifies the location in the input

array where the unit number is to be input.
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TABLE 5.1
Input/Output Units

Unit Record Subroutine Purpose
Number Length {Bytes) Used .
1 3512 FIND Directory of the GTDS 24 -hour

hold file, Required when input
input location 1076 is non-zero,

5 36 INPUTF Program data inputs., Unit
required for all operations.

6 variable Many routines Program primary output device,
Unit required for all operations,

10 7452 ' GETTAP Ephemeris disk or tape. Direct
read used with disk, Input
location 1017 used to specify whether
disk or tape. Unit required when
1017 equals 3 or 5.

12 280 SETUP2 Attitude input unit, Used to pass
attitude from Aftitude D etermination
Program to MAESTRO, Reguired
when input location 1087 is non-zero,

13 80 ~ MAIN Director’s display. Used during
- in-~flight operations. Required when
input location 1090 is non-zero,

21 64 POST, PROTO Plot Unit. Used to write tape for
post processing, Required when
input location 1093 ig set to 21,

26 T2 FIND State input unit, Used to pass state
from GTDS to MAESTRO via the
24-hour hold file. Required when
input location 1076 is non-zero,

27 7200 - PUTELS State output unit, Used to transfer

state to GTDS program, Required
when input location 1092 is non-zero,
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Unit Record
Number Length (Bytes)

*¥1058 variable

*1061 360

Subroutine
Used

OUTPUT
PROTO
POST

POST
PROTO

- Purpose

Auxiliary output unit, Required
when input location 1058 is non-
Zero,

Midcourse output unit. Unit
number in input location 1061 must
be gpecified when the mideourse
analysis mode is used.

* The unit number is a program input. The number shown is the input location where

the unit number is input.
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SECTION 6

SUBROUTINE DESCRIPTION

This section presents a description of the subroutines which comprise the MAESTRO

program. The descriptions include

Calling sequence

1.

2, DPurpose

3. Common Blocks Required
4. Subroutines Required

5. Input / Qutput descriptions
6. Theory

7. Descripiion

8.

Flow chart where applicable
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MAIN PROGRAM

Purpose: The main program initializes some commeon blocks and
calls the subroutine (s) which perform the desired
MAESTRO analysis,

Common Blocks Required: AVG, CETBL2, CETBL3, CNTRL, CONST, FIELDM,
INPUT, INPUTS, INTVAR, PERT, PLNET, SAVE,
STATE

Subroutines Required: APROCH, ARMPIT, CONTRIL, FOWARD, MCSET,

MCVERF, MONTE, PROTO, INPUTF

Input / Output

SYMBOILIC COMMON
1/0 NAME DIMENSION| BL.OCK DEFINITION
0 ICW 1 CETBL2(1) Tape ephemeris error flag
Flag used to write
i INIT 1 INPUT(1090) | director's file
1 MODE 1 INPUT(1044) | MAESTRO analysis flag
0 TAB3 829 CETBL3(1) | Raw ephemeris tape data
Description:

The main program initializes some common blocks and calls the appropriate subroutines
to perform the desired MAESTRO analysis. No computations are done in this routine,

MAIN is also used to define the length of many of the cornmon blocks.

Initially commmon blocks CNTRL, PLNET and STATE are cleared. Next subro.utine
INPUTTF is called to initialize the input array from program inputs. Writes on unit 13
are made if INIT is not equal to zero. These writes are messages which are displayed
on a file known as the director's file and are only used in real-time operations. Next,
the saved common is cleared and subroutines CONTRL and MCSET are called to initialize
variables for later use, Finally, subroutines APROCH, MONTE, MCVERF, ARMPIT
or PROTO are called according to the seiting of the MODE flag. These subroutines

are used to conirol the logic for one of the MAESTRO analysis modes. After the analysis
iz complete, flow returns to the call to INPUTF to initiate the next case,
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SUBROUTINE ACCEL

Calling Sequence: CALL ACCEL

Purpose: This subroutine evaluates the acceleration
of the spacecraft,

Common Blocks Required: CNTRL, INPUT, GRAVTY, PERT, PLNET

Subroutines Required: DVMAG, FIELD2, GRAV, MOTORS, OBLE,
PLANET, SOLP

Input / Output

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
1 JC 1 CNTRL(7) |Central planet number
Planet number of the planet used in
1 KOBL - 1 INPUT(1029)|the gravitation field evaluation
1 KOBLTE 1 INPUT(1018) Earth oblateness flag
1 KSOLP - 1 INPUT(1084);{Solar pressure flag
1 KTHRST 1 CNTRL(2) [Thrusting flag
1 K 1 - CNTRI(5) |Discontinuity flag
Position of the spacecraft w.r.t.
1 POS 3 GRAVTY(1) |central planet
0 RCART 3 PERT(1) Spacecraft's acceleration
Description:

This subroutine controls the logic to determine the spacecraft's acceleration, Initially,
the acceleration in RCART is cleared. Next, subroutine PLANET is called to obtain the
current position of the planets, Subroutines OBLE, FIELD2, MOTORS and SOLP are
called to evaluate the acceleration due to Earth oblateness, general gravitational field,
engine firing and solar pressure, These subroutines are called only if input flags are
set. Finally subroutine GRAV is called to determine the acceleration due to the planets

in the system and the central planet if the C‘owell trajectory propagation scheme is used.
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Determine
spacecraft
acceleration

SUBROUTINE ACCEL

lENTER }

y

Clear perturbing acceleration,
RCART

{

Get positions of planets using
subroutine PLANET

/

‘ Set distance to central planet
DST(IC) = | POS |

Earth
oblateness

OBLE

>|full gravity

field
FIETLDZ

> Engines

MOTORS

Solar

o

pressure
SOLP

|

Other planets and
central planet
GRAVTY

(RETURN’
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Calling Sequence:-

Purpose:

Common Block Required:l

Subroutines Required:.

Input / Cutput

CALL APROCH

This subroutine performs the analysis to determine the
retromotor's firing time and aftitude

CNTRL, CONST, ELMNT, INPUT, MCCOM, PLNET,

STATE

CROSS, FOWARD, M50MDT, NUTATE, OREBIT, QUIKIE,
PUTELS, TRIM, TRMN, VNORM, VIEW, VISIB

1/0 SYMBOLIC COMMON

_ ' NAME DIMENSION BLOCK DEFINITION

0 TF 1 INPUT (4) Tinal time

1 - DJI 1 INPUT(37) Launch epoch

I WO 1 INPUT(38) Initial S/C mass

1 DJO 1 INPUT(46) State epoch

0O RTAC 1 INPUT{47) Right ascension in retro
motor altitude '

O DECL 1 INPUT(48) | Declination of retro
motor altitude

1 ‘HRO 1 INPUT(53) Hour of state epoch

1 - XMINO 1 INPUT (54) Minutes of state epoch

I SECO 1 INPUT(55) | Seconds of state epoch
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‘Input / Output

L -
SYMBOLIC COMMON
1/0 ‘NAME DIMENSION BLOCK DEFINITION
0 TCOMP 10 INPUT(170) Switching times of com-
| pute interval table
o) DELT 10 INPUT(180) | Compute intervals
) TIG 1 INPUT(381) Retro motor ignition time
0 TBO 1 INPUT(384) | Retro motor burnout time
I TFIRE1 1 INPUT (400} Initial retromotor firing
{ime
i TFIREZ 1 INPUT(401) Final retro motor firing
time
Initial right ascension
1 RAC 1 INPUT(403) of retro
T DECO 1 INPUT{404) Initial declination of retro
I DELRA 1 INPUT(405) Increment in right ag-
cension
I DELDEC: 1 INPUT(406) | Increment in declination
1/0 DELV 1 INPUT(407) Retro motor's impulsive
velogity
I - ASPMC 1 INPUT{441) | Midcourse motor's ISP
T ASPR 1 INPUT(442) Retro motor's ISP
I WRETRO - 1 INPUT(443) Mass of retro fuel
I WDROP ~ 1 INPUT({473) Retro drop mass
T CONE 1 INPUT{474) Altitude cone angle
I TRUE 1 INPUT(475) True anomaly firing range
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Input / Output

SYMBOLIC COMMON
1/0 NAME | DIMENSION BLOCK - " DE¥INITION
I - RBURN 1 INPUT(512) Retro motor burn time
O TCATST 1 INPUT(513} Time to begin closest
..... approach testing
I JRA 1 INPUT(1041) | Number of trial right
ascensions
I JDEC 1 INPUT(1042) | Number of trial decli-
nations
T KFIRE 1 INPUT{1043) | Number of firing times
1 MODE 1 INPUT(1044) | Program mode flag
I KAPOUT 1 INPUT(1046) | Firing analysis output
flag
T KAPSAD © 1 INPUT(1048) | Lunar orbit shadow flag
I - KAPOPT - 1 INPUT(1055) | Retro analysis option flag
I KREAD 1 INPUT(1057) ;| Midcourse firing number
when initial conditions
from midcourse analysis
I MCVNIT 1 INPUT{1061) | Midcourse unit number -
I NREV 1 INPUT(lOSl)' Number of transfer tra-
jectory revolutions
1 KAPWT 1 INPUT(1082) | Unit number where ap-
proach firings are saved
/0 X 3 STATE(L) S/C position vector
/0 DX 3 STATE(4) §/C velocity vector
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Input / Output

SYMBOLIC COMMON
1/0 -~ NAME DIMENSION |~ BLOCK - DEFINITION
/0 T - 1 - STATE({10) | Time since state epoch
0 ATT 3 STATE(11) | Unit vector along S/C
----- S altitude
0 ~ EILMD -} 6 STATE(14) | S/C orbital elements:
I UJT 1 STATE({32) | Current modified julian
l date
1 WT 1 STATE(34) | S/C mass prior to motor
ignition
T JCc - -1 CNTRI(7) | Central planet number -
Description:

This subroutine is used to determine the retro firing time ard altitude in order to meet
specific mission criteria., This version of subroutine APROCH was deéigned for the
RAE-B mission. The most important eriterion for this mission is the post injection
trim fuel requirement. Other constraints are the spin axis-sun angle at firing,
tracking station coverage, shadow times and orbit orientation., The retro conditions
are determined in a brute-force manner, Repeated trial retro firings are made at
various altitudes and firing times. The mission constraints are determined for each
firing and output in displays so that the user can determine the firing time and

altitude,

The retro motor can be simulated numerically or with the impulsive velocity ap-
proximation. Also, the pre-retro state can be determined numerieally or with conic
approximations, The MO]jE flag is used to determine which approximations apply.
If the MODE flag is set to one, the entire analysis is performed using numerical
techniques. The impulsive velocity and conic approximations are used when the

MODE flag equals two,
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The first part of the subroutine sets up constants and has logic to pick up the initial
conditions from the midcourse tape if desired. The KREAD flag is used for this
option, Logic is also included to set the closest approach test start time , TCATST,
if more than one orbit of the transfer irajectory is desired. This option was in-
cluded for Earth orbit missions and does not apply to a RAE~B type of mission.
NREV should equal zero. At this point the logic flow divides according to the type

of analysis desired - approximate or precise,

Lets discuss the approximate case first., When MODE = 2,the closest approach

flag is set to 2 to cause the propagator to stop at closest approach. Next, sub-
routine FOWARD is used to propagate the state to the closest approach of the target
planet,‘ The coordinate rotation is determined from the integration frame (Earth
mean of 1950) to the true equator of the target planet. Subroutines M50MDT and
NUTATE are used. T he state at the closest approach is rotated to the desired system
using MVTRN and orbital elements determined using subroutine ORBIT. These ele~

m ents are the elements of the approach hyperbola.

The firing time on the approach hyperbola and altitude are varied in one of three

ways through the KAPOPT flag as follows:

KAPOPT=L
The true anomaly of the firing ig determined from
KFIRE
f = ({-TRUE) +35 , i*(2 TRUE/KFIRE)

where , . ., ;
£ is the true anomaly al closest approach

TRUE is the input true anomaly range
KFIRE is the input number of firings
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The atiitude is determined by

JRA
ra, = (RAO - CONE) + 5, i¥ (2CONE/JRA)

JDEC
DEC, = (DECO - CONE) +x i * (2CONE/JDEC)
i=1

Wh
°T® RAO s the input starting right ascension

DECOQ is the input starting declination
JRA  is the input number of right ascensions
JDEC is the input number of declinations
CONE is the input altitude cone angle
If the starting right ascension and declination are not input (equal to zero), the right

ascension and declination of the velocity vector at closest approach will be used,

KAPOPT=2
The starting increment and number of altitudes must be input, Then the altitude

is determined from

JRA
RA, = RAO+P i* DELRA
i =1 )

JDEC
DEC, = DECO + T i * DELDEC
L . i=1
The firing true anomaly is determined in a manner similar to the KAPOPT=1 option

except that the range in true anomaly is from asymptote to asymptote instead of

CONE.

KAPOPT=3

The first and last firing point on the approach hyperbola is input via the firing time
since liftoff, The firings are made at KFIRE number of constant true anomaly

steps between the bounds specified by the times, The altitude is varied as de-
scribed for KAPOPT=2,
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The IF statement just before statement 8 is used to transfer to the logic which

sets up the necessary constants to increment the true anomaly and altitude,

The logic flow for the precise case, MODE=1, differs slightly from the case
discussed above, Instead of flying to closest approach to the target planet,
the final time is set to the first firing time, TFIREl. The KAPOPT flag must

be set to 3 for this mode; thus, flow transfers to Statement 11,

At this point, DO LOOPS are established to increment the right ascension,
declination and firing time. The range of these loops extends to almost the

end of the subroutine. The mission constraints are calculated for each attitude
and firing time and saved in arrays for output or output inside the loops. When
the MODE=2 is used, the position and velocity vectors are determined from sub~
routine ORGIT where the true anomaly is determined by the DO 10 loop. The
impulsive velocity of the retro is added to the spacecraft's velocity in the direction
specified by the attitude. This calculation is performed at statement 13. Next,
the post retro orbit is determined and desired mission constraints calculated
using subroutines QUIKIE and TRIM. The firing time display is output if the
KAPOUT is set,

Subroutine FOWARD is used to simulate the retro motor when MODE=1, When
this case is desired, subroutine FOWARD  is first called to propagate the space-
craft to the ignition time, next, the compute interval is adjusted and the engine
ignition and burnout times set, Fiqally, FOWARD is used to propagate through
the burn. This logic is located between statements 100 and 110, Flow then trans-

fers to the same place where the post retro orbit is determined when MODE=2,

The above logic is repeated until all attitudes and firing times are simulated.’
When the DO 30 loop is completed, the minimum eccentricity and trim fuel grids

are output. This completes the subroutine,
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L
=

GET INITIAL CONDITIONS
FROM MIDCOURSE TAPE

|A

=0

Set closest approach
NREV | test start time

l,

Set initial weights and
constants

TF = TFIRE]
_|KCRASH =0

Propagate state with
FOWARD

Get rotation matrices
from mean 50 to lunar eguator
NUTATE, M50MDT

3

Get sun vector, X8, in lunar
system

Set times

and weight |
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Rotate to lunar equator and

Calculate elements: MUTRN, ORBIT

set increment in attitude
from asymptotes and firing
time increments from time

{

set increment in attitude _
from COLE and increment in
true anomaly from TRUE

Set increments in attitude
and firing times from inputs

W,

&

Increment right ascension,
and declination

Increment firing time

.,

Write firing
time heading

|
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Set state to last pre-ignition state

Set final time to engine ignition time
and propagate to the time with FOWARD

Save pre-ignition state

i

Simulate engine using FOWARD

Get pre-ignition state from ORBIT

l

Add retro impulsively and determine
firing time from frue anomaly

Use PUTELS to write
out state for GTDS

Calculate pre-trim
Iunar orbit from OREBIT

v

Calculate constraints, spin axis -~ sun
angle, shadow with QUIKIE, trim velocity
with TR]IM,and save pre-trim state
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| Write out firing analysis]

End of firing time loop

y

Determine minimum fuel
and minimum eccentricity

Write out saved pre-trim
1 orbits :

End of attitude loop

Fi

Write out eccentricity
and minimum fuel scans

‘ Return )
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SUBROUTINE ARMPIT

Calling Sequence:‘

Purpose:'

Common Block Required-ﬁ

Subroutines Required-:- |

CALL ARMPIT

This subroutine determines the post injection
time requirements and outputs the post injection
trim displays.

COWST, INPUT, INTVAR, PIT, PLNET, STATE

M50LEQ, ORBIT, PUTELS, ROTATE, TRIM,
TRMN, TWOPIT :

Input/Output
SYMBOLIC - PROGRAM COMMON
1/0 "NAME DIMENSION - BLOCK . DI FINITION
' Inclination of desired final
I , CID 1 INPUT(446) orbit w.r.t. target planet
T o ' C equator,
Modified Julian launch
1 DIL 1 - INPUT{37) date
_ Modified Julian date
ms ‘DJO 1 INPUT(46) | ~of epoch
; _ Cosine of desired
O | CIF 1 PIT (1) inclination
. First trim velocity
1 1 DVl 3 PIT (3) maneuver
I DV2 3 ' IpIT 6) Second trim velocity
maneuver
1 __IDSAT = - 1 INPUT(1089) | Satellite ID number
- Element set number when
T ISET 1 . INPUT(1092) state is saved from GTDS
1 - JT 1 - INPUT(1031) Target planet number
I "~ RD 1 INPUT(444) Radius of final orbit
_ Inclination of the transfer
I TRINC : 1 - INPUT{449) orbit
0 SIr 1 - PIT(2) Sire of desired inclination




Input/Output

SYMBOLIC PROGRAM COMMON
1/0 NAME DIMENSION BIOOHE DETINITION

Current modified

1 UIT 1 STATE(32) Julian date
Position and velocity

1 X 8 STATE(D) of spacecraft
Pogitions & velocities

1 XP 6, 12 PLNET(]) of the planets
Position and velocity
of spacecraft just

I X5 6 PIT(12) prior to first

' maneuver
Description:

This subroutine determines the post injection maneuver required to achieve a
circular orbit with a desired radius and inclination. Two maneuvers are
determined. First, a two impulse maneuver with a plane change and, second, a
Hohmann transfer maneuver with no plane change, The mancuvers are defermined

in subroutines TWOPIT and TRIM, respectively.

The initial orbital elements are determined using subroutine ORBIT and supplied as
inputs to subroutines TRIM and TWOPIT. The calculated maneuver is passed back to
ARMPIT via DV1 and DV2 of PIT common, Also the state just prior to the first man-
euver is passed back in XS of PIT common, The first maneuver is added to the
state in X8 to determine the transfer orbit. Subroutine ORBIT is used to determine
the transfer orbits elements, ELMT. A 180 degree transfer is specified. Thus, the
true anomaly of the second maneuver on the transfer orbit is,

F =ELMT(3) + 7
The cartesian state is determined at this true anomaly, the second maneuver applied,
and the final orbit, ELMT, determined using ORBIT. The desired output quantities

are determined and the appropriate displays presented.

80



The above logic is surrounded by a loop using the flag ISTEP, The purpese of the
loop is to pass through the calculation of the orbits once for the plane change man-

euver and a second time for the Hohmann transfer maneuver,

The state after the first trim can be written as a hold filé for retrieval by the GTDS
Program, The ISET flag is used to key this option. Subroutine PUTELS is used to

write this file.
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SUBROUTINE ARMPIT

\ ENYER

l

Get state in selenographic
system using M50LEQ and ROTATE

Determine initial elements
OREBIT

!

Write plane change maneuver header

“Determine plarfle chiange maneuver

TWOPIT
Ay

ISTEP=1

¥

Ny B

ISTEP=2

A

X = X8 = DV1
N
Determine fransfer orbit
ORBIT
N

Determine stale prior to
second maneuver, XS, using
ORBIT

Determine final orbit
OREBIT

V.
Calculate output quantities
and print displays
N 2
ISTEP—2{ RETURN
=1

b

Determine Hohmann transfer
maneuver and write Hohmann

transfer maneuver header, TRIM

B2



FUNCTION ATMO

Calling Sequence: CALL ATMO(JC, N, H)
Purpose: To compute the atmospheric density for drag
calculations.

Common Blocks Required: None

Subroutines Required: None
Inputs/Outputs
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
I JC 1 Call List Central body number
1 N : 1 Call List Atmospheric model number
I H 1 Call List Altitude
Discussion:

Atmospheric density is computed as an exponential function of altitude for
Mercury, Venus, Earth, or Mars when altitude is below 50,000 km, The density
- data is tabulated as a function of altitude.

p = exp[pk_1+s(ztnh--tnh }]

k-1
where

hyqsh<hy
and

5 = (P - pk_l)/(/&n hk— in hk-l)
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SUBROUTINE AVEQNS

Calling Sequence: CALL AVEQNS

Purpose: To average, by Gaussian quadrature integration, the
planetary equations over one revolution of the satellite
" in its orbit,

Common Blocks Required; INPUT, CNTRL, STATE, AVG, INTVAR, PERT,
CONST, GRAVTY

Subroutines Required: TRMN, ORBIT, ACCEL, ROTATE

Input / Output

SYMBOLIC COMMON

1/0 NAME DIMENSION  BLOCK DETFINITION

I METH 1 INPUT(1013) { Trajectory propagation method
Number of ordinates to be used for each

I NORD 1 INPUT(1068) interval of Gaussian quadraturc integration

‘ Number of intervals into which the orbit ig

I IN'T 1 INPUT(1069) divided for Gaussian quadrature integration

1 DJO 1 INPUT(46) Modified Julian date at liftoff epoch
Modified ephemeris date at

I EJO 1 STATE(26) liftoff epoch

1 JC 1 CNTRI(7) Central planet number

1 P12 1 CONST(3) Twice pi

I GM 12 CONST(5-16) | Gravitational constants of the planets
The current time (independent

I X 1 INTVAR(1) integration variable)
The current array of dependent

I Y 6 INTVAR(2-7) | integration variables
Weights for Gaussian

1 WEIGHT 78 AVG (1-78) 1 quadrature formula

: Abscissa for Gaussian

I ABSCIS 78 AVG (9=156) quadrature formula
The time derivatives of the current depen-

4] RATES 6 INTVAR(8-13)] dent integration variables
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Input/Cutput

SYMBOLIC COMMON .

1/0 NAME DIMENSION | BLOCK DEFINITION

I PI 1 CONST(2) Pi :

Mean or irue anomaly plus

I F 1 STATE(27) argument of perigee

o) EJT 1 STATE(28) Current ephemeris date

O ujT 1 STATE(32) Current modified julian date
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Theory:

Reference 1 gives a description of the theoretical basis for the numerical averaging.
The planetary equations are written in Gauss's form where the perturbations enter
directly as accelerations rather than as the partial derivatives of a potential function.,
The planetary equations exist in several forms in the program. They are symbolically
represer_lted by

E. = f (Ei, t) i,j=1,8, (1)

where the E_represent a set of 6 independent osculating orbital elements.
i

The averaging operation is accomplished numerically rather than analytically and is

represenied by
t+7/2

E = £ dt (2)
t-T/2

where 7 is the orbital period. The mean values of the orbital elements are defined

by t+7 /2

=l
I
b | Ir—l

E@® dt. (3)
t-7/2
The important thing to note is that the numerical averaging method essentially trades

the set of 6 differential equations for the osculating orbital elements for 2 set of 6

differential equations for the mean orbital elements.

The mechanical averaging is done with respect to true anomaly rather than with the time

directly. The Keplerian relation
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is used to transform the integrals in (2) from time to true anomaly giving

£ (t + 72)
: _ _np G (e, df )
1 27 Vip j (1+e cosfi)
£(t-/2)

where f is the true anomaly and the other symbols represent Keplerian elements

and constants as given in Reference 1.

Description:

This subroutine is a modified version of a variable-order, variable interval Gaussian
quadrature integrator. The weights and abscissae for the quadrature formula are stored
sequentially in AVG common, in the arrays called WEIGHT and ABSCIS. The values
stored correspond toguadrature formulae of order 2 - 16 as given in reference 2. The
single weight required for a two-point quadrature is stored in WEIGHT(1), the two
weights required for a three point quadrature in WEIGHT(2) and WEIGHT(3), and the two
weights required for a -four point quadrature in WEIGHT(4) and WEIGHT(5). The pattern
continues up through and including the eight weights required for a 16 point guadrature
stored in WEIGHT (64-71). The c-oi'responding abscissae are stored in the corresponding

locations of the ABSCIS array.

The order (NPRD) of the quadrature is specified by the user as well as the number of
subintervals (INT) to be used in the infegraiion. The full range of the independent variable
(true anomaly) is divided into INT intervals and the current (mean) value of the true

anomaly is calculated from the mean mean anomaly and stored. The coding near statements

50 and 51 establishes the proper limits of integration and performs the transformation

from mean anomaly to true anomaly for either the Method 5 or Method 8 variables. Throughout

the subroutine, appropriate tests are made to distinguish between the two methods-.

Certain quantities that are calculated only once are established before the quadrature
summation begins at the DO 507 loop. This outer loop is for the summation of the sub-

interval quadrature formula. The actual Gaussian quadrature algorithm starts at statement
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150 where the time and the sine and cosine of the true anomaly are calculated for

each required evaluation of the integrands for the 6 differential equations to be
numerically averaged. The values of the integrands are calculated as shown in
reference 1, multiplied by the appropriate weight, and the results are stored in

the array SUM.

The results of each subinterval quadrature are accumulated in the array called ANS
until all subintervals are completed at statement 507. The 6 stored integrals are
then multiplied by the constants outside the integral signs of the averaged equations
and the results are loaded into the RATES array of INTVAR common for use in

the numerical solution of the averaged differential equations of motion.

References

1. Uphoff, C., Numerical Averaging in Orbit Prediction, Presented at AIAA/AAS
Astrodynamics Conference, Palo Alto, Calif., ATAA preprint No. 72-934,
September 1972,

2, Abramowitz, Milton and Stegun, Irene A., Handbook of Mathematical

Functions, published by The National Bureau of Standards, Applied
Mathematics Series No, 55, May 1968.
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" Calling Sequence:

Purpose:

Common Block Required:

SUBROUTINE AVERGE

CALL AVERGE (KSET)

AVERGE calculates the average perturbing
acceleration due to the Sun and the Moon's indirect
term over one step of the multiconic trajectory

scheme.

DUM, STATE, PLNET, CONST

Subroutines Required: DVMAG
Input / Output
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION .
Earth-Moon acceleration
1/0 AlS 3 DUM(1) at beginning of step
Sun acceleration at
1/0 A2S 3 DUM(4) beginning of step
1 DT 1 DUM(10) Step time interval
Gravitational constants
I GM 12 CONST(5) of planets
CALLING Flag for adding or subtracting
I KSET 1 OPERAND accelerations
Position and velocity of
1/0 X 6 STATE(1) spacecraft '
Positions and velocities of
1 XP 72 PLNET(1) planets wrt central planet
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Theory:

AVERGE corrects the position and velocity of the spacecraft during each step in
order to account for perturbing accelerations that are not included in the conic

assumptions.

These perturbing accelerations arc caused by the Sun and also by the effect of

the Moon on the planet, Let A1l be the acceleration vector due to the Earth-

Moon term at the present time, and A1S be the same vector from the previous

time (T-DT). Similarly let A2 and AZS be the Sun term accelerations cerresponding
to T and T-DT.

-

Then Al

GMm* ﬁem/ ‘ﬁeml

- = - 3 = = 13
= 3
And AZ G Ms (Res / lRes‘ * Rsv / \Rsvl )
Where subscripts m, e, s, svrefer to Moon, Earth, Sun and
space vehicle respectively and ﬁesis the vector from the Earth

to the 3un, etc.

The average accelerations on the spacecraft with respect to the Earth over

the interval DT are:

>
ot
|

= - (Al +A1S) /2.

>
(]
n

- (A2 +AZS) /2.

If X and DX represent the position and velocity of the spacecraft respectively,

then the correcied position and velocity are

X =X +1/2 * (Al +A2) *DT

———

DX = DX +(Al +A2) * DT
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If KSET .LT. 0,then the orbit is to be retraced, in which case the following

equations are Substituted for those above:

X =X -1/2 * (AL +A2) * DI

i

DX = DX - (Al + A2) * DT

Description:

AVERGE is used in connection with the multiconic scheme. It calculates the
acceleration of the Earth due to the Moon at the present time and adds it to
the acceleration at the last time and divides by two for the average acceleration

over the step. The present acceleration is then saved for future use.

The same procedure is followed for the calculation of the acceleration due to

the Sun on the Earth and on the spacecraft.

Once these two average acceleration vectors have been calculated, the position
and velocity of the spacecraft are updated to reflect the accelerations. The
changes in position and velocity are either added or subtracted depending on the
flag KSET. If KSET .GE. 0, then forward propagation is desired and the terms

are added. Otherwise, the terms are subtracted and the orbit path is retraced.
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SUBROUTINE AVERGE

NO

Call AVERGE
(KSET)

A

Calculate present

acceleration

¥

Calculate average

acceleration

Add effect of
average acc. to

X and DX

YES

Subtract effect of

average ace.
from

X and DX

92

!

RETURN




Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

SUBROUTINE AVSTRT

CALL AVSTRT

To average the input osculating elements over one
revolution of the satellite in its orbit. This pro-
cedure yields the mean orbital elements at a time
halfway through the first revolufion and these ele-
ments are used to start the numerical averaging
techniques for long-term orbit prediction.

CONST, INTVRX, STATE, INPUT, INTVAR, CNTRL
INTEG, ORBIT, EQNS (indirectly)

Uphoff, C., Numerical Averaging in Orbit Predicti-o'ri',r .

Reference:
AAS/AIAA Preprint No, 72-934, Palo Alto, California,
September 1972
Input / Output
SYMBOLIC PROGRAM COMMON
1/0 NAME DIMENSIONS "BLOCK ~ DEFINITION
1/0 XX 6 STATE(}) Position and velocity (osculating on
o o entry,mean on exif) '
1/0 TT 1 STATE(10) | TIME (advanced by one-half revolution
s o ) “on exit) o )
Theory:

In the reference, it was suggestied that the numerical averaging method should be started

with mean orbital elements and an algorithm for performing the start-up was presented.

The averaging technique is properly started from osculating elements by performing a

one~revolution integration of the actual equations of motion and, at thé same time,

forming the integrals

= 1
B =3

E dt.
i
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At each step of the integration, the period; given by the running mean semi-major
axis is caleulated. The averaging start-up is terminated when the time t is equal
to this running mean value of the period. The procedure is implemented by a
simple linear search when t is found to be greater thanT. The mean values of

the elements are then calculated from

T

_ 1
E, = — E, dt
1 T

o

and are associated with the mean value of the time 7/2,

De scription; -

The averaging startup is invoked by setting KAVST (location 1098) to 1, This gingle
value of the flag will cause a call to AVSTRT at the beginning of subroutine FOWARD,
the position and velocity will be changed to values corresponding to the mean elements

at time /2 and the time is advanced accordingly.

The startup will be performed in FOWARD only if KAVST is equal to 1, The asso-
ciated logic in subroutine EQNS, however, will be in effect for any non-zero value

of KAVST so that the startup may be called from other subroutines before entrance to
FOWARD.

To use the subroutine, put the osculating state (position and velocity) into STATE common
and the corresponding time into STATE(10). Set KAVST non-zero and call AVSTRT, The
averaging integration will be performed using METH=7 with an internally set automatic
computing interval. On return from AVSTRT, the position and velocity are changed to
represent averaged values and the time is advanced by 1/2 revolution., All other quan-
tities except EIM (STATE(14-19)) are restored to the values they had hefore the call

to AVSTRT.

The integration of the six additional equations is accomplished simultaneously with the
one revolution propagation of the state. Subroutine INTEG is used to integrate forward
in time using Method 7 with the automatic computing interval control logic. The
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additional integrals are accumulated in INTVRX common and, at the end of each
step, the current time is tested against the running mean orbital period. When

t > 7 the computing interval is changed to take the state from its value at the
previous step to the desired time when t = 7 as obtained by linear interpolation on

the current and previous values of t and . The tolerance on this simple hunting

procedure is set at 10 seconds.
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AVSTRT

( ENTER '

]

Save Integration and
Method Control Variables

Yy
Initialize for Method 7

integration with automatic

step control, Call INTEG(~1)

- { INTEGQ) »

Calculate running

average of orhital

period?r

Calculate required
computing interval
No t>r Yes .

S~

t =7
(within tolerance)

1

Calculate mean elements and corresponding state
Advance time tot + _.,.-' /2.
fa




Calling Sequence:
Purpose:

SUBROUTINE BCONIC

CALL BCONIC (UIN, X1, X2, TIN, QUT, V9, DVD)

BCONIC uses Lambert's Theorem to solve for the
Keplerian conic trajectory which connects two given
radius vectors in a specified transfer time,

Common Blocks Required: None
Subroutines Called: DOT, CROSS
Input/Output
SYMBOLIC PROGRAM | COMMON
Vo NAME DIMENSION BLOCK DEFINITION
I UIN 1 Call List GM (lcms/secz) of the central body
A Position (km) and velocity (km/sec) vec-
I X1 6 Call List tors at the first terminal
I X2 6 Call List Position (km) and tﬁfGlOC!.ty (km/sec) vec-
tors at the second terminal
I TIN 1 Call List Transfer time (sec)
I AUT 1 Call List Iteration's tf}lerance on tra_u.sfer time
error (fraction of transfer time)
) Vo 6 Call List Terminal velocity vectors (km/sec) -
4 DV 6 Call List Terminal excess velocity vectors (km/sec)|
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~ Theory:

BCONIC implements the Schmidt-Bjorkman method to solve Lambert's problem,

which is to find the conic section connecting two terminal radii in a specified trans- .

fer time. The implemented method bears similarities to several of the methods

described in Ref, 1,

The conic parameters are not explicit functions of transfer time, although the con-
verse is true, setting up the requirement for iteration to solve the problem, The
conic sections connecting the two terminal radii can be parameterized by a single
independent variable (in which flight time is a monotonic function). The independent
variable of the 8/B method is flight path angle, 7, at the first terminal, Rl'
The necessary equations for iterating to a solution are derived as follows. The
distance from the force center is given by

p

T = ————
l+ecost

where p is semi-latus rectum, e is eccentricity, and f is true anomaly —

none of which is known a priori. We presume to know the two terminal radii, I
and Ty and the transfer angle, ¥. Since r and r2 are points on the same
conic section,

p = — P

1 1+ecosf1
r = P _ _ p
2 1+ecos(f1+xb) 1+ecosflcos§b-esinflsinqb'

is shown by

The relationship of fl to y at rl

esginf, = P-tan‘y
1 rl

and we can eliminate e and fl from equations (2) and (3) and solve for p as a

function of ¥y and the geometry,
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r, T, (1-cos ) d3

p = —— = ()
(rl—'r2 cos P) + I, sin ¥ tany d1+d2 tany _

The potential problems in computation of Eq. (5) are eliminated by properly
limiting the range of ¥, This range will be discussed later. The velocity at

rl can be calculated by

N Hp

r, cos v

(6)

where u is the force center's gravitational constant. The semi-major axis of
the transfer is given by
2y 2
ol
1

One might worry about parabolic transfers when studying Eq. (7); however, the

special treatment of parabolic transfers will be described later.

At this point, we launch into a discussion of the calculation of transfer time.
BCONIC's formulation of transfer time is written in terms of incremental ec-

centric anomaly, ¢, on the conic section connecting r, and =, .
=]

1 2
rl r v siny
nt = c[(cp—scp)+;8(p+——;a—-(l-0go)] (8)

In this equation, n is the mean motion (J w/(c a)3> while ¢, S¢, and Co
are defined by the following table.

Elliptical Hyperbolic

S¢ sin ¢ sinh ¢
Ce¢ cos ¢ cosh @
s ] +1 -1

It has been showh in Ref. 2 that:
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O
siny = ——EE—[BQ-C@}-QS¢]
nr, r,
172
g cra‘2 2
cos P = — + [(oc —UB)(I—C@)MﬁSfp]
r, «rr
2 12
r1 r1 v sinvy
where fg= Py and q=-————— ., It is easy to solve these equations for S¢

Juoa

and (1-C¢), rendering Egs. (11) and (12) in which dl= r, - r, cos  and

1 2
- _1 /Ua 2
S = rl[ = (o cB)d2+ozd1]

1-Co = i[J%g.“dz+d1]

1/ Seo
\1-Co
©=4n (S¢+C). Tt should be noted that ¢ is the only transcendental function to

d2= r, sin P,

If the transfer orbit is elliptical, ¢©=2 tan ), while if it is hyperbolic,

be evaluated in computing the transfer time.

Iteration:

Equations (5) through (12) provide the recipe for computing transfer time as a
function of flight path angle at the first terminal. The discussion which follows
is concerned with the iteration to compute the unique flight path angle which ren-
ders the "desired" transfer time between the two terminals, BCONIC uses a
simple Newton-Raphson iteration which invariably provides rapid convergence,

Y-
_ n ‘n-1
‘);1“ - 7;1+(td- tn)(t -t )
n n-1

LS

Flight time is a monotonic-increasing function over the allowable range of vy,
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Limits:

' 0
The allowable transfer orbit regions are sketched in Fig. 1 for $<180 and for
$>180°,

H<180°

No orbits traveling from R, to R, are permitted in the shaded regions of the

2
figure. The upper limit on flight path angle is, in either case, the path angle of
the escape parabhola Pz at R1 . This flight path angle is derivable in terms of
the geometry if we solve Egs. (2), (3), and (4) for vy with the conditions that

e=1 and f1=2y.

d1 cos 2y + cl2 sin 2y = Lo (14)
- 3cos”( 20 \+; -1(5_2,)] 15
)i) =i cos j*ttan iy (15)
a2+ a2 1
1l 2

If the second term in Eq. (15) is evaluated with regard for quadrant in the range

of O° to 360° , the arccosine ambiguity still leads to two solutions for y . The
larger solution is the flight path angle of the escape parabola, The smallzr solu-
tion is the flight path angle of the prograde transfer parabola connecting R1 and

R x The transfer time for this prograde parabola is computed accoi'ding to

pp = 21:'1 cos2 )i)l (16)
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pp3 P t 3(71+S§> t: 3)'1
-1 f_ LAY L — L
tp = 3 p tan (3{)1+2/+ 5 ta.n)i)l 3 (1)

H the desired transfer time is equal to the parabolic transfer time (within tolerance),
no iteration is required and the potential paraboelic singularity in Eq. (7) is avoided.
Otherwise, the desired transfer time will be less than tp (hyperbolic': solution) or
greater than tp {elliptical solution). Thus, the flight path angle limits for the en-

suing iteration may be set as follows:

Elliptical

Lower: '}i)l Upper: ‘);)2
. d |
Hyperbolic _ ta,n-l (a_1_> i #)51800
Lower: 2

. Upper: l)i)l
L- w/2 if P> 180

The lower limits on the hyperbolic solution correspond to the straight-line path if
$<180° and to the path along -R, and then along R, if $>180°. Ecuation (5) has

no singularities within the above limits.

Starting:

If the solufion is expected to be hyperbolic, the initial v is taken to be a little less
than )i) 10 the prograde parabolic value. The amount less is chosen simply as 1%
of the allowed range of . The starting value for v when the solution is expected
to be elliptical is the first-terminal flight path angle of the minimum-period ellipse
joining R1 and R 9" The minimum-period ellipse is characterized by the following
semi-major axis and semi-latus rectum (Ref. 3),

2 syl ) | (18)

min 2

_ /.2 .2
Prin” 2(29'111in I‘l)(zaminw rz’/ d1+d2 (19)

102



The flight path angle is then found by substituting Prin into Eq. (5).

d -p . d_;
3 m;n 1 (20)
pmin 2

I/0 Computations:

BCONIC is entered with a 6-vector of Cartesian position and velocity components

for each terminal, The magnitudes of the position vectors, R 1 and R_, are r1

2
and Iy, respectively. The velocity vector, V1 , at the first terminal is used in
determining whether ¥ is less or greater than 180°. The cosine of ¢ is given by
R.-R
1
cos P = _— 2 (21)
' 172

2 . .
but the sine of ¥, computed as /1-cos ¥ , has a sign ambiguity. This ambiguity
is resolved by comparing the cross-product, R1 le , with the cross-product Rl sz .
If these cross-products have a negative dot product, sind must be negative to exclude

retrograde orbits with respect to V1 at R1 .

(Rlel)'(RlxR2)>0 Sinll)=ﬁ/1-coszl,b
(R, xV))* (R xR) S0 sindh = -/ 1—coszz,b

The transfer angle is then defined by
’ _ .
b = (ﬁl—n—ﬂ) 0 < s 360° (22)

cos

At the conclusion of the iteration, BCONIC computes the vector velocity, V*, of

the transfer orbit at each terminal, If the transfer angle is not 180° or 360° s Rl

and R_ define a unique plane for the transfer orbit. Then the velocities are

2
* _
Vl = ¢ R1 + c:z(R1 XRZ) le (23)
and '
vz* = c,R + c4V1* (29)
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where

01 = v sm'y/rl (25)
c,2 = VcCos /(d rz) 26
2 Y/ | (26)
03 = -,/ poa Sg%rl rz) {27)
and
c4 = (rIC:,o+0‘oza S(it:J)/r2 (28)
If |siny|< 10_6 , the transfer orbit plane is ill-defined by Rl and R2 , So the
plane of Rl and Vl is chosen. In this case,
* _
Vl = ¢ Rl + cz(RleI)le (29)
where '
02 = VCosYy |(R1xV1)lel (30)

The other calculations are unchanged, BCONIC also computes the terminal velocity

differences for output.

AV, = V-V, (31)
- * _
AV, = V,*-V, (32)
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CALL
BCONIC

f
Initialize constants of
the iteration

Y

Eompute the parabolic
transfer time, TP

——

i
P

i
limi | Set limits,
Set limits, % o~ | Setli .1 ; ')6
for hyperbolic o j for elliptical
| transfer | transfer

Y

I Compute T('y‘)J

Firgt time
4
is\ Compute Cartesian velocities,
No | T(y)-TIN| VO and DV® from ¥ and
<OUT * TIN other solution parameters
i ' 1
Compute
incremental ¥ RE_:TURN

iAdd incremental ¥ to vy,
test limits and number

of iteration steps
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SUBROUTINE BELL

Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Qutput

CALL BELL

BELL computes statistical estimates of end constraint
errors and second-midcourse requirements based on
estimated first-midcourse execution error statisties.

CNTRL, INPUT, MCCOM, STATE

CROSS, DOT, DVMAG, FOWARD, MCBURN,
MVTRN, RETDV, SENSO, VNORM

SYMBOLIC COMMON
1/0_| - NAME - | DIMENSION BLOCK DEFINITION
| - JC 1 CNTRL{T) Central body number of state
Trajectory stop-time (sec).
I TFINAL | 1 INPUT(4) Input value matters not.
1 WTO ] INPUT(38) Initial spacecraft weight (kg)
1 SIGAT 1 INPUT(435) | Attitude execution error statistic (rad)
Proportional velocity execution error
I SIGDV -1 INPUT(436) | statistic (km/sec)
1 PRX 1 MCCOM{3) Scale factor for printed statistics
1 - XMC |16 MCCOM(6) ‘Pre-midcourse state (km, km/sec)
1 " DV - 3 MCCOM(12) | Midecourse velocity impulse (km/sec)
1 - DVMG - 1 MCCOM(15) | Magnitude of DV (km/sec)
: Midcourse time (seconds from
1 TMCS - 1 - MCCOM(18) | anchor epoch)
: A ' Velocity impulse magnitude expended
"0 |- DVB4 - |- 1- MCCOM{24) | prior to current maneuver (km/sec)
Expected fuel required at next maneuv%
O EXFUEL 1 MCCOM(26) | to correct errors of this one (kg)
Expected end constrainterror statistics
;o) SIGOUT '} 6 MCCOM{40) | (M-see, %-m/sec,’c-m/ sec,f—kg,rp-lm
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SYMBOLIC COMMON

I/0 NAME DIMENSION BLOCK DEFINITION
Weight (kg) after the first

I WTF 1 MCCOM(47) | midcourse maneuver
Time(sec) of the next midcourse

I TMC2 1 MCCOM(48) | maneuver relative to anchor epoch
Expected next-maneuver velocity

o] EXV2 1 MCCOM(49) | magnitude (m/sec)
Sensitivity matrix (transposed) of
end constraints to midcourse

1 DPT 3,10 MCCOM(50) | velocity variations

0 KBURN 1 MCCOM(154)] Mideourse burn option key

0 TR 1 MCCOM(158)| Sensitivity option key

1 KGLAW 1 MCCOM(164)| Guidance law selection key
Central body number

0 ICB 1 MCCOM(165)| at midecourse

0 X 6 STATE(L) State (km, km/sec) relative to JC
Time (sec) to which

0 T 1 STATE(10} X corresponds

~Theory:

Errors in the miss vector, B, are assumed to be entirely attributable to errors in

executing the required midcourse maneuver, Deviations in B are assumed linearly

related to deviations in the corrective velocity impulse, AV, by

2 5 1)
3 AV

§B =

Deviations in AV are, in turn, related to errors along AV {cut off error, €v) and

normal to AV (pointing errors, € and en) by

5 (AV) = AAV S (2)
Bley € €) < &
Eﬂ
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The pointing errors €, and €, are components of the error vector eastward and

northward, respectively, from AV on the celestial sphere as shown in the figure.

The partial derivative in Equation (2} is therefore written as

3 AV
LS - = B 3
A(é‘v, Eei €n) E‘T N] ( )

Vv, E, and N are unit column vectors defined by

V = AV/iavi , (4a)
0

E = KxV/IKxV]| (K =101) (4b)
' 1

N = VxE (4¢)

The partial derivative in Equation (1) is the gradient needed for computing the
required midcourse maneuvers and is therefore available, It is computed by
the secant method in the vicinity of the solution, Because B has six components

(time of flight, v_, Vs total fuel, rp, i) 3B/ 3AV is a 6 x 3 matrix,

Defining P by

A AV ., | (5)

P = _aﬁ
‘ 28V a‘(ﬂr’ €e’ En)
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vs}e can combine Equations (1) and (2) to obtain

6B = P T (6)

The covariance matrix of miss vector errors, C, is given by
v
T T
= = €
¢ E [SB'SB] PE €e Iev €e sn) P (7)

n

where E is the expectation operator and where P, being deterministic, is not

affected by E. Assuming no correlation among %, Ee’ €,

(8)

5|
m
—
™
L
m
—
]
<
O o
| S e S

Ee ]
=
[a=]
o
o

1f we input values for 9, G, and 0, we can then calculate the covariance matrix

of miss vector errors by Equation (7).

Then the standard deviations of the miss-vector components are computed as
uncorrelated errors by simply square-rooting the appropriate diagonal element

of C., These are then multiplied by PRX to be displayed as ""Probability P" values.

The problem of appropriately supplying execution error statistics now arises. If -
we assume cut-off error to be comprised of independent resolution and proportional

errors,

S T “res * eprop IAV‘ . | - (10)
2

D oy o
then a; Tos  * Uprop AV (11)

The resolution error is coded into the program as a uniformly distributed random

variable on 2 .1 m/s interval centered at zero. The proportional error is normally
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distributed with input standard deviations.

Pointing errors are conveniently specified as normally-distributed along orthogonal
axes with the same variance on each axis. The distributions and axis .orientations
would more appropriately be related to the plane of the attitude maneuver, but this
is more difficult to simulate. The pointing error is input as a single number which
represents the standard deviation of equal normal distributions along the E and N

axes,

Second Maneuver Requirements

We now consider the requirements of a second maneuver, executed at t , to correct
the errors made in executing the first maneuver at tl’ t1 <t2. We must develop a

mapping, M, of first midecourse execution errors, § (AVl); into a second-midcourse
velocity impulse, AVZ . The end constraint errors, §B related to § (AV) by Equation

(1) are the very ones to be corrected by AVZ’ 50

_ 3B . _ _ 3B
6B = : <2 5 (AV) A AV, (12)
or -1
_ aB aB -
AV, = - (——-""—a A, ) SAV. AV, 8 (&V)) M § (AV) (13)

The particular constraint error set to be nulled by AV depends on the guidance law

invoked. We assume that the guidance law for the secind maneuver is the same as
for the first. If the guidance lawis I;‘TA, FTE, VTE, or MTF, B has three
components and, assuming the independence of their gradients with respect to AV2,
the indicated inverse exists. For the MFG law where there are only two end

constraints, 3 B/3AV, is made invertible by adjoining a row perpendicular to the

2
two rows it has. The third colurm of the inverse is then zeroed before the multi-
-1
plication, aB 3B , takes place because a third-constraint error must
AV 3 Avl

have no influence on the MFG solution, The expected value of the second-midcourse

velocity is computed as the square root of the trace of the following matrix.
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T T
E (¥, &, = ME (s(V) 4 (AV) ) M

N (14
= MP v 2
0 o 0
e
60 0 g2
n

This expected value is then scaled by PRX to bring itup to a specified probability

{univariate Gaussian) level for printout.

1t would be desirable, perhaps, to present the expected spherical probable second-
midcourse velocity, but the computation of this measure is too complex and time-
consuming to be merited. The expected fuel is computed from the expected velocity

by meauns of the rocket equation.

The sensitivity matrix, BB/ 3AV,, is usually available, since BELL is called right
after the first-midcourse maneuver has been calculated. If not, however, it is

computed by finite differences by calling SENSO. The second-midcourse sensitivity
aB

2OV ’

would result ?rom a perfectly-executed maneuver at tl.

matrix, is computed at tz by finite differences about the trajectory which
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SUBROUTINE BELL

Compute the transformation [VEN]

from local tangent of AV to EE50
coordinates

Call SENSO to compute DPT, the
gengitivity of end conditions to
midcourse variations

Compute predicted end
condition variations

{SIGOUT)

TMC2gTMCS . YES

no

Save certain computed j
values for PROTO

Call MCBURN to compute post-
burn state

|

Call FOWARD to propagate to second

mideourse time, Set XMC =X
TMCS =T

3
Call SENSQ for sensitivities
to AV at TMC2 '

)

'Compute M = L ;
aAVz 2 AVl -

Compute measure of
second mideourse
_ requirements

X

Restore saved values
for PROTO

RETURN
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SUBROUTINE BIGMAT

Calling Sequence: CALL BIGMAT (A, VALU, EVE, NN, NEIG, NVEC)

Purpose: BIGMAT calculates eigenvalues and eigenvectors of a
symmetric array using Householder's method.

Common Blocks required: None
Subroutines required: None
Reference; Householder, A. 8., and Bauer, ¥, L., "On Certain

Methods for Expanding the Characteristic Polynomial",
Numerische Mathematik 1. Bank, 1. Heft, p. 29, (1959).

Input / Output

SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION
Calling

1/0 A 21 Operand Symmetric Array *
Calling

0] EVE G, 6 Operand Eigenvectors
Calling

I NEIG 1 Qperand Number of eigenvalues desired
Calling

1 NN 1 Operand Dimension of array *
Calling

1 NVEC 1 Operand Number of eigenvectors desired
Calling

0 VALU 6 Operand Eigenvalues

* The square symunetric array B has dimensions NN x NN, however, it is loaded
into BIGMAT as A, a column vector that includes only diagonal and lower diagonal
elements. Thus A(N) corresponds to B ( (N-1) /NN + 1, MOD (N-1,NN) + 1).

Theory:
BIGMAT uses the Householder method of calculation, This method involves a codiagonalization

of the original matrix before the roots are calculated. See the above reference for details

of the method.

Description:

Given the column vector A, its dimension NN (see *), the number of eigenvalues desired

114



NEIG, and the number of eigenvectors desired NVEC, BIGMAT will calculate the
corresponding number of eigenvalues and eigenvectors. The eigenvalues will be
output largest first in the vector VALU. The eigenvectors will be output in the
matrix EVE so that the elements in the ith column correspond to the ith eigenvalue.
Since the eigenvalue is needed for the calculation of the corresponding eigenvector,
NVEC must be less than or equal to NEIG. It is inportant to note that the elements

in A are changed in the subroutine and the values output are in general not Ithe same
as those input. If NVEC is not equal to zero, then there will be output written on

. Unit 6 as follows: first a value "EPS" will be printed and then several lines indicating
the eigenvalues and their corresponding eigenvectors, The value of EPS represents
the accuracy of the eigenvalue calculation. For good calculations of the eigenvectors,

EPS must be small compared to the difference of any two eigenvalues.
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BLOCK DATA

Calling Sequence: Preloaded
Purpose: BLOCK DATA initializes various constants in the
program,

Common Blocks Required: AVG, CONST, INPUT

Subroutines Required: None

Reference: Scarborough, James B., NUMERICAL MATHEMATICAL
ANALYSIS, The Johns Hopkins Press, 1930.

Input / Qutput

SYMBOLIC

1/0 NAME DIMENSION DEFINITION

8) A 1000 Real portion of input array

0 ABSCIS 78 Abscissa for Gaussian quadrature formula

0 CONST 50 Program consta.nts-

O KOPT 100 Integer portion of input array

Q- WEIGHT 78 Weights for Gaussian quadrature formula
Description:

The arrays A and KOPT contain initialized values for variables which control program
operations and may be changed through input, These initialized values are listed in
Tables I and II, For a detailed description of these variables, see write-up of

INPUT common,
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The arrays WEIGHT and ABSCIS contain the weights and corresponding abscissa
for the Gaussian quadrature formula, The values stored in these arrays are listed
in Tables I and IV. Tor a description of the Gaussian quadrature and the use of

these values, see the above reference.

The array CONST contains general mathematical constants in addition to constants
pertaining to the planets, BLOCK DATA initializes only the mathematical constants.

These conatants and their preset values are as follows:

SYMBOLIC
LOCATION NAME PRESET VALUE DESCRIPTION
1 RAD 57.29577951308232 Deprees per radian
2 P1 3.141592653589793 T
3 P12 6,283185307179586 2
4 AU 149597893, Kilometers per astro-
nomical unit,
- 41 ‘ THS | 83600, - - | Seconds per hour
42 TSH 2, 7777771777778D~-4 | Hours per second
43 ' TD3 86400, Seconds per day
44 TSD 1,1574074074074D-5 | Days per second
45 G . 0098066 Average surface gravily
. ‘ on Earth (KM/secz)
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LOCATTION

4

8
100
103
189
113
115
113
122
128
193
221
2061
231
331
351
361
332
335
409
412

L ol oe

415
a0
423
435
438
441
444
422
470
473
473
431
434
437
492
495
501
504
507
510
515
513
521

rn

3

ITAT I

543000,020
3.120002000N=-20
2.16355300
42915.5150
0.1327154560 12
6092,63690
71422,3200
249533.0000
1733.09000
0.175854900L0L-013
0.200000090
23.,0000000
26.68923900
~-3357.12000
20.,.n0090000
3.1202000000-01
3.55550000
0.100005000D 21
0,100030000606D -2}
450000000,
113.718372
-32.37600720
2333.00000
0.620000000
J.7200000000
0,3003030000-03
224,000000
2833.00000
G300.,00000
6.00000000
13.7700330
7200.00000
-13.903224¢0
64.35230430
-32.9759380
10.0000000
0.200000000D~01
616000,000
43000000.0
36000000.9
1100090.000
20.0000000
20.0000000
1L.00080000

PARE S FLO RN

AT, POFTION OF THPUT ARRAV

LOCAYEON

5

10
101
1mna
0o
114
117
120
124
134
201
222
262
321
332
352
380
333
A07
4310
413
416
421
433
436
439
&A42
446
450
471
474
479
482
485
430
493
496
502
505
503
512
516
519

VAT
1.09000000
0.1900900007 21
324935,400
16710809,
4907 77800
61378,14000
57505.0003
6345,00000
0.7292123611=-04
0.26G6169930D-05
909.000000
25.0000000
26.6392000
9G0.050000
25,00000090
1.120200099D-01
0,100000000D 21
0.100000000D 21
5.570000000
27.7172390
148,95696 1,
-75,R429650
~59.,0000000
13550.0020
0.200900000D-01
36730.0000
2382.500000
59.0000000
0.100300002D
0.1678n00000
5.00000000
0,300903000D-01
~24,7576070
35.0133150
10.0000000
0.100000000D-073
5.00000090
925000,000
54000000 .0
330000500.0
20,0000000
12,00720900
20.4100000

21
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LocrTTon AL
A 1.99909900
a9 337.,400000
10 329590 .809
105 37010690 .,0
112 2279 ,31A00
115 3479 53000
118 25474,0900
2 79535%9.,.300
127 0.798829000D~04
197 0.,450003099D=04
20" 20400 ,0000
260 42.5300000
239 ~-0857,12300
322 201700,0009
251 H.21405000D-01
360 2,55552000
381 0.,200000000D 21
394 0.,7100000000D 27
4018 10022900,
413 47,2971580
ala =147,511732
417 =-70.6565190
4727 396000.000
434 7203.,00009
437 3.730090303D-01
4417 25920n,070
aan 71.7130000
a7 60095.00000
460 18000 ,9000
472 20.,4300000
475 20,0700090
400 -15.7357820
4873 -35.4430090
486 37,2197%60
491 10.,0000000
494 0.10000N0000D-273
497 0.220n00000
507 565000,000
5n6 51020000,0
509 0.100000000D 11
514 2.00007000
517 227.000000
520 1,00000000



TABLE IX

INTEGER PORTICN OF INPUT ARRAY

LOCATICN VALUR LOCATION VALUL LOCATION VALUE
3 2 10 1 11 2
14 3 . 15 3 17 5
18 1 19 1 3l 1
32 2 35 1 36 4
39 3 40 2 41 10
42 15 43 21 48 1
51 10 52 . . 2 53 50
54 17 55 1 60 1
61 11 : 62 2 63 2
64 1 65 10 66 1
67 100 68 6 69 3.
70 95 71 6 75 5
83 11 . 88 12 89 1234567

119



T.OCATION

VALIA

1.0901%7909
0.A52145155
N,473629670
0.,340751573
N.2812320051
1.352523783
0.101228536
0.250610606
0.295524225
7.140451349
0,262804545
0,125582368D
1.233432537
0.106333326
¢.225218318)
0.,138873510
0.215253853
7.157203157
1.,351192503p-01
0.1925131000
N,107153220
0,129450G10
N.149535909
0.622535239D-01
3,40873142380-01
0.101930120

A

L.E

ITY

WEIGAT  ARRAY

LOCATION VALUN
2 n,8383343323

5

Q
11
14
17
20
23
24
29
32
35
39
al
A4
47
50
53
5%
59
62
65
63
71
74
77

N AATREARAS
0.7359723R5
N,171324402
n,2787052971
N, 13706545
0.330239 255
0, 1ANEAG14]
1.26972645719

0,782 7124430=01

1,2331973755
N,5545F75471N=01
N.203157A27
N,4717533540=01
0.207L21504A9
N.17212120920=01
N.2751a174/4
N.121513571
N,2025707247
N IRE2E9205
0,730 A757=-1
N,197503415
N,12457232771
NATI52A594D=010
N,A26720483D=-01
n.11%1945132
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N.0127A%0040n=-01

N, 402240048001

0,771820072=01

N, 1175374207=01

0.251585117D-01
D, 1TATADDTIT=NT

N.,03275741+0=01

LOCATION  VALIS
3 N,5555535584
6 n.,R5on32029
9 12,767913935
1> p,417850104
15 0,100 40084
12 1,207301074
21 1.21931777
24
77 1,7180052573
3} 0,772905097
33 0,72529021)
s N,7407A7N AR
30 0.169972309
A2 0,237551552
45 0.17034509)
"3
51 12,13553°397
54
57 N,29°4314n5
A0 2,120579F79
63
65 N 1EOTRES51Q
69
72
5
78 0,131578519



LOCATION VALUE

1 0,577350269

A 0.339921044

7 0.5304562310
10 0.6612093136
13 0.405845151
1R 0,.1833434642
19 0.960282356
22 0.613371433
25 0.148R74339
28 0.365063367
31 0,26954315A
34 0.887062600
37 N.357%831499
40 0.904117256
13 0.230458316
46 0,201578091
45 0.101’054949
52 0,627292905
55 0,924283809
58 0.334151347
61 0.848206583
64 0.9501250980-01
67 0,6173760244
70 0.944575023
72 0.963971927
76 0,746331206

TABLE IV

EASCISSA ARRAY
LOCETION VALUR

2 6.0

5 0.861136212

] D.20617984¢6
11 0.9322623514
14 0.741531184
17 0,525532410
20 0.0
23 0.835031107
2R 0.433395394
29 0.273906529
2 0.519096122
35 0,378228658
38 0.587217954
41 0,281560R34
44 N.448492751
47 0.917598399
50 0.312112345%
53 n.827201315
56 0.0
59 0.570972173
62 0,927273392
5 0.281503551
68 0.7554044092
71 0.,922400935
74 0.2122344028
77 0.63605368L
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LOCATTON VAR

3 N.774595669

6 9.0

o  0.738619184
12 0.0

15 0,949107917
12 N,.796565477
21 0.3242513423
24 0,062160240
27 0,57940956%
39 0,0

13 0,730152006
35 0,1252322409
39 N,759902674
42 0.0

A5  0,A423497239
A8 o.ooa133nsj
Rl L515248246 16
54 o 028434284
57 0,201104092
60 0.774417731
£3  0.027992518
A6 N.A58016778
A9  0.965631207
72 0.003128599
75 0.230116972
73 0.510367002



Calling Sequence:

Purpose:

Common Blocks Required:

FUNCTION BURND

T = BURND(DVMG)

BURND computes burn duration as a function of
incremental veloeity.

CHANST, INPUT, MCCOM

Subroutines Called: None
Input/Output
I DVMG 1 ArgI'Juiréltent Midcourse correction velocity (km/sec)
I G 1 CONST(45) | Earth's surface gravity (km/secz)
I WTD 1 INPUT(38) | Initial spacecraft weight (kg)
I TWD 10 INPUT(320) { Times for weight flow rate table (sec)
I WD 10 INPUT(350) | Weight flow rate tabular values (kg/sec)
I ASPMC 1 INPUT(441) Specific impulse (sec)
I DW 10 MC(Clﬁ’l)Ig; Weight expenditure at TWD (kg)
%) BURND 1 Call Burn duration (sec)
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Method:

Validity of the rocket equation is assumed. The fuel weight, FUEL, corresponding to

the velocity increment, DVMG, is . .
DVMG

FUEL = WT;Z)(l -e G'ASPMC) )

A piecewise-linear weight flow rate is assumed. The fuel expended as a function of

time is computed under this assumption in MCSET and stored in DW, That is,
DW(I) = fuel expended at TWD(I)

FUEL is tested against DW until FUEL < DW(T+1), Then the burn duration is TWD(I)
plus the time since TWD(I), which would cause the fuel to increase by FUEL - DW(I).

WD(1) \ _ .
Weight flow ,ﬂi_
rate, WD P DW(3)
P |
P - Expended fuel, FUEL
- |
o |
DW(2) o
i g4 I
| f
P A - %
e -wD(3)
/// - - i {
{:;/ ’ - -~ { ‘
Vs - ! |
DW)—~ | /7 | |
o | ;

TWD(L)=0 TWD(2) t TWD(3)

Weight flow rate and expended weight versus bhurn duration
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On any segment of the burn history where the weight flow rate, w, is linear, the
slope of the weight flow rate, W, is constant. We define the following:

6t = t- TWD(I)

68f = TFUEL - DW(I)

woo= WD(I)

WD( I+1) - WD(I)
TWD(I+1) - TWD(I)

The fuel expenditure is a quadratic function of time,.
. Lo e 2
o6f = W06t+—3—w6t

The usual solution of the quadratic,
. /2 .
-w = Jw +2wdf
0 0

w

6t =

is ill-defined when w=0, so we multiply numerator and denominator by

- v'vo F./ \5v02 +2w8f . The result is

2 5f
. /.2 -
w ot w +2wof
0 (o)

The sign ambiguity on the radical is removed by observing that for w=0, the

ot =

solution must reduce to

6t = =

It may be noted that
T_ 1 . '2 .
w=glw +J W +2w6f)
¢] o]

is the constant weight flow rate which also would render &f in the time interval,

6t.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Called:

SUBROUTINE BVE

CALL BVE(X,V,U,B,BTR, C3,STHET, CTHET,E, S,
RP, T,R,KK)

To compute the migs-vector components of the orbit,
relative to the target body, from the Cartesian state,

CROSS, ROTAIT

None

Input/Qutput

o | PUROEC] P0G [CONOT | puamumion

I X 3 Call List Position vector (km)

I v 3 Call List | Velocity vector (km/sec)

I U 1 Call List | Gravitational constant (kms/ secz)

9] B 3 Call List Miss vector (km)

o BTR 9 Call List Miss vector (miss-plane components
(ko)

o C3 1 Call List | Energy (Vz - %{) (kmz/ secz)

9] STHET 1 Call List | Sine of the true anomaly

) -CTHET 1 Call List Cosine of the true anomaly

4] E 1 Call List | Eeccentricity

) S 3 Call List Unit asymptote vector

) RP 1 Call List | Radius of periapsis (km)

) T 3 Call List Equatorial miss-axis

[a) R 3 Call List Zenith miss-axis

I KK 1 Call List Asymptote indicator
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Method:

Subroutine BVE computes the target miss vector, B, from Cartesian input vector_'s

X, position, and V, velocity.

For hyperbolic orbits, B is the vector from the body center to either the approach
or departure asymptote depending on a key set by the user, (see Fig. 1a), For el-
liptic orbits, the B vector is always the semi-latus rectum for the departing orbit,
{see Fig. 1b).

approach _ﬁ

departure ﬁ

—

Figure 1 - B Vector

a - Hyperbolic orbit . h - Elliptic orbit
o

S is a unit vector along the asymptote for the hyperbolic case, and is directed toward

periapsis from the body center in the elliptic case.

T is a unit vector taken as

il

kx

lkxS|

T =
where i, j, kK are the orthogonal unit vectors of the Cartesian input position and
velocity vectors X and V.

R is the unit vector given by

xT

vl

R =

The vectors B, R, and T lie in a plane normal to the unit vector § (see Fig, 2).
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= Nl

el )

u~hd

90-¥ 5

—

Figure 2 - S Normal to Plane Containing R, ]-?:, T

- — '
For visualization purposes, if X and V were given to the subroutine with the

i and j vectors in the moon's equatorial plane, then the T and R vectors would
be as shown in Fig. 3. The f{ vector doen not lie albng the polar axis but, rather,
normal to g and 'i‘) For lunar approach from Earth, the ﬁ vector is roughly in
the direction of the polar axis, so if one had a trajectory such that B*R =0, the

plane of the trajectory around the moon should lie close to the equator. -

'Moon Equator

Figure 3 - Miss-Plane Geometry
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Theory:
Given }_E and {; . the position and velocity vectors of the vehicle relative to the
central body, and U, the gravitational constant for the central body, compute
the following:
The semi-latus rectum, PP
PP = |XxV |2/U )
The magnitude of the position vector, X
RMAG = |X| (2)
The energy, C3
€3 = V-V - 2U/RMAG (3)
The eccentricity, E
E=[1+ (Cs)PP/U]% (4
The radial component of velocity
RDOT = (X-V)/RMAG (5)

The sine and cosine of the true anomaly, 8

CTHET = cos 8 = (PP -RMAG)/(E RMAG) (6)

STHET = sing = RDOT(PP/U)% /E _ (N
Define a unit vector [_I—}_(’ by ‘

UX = X/RMAG (8)

and the unit angular momentum vector by

R (9)
| XxV|
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As shown in Fig. 4, a unit vector U_‘i? normal to [E( and I—ﬁ{’ lying in the orbital

plane, and in the direction of rotation is

—_—

UY = UWxUX

(10)
The rotation of UX and UY through (-8) yields P and Q, where P isa
unit vector toward periapsis, and G_S is a unit vector in the same direction as the
semi~latus rectum of the orbit.
- UY
Figure 4 - In-Plane Orbit Direction Vectors
Rotate UX and UY through (-8) to P and é
P = UXcos6-UY sin @
Q = UXsin8 +UY cos 8
The § and ﬁ vectors are computéd as follows:
For elliptical orbits
s=p
— - - —: - (12)
B =Q|B| = QBMAG = Q PP

For hyperbolic orbits, 5 and P are rotated through an angle of magni-
tude (90-a) to obtain S and UB » 2 unit vector in the direction of the B

vector. The angle « is the half-angle between asymptotes and is computed by
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CALP = cosa = 1/E = gin (90 - )
. (18)
SALP = sina = (1-1/E") = cos (90 -q)
In the case of the approach hyperbola, (3 and B must be rotated counter-
clockwise through (90 -), while for departure, clockwise. Thus, for approach,
with STHET negative (see Fig. 5)
§ = 6sina+§cosa
UB = -Qceosa +P sina
/ o
[ — /i #
r a
>/
f/ »
Figure 5 - Hyperbola and Approach Asymptote
For departure, with STHET positive
5 = gin aa—cosaﬁ
— . , (15)
UB = cosaxQ +sina P
Finally, the B vector is
B = BMAG UB (16)
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where

BMAG = (U/C3 + RP) sino
U/C3 = the semi-major axis
RP = PP/(1+E) = radius of periapsis

- = e —

B'T and B*R are computed and returned by the subroutine as BTR(1) and
BTR(2) respectively. As seen in Fig. 2, BTR(1) represents BMAG cos i
and BTR(2) represents BMAG cos (90 -{).

131



SUBROUTINE CALEND

Calling Sequence: CALL CALEND(T,JYR, JDY, MO, NHR, MIN, SEC)

Purpose: This subroutine converts the current MAESTRO
time to calendar date.

Common Blocks Required: INPUT

Subroutines Required: None

Input / OQutput

SYMBOLIC COMMON

1/0 NAME  DIMENSION  BLOCK DEFINITION

1 DJO 1 INPUT(46) | Modified julian date of state epoch
Calling

0 JDY 1 Operand Day
Calling

8) JYR 1 Operand Years since 1900.
Calling

8] MIN 1 Operand Minutes
Calling

0O MO 1 Operand Month

' Calling '
e NHR 1 Operand Hour

Calling

0 SEC 1 Operand Seconds’
Calling

1 T 1 = Operand Seconds since state epoch

Description:

The calendar date is obtained from the modified julian date of state epoch and time since

state epoch. Output is year, day, month, hour, minute and seconds.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE CLOSE

CALL CLOSE

Subroutine CLOSE determines the spacecraft's
central planet and transforms the state to the
central planet if a new planet becomes central,

CNTRL, CONST, INPUT, INTER, PLNET, STATE

DVMAG, INTEG, ORBIT, TRMN, UPDATE

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
: Distances from s/c¢

1/0 DST 12 PLNET(73) to planets

1/0 DX 3 STATE(4) Velocity of s/c

0 ELM 6 STATE(14) Orbital elements of s/c
Planet gravitational

I GM 12 CONST(5) constants

0 INT 1 INTER(131) Interpolation counter

1/0 JC 1 CNTRI(7) Central planet number

0 KDIS 1 CNTRIL(5) Discontinuity flag

I KP 12 INPUT(1001) { Planets in the svstem

1 METH 1 INPUT(1013) | Propagator method
Distances when planets

I RSWTCH 12 INPUT(500) become central

1/0 X 3 STATE(1) Position of s/c
Positions and velocities

1/0 XP 6,12 PLNET(1} of planets
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Description:

There are two major parts to this subroutine. In the first part CLOSE determines
which planet's sphere of influence the spacecraft resides in. The sphere of influence
is denoted by RSWTCH, If the spacecraft's distance from planet J is less than
RSWTCH(J), then planet J is central. If that planet is already the central planet,
then CLOSE returns. If that planet is different than the central planet, then that

planet becomes the central planet.

The second part of the subroutine takes care of the changes in the system due to
the change in central planet. The position and velocity vectors of the planets and
the spacecraft are changed to correspond to position and velocity relative to the
new central planet. KDIS is set to one to denote a discontinuity in the system.
Depending on the propagation scheme (METH), new orbital elements are calculated
if needed, and INTEG is called to set up new values and derivatives of integration
variables, INT is set to zero and then UPDATE is called so that the interpolation

table is cleared and a new one is started,
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SUBROUTINE CLOSE

CALL \
CLOSE

Determine l

~ central planet

same as
previous central
planet

ARETURN

no

Caleculate position and velocity of
spacecraft and planets w.r.t. new
central planet.

N
Set JC = new planet number -

v
Set KDIS = 1

135



SUBROUTINE CONTRT,

Calling Sequence: CALL CONTRL
This subroutine initializes the compute interval
table and other constants before initiation of the
program options

Purpose:

Common Blocks Required: ANKOR, CONST, INPUT, STATE

Subroutines Required: DVMAG, PRINT, SETUPZ

Input / Output

SYMBOLIC COMMON

1/0 NAME DIMENSION |  BLOCK DEFINITION

Initial anchor vector position and
0] ANKVEC 6 ANKOR(1) velocity vectors

Unit vector along the
0 ATT 3 STATE{11) spacecraft's centerline
0 DECO 1 INPUT(48) Initial declination
) DELT 10 INPUT(180) | Table of compute intervals
: initial trajectory propagation
I KMETH 1 INPUT(1036)| indicator
I RAD 1 CONST(1) 'Radian-degree conversion factor
O RAO 1 INPUT(47) Initial right ascension

. Array of switching times used in

O TCOMP 10 INPUT(170) ;| compute interval table.

Initial position and velocity
I X 6 STATE(1) vectors

Description;

This subroutine initializes program constants and flags before initiation of the program
options. Subroutine SETUPZ is called at the beginning of this routine. Most of the
initialization is performed in SETUP2, The compute interval table is also established

if one is not already input. The compute interval table is established according to the
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initial epaceeraft radius, R, as shown in the following table.

R <20, 000
DELT(1) = 300. | TCOMP(1) = 3600,
DELT(2) = 1800, TCOMP(2) = 18000,
DELT(3) = 18000, TcoMPE) = 1(10)2°
20000 < R < 40000
DELT(l) = 1800, TCOMP(1) = 18000
20
DELT(2) = 18000. TCOMP(2) = 1 (10)
40000 < R
- 20
DELT(l) = 18000, TCOMP(1) = 1(10)

If the initial spacecraft attitude is not input, the attifude is set in the same direction
as the initial velocity vector. The subroutine next calls subroutine PRINT in order to

obtain a list of the initial input array.
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SUBROUTINE COVERT

Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

CALL COVERT (COV, X, Q, KCOV)

This subroutine transforms a covariance matrix
from a local tangent plane coordinate system to
the coordinate system of the input state which
defines the local system.

None

CROSS, VNORM

Tnput/Output
SYMBOLIC COMMON
1/0 NAME DIMENSION| BLOCK DEFINITION
Calling
I COov 6,6 Operand Input covariance maftrix
Transformation flag, If KCOV is not
Calling zero, the covariance matrix will be
1 KCOV 1 Operand transformed
Calling
O Q 6,6 Operand Qutput covariance matrix
Calling Position and velocity vectors of
1 X 6 Operand the state
Description:

The local tangent plane coordinate system is defined as follows:

Positive along the position vector

Lies in the plane formed by the position and velocity

vectors and normal to the position vector positive in
the direction of the velocity. It is represented

X-axis
Y-axis
vectorially by
XxV)xX
Z-axis

Normal to the plane formed by the position and velocity vectors.

It is represented vectorially by

XxV
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This subroutine determines the rotation matrix from the local tangent plane to the
coordinate system of the state X and V. To calculate the transformation matrix, T,

it is first necessary to establish the vectors

A

S

Il

XxV/(XIIV])

u

Il

SxX / X

Then the first column of the matrix is a unit vector along X. The second column is

Ll

composed of vector u, while the last column consists of vector S.

The covariance matrix ts transformed to the new coordinate system using the following

relationship,

el [ o

If KCOV is zero, no transformation is performed and the output matrix, Q, is set

equal to the input matrix, COV.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

SUBROUTINE CRASH

CALL CRASH

Subroutine CRASH determines the
time of closest approach to the
target planet.

SAVE, STATE
DVMAG, INTERP, PLANET

CNTRL, INPUT, INTVAR, PLNET,

Input/Output
SYMBOLIC PROGRAM COMMON
1/0 NAME DIMENSION' - BLOCK DEFINITION
I JC 1 CNTRL(T) Central planet number
1 JT 1 INPUT(1031) Target planet number
I KCA 1 CNTRL(11) Counter used in the
closest approach
iteration
I KHIGH 1 INPUT(1079) If set to 1. Subroutine
will determine the time
of apoapis.
I RSAV 1 SAVE (41) Flight path angle on
al last step
I T 1 STATE(10) Current time since
state epoch
O TCA 1 STATE (29) Time of closest
* ' approach
I X 6 STATE(1) Current spacecraft
position and velocity
vectors
I XP 6, 12 PLNET(1) Planet's position and
-1 yeloeity vectors., ¢
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Theory:

The time of closest approach is determined by an iterative process using the flight
path angle as the dependent variable and time as the independent variable. The

time is adjusted in order to drive the flight path angle to zero. A Newton-Raphson
type iteration is employed to determine the time. The sine of the flight path angle

at time, t, is determined from:

, R3 = (}—c ' {?) /IBEI |71 | (1)

where X and V are the position and velocity vectors at time t determined from

subroutine INTERP,

The derivative of this sine with respect to time is numerically determined by
calculating the sine at two times as described in equation (1) and dividing their

difference by the difference in fime as,
DERIV = (R2 - R3) / DELT . (2)

where R2 is the sine of the flight path angle at T + DELT. The change in time to

drive the sine of the flight path angle to zero is calculated from:
DEL = R3 / DERIV | (3)

The sine of the flight path angle is determined at time T = DEL. The iteration is
assumed to con\}erge if the flight path angle is within a small tolerance around zero.
If not, the derivative is recalculated in equation (2) with T = T2 + DEL and the |
process repeated. A limit of 20 iterations are allowed. A limit to the size of the

step, DEL, is also employed to help assure convergence,

Description:

The time of closest approach is determined through a double iteration using this
routine along with subroutines INTERP and TIMEC.. There is an iteration inside

subroutine CRASH to determine the time of closest approach using subroutine
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INTERP. 1n this iteration the spacecraft's state at time, T, is determined

using the interpolation logic in subroutine INTERP. T is adjusted until the
spacecraft's flight path angle is within a specified tolerance. A Newton ~-Raphson
type iteration discussed in the theory is employed to determine this time, The

second iteration loop is assodiated with subroutines TIMEC and CRASH.

The time of closest approach is transfered to TIMEC. The time of closest approach
is considered a discontinuity time in subroutine TIMEC. Thus, if the current
time is greater than the time of closest approach,the state is restored to the

values at the last step and the compute interval is adjusted to integrate to the

time of closest approach. The time of closest approach is recalculated in
subroutine CRASH at the discontinuity time. If the new time of closest approach
is within a tolerance of the last time of closest approach, it is assumed that
convergence has been achieved on the time of closest approach. If not, the new
time of closest approach is used as a discontinuity time in TIMEC and the iteration
repeated. The iteration between TIMEC and CRASH usually converges in one or
two iterations. This iteration would not be necessary if the interpolation logie
exactly matched the numerical integrator, KCA is a counter used to determine

the number of TIMEC-CRASH iterations. A limit of 7 iterations are allowed.
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SUBROUTINE CRASH

ENTER

£JT

JC/

Transfer state to
target planet

=J7T

Calculate current flight
path angle, R3

Determine time of closest approach using
Newton-Raphson scheme, equations (2)
and (3)

TCA=
1.D20

RSAV =R3

RETURN
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SUBROUTINE CROSS

Calling Sequence: CALL CROSS (X,Y, Z2)

Purpose: This subroutine calculates the vector
| cross product

Common Blocks Required: None

Subroutines Required: None

Inputs / Outputs

SYMBOLIC COMMON

1/0 NAME DIMENSION  BLOCK DEFINITION
Calling

1 X 3 Argument . | Input vector X
Calling

1 Y 3 Argument Input vector Y
Calling

0 Z 3 Argument Qutput cross product

Description:

The vector cross product is determined by this subroutine. The cross product is

determined by

Y

i
o
|.<:
'
M
e

1 2 T3 "3 '

Y

il
g
ta
4
i
™
i
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SUBROUTINE DATE

Calling Sequence: CALL DATE (YEAR, DAY, QM, HR, DJO)
Purpose: DATE converts a calendar date to its julian
date.

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION
CALLING

1 DAY 1 OPERAND Day of the month
CALLING

O DJO 1 OPERAND Julian date
CALLING

1 HR 1 OPERAND Hour of the day
CALLING

I QM i OPERAND Month
CALLING

I YEAR 1 OPERAND Year

Description:

Date calculates the number of days since 1900 and adds it to the modified julian date
of 1900 to get the actual modified julian date.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE DOPLER

CALL DOPLER

This subroutine determines the velocity away from the
visible tracking sites and determines the doppler irequency

shift,

CNTRL, CONST, INPUT, OBSIT, STATE

DVMAG, M50EPM, ROTATE, ORBIT, INTEG, UPDATE

SYMBOLIC COMMON

1/0 NAME DIMENSION | BLOCK DEFINITION

I CAR1 1 INPUT(408) | Spacecraft's primary carrier frequency
Spacecraft's secondary carrier

I CAR2 1 INPUT(409) | frequency
Modified julian date of

1 DJO 1 INPUT(46) state epoch

I DJ1 1 INPUT(37) Modified julian date of liftoff epoch
Velocity of the tracking sfations due to

1 DOBS 10,2 OBSIT(1) the Earth's rotation

1 DX 3 STATE(4) Spacecraft's velocity vector

1 HR 1 INPUT(53) Hour of state epoch
Doppler first pass flag. Zero on

1 KWTDOP 1 CNTRI(10) | first pass

I OBSLAT 10 INPUT(480) | Latitudes of the tracking stations

I OBSLON 10 INPUT{410} | Longitudes of the tracking stations

1 SEC 1 INPUT(55) Seconds of state epoch

1 T 1 STATE(10) Seconds since state epoch

1 TBO 1 INPUT({383) | Burnout time of engine 1.

1 THRUST 1 STATE(33) Engine thrust
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SYMBOLIC COMMON

1/0 NAME DIMENSION _ BLOCE DEFINITION
I TIC 1 INPUT(380) | Ignition time of engine 1.
1 X 3 STATE(L) Spacecraft's position vector
I XMIN 1 INPUT(54) Minutes of state epoch
Vectors from center of Earth to trackin:g;
1 XOBS 10,3 OBSIT(21) stations in Earth equator and Greenwiclh
1 UJT 1 STATE(32) | Current modified julian date
1 W 1 STATE(3b) Current spacecraft mass
Description:

The spacecraft's velocity with respect to a rotating Earth must be determined in order
to calculate the velocity away from a tracking station. Subroutine M50EPM is used to
determine the transformation to the Earth equator and Greenwich. The vector from the

observation site to the spacecraft is established from

XOB = XE - XOBS (1)

where XE is the position vector of the spacecraft in the Earth

equator and Greenwich, and

XOBS is the vector to the tracking site obtained from

OBSIT common.

The spacecraft is visible from the tracking station if
XOB + XOB >0 S ®

On the first pass through this subroutine (KWTDOP = (), KSTAT {I), vs.zhere 1
corresponds to the tracking station, is set to one if the spacecraft is visible. This
array is used to output the information only for the visible tracking stations, The

velocity relative to the tracking station is obtained from

¥ = DXE - DOBS | L ®
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where DXE is the velocity of the spacecraft in the Earth equator and

Greenwich, and

DOBS is the velocity of the tracking station from OBSIT common,

Note: The z-component of {_f_is equal to z-component of DXE since
the z-component of DOBS is zero.
Finally, the velocity away from the tracking station is determined from

RDOT = (V+ XOB) / |XOBI (4)

and the doppler shift is obtained from

2
DOP = (CAR2 - CARIZ) RDOT / C ‘ (5)

whera CAR1 and CARZ2 are the spacecraft carrier frequencies, and

C is the velocity of light

The spacecraft's velocity away from each of the visible tracking stations and the
corresponding doppler shift along with the current thrust and mass are output on

unit 6. The KWTDOP flag is used to control the writing of the heading for the

writes,
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SUBROQUTINE DOPLER

ENTER
T > 1BO {RETUR9
kB0

Establish output time TM, TI and zero.§
out KSTAT array

KWTDOP

1#1

Output part of doppler heading

-

Calculate transformation matrix to
Earth equator and Greenwich using
MS50EPM and rotate using ROTATE

\

)[Increment tracking stations

¥

Determine position relative to station
using equation (1) :

.

Determine if spacecraft is visible from equation(2)

no

yes

Determine velocity from tracking station using
equations (3) and (4) and doppler shift from (5)

0

yes more stations “Soo @
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yes

Call ORBIT (6)
for ELM

Call ORBIT (3) to get
EL

ELM (4) = e
mean . :
anomaly +
AOP [
METH yes
.EQ.
| 3
yes no

Usz mean
2,10Mi1y

Call
INTEG (-1)

Set INT =0

l

Call UPDATE

RETURN
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Set up RODT1 array for output

=1

KWTDOP

#1

Write rest of doppler
heading

Write doppler output

KWTDOP =1 [

‘ RETURN ’
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FUNCTION DOT

Calling Sequence: Z = DOT X, Y)

Purpose: . This function performs the
vector dot product

Common Blocks Required: None

Subroutines Required: None

Input/ OQutput

SYMBOLIC COMMON

1/0 NAME DIMENSION  BLOCK DEFINITION
FUNCTION

8] DOT 1 NAME Vector dot product
CALLING

1 X 3 OPERAND | Input vector X
CALILING

1 Y 3 OPERAND | Input vector Y

Description:

The vector dot product is obtained from

DOT = XlY +X2Y2+X Y

1 33
where

Xi, Yi i =1,3 are the components of the X and Y vectors, respectively
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SUBROUTINE DRAG

Calling Sequence: : CALL DRAG

Purpose: This subroutine calculates the spacecraft
acceleration due to atmospheric drag.

Common Blocks Required: CNTRL, CONST, GRAVTY, INPUT,
PERT, PLNET.
Subroutines Required: - ATMO, VNORM.V
Inputs/Outputs
1/0 SYMBOLIC DIMENSION COMMON DEFINITION
. NAME =~ S - BLOCK |
I DST 12 PLNET (73) The JC element is the
spacecraft distance from the
central planet, -
I JC 1 CNTRL (07) Central planet number
I ‘ KATMOS 1 INPUT (1097) | Drag flag
I POS "3 GRAVTY (1) Position vector from central
' planet,
1/0 RCART 3 PERT (1) Spacecraft perturbing
acceleration
RE 12 CONST (17) Eguatorial radius of the
planet
Description:

This subroutine determines the acceleration due to atmospheric drag. The
magnitude of the acceleration is obtained from: |
1

% 6
a ==
> P V' C 0

153



where p is the density in g/CM3
V is spacecraft velocity in km/sec

CD is the drag-area-mass coefficient

6
and the multiplier (10) is required to convert units. The acceleration is

applied along the velocity vector. The density is obtained from the function
ATMOS while the drag coefficient is set at . 03.
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FUNCTION DVMAG -

Calling Sequence: Y = DVMAG (X)

Purpose: This function determines the magnitude of
an input vector

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
1/0 NAME DIMENSION | BLOCK DEFINITION
FUNCTION
0 DVMAG 1 NAME Magnitude of the input vector
CALLING
1 X 3 OPERAND | Input vector
Description:

The magnitude of a vector is determined from

2 2 2
7 = +
DVMAG Xl X2 + X3

where
Xi i=1,3 are the components of the input vector X
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SUBROUTINE EQNS

Calling Sequence: CALL EQNS

Purpose: This subroutine calculates the derivatives
of the variables being numerically integrated.

Common Blocks Required: CNTRL, CONST, GRAVTY, INPUT, INTVAR, INTVRX,
PERT, STATE.

Subroutines Required: ACCEL, AVEQNS, ORBIT, GRAV

Input / Oufput

SYMBOLIC PROGRAM COMMON

1/0 NAME DIMENSION BLOCK DE FINITION

I DJO 1 INPUT{46) Julian date of state epoch

1 GM 12 CONST(5) Gravitational consfants

1 KP 12 INPUT(1001) | Planets in the system

1 METH 1 INPUT(1013}{ Trajectory propagator indicator
Derivatives of integration

0 RATES 6 INTVAR(8) | variables

1 RCART 3 PERT(1) Disturbing acceleration

I X 1 INTVAR(]) Current independent variable
Current dependent or

1 Y 6 INTVAR(2) integration variables

I U3T 1 STATE(32) Current julian date
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Theory:

This subroutine calculates the derivatives of the integration variables at the
current time when propagating the state using any of the following trajectory

propagation methods,

Cowell

Encke

1,
2.
3. NICE/True
4., NICE/Mean
5. NICE/e cosw, ¢ sinw.

The equations which define the derivatives of each of these methods are presented

below.
Cowell

Let the origin of the cartesian coordinate system be located at the central planet
of mass M. The disturbing planets are denoted by Mi’ and the spacecraft by m.

Then the perturbing acceleration becomes,

? Zﬂ | X - % X'
R = GM. — 5 + 3z + a + 7 (]_)
i ,03 IX,|3 SP T 0].?

where X' is the vector from the central planet to the disturbing planet,
: ;( is the vector from the céntral planet to the spacecraft,
ESP is the acceleration due to solar pressure,
ET is the acceleration due to engine thrusting,
EOB is the acceleration dug to an oblate planet, and

p is IX'-XI
The total acceleration acting on the spacecraft is the sum of the perturbing
acceleration and the acceleration due to the central planet; thus the total
acceleration becomes, '

T
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The above vector equation denotes the acceleration, which is numerically integrated

to obtain the velocity. The velocity is numerically integrated to obtain the position.

Encke's Method

In this method an attempt is made to utilize the knowledge that the motion is very
nearly two-body with respect to the central planet, Thus, only the motion which
deviates from the two-body motion is integrated. This motion is added to the two-

body motion to obtain the-position and velocity of the spacecraft.

Let io be the position vector of the spacecraft obtained from two-body motion,
and E be a vector describing the deviation from the two-body orbit. The position

vector of the spacecraft is then obtained by,

§=x0+§. (3)

The acceleration of the disturbing vector, £ , is obtained as follows:

If the quantity f is defined as

f = 1-~(1+2q)"3/2 ) . (4)
where
_ 3 . L Sy 6
q = Z(XOIE fi)éi ( 1 )
x
i=1 0

then the disturbing acceleration is

-+ p, - — —
§= 53— — (fX -§) +R (6)

%ol

where R is obtained from Equation (1). This vector is numerically integrated
to obtain the deviation from the two-body orbit. The reference orbit is updated

(rectified) whenever

+ 2

B > 0,001 (M
- .2
[x} |
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These equations are much more complicated than Cowell's equations. Also, to
obtain the position along the reference orbit, one must calculate the true anomaly

from the mean anomaly. This involves an iterative solution and is time consuming.

NICE Methods

The three NICE methods involve the numerical integTafion of the classical orbital

elements to obtain the orbit of the spacecraft as a function of time.
The orbital elements integrated are,

semilatus rectum, p
eccentricity, e

true or mean anomaly, for M
argument of perigee, w

inclination, i

[+ TR = | B - S % N

longitude of ascending node, {}
or, alternately

1. p

2, ecosw
3. esinw
4, f+w
5. i

6. {1

The derivatives of the above quantities are determined and numerically integrated
to determine the instantaneous orbital elements. The derivatives of the orbital
elements are derived in many texts and reports and only the results will be presented

here, The derivatives of the orbital elements are

p (zr\/%) ¢ | ®)

It

i

- VE g fromrecnta] o
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. 'p (sinf T cos f r o )
© = J-ﬁ— {—e- (1+-1-)-) C—( p )R«(?smucotl) W}

Q= rsinuw / (sini\/up)

- ( e w

. 1 [P
£ = t o m {cosz-smf( p) C}
2
p(l+e) cos f 2r sin f T
+/ : {( el L 2r).p sl (1,1 } (_folre;}

(e sinw) = d—p— -cosM# R + 1+_r_) sinu+e — C
e . P P
+ —II-)‘- e cosw sinucoti W}
(ecc;s)= % {sinuR+[(1+—I;-) cos u + e — sinw]C
. P p

+e% sinucoti W}

. T _L,f_ﬁ_ s
u 5 m D m sinucoti W

r

where n is the mean motion
!1_ is the gravitational potential
u=wt+f
r is the radius

R, C, W are the perturbing accelerations

The perturbing accelerations are written with respect to the orbit plane. They are
in the radial direction, circumferential direction and normal to the orbit plane. These
accelerations are obtained from the perturbing acceleration derived in Equation (1) by

rotation to the orbit plane, as
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1
cy = [a] |r
2 . (9)
W R
3
where
cos (lcos u - sin ) sin u cos i sinQcosu+cos{)sinucosi sinusini
[A] - cos(lsinu -sin Qcosucosi -sinQdsinu+cosfcosucosi cosusini | (10)
sin {sin i -cos ) sini cos i

The difference between the NICE/Mean and NICE/True methods is that the NICE/Mean
method uses the mean anomaly equation of (8) while in the NICE/TRUE method, the true !
anomaly is used. When the last of the NICE methods are used, the last 3 equations of

equation (8) are used instead of the equations for g, ¢y and § .

Description:

The derivatives of the intégration variables are as described in the above equations,

The set of equations used is determined by the METH flag as follows: .

METH = 1. Cowell
2. Encke
3. NICE/True
4, NICE/Mean
7. NICE/ e sinWd, e cos .

The current set of integration variables and the independent variable, time, is
brought into the subroutine via INTVAR common. This common block is initiated in
subroutine INTEG, The Encke reference orbit is input via PERT common. The
disturbing acceleration is calculated in subroutine ACCEL and transferred to EQNS

via PERT common.

The logic flow consists of testing the METH flag to determine which set of equations :

to calculate. The derivatives are determined in a straightforward manner using

the equations deseribed in the theory.
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SUBROUTINE EQNS

‘ ENTER |

Y

determine current julian date

>2 METH =2

1

1set first three rated

iiqual to velocity

Y

Call ACCEL to get perturbing
acceleration. (Note: RATES 4-6
determined in subroutine GRAV)

RETURN
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‘ 2 (Encke) '

\

Get pogition on
reference orbit

A

Get actual position with respect
to central planet

N

Call ACCEL to get perturbing
acceleration

y

Determine Encke's derivatives
from equation (6)

Set up RATES array as follows
RATES (1-3) = Y (4-6)
RATES (4-6) = E

Y

‘ RETURN )
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determine true

anomaly from mean.g.
anomaly and mean

motion

=H or 8

/ Call AVEQNS

3

Set up sines and cosines
of orbital elements

for
averaging

N

' RETURN )

Determine argument of

-7
METH
<L/
- £

perigee, eccentricity
and true anomaly

I

\

Call ORBIT to determine
position of spacecraft

Y
Y

Call ACCEL to get

disturbing acceleration
Set up matrix of equation (10) and rotate
disturbing acceleration to the orbit plane

Calculate the rates of P, i,
from equation (8)

31 Yo P7 METH =7

<
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Calculate rates for e and W

Calculate

M

s

<

Calculate the rates
of e sin&?, e cosW),

f+u

Return
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£

.Return




SUBROUTINE FIELD2

Calling Sequence: CALL FIELD2

Purpose: FIELD2 uses the chain rule to calculate the partial
derivatives of the gravitational potential.

Common Blocks Required: CNTRL, CONST, FIELDM, GRAVTY, INPUT,
INTVAR, PERT, STATE

Subroutines Required: M50JPM, ROTATE, SPNM
Reference: Gulick, L.dJ,, "A Comparison of Methods for Computing

Gravitational Potential Derivative," ESSA TECHNICAL
REPORT C & GS 40, 1970,

Input/Output
1/0 STABB?E‘IC : DIMENSION Cgfgcog | DEFINITION
! ,
I - CC ' 16,17 l FIELDM(17) ' Tesseral coefficients
I i GM i 12 CONST(5) . Gravitational constants
T | JC ; 1 . CNTRL(Y) Central planet number
I KVAR L1 { INPUT(1096) .= Gradient flag
I NMOD 1 ' FIELDM(298) ' Number of zonals
I . POS | 3 i GRAVTY(1) f Position of 8/C
I | RE 12 CONST(17) - Equatorial radii
I RCART 3 PERT(1) . Acceleration of 8/C
I SELNEQ 3,3 FIELDM(289) Transformation matrix
I | TIME 1 INTVAR(1) © Time since epoch
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S UIT 1 STATE(32) Modified Julian date

I - WP 12 CONST(29) Planet spin rates
P - Xy 16 FIELDM(L) Zonal coefficients
Theory:

The gravitational potential of the central planet in terms of spherical harmonics may

be expressed as

o n
_ GM R .n m, .
vV = - 1+ E (r—) z Pn (sin3) x
n=l
m=o

(Cnm cos (m)) + Snm sin (m )

where GM is the gravitational constant, R is the equatorial radius of the central
planet, Cnm and Snm are the coefficients representing the mass distribution,
an (sinB) is the associated Legendre polynomial of degree n and order m, and

B,), and r are the body-fixed latitude, longitude, and radius of the point where the
disturbing force is o be evaluated.
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The force due to this potential is the partial derivative of V with respect to inertial
cartesian coordinates, One method of evaluating this force is by using the chain

rule to evaluate the derivatives with respect to the body cartesian coordinates and
then rotating to the integration (inertial) frame, This chain rule method incorporates

the following recursion relationship for P]; m (=)

a Pff‘ &) ) mxpnm (x) Pﬁa“ )
ax = T2 T %

See Gulick (referenced above) for the derivation of this relationship and for further notes

on the chain rule method,

Description:

The main purpose of FIELD2 is to calculate the partial derivatives of the gravitational
potential, These derivatives are used to evaluate the acceleration of the S/C at any
given position, To use FIELD2 for this purpose, KVAR should be set to zero,
FIELD2 will calculate the acceleration of the S/C due to the central planet using the
input field {(CC and XJ), the position of the §/C and the time, The resulting accelera~
tion vector will be rotated to the integration frame using the transformation matrix

SELNEQ, and then added to RCART.

In addition to this function, FIELD2 may also be used to calculate the gradient of the
force field and the partial derivatives of the force with respect to the spherical har-
monic coefficients of the field. To use this mode of FIELD2, KVAR must be set to

one, in which case the acceleration (described above) will still be output, along with

the matrices D2VDX2 and DFDCX,
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The symmetric matrix D2VDX2 contains the second partials of the potential with
respect to the body-centered cartesian coordinates. For a description of the use of

this Jacobian matrix in linear variational theory, see subroutine SHIMMY.

The matrix DFDCX contains the explicit partial derivatives of the force with respect
to the NB different harmonic coefficients to be estimated, The maximum value of
NB is 100. The input vector IX determines which coefficients are to be studied,

and must be set up in the following way, The ith element of IX indicates the ith cb—
efficient to be studied, and IX(i) must be equal to the position of the ith coefficient

in FIELDM common, The order of the values in IX is crucial since the derivatives '
are calculated in the same order as the coefficients are used in FIELD2. This order
is ((Ci-j, Sij’ j=0,1i), i=1, NMOD), The element Cij occupies position 16 x j +1i of
FIELDM common and Sij occupies position (i+l) x 16 +j. Thus, if C2 0* 022, C a1’
032, 041, Szl’ 832, 833 are the coefficients to be studied, then NB = 8 and IX would
be 2, 49, 34, 19, 35, 66, 67, 20 since the calculations would be made in the order

CZO’ S21’ 022' C31’ C32’ 32° SS

NB would be 9 and 51 would have to be inserted between 66 and 67 in the vector IX,

S 3 and 041. if 033 were to be studied also,then

The order that the derivatives are output in DFDCX is the same as the order in IX.
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ENTER

Calculate

8/C's polar

coordinates

1

Start a double
loop N=1, NMAX
and M=1, N

Calculate each
element in the chain
rule and sum each

individually over

N and M

l

IF KVAR =1, calculate
the element of the

gradient and of DFDCX

{

END L.OOP

:

Multiply components
of chain rule and add

R

Rotate accelerations

and add to RCART

3
‘RETURN’
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Calling Sequence:

Purpose:

SUBROUTINE FIND

CALIL FIND (IDSAT, ISET, %)

This subroutine reads a file from the GTDS
24-hour hold file to retrieve the state from
the GTDS program.

Common Blocks Required: ELMNT

Subroutines Required: None
Input / Output
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
CALLING
I IDSAT 1 OFERAND Satellite identification number
CALLING Element set number of
I ISET 1 OPERAND desired data
Statement number to transfer
O $ - - to if error return.
Description:

This subroutine is used to retrieve the state and covariance matrix from the 24~hour

hold file written by the GTDS program. The data is read from unit 26 using a direct

read. The record number used in the direct read is determined from the element set

number brought in via the argument list and variables defining the 24~-hour hold file

obtained from a read to unit 1.

The data is read into a working array and later transferred to the SET array of ELMNT

common, ELMNT common is used to transfer the data to other subroutines in MAESTRO.

The SET array is defined as follows:

Location

1

Definition

Date of state in year, month and day
written as YYMMDD.

Time of state in hours, minutes and seconds
written as HHMMSS. SSS. '
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Location

3-5

6-8

9-14

15-35

36

37

38

39

40

41

42

43

44

Definition

Cartesian position vector.
Cartesian velocity vector.
Keplerian orbital elements.

Upper triangle of the state covariance
matrix,

Start time of fitted data, (year, month, day)

Start time of fitted data, (hour, minute, second)

End time of fitted data, (year, month, day)
End time of fitted data, (hour, minute, second)
Root mean square of fit

Satellite identification number

Reference coordinate system of state

Central body indicator

Element set number

172



Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE FIXATG

CALL FIXATG

FIXATG controls the fixed-attitude guidance logic.

CNTRL, CONST, INPUT, MCCOM, STATE

FOWARD, SENSO, POST

SYMBOILIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
I JC 1 CNTRIA(7) Central body number
2
1 UT 1 CONST(15) GM of the Moon (km3 / sec)
1 TFINAL 1 INPUT(4) Trajectory stop time (sec)
I WO 1 INPUT(38) | Initial weight of the spacecraft (kg)
Central value of right
1 RAX 1 INPUT{47) ascension, (deg)
1 DECI 1 INPUT{48) Central value of declination (deg)
. Specific impulse of the midcourse
I ASPMC 1 INPUT(441) | engine (sec)
I WRETRO 1 INPUT(443) | Weight of retro-fuel (kg)
I WDROP 1 INPUT(473) | Drop-weight of retro (kg)
1 CONE 1 INPUT{474) | Step-size for attitude (deg)
I DINK 1 INPUT(479) | Midcourse velocity step (km/sec)
O KRASH 1 INPUT(1032)] Trajectory stop-type key
I JRA 1 INPUT(1041)] Number of right ascension steps
I JDEC 1 INPUT(1042)] Number of declination steps
Logical unit number ior scope
I KOUTY 1 INPUT(1058)] output
I KTF 1 INPUT{(1077)) Number of velocity steps (negative)
Midcourse pre-ignition state
Q XMC 6 MCCOM(6) (km, km/sec)
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SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION —

0 DV 3 MCCOM(12) | Midcourse velocity impulse (km/sec
Midcourse time (sec after

I TMCS 1 MCCOM({18) | anchor epoch)

I DVRET 1 MCCOM(25) | Retro velocity impulse (km/sec) .
Anchor-launch epoch

1 DJDIF 1 MCCOM(39) | difference (sec)

I WTF 1 MCCOM(47) | Weight after midcourse burn (kg)
Desired end constraints, except:

I PSID 10 MCCOM(80) | PSID(7) is the eentral value of
impulse magnitude (km/sec)

1 PSI 10 MCCOM(1003| Constraint error vector

0 IR 1 MCCOM(158)] Return key for SENSO

0 KDV 1 MCCOM(161)| Counter for delta-V steps taken

0O ICB 1 MCCOM(165)} Midcourse central boedy number

I X 6 STATE(1) State vector (km, km/sec)

I T 1 STATE(10) Time (sec)
Unit thrust ( AV) vector (equator,

1 ATT 3 STATE(11) equinox of 1950, 0)
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Description:

FIXATG varies the velocity impulse magnitude to scan the end conditions achievable

with a midcourse burn of fixed thrust direction. The direction may also be systematically
varied to ascertain the effects of attitude errors. FIXATG is called by PROTO within

a loop in which midcourse execution (ignition) time is varying, but, for any particular
entry, ignition time is tixed. The anchor vector state is first propagated to midcourse !
time by a call to FOWARD. The pre-midcourse state is saved in XMC. SENSO is then
called to propagate the state through the burn and on to the target, then to compute end
conditions (TARGET) from the arrival state. The following quantities are printed out

at each step of the scan,

DVM Midcourse velocity impulse magnitude (m/sec)

RTA Right ascension of the thrust (deg)

DEC Declination of the thrust (deg)

RCA Radius at closest approach (km)

INC Inclination (deg)

TFLT : Time of flight to ¢losest approach (hours past launch)
ROPA Radius at opposite apsis (kim, opposite RCA after retro)
FCP Fuel to circularize at periapsis (kg)

TCF Total correction fuel (kg)

Computation of the last three gquantities assumes variable attitude for the retro

and trim maneuvers.

175



SUBROUTINE FIXATG

Propagate state
from anchor epoch

to midcourse
lexecution time

Set magnitude of
velocity impulse

50

A

!

Set right ascension
of midcourse
direction

L.
Y

7

Set declination of
midecourse
direction

Compute vector AV
Call SENSO to propagate
and compute end conditions

Compute and print resultg

JDEC times

JRA times

“KTT times

RETUR
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SUBROUTINE FOWARD

Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

CALL FOWARD (KSET)

This subroutine establishes certain constants

to propagate the state forward in time,

Calls

are made to subroutines which propagate the

state

CNTRL, CONST, INPUT, INTVAR, SAVE,

SHAD, STATE

INTEG, MULCON, ORBIT, OUTPUT, PLANET,
PRINT, TIMEC, TRMN

Input/Output
SYMBOLIC COMMON
1/0 NAME DIMENSION | BLOCK DEFINITION
Array of back distances to the
8] DSAD 3,5 SHAD(1) shadow cone
1/0 DX : 3 STATE(4) Spacecraft's velocity vector
Ephemeris date corresponding to
I EJO 1 STATE(26) state epoch
Osculating orbital elements to be
0 ELM 6 STATE(14) | integrated
O KDIS 1 CNTRI{5) Discontinuity flag
O KFIRST 1 CNTRIL({12) | First pass flag
0 KHALT 1 CNTRL(6) Error return flag
Trajectory propagation
I | KMETH 3 INPUT(1036)] indicator table
1 KOUT 1 INPUT(1030)] Output frequency flag
Calling If non-zero, more constants
I KSET 1 Operand are initialized
Last flight path angle used in clossst
0 RSAV 1 SAVE(41) approach calculation.
I T 1 STATE({10) Seconds since state epoch
o TcA | 1 STATE(29) | Time of closest approach
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SYMBOLIC COMMON

1/0 NAME DIMENSION  BLOCK DEFINITION
) TOUTL 1 SAVE(40) Last output time
Time of saved state used to
0O TSAV 1 SAVE(T) restore in TIMEC
Times corresponding to the shadow
O TSAD 3 SHAD(3) distances in PSAD
1/0 X 3 STATE(1) Initial position vector
Description:

This subroutine sets up constants to propagate the state in time, establishes the
integration variables and calls the proper subroutine to propagate the state, The
KHALT and KWTDOP flags are initialized to zero and METH set to KMETH (1). If

the KSET flag is non-zero, the following constants are initialized:
1, TOUTL =T
2. DSAD and TSAD arrays to zero
3. KNTRL (1-6 and 8-10) to zero
4, KDIS and KFIRST to one
5. TCA to a large number

The integration array is established according to the frajectory propagation technique,

If Cowell is to be used, METH=1, the position and velocity arrays in STATE are used as
the integration variables. However, if any other method is used, the ELM array is set to
the integration variables. Subroutines ORBIT and TRMN are used to establish the

proper set of orbital elements when any of the "NICE" methods or averaging is used.
After the integration array is established, subroutine INTEG is used to determine

initial derivatives of the state. The initial state is output using subroutine OUTPUT if
the output frequency flag is greater than 0. Finally, the state is propagated in time

using subroutine TIMEC when numerical integration is desired at MULCON when the

multi-conic algorithm is used.
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SUBROUTINE GETTAP

Calling Sequence: CALL GETTAP

Purpose: This subroutine reads the ephemeris tape and sets up
CETBL3 common for use in subroutine READE

Common Blocks Required: CETBL2, CETREL3, CETBLY9, CNTRL
Subroutines Required: None

Input / Qutput

SYMBOLIC ' COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
. Flag indicating status of common
O ICW 1 CETBL2(1) | block CETBL3
0 IERR1 1 CETBLI(4) Error flag
Time from beginning of ephemeric blocly
) JDIF 1 CETBL9(3) | of data to current time
1 JD1 1 CETBLI(1} Reference ephemeris julian date
I KREAD 1 CNTRL(8) Ephemeris tape read flag
0 NUT 204 CETBL3(830)] Nutation cutput
Planetary and Lunar ephemeris raw
0 TAB3 829 CETBL3{1) | data from tape
Time from reference ephemeris
1 TDAY 1 CETBL.9 (2) } Julian date
Description:

This subroutine reads the ephemeris tape and sets up the TAB3 and NUT arrays for use
in subroutine. READE. If the KREAD flag is zero, these arrays are already established
and no read is performed. Most of the logic in this subroutine is involved in searching
through the ephemeris tape to find the desired record., The time of the desired ephemeris
data, JDP, is determined from the sum of TDAY and JD1. The next record of the
ephemeris tape is read to establish its current time, TAB3{(1l). The difference between

the current time and desired time is determined. If the difference is negative the tape
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must be backspaced,while the tape is advanced when the difference is positive. The
number of records to advance or backspace the tape is determined by dividing the
difference by eight,since eight days of data are stored in each record. When the
proper record is determined,JDIF and ICW are set and the subroutine terminates.
Another version of GETTAP is available for use at Goddard Space Flight Center. This
version uses the ephemeris data stored in digk form and the direct read feature is

used to retrieve the data.
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SUBROUTINE GETTAP

‘ ENTER ’

\

JDP =
JD1 + TDAY

KREAD

@

0

Read tape to obtain TAB3(1} ,
the time corresponding to the

current second on the tape and
calculate

JD1F = JDP - TAB3(1)

<0 /l\ >0

JRECL =
JD1F/8

Skip forward

JRECL-1
_seconds

(1)

w&

JDLF = JDP - TAB3(1)

P

RETURN
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JRECG =

JD1F /842

Back space
ephemeris tape
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SUBROUTINE GRAV

Calling Sequence: CALL GRAV
Purpose: | GRAV calculates the disturbing accelerations
due to external bodies.
Common Blocks Required: CNTRL, CONST, GRAVTY,
INPUT, INTVAR, PLNET, PERT
Subroutines Required: DVMAG
Input/Output
1/0 SYMBOLIC PROGEAM COMMON
NAME DIMENSION BLOCK DETFINITION
Distance from central
O DST 12 PLNET {73) planet to other planets
Planet gravitational
I GM 12 CONST(S) constants
I JC 1 CNTRIALT) Central planet number
I JMN i INPUT{i017) Ephemeris flag
I KP 12 INPUT(1001) Planets in system
1 METH 1 INPUT{1013) { Method of integration
1 POS3 3 GRAVTY(D) Spacecraft position
lLL/ O RATES 6 INTVAR(8) Derivatives of integra-
tion variables
/0 RCART 3 PERT{1) Accelerations of 8/C
Positions and velocities
I XP XP{6, 12) PLNET{1) of planets in system
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Theory:

The acceleration of a body in space due to the presence of another body in space
is given by

-»

e 4
w - GMR

where GM is the gravitational constant and R is the vector from the first body
to the second body.

The net acceleration of a S/C with respect to a central planet is given by the

difference between the spacecraft's acceleration and the planets acceleration.

R - R R
2 i = Ts/c j
A = QM G 3
c - j - R.
s/c j ,Rj Rs/cl ’ Jl

where j represents the jth planet, S/C represents spacecraft and all vectors are

with respect to the central planet,

Description:

GRAYV calculates the disturbing acceleration on the spacecraft due to all external
planets in the system. The planets in the system are determined by the vector KP,
i,e., if KP(i) is not equal to zero, then the net acceleration due to Planet i will be

calculated, The accelerations are added and stored in the vector RCART.

H the moon is the central planet, and osculating elements are used for the moon
(TMN = 4), then the net acceleration on the spacecraft due to the Sun is the
acceleration on the 8/C due to the Sun minus the acceleration on the Earth due to

the Sun,

If Cowell's method of integration is to be used, then the acceleration due to the

central planet is added to the othér acceleration and the total is loaded into

RATES (4-6) for use in the integration step.
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SUBROUTINE GRAV

caleculate acceleration on
spacecraft
{

No

No

Moon central planet and No
osculating elements - ‘

Yes

ki
calculate acceleration of Sun
on Earth

calculate acceleration due
to central planet and load
total acceleration into

RATES

RETURN
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SUBROUTINE HSDTHR

This subroutine determines the thrust and weight character-
istics of the midcourse motor used on the RAE-B spacecraft. This
subroutine was supplied by Hamilton-Standard Corp., who is the
builder of the motor. Any questions concerning this subroutine
should be directed to Mz, Charles Newman of NASA Goddard Space
Flight Center.
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Calling ‘Sequence:

Purpose:

Common Block Required:

SUBROUTINE INPUTF

CALL INPUTF

This subroutine reads the input data cards and
stores the information in the proper common

blocks,

FIELDM, INPUT, INPUTS

Subroutines Required: OBSET
Input / Output
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
Real part of the input
O A 1000 INPUT(1) array
Real part of the saved
O AS 1000 INPUTS(1) input array
Cosine coefficient of spherical
O C 16,16 FIELDM(1) harmonic potential term.
| Array of flags used to indicate
0 KMOD 16,16 FIELDM(525) | if a harmonic is input
Integer portion of the input
O KOPT 100 INPUT(1001) | array
Integer portion of the saved input
0 KOPTS 100 INPUTS(1001) | array
0 MMOD 1 TIELDM(514) | Number of tesserals used
Flag used to delermine the type
1 MODLEM 1 INPUT({1035) of gravitational field,
Highest zonal for which a
) NMMOD 1 FIELD(515) tesseral is desired
0O NMON 1 FIELDM(513) | Number of zonals used
Sine coefficient of the spherical
0 S 16,16 FIELD{257) harmonic potential term
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Description:

This subroutine reads the input data cards and establishes the working input arrays.
These arrays consist of the A and the KOPT arrays of INPUT common. These arrays
are set equal to the saved input arrays of INPUTS common before the case is initiated.
The saved input arrays consist of the accumulation of all previous input incﬁuding inputs
from previous cases. Thus, only the inputs which differ from case to case need be

input, The cases are separated by a blank card.

The saved' input array is initialized to preset values in the BLOCKDATA subroutine,
However, some of the values of preset inputs are dependent on the program MODE
flag input via location 1044, Hence, logic is incorporated in this subroutine fo preset
those inputs dependent on the program mode. The inputs preset and their respective

values are presented in Table I.

A special set of inputs are also included to set up the gravitational field. These inputs
are designated by input locations greater than 2000, The data cards with input locations

in the 2000's must be placed after the normal 1000 series inputs,

The inputs for the gravity field can either define the entire field, modify one of the
preset fields, or use the field set up in the previous case, The MODLEM flag is used

to determiﬁe the field as follows:

]

MODLEM 1,2,3 Modify or use the L1, Earth Jz, or

JPL 15 x 8 field.

= 5 New field input. Field is comprised of only
the 2000 series inputs of the current case.

= 10 Use the field from the last case.

Subroutine OBSET is used to initialize the field when MODLEM =1, 2 or 3,
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SUBROUTINE INPUT F

@

Write end of
job H STOP

—{(

ENTER
\
IFIELD=0
=1
KSTOP -
71
Write
header
=2
Read input ENDFILE _|KSTOP =1
data card LOC(1) =0
LOC(1) <1 -;@
=1

Write out input

card on Unit 6

Foc) > 2000 ;@
< 2000

Store inputs in saved

input arrays

‘

Modity preset inputs
if necessary
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Put saved array into working

input array

3

Set up inputs dependent on

MODE flag

lxnitialize NMOD, MMOD, NMMOD

"

1

LOC(1) > 1

<1

. Write out
| NMOD, MMOD, NMMOD

#2

Set up C and S
arrays and
IFIELD =2

Write out C and

S arrays

RETURN
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SUBROUTINE INTEG®

Calling sequence: CALL INTEG (LOPT)

Purpose: : This subroutine sets up arrays for use in
subroutine EQNS where the derivatives of
‘the integration variables are calculated.
This subroutine also calls EQNS and / or
the numerical integration routines.

Common blocks required: CONST, CNTRL, INPUT
INTVAR, PERT, STATE

Subroutines required: EQNS, ORBIT,
RKSEVN, TWELVE
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1/0 |} SYMBOLIC PROGRAM COMMO’N DESCRIPTION
NAME DIMENSIONS | ~ BLOCK
Initial compute interval in
I DELTO 1 INPUT (2) automatic compute interval
e e e mode.- i R
t | pom 3 PERT (25)  (BOTHORANG BHE When ot or
. - . B e I I ..,.,_A.‘.A,..,._.,usillg‘Encl{e..:—..,..... P
/o | DX . 3 .STATE (4) _ _ |Spacecraft velocity
O (DX . 3. . .STATE (7). |Spacecraft accelerations
I/0 | ELM 6 STATE (14) Spacecraft osculating orbital
o o e ‘ elements on Encke variables
1 GM 12 _CONST (5) Gravitational constants
/0 | H 1 _ INTVAR (l4) . [Compute interval
I JC 1 ‘CNTRL (7) Central planet
1/0 KDIS 1 'CNTRL () Discontinuity flag
1 KHALT 1 CNTRL (6) Error return flag
1 KINT 1 INPUT (1014) |[Numerical integration scheme
- Jindicator
I KORECT 1 INPUT (1073} |Flag not to calé:ulat deriva~
: ‘ ' R tives at the end ot the step -
i LOPT 1 Hin Positive to integrlate a step
: ti at
I s Gt T 0
I METH 1 INPUT (1013} |Trajectory propagation method
indicator
I RATES 6 INTVAR (8) Derivatives of state
/o [T 1 STATE (10) Time corresponding to state
in STATE commeon
0 TIME 1 INTVAR (1) Time correspondiﬁg to
variables to be integrated in
INTVAR cominon
" |True anomaly of state when
1 2 ¥
1 |TRU STATE (27) | Ging METH = 4 or 5, or true
_ . {anomaly plus argument of
S  |perigee when METH =8 -
/0 |X 3 STATE (1)  [Spacecraft position
§/0 Y 6 INTVAR (2)  [variables to be integrated
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Description:

The primary function of this subroutine is to set up the integration array before
integration and restore the new state after integration is completed. If LOPT

is negative, numerical integration is not executed and this routine is only used to
determine the derivatives at a specified time. The initial state is brought into
the routine via X and DXor ELM in STATE common. When Cowell is used
(METH = 1), the position and velocity vectors are in X and DX. When the other
trajectory propagation methods are used, the various sets of orbital elements or
Encke's variables are in ELM, Whichever method is used, the state is loaded

into the integration array, Y.

If LOPT is zero or positive,the appropriate numerical integration subroutine

is called to propagate the state over the time step H.

After the state is propagated,the state array is restored to the integration
array in order to set the state to the values after integration. The position and
vélocity vectors are also calculated at the end of integrations for use in other

subroutines.
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SUBROUTINE INTEG

ENTER

{ Call EQNS to get derivatives
Mof integration variables(RATES)

Set ELM =Y
X =Y+ DOM

Set ¥ = X METH =1
METH # 1
Set Y = ELM
SetX =Y =1
SetELM =Y
Call ORBIT (6) _7g a4s
to get position : METH —

and velocity

pora

Call OREIT (3) to get

—\position and velocity

‘ RETURN ’
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KINT

Call RKSEVN to numerically Call TWELVE to numericaj
integrate the state over 'one integrate the state over on
step step A
T =T+
HO
KDIS =0
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SUBROUTINE INTERP

Calling Sequence: CALL INTERP (T, Z)

Purpose: ‘ To determine the position and velocity
of the spacecraft at times other than
compute times.

Common Blocks Required: CNTRL, CONST, INPUT, INTER, PERT

Subroutines Reguired: ORBIT, TRMN

Input / Output

SYMBOLIC | © PROGRAM - COMMON
I/0 {|* NAME - | DIMENSION -'1--- BLOCK ‘| DEFINITION -~
1 ACL 6,10 - INTER(81) " Back values of the derivative%
o R R B - - 1 of the interpolation quantitiesk
I ofem. . |. 12 | cONST(5 . |:Gravitational constant
oyec .. 4. L ... .. | . CNTRI(7) . | Central planet
1 INT N B N . INTER(131) | Number of back values stored
I | METH ! . INPUT(1013) | ' Trajectory propagation
I iz 3.1 . CONST(3) Twice pi
I POS - 6, 12 - INTER(11) Back values of the inter-
S B L I _polation quantities
I T -1 CALLING ‘Independent variable used
S S R : OPERAND" | “in interpolation
I X 10 - INTER(1) ‘Back values of the
e ‘ ‘ : -independent variable.
0 yA 6 CALLING Interpolated position and
s R S OPERAND velocity vectors
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Theory:

The interpolation formula used is of the form

n
PXy = h f. 3 / "
(X) ;} O,j(X) Pothy £ +h2’j(X) £
where
P(X) is the interpolated value
X is the independent variable
h h h_ . are functions in X

O!j ’ 1:J ’ '2:]

£, £, are the back values of the quantity to be interpolated and
its first and second derivatives.

For the cases where only the first derivatives are available,the interpolating polynomia?

shown in equation (1) reduces to a Hermitian polynomial and the functions hi i become,

3

7 2
h Xy = 1-2(X-X
0.y [ (XX 2 (xj)] A ()

2
h = (¥X-
i,j(X) (X Xj) % (X)

where Aj is the Lagrange interpolating coefficient defined by

n
Xy =
A =0 BX_Xi) /& "Xi)]

i#
also
1 1
N(X) = =
)5( 3) Z X—Xi
i= 0
i#

When both the first and second derivatives of the interpolation quantities are available,

the functions in the interpolating polynomial become
. - 3 -
"1 P = @ =0,2
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The functions (Zk . are defined by

']

L2
2 1 3 1" '
Py, {X) = 16 (X-X)) {(uj(xj)) - TN (Xﬁ} -3(X-X,) X (X))
- _ - _ /
B %) = (X-X)) - 3X-X) X
1 . 2
B, X = 5 X-X)

Where the second derivative of the Lagrange interpolating coefficient is given by

| n - 1 2 n 1
A.:{l' (XJ) = Z (X -Xi ) - Z: (Xj-Xi)z

The first derivative of equation (1) defines an interpolating polynomial for the first

derivative of the interpolation quantity. Differentiating equation (1) yields

k .
P'PX)y = S n . (X +h (X +hl (X))
% 0,7 BT +hy s by 50

where
h' 0 =y N () i=0,2

and '- n .
NERELCDY Tx 0, ®

i#j
1
The functions @ are given by

2
1 1 - t
(X)) = 12 (X- ‘ - -
@o,j( (X Xj) [(xj (_Xj)) 7 ’“j (Xj)] 3’5 (Xj)

1

= 1- - '
B ) = 16 (XX A, (X))

]

B s E) = XX

197

(4)

(5}

(6)



Description:

This subroutine determines the position and velocity vectors at any arbitrary time

by interpolating on saved values of the state and its derivatives. The saved values of
the state and its derivatives are brought into the subroutine via INTER common. This
array is set up by subroutine UPDATE. The values in this array are the integration
parameters. Thus if METH = 1,this array contains the position and velocity vectors,
whereas it contains the orbital elements if METH=3. If METH =1 or 2, the state and its
first and second derivatives are contained in INTER. Only the state and its first

derivative are available when METH is other than 1 or 2.

When METH equals 1 or 2,the position (or position from reference orbit) is obtained
using equations (1), (3) and (4). The velocity (or velocity from reference orbit) is
obtained using eguations (5) and (6). When METH is other than 1 or 2, the state is

obtained from equations (1) and (2).

The position and velocity vectors are determined from the interpolated state. These

guantities are set in the Z array and returned through the argument list.
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SUBROUTINE INTERP

ENTER

Y
Initialize
constants

L

Determine the Lagrange interpolating
coefficient and its first and second
derivatives

1, or 2

G

Calculate h_
i,]
from
Equation (2)

Y

Interpolate for sfate -

using equation (1)

@

Determine position and
velocity vectors from
interpolated state

RETURN
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Determine ¢J; ; and @' using
equations (4) and (6)

y

Interpolate for position and velocity or Encke
variables using equations (1) and (5)

29
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Called:

Input / Output

SUBROUTINE JET

CALLJET

JET computes a first-guess translunar midcourse
velocity impulse using patched-conic assumptions.

CONST, INPUT, INTVAR, MCCOM, PLNET, STATE

BCONIC, CROSS, DOT, DVMAG, MVTRN, M50LEQ,
ORIENT, PLANET, RETDV, ROTAIT, TRMN, VNORM

201

SYMBOLIC COMMON
1/0 NAME DIMENSION | BLOCK DEFINITION
1 RTD 1 CONST(1) |[Radians to degrees conversion factor
1 GME 1 CONST(T) GM(kms/seczl for the Earth
1 GMM 1 CONST(15) GM(kmS/secz) for the Moon
1 WTO 1 INPUT(38) |Initial spacecraft weight (kg)
Julian date (days) of anchor
1 DJO 1 INPUT(46) |vector epoch
I JT 1 INPUT(1031){ Target body number (11)
1 MCOUT 1 INPUT(1050)| Extra output key (prints if .GE. 3)
0 TINT 1 INTVAR(1) |Time for anchor epoch (sec)
0 DVMC 3 MCCOM(12) |Midcourse velocity impulse (km/sec)
Desired miss-vector (km)
1 BVD 2 MCCOM(19) lif IBTR =1
1 DVB4 1 MCCOM(24) |Velocity expended previously (km/sec)
Desired radius of closest
I PRD 1 MCCOM(80) japproach (km)
' Desired selenographic approach
I QINC 1 MCCOM(81) |inclination (deg) °
Desired time to closest approach (sec)
I DTFLS 1 MCCOM(82) |measured from anchor epoch, DJO -




SYMBOLIC COMMON "
1/0 NAME DIMENSION  BLOCK DEFINITION °
; ]
1 VINFD 1 MCCOM(83)| Desired hyperbolic excess velocity(km/sec
Desired circular excess velocity
I DCEV 1 MCCOM(84)! (km/sec) after retro
1/0 NGROPT 1 MCCOM(163)] Gradient re-computation key
I KGLAW 1 MCCOM({164)| Guidance law key
Eud coastraint type key
1 IBRTR 1 MCCOM(167)] (1 for BVD, 2 for PRD and OINC}
0 XP 6,12 PLNET(1) | Ephemeris state of body I (km, km/sec)
1 X1 6 'STATE(1} | Pre-maneuver state (km,km/sec)
1 TIME 1 STATE(10) | Time(sec) of X1 referred to anchor epoch
1 EJO 1 STATE(26) | Ephemeris time (days) at anchor epoch
§) EJT 1 STATE(28) | Ephemeris time (days)
Inftroduction:

The method to be described has been fruitfully applied to the determination of mideourse

correction maneuvers for the RAE-B mission, It has been used as a pre-targeting device

to provide "first-guess'" midcourse corrections to a precise differential-correction-type

targeting scheme. In this role, the method has eliminated the need for non-linear targeting

measures such as control limiting and gradient re-computations and greatly reduced the

number of trajectory calculations required.

A gross description of the method would be "patched-conic targeting with constrained end

conditions." Refinements which contribute to the success of the method are primarily

found in the use of the Jacobian energy for targeting and in the use of radius of closest

approach and inclination as terminal condition parameters,

Transfer Phase

Schematie for a Transfer Trajectory
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The transfer phase is treated as a single conic section relative to the central body.
The first terminal of this phase is the point of the midcourse correction on the
uncorrected transfer trajectory at radius Ry, velocity Vq, at time ty. The second
terminal is on the sphere of influence of the target at a radius R,. T he second

terminal's radius vector is computed from

Rz =Rt+P D

where R ¢ is the position of the target at t2 relative to the central body and where P
is a vector from the central body to the point of entry of the target's sphere of

influence. The time, t_, of arrival at the sphere of influence is computed from

where ’cf is the time of arrival at closest approach (specified a priori) and where v
is the time required to travel on the approach hyperbola from the sphere of influence

to closest approach. -

The arrival phase parameters, P and v, will be described later. An iterative solution
of Lambert's Problem (i.e., "Find the conic sec,:ion passing from Rl to R2 in time .
t2 -t 1") is employed. This* solution provides V4 ., the velocity on the fransfer conic
at the first terminal, and Vg, the transfer conic's velocity at the second terminal.

The midecourse correction impulse, AV, is computed from

*
AV =V, -V, : | ) (3)

and the target-relative velocity, V, at t2 is
V=Y -V | - (4)

where Vt is the target's velocity at tz relative to the central body.

The first transfer conic is computed with P in the target's orbital plane at 20%earthward

from tangential. The target relative transfer time, r, is fixed at 66, 000 seconds.
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The target-relative velocity derived from this first conic is used to initiate the arrival
phase calculations. A two-or-three-step iteration (transferring V to arrival phase

calculations and P and r to transfer phase calculations) will

Transfer
Phase

Arrival

Phase

converge to a steady-state value for AV. This answer is the impulsive patched-conic,

fixed-time-of-arrival midcourse correction,

Arrival Phase

The arrival phase computations use the target-relative approach velocity and desired
arrival conditions to develop (1) the time of passage from the sphere of influence to
closest approach and {2) the point of entry into the sphere of influence. The desired
arrival conditions are specific values of radius of closest approach and inclination.

We develop characteristics which the approach hyperbola must possess in order to
satisfy the desired arrival conditions. We assume that the target-relative approach
velocity vector defines the direction of the arrival asymptote of the approach hyperbola.
Furthermore, we assume that the point of entry into the sphere of influence can he
computed for the next transfer phase using the direction of the arrival asymptote and

the target-relative energy from the current arrival phase in its calculation. The energy

of the approach orhit as used in arrival phase computation is defined by equation (5),

2
My
03 = V.V - ~ €)

where V is the approach velocity. This {(Jacobian) energy is adjusted for perturbation

by the target body on the transfer trajectory.

Figure (1) shows an arrvival hyperbola whose no-plane character is described by a

closest approach radius, rp, and half-angle, o. Given rp, we can use the energy, 03,
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to solve

Figure 2

for the various parameters of the hyperbola

oy
il

r,

- a) sin gy

(hyperholic excess speed)

(closest approach speed)

(half-angle between asymptotes)

(semi-major axis)

(asymptotic miss distance)

(eccentricity)
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'3
]

2
-a (—) (semi-latus rectum)

1 . |a| fal

{reciprocal mean motion)
2}

The true anomaly, f, at "patch' distance, r, is computed from

f = cos ' {({_— - 1) /e}

and the time of passage, +, from the sphere of influence to the point of closest

approach is

where f' = In {1+ el n £ - 1ln - ezl tan £
e+l 2 +1 2

We next caleulate the point of entry into the sphere of influence in such a way that

the hyperbola has the specified inclination, i . We first define the arrival asymptoi.,

q°
S, as V normalized to unity. Then, if K is a unit vector normal to the target's
equatorial plane at time of closest approach, we can define vectors T and R normal

to S as follows. (See Figure 2)

_ Sx K
T IS x Ki
R = Tx8

The miss-vector, B, lies in the orbital plane and in the plane of T and R at an angle §

measured from T towards R.

B = Tcosg+Rsing
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The plane of the hyperbola is defined by a unit vector, H, in the direction of the

angular momentum,

H = BxS = Rcosf - Tsing : (20
The condition that the orbit's inclination is i d is

H-K = cos id=R-K cos @ (21)
which can be solved for cos §if |R-K| < {cos ig)- If [R-K| > [cos idl , it means
i d cannot be attained. In that case, the best that can be done is

GOS8 id
0 = 1 .gign 22
cos 9 ig ( K ) {22)

The sign on sin g = :i:dl - cos?2 6§ can be chogen to make the miss-vector lie
above or below the equator in the miss plane. Having now calculated B, we can

form the vector, P, from the target's center toward the point of entry into the sphere

of influence,
P = r {Scos (f+e) + B sin (f +a)} ' (23}

It has been found beneficial for convergence of the arrival-transfer iteration to

introduce a "gain' of .7 on the change of P between iteration steps.

The computations above provide the point of entry of the sphere of influence and the
time of passage from the sphere of influence to closest approach. The point of entry

is then used to establish a new second terminal position for the transfer trajectory.

Guidance Laws

The solution provided by the above process is the fixed-time-of-arrival (FTA)
guidance solution. The FTA guidance law constrains arrival (at closest approach)
time, tf, to be a specific value while satisfying the desired end conditions of radius
of closest approach and inclination. Other guidance laws of interest relative to the

RAE-B mission are:

1) minimum midcourse fuel,
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2) fixed target energy, and

3)  variable target energy.

Each of the other guidance laws constrain radius of closest approach and inclination
just as the FTA law does, but do not specifically constrain arrival time. The
minimum midcourse fuel law embraces the "eritical plane’ solution, the fixed target
energy law constrains hyperbolic excess speed at the target, and the variable target
energy law constrains post-retro velocity at the target subject to a prescribed
de-hoost strategy. The solution for each of these laws, however, corresponds to a
particular arrival time (or, flight time), so flight time is used as the independent

variable in seeking solutions for each law,

The MT'G and MTF laws'are pre-targeted by means of a Newton-Raphson-type iteration
with flight time as the independent variable. The iteration seeks to null the dot
product of the difference of two successive midcourse correction impulses with the
impulse itself. That is, it seeks to find the flight time for which the magnitude of

the correction velocity doesn't change (i.e.,is minimum),
Equation 24 defines the condition for minimizing the magnitude of AV.

. —dAav)
AV qt 0

where t signifies flight time in this case. We define tn to be the flight time for the

n-th trial and ﬁVn to be the velocity impulse for that trial. Then, approximately,

(dgAV) ) _ _AVp - AVn-1
n

dt
tn t n-1

and more approximately,

- _d(av)
AVn+(t[1+1 tn) ( )n

AV

n+l dt
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We look for tn+ such that equation 27 holds.

1

A a @ _ | |
AVin (dt ) 0 (27)

n+1

By making liberal use of equations 25 and 26, equation 27 may be solved to render

tn+1 - tn.

AV (AVp- AV, )

B tn: '(tn_ tn-l) (28)

1;n+1 2
|AV 0 AVn_]l

This process converges well in all cases tested. The resultant AV changes very

little with precise targeting, although the corresponding flight time shifts by an

hour or two.

The fixed time of arrival guidance law is pre-targeted to 1. 015 times the desired flight
time, This empiricél factor tends to compensate for the difference between patched-
conic and integrated-perturbed lunar transfer trajectory flight times. No iteration

is required as for the other guidance laws, since flight time is both the third constraint

of the FTA law and the independent variable for pre-targeting.

The pre-targeting process for the FTE and VTE guidance laws include a regular
Newton-Raphson iteration to null the third constraint by varying flight time. For the

TTE law,the third constraint error function is
= desi - _ 2
11;3 vm( esired) \}CBT i ‘ (29)

where C 5 is defined by equation 5. For the VTE law, the function to be nulled is

T
/u 2 ‘ :
b = “m- m
"3 T d #CST * Iy d * 6Vr (30)

p p

where rp d is the desired distance of closest approach and Gvr is the velocity impulse

imparted by the retro motor, The VTE law usually has two solutions, i.e., two flight
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times for which ;b3 = 0. 'The iteration is constrained to find the solution with positive

slope, which is the solution of the longer flight time.
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SUBROUTINE JET

Initi;alize: o
Setp to (110, 0)
in or%ital coordin-
ates

New patch time

New patch time

Compute Moon's
state at patch
time.

Call BCONIC to obtain
AV and V

Corﬁpute new P to patch
point with gain of .7 on
change

Tesgt
error in end

Compute increment
in transfer time to
minimize | AV
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constraint

Compute increment
in transfer time
to null error, \Ls




Calling Sequence:

Purpose:

SUBROUTINE LUNA

Common Blocks Required:‘

Subroutines Required:

Reference:

Input / Output

CALL LUNA

To determine the position of the Moon with
respect to the Earth.

CONST, CNTRL, INPUT, INTVAR, MOON,
PLNET, STATE

MVTRN, M50MDT, OBLTY, ORBIT, ROTATE,

TRMN

1. Supplement to the American Ephemeris and
Nautical Almanac, U.S. Naval Observatory,
U.S. Government Printing office.

SYMBOILIC COMMON

1/0 NAME ‘DIMENSION BLOCK DEFINITION

1 DJO 1 INPUT(46) Modified julian date of state epoch

1 EJO 1 STATE(28) Modified ephemeris epoch

1 ELMMN- 12 MOON(1} Osculating elements of Moon

I FOM 1 MOON(15) Mean anomaly at epoch of Moon's
osculating elements

i GM 12 CONST(5) Gravitational constants of the
planets

I JC 1 CNTRL(TY Central planet mumber

1 JMN 1 INPUT(1017) | Ephemeris type flag

I PM 1 MOON(14) Moon's mean motion from osculating
elements

1 RAD 1 CONST(1) Radian-degree conversion factor

I T 1 INTVAR{) Time since state epoch ephemeris
desired

1 - TVPI 1 CONST(3) 2

I - TMOON 1 MOON({13) Epoch of osculating lunar elements

0 Xp 6,12 PILNET{(1) Positions and velocities of the
planets
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Theory:. _

This Subrouﬁne calculates the position and velocity of the Moon from the mean element,
mean elements plus extra terms from the lunar theory-or from input osculating elements,
The mean elements are obtained from the supplement to the nautical ephemeris, The

mean longitude of the Moon , the mean longitude of perigee and the longitude of the

ascending node are obtained from the following polynomials in time:

A = 4.3853720 +8399,0912 C ~ 1,97746D~5 .c2

Y =  1,730894 + 71017994 C - 3.6267D-5 C_ a

Q = 1.4312588 +33.757099 C +3.6263D-5 C2
where

X = longitude of the Moon

v = longitude of perigee

£ = longitude of the ascending node :

C = number of julian centuries since 1965.

These quantities are in the mean equinox and ecliptic of date. The argument of perigee,
ty and the mean anomaly, AM, of the Iunar orbit is obtained from |

AM = A=y .

& = ¥ -Q @
Next,the eccentiric anomaly of the . 1ﬁnar orbit is determined from Kepler's equation
for small eccentricities, or

"E = AM +e sin AM # _t_a_z +_(_3_3(3 sin 3AM - sin AM) (3)
where e is the eccentri(z:ity 0% the lunar orbit (.054900489)

The position and velocity of the Moon in its orbit plane can now be obtained from

X = a{cosE -e)

Y = aVi-e® sinE

X = -VsimE/S @
Y = V Vie2 cosE /8

where

S = \/(1-e2) cos?E + sin“E

vV = \/GMN( iz — - ':T (the velocity of the Moon) -

a is the semi-major axis of the lunar orbit (384750,8998)
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The X and Y components are in the lunar orbit plane with the X axis pointing to perigee

and the Y axis in the direetion of motion.

'The cartesian coordinates of the Moon are next transformed to the mean éqﬁinox and

ecliptic of date using the following rotation matrix:

(x\ [ cos £COoS £} ~ sin ¢y cosf) p:4
—cos i sin ) sing, -cosi sinf) cosy
< y > = |cos w SinQ - singy sin ) y (5)
+cos icos() singy + o i cos() cos g
Z sin i sin ¢y sin i cos ¢
\. / . ‘ .

where i is the inclination of the lunar orbit w.r.t. the eclipiic
(. 08980414 radians)
The Moon's position and velocity vectors in the Earth's mean equinox and equator of

1950 are obtained from standard rotations,

Extra terms are used in the calculation of the inclination, longitude of the ascending
node of the lunar orbit, mean anomaly and semi-major axis of the lunar orbit when
the proper input flag is set. The terms include the effects of evection, variation,

and other periodic terms due to the Sun's force on the Moon.

The longitude of the Sun and the longitude of the perigee of the Sun's orbit is determined
from mean elements similar to the lunar terms. The polynomials used are:
AS 4.8860536 + 6.28331958 C + 5,2796 D-6C2 (6)
y s 4.9082294 + . 030005264C + 7,90246D-6 C2
The changes in the above mentioned quantities are:'
i mean + ,002515665 cos {Z)s~ 2 Qmean )
0 = (mean -+ ,02805487 sin (2)s ~ 2 (Hmean) (7)

a mean (1 + .0090714046 cos (2 ) - 2\s)

0

Il

i

a
and the frue anomaly of the Moon is determined from
u = AM +,10975961 sin AM + . 0037634149 sin 2AM
+ 00017926303 sin 3AM - ,00054493 sin (} - A 8)
+, 022238412 sin (2), - 2\s - AM) + .011493967 sin(2), - 2)s)
- 00324292 sin(\s ~s)

(8)
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The osculating lunar position and velocity vectors are determined in a completely
different manner, The mean anomaly at the desired time is determined from the
mean motion and mean anomaly at epoch from
AM = PM (DELT) +FOM
where PM is the mean motion
DELT is the time since epoch (9
FOM is the mean 7anoma1_v4 at epoch,
The true anomaly is determined from subroutine TRMN,and the posiﬁoh and velocity
vectors obtained from the osculating elements from subroutine ORBIT.
Degcription:
The ephemeris epoch and time since the epoch that the ephemeris is to be
determined are brought into the routine—via common bloecks. The JMN flag is
used to determine the type of ephemeris as follows
JM = 1 mean elements
=2 mean elements plus exira terms
=3 osculating elements,
If JMN equals one or two, the mean elements of the lunar orbit are deterrﬁined from
' the polynomials in equation (1). If the extra terms are to be included, they are
determined from equation (6) and the eccentric anomaly from equation (7). Otherwise,
the extra terms are not included and equations (2) and (3) are used. Finally, equation

(4) is used to determine the coordinates and they are rotated to the mean equinox and |

equator of date using the rotation matrix shown in equation {(5). Subroutines M50MDT

and OBLTY are used to obtain the vectors in Earth mean equinox and equator of date.

The osculating position and velocity vectors are obtained from TRMN and equation {9).
The osculating elements are brought into the subroutine via Moon common and describe
the Moon's orbit with respect to the Earth in the Earth's mean equator and equinox

of 1950,

The position and velocity vectors determined are loaded into the XP array according
to the value of the current ventral planet number in JC.

JC = 3 Earth central planet, thus position and velocity
of Moon w,r.t. Earth loaded into XP array in
Moon's position

215



JC

JC

v

11

3orll

Moon central planet, thus position and velocity
of Earth w.r.t, Moon loaded into XP array in

Earth's position, The negative of the values
determined for the Moon w.r.t. Earth are loaded
into XP(I, 3),

Some other planet central, thus the position of

the Earth w,r.t. central planet is added to Moon's
position and velocity and loaded into the Moon's

position in the XP array.
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ENTER

Initialize a, e, i

¥

Get mean elements from
equations (1) and (6)

Get eccentricity anomaly
from (3) and determine
position and velocity from

6]

AN~ 2 .adcl ferms to
~1 fand 0

calculate (equation (2)

Use equations (7) and (8) to get
JMN elements., Get position and
velocity from standard conic
relationships

\

Rotate to mean of 1950 using
equation (5), M50MDT, OBLTY
and MVTRN

Load vectors into XP array
according to JC




&

Get mean anomal
from equation (9)

!

determine true anomaly
from TRMN

Get position and velocity
vectors from ORBIT
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SUBROUTINE MATMPY

Calling Seguence:

Purpose:

CALL MATMPY (KRL, A, KCLRR, B, KCR, ()

MATMPY multiplies the matrices A (KRL x KCLRR)

by B(KCLRR x KCR) to get C(KRL x KCR)

General matrix multiplication is defined by [C ]

where m

¢y = 2 APy
k=1
m is the number of columns in A and rows in B,

219

= [A] x [B]

Common Blocks: None
Subroutines None
Input/Output
SYMBOLIC PROGRAM COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
1 A Variable Calling Operand | Matrix on the left
1 B Variahle Calling Operand | Matrix on the right
0 C Variable Calling Operand | [A1 x [B]
Number of columns
1 KCLRR 1 Calling Operand | in A and rows in B
: Number of columns
1 KECR 1 Calling Operand | inC and B
Number of rows in
I KRL 1 Calling Operand | A and C
Theory:




Description:

MATMPY first initializes the matrix C to zero and then forms the sum of the
products above fori =1, KRL and j =1, KCR. The arrays are singly-dimensioned

to avoid variable dimensioning.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Called:

SUBROUTINE MCBURN

CALL MCBURN

MCBURN accepts the pre-midcourse state and time
plus a velocity impulse, computes the post-midcourse
state and time.

CNTRL, COHNST, INPUT, MCCOM, STATE

DVMAG, FOWARD, DOT, BURND

Input/Output
6 |JC l CNTRL(7) |Post-maneuver central body number
I GM 12 CONST(5) |GM gravitational array (lcms/ secz)
I G 1 CPHNST(45) |Earth's surface gravity (km/ secz)
0] TFINAL 1 INPUT(4) |Integration stop time (sec)
1 WTP 1 INPUT(38) {lInitial spacecraft weight (kg)
2} TCOMP 10 INPUT(170) { Time {sec} to change integration step size
0 DELT 10 INPUT{180) | Integration step size (sec)
I TWD1 3 INPUT(320) | Times (sec) for weight flow rate changes
I WDOT1 3 INPUT(350) | Weight flow rate changes (kg/sec)
D TIG 1 INPUT(380) |Ignition time (sec)
& TBO 1 INPUT(383) | Burnout time (sec)
1 ASPMC 1 INPUT(441) i}::tc;i:i(csier;pulse of the midcourse
o KRASH 1 INPUTI 032) Trajectory stopping key
® | KMETH 1 INPUTI 036) Trajectory computation method
1 IBURN 1 INPUTI 071) Burn computation method key
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| SYMBOLIC | PROGRAM |COMMON
/0 NAME DIMENSION | BLOCK DEFINITION
I XMC 6 MCCQEL Pre-maneuver state (km, km/sec)
I DV 3 MCC@&Z) Midcourse velocity impulse (km/sec)
I TMCS 1 MCCQ&S{I 8) Midcourse initiation time {sec)
I KBURN 1 MCC@(TB 4 Burn maneuver computation key
I ICB 1 MCCHM Central hody of XMC

(164)

4] X 6 STATE(1) Post-maneuver state (km, km/sec)
) T 1 STATE(10) | Post-maneuver time (sec)
$ JATT 3 STATE(11) | Thrust attitude (unit vector)
b WEIGHT 1 STATE(34) |Spacecraft weight (kg)
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Methed:

MCBURN's method for computing the post-midcourse state and time is determined

by the input key, KBURN,

Impulsive (KBURN.LE. 0)

In this case, the input velocity impulse, DV, is simply added to the pre-midcourse

velocity to form the post-midcourse state,

0
XMC + | ' (L

X Dv

T TMCS . (2)

il

Finite Burn (KBURN.GT.0) .
In this case, the input velocity impulse, DV, is used to calculate the burn duration
and thrust attitude. The computation of burn duration assumes that the thrust mag-
nitude is proportional to mass flow rate, that the mass flow rate decreases linearly
in time, and that the velocity impulse is entirely attributable to thrust. - Defining

the characteristic velocity, ¢, of the velocity correction package as the product

of gravity, G, and specific impulse, ASPMC, we write thrust as follows:

-SRI dm
IT| ="em = e | (3)

The minus sign is necessary here if we define m to be positive,

The acceleration due to thrust is thrust/mass, so the velocity impulse, v, due

to thrusting for time t is:

b
b
T m(t)
§v = J _?n_dt = -c&n[m(o) (4
Equation (4) may be solved (given §v = |DV|) for the mass expenditure, 6m.
m = m(o) -m(t) = m(l-€ bv/ % (5)
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Under the assumption of a linear mass flow rate, we can solve for burn duration

as follows:
m(t) = m(o) +mt (M<0)
b m 2
6m = l; mdt = m(o)tb+3tb
. i -2
mavg = g[m(o) -h/m(o) +2m fm ]
_ _6m
% T m
avg

This form (9) of the solution to (7) is preferable to the more-standard quadratic-
equation solution because it does not require division by m and reduces immedi-
ately to the linear-equation solution if m=0, The thrust direction, T , 18

computed parallel to DV,

n_ DV

ov

The method (KBURN.NE, 6) for computing the post-midcourse state for a finite

burn is to integrate the equations of motion over the burn duration,

X XMC + J‘ X (gravitjr + thrust) dt
0

=3
It

TMCS + tb

Closed-Form Approximation (KBURN. EQ. 6)

The doublie integration of the thrusiing acceleration can be done in closed form -
if a mass flow rate which variesg linearly with burn time is assumed, The super-
position of this closed-form soluti.bn with the thrust-free state-change solution
during the burn provides an excellent approximation to the numerically-integrated

solution. In MCBURN, the closed-form solution is superimposed only on the
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multi-conic thrust-free solution. The closed-form development follows. The

position (8R) and velocity (§V) increments are presented,

tb m(tb)
- T &4 = _af :
5V = L = at cTLn[m(o) ] (13)
by B
R = f §V dt = - cTJ in — dt [m=m(t),mo=m(o)] (14)
) (o] (o]

To evaluate the integral in (14), we note from Egs. (6) and (7) that

dm = fhdt (15)
and
m = mo--—}—(rhz—rhi) . (16)
21m
The inﬁegral is
tb m(tb)
J tn = dt = 1J‘ »E,n[l- . (Iilz—ﬁlz)]drh
m . Z2mm 0
0 o o
m{tb)
= —1—f L [ﬁlz-zﬁlm—rhz]drh—fflt in(-Z2mm (17)
T om S n o 0 b o)
o

The integral in (17) is of the form ILn(x2+a2) dx, where

2 . . 2
a = ~2mm -m
o 0

is positive if ™ is less than (- & /2 m_ ).

-1

Jén(x2+a2)dx = an(x2+a2)-2x+2ata.n {18)

S

Omitting the intermediate algebra, the resultant position change is

R = { +2——[ : I(Zm m t >]}6V (19)

It may be shown (but not simply) that the limit of (19) as m approaches zero is

m(t )

the constant mass flow rate solution,

225



6R ={gc;tb-—“—m—}ﬁv (20)
The only reason why the closed-form solutions, (13) and (19), do not provide exact
results (under model assumptions) when added to the thrust-free state at burnout
time is that the gravitational acceleration depends on §R(t). A simple extension
is included in MCBURN's approximate burn to modify the velocity for gravitational
accelerations resulting from 8§R(t). It is assumed for this extension that the
gravitational acceleration is (- uR/ r3). The additional velocity, 86V, is

%

86V = - %(I—Sf{f{T)J SR(t) at (21)
r 0

The integral of (21) can be evaluated as follows,

t 3
["onityat - [E30 20 ol g (2t e

Mt) m( )-cam)ﬁv i (22)
t‘b v

{m(tb)

86V = J”‘—(av-snTaV){m CGm}/ﬁl (23)
1"3 ov
This velocity correction improves the closed-form solution. MCBURN is used

in midcourse targeting. When entered with DV, it provides post-burn state

where the burn time is computed from Eq. (9). The integrated state differences

give rise to end-constraint errors which, through targeting, change DV. The

changed DV does not then represent a velocity impulse, but rather an inter-

mediate variable set which gives rise to a changed burn time and thrust direction
through MCBURN's formuilas. Such a procedure has programing advantages over

a procedure which would switch targeting control parameters to time and thrust

direction when passing from an impulsive burn to a finite burn. Logic of this

subroutine is straightforward and requires no flowchart or block diagram,
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Consider the time-segment {ti: t} on which m is linear

OR. (1)

1]
o+t
w0
o
o
=3
g E
~——
[=B
-.‘

.65V_l( t)

Il
-+

6Ri('r) dr
i

. m
Casel: m=+const, , m=m-mbdt , d(_)=
. 0 mo

t-t.
i

OR (1)

0 ]5(1 o
1-—r7

= *?"[m{,ng-+ri1 ﬁt] = ~El—6v+c6t =
m m m
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- SUBROUTINE MCBURN

XMC
TMCS

=M
[

0 (impulsive)

Compute burn time

L

Call FOWARD to propa-
gate through the burn
time

linear weight flow
rate calculations

Constant weight flow f
irate calculations

up to BURNT
™

Accumulate over segmentsJ

Add perturbations to multiconic

post-burn state

—— — mmmms m———

RETURN
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SUBROUTINE MCSET

Calling Sequence: CALL MCSET

Purpose: MCSET performs initializing calculations
' for midcourse and Monte Carlo analyses.

Common Blocks Required: CONST, INPUT, MCCOM

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
Radian-to-degrees conversion
I RAD -1 CONST(1) factor
Gravitational constants
1 GM 12 CONST(5) (km3/sec?)
I DJL 1 INPUT({37) Julian date at launch (days)
1 DJO 1 INPUT(46) Julian date at anchor epoch (days){ -
Tracking error covariance
1 COoVv 6,6 INPUT(56) matrix
Times for weight flow rate
1 TWD 10 INPUT(320) | tahle (sec)
I WD 10 INPUT(350) | Weight flow rate table (kg/sec)
Desired end constraint values
I PSIDIN 10 INPUT(420) | (km, deg, km/sec)
Midcourse pointing error
1/0 SIGATM 1 INPUT(435) | (deg- rad)
Retro pointing error
1/0 SIGATR 1 INPUT(437) | (deg- rad
Second midcourse time
1 TMCZIN 1 INPUT(440} § (sec past DJL)
Specific impulse - midcourse
I ASPMC 1 INPUT(441) | motor {sec) '
Specific impulse - retro motor
T ASPR 1 INPUT(442) | (sec)
1 WRETRO 1 INPUT(443) | Weight of retro fuel (kg)
Desired circular orbit radius
I RO 1 INPUT(444) | (km)
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SYMBOLIC COMMON
NAME DIMENSION BLOCK DEFINITION
Desired miss vector components !
BVDIN 2 INPUT(447) | (km)
Velocity step for partial
DINK 1 INPUT(479) | generation (km/sec)
TOLIN 10 INPUT(490) | Constraint error folerances
JT 1 INPUT(1031)| Target body number
Mode switch
MODE 1 INPUT(1044}] (3 midcourse, 4 Monte Carlo)
IBTRIN 1 INPUT(1062)| Target constraint type key
KGLAWI 1 INPUT(1063)| Guidance law selector
Number of trials to re-compute
NGRPT! 1 INPUT(1064)| gradient
Number of targeting trials
NTIN 1 INPUT(1065)) allowed
MCLIM 1 INPUT(1067)! Factor of DINK for limiting
Probability for scaling
JPROB 1 INPUT(1070){ purposes (%)
ALIMIT 1 MCCOM(1) Velocity step limit (km/sec)
PRX 1 MCCOM(3) Probability scale factor
Initial-guess midcourse velocity
DV 3 MCCOM(12) | impulse (km/sec)
BVD 2 MCCOM(19) | Desired miss vector (km)
DVB4 1 MCCOM(24) | Expended midcourse velocity (km/seq
Factor used in VTE law
PFAC 1 MCCOM(38) | calculations {(kg)
Julian date difference,
DJDIF 1 MCCOM(39) { DJO-DJL (sec)
Second midcourse time
TMC2 1 MCCOM(48) | (sec past DJO)
PSID 10 MCCOM(80) I Desired end constraints
TOL 10 MCCOM(50) | End constraint tolerances
DW 10 MCCOM(110)] Expended fuel table (kg) wrt TWD
Number of targeting trials
NT 1 MCCOM{151)}{ allowed
Number of constraints to test
NP 1 MCCOM(160)] for convergence
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SYMEOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION -
Number of trials to re-compute
o NGROPT o1 MCCOM(183)} gradient
O KGLAW 1 MCCOM(164)] Guidance law indicator
O IBTR 1 MCCOM(167)| Target constraint-type key
Indicators for constraints o
O IPD 3 MCCOM(169)| test for convergence
Description:

This subroutine is straightforward and requires only a little explanation., First, the
computation of the desired 5th constraint is normally circular velocity at desired

circular radius, T d= RO, which is also the desired radius of closest approach,

r_ = PSID(1).
P (1)

PSID(5) = 12{ :! + desired overburn velocity
p

in just such a way that the

The user may choose to target the VTE law to rp > d

apsidal radius opposite rp on the post-retro orbit is r a°

In this case,

—r—————

2r
d
P = gt Y

p p d

The second calculation worthy of mention is that of the expended fuel weight table, DW,
It is computed by integrating the piecewise-linear mass flow rate table, WD,
t.+1 }
i N
BW _ SW + @ Jq o 1 o 8
i1 ; widf—jzzl (W 8t + 5 Wt
t,
i
The third calculation is of PRX, used in BELL for scaling the propagated ensemble

error statistics. The input IPROB is interpreted as the desired Gaussian

probability, P(x).
P,

P{x) = f p (x) dx = erf@-—;:—-)
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The equation, erf (\7_:;—) =IPROB, is solved iteratively with a Newton-Raphson

predictor, beginning with the first guess, x=1.
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Calling Sequence:

Purpose: .

SUBROUTINE MCVERF

Common Blocks Required:

Subroutines Required:

CALL MCVERF

This subroutine controls the logic flow during
Midcourse Verification Analysis

CNTRL, CONST, ELMNT, INPUT, MCCOM,
OBSIT, PLNET, STATE

CROSS, DVMAG, FOWARD, MVTRN, M50EPM,
M50LEQ, PUTELS, VNORM

Input / Output
SYMRBOLIC ' COMMON
1/0 NAME DIMENSION | BLOCK DEFINITION
‘ Specific impulse of the midcourse
1 ASPMC 1 INPUT(441) | motor.
1/0 ATT 3 STATE(10) | Attitude unit vector
I BURNT 1 INPUT(476) | Midcourse motor burn time
1 DAY 1 INPUT(51) Day of state epoch
O DELT 10 INPUT(180) | Compute intervals
Initial compute interval when in auto-
O DELTO 1 INPUT{2) “matic compute interval mode
Modified julian date of
1 DJO 1 INPUT(46) state epoch '
Modified julian date of
I DJL 1 INPUT(37) liftoff epoch
Midcourse impulsive velocity
1 DV 3 MCCOM(12} | increment
1 DX 3 STATE(4) Spacecraft's velocity
Error control limit of automatic
0 ERRC 1 INPUT(1) compute interval
1 HR 1 INPUT(53) Hour of state epoch
I HRL 1 INPUT(23) | Hour of launch epoch
I IDSAT 1 INPUT{1084)1 Satellite identification number -~
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SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
Tlag used to write out state for the
I ISET 1 -11NPUT(1092)AMQ£EI‘)3} determination program
Initial trajectory
O KMETH 1 INPUT(1036)| propagation indicator
0] KOUT 1 INPUT(1030)| Output frequency flag
Flag to read initial state from
I KREAD 1 INPUT(1057)| midcourse tape
I MCUNIT 1 INPUT(61) Midecourse unit number
| 1 OBSLON 10 INPUT({410} | Longitudes of the tracking stations
I SEC 1 INPUT(55) Seconds of state epoch
I SECL 1 INPUT(25) Seconds of launch epoch
1 T 1 STATE(10) Seconds since state epoch
' Burnout time of midcourse
0 TBO 1 INPUT(383) | engine (engine 1)
Switching times of compute
O TCOMP 10 INPUT(170) | interval table
0 TF 1 INPUT(4) Final time
Ignition time of midcourse engine
O TIG 1 | INPUT(380) | (engine 1)
I W 1 INPUT(38) Initial spacecraft mass
1 WT 1 STATE(35) Current spacecraft mass
I X 3 ) STATE(1) ‘ Spacecraft's position vector
Spacecraft's position and velocity
vectors at midcourse motor
1 XMC 6 MCCOMN(6) | ignition
I XMIN 1 INPUT(54) Minutes of state epoch
I ) XMINL, {1 INPUT(24) | Minutes of launch epoch
1 XMON 1 INPUT(50) _ | Month of state epoch
: Position vectors of tracking
1 XOBS 10,3 OBSIT(21) stationg
Position and velocity vectors of
1 XP 6,12 PLNET(1) the planets
1 YEAR 1 INPUT(52) { Year of state epoch
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Description:

The midcourse verification analysis is used to numerically integrate the midcourse
motor and present output which describe conditions at motor ignition and at closest
approach to the Moon. The conditions at motor ignition, burntime and burn attitude
can be input via a tape generated in a previous midcourse analysis. The KREAD flag
is used to determine if the tape option is to be used. If the tape is not read, the inftial
conditions are in X and the burntime and ignition time must be input via TBURN and

TIG, respectively. The burn attitude is brought into the subroutine via ATT.

The initial conditions are propagated to midcourse motor ignition time using subroutine
FOWARD. The compute interval is adjusted for the motor burn and the midcourse motor
is numerically integrated using subroutine FOWARD, A flag is set to obtain the doppler
output during the motor burn. This output is obtained from subroutine DOPLER. The
state is written on a file to be used by the Orbit Determination Program if ISET is one.
Subroutine PUTELS is used to write this file. Next the state is propagated to closest
approach to the target planet using FOWARD. Information about the motor burn and
conditions at the target planet are printed before the subroutine terminates. The
information printed includes midcourse fuel expended, tracking station elevation,

azimuth angles at motor ignition,and the state at the target planet.



SUBROUTINE MCVERF

ENTER

f

Set motor
burnout time
from TBURN

Set initial conditions
from midcourse tape

Set midcourse motor ignition, burnout
and attitude from tape

-

j

Propagate state to motor ignition
using FOWARD

;

Set compute interval for
motor burn _

i

<Pr0pagate through motor burn \

using subroutine FOWARD

' N
ISET 0 < Use subroutine PUTELS

to write ODP file

( Reset compute interval and propagate to
\ target pianet using FOWARD

Calculate tracking station visibility and
other output parameters

J

k]

Output midcourse verification
displays

Y

( RETURN )
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE MDCORS

CALL MDCORS

MDCORS is the driver for the midcourse
guidance targeting procedure

CNTRL, CONST, INPUT, MCCOM, PLNET, STATE

CROSS, DOT, DVMAG, FOWARD, JET, MVTRN, MCBURN,"
RETDV, SENSO, SPER, VNORM, TARGET

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
I JC 1 CNTRI(T) Central body number
Radian fo degree
I RTD 1 CONST(1) conversion factor
Integration stop time (sec) from
I TFINAL 1 INPUT(4) anchor epoch
I WTO 1 INPUT(38) Initial spacecraft weight (kg)
1 JTARG 1 INPUT(1031) | Target body number
0 KRASH 1 INPUT(1032) | Trajectory stop-iype key
1 KMETH 1 INPUT(1036) | Trajectory computation method key
1 MCOUT 1 INPUT(1050) | Midcourse extra output key
1 MCEKLUG 1 INPUT(1066) | Pre~targeting option key
Midcourse burn computation
1 IBURN 1 INFUT(1071) | option key
_ Initial trajectory computation
1 KMETHP 1 INPUT(1075) | method key
Number of extra points in
1 KTF 1 INPUT(1077) { flight time scan
I ALIMIT 1 MCCOM(1) Control step limit {(km/sec)
Pre-ignition mideourse state
0 XMC 6 MCCOM(6) (km, km/sec)
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SYMBOLIC

COMMON [
1/0 NAME . DIMENSION BLOCK ' DEFINITION
/0 pv. | 3 7 MCCOM(12) ‘ . Midcourse velocity impulse(km/sec)]
) b Sy | . Spherical DV
0 DVS 3 MCCOM(15) . (mag-km/sec, dec-deg, ra-deg)
* Midcourse ignition time (sec)
T TMCS 1 MCCOM(18) . from anchor epoch ]
Spacecrait-to-sun vector
0 XSUN 3 MCCOM(21) ' at ignition (unit)
. Previous midcourse velocity
I DVB4 1 MCCOM(24) ' used (km/sec)
 Retro-velocity impulse
(8] DVRET 1 MCCOM(25)  magnitude (km/sec)
1
I PFAC 1 MCCOM(38) ' Propulsion factor (kg, km/sec)
: Bpacecratt weight (kg) after
0 WTF 1 MCCOM(47) _midcourse burn
: Constraint/control sensifivity
1 DPT 3,10 MCCOM(50) : matrix transposed
I pPsiD 9 10 MCCOM(80) . Desired end condition vector
I TOL 10 MCCOM(90) . Tolerances on end constraint errors
1 PSI 10 MCCOM({100) ' End | constraint e error vector
| Numaber of trials allowed in
1 NT _ 1 MCCOM(151) . targeting
- Burn computation method
O KBURN 1 MCCOM(154) " indicator
|
Q 1T o1 MCCOM(157) | Running number of trialg
i
0 IR S ! MCCOM(158) : Return key for targeting status
; Number of constraints in
1 NP R __MCCOM(180) . targetling process
| Numbper of trials to re- compute
1 NGROPT 1 MCCOM(163) | gradients .
I KGLAW 1 MQ_QO_I\.ﬂl__(_S_:L)_ ; Guidance law indicator
0O ICB 1 MCCOM(165) Midcourse central body number
0 ISP 1 MCCOM(166) | Gradient-computed indicator
1PD 3 MCCOM(169) |Constraint indicator vector
X 6 STATE() Anchor vector state
| Anchor time (sec) anchor
T 1 STATE(10)  'epoch, DJO
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Description:

MDCORS is best described with reference to its zccompanying flow charts. The first

of these depicts the gross targeting logic.

The first step in MDCORS is to propagate the state, Xz, forward from T to the midcourse
time, TMCS, by calling FOWARD. The resulting pre-ignition midcourse state, XMC, is
then saved. If the pre-targeting option key, MCKLUG, is positive, JET is then called

to furnish a first-guess value for DV. If MCKLUG is zero, the starting value for DV

is obtained from common where it was placed either by input or by previous targeting.

Having thusly initialized, targeting is begun,

Subroutine SENSO is called to transform XMC and DV into an end constraint error vector,
PSI. SENSO effects this tr.ansformation in the following three steps:
1. XMC and DV are converted into a post-maneuver state, X, and time, T,
by subroutine MCBURN.

2. The post-maneuver state is propagated to the point and time of target
closest approach by subroutine FOWARD.

3. The end state is used to compute end constraint function values which
are subtracted from desired values to render the constraint error vector,
P31,

P8I is dimensioned 10, although only 8 of its components are used. These components

represent the following errors:

PsI(1) B.T, miss-vector component

PSI2) B+R, miss-vector component

PSI(3) Time of flight

PgI(4) Hyperbolic excess velocity of arrival hyperbola,
PSI(5) Circular excess velocity after retro at periapsis
PSI{6) Total correction fuel expended (value, not error)
PSsi(T) Radius at periapsis of the arrival hyperbola
PSI(8) Inclination of hyperbola to target's equator
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The tolerance array, TOL, is similarly defined, so that the criterion for convergence
is

- PSI(D) < TOL()
for each of the end constraints associated with the particular guidance law in force.
Each of the guidance laws available in MDCORS constrains the same first'two functions:
B-T and B-R if IBTR=1 or radius at periapsis and inclination if IBTR=2. (IBTR is an
input quantity used by AUTO to set the array, IPD). The remaining function constrained

by each law is:

1. Minimum (midcourse) fuel None

2. Fixed time of arrival PSI(3)

3. TFixed target energy PSI(4)

4. Variable target energy PSI(5)

5. Minimum total fuel PSI(3) * See MTF procedure
description

If one or more of the errors for the guidance law in force exceeds tolerance; a new
estimate of DV is computed. Details of this computation will be described later,

If 2 new gradient is to be generated (iteration trial number less than input, NGROPTj,
SENSO is called with IR=2 to generate it, SENSO uses the secant method (or finite
increments of DV) in repeating the three steps described above to compute sensitivities

of PSI to variations in DV. The result is interpreted as 3PS evaluated at DV. Its
DV

transpose, a 3 x10 matrix is stored in DPT. The last two columns of DPT are undefined.
When the iteration trial number equals or exceeds NGROPT, no new gradient is computed.
In this case, the last-computed DPT is used for succeeding iteration trials in computation
of DV. By not computing new gradients at each trial, three trajectories per trial may

be saved. The resulting deterioration in convergence is small if DV is '"near" its final
value when gradient computation is terminated, Results show that when pre-targeting is
performed, a single evaluation of the gradient at the first guess DV is optimal in terms

of total trajectories required and run time.

Before discussing the computation of DV, let us consider the post-targeting logic. This

consists of tests for jumping back into the targeting logic. TFirst, if a minimum midcourse
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fuel iteration has converged on the Oth step, another step is forced. This is done
because only the first two constraint errors are tested for the MFG law, Tne
solution DV for any ;)ther law would satisfy these two constraints as well, without
necessarily being a minimum DV or "eritical plane' maneuver. The second reason
for jumping back into the targeting logic is due to the minimumi total fuel law
implementation. The reason will become apparent when this implementation is
described. The third jump-back is because of the approximate-intermediate-
trajectory capability., The initial estimate of DV is obtained using trajectory method
KMETHP, which should be set to 6 for multi-conic for transiunar trajectories. If

it ig desired that DV be estimated for a more precise trajectory computation method,
KMETH # KMETHP, the initial estimate of DV is used to re-start the KMETH
targeting procedure. It should never be necessary to re-generate gradients for this

additional targeting.

Estimation of AV

The method of calculation of AV is dependent on the guidance law in force, although
each guidance law is designed to constrain two common end conditions, i.e., B'T and
B*R or radius at periapsis and inclination, It has been found that even when the latter
conditions are to be constrained, B-T and B:R errors should be used to calculate AV.
That is, desired values of radius at periapsis and inclination should be used, together
with hyper;tjolic excess velocity (vector), to compute the "desired" B-T and B+R and
their corresponding errors, 1Irl and ‘Ié . When these errors are nulled, the radius

of periapsis and inclination errors will be nulled also. Formulae for computing

"degired" B.T and B-R are to he found in Reference 1.

Minimum (midcourse) Fuel Guidance (MTG)

The MFG law minimizes the magnitude of AV while constraining the B-T and B*R errors,
1;/1 and \Ifz. It is desirable from a programing point of view to avoid numerical
minimization procedures if possible - which it is in this case. We could null \Irl and

wpz (linearly speaking) with any AV such that
) - ()
W, RZ
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2\

where Rl and R_ are rows of the 2 x 3 gradient maftrix, The family of

2 2AV
such AV's is

(t t  _t t Lt t) ¥y

R, xR R, x R R. x R

1 1 2
AV = - 2 3 3 t 1};2
W,
(RIXRZ) RB 3

where x‘!é is a free parameter and R3 is any vector which is linearly independent of

Rl and Rz. That is, if we adjoin a third row, Rs,

results and solve for AV. Making the substitution Ci for columns of the inverse,

to the gradient, we can invert the

we can write

AV = -(C C,C = - CF

(i)
"

2 t _t
and §v = 'b thw-

2 .
We now minimize &v with respect to the free parameter, \;I'rd ., by setting the derivative

to zero and solving for ¥,

3

2
d sv t t 0 &

=2W C'C{, = -

av, 1 2(f, C +¥,C, +¥,C,) C,=0

¥ = (" €+ Oyt cy

3 ¢t ¢
- 73 73

This ¥ 9 leads to the following AV,

c, 03t il
AV““(“ t (€12 C9 {42

C., C. 3
5] ) N y
€:C;
where \113 can have any value, since ({ -1 ) 03 = 0. The vector, C_, is normal
C'3 CS ’

to the "eritical plane" defined by R 1 and Rz, and the minimum-magnitude AV lies in
this plane. If the adjoined row, R3, is defined as the crosgs-product of Rl and Rz,
the implemented solution is identical to the steepest ascent solution, The minimum fuel
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guidanee solution is computed by first computing

Wy
o C “’z)
N =-(cc, 3)(0

and then projecting the result onto the critical plane.

t *
CS AV
t Cg
_ CS C3

*
AV = AV -

Since the constraint functions are not strictly linear functions of AV, an iteration is
required to find the solution, and the gradient varies during the iteration. And since
the "critical plane' may change somewhat during an iteration, it is important to
project the whole A V solution onto the current critical plane rather than simply to

project the incremental AV due to residual constraint errors,

Fixed Time of Arrival (FTA) Guidance

The end constraints for this law are BT, B-R and time of flight. Representing errors

in these constraints by I , \1;2 and \Ir3, respectively, we need a AV such that

by By
¥y Ry
o A
where R = is a row of the gradient, . The solution is
i 2 AV 2 AV '
$1
AV = - (C1 Cz C3) 4;2
3
where
(C,C,C)) = L (RXRtRXRtR Rt-
1%2 %3 t p XRy (Byx R} (Ry xRy)
(R, x Rz) R, '
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Tixed Target Energy (FTE) Guidance

The only difference between the FTE and FTA laws is that the third constraint

for the FTE law is hyperbolic excess speed with respect to the target at arrival.

Variable Target Energy (VIE) Guidance

Application of the VTE law is peculiar to missions where the retro-burn at the target
is an attitude-controllable fixed impulse. The VTE law is set up to calculate the
midcourse maneuver AV for which the post-retro velocity is a desired value
(especially circular) while constraining B-T and B-R or closest approach distance

and inclination.

The post-retro velocity is c_lependent upon the weight of fuel expended at midcourse
and the arrival energy. Implementation of this law assumes that the retro-burn is
executed at periapsis of the arrival hyperbola with the thrust deflected parallel to the
periapsis velocity. The constraint error, \Irs, for this law is formulated as "circular

excess'" velocity.

\y3= rL +€— V2+E‘!'L'—6V
:i d © I'd r

In this formulation, r d is the desired final orbit radius, ¢ is an input desired circular
excess velocity, and 5vr is the velocity impulse magnitude imparted by the retro-burn.
Calculation of an appropriate midcourse AV for the VTE law can be formally identical

to that for the ¥TA and FTE laws, given a good first-guess AV to start the iteration,

An "assistance" procedure is beneticial, however, to reduce convergence difficulties
which may arise from nonlinearities of \Ir3 {AV). This procedure consists of an iteration

loop imbedded in the Newton-Raphson iteration loop to predict changes in § v, due to next-

step changes in AV. Reference 1 contains a detailed description of this procedure,

Minimum Total Fuel (MTF) Guidance

The implemented MTTF guidance sclution is the restricted solution which constrains
approach conditions, BT and B-R or radius at periapsis and inclination. In this respect,

the implemented solution is neither general nor optimal. Results of tests indicate,
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however, that for missions of the RAE-B type, the implemented solution will differ
from the optimal by only a few hundredths of a kilogram in total fuel. The total
correction fuel (when arrival conditions are constrained) is conveniently parameterized
by flight time to target periapsis. The MTF solution is therefore obtained by solving
for the FTA guidance solution within a loop which minimizes total fuel as a function

of flight time., The minimization procedure will be found in the description of
subroutine MINTF., The procedure is initiated at the MFG flight time, since the

MTG solution is never far from the MTF solution, It is unnecessary to recompute

gradients for obtaining rapid FTA convergence within the MTF procedure,

Reference 1 Bjorkman, W.S., Midcourse Guidance for Lunar and
Planetary Orbiting Missions, AMA 71-16, March, 1971.
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SUBROUTINE MDCORS I (Gross Targeting Logic)

!

!

Advance state to mid- i
course time. Save XMC,| (FOWARD} I
TMCS i

$
Obtain first-guess
correction impulse, (JET)
AV

300

Compute post-maneuver state in

MCBURN. Advance siate 1o closest
approach with FOWARD. Evaluate end | (SENSO)
constraint errors with TARGET

®

donstraint errors Post-targeting
. - . ] |
against tolerance 7 computations ’(RETURN!

Test
whether or not

{0 compute new
gradient

o Compute new,
| gradient

(SENSO)

500 ¥

Compute improved mid-
course maneuver {IIf
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DV = AV
DPT =9 ¥
PSI =

LN

SUBROUTINE MDCORS II (Computation of DV)

h:

Initializg VTE
Assistance
Procedure

[ Compute
‘ DPI = v~}

[ Uy =0

Compute
DPI =v I/~

KG 4
2,3
580
1

¥, = WKGLAW+1)

584

|

C_omputel
5AV =-v i ¥

L

[Limit laAv ]

d

AV = AV +8AV

KGLAW

AV =(I-KKT) AV

K =col 3 of V\Ir_l

J
2,3
3

[

Adjust 9 1 for
AV changes

’\520/

IT=IT +1

Re-evaluate ¥r(AV) for
new trial. See (I)

3(Nonce = Nonce + }—>
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Calling Sequence:

SUBROUTINE MINTF

CALL MINTF

Purpose: MINTF controls the gross logic for targeting the
minimum total fuel guidance law.
Common Blocks Required: MCCOM
Subroutines Called: None
Input / Output
SYMBOLIC COMMON
I/0 NAME DIMENSION | BLOCK 1 DEFINITION
Desired constraint vector - esp.
/0 | PSD 10 MCCOM(80) | PSID(3) = time of flight (sec)
TOL{3)=flight time tolerance(sec)
I TOL 10 MCCOM(90) | TOL{6)=total fuel tolerance (kg)
PSI(3) =Night time error (sec)
1/0 PSI 10 MCCOM(100) | PSI(6)=total fuel (kg)
o) KM 1 MCCOM(152) | Guiput key for MDCORS logic
1/0 | JUMPTF 1 MCCOM(153) | Logic key for MDCORS & MINTF .
0. 13 1 MCCOM(155) ; Third constraint indicator
O iT 1 MCCOM(157) i Trial counter for MDCORS
8) NP 1 , MCCOM(160) § Number of constraints
0 KGLAW 1 MCCOM(164) | Guidance law indicator _
O IPD 3 MCCOM(169) | Constraint indicator array
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Description:

The minimum total fuel guidance law solution minimilzes total correction fuel subject
to equality constraints on closest approach distance and inclination. To effect this
solution, the fixed time of arrival guidance (FTA) law is invoked with systematic
variation of flight time. MINTF contains the logic for varying flight time to find the

minimum total fuel solution,

The first time MDCORS calls MINTF, MINTT sets up indicators for the MFG
{minimum midcourse fuel) law. When MINTT is called again, the MFG solution has
been found, with its corresponding values of total fuel and time of flight. MINTF
initializes the FTA law at this time and requests a flight time increase of 1800 seconds
on return to MDCORS., On subsequent entries, MINTF seeks the minimum total fuel
flight time by the following procedure:

1, 1f, on return from targeting the FTA law to t + 18003, it is found that

MFG
the total fuel is,

a. less than it was for the MFG solution, flight time is stepped
forward until the total fuel increases.

b. greater than it was for the MTFG solution, flight time is stepped
backward in 18007 - steps until the total fuel increases,
2, The result of (1) is three values of total fuel, f(t), corresponding to three
different flight times. These obey the following inequality.

s
f afnz fn+ +nx 18007)

n-1 fn=f(

1’ tM rG

The three values are used to determine the coefficients of a quadratic equation
describing total fuel as a function of flight time. This equation is then solved
for the flight time corresponding to the minimum of the quadratic equation,
{See MINV for details of fitting a quadratic equation.) This flight time is

then used for the final FTA targeting step and the resultant total fuel is

assumed to be the minimum value,
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SUBROUTINE MINTF

602 1 m 3 610
) \/

|

MEG has now converged,

Initialization: Set up
set up FTA indicators set 9 MFG indicators
JUMPTF=2

T =2 I
s
SS = 1800 ;
f; = total fuel RETURN
I _ G@ | e
RETURN

1fi = total fuel

2 //I ~. 4
i ~ L
?ompleted flrSE FTA step 1 |3 Minimization has been completed,
orward, setl =3 fuel b . q restore KGLAW to 5 and set KM
1?116 is decrease to 3 to signal completion to
at least [once MDCORS
yes
e
no
fuel %increasin f <f\n0
: i s0E <2/’ fuel has increascd V
Start stepping back in
time I=1 yes Fif a quadratic to fl’ fz
S8 =~ 88 ) ) ‘ and f3, save for SS cor-
tuel is still |decreasing responding to minimum f
Setl =4
B = backing 1 <>_3 advangingw 550
; I
Exchange: Exchange:
£y =fp £, =1y
b 700k v

ALY

Change desired Hight time by 88|
and return to take another FTA

step
RETURN
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Called:

Input / Quiput

SUBROUTINE MINV

CALL MINV (ELM, RA, DEC, DVR, DVT, FFIRE)

MINV finds the retro-tiring true anomaly of
minimum trim velocity.

CROSS,

CONST, INPUT

DOT, DVMAG, ORBIT, ORIENT, TRIM, VNORM

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
ARGUMENT | Orbital elements of the
I. ELM 12 LIST hyperbola (LEQ)
ARGUMENT | Right ascension of the
I RA 1 LIST spin-axis (LEQ, rad)
ARGUMENT | Declination of the spin-axis
1 DEC 1 LIST (LEQ, rad)
ARGUMENT
I DVR 1 LIST Retro velocity impulse (km/sec)
ARGUMENT
O DVT 1 LIST Trim velocity required (km/sec)
ARGUMENT
0 FFIRE 1 LIST Firing true anomaly (rad)
Radians-to-degrees conversion
1 RAD 1 CONST(L) factor (deg/rad)
Gravitational constant array
I GM 12 CONST(5) | (km3/sec?) -
Limiting true anomaly allowed
I TRUE 1 INPUT(475) | (deg)
1 JT 1 INPUT(1031)} Target body number
Numher of true anomaly steps
1 KFIRE 1 INPUT{1043)] to try
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Method

The method used by MINV in trying to establish the minimum trim velocity and
corresponding firing true anomaly is:
1. Step along the hyperbola in KFIRE regular steps from -TRUE to
+TRUE, computing and storing required trim velocity at each step.
2, Fit a quadratic {trim velocity as a function of {rue anomaly) about
the point of least trim velocity as found in procedure 1, Solve for
the minimum trim velocity and corresponding tcue anomaly as
coordinates of the quadratic's minimum,
Subroutine TRIM is used by MINV to determine the trim velocity. TRIM, when
supplied with the post-retro orbit (which must be elliptical), computes the trim
velocity as a two-impulse -in-plane Hohmann transfer plus a nodal inclination-
trim impulse. A large part of MINV's coding is concerned with establishing true
anomaly bounds within which the post-retro orbit will be elliptical. These bounds
are determined from the condition,
Cap + 8v2

V(f)'AV=‘%“ ~DP.AVsinf+Q- AV (e +cos f) <- S

which must hold in the elliptieal range, P and ,Q are unit vectors toward periapsis

and along periapsis velocity, respectively, C3h is the hyperbola's C_ and f is true

3
anomaly, The other symbols are standard enough, The equation may be solved
for i {two solutions usually) by replacing the inequality with an equality. If the

input limits are outside the computed bounds, they are replaced by the computed

bounds as limits for the stepping procedure { see 1 above ),

If the least trim velocity from the stepping procedure occurs at the first or last step,
this limit value is returned from MINV., Otherwise, the least trim velocity occurs at

the i-th point and the quadratic fit coeificients, a, b and ¢ are determined as follows,

) = a (f—fi)2 + b (f—fi) +¢

v(fi+1) = a (fi+1 uii) + b (fi+1- fi) te = vy
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v{fi) = c=Vi

2
- - - + =
) a (fi-l fi) +b (fi-l fl) c v

v(f. -1

i-1

Since the true anomaly step-size is constant,

6f = Gy =% T 5~ G o

the solution for the coefficients is

1
a = ——————— (V. -+ V. ) - 2"{‘
+ -1
26f2 i+l i i
1

25 f Vidl " Yy

The minimum (extremum) occurs where

dv . _
ET: —Za(f-ti)+b—0
or f =1 - L .
min i 2a

The minimum trim velocity (feturned by MINV) is computed by evaluating the

quadratic for v (fmm).
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SUBROUTINE MINV

ENTER

Initialization

1. Compute retro attitude

2. Compute true anomaly bounds
for post-retro ellipse

3. Compute true anomaly step

Stepping procedure '

1. Compute state at f on the hyperhola

2, Add retro velocity

3. Call ORBIT to compute elements of
post-retro state

4, Call TRIM to evaluate trim velocity
required

5. Save index of least trim velocity

no KFIRE

steps yet?

Fitling procedure

1.
2.

Compute coefficients
Evaluate quadratic for minimum
trim and true anomaly

RETURN
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SUBROUTINE MONTE

Calling Sequence:

Purpose:

CALL MONTE

MONTE performs a Monte Carlo analysis of success

probability for the RAE-B mission.

Common Blocks Required:

Subroutines:Called:

ANKOR, CONST, INPUT, MCCOM, STATE

BIGMAT, COVERT, FOWARD, MCBURN, MDCORS, !

MVTRN, M50LEQ, ORBIT, RANDM1, RETRO, SENSO,
TRIM, VNORM

Input / Cutput
SYMBOLIC COMMON

/0 NAME DIMENSION BLOCK DEFINITION

I ANKVEC 6 ANKOR(1) | Anchor vector state (km, km/sec)

I RAD 1 CONST(1) rDegrees per radian

I TDS 1 CONST(43)] Seconds per day

1 - TS8H 1 CONST(42)] Hours per second

1 GM 12 CONST(5) Gravitational consfants (k:m3/ secz)

I G 1 CONST(45)} Earth's surface gravity (km/ secz)

I TF 1 INPUT(4) Trajectory stop time (sec)

I DJL 1 INPUT(37) | Julian date at launch (days)

1 WO 1 INPUT(38) | Initial spacecraft weight (kg)
Julian date at anchor '

1 DJO 1 INPUT({46) | epoch (days)

1 HRO 1 INPUT(53) | Hours of anchor epoch

I XMINO 1 INPUT(54) | Minutes of anchor epoch

I SECO 1 INPUT(55) | Seconds of anchor epoch

1 COov 6,6 INPUT(56) | Tracking covariance matrix

I DTFIN 1 INPUT(422) Desired time of flight (seconds)
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SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION

i SIGATM 1 INi’UT(435) Midcourse pointing error (rad)

1 SIGDVM 1 INPUT@S 6) |Midcourse velocity error (fraction)

1 SIGATR 1 INPUT({437) |Retro pointing error (rad)

1 SIGDVR 1 INPUT({438) |Retro velocity err.or {fraction)

1 TMC1 1 INPUT{439) |First midcourse time (sec)

I TMC2 1 INPUT(440) |Second midcourse time (sec)
Specific impulse of midcourse and

I ASPMC 1 INPUT(441) Hrim motor (sec)

I ASPR 1 INPUT(442) [Specific impulse of retro mofor (sec]

1 WRETRO 1 INPUT(443) |Weight of retro fuel (kg)

1 ATFULA 1 INPUT(470) |Available attitude maneuver fuel (kg

1 FTOT 1 INPUT(472) |Available correction fuel (kg)

1 WDROP 1 INPUT(473) |Post-retro drop-weight (kg)

i JT 1 INPUT(1031)| Target body nurmber (11)

O KCRASH 1 INPUT(1032}) Trajectory stop~type indicator

1 KMONTE 1 INPUT(1052) Monte Carlo logic key

I KMAX 1 INPUT(1053)| Monte Carlo sample size

1/0 KSTART 1 INPUT{1054)| Random pumber kernel

0 MCEKILUG 1 _INPUT(1066)! Midcourse pre~targeting key

I KMTOUT 1 INPUT(1074)|Extra output flag |

1 KCOV 1 INPUT(1085)/Covariance matrix conversion key
Pre-ignition midecourse state

0 XMC 6 MCCOM(5) {kmm, km/sec)

1/0 DELV 3 MCCOM(12) |Midcourse velocity impulse (km/sec)
Midecourse velocity

1/0 DVMG 1 MCCOM(15) |magnitude (km/sec)’

O TMC 1 MCCOM(18} |Midcourse ignition time {sec)
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SYMBOLIC COMMON

__1/0 NAME DIMENSION BIL.OCK DEFINITION
0 DV 1 MCCOM(24) Accumulated correction velocity
, Constraint/control sensitivity
I/0y  DPT. 30 MCCOM(50) matrix
' Desired time of flight from
0 - DTF 1 MCCOM(82) -anchor epoch (sec)
O | KENTRY | 1 MCCOM(156) | - Entry key for MDCORS
Sensitivity generation key
-0 IR 1 MCCOM(158) | for SENSO
: ' _ Gradient re-computation key
0 - NGROPT - 1- "MCCOM({163) { for MDCORS
‘ : : Gradient-calculated indicator
1 - ISP 1 MCCOM(166) | . from SENSO
0 X 6 STATE(L) Trajectory state (km, km/sec)
O T 1 STATE(10) Time from epoch (sec)
. | : Spin-axis attitude
1 < ATT ‘ 3 - STATE({11) {unit vector)
Description:

MONTE simulates the events of the RAE-B mission with sampled random errors to
establish the probability of mission success, The events to be simulated for a given

case are specified by KMONTE * ‘
KMONTE =1  Retro plus trim only - no midcourses
KMONTE = ié One midcourse correction plus refro and trim
KMONTE =+3 Two midcourse corrections plus refro and trim

If KMONTE is negative, -the first (or only} midcourse correction maneuver is calculated
for the estimated (anchor vector) trajectory and not re-calculated for sampled errant
anchor vectors. If KMONTE is +2 or +3, the first (or only) midcourse correction is
re-calculated for each sampled errant trajectory. The positive KMONTE case is
applicable to pre-flight studies for which the "tracking" error covariance matrix in
reality describes expected trajectory dispersions due to expecied launch and injection

erroers,

The event logic as implemented is fairly straightforward as seen in the principal flow
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chart. Some of the logic associated with midcourse maneuver computation requires
some explanation, however. In order to avoid redundant computations in MDCORS,

the first-maneuver correction impulse is computed and saved for the anchor vector
trajectory, The constraint/control sensitivity matrix or gradient is also saved. If
two midcourse maneuvers are simulated, the gradient at the second correction is also
computed about the once~corrected anchor trajectory and stored, The stored gradients
are good enough to bring about convergence for the midecourse maneuver calculations
related to perturbed trajectories, so the gradient re-computation key, NGROPT, is

set zero for the Monte Carlo process, The first-maneuver correction impulse computed
for the anchor trajectory is a good first-guess for successive midcourse calculations,
so the pre-targeting key, MCKLUG, is set zero as well. The first-guess value for

the second maneuver can be taken as zero if the first maneuver execution errors are
small. The logic shown in flow charts A and B avoids redundant and time-consuming

calculations in MDCORS in the computation of midcourse correction maneuvers,

Error Models

The tracking error covariance matrix, P, is a 6 x 6 positive definite matrix of anchor
vector estimation errors,
~ o~ t ~
P=E (x-X)(x-2x) ( x= anchor vector, x = true state)

There is a preferred coordinate system in which components of the error vector, vy,
are uncorrelated. The (similarity) transformation between y andx -Xis S, an

orthogonal matrix which diagonalizes P, .

X-X =8
¥y

The diagonal matrix, D, defined by
D = St PS,

has as its diagonal elements the variances of the uncorrelated components of y. Scaling
a white noise (uncorrelated random numbers) sampled by the standard deviations of ¥,

we obtain an error vector in uncorrelated coordinates with components, vi.

yi = di n (0,1)
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( di is the i-th diagonal element of D, n (0, 1) is a sample random number from . a
normal {Gaussian) distribution of mean 0 and variance 1.) A samplal errant trajectory

state is then computed from

x =X+ Sy.

Execution errors for the midcourse and retro maneuvers are computed from assigned
standard deviations of pointing and velocity errors. The velocity error is freated as

a proportional error normally distributed plus a resolution error uniformly distributed.

€, = Voo (0,1) + (.0001 km/sec) u

(v is the velocity impulse ﬁlagnitude and u is a random number from a distribution
uniform on the interval { «.5<u<.5})., The retro velocity error is formulated without
a resolution error, The pointing error is formulated as two independent errors normally
distributed along mutually orthogonal axes which are both orthogonal to the maneuver
impulse direction. Let the maneuver impulse be dencted by V and its direction by ‘:’.
If f{ is the unit polar axis of V's coordinate reference frame, we can construct unit

vectors normal to V,

- -V
v, o
LS -~ v 1
s KxV _ & ) 0
KxV & +v2 v cos {dec)
12 :
N =VxE = K-V (K-V)

cos{dec)

The "eagtward" and "northward" pointiﬁg errors, Qe and en‘ are computed by scaling
random numbers with the input peinting erros, o, They are then converted to velocity

deviations uéing the small angle approximation,

m
Il

v ca n, (0,1)
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The misdirected velocity vector has the direction

A’ - N " 2 2
= E+ .
Vv (VV+ge gnN)/%VZ %+gn

and the magnitude v+ €, 50 that it may be programmed as follows,

v =1L V

oo Yty (1_ I NV, ) 1 ) 3, :ivz
2} 2 2 2 v cos (dec) 2 cos(dec) 1

v Ylig, (o + 1)) 3 _ 1, v
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SUBRQUTINE MONTE

Convert and diagonalize tracking
covariance matrix

1 (KMONTE
N

Preparatory Midcourse
calculations

Apply tracking errors to
Anchor State

KMONTE

\r

Compute post-mideourse B
state with errors

300

&

Propagate state to
closest approach

v

Compute retro maneuver

4

Apply retro errors

L4

Calculate trim fuel

A4

Count satisfactory samples




MDCORS initialization for MONTE

<0

KMONTE

"2: _3)

2,3

CALL
MDCORS

nominal

AV

KMONTE = ~-KMONTE
RT1, DEC1, DVMG1

LTRACK =2

2| KMONTE

KMONTE

>0

LTRACK=1

KMONTE

3

DVSAV = DELV
Get vl\Il if necessary

Save DPS =DPT

7

W

MC

Compuie DPT at second

(Call FOWARD)
(Call SENSO)

3
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’\]/

NGROPT =0
MCKLUG =0




&)

2 1 TRACK

Fly perturbed X to
TMC, but lst man-
euver with nominal

AV

100

KM

P

DV =DVSAV
nominal 1st
maneuver

120

l

Exchange
DPT+ DPS

|

130

Call
MDCORS

AV

()

Corrupt AV
Call MCBURN
for POST -
STATE

KM

|

Second MC
KM =2
AV = I0

L. TRACK




Calling Sequence:

Purpose:

Common Blocks Required:

SUBROUTINE MOTORS

CALL MOTORS (KMOD)

This subroutine determines thrusting status
and increments velocity, or acceleration and
weight accordingly.

PERT, CNTRL, INTVAR, STATE, INPUT

Subroutines Called: TABINT

Input / Output
o] o] RO T CooN | oersnnon
I KMOD 1 g;’gigi d Impulsive velocity flag
/0 RCART 3 PERT(1) Perturbhing acceleration

vector

I KDIS 1 CNTRL(05) ?ilzgontimity

1/ | KTHRST 1 CNTRL(02) Thrusting Flag
I KFIRST 1 CNTRIL{12) First step Ilag
I T 1 INTVAR(1) Current time

1/ | THRUST 1 STATE(33) Magnitude of thrust

I/0 WT 1 STATE(34) Weight at engine ignition
I ATT 3 STATE(11) Attitude of spacecraft
7)) W 1 STATE({35) Current weight

5/;25 DX 3 STATE(04) | Current velocity

I Dv 3 INPUT(430) Impulsive velocity
I TIG 3 INPUT(380) Ignition times

1 TRBO 3 INPUT(383) Burnout times
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Description: The engine characteristics can be simulated by either impulsive velocity
or input thrust and weight flow histories. If KMOD is equal to '1, impulsive
velocity is assumed. The impulsive velocity of engine I ig applied along
the current attitude when the current time, T, is equal to the ignition

time, TIG.

When KMOD is not equal to one, the instantaneous thrust and we‘ight are

determined from linear interpolation between time points on the input

tables. Next the magnitude of the acceleration is determined from:
a=.001 THRUST/WEIGHT.

The acceleration is added to the total perturbing acceleration vector of

the spacecraft (PERT) according to the current attitude (ATT).



Calculate time
gince ignition

:

interpolate for
thrust and weight;

CALL
MOTORS (KMOD)

no

burnout

Calculate magnitudd

time

KTHRUST =0
THRUST =10

1

Calculate new
spacecraft weight

{ Return }
—/

of the acceleration

'

increment perturbing
heceleration

266

Add impulsive velocity
to instantaneous velocity

| Return '



Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Reference:

SUBROUTINE MULCON

CALL MULCON

To propagate the state in time using the
Multiconic technique.

CNTRL, CONST, DUM, INPUT, INTVAR,
PLNET, STATE

AVERGE, DVMAG, OBLATE, ORBIT, PLANET,
OUTPUT, PRINT, TOBODY

D. Byrnes and H. Hooper, Multi-conic:
A TFast and Accurate Method of Computing
Space Flight Trajectories, AIAA

Paper No, 70-1062, 1970,
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SYMBOLIC COMMON

/C NAME DIMENSION BLOCK DEFINITION

I DELT 10 INPUT(180) | Compute Intervals
Epoch of the initial -

M DJO 1 INPUT(46) state

1/0 DX 3 STATE(4) Spacecraft velocity

0 ELM 6 STATE(14) Orbital elements

1/0 JC 1 CNTRL(T) Central Planet

I JL 1 INPUT{1015) | Launch planet

1 KCRASH 1 INPUT(1032) } Closest approach flag

I KOBLE 1 INPUT(1018) | Earth oblateness flag

I KOUT 1 INPUT(1030) | Output frequency flag

1 KP 12 INPUT(1001) | Planets in the sysiem

1/0 T 1 STATE(10) { Current time since DJO
Switching times of compute

I TCOMP 10 INPUT(170) | interval table

1 TF 1 INPUT(4) Final time

0 UJT 1 STATE(32) Current julian date

1/0 X 3 STATE(1) Spacecraft position

Theory:

The Multiconic technique is an approximate technique to determine space trajectories.
This technigue differs from most approximate techniques and more resembles a
numerical integration method as the independent variable, time, is stepped along and

the state determined at the end of each step.

The geocentric equation governing the motion of a spacecraft perturbed by the Sun

and Moon is as follows:

.. ® T, R r R

(1
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where R is the geocentric position vector of the spacecraft,

=e]]
5]

, R are the geocentric position vectors of the Moon and Sun, respectively,
s

H

r are the vectors from the Moon and the Sun to the spacecraft, and
S .

L

pe' Hm’ Bs are gravitational constants of the Earth, Moon and Sun, respectively,
Each term of equations (1) describes an inverse square force and,taken separately,
would yield simple conic motion. The Multiconic technique assumes that the
trajectory can be simulated by sequentially summing these conics over gseveral time
intervals., However, the terms due to the Sun and the second term due to the Moon
are slowly-varying functions. Therefore, without any significant loss in accuracy
and with a substantial decrease in computation time, these terms are simplified. It
is agsumed that the accelération due to these three terms can be approximated by a
constant acceleration equal to the average a.ccellerations at the beginning and at the

end of the step applied over the entire step.

There is also the problem of separating the Keplerian orbit with respect to the Moon

{second term of eciuation 1) from the other accelerations. Byrnes and Hooper solved

this problem by flying backwards in a gravity free environment, an increment of time
cqual to the step, dt, and then flying forward along the selenocentric conic, a time

increment dt.
The algorithm used fo propagate the state from T1 o 'i['2 is as follows:

1. The positions of the Moon and Sun are stored at time T 1
2. The geocentric state is propaéated along the Earth conic from T1 to T2
using the Keplerian orbit defined by the first term of equation (1).

3. The positions of the Moon and Sun are stored at time T,.

4. The mean acceleration due to the Moon's indirect term (third term of

equation 1) is calculated as:

_ Um R R

2 2 R H:la * 3
‘ ml T2 |Rm[ Tl
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The mean acceleration due to the Sun is calculated as:

IRd T,

The state at the completion of the Earth conic (Step 2) is adjusted to
account for the accelerations determined in Steps 4 and 5. The

corrections are obtained from,

AV (&, + 4)) dt

it

— 1. _
Ar —T(a

where AV and AT are the changes in the position and velocity vectors and,

dt is the step (T2 - Tl)

The corrected geocentric state is converted to  selenocentric coordinates
and propagated back in time along a straight line defined by the selenocentric

velocity an amount dt.

The state is then propagated forward along the Keplerian selenocentric conic

described by the second term in equation (1) from Tl to Tz. This completes

the algorithm and describes the state at the end of the step.

During the trans-Earth leg of a circumlunar trajectory, the algorithm is slightly

modified, The new order is

Forward along the selenocentric conie,
Backward along a straight line.
Apply averaged accelerations.

Forward along an Earth~centered conic,
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Description:

The Mulcon subroutine is divided into three parts. The first part initializes the
necessary flags and constants and determines the compute'interval. The second
part controls the logic flow of the Multiconic algorithm as the translunar leg

off a trajectory. The third leg controls the logic flow of the Multiconic algorithm

an the transearth leg of the trajectory.

The logic flow of this subroutine can more easily be understood by examining the
accompanying flow chart. The transmoon leg starts at statement 50. If Earth
oblateness is to be used, the orbital elements are adjusted due to J 9 and the
spacecraft flown to approximately 5 Earth radii. After that, the Multiconic
algorithm is applied as described earlier. The test to determine if the space-
craft passed through pericynthion or if time is greater than the final time is made
before statement 31. AIf these tests are not satisfied, the logic flow transfers to
statement 10 where the next Multiconic interval begins. If pericynthion is passed,
the time is adjusted to pericynthion and AVERGE called to reset the averaged
accelerations. If the KCRASH flag is set to 1, the state is translated back to a
selenocentric system and flags set to begin the transearth leg. The transearth

leg is similar to the translunar leg. Logic for this leg begins at statement 51,
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MULCON FLOWCHART -

ENTER

Initialize acceleration

of disturbing bodies

® :

4

Determine compute

interval, DT

i

Increment time

T=T+DT

Test
on
central

planet

Transearth leg
©3

Transmoon leg

Yes

CALL $BLATE: Orbital elements updated due to J 9 and

spacecraft flown to 5 Earth radii on updated orbit.

\P
Set times to hit next

compute point

O
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Y

CALL T@BODY (Earth): Fly along Earth

conic an increment of time DT

> | }.

CALI, PLANET: Obtain positions of Sun and

Moon at time T

4

CALL AVERGE: Add Sun's effect and Moon's

indirect term

¥

Transform to selenoccentric frame and backdown

a straight line a time increment DT

\

CALL T¢BODY (Moon): Fly along Moon conic

an increment of time DT

Yes

State

prdpagated

3L = paét

ericynthio
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Transfer back to a geocentric

frame. |
Y

< CALL @UTPUT >
¥

Turn off oblateness flag

:

Backdown to pericynthion and de-
termine state and time of

pericynthion

EA

< CALL @UTPUT >
)
L

CALL AVERGE (~1): Reset disturbing accelera-

ations of Sun and Moon's indirect term

C TGRS A SIAMA L Lo 4 miend A TREASL A s D e R

No Earth return
¥

Transform to selenocentric frame and set

transearth flag
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o

'CALL T@B@DY (Moon): Fly along Moon conic

a time increment DT

No

past apo or
pericynthion

Backdown to event and determine state and

time,

v

Determine new DT

—l

k' .
Backdown along a straight line and transform

to a geocentric frame,

¥

<CALL PLANET: Determine positions of planets. >

{

< CALL T@BEDY (Earth): Fly along geocentric conic,

a time increment DT
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CALL AVERGE (1): Add effects of disturbing

acceleration of Sun and Moon's indirect term

T—E .

Pass
through
an Earth

No
apogee or

erigee

y Yes

v

Baclddown to hit event and

determine state md

time

CALL @GUTPUT }==-Yes

‘J No

CALL AVERGE (-1):
¥ < Reset positions of planets. >
| < CALL @UTPUT >
J

o

Transform to g selenocentric frame
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Callihg Sequence:

Purpose:

SUBROUTINE MVTRN

CALL MVTRN(A, B,C,M,N)
CALL ROTATE(M, A, B, C)

T

To form the matrix product C =AB or C=A B
where A isa 3x3 matrixand B and C are
3xN matrices (3x1 in ROTATE).

Common Blocks Required: None
Subroutines Called: None
Input/Output
SYMBOLIC PROGRAM |COMMON
V6 NAME DIMENSION | BLOCK DEFINITION
I A 9 Call List Matrix multiplier
I B 3,N Call List Matrix multiplier
O ! C 3,N Call List Product matrix
. . C=AB if M=1
I M 1 Call List Indicator: e =aATB otherwise
I N 1 Call List Number of columns of B and C
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SUBROUTINE M50EPM

Calling Sequence: CALL MLOEPM (UJT, C)
Purpose: MGOEPM calculates the transformation matrix

from the mean equinox and equator of 1850 to
the Earths true equator and prime meridian.

Common Blocks Required: CONST

Subroutines Required: NUTAIT, M50MDT

Input / Qutput

SYMBOLIC COMMON
I/0 NAME DIMENSION  BLOCK DEFINITION
Calling
8] C . 3,3 Operand Transformation matrix
1 RAD 1 CONST(1) Degrees per radian
Calling
I UJT : 1 Operand Modified julian date

Theory:

The transformation from mean 'equator and equinox of 1850 to true equator and prime
meridian can be accomplished by first transforming to the mean equator and equinox
of date (Call the matrix [M]) and then from there to the true equator and equinox of

date (Call the matrix [T1]) and finally from equinox to the prime meridian ((P]}).

Thus, if [C]is to be the transformation from mean of 1950 to true equator and prime

meridian, then
rc1 = Py rr] M)

Both {T] and [ M1 are calculated in other subroutines (NUTAIT and M50MDT respectively).
The [P] matrix represents the rotation through the Greenwich hour angle about the
Z-axis. In general, a rotation through an angle § about the positive Z-axis is accomplished

through the following matrix

278



cos8 sing 0
-gin @ cosh 0

0 0 1
In this case, § is the Greenwich hour angle, (GHA), which is given by .-

-13 .2
GHA = 1002075542 + 0298564735(d) + (2.9015)10 ~~ (d)

+ ¢ (1) + (Nutation in right ascension)

@ is the angular velocity (deg/sec) of the Earth and is given by

i

-1
w = .0041780742 / (1.+ (5.21310 8 (d))

d is the number of whole days since 1950,

t is the fraction of days (i.e. modified julian date
- 33282.5 =d + 1)

The nutation in right ascension is element (2, 1) of the matrix

I'T] from NUTAIT,

The three matrices are multiplied to give the total transformation

matrix [C].

Description:

M50EPM calculates the transformation matrix from the mean equator and equinox
of 1950 to the Earth's true equator and prime meridian. This transformation is

composed of three separate transformations.

The first transformation is from mean of 1950 to mean of date, This matrix is
calculated in M50MDT. The second transformation is from mean of date to true
equator and equinox of date. This matrix is calculated in NUTAIT. The third
transformation is from true equator and equinox of date to true equator and prime
meridian. This matrix is set up in this subroutine and consists of a rotation about

the z-axis (North Pole) through the Greenwich hour angle. Once these transformation

matrices are found, they are multiplied together to form the total transformation. '

N
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SUBROUTINE M50EPM

{ ENTER )

\

Calculate days
since 1950

!

Call NUTAIT to
get [C]

¥

Call M50MDT to
get [B]

[b1=[C] [B]

Caleulate G, H, A,

i}

Load in [ B]
transformation
through G, H, A,

|

¢

(c1=[B] [D]

RETUR
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SUBROUTINE M50JPM

Calling Sequence: CALL M50JPM (UJT, B, J)

Purpose: M50JPM calculates the transformation matrix
from Earth mean equator and equinox of 1950
to true equator and prime meridian of date with
respect to planet J. '

Common Blocks Required: CONST
Subroutines Required: MSOEPM, M50LEQ, M5OMDT
Input/Cutput
SYMBOLIC COMMON
I/0 NAME DIMENSION BLOCK DEFINITION
‘ Calling
O B 3,3 Operand Transformation matrix
Calling
1 J 1 Operand Planet number
1 " RAD 1 CONST(1) | Degrees per radian _
I TDS 1 CONST(43) | Seconds per day
- Calling
1 UJT 1 Operand Modified Julian Date
1 WP 12 CONST(29) | Spin rate of planets (rad/sec)
Theory:

The transformation from Earth mean of 1950 to true equator and prime meridian of

date with respect to the desired planet is composed of two separate transformations.

The first of these, Earth mean of 1950 to Earth mean of date, is calculated and explained
in M50MDT. The second, Earth mean of date to true equator and prime meridian of

date, with respect to the desired planet, is explained here.

The tranformation, T, involves three rotations about three axes.

cP SP O 1 0 0 CR SR 0
('r) = f-sp cp 0 0 CD 8§D -SR CR 0
0 0 1 0 -SD CD 0 0 1
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where
CR and SR represent the cosine and sine of RA + 900 respectively
CD and SD represent the cosine and sine of 90° - DEC respectively

CP and SP represent the cosine and sine of PHE respectively

and

RA and DEC are the right ascension and declination of the planet's spin axis

with respect to Earth mean equator and equinox of date.

PHE is the angle to the planet's prime meridian from the ascending node of

ihe planet's equator on the Earth's equator.

The values of RA, DEC and PHE are calculated through equations of the type

a=o,ta (t- ty)

where ¢, is the value of ¢ att and & is the rate of change of ¢ with respect

0
to time.

0

The following constants are used for o , & and t

0 H
MARS
t, t 0 (modified Julian date) &

o _ 0 -3

RA 317. 3 . 16846, 024 6. 751 x 10 " /year
o o] -3
DEC. 52,9 16846, 024 3. 46 x 10 ° /year
{ PHE 344041 18322. .70882 x 10 *rad/sec
JUPITER

o, ty(modified Julian date) o
RA 4, 6775435 rad 18673, .102917 x 10_3 rad/year
DEC 1,126778 rad 18673. .29089 x 10—5 rad/year

o -
PHE* 344.41 18322, .175849 x 10 Brad/sec

*Note: The surface features of Jupiter are relatively unknown, so that the location -
of its prime meridian is a matter of speculation. TFor this reason, its initial position
is set equal to that of Mars.
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Description:

M50JPM calculates the transformation matrix B from Earth mean of 1850 to
true equator and prime meridian of date with respect to planet J. The date is
given in terms of the modified Julian date UJT. At present, only the following
planets may be used: Earth, Moon, Mars, and Jupiter (i.e., J =3,11,4 and 5

respectively).

Subroutines M50EPM and M50LEQ calculate the matrix B for the planet Earth
and the Moon respectively, thus the calculation of B for Mars and Jupiter
represents the bulk of M50JPM. These calculations are done in three main
steps. First, the right ascension and declination of the planet's spin axis with
respect to the Earth mean equator and equinox of date are found in addition to the
angle of prime meridian. These angles represent rotations whiceh make up the
transformation from Earth mean of date to true equator and prime meridian of
date with respect to the planet. Second, the transformation from Earth mean of
1950 to Earth mean of date is calculated in M50MDT, Third, these matrices are

multiplied to give the total desired transformation.
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SUBROUTINE M50LEQ

Calling Sequence: CALL M50LEQ (UJT, SELNEQ)

Purpose: M50LEQ calculates the transformation matrix
from the Earth mean equator and equinox of 1950
to the true lunar equator and prime meridian of

date.
Common Blocks Required: None
Subroutines Required: NUTATE
Input / Output
| | SYMBOLIC COMMON
I I/0 1 NAME DIMENSTION BLOCK DEFINITION
Calling
0] SELNEQ 3,3 Operand Transformation matrix
Calling
I UJT 1 Operand | Mcdified Julian Date

Theory:

The transformation from Earth mean of 1950, 0 to true lunar equator and prime meridian
can be broken up into three transformations: (1) Earth mean equator and equinox of
date to true lunar equator and ascending node, (2) Earth mean equator and equinox

of 1950 to Earth mean equator and equinox of date, (3) True lunar equator and

ascending node to true lunar equator and prime meridian.

The matrix for the first transformation is calculated in subroutine NUTATE, and the

thecry is described there.

The second matrix describes the precession of the Earth's mean equator since 1950.0,

This precession is defined by the three small Euler angles

o = 23047 997 (T) + 01302(T)° + 0019(T)"
B = 2304 997(T) + 11093(T)> + ov 0192(T)°
v = 2004) 298(T) - 0M426(T)° + 0.10416(T)"
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The transformation A is defined by the three rotations

rcos B -sing O l"cos y 0 -siny cosey -sing O
A = ginR cosf 0 0 1 .0 sing cosa U
0] 0 1 Lsin-y 0 coswvy 0 0 1

The elements of [A] may be expanded in powers of T to yield:

1-. 00029697 (T)2 - (0.13) 1078 (T)3

891
-5 .2 -5 .3
B, = By = .02234988(T) - (0.676) 10 ~ (T) +(0.221)10 " (T)
-5 .2 -6, .3
By = 8y - L0097171L(T) +(0.207)10° " (T)" + (0.96)10 (T)
2 -6 ,.3 |
By, = 1-.00024976(T) - (0.15)10 "~ (T)
: _ 2 -7,..3
By = By = -.00010859 (T) - (0.3) 10 (T}
8,4 = 1-.00004721@)2 + (0.2)10'7 (T)3

The third transformation involves the simple rotation about the Z-axis (perpendicular
to the true equator of date and positive up) from the ascending node to the prime '
meridian. The angle between the ascending node and prime meridian is calculated

in NUTATE, and its derivation is described there. If the angle is §, the rotation

" matrix is

cos$ sind 0
B = |-ging cosp O
0 0 1

Once these three matrices have been calculated, the total transformation matrix is

(1] = (=] Iv] [A]

where [N] is the matrix from NUTATE (for the transformation from Earth mean

of date to true Iunar equator and ascending node).
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Description:

M50L.EQ first calls NUTATE to get BUMROT, the transformation matrix from Earth
mean equator and equinox of date to Moon true equator with the ascending node on
the ecliptic. Also output from NUTATE is RAPM which is the angle from the lunar

equator ascending node on the ecliptic to the prime meridian.

The next step in the transformation is obtaining the transformation matrix A from
Earth mean of 1950.0 to Earth mean of date, Then A is multiplied by BUMROT to
get DUMROT, which is the transformation matrix from Earth mean of 1950.0 to

Moon true equator and ascending node.,

The final transformation needed is from ascending node to prime meridian in the
Moon's true equator of date. This involves a simple rotation about the Z-axis
{(perpendicular to the true equator and positive up) through the angle RAPM. This
matrix is stored in BUMROT.

The final step is the multiplication of DUMROT by BUMROT which is stored in

SELNEQ and is output as the total transformation matrix,

286



SUBROUTINE M50LEQ

ENTER

%
Call NUTATE for

BUMROT and KAPM

Calculate transformation from mean
of 1950 to mean of date and store
in A

¥

DUMROT = (BUMROT) (A)

Get transformation from ascending
node to prime meridian and store
in BUMROT

P

SELNEQ =BUMROT) (DUMROT)

3

‘ RETURN ’
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SUBROUTINE M50MDT

Calling Sequence: CALL M50MDT (T, A)

Purposze: M50MDT calculates the transformation matrix from Earth
mean equator and equinox of 1950, 0 to Earth mean equator
and equinox of date.

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DETFINITION
CALLING
O A ‘ 3,3 OPERAND Transformation Matrix
CALLING
I T 1 OPERAND Modified Julian Date
Description:

M50MDT ecalculates the time in Julian centuries and then calculates the elements of

the mairix as polynomials in time.,

Theory:
The transformation from Earth mean equator and equinox of 1950.0 to Earth mean equator
and equinox of date is accomplished by three rotations through three Euler angles that

represent the precession of the Earth since 1950,0,

The three angles are as follows:

o = 2304." 997(T1) + 0." 302 (TL)° + 0.1 019(T1)°
R = 2304."997(T1) + 1."093(T1)° + 0, "0182(T1)°
v = 2004."298(T1) - 0."426(T1)> + 0. "0416(T1)"

288



where T1 is the time in Julian centuries since the beginning of the Besselian

year 1950,

The transformation matrix [A] is defined by

f

l’cos R -sinpg O cosy 0 -singy coS ¢ -sin o
A =!sin”R cospg O 0 1 0 sineg cOS gy
L 0 -0 1 sin v 0 cos v 0 0

The elements of A may be expanded into the following polynomials of T1:

a 1-. 00029697(’1‘1)2 - (0.13) 1078 ('1’1)3

11
-5 2 -5 3

aj, = -8, = -.02234988(T1) ~ (0.676)107 (T1)" +(0.221) 107 (T1)
Ay = =8y, = --00971T1I(TY) + (.20my107° (T1y? + (.96) 107 (1)
2y, = 1- .00024976¢T1)2 - (0.15) 107° (T1)°
%93 =a, = _.00010859(T1)? - (0.3) 107" (T1)°

- , 2 -7 3
8y, = 1-.00004721(T1)" +(0.2) 10" (T1)
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SUBROUTINE NUTAIT

Calling Sequence:

Purpose:

CALL NUTAIT (TIME, EN)

NUTAIT calculates the matrix for the transformation
from Earth mean equator and equinox of date to Earth
{rue equator and equinox of date

Common Blocks Required: None
Subroutines Recuired: None
Input / Quiput
. SYMBOLIC} I COMMON
I/0 ' NAME 'DIMENSION; BLOCK DEFINITION
Calling
O EN 3,3 Operand Transformation Matrix
Calling
1 TIME 1 Operand Days since 1950.0
Description:

NUTAIT calculates the mean longitude of the Sun and Moon (V1. & CR) and the mean longitude
of perigee of the Sun and Moon (G & GP) as functions of fime. Then the nutations of the
obliguity of the ecliptic and longitude of the Sun (DE & DT) are calculated as functions of

VL, CR, G and GP. The mean obliquity of the ecliptic is calculated as a function of time,
and then the elements of the matrix are calculated and stored in EN for ocutput,

Theory:

The transformation from mean equator to true equator can he approximated by

1 -§L cos (¢)  -&L sin (¢)
EN = 6L cos_e 1 -5¢
61.sin ¢ b¢ 1
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where the nutations 5L and §¢ are given by

sex 105 = 25%5844 cos © + 02456 cos 207
209511 cos 2 @ + 020508 cos (20 - )
11%5336 cos 21, + 020369 cos (3L7- T
+02 0666 cos (SL —I") - 02 0139 cos (L +I‘)
-0, 02o8 cos (L +r‘) - 0 0086 cos (L I" +Q )
_0%0183 cos (2L - Q) + 0. 0083 cos (L'T n)
020067 cos @2 &) + 0° 0061 cos (3T + T''-2L)
+ ch 0064 cos (BI:/- f‘/- 0 )
5Lx107% = - (4708927 +0.0482 T) sinf - 05658 sin 2L
+ 05800 sin (20) - 020950 sin (217 - &)
_ 325361 sin (2)) - 020725 sin (3T~ f'}
- 01378 sin (3L - T) +0%0317 sin (L+ T)
+0.0594 sin (L +T') +0Q0161sin (L-T %)
+ 000344 sin 2L - ) + 0%0158sin (L- T - )
+ 070125 sin L~ 0) - 0°0144 sin 3L+ T 2L )
+ 073500 sin (L - T - 0°0122 sin 3L-T < £
+ 020125 sin (2T, - 2 T) + 0%1875 sin (L'~ T)
+0.0078 sin (21~ 2I")
+0%0414 sin (L+T < 25
+0%0167 sin 2L~ 2 L)
_ %089 sin (4 T~ 2L)
and L= 64737545167 + 13 21763965268 4

. ®001131575T - 00113015 T +. 019 X 10

L = 280708121009 + 09856473354 d
+ ®000303T + 200030377

20 8439877 + 0- 1114040803 d

1
I

_ %1334 - 010343T° - %12 x 10"+ 13

12°1127902 - 020529539222 d

s .
I

+ %0020795T + 2002081 T2 + 02 x 107% T°
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=
i

~
il

4

282208053028 + 00470684 x 10~ d
+%00045525T + 20004575 T> + %03 x 10 * T

4 3

-4 2 -
22°4457587 - 02013094047 - 20088 x 10 * T + %0050 x 1074 T

where the above symbols represent the following quantities,

Quantity

Longitude of Sun, from the equinox of date
Longitude of perigee of the Sun

Longitude of the Moon, measured in the
ecliptic from the mean equinox of date to
the ascending node of the lunar orbit, and
then along the orbit,

Longitude of the perigee of the Moon,
measured as L7

Obliquity of the ecliptic
Longitude of the ascending node of the Moon's

orbit on the ecliptic

Time in days since 1950.0

Time in Julian centuries since 1950.0

Note: Barred quantities are mean values and § L. represents the nutation in longitude of

the Sun and f¢ represents the nutation in obliquity,
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SUBROUTINE NUTATE

Calling Sequence: CALL NUTATE (K, TW, TF, TN, TM, RA, MG)

Purpose: To compute the transformations from Earth's mean
equator, equinox to Earth’s and Moon's t{rue equator,
equinox and equator, node,

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC : COMMON _
1/0 NAME DIMENSION BLOCK .DEFINITION
ARGUMENT
I K 1 LIST Qufput option key.
ARGUMENT Whole and fractional days since
I TW,TF 1 LIST 1950. 0, days
' ARGUMENT
0 TN 3,3 TLIST Earth's transformation matrix
‘ ARGUMENT
Q T™ 3,3 LIST Moon's transformation matrix
_ ARGUMENT Right ascension of Moon's prime
&) RA 1 LIST meridian, rad,
ARGUMENT
8] OMG 1 LIST ' Moon's rotation rate, rad/sec

Output Options

If K =1, only TN is computed, and the lunar orientation variables TM, RA, OMG are
ignored.

If K=2, TM, RA, OMG are computed, and the Earth orientation matrix, TN, is ignored.
If K = 3, all list items are computed.

Equinox Coordinate Systems

Reference: Holdridge, D. B., "'Space Trajectories Program for the IBM 7090 Computer, "
JPL Technical Report No, 32-223, Pasadena, California, March 2, 1962, |
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The cartesian coordinate systems defined using the vernal equinox and ecliptic or
equatorial planes, and the transformations relating those systems are described
below, Numerical expressions for the angles defining relative orientations are
taken from the cited reference, though different computational forms are used.

Tor completeness, the orientations of hody-fixed systems are also treated here.
1, Notation

The symbols used for the angles foilow the general rules:

a2, Quantities not otherwise noted are true values of date.

b. Quantities superscribed by a bar are mean values.

¢. Quantities subscripted ''50" are 1950, 0 values.

d. The prefix '"5" denotes a nutation or libration in the

quantity prefixed.

In general, quantities defining Earth-Moon relationships use the symbol primed of
the equivalent quaﬂtity from the Earth-Sun relationships. Unless otherwise stated,
longitude is measured in the Earth's ecliptic, from the vernal equinox, and right

ascension is measured in the equator, from the vernal equinox.

For each of the coordinate systems, the z-axis is taken normal to the reference
plane, positive in the northern hemisphere, and the x-axis is taken along the

reference direction in the reference plane.

The reference direction is the vernal equinox for the Earth-equinox systems, and the
descending node of the Moon's equator on the ecliptic for the Moon-equinox sysfems.

For the body-fixed systems, the reference direction is the prime meridian of the body.

A list of symbols is given in Table 1. The symbols used by the reference are also

shown for ease of reference,

2. Eguations

The computational equations are based on the equations given by the cited reference.

Numerical values are taken from that report, but the form of many of the equations

has been changed.
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2.1 Earth's Mean Equator, Equinox of Date

The precession of the Earth's equator is defined by the small angles

g, = 2304'997T + OV 3021° + 02'017913
(1)

23040U997T + 1!,'093T2 + 0V 0192Td

g = 2004V298T - 05'426T2 - 02'0416'1'3

™
i

Ecliptic of date
Ecliptic of 1950

Mean equator of date
Mean equator of 1950

cosz =-sinz 0 cosp 0 -sing cos Co -sinco 0
= sinz cosz 0 0 1 0 “sin £, ©os Co 0 (2
0 0 14 Lsing 0 coss 0 0 1
may be expanded in powers of T with the result
2 3
a.11 = - - 0,00029697T - 0,00000013T
ar.l2 = -3y, % - 0,02234988T - 0. !}{,‘rOOOG“IGT2 + 0, 00000221T3
2 3 &
a13 = -a31 == 0,009717T1T + 0.00000207T " + 0,00000096T
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a, =1- 0,'{)()02‘¢1=9'?'6'I‘2 - 0,00000015T3

22
a. = a_ =-0.00010859T> - 0.00000003T"
23 32 ) ) _

2 3
8,4 = 1-0.00004721T" +0,00000002T

given by the reference.

2.2 Earth's True Equator, Equinox of Date

The transformation from mean equator to true eqguator is approximated by

N = 1 -§L cos ¢ ~-5L sin e
5L cos ¢ 1 -8e {4.
§Lsing ¢ 1

where the nutations §L, § € are given by

. 4 0 pus 0 k4
§e %10 = 2575844 cos O + 052456 cos 2L
~092511 cos 20 + 020508 cos (2L~ )

0 = 0 =s =7
+1.5336 cos 2L + 050369 cos (3L -TD)
-7

+020666 cos(3L-I) - 020139 cos (L +T')
- - - =
-020258 cos (L+T) -020086 cos (L - T+ 8)

~0%0183 cos (21— + 020083 cos (L - T'= )
020067 cos (217=0) + 020061 cos (3L +T - 2L

-

+ 070064 cos (3L~ T - )

4 - - (5)
L X 10" = ~(4728927 + 0.0482T) sin - 025658 sin 2L

O . - - -
+0, 5800 sin 203 - 620950 sin (2L - )
(8] . - o -
~3.5361 sin 2L ~ 020725 sin (3T.- T
O . — - Q R e
-0.1378 sin (3L - 1) + 020317 sin (L 4T
— — = - =
+0°0594 sin (T + T) + 0161 sin (L= T +£)
) = = = =/ =
+0.0344 sin (2L - ) + 050158 sin (L-T- 5
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~r, = . - -
+000125 sin (2I' - ) _ 000144 sin (3L + T2 2T))
- — (0] . —r = -
+0 3500 sin (L - T) - 00122 sin (3L-T'- 0)
- - [
+020125 sin 2T - 21) + 21875 sin (L'- T
- -
+ 020078 sin (20 2I)
O . [ -
+0,0414 8sin (L +I" - 2L)
- -
+ 000167 sin (2L - 2L)
- 020089 sin (4L - 2L)

Ecliptic

Mean Equator

pd Tp

True Equator

XB FIGURE 2

1.7= 637545167 + 12 17639652684

3

-© 001131575T - ©, 00113015':2 + 0, 019x10-4 T

280?08121009 + 0? 9856473354d

=
I

+°.000303T + © 000303T>

6
T = 208 8439877 + 0" 1114040803d (6)

-° 0103347 - © 0103437 - © 12x10~ %13

0 = 1251127902 -0° 0529539222d
12 00207957 + ©., 002081 + ©, 0210 %13
F = 282208053028+ 00470684x10™d
+° 00045525T + % 00045757 + ©, 03x10" 47>
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-4 2 -4,3
€ = 239,4457587—0(:01309404'1‘ ~90088x107 T~ +%0050x10 T

Equations (5) are computationally inefficient, requiring the evaluation of 39 sines

and cosines, The subroutine NUTATE computes the transformation by computing
- - -— bl - -— -

the sines and cosines of the angles ¢, §, T'-Q, L -0, I'- 0, L - 2, with the

remaining sines and cosines computed by trigonometric identities.
2,3 Earth-Fixed

The transformation from true equator, equinox of date to Earth-fixed coordinates is

T = cos £ sing 0
-sin § costf 0 (7)
0 0 1

where
£ = 10007554260 + 09856473460 d]
+ (2 0015)107 3 (a7 +wt

w = 0,00417807417/(L + (5.21)10" > [d] ) deg/sec (8}

8¢ =5L cos €
£ = E+b6¢

The mutation in right ascension, §£ is the element n,, of the nutation matrix,

equation (4).

2.4 Moon's Equator, Node of Date

The transformation from Earth's equator, equinox to Moon's equator, node may

be written as shown onthe next page:
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Moon's true equator

Ecliptic
1
7 AS
+ +180°
R+4L 8 Earth's true equator
Figure 3 gxiﬂl\
M = cos A sinaA O 1 0 0 cos sin £ 0
~-sin A cosA 0 0 cosi sini -5in {3 cos () 0 9)
0 0 1 0 -sini cosi 0 0 1
as in the reference, or
M = 1 0 0 —cos (D +5L) -sin (R +6L) 0
0 cos ¢’ sing’ sin (R +56L) —cos (Q+61L) 0
0 -sine’ cose 0 0 1]
. - (10)
1 0 0 '
0 cose sing
LO -gine cos ¢
where

0 =0+ o
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Retaining linear terms in §¢, 5L,

M = MNT
M = |1 0 0 -cos 0} -sin0d 0 1 0 0
0 cos ¢’ sineg’ sin §§ -cosD O 0 cosé sing I
0 -sin ¢’ cos¢g’ 0 0 1 0 -sin€ cos¥ (
- L - - -

where N is the nutation matrix (4), Clearly, Mis the transformation from Earth's

mean equator, equinox to Moon's true equator, node.

The Earth's mean obliquity, ¢, is given by (8). The mean inclination of the Moon's

equator with the ecliptic, ¢, is

and the librations in inclination and longitude are

5¢” =-0,0297222 cos (L7 - f") +0, 6102777 cos (L' + - 25)
-0.00305555 cos (2L7 - 20)
bvd

50 = cscg {-0.0302_777 sin (L™= T'} + 0, 0102777 sin (L + '~ zfp

-0.0030555 sin (2L - 20 )}

The transformation M is computed by subroutine NUTATE.

2.5 Moon-TFixed

The transformation from Moon's equator, node of date to equator, prime-meridian ig

L = cosT” sinT70]
-sinT”  cosT70 (T5
0 v 1 '
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where
T"=1"-0

” ® la=id o =
5L° = -0,003333 sin (L -T") +0.0163888 sin (L -T")

_— —
+ 05005 sin (2T'- 20)

The angular velocity of the Moon is the vector sum of the angular velocities

1. L - Q.' about the Moon's polar axis, and

2, 0 about the normal to the ecliptic.

Since the inclination of the two axes is e,/ the angular velocity is

7 o
(14)

- sin¢”’

(_”—E?.) + {1 cos g'

—ud

in equator, node components,

Subroutine NUTATE computes the polar component

w’ = (L/-fz + ) cos ¢ (15)
from
w=1- 0 (1-cos ¢ + B¢ 'sin € )
i-cos g’ = .000358852

sin € = .026787599
L/ | -5 -13 (18]
L = 0.266170762x10 =~ -0,12499171x10 ~ T (rad/sec)
o ‘ =7 -13
0 = -0.106969844x10 +0,23015329x10 T

. 9 - = - - ‘ —
"= -0,1535272946x10  cos (L -T) +0.569494067x10 0 cos (L -T)

=]
e
Il

+0,579473484x10" 1 cos 2P 200)
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K = -0.520642191x107" cos (L'~ T*) +0. 18117744510 cos (L + T -2 Q)

~0.106405786x10"" cos (2L’ -2 0)
Retaining nine significant figures,

w' = 0,266171146x1070 - 1349910 cos (L'~ I
+.5695x10"° cos (L-D - 645%10° " cos T2 0)
+,380x10 "1 cos @L’-20) +. 570x10" 1L cos @r- 20 a
+ §¢’ [ 139.107° cos (L' - ™ -.485x10™) cos (L'+T7- 20)

+.285x10"° cos @L'- 2&3)}
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LIST OF SYMBOLS

Symbol Reference Quantity

L L , Longitude of the Sun, from the equinox of date.

r T Longitude of perigee of the Sun,

g g’ True anomaly of the Sun

’

L Longitude of the Moon, measured in the ecliptic
from the mean equinox of date to the ascending
node of the lunar orbit, and then along the orbit.

r’ r’ Longitude of perigee of the Moon,

' measured as L.,
g' g True anomaly of the Moon,
€ € Obliquity of the ecliptie.
€ I Inclination of the Moon's equator with
the ecliptic.

W W Angular velocity of the central body about

its north polar axis,
¢ £ Right ascension of the prime meridian
thour angle of the vernal equinox).

N N Longitude of the ascending node of the Moon's
orbit on the ecliptic. '

wp w ‘ Argument of perigee of the Moon,

i i Inclination of the Moon's equator with the

' Earth's equator,

o’ o’ * Right ascension of the ascending node of the
Moon's equator on the Earth's equator.

A A Arc in the Moon's equator from the Earth's equator

to the ecliptic,

303



Svmbol

5 L

6¢

A0

/
5L
Ge’

He

90° + g

O
90° - ¢

Reference

A-A

3
6§

1

b€

80° + z

90 -Co

Quantity
Right ascension of the Moon's prime meridian,
from the ascending node of the Moon's equator
on the ecliptic.

Nutation in longitude of the Sun

Nutation in right ascension of the prime
meridian.

Libration in longitude of the ascending node.
Libration in longitude of the Moon,
Libration in inclination.,

Nutation in obliquity.

Right ascension of the mean equator of 1950,
from the mean equinox of date.

Right ascension of the mean equator of date,
from the mean equinox of 1950,

Inclination of the mean equator of date with the
mean equator of 1950,
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Calling Sequence:

Purpose:

SUBROUTINE OBLATE

Common Blocks Required:

Subroutines Required:

References:

Inputs / Outputs

CALL OBLATE

This subroutine calculates the approximate
effect of the Earth's J,, gravitational term
on a {rajectory. This subroutine is
used with the Multiconic propagator.

CONST, DUM, INPUT, STATE.
ORBIT, TRMN.

Paul Penzo, Computing Earth Oblateness
Effects on Lunar and Interplanetary

Trajectories, AIAA paper No, 70-97,
Jamuary, 1970.

SYMBOLIC PROGRAM COMMON

1/0 NAME DIMENSION BLOCK DEFINITION

O AM 1 DUM (9 Mean anomaly at end of step
Orbital elements and sines and

0 ELM 12 STATE(14) cosines. of elements of state

I GME 1 CONST{T} Earth's gravitational constant

, Reciprocal of spacecraft's

§) PM 1 DUM(7T) mean motion B

I T 1 STATE(10) Time since state epoch

1 TF 1 INPUT(4) Final time
Spacecraft's position and

/0 X 6 STATE(1) velocity vectors.
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Theory:

The approximate effect of J 5 On the orbital elements is determined in this subroutine.

The time derivatives of the angular elements can be expressed by:

di __r cos@ A
Dl |

dt h
. (1)
df}_r sin© An
dt hsini
dto = -cosi d_ﬂ -1 P cos fAr - (P+r) sin £ At
df dt eh
where, ' r = radial distance

f = true anomaly

W= argument of perigee

i = inclination

()} = longitude of the ascending node
= w+f

h = angular momentumn

e = eccentricity

P = semi-latus rectum

and where Ar’ A ” An are the components of the disturbing acceleration caused by

Earth oblateness, seeFigurel. 7

el |

™

figure 1 \
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It is more convenient to exchange the true anomaly for time as the independent

variable, To do this, the expression for angular momentum may be used, as

2 df
h = dt
then,
di _di & _ b di ' : (2)
dat  af  dt r% df '

Similar equations are used for the other elements. Thus equation (1) becomes,.

di _ r3 cos A An
daf hZ

df _ r3 sinf A

di 2 n . (3)
h™ sini

_@_@:—-—cosi_d_ﬂ_ﬁirz- Pcosf A - (P+r)sinf A

df df - en? r

The accelsration due to the second harmonic term is given by,

2
. -3 sin” 8 s.in2 i
-3 T 2
(A B By eq sin B8 sin2 i
tf = (4
4 . .2,
2 r gin 8 sin i
l n

where y is the Earth's gravitational constant

T, is the Earth's equatorial radius

J2 =.0010823
The substitution of equation (4) into equation (3) provides the final form of the
derivatives of the orbital elements. The only variable remaining besides f and

§ is r. However, r can be eliminated by the use of

= P ' ' (5)
1+ecosfi :

T
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Now, equations (3), (4) and (5) can be combined and analytically integrated to
provide the effects of J 9 on the orientation elements, Since the changes in the
elements are small through the integration interval, the orbital elements can

be held constant during the integration for a first approximation to their variations.

Thus, the variation in the elements becomes,

8
1 2 . . 3 1
A = K gsinicosi|z sine-gcoswcosse +E sin ¢sin 9]
2 3 3 By
(6)
T _ e . 3 . 3
A Q= Keosi L-z-(e—sme cos 9) +§ (cos wsin @ + sin wcos 6)
8
+ e sing sin?’s:l 1
90
Aw=~-cosips +A wpg
where 9
K = ~3u J2 I‘ecjl
hf-L
- 2
Awre =£{e(1-§-sin i) f
2e
2 f,
+(1+§- 62) sin f + e sin f cos f + — coszfsinf 1
2 : 3 fo-

2 2
+;{—e- sin i sin¢ cosg | 4 cosf +3 e cos |
f
1

f

2 2
-5 (7-e) cos f - 6e cos™ —232 cossf]
0

2 ) 2
+§g sini(Asinf+Bsinfcosf+C cos fsinf

1

f

3 4 f
+ 3 D cos { sinf + eD cos fsinf)
0
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where

2

A==%(7+2&)mm2w4-§(1+2é)sm ”

2 2

C =%(e2 ~-7) cos™ w +},1- (7+232) sin“ w

2 2

D = -e(cos“w ~sin“w )

The in-plane elements, e and p, are determined if the energy, c¢, and the angular
momentum, h, are known. The variation in the energy is determined since the
force field of an oblate Earth is derivable from a potential function. Considering

only the second harmonic term, the energy per unit mass is,

2 2
C == X— - —p— - #JZ req ( 1 - 3 COSZCP) (7)
2 T 2 I'§

where ¢pis the colatitude. The Keplerian portion of the energy remains constant.
Thus, the variation in energy is only the third term of equation (7), or
r

T
AC= 29 (1-cos¢p) | . (8)
2 13

%o

The angular momentum does vary and .its derivative is given by,

dh

= rXr
d

-t

However, gince the potential has no 10ngitude dependence, the z - component of
the derivative in equation (9) is zero, " As seen from Figure 1, the z - component

of the angular momentum is given by,
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h = hcosi
Z

then

- di
Z — cosi-hsini — =0 (10)
dt dt dt

Thus, the variation in the magnitude of the angular momentum over the same

interval as Al is,

h = htaniAi

The elements at the end of a step can now be obtained from,

i, = i+Ai
Ql = q +AQ
= + Aw
wy w
L2
p = M
1
e =J1 + 2P €
1
I
where
the subscript 1 denotas the values at the end of a step, and
C1 = Ck+ AC
Ck is the Keplerian energy
hl = h +Ah
Description:

The variations in the orbital elements are determined in a straightforward manner

from the above equations. The initial state is brought into the routine as position

and velocity vectors in x of STATE common.
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The orbital elements are determined using subroutine ORBIT. Next, the true
anomaly f, and @ + 1 are determined at the beginning and at the end of the step
and stored in the arrays F and THET, respectively. The variation in @, 1 and

r is determined in the DO 2 loop, where the index refers to the limits of integration.

The variation in the energy and angular momentum is calculated from equafions
(8) and (11). Finally, the orbital elements at the end of a step are determined from
equation (12),

If the time at the end of the step is greater than the final time, logic flow transiers
to statement 5 where an iteration scheme is employed to determine the radius cor-

responding to the final time.

The position and velocity vectors, mean, anomaly, and reciprocal of the mean

motion are determined at the end of the step before the subroutine terminates.
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SUBROUTINE OBLATE

ENTER

Determine orbital elements at begin-
ning of step from ORBIT

®

Set up initial constants on F(1), F(2),
THET(1l), THET(2}

Calculate constants used
in Equation {6)

Calculate variation in
w, i, Qin DO 2 loop
{eduation 6)

Determine variation in energy and

angular momentum (equations 8 and
11)

Determine time at end
of step, TD

<I‘D\—> TF iteration for

e final time

Determine final orbital elements
from equation (12)

Calculate position and velocity vectors

at end of step from ORBIT and other
output quantities

‘RETURN’
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Calling Sequence:

Purpose:

Common Block Required:

Subroutines Required:

SUBROUTINE OBLE

CALL OBLE

This subroutine calculates the oblateness accelerations
of the Earth. '

CONST, CNTRL, GRAVTY, STATE, PERT

M50MDT, NUTATE, ROTATE

Input / Qutput
SYMBOLIC COMMON °

1/0 | - NAME - --| - DIMENSION ‘| -- BLOCK - i  DEFINITION
I... 1. GM. . 12 . | . CONST = |Gravitational potential
1 .| . gc | ..t | CNIRL _ |Central Planet

I ~POS 3 . |. GRAVTY . |Posifion vector
T} . wT 1 .. |  STATE(32) |Current julian date
o | . xoum . - 3. | PERT _  |Acceleration Vector
Usage: JC must = 3 :

Position Vector must be in GRAVTY (Mean Equator of
1950). '

Acceleration Vector must be in PERT (Mean Equator of
1950),
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Description:

This subroutine first transforms the position vector of the S/C to mean equator of
date. It then calculates the acceleration acting on the S/C due to the aspherical

The equations are as follows:

Earthwith harmonics Az, A3 and A4.

o B 3x - 5 Exz .
x = 23 A, GM(3) (-5Uz ) + S~ A, GM(3) (TUz -3)

+ rea A 1 GM(3) (3-42U, + 63U, ")
. = -z-- ° e
y X X
b "_:i_z-_: 2 3 2 35 4
z 5o Ay GM(3) (3-5U,) + -3 A, GM(3) (1-10U, + T Uy)

52z - 2
+ Py A 4 GM(3) (15-70U, + B3Uz4)

_—
where U =-—
Z T

These accelerations are then transformed back into Earth mean equinox and equator of

1950, and then added to the total acceleration vector XDUM.
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SUBRQUTINE OBLTY

Calling Sequence: CALL OBLTY (EP, B}
Purpose:- OBLTY calculates the transformation matrix

that rotates from the Earth's ecliptic to the
Farth's equator,

Common Blocks Required: CONST, INPUT

Subroutines Required: None
Input/Output

/0 SYMBOLIC PROGRAM COMMON

NAME DIMENSION BLOCK DETINITION
@) . B 3,3 - Calling Operand | Transformation
Matrix
I EP 1 Calling Operand Julian centuries
' since 1900

1 . RAD 1 CONST (1) Degrees per radian

Theory:

The transformation from the Earth's ecliptic to the Earth's equator involves da simple
rotation about the vernal equinox through. the angle ¢ ,

where

8 7.2

. e s ) ) N
9' =1.03x10 "t  -1,23x10 { -3.562 x 10 31: +23.452294 degrees

The time variable,t,represents the number of Julian centuries since 1900 (days since

1900, 0 times 10'4).
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The matrix is given by:

- ™
1 0 0
B = 0 cos@ -sing
0 sin @ cos@
- J

Description:

OBLTY calculates the transformation matrix for the rotation from the Earth's
ecliptic to the Earth's equator, This matrix is loaded into B, The input EP

represents the number of days since 1900, 0 times 10-4.
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SUBROUTINE OBSET

Calling Sequence: CALL OBSET {MODEL)

Purpose: OBSET initializes the spherical harmonics co-
efficients for a given field model.

Common Blocks Required: FIELDM

Subroutines Required: None
Input/Output
o SYMBOLIC PROGRAM COMMON
NAME DIMENSION BLOCK DEFINITION

0 MMOIj 1 FIELDM({309) - | Highest tesseral order
1 MODE L 1 Calling Operand| Model number
O NMOD - 1 FIELDM(308) Highest zonal order
0 TSRL 16,17 TIELDM (17) Tesseral array
0 ZONL i6 FIELDM (1) Zonal vector

Theory:

The relationships between zonals and tesserals and the sine and cosine coefficients

of a spherical harmonic potential field are as follows:

ZONL(i)""‘C. i= 1, 2, aesaree s

10 '
TSRL(i,j)=Cij ' 0. i,i=1,2, c.iiu.n.
TSRL(j,i+1)=Sij o § i=12, ...,..
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Description:

OBSET initializes the spherical harmonic coefficients according to the field model
selected, The values NMOD and MMOD are also set to indicate the size of the
selected model, NMOD indicates the highest-ordered zonal and MMOD indicates
the highest tesseral order. The following chart indicates the possible values of

MODEL and the corresponding fields:

MODEL FIELD DESCRIPTION NMOD MMOD

1 Hougton L1 model of 3 3
lunar field

3 JPL 15-8 model of the 15 8
lunar field :

4 Mars field--post 4 3
Mariner 1971

5 Clears coefficient arrays 0 0
for loading of input field

See Figure 1 for the values of the C and S terms for the first three models

above,
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SUBROUTINE OBSET

( ENTER )

set ZONL and TSRL
elements to zero

r GO TO MODEL

3

set ZONL and
TSRL elements
for 1.1 model

|
set NMOD and
MMOD

X

\

set ZONL and
TSRL: elements
for JPL model
] i
set NMOD and
MMOD

RETURN
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4

sef ZONL and
TSRL elements
for Mars model

— ==

set NMOD and

MMOD

RETURN



SUBROUTINE ORBIT

Calling Sequence: CALL ORBIT (K,dJ,X,XD,GM, ELM)

Purpose: ORBIT calculates orbital elements from position
and velocity,or position and velocity from orbital
elements.

Common Blocks:Required: CONST

Subroutines Required: None

Input / Output

SYMBOLIC COMMON

1/0 _ NAME DIMENSION BLOCK DE FINITION
Calling

1/0} ELM 6 or 12 Operand Orbital elements (see description)
Calling

1 GM 1 Operand Gravitational constant of planet
Calling

1 J 1 Operand Direction flag (see description)
Calling

1 K 1 Operand Condition flag (see description)

1 PI2 1 CONST(3) 2k
Calling

1/0] X 3 Operand Position vector
Calling

1/0{ XD 3 Operand Velocity vector

Theory:

Consider first the calculation of the orbital elements P, e, f, ¢, i,  from the position

and velocity vectors X and V. The angular momentum vector is given by

H=XxV = (h sin (i) sin (€, -h sin {i) cos (), h cos (i))'

so that |H =|Xx V] =h

and P = h? /GM
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The equation of motion of a body rotating about a central body is given by

R =P / (1+e cos f) where R is the distance {o the body,
Thus R =] 5(] and e cos(f) = (P-R) /R,

which implies - e sin (f) £ = - (P/R?) R

KV +X, W +X
P ( 171 72 2 3%) sinceh,=R2f.

or e sin(f) = h -
From e cos (f) and e sin (f), both e and { can be calculated, as 1ong‘ as e is not

équal to zero, which is. explained later on,

The ealculation of i and  is straightforward given the components of ﬁ, as

0 .
long as the inclination is not 0° or 180 , in which case fis set to zero.

In order to find ¢, let u =f +¢. Then the geometry of the orbit can be used to

yield the following equations:

R cos (u) =X1 cos (2) +X2 sin (Q)

R sin (w) = [-X, sin (Q) +Xé cos ()} cos (i) +X_ sin (i)

3

Now the calculation of u is stré,ightforward, and

w=u-f , unless e equals zero,

in whioh case w is set to zerc and f=u,

The second part of the subroutine is the reverse case, i.e., given orbit elements

find X and V. The first step in this process is to calculate the sines and cosines of

w, i and  (if K = 5 this is input, also if K =6 e, v, and { must be calculated as well

as the above sines and cosines). After this, a transformation is set up which represents
rotations through W, i and ) to transform orbit coordinates to whatever coordinate
system you may be in, Thé rotations and the resulting matrix are as shown on the

following page.

E3
& f
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X cos -sinfd) O 1 0 0 cos ¢ -singy O X!
v I= sin) cosf 0 0 cosi -sinl ging cosw O Y'
zZ

0 0 1 0 sini cosi 0 0 1 0

cos (w) cos () ~ cos (i) sin () sin (w) -sin(w) cos(?) - cos (i) sin(d} cos(w) /Xl
=1 cos{w) sin() + cos(i) cos()) sin (w) -sin{ &) Sin(Qd) + cos(i) cos()) cos{w) j\v

sin{i} sin(w) sin (i) cos(w)

Here x' and y' refer to a coordinate system in the orbit plane with the x-axis pointing
toward pericenter. Thus finding position and velocity vectors is reduced to finding

the vectors in the orbit plane and then transforming them,

For position, R can be found by

-
R =176 cos (f)
and then
x' =R cos (f)
y' =R sin (f)

For the velocity, the magnitude can be found by the energy relationship

E =- u = Vz - u
2a 2 R.

o2 (-
or V JR P "

thus Vl' =~V sin (f) andV, =V cos (f-¥)

where + is the flight path angle and is given by
v = arctan (3 sin (f) / (1-+ e cos (t)))

t t
Once V 1 and Vz are calculated, the velocity vector may be found by transforming

the primed system as was done before,
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Description:

ORBIT provides the interchange between position and velocity coordinates and
orbital elements. If the direction flag, J, is greater than or equal to zero,
orbital elements will be calculated from position and velocity. Note that both
position and velocity vectors are required for this transformation. Three
different sets of orbital elements may be calculated, depending on the condition -
flag, K, If K is equal to three, only the standard orbital elements will be output, |
i.e., the semi-latus rectum (P), eccentricity (¢), true anomaly(f), angle of '
pericenter (w), inclination (i), and angle of ascending node (@) will be output in
ELM(1) —— ELM(6). If K equals five, the following values will be output in
ELM(7) — ELM(12) in addition to the previous values: cos (@), sin (w), €08 {i),
sin (i), cos (), and sin (). If X equals six, the following values will be oﬁtput ‘
in ELM(1) — ELM(6): P, e cos (), e sin () w+f, i, Q. No other values will
be output.

If J is negative on input, then position and/or velocity will be output as follows:-
J equal to minus one implies that only the position vector is desired. Other‘ :
negative values indicate that both the position vector and the velocity vector are

desired,

'The value of K in this case indicates the type of orbital elements that were input.
K equal to one implies that only the standard orbital elements wete input. K equal
to five implies that the sines and cosines of uy, i and £ were input in addition to the
standard elements. K equal to six implies that e cos (w), € sin (w), and w+ { were

input in place of e, f, and ¢ .
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SUBROUTINE ORBIT

Yes

f

Calculate orbital
elements

Set
=0

e cos w,

Calculate| ;

Calculate cosines
and sines of

w i, O

‘ RETURN '
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”| from e cos g

ere,

Calculate

= gines and

cosines of
w, i, O

mation coefficient |

X

Calculate position
vector

no

C alcuiate
velocity
vector

RETURN
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SUBROUTINE ORIENT

Calling Sequence: CALL ORIENT (A, U, S, CD, 8C, K)

Purpose: To find the angle through which one vector must be rotated
about a second vector in order that the first vector should
form a given angle with a third vector.

Common Blocks Required:‘ None

Subroutines Required: CROSS -

Input / Output

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DE FINITION
ARGUMENT ‘
1 A 3 LIST Rotated vector.
. ARGUMENT
1 U 3 ' LIST Rotation vector.
: ARGUMENT
I S 3 LIST Fixed reference vector.
ARGUMENT
1 Ch 1 LIST Cosine of desired angle,
_ ARGUMENT '
0 sC 4 LIST Sines and cosines of the solutions
. ARGUMENT _ .
e K 1 LIST Indicator for solution type
Description:

A principal use of this subroutine is to locate the times of day (right ascension of the
Earth-fixed orbital plane's ascending node) when the touch-down point for Earth returns
lies in the retufn orbit plane, This is accomplished by asking the subroutine for sines
and cosines of the incremental right ascension required for the dot product of the normal
to the return orbit plane and the touch-down radius vector to be zero. This subroutine
can also solve the slightly more general problem of achieving a desired non—right-—ahgle

hetween two vectors by rotating one of them about a given axis.
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Let Tu () be the 3x3 orthogonal matrix which, when applied to any non-zero vector
not parallel to u, rotates that vector about u through an angle, 9, measured in the
plane normal to u., Thus, a = Tu (9) a is a vector which sweeps out a cone about u
as A increases from 0 degrees to 360 degrees. The problem solved by this subroutine

is then: Find & (or sin A and cos 8) such that

a-s = |al | cosep
Now T.s =3ls =ar T, (-9)s
T uuT ux
=a @osal+(1—cose) T - gin g —)
' uu |11I 8
T T T
: a~ uxs ,
=cos A aTs+(1-cos ) MTE—E—- - —— sin g,
' u ful
The equation to be solved then becomes
la] |s] cosgp = acosg+gsing +y,
T T
where v = M__SL
T
u u
T
g = sxu)a
|dl
and T

or _ )
o cosf8+ » ging +y = 0,
where y = Y - - cos ¢,
lal sl
= B
8= e
% =

lal fsl
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The solutions of this equation for sin f amd cos § are given by

sin 8 R Et
=Y

= ) A '
T2 _ 2 - 2 2 2

c0os A a + 8 (24 —‘8 + Y + 6 -y

L » - - N
It can be seen that two solutions exist - one for each sign on &2 +Bz -2
-}l "

2 2 -2
When ¢ +8 =1y, however, only one solution exists. This case will occur

when, for the use mentioned, the latitude of touch-down is exactly equal to the

inclination of the return orbit. If the latitude is greater than the inclination

2 2 _2
o« tg <y and a real solution is impossible, The subroutine then sets the

indicator, X, to a positive value and provides the solutions for g when the angle

between a and s is a maximum or minimum,
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SUBROUTINE OUTPUT

Calling Sequence: CALL OUTPUT (T,%)

Purpose: This routine outputs the spacecraft's state with
: respect to the launch and/or target planets in
the desired coordinate system.

Common blocks required: CNTRL, CONST, INPUT, INTVAR, PLNET,
STATE

Subroutines required: MHOLEQR, M5OMDT, M50MDT, OBLTY, ORBIT,
. ROTATE, SHORB2, TRMN,
Input / Qutput

/o SYMBOLIC | PROGRAM | COMMON DESCRIPTION
NAME DIMENSION BLOCK
1 DJO : 1 INPUT (46} Modified julian date of state epoch
1 GM : 12 CONST (5) Gravitational constants
1 - JC _ 1 CNTRL (T) Central planet number
1 JL 1 HI(‘)PlIg)T Launch planet number
1 JT | 1 Pﬂ%{ﬁr Target planet number
1 KOUTPT 2 INPUT Launch and target planet output
(1039) coordinate systems
I KOUTY : 1 INPUT Auxiliary output flag
_ (1058)
I KP 7 12 {TI\I&DOIﬁI Planets in system
I KTERM 1 INPUT Type of auxiliary output
(1059) '
I METH ' 1 INPUT Trajectory propagation method
- (1013) - - - ~
I PCON . ‘ 1 INPUT (05) | Position units conversion factor
I RAD 1 | CONST (1) . {Radians to degrees eonversion factoy.
1 T o 1 callin Time since DJO
arguntent
I VCON 1 INPUT (86) Velocity units conversion factor
I X 6 Calling Position and velocity vectors of
argument state to be output
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Description:

This subroutine outputs the state position and velocity vectors and orbital elements
with respect to the launch and target planets in a desired coordinate gsystem. The
state and time are input via the argument list, The state is translated to the launch
and target planets and rotated to the desired coordinate system before output.

The output coordinate system is determined by the KOUTPT flag as follows:.

il
G W L0 D e

KOUTPT Mean equinox and ecliptic of date
True equator and prime meridian |
Mean equator and equinox of 1950
True equafor and'equinox of date

no output

The subroutine also has provisions for an auxliary abbreviated output written on the
unit number designated by KOUT9. If this flag is non-zero, output is presented
on unit KOUTY? in a form specified by KTERM as follows:

KTERM =1 orbital elements
= 2 position and velocity vectors
=3 1 and 2

The coordinate system of the output is also specified by KOUTPT. This subroutine

also has a provision to determine the time in the shadow cone during one orbit assuming '
constant elements. The output is presented in the auxiliary abbreviated output. Thus,
the KOUT9 flag must be non-zero. Also, the KSHORB flag must be 1 before subroutine
SHORB?Z is called to perform the shadow calculations, |
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SUBROUTINE OWTPUT

{ ENTER Y

convert time to
hours

Write header for
auxiliary output

T ranslate state to J

Rotate state to desired output

coordinate system

Calculate position, velocity,

elements

J=IT

call SHORB2
\\to get shadow
times on orbi

Write auxiliary
output on unit

KOUT?9

Write unit 6 output
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Calling Sequence:

Purpose:

SUBROUTINE OUT1

Common Blocks Required:

Subroutines Required:

Input / Output

CALL OUT1

OUT1 determines the print interval and

controls the interpolation logic for printing.

INPUT, INTVAR, SAVE, STATE

INTERP, OUTPUT

SYMBOLIC COMMON

1/0 NAME DIMENSION| BLOCK DETFINITION
Modified Julian date of

1 DJO 1 INPUT(46) launch epoch

1 DTOUT . 10 INPUT(460) | Printing intervals

I T 1 STATE(10) Seconds since state epoch
Switching times of

1 TOUT 10 INPUT(450) | printing intervals

1 TOUTL 1 SAVE({40) Time of last print

I X 6 STATE(]) Current state

I UJ'T 1 STATE(32) Current modified Julian date

Description:

This subroutine finds the print times and uses subroutine INTERP and OUTPUT to output

the state at the print times. OUT1 is called from TIMEC at the beginning of each

numerical integration step,

The only print times determined on each call to QOUT1 are

print times which lie in the last numerical integration step.

The print interval is determined from the print table consisting of TOUT and DTOUT.

The print time, TDUM, is determined from TDUM = TOUTL + DTOUT (IDUM)

where TOUTL is the last print time and DTOUT(IDUM) is the current print interval

determined from the print table.
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If this time is greater than the current time, no printing is done. If not, the state
is determined at the print time using the interpolation logic from subroutine INT ERP
and the state is then output in subroutine OQUTPUT. If the print time is within 10

seconds of the current time, the state is not interpolated for and QUTPUT is called

directly.

The next print time is then determined from equation (1) and the whole process is

repeated until the print time is greater than the current time. The subroutine terminates

when this eriterion is satisfied.
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SUBROUTINE PLANET

Calling Sequence: CALL PLANET
Purpose: Subroutine PLANET supervises the
calculation of the planet's position and

velocity vectors,

Common Blocks Required: CETBL2, CETBL3, CNTRL, INPUT,
INTVAR, STATE

Subroutines Required: ° LUNA, SOL, READE

Input / Qutput

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
1 EJO 1 STATE(26) Ephemeris date of launch epdch
I EJT 1 | STATE@28) |. Current ephemeris date
1 JC 1 CNTRL(7) Central planet number
I JMN : 1 INPUT(1017) | Ephemeris type flag
1 KP 12 INPUT(1001) | Planetsin system
_ Flag to determine if tape (or dislk)
I KREAD 1 CNTRL(8) read necessary '
' Time of last tape {or disk)
1 TAB3 1 CETBL3(1) | read -
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Description:

This subroutine controls the calculation of the planet's position and velocity vectors.

The JMN flag determines the type of ephemeris used as follows:

JMN = 1, Mean elements

2. Mean elements for Sun and mean elements plus first-
order corrections for Moon

3. Ephemeris tape read

4. Mean elements for Sun, osculating elem ents
for Moon

5, Ephemeris disk using Goddard's direct read feature

If JMN is not equal to 3 or 5, subroutines SOL and LUNA are called to determine

the planets'positions if the respective planets are in the system. If JMN is equal

to 3 or 5, subroutine READE is used to obtain the position and velocity of the planets.
Before this routine is called, the IREQ array is set to the KP array and CENT set

to the central planet number. These are arrays used in READE, The KREAD flag
is also set. Each read of the ephemeris disk on tape brings eight days of data

into arrays in READE. The KREAD flag is set to zero (no read) if the time of the
ephemeris call is within the eight day range of data already started in READE,

otherwise, the KREAD flag is set fo one for a tape or disk read.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE POST

CALL POST

POST computes certain parameters for output
during midcourse guidance analysis.

STATE

CONST, INPUT, INTVAR, MCCOM, PLNET,

BELL, BURND, DOT, MVTRN, ORBIT, PLANET,
RETRO, SUNMIN, TRMN, VISIB, VNORM

COMMON

SYMBOLIC

1/0 NAME DIMENSION BLOCK DEFINITION

1 WO 1 INPUT(38) Initial spacecraft weight (kg)
: Julian date of anchor vector

1 DJO 1 INPUT{46) epoch (days)
i Specific impulse of the midcourse
1 ASPMC 1 - INPUT(441) | motor (sec)

:I WRETRO 1 INPUT(443) | Weight of retro fuel (kg)

1 AFUEL 1 INPUT{471) | Attitude fuel/angle factor (kg/rad)
‘I WDROP 1 INPUT({473) { Retro drop-weight (kg)
;I - JT 1 INPUT(1031)j Target body number

1 MCOUT 1 INPUT(1050) | Extra output key

I KOUTS 1 INPUT(1058) | Logical unit for scope output.

Logical unit for writing out

1 MCUNIT 1 INPUT(1061) { information.

I IPROB 1 INPUT({1070} } Output probability scale (pct)

I NORMIN 1 INPUT(1080) | Retro optimization key

Pre-ignition midcourse state

! XMC 6 MCCOM(6) (km, km/sec)

1 DV 3 MCCOM(12) { Midcourse velocity impulse (km/sec
I DVMG 1 MCCOM(15) | Midcourse impulse magnitude (km/ec
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SYMBOLIC COMMON
NAME DIMENSION BLOCK DE FINITION
__DEC 1 MCCOM(16) | Declination of DV (deg)
RA 1 MCCOM(17) | Right ascension of DV (deg)
Midcourse ignition time
TMCS 1 MCCOM(18) | (sec past anchor epoch)
Spacecrafi -to-Sun unit vector
XSUN 3 MCCOM(21) | Mean of 1950
VRET 1 MCCOM(25) | Retro delta-v (km/sec)
Expected second-midcourse
EXFUEL 1 MCCOM(26) | fuel (kg)
BT 3 MCCOM({27) } Spin-axis unit vector at retro
DVT 1 MCCOM(30) | Trim velocity (km/sec)
FUELT 1 MCCOM(31) | Trim fuel (kg)
Pericynthion state
XR 6 MCCOM(32) | (km, lkm/sec, Lunar Equator)
Anchor epoch-launch epoch
DJDIF 1 MCCOMN(39) | difference (days)
Expected end constraint errors
SIGOUT 6 MCCOM(40) | from BELL
Firing true anomaly for retro
FFIRE 1 MCCOM(46) | (rad)
Spacecraft weight after midcourse
WTF 1 MCCOM(4T) | (kg)
Expected second mideourse
EXVZ 1 MCCOM(49) |velocity (m/sec)
Midcourse iteration counter tfrom
IT L MCCOM(157) | MDCORS
Mideourse execution counter
KMC 1 MCCOM(159) |trom PROTO
KT 1 MCCOM(161) | Flight time counter from PROTO
ICB 1 MCCOM(165) |Midcourse central body number
Elevation indicator array for
KEL 10 MCCOM(172) |midecourse,
KELR 10 MCCOM(182) Elevation indicator array for retro
State at target closest approach
X 6 STATE(1) {(km, km/sec)
Time at target closest approach
T 1. STATE(L0) {sec past anchor epoch)
Spin-axis attitude before
ATT 3 STATE(11) midcourse (unit vector)
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Description:

POST is a subroutine in which auxiliary output calculations are performed for midcourse

guidance subroutines PROTO and FIXATG. These calculations (in order of appearance)

are:
1. Midcourse fuel (kg) *
2, Spin-axis-Sun angle- at mideourse (deg)
3. Retro velocity impulse (km/sec)
4,  Attitude fuel to midcourse attitude (kg)
5. Minimum spin-axis-Sun angle to midcourse (deg)
6. Array of midcourse visibility for trackers (KEL = EL/ 10 +1)
7. Burn time (sec)
8. Trim iuel (kg) *
9, Time of retro ignition (hours past launch) *
10, Right ascension of the spin axis at retro (deg) *
11. Declination of the spin axis at retro (deg) *
12. Total correction fuel (kg)*
13. Spin-axis-Sun angle at retro (deg)*
14, Trim velocity {(m/sec)*
15. Minimum spin-axis-Sun aﬁgle to retro attitude (deg)*
16.  Array of retro visibility for trackers KELR = EL/ 10+1 EL=20

=0 EL<0

{ * computation depends on NORMIN— if <0, retro attitude, trim fuel and firing time
are as determined in TARGET, otherwise retro attitude and firing time are optimized
in RETRO to minimize trim fuel) '

The computed guantities are written on logical unit MCUNIT for later retrieval by
PROTO or MCVERF. The logic of this subroutine is straightforward and merits '

no flowchart,
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Calling Sequence:

Purpose:

Common Blocks Required:

SUBROUTINE PRINT

CALL PRINT

The purpose of this routine is to print the
contents of various common blocks,

STATE, SAVE

CNTRL, CONST, INPUT, PERT, PLNET,

Subreoutines Required: ORBIT
Input / Qutput
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DETFINITION
Spacecraft's osculating
0 ELM 6 STATE(14) orbital elements
I GM 12 CONST(5) Gravitational constants
1 JC 1 CNTRL(7) Central planet number
Trajectory propagation
I METH 1 INPUT(1013) indicator,
Spacecraft's position and
1 X 6- STATE(L) velocity vectors

340




Deseription;

This subroutine prints the contents of various common blocks on output unit 6.
A series of flags are used to determine which common blocks are to be printed.
If the input location in the table below is set to one, the designated common block

will be printed.

INPUT COMMON
LOCATION BLOCK
1020 STATE
1021 CNTRL

1022 PLNET
1023 INPUT
1024 - NOT USED
1025 PERT

1026 SAVE

The orbital elements of the spacecraft are determined from subroutine ORBIT if
STATE common is to be output and the trajectory propagaﬁon method used is

Cowell's,
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE PROTO

CALL PROTO

PROTO controls the gross midcourse
analysis logic and printout

ANKOR, CNTRL, CONST, INPUT, MCCOM,
STATE

FIXATG, MDCORS, POST

SYMBOLIC COMMON
/0 NAME DIMENSION BILOCK DEFINITION
1 DJ L INPUT(37) Julian date of launch (days)
1 DJO INPUT{46) Julian date of anchor epoch (days)
1 RAI INPUT(47) Right ascension initially (deg)
1 DECI INPUT(48) | Declination initially (deg)
1 HRO INPUT(53) Hours )
I XMINO INPUT{54) Minutes GMT of anchor epoch
1 SECO INPUT(55) Seconds
1 DTFIN INPUT(422) | Desired time of flight (seconds)
Midcourse execution
I DELTMC INPUT(434) | time step (sec)
Expected midcourse pointing
I SIGAT INPUT({435) | error (rad)
Midcourse velocity proportional
1 SIGDV INPUT(436) | error (frac)
Time of possible second
1 TMC2IN INPUT(440 nmidcourse (sec)
Initial midcourse execution
1 TMC INPUT(478) | time (sec)
1 JL INPUT(1015)| Body center of anchor vector
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SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCKE DEFINITION
1 MCOUT ! INPUT(1050)| Extra midcourse outpuf key
Numper of mideourse
I JMC 1 INPUT(1051) | executions desired
Logical unit for
1 MCUNIT 1 INPUT(1061) | midcourse output
I IPROB 1 INPUT(1070) | Output-scaling probability (%)
I IBURN 1 INPUT(1071) { Midcourse burn model key
Scan selector
1 KTF 1 INPUT(1077) | (-fixed attitude, + flight time)
Pre-ignition midcourse state
O XMC 6 MCCOM(6) (km, km/sec)
O - DV 3 MCCOM(12) | Midcourse velocity impulse(km/sec
Mideourse impulse
O DVMG 1 MCCOM(15) [ magnitude (m/sec)
O DEC 1 MCCOM(16) | Declination of DV (deg)
O RA 1 MCCOM(17) | Right ascension of DV (deg)
Mideourse execution fime
O TMCS 1 MCCOM{18) | (sec past a.e.)
Expended midcourse velocity
0 DVB4 1 MCCOM{24) | (km/sec)
. Expected second-midcourse
. 0 EXFUEL 1 MCCOM(26) | fuel (ke |
0 DVT 1 MCCOM(30) | Trim velocity (km/sec)
o) FUELT 1 MCCOM(31) | Trim fuel (kg)
. _ Anchor-launch epoch
O DJBIF 1 MCCOM{39) | difference (sec)
0 SIGOUT 6 MCCOM(40) | Expected end constraint errors
Expected second-mideourse
0 EXV2 1 MCCOM(49) | velocity (m/sec)
) PSID 10 MCCOM(80) | Desired constraint vector
1/0 PSI 10 MCCOM(100) | Constraint error vector
9] KBURN 1 MCCOM(154) | Midcourse burn-type key
MDCORS re-entry key to
O KENTRY 1 MCCOM(156) | avoid initialization
0 1T 1 MDCORS trial counter:

e

MCCOM(157)
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SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION
O KMC 1 MCCOM{159) | Midcourse execution time counter
O KT 1 MCCOM(161)| Flight time counter
O KGLAWI 1 MCCOM(164){ Guidance law indicator

, Tracking visibility indicators
0O KEL 10 MCCOM(172} ) for midcourse

Tracking visibility indicators
0 KELR 10 MCCOM(182) | for retro
Desecription:

PROTO operates in one of 3 modes, depending upon the setting of KTF.

KTF =0 (one-dimensional scan of midcourse execution times)

In this mode, sample midcourse correction maneuvers are calculated at JMC execution
times which begin at TMC and proceed at steps of DELTMC. Each maneuver, found

by MDCORS and elaborated by POST, corresponds to a particular guidance law and the
same set of desired end conditions. Characteristics of the maneuvers and arrival
conditions are writteﬁ on MCUNIT 1n POST, then read again for printout in PROTO at the

conclusion of the scanning process,

KTF >0 {(Two-dimensional scan of midcourse times and flight times)

Tnis mode injects a scan of flight times (using the FTA guidance law) into the execution -
time scan. It enables generation of all those midcourse solutions which axrive at a
specific closest approach distance and inclination, thereby encompassing all the available
guidance flaw ouptions. At each midcourse execution time, flight times are scanned in
KTF one-hour steps beginning at DTFIN, At each point of the scan, MDCORS and POST
compute the maneuver and arrival characteristics and write them on MCUNIT for later
printout by PROTO, By scanning flight times within the execution-time loop, gradients
for targeting may be salvaged for use at several flight times and some trajectory com-
putation may be avoided, Gradients are re-generated every fourth hour of the flight time ’

scan.

KTI <0 (Two-dimensional scan of midcourse times and delta v)

This is the fixed-attitude-guidance mode. At each midcourse execution time, FIXATG
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is called. In FIXATG,it is assumed that the spin-axis direction or thrust direction
is fixed at RAI and DECI. The impulsive velocity magnitude is varied systematically
in FIXATG from zero in -KTF steps of size DINK (location INPUT(479) in k'm/'sec).-
The post-ignition trajectory is propagated to target closest approach wnere arrival
characteristics are computed and printed out., MDCORS is not called in this mode,

neithar is POST and no summary printout is performed in PROTO.
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SUBROUTINE PRCTO

KMC =0

A

FIXATG =

<0

[y

T=0
X =ANKVE C
TMC = TMC + 88

DTF=DTF + HR

Call MDCORS

s
Call POST

KT =KT -1

=0
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<0

Write midcourse

,-{ RETURI\{I
information

IPROB- <0
)

Write error prop.
information

*

Write orbit insertion
information




Calling Sequence:

Purpose:

SUBROUTINE PUTELS

CALL PUTELS (ICOM, MSGERR, §)

This subroutine writes a file describing the
state for retrieval by the GTDS program.

Common Blocks Required: ELMNT
Subroutines Required: None
Input / Qutput
! SYMBOLIC COMMON
/0 ! NAME DIMENSION BLOCK DEFINITION
‘ Calling Initialization flag
I ICOM 1 Operand 1 Initialize output data file
(0 add new element to set
Calling
1 MSGERR 1 Operand Error message return number
Statement namber for
0 3 - - error return
Description;

This subroutine is used to output the state for retrieval by the GTDS program. The

ICOM flag is used to initialize the output file,

When this flag is set to 1, the output

file is initialized. No writes are made with this flag setting. When the ICOM flag is

zero, writes are made on unit 27,

The data to be written on unit 27 is transferred into the subroutine via the SET array

of ELMNT common. The set array is defined as follows:

TL.ocation

1
9

3-5
6-8

9-14

15-35

Definition

Date of state in year, month and day written as YYMMDD,

Time of state in hours, minutes and seconds written as -
HHMMSS, 888,

Cartesian position vector.

. Cartesian velocity vector

Keplerian orbital elements.

The order is

(SMA, ECC, INCLIN, LAN, PA, MA)

Upper triangle of the state covariance matrix
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Location

36
37
38
39
40
41
42

43

44

Definition

Start time of fitted data (year, month, day)
Start time of fitted data (hour, minute, secondj
End of fitted data (year, month, day)

Eud of fitted data (hour, minute, second}

Root mean square of fit,

Satellite identification number

Reference coordinate system of state
1 for mean of 1950

Central body indicator
1 Earth 2 Moon 3 Sun

Flement set number
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Calling Sequence:

SUBROUTINE QUARTC

CALL QUARTC (C,X, N)

Purpose: To find the real roots of a quartic * equation,
N i
= + =
P=oy 2 : 6y * =0
i=1
Common Blocks Used: None
Subroutines Required: None
Input / Output
SYMBOLIC
1/0 NAME DIMENSION DEFINITION

1 C 5 Coefficients of the polynomial
: Solution vector if real solutions exist
0 X 4 {Upper-loaded if less than four exist)
' Input: Order of the polynomial (3 or 4)
1/0 N 1 Output: Real solutions found (0,1,2,3,4)

* QUARTC may also be used to find the real roots of a cubic equation. The mathematical
description which follows applies only to quartic equations.

Description:

The Descartes technique is used to solve the equation,

4

2
AX + BX3 +CX” + DX + E = 0. First divide through by A (A # 0) to obtain

4

X +B'X3+C'X2+D'X+E'=O

1
Substituting X =y + h where h = %J into (1) obtain

2
Y4+P.Y +Qy +R=0
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where

P = 6h” +3B'h +C' (3)
3 |2 1 1

Q = 4h° +3B'h” +2C'h +D | (4)

R = h*+B%h° +Ch 4D+ B (5)

Now (2) may be factored to produce equation (6)
. 2
G VR 4 (v - VR g =0 (6)

which, in turn, yields four quadratic solutions if R', £ and p are defined.

1 Q :

£ = 5 (PR~ (1)
2 VR’ )
1 Q

g = S (P+R'+ ) (8)
2 I—R'

R' is the maximum of the real roots of

Z3 +aZ +b =20 {2)

minus "2'_ P. The coefficients, a and b, in (9) are given by
1 2 2 -
a=—3-[3(P ~4R}—4P] (10)

and

=
;

1 3 2 2 '
~- [16 27 - 18P (" - 4m) - 27Q7] a1

To find the roots of (9), first compute the quantity

29 4 . (12)5

350



If A>0, the only real root is

z1=3#—12°~+\/a-+ 3{-—‘;—-\/,? : | (13)

If A=0, the real roots are
o ) 3 b 3f b '
_ _ - — a2 14
z, =2 ?} 5 2y %‘ 5 andz3 5 , (14)

If A <0 the roots are

=
I

2 \/-—g— cos (#/3) .

Z2 = 2 *’Qj- ‘-g-- cos (8/3 +1209), 7 (15)
and F '
z, = -5 cos (4/3 + 2409

where

B2

0
=]
wn
=%
i
1

(16)

After computing R', equations (6), (7), and (8) yield ¥y i=1,4. Then Xi =¥ +h

are solutions to the quartic. Only real solutions are considered by this subroutine.
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SUBROUTINE QUIKIE

Calling Sequence: CALL QUIKIE (A, SI, CI, 30, SUNQ, TF1, TF2)

Purpose: This subroutine caleulates approximate shadow times
for circular lunar orbits with constant inclinations. The
times calculated are shadow-free time and time until

next shadow {or time until no shadow, if orbit is presently
in shadow)

Common Blocks Required: CONST
Subroutines Required: None

Input / Output

SYMBOLIC COMMON
1/0 NAME | DIMENSION BLOCK DEFINITION
CALLING
1 A 1 OPERAND Semi-major axis
. CALLING
I ST 1 OPERAND | Sine (inclination)
. CALLING
i CI 1 OPERAND | Cosine (inclination)
: _ CALLING
1 go 1 OPERAND Initial longitude of node
' CALLING
I SUN@ 1 OPERAND Initial longitude of Sun
1 GM 12 CONST Planet gravitational constants
I PI, PI2 1,1 CONST m, 2n
: CALLING Time until next shadow or
Q TF1 1 OPERAND neg, time until no shadow
. CALLING
0 TF2 1 OPERAND Shadow-free time
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Description:

This subroutine calculates the times when 2 given orbit around the Moon will cross
the Moon's shadow., The orbit is assumed to have zero eccentricity and constant
inclination. Input quantities should be expressed in an ecliptic coordinate system;

however,the Moonb equafor is probably acceptable for most work.

The output quantity TF2 represents the time between shadows, (i.e., the maximum
shadow free time.
Note: For low inclination orbits, part of the orbit is always in

shadow. TFor this case, both TF1 and TF2 are oufput as
999.,9,

Theory:

In an ecliptic coordinate system, let {Ibe the longitude of the Sun, Qbe the longitude
of the orbits ascending node, and s the angle between them,

Then y = ¥-§, andy =¥ - §, where I is the angular velocity of the Sun about

the Earth (.993 deg/day), and §) is the precession rate of the orbit around the planet.

: 2
(Q % 1.5 nc,, cos (i) RM2/A2 + ,75 n' p/n cos (i))
n = mean motion of spacecraft A = orbit radius
e, = lunar oblateness coefficient n' = mean motion of Moon
i = inclination 4 = grav. ratio

RM = Radius of the Moon

Since the orbit is circular, the radius A is constant, Thus,the angle from the shadow

cone centerline to the edge of the cone at a distance A from the planet is

~1
& =gin (RM/A) - a , where « is the half shadow cone angle.
. _

Shédow Cone

Orbhit Plane
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-1 gin Ac

Y, = sin T () (Note: | sm 8c| =] smi] )

This implies that the orbit is a shadow whenever
-y £ y< or - <ysaty |
A Y=Y D’C Y Ye

Thus the problem is reduced to finding out what quadranty is in and what the angle
is until the orbit status changes. Tor instance, if is in the third quadrant and
‘ 2@ -ve
kY
Similarly, if y is in the second quadrant and the orbit is in shadow, then

the orbit is not in shadow, then TF1 =

TF1 = - (y +yc - ) /-;, . TF2 is independent on  and is equal to L-2%)
Y
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SURROUTINE QUIKIE "

CALL
QUIKIE :

Calculate

5, b

no

yes

Calculate
Vs Vor TF 2

QUADL =Ye '
QUAD2 =g-y,
QUAD3 =fr+'yc
QUAD4L =27 - Yo

RETURN
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TF1 =999.9
ITF2 =999.9

3> RETURN

RETURN

H

il

RETURN

RETURN

)

RETURN



Calling Sequence:

Purpose:

SUBROUTINE RANDML

CALL RANDM1 (IY, YFL)

This subroutine determines a random number
uniformly distributed between 0 and 1.

Common Blocks Required: None

Subroutines Required: None
Input / Output
SY:IBOLIC COMMON
1/C NAME DIMENSION BLOCK DEFINITION
CALLING
1 1Y 1 ARGUMENT Random number generator
CALLING
O YFL 1 ARGUMENT Random number
Description:

The random number is determined from

The random number generator is updated on each call as,

YFL = IY (1027) ( .465661 D-9),

IY = IY (1027)

This random number generator is designed for the word length of an IBM 360

series computer,
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Calling Sequence:

Purpose:

Common Blocks Required:

SUBROUTINE READE

CALL READE (JED, TSEC, TERR)

This routine takes the data from the ephemeris tape
and interpolates for the planets position and/or
velocity at the desired time. It also transfers to
the central planet,

CETBL2, CETBL3, CETBLSY,

PLNET
Subroutines Reguired: GETTAP
Input / Output
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
I ICENT 1 CETBL2(2) Central Planet number
CALLING , '
1 : IERR 1 OPERAND Error flag
' , E Planets ephemeris
I IREQ 13 ~ CETBL2({3) flag
i CALLING- Reference julian
1 | JED 1 OPERAND ephemeris
O NUT 4 PLNET(85) Nutation output
i i Nutation input dafa from
1 ! NUTAT 204 CETBL3(830) | ephemeris tape
Position and velocity
0 TABOUT 6,12 PLNET(1) vectors of planets with
respect to the central planet
' } Input planet position and veld
I TAB3 829 CETBL3(1) ocity vectors from :
. ephemeris tape
| CALLING Seconds of ephemeris time
I " TSEC 1 OPERAND past JED
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Description:

This subroutine determines the positions and velocities of the planets with respect
to the central planet from the JPL ephemeris tape. The times of the positions
and velocities to be obtained are brought through the argument list as JED

and TSEC. The output positions and velocities are put in TABOUT of PLNET

common.

The positions and velocities of the- planets are set up in the TAB3 array through

a call to GETTAP. This routine searches for the proper block of data from the
tape (or disk) and reads into TAB3 the eight-day block of data that encompasses
the desired time. READE next interpolates for the positions and velocities at

the desired time from the eight-day block of data in TAB3. After the interpolation
is complete, READE translates the positions and velocities to the desired central

planet.
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Calling Sequence:

Purpose:

Commeon Blocks Required:

FUNCTION RETDV

DV = RETDV(DVMCM, WT®, WTF, WTAR)

RETDV computes the retro velocity as a function of
midcourse velocity.

- CHNST, INPUT

Subroutines Called: . None

Input/Output
o [Pamere | S [oaon | oromon
I‘ DVMCM 1 Aril?:tent Midecourse velocity magnitude (km/sec)
I WTD 1 Arirgtent Spacecraft weight before midcourse '(kg).
9} WTF 1. ArgLuiréltent Spacecraft weight after midcourse (kg)
o) WTAR 1 Ariuirgtent Spacecraft weight after retro (kg)
;!)' RETDV 1 Function Retro velqoity (km/ sec)
1 G 1 C@ﬁf’;’)l‘ Earth's surface gravity (km/ secz)
I ASPMC 1 INP(EEI) Specific impulse of midcourse Iﬁotor (sec)
1 ASPR 1 INI:EEZ) Specific impulse of retro motor {sec)
I WRETR® 1 INI;E;) Weight of retro fuel (kg)
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Method:

The rocket equation is applied to simulate both the midcourse and retro motor

burns, Attitude fuel expenditure is ignored.

-[DVMCM/(G- AspMC)fI

WTF = WTID-e
WTAR = WTF - WRETR®
fWTAR)
= - (G'ASP
RETDV (G- ASPR) 4n{ Wi
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Calling Sequence:

Purpose:

SUBROUTINE RETRO

CALL RETRO (ELM, DVR, DVT, FFIRE, RAO,

DECO, X)

RETRO finds the retro attitude which results in

the minimum trim velocity.

Common Blocks Required: INPUT
Subroutines Required: MINV
Input/Output
SYMBOLIC COMMON :
1/0 NAME DIMENSION BLOCK DEFINITION
ARGUMENT | Orbital elements of the approach
I ELM 12 LIST " | hyperbola
‘ ARGUMENT
1 DVR 1 LIST Retro velocity impulse (km/sec)
ARGUMENT '
0 DVT 1 LIST Trim velocity required (km/sec)
ARGUMENT | Firing true anomaly on the approac
O FFIRE 1 LIST hyperbola (rad)
ARGUMENT | Initial estimate of retro right
I | RAO 1 LIST ascension (rad)
ARGUMENT | Initial estimate of retro
I - DECO 1 LIST | declination (rad)
ARGUMENT | Right ascension(rad) & declination
0 X 2 LIST of the solution retro orientation,
Extra output key
I KROUT 1 _INPUT({1072) | (print if KROUT = 1)
Method:

A steepest descent hunting procedure is used to find the retro orientation resulting in

the minimum trim velocity. The control vector, X, is defined by

declination of the spin-axis

X = E‘ight ascension of the spin-axis

(The velocity impulse imparted by the retro burn is anti-parallel to spin-axis). The trim

velocity, v ¢

is defined (through formulae in MINV and TRIM) as a function of X and the

firing true anomaly, A, on the approach hyperbola,

v

t

= f{X,0)
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RETRO obtains V: =f (X, e*) by calling MINV. 9* is the value of g vihich minimizes
vt for a given X and is, generally, also an implicit function of X. Vt is the )
f-minimized trim velocity. The objective of the logic in RETRO is to find X ,

the control (specifying spin-axis in orientation) for which Vt is minimi_zed.

* %
minvt =fX, 8)

&
We will now denote \A by the typographically-simpler v(X). Approximations to the

partial derivatives,

are obtained by the secant method evaluated at X. The first order change, §v, in

v(X) due to a change, §X, in X is

v = P§X

which we cannot solve directly for X given §v. We choose, instead, to minimize a
function , Sz, of X subject to the constraint POX = 6v., Let S2 = GXtG 86X, where
G is a positive - definite weighﬁng matrix. We adjoin the constrzint to S2 and
differentiate with respect to §X to solve for §X as a function of the undetermined

multiplier, ).

55%— [_‘GXthSX - 23 (PsX —-5v)] =25XtG - P=9

6X=G—tPtA
PsX = PG PY) = gv

5v
pg ipt
-t _t
_ G Pav

PG"t pt

)L...—_

HX
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This is the steepest descent formulation for AX. RETRO's weighting matrix

is defined by

*®
The hunting procedure used in RETRO to find X is to ask for an improvement,

&v, (negative) at the k-th iteration, where X is Xr' This predicts a control change

X which leads to Xr+l'
= X + gX
r+l r
If Av = v (Xr+1) -V (Xr)

is positive, v is halved and §X, Xr+1 and V(Xr+1) are re—calculated (without re-
calculating P) until Av is negative, If the magnitude of 5v is less than the specified

*
tolerance, X =min (Xr, Xr+1) and the iteration is complete.

If Av< §v on the first trial at any Xr’ gv is set to 1,55V for the next step from Xr 1

If Av is negative on the first trial but Av >§ v, another step is computed using §v
but starting at Xr+1' Iif sz = V(X};‘+2) - V(Xr) is less than §v, the iteration proceeds

from Xr If gve sz <0, then §v is set to &vz - tolerance. This process is

+2°
considered convergent when the magnitude of gv is less than the pre-set tolerance.
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SUBROUTINE RETRO

GAIN = -, 01
K=20
J=90

_ RAO
XSBAV = DECO

)

s

Call MINV (XSAV)

DVTS = DVT
XSAV =X

20/

DVTS, DVTD=DVTS+GAIN

Compute partials, P
Compute scaled gstep, DX

|J=J+1

climbing

GAIN = GAIN/2
J=3
DVTD=DVTS+GAIN

50

X=XBAV+DX *x GAIN

CALL MINV({X)

|CON = DVT - DVTD

write

| message

are smallest
available

make sure DVT,
FFIRES and X

[GAIN= DVT-DVTS-, 0005

Q
|GAIN=1.5 * GAIN |

I\@

K=K+1
DVTD = DVT+GAIN
J=0

'-.III
MY
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Calling Sequence:

Purpose:

Common Blocks Required:

SUBROUTINE RKSEVN

CALL RKSEVN (N, HO, XO)

This subroutine integrates a set of
simultaneous differential equations
using a seventh-order ten-cycle
Runge-Kutta scheme.

CNTRL, INPUT, INTVAR

Subrountines Called:. EQNS
Input / Qutput
SYMBOLIC | PROGRAM COMMON
/0 NAME DIMENSION | BLOCK DEFINITION
1 ERRC 1 INPUT(L) Error control
: Initial compute interval and
/0 H 1 INTVAR(14) | next compute interval
Calling
] HO 1 Operand Actual compute interval used
) KHALT 1 CNTRL(6) Error stop flag
: Calling Number of differential
1 N 1 Operand equations
Tirst derivative of
/9 RATES 6 INTVAR(S) dependent variables,
1) X 1 INTVAR(1) Independent variable
Calling
I X0 1 Operand Initial independent variable
1/ Y 6 INTVAR(2) | Dependent variables
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Theory:

The integration scheme shown below was developed by D. Sarafyan, Reference 1.
In his scheme,a set of simultaneous differential equations are numerically
integrated using a seventh-order ten-cycle Runge-Kutta method. In the following
equations f (x,y) vrefers to the value of the derivatives of the function at the
independent variable X and dependent variable Y. This value is brought into
the subroutine via RATES in INTVAR common, Itis calculated in Subroutine

EQNS.
The value of the independent variables, Y, at the end of the step is obtained from:
Y(Xg+h) = Yo+ s_iﬁ (41 (Ko + Kg) +216 (K, + Kg) +27(Kg + Ky) +272 KB) (1)
where
Kg = hf (X4, Yp)
1 1
Ky = hf (X + =5 h, Yp +3 Kp)

1 1
Ky = hf (x0+ - h, Y, +g [KO + 31{1])

1
Kq = hf (XO + h, Y5 +5 [KO - 3Ky +4K2])

1 1
Ky = hf(Xo**?-h’ Yo 5w [83K0+32K2'7K3])
Ke =hf (X + - h L 2
5 =hf{Ko+-gh, Yy + = _3K0_4K2+K3+24K4] (@)
Kg = hf (Xg+ — h, Y, +—— [-200%, _52 145K
6 0" 2™ "0 " Fo8s [‘ o TOZKy + 145Ky

+1908K, + 1305K5])

- 2 1
K, = hf (XO t b, Yyt [292K0 + 108K, + 13K5 ~ 318K,

+ 753K + IOGKS])
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14042K0 + 11012K, -~ 4477K

5 1
= ’ 4 — ————egpng
K hf(XO & ™ Yot 5aess [ 2 3

-+ - + +
57241{4 6903K5 BSGOKG- 314821{7])

=
1l

1
+ J m—— -
h.f(XO h, Y0 346 [ 20491(0 1836K2 + 839K3

+ 5724K . - 4692K_ + 120 i} '
i . i 84K - 9540K, 3816K8])
Description:

The value of f in the above equations is determined by repeated calls to EQNS with
the indicated independent variable set in X of INTVAR common and the dependent
variables set in Y of INTVAR common. EQNS calculates the derivatives of the
dependent variables and puts the answer in RATES of INTVAR common. The values

of f are used to calculate K 0 through K_. These K's are used to determine

g°
variables at the end of the computing step from the first equation. If a fixed

computing interval is used (ERRC=0),the subroutine terminates.
When the automatic compute interval option is used (ERRC # 0) the subroutine
calculates the fourth-order solution at the end of the step from
1
- e + +
Y, (X, th) =Y, +-z .(KO 4 Fz K,)

where

KG’ Kz, K 3 are the same as defined above.

Next the fourth-order solution is compared to the seventh-order solution. The largest

relative difference between the two is used to determine the compute interval from
H = H ( ERRC/ERRELS )1/-5
where ERRELS is the largest relative difference. H is the compute interval to be
used in the next step; however, if the relative error is more than 4 ERRC, then
the error in the current solution is considered too large. In this case, the whole ~
process is repeated again with the compute interval just determined. A limit of

10 repeats is allowed.  If the limit is reached, the error halt flag is set and the
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subroutine terminates. The independent variable is not incremented inside this

routine. It should be done after the call to RKSEVN as shown below,
T = T +HO (9)

where T is the independent variable,

Reference

1. Sarofyan, D.; "Seventh-Order Ten-Stage Runge-Kutta Formulas,” Technical

Report No. 38, Louisiana State University, Department of Mathematics,

January 1870,
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CALL
RKSEVN

3

SAVE INITIAL INDEPENDENT
AND DEPENDENT VARIABLES

r-..

EQNS

CALCULATE K, - K

_ Yes

0 9’
Q. 2

Y

GET SEVENTH-ORDER
SOLUTION, EQ. 1

‘ RETURN i

GET FOURTH-ORDER
SOLUTION, EQ. 3

DETERMINE LARGEST RELATIVE

DIFFERENCE, ERRELS

1

CALCULATE NEW COMPUTE

INTERVAL, EQ. 4

‘ RETURN i =

RETURN }=

<. 4 ERRC ERRELS
>4 ERRC
INCREMENT RECYCLE COUNTER,
KCYCLE
SET ERROR 210 KCYCLE <10
HALT FLAG
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SUBROUTINE ROTAIT

Calling Sequence: CALL ROTAIT (X,Y,8,C,U,V)

Purpose: To rotate two orthonormal vectors in their plane. The
subroutine computes U=CX+SY, V=-SX+CY. If C=cosA,
and S=sinA, U and V are obtained by rotating X and Y
through the angle A in the sense X into Y.

Common Blocks ugsed: None

Subroutines Required: None

Input / Cutput

SYMBOLIC
1/0 NAME DIMENSION DEFINITION
I X 3 Orthonormal inpui vectors
Y 3 Orthonormal input vectors
I S 1 Sine of rotation angle
I C 1 Cosine of rotation angle
o) U 3 Rotated vectors output
0] v 3 Rotated vectors output

ROTAIT is coded in such a way that U and V may share the same storage as X and Y.
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Calling Sequence:

Purpose:

Common Blocks Required:A

SUBROUTINE ROTATE

CALL ROTATE (M, A, B, C)
CALL MVTRN (A, B, C, M, N)

To form the matrix product C=AB or C= ATB _
where A isa 3x3 matrixand B and C are
3x1 matrices {3xN in MVTRN).

None

Subroutines Called: None
Input/Output

10 SYMBOLIC PROGRAM |COMMON DEFINITION

NAME DIMENSION { BLOCK

I A 9 Call List Matrix multiplier

I B 3,N Call List Matrix multiplier

9] C 3,N Call List Product matrix

' . ] C=AB if M=1
I M 1 Call List Indicator: ¢ =ATB otherwise
I N 1 Call List Number of columns of B and C
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SUBROUTINE SADOUT

Calling Sequence:

Purpose:

Common Blocks Required:

CALL SADOUT

SADOUT outputs the times of umbral, penumbral,
and occultation times,

INPUT, SHAD, STATE

Subroutines Required: CALEND
Input / Output
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
1 DJO 1 INPUT(46) | Modified julian date of state epoch
I DJ1 1 INPUT(37) | Modified julian date of liftoff
I JL 1 INPUT(1015) Launch planet number
I JT : 1 INPUT(1031) Target planet number
1 KPLOT 1 INPUT{1093) Plotting flag
I T 1 STATE(10) | Current time o
Table of umbral, penumbral ,and occultation
1 TSX 10 SHAD(19) entrance and exit times
Description:

The shadow times to be output are stored in the TSX array. A test is made on the smallest

time in the TSX array. If this time is greater than the current time, no oufput is presented.

The TSX array is next ordered so that it is monotonically increasing. The KK array is

included to keep track of the times in the ordered TSX array. Subroutine CALEND is used

to determine the calendar date corresponding to the times in the TSX array. The dates

are output on unit 6 if the time is less than T. If the KPLOT flag is set to 20, information

is written on unit 20 for later use in a plotting program.
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SUBROUTINE SENSO

Calling Sequence: CALL SENS@®

SENS® computes the gradient of end constraints with
respect to midcourse velocity. It can also be used to
provide end state and constraint errors as a function
of midcourse veloeity.

Purpose:

Common Blocks Required: INPUT, | MCCHM

Subroutines Called: MCBURN, FOWARD, TARGET

Input/Output
1 DINK 1 INIZEI‘B) i\g;ggz)se velocity impulse. for partials
4] KRASH 1 INP(’IIJ(;I; % Trajectory stop key for FOWARD
1 |Dv 3 MC(Clg))M Midcourse correction impulse (km/sec)
% | DPT 3,10 MC(ngﬁ)M Gradient {23/2 AV)
1/0 | PsI 10 MC((;?{I)\)I End constraint error vector (see TARGET)
1/0 | IR 1 Mcgg)é\f Gradient-or-not logic key (22 for gradient)
4] ISP 1 MC(('{‘;é)é\;[ Gradient-was-generated key (set 1)
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Method:

The secant method of computing approximate partial derivatives is used in genera-
ting the gradient of constraint errors with respeet to control variations. The con-
trol vector, DV, is the impulsive midcourse correction velocity vector. This
vector is fed to MCBURN, which outputs the post-burn state., This state is fed to
FOWARD, which outputs the state at target closest approach. TARGET takes this
end state and generates the constraint error vector, PSI. The transpose of the
gradient is stored in DPT.

DPT = (bPSI )

oDV
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MT =0
PSY = PSI

MT = MT+1
SAVDV = DV(MT)
DV(MT) = SAVDV +DINK

CALL MCBURN
! CALL FQWARD L (AV)
] CALL TARGET

S

|DV(MT) = SAVDV .
DPT = (PSI - PSP)/DINK

1,2:
3

PSI = PSP
IR =1
ISP =1

RETURN

&



Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

SUBROUTINE SETUP2

CALL SETUP2

This subroutine initializes flags and constants
before any of the program options are initiated,

ANKOR, CETBL2, CETBL3, CNTRL, CONST,
ELMNT, INPUT, INTVAR, MCCOM, MOON, OBSIT,
PERT, PLNET, SAVE, STATE

CLOSE, DATE, DVMAG, FIND, M50EPM, M50LEQ,
M50MDT, MVTRN, NUTAIT, NUTATE, OBLTY, OBSET,
ORBIT, PLANET, TRMN

Oé‘\
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SYMBOLIC COMMON '
1/C NAME DIMENSION BLOCK DEFINITION
Attitude unit vector in mean
O ATT 3 STATE(11l) of 1950,
I AU 1 CONST(4) Astronomical unit
State estimation covariance
O COoV 3,3 INPUT(56) matrix,
1 DAYL 1 INPUT(21) Launch day
1 DAYO 1 INPUT(51) State epoch day
Initial declination of
I DEC 1 INPUT(48) attitude
Modified julian
0] DJL 1 INPUT(37) launch date
Modified julian date of
O DJO 1 INPUT((46) state epoch.
0 DX 3 STATE(4) Velocity
Ephemeris date of
O EJO 1 STATE({26) state epoch
‘ Orbital elaments of
0] ELM 6 STATE(14) initial state
1/0 ETC 1 INPUT (39) | Ephemeris time correction
X Gravitational constants of
I GM 12 CONST(5) the planets
1 HRL 1 INPUT(23) Hour of launch epoch
1 HRO 1 INPUT(53) Hour of state epoch
Element set number of attitude
I IDATT 1 INPUT(1087) | desired from element set.
1 IDSAT 1 INPUT(1089) | Satellite identification number
_ Element set number of state
1 IFIND 1 INPUT(1076) | desired from GTDS file
O JC 1 CNTRI(0T) Central planet number
I JL - 1 INPUT(1015) | Launch planet number
1 JMN 1 INPUT(1017) | Planetary ephemeris flag
"1 JT 1 INPUT(1031) | Target planet number
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SYMBOTLIC CONMMON
AN NAME DIMENSION BLOCEL DEFINITION
‘ Imput state coordinate
I | KINPT 1 | INPUT(1019) | svstem flag
| X
1 | KOBL 1 ' INPUT{(1029) ' Lunar oblateness flag
' : Planets in system to be
I KP 12 ' INPUT(1001) ! integrated
Lunar field model
1 MODLEN 1 INPUT(1035) | number
1/0 unit number of
I NATUNT 1 INPUT(1088) | attitude file
1 OBSLAT 10 INPUT(480} | Observation sites latitudes
1 OBSLON 10 INPUT{410) | Observation sites longitudes
: Position unit
I PCON 1 INPUT(5) conversion factor
I P12 1 CONST(3) Twice pi.,
Initial right ascension
1 RA 1 INPUT{4T) of attitude
_ Radian to degrees conversion
I RAD 1 CONST(1) factor.
Mean radius of the
I RE 12 CONST(17) | planets
: Desired orbit radius at
1 RINIT - 1 INPUT(444) target planet
1 SECL 1 INPUT(25) Seconds of launch epoch
1 SECO 1 INPUT({55) Seconds of state epoch
O SOL 1 STATE(36) Solar pressure constant
1 SOLARA 1 INPUT(433) | Spacecraft area
I SPRESS 1 INPUT(197) | Solar pressure at 1 au
Initial time since
1/0 T 1 STATE({10) state epoch,
0 TCA 1 STATE(29) Time of closest approach
Ignition and burnout times
1/0 TIG 6 INPUT(380) | of the engines.
1 TMM 1 INPUT(196) | Epoch of lunar elements
Current modified
O UJT 1 STATE(32) julian date
1 VCON 1 INPUT(6) Velocity conversion factor
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SYMBOLIC

COMMON

NAME DIMENSION BLOCK DEFINITION

Circular veloc.i_ty of desired
VINIT 1 INPUT(445) | target planet's final orbit
WO 1 INPUT{38) Initial weight
WP 12 CONST(29) | Rotation rates of the planets
WT 1 STATE(34) Current weight
WTI 1 STATE(35) Weight after engine burn
X 3 STATE(1) Position
XMINL 1 INPUT(24) | Minutes of launch epoch .
XMINO 1 INPUT(54) | Minutes of state epoch
XMONL 1 INPUT(20) Month of launch epoch
XMONO 1 INPUT(50) Month of state epoch
XMOON 6 INPUT(190) | Initial position of moon
YRL 1 INPUT(22) Year of launch epoch
YRO 1 INPUT{G2) Month of launch epoch
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Description:

The function of this subroutine is to initialize constants and flags and perform

coordinate rotations when necessary. This subroutine does not have a complicated

logic flow or theory. Thus, this description will consist of a chronological description

of the functions performed.

1.
2.

9-
10.
11,

12,

Initialize Encke rectification factor.
Set up initial state, epoch and covariance matrix from a call to FIND, if
IFIND is non-zero.
Determine the modified juiian date of the state epoch and the ephemeris fime
correction. If the ephemeris time correction is not input, it is calculated
from ETC = DJO + (38,66 + .0025921 (DJO -40000) ),
where ETC is the ephemeris time correction in seconds, and
DJO is the modified julian date of the state epoch.

If the liftoff epoch is not input, set it equal to the state epcch.
Set up the solar.pressure constant as follows:
SOL = 107° (SOLARA) (SPRESS) AU
where SOL is the solar pressure constant,

SOLARA is the spacecraft area in cmz,

SPRESS is the solara pressure at IAU in dynes/cmz, and

AU is the astronomical unit,
Set the central planet equal to the launch planet.
If the state is initialized through subroutine FIND {IFIND = 0) skip fo 10,
otherwise calculate the position and velocity vectors if orbital elements
are input.
Convert input units to program units (KM and KM/SEC),
Rotate from input coordinate system to Earth mean equator and equinox of 1950,
Initialize weights in STATE common for use in engine burns.
Set up ANKOR common and determine the circular velocity of the desired
final orbit,
If IDATT is non-zero, determine the initial right ascension and declination of the

attitude vector from a read from unit number NATUNT.
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13.

14.

15.

16.

17'

Initialize ATT, a unit vector in the direction of the attitude, from the initial
right ascension and declination. '
If the Moon is to be simulated by osculating elements determine those

elements from XMOON using subroutine ORBIT and set up MOON common,

. If the tape or disk ephemeris is to be used, perform initial reads.

Set up the DST array for use in subroutine CLOSE 1o determine the

central planet,

Set up the observation site common. The observation site common consists

of the following information: |

a, Vector from the center of the Tarth to the site in Farthfixed
coordinates (XQBS).

b. The velocity of the gite (DOBS).

¢. Rotation matrix from the Earth equator and Greenwich to a site local

coordinate system (OBSROT).
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Qutput

SUBROUTINE SHADOW

CALL SHADOW

This routine calculates the times of umbral and
penumbral passage with respect to the launch and

target planets,

1t also calculates the times that the

spacecraft is occulted by the target planet.

STATE

CNTRL, CONST, INPUT, INTVAR, PLNET, SHAD,

DVMAG, INTERP, PLANET

SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION
Array of back distances to the

1/0 DSAD 3,5 SHAD(1) shadow cones )
Spacecraft's osculating

I ELM 6 STATE({14) |[orbital elements

1 JC 1 CNTRL(7) |Central planet number

I JL 1 INPUT(1015)} Launch planet number

I KTIRST 1 CNTRIL(12) [Tirst pass flag

I METH 1 INPUT(1013) | Trajectory propagation indicator

1 T 1 STATE(10) |Current time

1 TSAD 1 SHAD (16} |Times of back shadow distances

O TSX 1 SHAD(19) Array of shadow passage times
Current position and velocity

1 X 6 STATE({1) vectors

382




Theory:

The distance to the shadow cone, D, can be determined from trigometric relationships

by examining Figure 1,
. Spacecraft B AXS

W

D = ‘\RSC sing + (RSC cos @ ~ RE sin @) tana~RE] / cos o (1)
where ¢ is the half cone angle obtained from

sing = (RE__ - RE) / AXS

a is the angle between the vector from the planet to the spacecraft
and the Sun to the planet,

RE is the radius of the planet

The same type of cone is employed for occultation except that the Sun is replaced by

the launch planet and the planet is the target planet.

The distance to the penumbral cone is obtained in a similar manner, (see Figure 2)

D = [RSC sin 8 ~ (RSC cos 4 - RE tanay “REﬂ /cos (2)
where in this case, fhe half cone angle, o, is obtained from

= (RE + RE .
o (RsunR)/AXS
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Description:

The times of umbral and prenumbral passage are determined in this subroutine. There
are a total of ten times which may be determined in this routine. These times consist

of entrance and exit of the following cones:

1, Launch planet umbra
2. Launch planet penumbra
3. Target planet umbra
4, Target planet penumbra

5. Oceultation by target planet

There is a loop around the logic that determines the times, The internal flag, KJ, is
the index of this loop and determines which shadow time is being calculated, (See

above Table),

After the internal constants and flags are set up for loops and other purposes, the
subroutine defermines the distance from the shadow cone using equations (1) or (2).
There are two criteria used to determine whether a shadow cone could have been
passed on the last compute step.
1. Present position inside shadow cone while last position
outside cone, or vice versa.

2. Spacecraft passed 2 minimum to the cone.

If neither of these criteria are satisfied, the spacecraft could not have flown through

the shadow cone on the last step. At this point, flow is transferred to the location where
the flags are set to loop on the next shadow time, If one of the criteria is satisfied, the
spacecraft could have flown through the cone and the logic flow is transferred to the.
location where the time of shadow crossing is determined. The time of crossing is
determined through a Newton-Raphson type iteration with subroutine INTERP. INTERP
is used to determine the spacecraft state atthe same time (T'). This state is used in
equations (1) or (2} to determine the distance to the shadow cone. T is adjusted by the

Newton-Raphson scheme to drive the distance from the shadow cone to zero, The N-R
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iteration scheme, as implemented, deiermines the time of shadow crossing from

T=T+DELT
3
DELT = -3 D ¥
dD

where D is the distance to the shadow cone and

dt , . s .

N is the inverse of the derivative of the distance from

the shadow cone with respect to time,

The derivative of the distance to the shadow cone with respect to time is determined
analytically from the spacecraft's velocity vector and position with respect to the
shadow cone, The derivative is equal to the component of the spacecraft's velocity
along the direction normal to the shadow cone, This is represented vectorially by

dD = "
where V is the spacecraft's velocity and

£ is the unit vector normal to the shadow cone (see Figure helow)

A
N (out of page)
Figure 3

Define the X', Y', Z' coordinate system with X' along the XS vector, A along the N
vector, and Y' defining a right-handed system, Figure 3. N is obtained from

N = (XsC x X8/ IXSci X8 . (5)

-

Then, the vector normal to the shadow cone, Z, in the primed system is expressed

385



g N ~-sin o |
as E} = { COS ¢y

! 0 (®)
% in the original coordinate system is {Z} = [B] {ﬁ} {7

where [B] is the rotation matrix from the primed system
to the original system,

The first column of the B matrix is a unit vector along X8. The third column
is the vector N while the middle column is a vector obtained by the cross-product
of N and a unit vector along XS. Equations (4) to (6) define the derivative of the

distance shadow cone with respect to time.

There is a limit to the time step allowed on each iteration. There are usually no
convergence problems when one point is inside the shadow cone and the other outside.
However, there is some convergence problem when a minimum to the shadow cone

is passed. The problem is illustrated in Figure 4. Spacecraft
flight path

Shadow
Cone

] Figure 4
In this example, the spacecraft flight path just dips into the shadow cone. The problem

arises when the derivative is calculated at point 1. The N-R technique would calculate
point 2 as the entrance time., Since the minimum was skipped over,the iteration would
converge on the shadow exit time instead of the entrance time it was expecting to
determine, This problem was solved by testing on the sign of the derivative. Logic
is included to reset the iteration to the last step and halve the calculated change in
time, if the derivative changes sign. If the derivative changes sign more than five
times,it is assumed that the spacecraft does not fly through the shadow cone. The
shadow times determined are stored in the TSX array of SHAD common, The times
are output from the array in subroutine SADOUT,

The DSAD array is updated on each of the passes in the KJ loop. On completion of this
loop, the TSAD array is updated and the subroutine terminates.
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SUBROUTINE SHADOW

‘ Set up constants

and flass

Determine distance to shadow cone

using eguation (1) or (2)

300

LTST TRUE
=1
{FIRST
#1
Y

shadow cone

no

grossed orpass
minim

J'LT ST = TRUE,

l

Determine if entrance or exit time

to be calculated
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Set up constants for

i

N-R iteration

change initial
constants of
iteration

ves _ dete-rmlne
“1 maxXimum
step, DTMAX
Sl()pe- ves » halve last
change sign time step
\Lno
Determine change in time, DELT,
from equation (3)
> DTMAYX o limit step
to DTMAX
£ DTMAX

F

TX = TX + DELT

G

L

Calculate distance to
shadow cone
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@

solut1on {240
;o converged '

KOUNT=KOUNT + 1

solution
250
non-convergent

Set flags to find exit

Set large times
for shadow times
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end of KJ
loop

#5 100

Update array of distances
to shadow cone, DSAD,
and time array, TSAD
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SUBROUTINE SHORB2

Calling Sequence: CALL SHORB2 (ELM, SUN, RC, RSUN, JUMB,
JPEN, UMBIN, UMBOUT, PENIN, PENOUT)

Purpose: This subroutine calculates the true anomaly of a
given orbit that intersects the umbra and/or
penumbra of a planet with respect to the Sun or
another planet,

Common Blocks Required: None

Subroutine Required: .. ROTATE, QUARTC

Input / Output

SYMBOLIC PROGRAM COMMON
1/6|.  NAME | DIMENSION| BLOCK |. DEFINITION
Calling
1 ELM 6 Operand QOrbital Elements
Calling _
1 SUN 3 Operand Position coordinates of Sun
Calling
I RC 1 Operand Radius of Planet
Calling
1 RSUN 1 Operand Radius of Sun
Calling
1/0 | JUMB/JPEN 1 Operand Umbra and Penumbra Flag
Calling True anomaly when spacecraft
0 TUMEBIN 1 Operand enters umbra,
Calling True anomaly when spacecraft
O TMBOUT 1 Operand leaves umbra.,
Calling True anomaly when spacecraft
@) PENIN 1 Operand enters penumbra.
Calling True anomaly when spacecraft
0 PENOUT 1 Operand leaves penumbra.

Note: ELM and SUN must be expressed in the same coordinate system. All input/
output angles are in radians. '
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Description: The true anomaly at which a spacecraft enters or leaves the UMBRA/PENUMBRA
may be found by solving a quartic in the cosine of the true anomaly. For near -
circular orbits (E .LT. .0015), a direct calculation is made for a close approx-

imation of the intersections.

On input, the flags JUMB/JPEN must be set not equal to zero to calculate the
UMBRAL/PENUMBRAL intersections respectively.

On output, the flags will have values 1 - 5 as follows:

(1) Impact or escape central planet (no shadows calculai_:eci)
{2) No shadow possible

(3) No real solutions on night side of terminator

(4)  Solutions found

{5} No real solutions found

If JUMB/JPEN .NE. 4 on return, the output quantitics UMBIN, UMBOUT/PENIN,
PENOUT will be zero. '

Note: The output quantities UMBIN, UMBOUT/PENIN, PENOUT will have values
~2r< P <27 with UMBOUT 2 UMBIN and PENOU'T 2 PENIN,
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Theory:

The distance of the spacecraft from the central planet is given by

P
1+e cos (§+¥)

r =

where P is the semi-latus rectnm, e the eccentricity, ¥ the angle between
pericenter and the projection of the shadow cone on the orbit plane, and 8 is

the in-orbit plane angle from the shadow cone centerline projection to the space-

craft,

The distance to the shadow is given by P = R/sin (@2+8) where R is the planet
radius, @ is half the shadow cone angle, and Bis the angle between the line from

the planet's center to the point on the shadow cone and the shadow cone centerline,

(See Figure SHORBZ, 1)
THETA and BETA can be related through spherical trigonometry by

cosfB= cos § cos @, where § is the angle between the shadow cone
centerline and the orbit plane,

Since 8, ¥, P and e are known constants,* and £ can be equated, yielding the
following equation
P ' R

1+e cos (@+Y)  (sin@cos §cos@ + cos @ V1-cos?§ cos? )

which can be squared twice to yield the following quartic in cos (&).
4 3
COEF (5) *x~ + COEF (4) *x + COEF (3) * xz + COEF {(2) *x + COEF (1} = 0

where

X = cos (8)

COEF (1) = c? - p°

COEF (2). = -2 BC

COEF (3) = B% +2AC + D (1+cos23 }
COEF (4 = -2 AB

COEF (5) = A2 - D2 coszﬁ

and

. 2
A = (P sin@cosd-Recos¥) +(Resin ‘}?)2 + (P cosmcosé)2
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Theory (cont'd)

B = 2R (P singicosg - R e cos?)

2 2 2
C = Rz{l--e2 sin ¥)~-P cos &
D = 2PResin¥cosdl

This quartic is solved in subroutine QUARTC,which also outputs the number of
roots found. If real roots exist,then the correct sign of & must be found by
returning to the original equation (since cosine is an even function). [cf. check
quadrants of solutions} . Once the sign is known, cos €@ is replaced by §. Since
the angle 7 is the true anomaly of the shadow cone centerline projection in the
orbit plane, the smallest absolute values of & will be the desired intersections

with the cone. Therefore the roots are ordered smallest first.

It is still possible that the intersections lie on the wrong side of the planet, so a
check is made to make sure that © is less than the angle from the centerline
projection to the edgé of the planet. [cf. check that solutions are on right side

of umbral terminator] .

The actual true anomalies of intersection are given by & + ¥ and the output
guantities are ordered so that the spacecraft enters the UMBRA/PENUMBRA
before exiting {i.e. UMBOUT is greater than UMBIN).

If the orbit is circular, then r is constantand 1 = —B ., where

sin (@i + Bg)
Be = arc sin (R/r) - @2 which implies that @C = arc cos (cos ﬁc/cos d).

Here the quadrant checks are unnecessary since there are no extraneous roots.

The theory is exactly the same for PENUMBRAL cone intersections except for
the angles ¢tand ¥, describing the cone. The half cone angle & is

arc gin ((radius of Sun + radius of planet)/ distance to Sun.] The angle

yPENUMBR A equals ?UMBR A minus 7, since the cone is on the opposite

side of the planet for PENUMBRA. The quadrant checks are slightly different
in that the maximum values of & are desired and © must be greater than the angle

from the Sun to the edge of the planet. The remainder of the calculations remain

the same,
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It is important to note that the assumption has been made that 4, 7, Pande

are relatively constant throughout one period of revolution of the spacecraft.

Note: Items in square brackets refer to comment cards in subroutine,
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SUBROUTINE SOL

Calling Sequence: CALL SOL

Purpose: This subroutine determines the position
of the Sun with respect to the Earth.

Common Blocks Required: CNTRL, CONST, INPUT, INTVAR, PLNET, STATE"

Subroutines Required: M50MDT, OBLTY, ROTATE

Input / Output

SYMBOLIC COMMON
1/0 NAME DIMENSION  BLOCK DEFINITION
1 EJO 1 STATE(26) | Ephemeris time of state epoch
I EJ1900 1 STATE(27) | Ephemeris time since 1900
I - JC 1 CNTRI(7) | Central planet number
I T 1 INTVAR(]) | Current time
Positions and velocities of the
0 XpP 6,12 PLNET(1) | planets

Theory:‘
The position of the Sun with respect to the Earth is determined from the mean motion of
the Sun as described in the Supplement to the Nautical Epheiﬁeris. The mean anomaly of the

Sun is obtained from

G = 358.47584° + .985600267 d - .1.12(10) > D* - 7(10) ° D° (1)
where

d is the number of days since 1900, and

D  is the number of Julian centuries since 1900,
The argument)of perifocus is obtained from

GAM = 281.22083 +4.70684(10)"5 d + 3.39(10)'5 D2+ 7(10)'8 o (2)
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The eccentric anomaly can be determined from the power series expansion of Kepler's
equation since the eccentricity, e, is small. This equation is
2 3

E =Gte sin G + —— sin 2G + ~§—('3sin3G—sinG) (3)

The X and Y components of the Sun are obtained from the ellipse as

X" = a(cos E-e)

Y' = a 4l-e?2 sinE (4)
1

Z =0

where

a is the semi-major axis of Earth's orbit about the Sun.

This X and Y position is rotated about the Z axis to account for the argument of

perifocus. Thus

X = cos (GAM) X' - sin (GAM) Y'
= sin (GAM) X' + cos (GAM) Y'
Z =0

This vector represents the position of the Sun with respect to the Earth in the mean
equinox and ecliptic of date. This vector is rotated to the mean equator and equinox
of 1950 using subroutines M50MDT, OBLTY to establish the rotation matrices and
ROTATE to perform the matrix multiplication.
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SUBROUTINE SOLP

Calling Sequence: CALL SOLP

Purpose: This subroutine calculates the acceleration due
to solar pressure,

Common Blocks Required:. CONST, GRAVTY, INPUT, PLNET, PERT,
STATE '
Subroutines Required; CROSS, DVMAG, VNORM

Input / Output

SYMBOLIC COMMON
1/0 NAME DIMENSION  BLOCK - DEFINITION
1 ATT 3 STATE(11) |Unit vector along spacecraft attitude
1 KP 12 INPUT{1001){Planets in the system
I KSOLP 1 INPUT(1084)|Solar pressure flag
1/0 | RCART 3 PERT(1)  [Perturbing acceleration
1 REFLEK 1 INPUT(198) |Spacecraft reflectivity constant b
1 SOL 1 STATE(36) Solar pressure constant ‘
1 W 1 STATE(35) Lurrent spacecraft mass

Current spacecraflt position vector with

X X 3 GRAVTY(l) jrespect to central planet

Theory:

The acceleration due to solar pressure can be caleculated using two different models, In
the first model, the solar pressure force acts along the radial direction from‘ the Sun,
This model assumes the spacecraft is a sphere or a flat plate perpendicular to the Sun's

rays. Thus the acceleration can be obtained from,

- _  soL ~
2 WR (1- REFLEK) X_ (1)

399



where

W is the spacecraft mass

Rsun is the distance from the Sun

REFLEK is the reflectivity coefficient

Xsun is the unit vector from the Sun fo the spacecraft, and
SOL | is a constant defined by

-8
SOL = Au? (SOLARA) (SPRESS) (10)

where SOLARA is the spacecraft area
' SPRESS is the solar pressure at 1 Au

In the second model, the spacecraft is assumed to be an object spinning about its
centerline. This kind of a model will contribute two components to the solar pressure
force. The first component is due to the absorbed light and is along the radial direction

while the second component is due to reflected light and is normal to the centerline,

see Figure 1., reflected light .
\ Spacecraft

N /¢
PN AN

Figure 1

TFor this model, the radial component is determined from ‘

cos § (1-REFLK) X_ : (2)

where 8 is defined in Figure 1.

The reflective contribution to the solar ﬁressure is obtained from

(a_) _ SOL .
5P oy 2 VAR Rsun REFLEK cos g Fn (3)
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A~

where Fn is a unit vector normal to the plane containing the centerline

and the Sun.
The total acceleration is the sum of the radial and normal components,

Description:

The subroutine determines if the spacecraft is in the umbral cone of any planet before

the solar pressure acceleration is determined. The distance from the umbral cone is
calculated from equation (1) of the SHADOW subroutine description. If the spacecraft

is in an umbral cone,the solar pressure is assumed to be zero and the subroutine returns.
If the spacecraft is not in shadows, the solar pressure is calculated from equation (1)

or equations (2) and (3) according to the setting of the KSOLP flag., The solar pressure

acceleration is added to the perturbing acceleration in RCART before the subroutine

returns,
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Calling Sequence:

Purpose:

SUBROUTINE SPER

CALL SPER (X, Y)

To convert the Cartesian coordinates X{1), X(2), and X(3)
to spherical coordinates.

Y1)y = \/X(l)z +X(2)2 +X(3)2

Y(2) = — (X(3) / J X(l)z +X(2)7), -90°<Y (2) <90°
¥(3) = tan T(X(2) /%), -180°< ¥(3)<180°

Units of Y(Z).and Y(3) are degrees.

Common Blocks used: None
Subroutines Required: None
Input / Output
] SYMBOLIC
1/0 NAME DIMENSION DEFINITION
I X 3 Input Cartesian Vector
0 Y 3 Qutput Spherical Coordinates
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

SUBROUTINE SPNM

CALL SPNM (NMAX, 8, C, P)

SPNM calculates the Legendre polynomials
from '
0 NMAX+1
P, ()t Poyax-1 ®

None

None

Reference: GULICK, L. J., (1970), "A comparison of Methods
for Computing Gravitational Potential Derivatives',
ESSA Technical Report, C & GS 40.
Input/Cutput
SYMBOLIC COMMON
1/0 NAME DIMENSION | BLOCK DEFINITION
Calling
I C 1 Operand (1t - Sz)l/2
Calling
1 NMAX I Operand Highest degree desgired + 1
Calling
0 P 17,19 | Operand Array of polynomials
' Calling
I S 1 Operand Argument of polynomials
Theory:

The associated Legendre polynomials are calculated from the following recursion

relationship: '
P () =1 P () =x Pi () = (1-<2) i
Pg (x) = %— (3x°-1) P;(x) = 3x(1_-x2) 2 Pg () = 3(1-x2)
P;n (x) = (2m-1) (1-;;2)1/2 .PI::i ) +P (%)

For a derivation of this relationship see the above reference.
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Description:

SPNM calculates the Legendre polynomials of § for all degrees from zero to
NMAX-1 and for all orders up to NMAX +1, and stores them in the array P.

1/2

C must be equal to -1-(1—82) NMAX must be less than or equal to 17. The

indices are both one greater than the corresponding index used in the literature.

Thus P(3,1) = Pg in the usual notation for the associated Legendre polynomials.
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SUBROUTINE SPNM

‘ENTER '

Calculate through
P (3,9

N=3

|

> N=N+1

!

Calculate
P (N, 1), P(N,N-L}

P (N,N)
R

M=1

]
s M=M+1

k
Calculate

P (M, N)

yes
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FUNCTION SUNMIN

Calling Sequence: FUNCTION SUNMIN (X, Y, Z)

Purpose: This function determines the minimum angle
between vector Z and a plane formed by vectors
X and Y. The angle must lie between X and Y.

Common Blocks Required: CONST

Subroutines Required: CROSS, ROTATE, VNORM

Input / Output

SYMBOLIC COMMON

1/0 NAME DIMENSION | BLOCK DEFINITION

1 P12 1 CONST(3} Twice pi

1 RAD 1 CONST(1) Radian to degree conversion factor
CALLING

1 X 3 OPERAND| Vector X as described in Purpose
CALLING

1 Y 3 OPERAND | Vector Y as described in Purpose
CALLING

1 yA 3 OPERAND | Vector 7 ag described in Purpose

Theory:

A rotation matrix is determined which transforms to a coordinate system with the X-axis
along the X vector, the Y-axis normal to the plane formed by the vectors X and Y, and the
Z-axis forming a right-handed system. This matrix is established by first calculating the

unit vectors R and S defined by,

I
51
(L
=
~
%
&

R .

wm?
il
[zl
i
w4
~
i

Then the first column of the matrix is the unit vector along vector X. The second column

Ll

is composed of § while the last column is R. The longitude of vectors Y and Z are
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determined in the new coordinate svstem. Note, the longitude of vector X is zero.

If the longitude of Z is between zero and the longitude of Y, the minimum angle is
equal to

SUNMIN = sin @2/ 12}

If the longitude of 7 is not between X and Y, the minimum angle is equal to the minimum
of

SUNMIN, = cos -1 (Z+ X)

~ ”

SUNMIN2 = cos  (Z+7Y)
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SUBROUTINE SUNMIN

ENTER

Determine rotation
matrix

Calculate longitude of Y
and longitude of %

< Y longitude

# longitude

_LSOO_/l\ <Y long. +180°;

Z long,

S1 = cos - (X+Z) la ! SUNM:'[IN:A N
sin (R . ?.,)

-1
|82 =cos  (Z-Y)

Y

[ SUNMIN = MIN (S1, §2)

e

4

RETURN
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SUBROUTINE TABINT

Calling Sequence:

Purpose:

CALL TABINT (X, K, J, N, R)

This subroutine determines the spacecraft thrust
and mass at the current time from input thrust
and mass flow tables.

Common Block Required: INPUT
Subroutines Reguired: None
Input/Output
SYMBOLIC COMMON -
1/0 NAME DIMENSION BLOCK DEFINITION
CALLING Location of the beginning of the dependent
1 J 1 OPERAND | variable table in the input array
CALLING Location of the beginning of the indepen-
I K 1 OPERAND dent variable table in the input array
CALLING
1 N 1 OPERAND | Number of points in the table
CALLING '
O R 1 OPERAND | Output current thrust or mass
CALLING | Time from ignition of the
1 X 1 OPERAND | desired engine.
Description:

The tables that are used to determine thrust or mass valueg are in two parts. The first

part is the independent variable beginning in location K of the input array, This array

consists of the times from engine ignition and must be monotonically increasing. The

second part of the table is an array beginning in location J of the input array. This array

contains values of the thrust or mass flow rate at the corresponding times of the first array.

For example, the thrust in location J+2 occurs at the time since ignition input in location

K+2. The value of J is used to determine if thrust or mass values are to be determined.

If J is greater than 350 and less than 379,then the mass is to be determined. Otherwise,

a thrust table is being used.
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If the thrust is to be determined, the thrust is obtained from

R = A(L) + (A(L) -A (L—l)) (X—A(M)) (A(M)—A(M—-l)) | (1)
where the time X lies between

A (M) and A(M-1)

and A(L) is the thrust at time A(M)

A
The mass is determined by a trapezoidal integration of the mass flow table up to

the current time, X, from

N
M = Z —é1~ '(A(J+i)-A(J+i-1)) (A(K+i) +A(K+i-1)) 2)
i=1

where

N is the location of the last time in the independent variable
array less than X,

The final mass is given by
R =M+ —21- (X—A(J+N}) (A (K+N) + R) (3)

where

R is determined similar to equation (1) except the mass
flow rate table is used.
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SUBROUTINE TARGET

Calling Sequence:

Purpose:

CALL TARGET

TARGET computes the end constraint error vector

for midcourse guidance calculations,

Common Blocks Required:

STATE

Subroutines Called:

CONST, CNTRL, INPUT, MCCOM, PLNET,

M50LEQ, MVTRN, BVE, ORIENT, DVMAG, RETDV,

OREIT, RETRO, CROSS, VNORM, ROTAIT

Input / Output

SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DEFINITION

I JC 1 CNTRL(T) Central body number of end state

1 RTD 1 CONST(1) Radians-to-degrees conversion factor

I UM 12 CONST(5) Gravitational constant array (km3/ secziL
I GKS 1 CONST(45) Earth's surface gravity (km/seczj

1 WTO 1 INPUT(38) Initial spacecraft weight (kg)

1 DJO 1 INPUT{46) Julian date of anchor epoch (days)

I ASPMC 1 INPUT(441) | Specific impulse of the trim motor (sec)
H RCIRC 1 INPUT£444) Final desired orbit radius (km)

I WDROP 1 INPUT(473) | Post-retro drop weight (kg)

I JTARG 1 INPUT(1031) | Target body number

1 IVTI 1 INPUT(1078) | Overburn strategy key

i NORMIN 1 INPUT(1080} | Retro optimization key

I DV | 3 MCCOM(12) 1} Midcourse cofrection impulse {km/sec)
Q DvS : 3 MCCOM(15) § Spherical components of DV - S
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SYMBOLIC COMMON

/0 NAME DIMENSION BLOCK DEFINITION

i ‘ BVD 2 MCCOM(19) | Desired miss-vector if IBTR=1 (ki)
Previously expended midcourse

I DVEB4 1 MCCOM(24) | veloeity (km/sec)

O DVRET 1 MCCOM(25) | Retro velocity magnitude (km/sec)
Anti-retro unit vector

0O TV 3 MCCOM(27) | (lunar eguator ref)

O DVT 1 MCCOM(30) | Trim velocity (km/sec)

0 FUELT 1 MCCOM(31) | Trim tuel (kg)
Cartesian end state

0 X8 6 MCCOM({32) | (km, kmn/sec, lunar eguator)

O WTF 1 MCCOM(47) | Post-midcourse spacecraft weight(kg)

1 PSID 10 MCCOM(80) } Desired end constraint vector

0 PSI 10 MCCOM(100)] End constraint error vector
Miss vector type key

I IBTR 1 MCCOM(167)] (1=BT, BR, 2= RCA, INC}
Celegtial body states at T

1 XP © 6,12 PLNET(1) (km, km/sec)

1 X 6 STATE(1) End state (km, km/sec)

I T 1 STATE(10) End time corresponding to X (sec)
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Description:

TARGET is a very important subroutine in the computation of midcourse guidance
corrections., It computes the end constraint error vector, i, as a function of the
desired end conditions and the end state. In the normal mode of operation, each
guidance law is formulated to constrain radius of closest approach and inclination,
Desired values of these quantities are combined with actual arrival energy and the
direction of the approach asymptote to arrive at equivalent "desired" miss-vector
components, B+ Ty and B Ry- This computation is described in Appendix A of

Reference 1. The first two constraint error vector components are then formulated:

i

PSK(1) = BeTy~ BT,

tual

PSI2) = B-Ry - B:R

actual

where the actual miss-vector is computed in subroutine BVE., The third and fourth

constraint error components are for time of flight and hyperbolic excess speed, respectively.

PSK3) =TFS-T
PSI4) = VINFD - VINF

TFS is the desgired time at closest approach measured from anchor epoch and VINFD
is the square root of the desired arrival energy (03). The fifth constraint error component
is post-retro circular excess velocity, assuming the retro to burn at periapsis anti-

parallel to the velocity there,
PSI{5) = VDAR - VAR

VDAR, velocity desired after retro, is supplied by subroutine MCSET, having been computed
to be circular velocity at the desired arrival radius plus an optional input increment,

VAR, veloeity after retro, is computed as the scalar difference between the arrival

periapsis speed and the retro velocity magnitude, DVRET. DVRET is, in turn, computed
from the rocket equation and the midcourse correction velocity in function RETDV. The

sixth component of PSI is not an ervor, but rather is the total correction fuel,

PSI6) = WTO - WTF + FUELT
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WTO-WTF is the midcourse correction fuel and FUELT is the trim correction fuel.
FUELT is computed by the rocket equation from the trim velocity, DVT, about which
more will be said later. The seventh and eighth components of PSI are the errors in

achieving the desired periapsis radius, PRD, and the desired inclination, OI_NC.

it

PRD - PR
OINC - SINC

PSI(T)
PSI(8)

n

PR is the actual closest approach radius as computed from the end state in BVE.
SINC is the post-retro inclination, which differs from the approach orbit's inclination

only when the variable target inclination procedure is used.

Retro and Trim Calcuwlations:

The retro-strategy implemented in TARGET depends on:

1. arrival energy, C3

2., radius of closest approach, rp
3. inclination, i
4. retro-velocity impulse, fv

. 5. input option keys, NORMIN, IVTI and IBTR,

TARGET computes the '"desired" B-.T and B-R values as functions of these parameters

as well as predicting:

a. tiring true anomaly, &, on the approach hyperbola, -
b. direction, TV, of the spin-axis at retro-fire,

¢. trim velocity and fuel for in-plane trim,

{(Case 13 NORMIN = 2)

In this case, subroutine RETRO is used to optimize 9 and TV and to provide the trim velocity.
Overburn strategies are ignored. De sii‘ed miss vector computation depends on IBTR and

input miss parameters.

(Case 2: NORMIN <2, IBTR = 1)

Overburn strategies are ignored and retro is anti-velocity at periapsis.
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(Case 3: NORMIN <2, IBTR =2, IVTI = 0)

Same as case 2 execept for computation of desired miss vector.

(Case 4: NORMIN <2, IBTR =2, IVII =+1)

Same as case 3 for underburns*, otherwise variable target inclination computations

are invokal,

(Case 5: NORMIN <2, IBTR =2, IVTI =+2)

Same as case 3 for underburns*, otherwise variable approach distance computations are

performed for the desired miss vector, retro direction,and trim velocity.

* An underburn is defined as the condition when the retro impulse would be sufficient for-
circularizing at the desired radius if the closest approach radius were indeed the desired
circular orbit radius.

Variable Target Inclination

The VTI procedure is derived in Appendix B of Reference 1, It amounts to defining
desired miss vector components, BT and B:R, in such a way that an out-of-plane
retro-burn at periapsis of the approach hyperbola can render a circular orbit of the
desired radius and ineclination. This procedure is applicable only for overburns, The
sketch shows the retro velocity impulse, AV, in the plane of the approach periapsis

velocity, Vp’ and the approach angular momentum vector, H.
) H

Vc
AV

Y
o

Geometry of the VTI Procedure
The direction of AV is given by

rY ~ ~

AV=Vp cos ¢y + H sin v

and the new angular momentum vector's direction is

-~ A

H = HCOSB-Vpsinﬁ.
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The angles, o and R, are defined in the derivation of the VTT procedure as functions
of C g &v. and the desired final orbit radius. The desired miss parameters are
computed in such a way that the approach orbit's track differs by g from the desired
orbit's tract at I'p. If the closest approach and inclination constraint errors are

exacfly zero, the post-retro orbit will require no time.

Variable Approach Distance

The VAD procedure, like the VTI, is applicable only to overburns, The basic idea is
to define the desired miss vector magnitude in such a way that it the retro is fired
appropriately in-plane at the desired circular orbit radius, rc, the post-retro orbit
will be circular, It is assumed, first of all, that closest approach radius, rp, of the
arrival hyperbola can be varied without significantly changing the arrival energy, C 3
or the retro velocity iinpulse, v. Assuming further that rp is less than the desired

circular orbit radius, rc, we can write
] N
Vir)=v. R +v
( c) r ' c 8 8

where V. is the radial component of velocity and v_ is the tangential component, The

8
circular, post-retro velocity is:
Vc(rc) = Vc g
[ u
where v, = . The required retro impulse, AV, is
N, » &Y
V = V - = - o
A o v v, R+ (VC v g 8
2 2 2 2 2
and &v = v +({v - = “
r { o ve) v 2 vc va + vc

3 T
c

r

=C+~2-«-L_2 —-J-'L..._h...{_ﬂ_
rc T
S
r
¢ p

r

c

B 2
-—-‘E— C +--J.L_
rc 3
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The only unknown in the above equation is rp. We can solve for rp as follows,

2
r
. 2
cr2+2#r = sz—c _§£J___ ¢ = b
3P p 3 T 2v
c c
r = /u.+°3b _ b

The periapsis constraint error is re-defined for this case as:

PSI (7) = RP - PR.

The desired miss-vector magnitude is easily formulated from rp.

. 1 vV v T
BMAG = ( -2 + 1 ) sin (tan P e P
03 P 1
- P T /
v =4 fc. + , vV =./c
P 3 I‘p e 3

The true anomaly at which the retro motor is fired is found from

cosp = { -—g—- -1 fe

c

where the sign of 4 is determined by input: if IVTI is positive, § is negative and vice

Eal -~

versa. Defining unit vectors P and Q along periapsis position and velocity vectors,

respectively,
R =P cos8+Q sina
p = Psing +Q cosh
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We define AV in terms of an out-of-plane angle, ¢, and a flight path angle, 4.

AV = §v [(9 cos ¢ + Hsin ) cos 4+ R siny]

If the periapsis constraint error is zero, & =, and the maneuver will be in-plane,

If gv is too large to circularize at r, for the actual r and c_, the maneuver will be

p 3
out-of-plane. The direction out-of-plane is chosen to minimize the resultant
inclination error. If §v is toosmall, o will be chosen so that the radial component
of post-retro velocity will be nulled, with the tangential component falling wherever

it may as a result,

v
Vv -V
- 6 s
cos oy = , or g=qif [ cosa| >1
gv cosy

Trim Velocity

The trim maneuvers in TARGET do not attempt to remove inclination errors, They are
treated simply as two-impulse Hohmann transfers from the post-retro orbit to the desired
circular orbit. We require only the specification of beriapsis radius and apo-apsis radius
of the post-retro orbit to compute the required trim velocity. {See TRIM) These may be

computed,given the post-retro energy, C_. , and angular momentum, he. The geﬁeral form

3e
of the post-retro velocity is

.
]

V + AV

Il

(er+v9 E))+§V ,}9 cos v + H sin ¢ cos;ﬁRsin{l

so that the energy (C3e) is

2 2 2
C =yv° - SH {Vr+CWSiﬂ}’) +(v6 + §v cos,-;gCOSy)z

2
+ (Av singcosy) - %—‘L
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where r is the radius of retro-fire. The tangential post-retro velocity is the

magnifude of RX Va.

L N ~

RxV = (v8,+5vcos&rcos;;)H - (dvsingcosy)

' 2 2
he = rwe OV COS COS ¥} + (§V sin gcosy) .

Reference 1 Bjorkman, W.S., Midcourse Guidance for Lunar
and Planetary Orbiting Missions, AMA 71-16,
March, 1971.
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SUBROUTINE TARGET

Translate end state to seleno-
centric, if necessary

kY
Transform state to lunar
equator

[

| Compute energy and miss-vector
(CALL BVE)

o 1 PSI(1) = ¢ BT
PSI(2) = ¢ B-R
2
Compute
BMAG

Determine miss-plane rotation
corresponding to desired inclination

(CALL ORIENT)

PSK1) = -BMAG*cosp- B-T

PSI(2) = BMAG * sing - B R
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@

PSI3) =TFS - T
PSI(4) = VINFD - VINF
PSI(5) = VDAR - VAR

NTIME =3
In-plane overburn
Compute BMAG

Call ORBIT
Call RETRO

bvd

- | VTI -~ Compute
new inclination

45

©®

A -

NTIME =2

150 )6—

Compute trim vélocity, DVT, as
pericynthion maneuver -

200

Compute trim fuel, FUELT
PSI(6) = total fuel

PS{Ty=PRD-PR __ _ .. .

(O

. : (|
Compute retro direction, TV
PSI{8) = OINC -~ SINC

RETURN}

Ly
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

SUBROUTINE TIMEC

CALL TIMEC

This subroutine controls the time logic during
numerical integration.
are to determine the compute interval, dis-
continuity times, and stopping criteria,

PERT, SAVE, STATE

Its primary functions

CONST, CNTRL, INPUT, INTER, INTVAR,

CLOSE, CRASH, DOPLER, INTEG, MOTORS, OUTIL,
ORBIT, OUTPUT, SADOUT, SHADOW, TRMN,

UPDATE.
Input / Output
SYMBOLIC COMMON

1/0 NAME DIMENSION BLOCK DETINITION
I DELT 10 INPUT(180) | Compute intervals

Error control limit for automatig
I ERRC 1 INPUT(1) compute interval determination
I DELTMN 1 INPUT(3) Minimum compute interval
I DELTO 1 INPUT(2) Initial compute interval
I DX 3 STATE(4) Spacecraft velocity
1/0 ELM 6 STATE(14) | Spacecraft orbital elements
1 GM 12 CONST{5) Gravi tational constants
1 JC 1 CNTRL(7) Central planet number
1 JT 1 INPUT(1031) | Target planet number

Counter used in closest
1/0 KCA 1 CNTRIL(11) |approach iteration
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SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
1 KCRASH 1 INPUT{1032) | Closest approach flag.
1/0 KFIRST 1 CNTRI(12) | First pass {lag
1 KFMOD 1 INPUT(1047) | Thrusting mode
O KDIS 1 CNTRI{(5) Discontinuity flag
I KDOP 1 INPUT(1045) | Doppler flag
I KHALT 1 CNTRI.(6) Erroxr return flag
Input trajectory propagator
1 KMETH 3 INPUT(36) method
I KOUT 1 INPUT(1030) | Output frequency flag
I KTHRST 1 CNTRL(Z) Thrusting flag
I KSADOW.: 1 INPUT(1049) | Shadow flag
Trajectory propagator to be used
0 METH 1 INPUT(1013) | on this step.
1 T 1 STATE(10) Current time
I TCA 1 STATE(29) Time of closest approach
Time to begin closest
I TCATST 1 INPUT(513) | approach testing
Switching times of compute
I TCOMP 10 INPUT({170) interval table
I TF 1 INPUT(4) Run stop time
Engine ignition and
I TIG 8 INPUT(380) | burnout times.
Switching times of trajectory
I TMETH 3 INPUT(10) propagator method table
I X 3 STATE(1) Spacecraft position
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Description:

This subroutine controls the flow of logic during trajectory propagation by
numerical integration. When the subroutine is initiated, the initial spacecraft
state is in STATE common. The state at the final time resides in STATE

common when the subroutine terminates.

The primary function of this subroutine is to determine the compute interval,
discontinuity times, and stopping criteria, The discontinuity times consist of
engine ignition and burnout times, final time, and fime of closest approach, The
compute interval is adjusted so that the integrator stops at those times exactly.
The state and its derivatives are saved at the beginning of each step. If a dis-
continuity time is passed 'during the step, the state is restored to the saved value

and the compute interval adjusted to integrate to the discontinuity time.

The compute interval is obtained from the input compute interval table, from the
discontinuity logic to hit a discontinuity time, or, if the automatic compute interval
option is used, the compute interval is determined by subroutine RKSEVN and

passed through INTVAR common.

The time of closest approach to the target planet is determined by an iteration using
subroutines CRASH and TIMEC. 1If the time of closest approach, determined by
subroutine CRASH, is less than the current time, the state is restored to the last
step and the state propagated to the time of closest approach. At this point, the

time of closeét approach is recalculated by subroutine CLOSE. If the last time |

of closest approach is within a specified tolerance of the new closest approach time,
the iteration is converged and the time of closest approach determined. If the
difference of the times is larger than a specified tolerance, the iteration has not
converged and the process is repeated. A total of seven iterations are allowed

with a conversion tolerance of ten seconds,
Besides its primary functions, TIMEC also performs many other functions. These
consist of:

1. Calls to subroutine SHADOW to determine umbral, penumbral occultation

times.
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Determining the trajectory propagation method. If fhe method changes,
logic is included to change the integration variables to the new set of
integration variables. |

Calls to UPDATE to set up arrays for interpolé.tion.

Calls to OUTL for trajectory output,

Logic to rectify the reference orbit when propagating the state

using Encke.

Calls to subroutine CLOSE to determine the central planet.

Calls to subroutine DOPLER to get doppler output,

Calls to subroutine MOTORS to simulate an engine burn by impulsive

velocity.
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SUBROUTINE TIMEC .

ENTER

¥ - -

Initialize computfe interval closest
approach iteration flag, discontinuity
flag and interpolation flag

Determine computel
interval from input

ves
= table

t

Determine new trajectory
~) propagation method and
determine new integration
variables

T > TMETH(1)

Y

no

¥
discontinuity time ﬁ st discontinuity time passed
@:: d for a
discontinuit,
tim ,

no discontimuity time

%
Q
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Call UPDATE to set arrays
for interpolation

Call OUTPUT
to get trajectory
output

!

Call SHADOW
Call SADOUT

Set up new Encke
reference orbit and
store in PERT
common

Encke
rectification
necessar

Set state and deri-
vatives to arrays

in SAVE common

100

Y
all INTEG to propagate
the state one step of '

length H

Call CRASH
./ to determine time
_ of closest

approach
]




final time AE © engine

H=TF-TSAV

imiit

.0
\T

H=TCA-TSAV

l

i

H=TIG(KDUM)-TSAV

Increment closest approach iteration
flag, KCA )

Set state and derivatives to saved

values in SAVE common
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engine

closest Set discontinuity and
| approach interpolation flag

<9

OUTPUT

state # >0

OUTPUT
final state

¥
(RETURN) .
KCRASH >—23{RETURN »
-

KCA =0

X

Call
MOTORS

o

H = DELTO

Call INTEG to get derivatives
on the plus side of the
discontinuity

|

@
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SUBROUTINE TOBODY

Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Qutput

CALL TOBODY (JC)

This subroutine flies along a Keplerian conic
an increment of time and determines the
cartesian state at the end of the step.

CONST, DUM, STATE

ORBIT, TRMN

SYMEOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
I DT 1 DUM(10) Input time step along conic
Osculating orbital elements along with
0 ELM 12 STATE(14) | sines and cosines of i, ¢,
1 GM 12 CONST(5) Gravi tational constants
CALLING
I JC 1 QOPERAND | Central planet number
Fosition and velocity vectors of the state
1/0 X 6 STATE(1) | at the beginning of the step and, on output,
these vectors at the end of the step
Description:

First, the orbital elements are determined from the initial ﬁosition and velocity vectors

using subroutine ORBIT. Next the mean motion is determined from

PV =  GM(JC) / SEM®

where

GM(JC) is the gravitational constant of the central
planet, and

SEM is the semi~major axis

The initial mean anomaly, AMO, is determined from the initial true anomaly using
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subroutine TRMN. Next, the mean anomaly at the end of the time step, DT, ’is

determined from
AM = AMO + PV (DT)

The true anomaly at the end of the time step is determined from the mean anomaly
using subroutine TRMN, Finally, the position and velocity at the end of the time step

" is determined using subroutine ORBIT using the final true anomaly in the orbital elements.
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Calling Sequence:

Purpose:

Coemmon Blocks Required:

SUBROUTINE TRIM

CALL TRIM (ELM, DELV)

TRIM calculates the trim velocity to circularize at
a desired radius and correct inclination

CONST, INPUT

Subroutines Required: None
Input / Output
SYMBOLIC . COMMON .
1/0 NAME  DIMENSION BLOCK DEFINITION
Pre-trim orhital elements (use-ELM{1)=4
1 ELM N Call List | ELM(2)-~e, ELM{4)=v, ELM(5) = i
0 DELV 1 Call List Trim velocity (km/séc)
1 RAD 1 CONST(1) Radians-to-degrees conversion factor
I GM 12 CONST(5) Gravitational constant arra“lm{")' / secz)
1 RD 1 INPUT(444) | Desired orbit radius (km)
1 VD 11 INPUT(445) | Circular velocity at RD (km/sec)
VI CID 1 INPUT({446 i)esired inclination (deg)
1 TRINC 1 INPUT({449) | Inclination tolerance (deg)
I JT 1 INP‘UT(103_1) Central body number

Method:

Once the retro motor has fired, the spacecraft is in lunar orbit. Assuming this orbit

to be elliptical with energy, Cag and angular momentum he’ we will proceed to define

the trim sequence and the trim fuel.cost. The in-plane trim is accomplished with a

two-impulse Hohmann transfer to circular orbit at the desired radius, r
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Case2: 1 <r
a d

The periapsis radius, rp, and apoapsis radius, ra, can be defined from ¢ %6 and he.

2
- h

P semi-latus rectum

i

cSep
e = Y1+ eccentricity
7]

T = P . . di
P 1+e periapsis radius
r = P apoapsis radius
a l-¢e

ro,r
a = —L 2 = _ b semi-major axig

2 c
3e
Case 1: ra >r d The semi-major axis, a’i , and energy, c3_ of the intermediate
1
orbit must be
r T
_ a+ d

a., =
1 2
and c,=_-!r!- = . 29

3i ra T rd



The velocity at r, before the first impulse is

and after the impulse,

: r
- ﬂ C + ..—24!'!’-_ = /\ Eu d
3i r Wro(r +r))
a a‘a d

s0 that the first maneuver requires an impulsive velocity

The velocity on the intermediate orbit at r

/ ﬁvr(r +r)

while the desired circular velocity is

AV = .ii. _t_n%_r.a.'._.. _1
2 T r +r
d a

and the total in-plane trim velocity is

v = /v +5v2

1-
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Case 2: T, < In this case, if is slightly cheaper to transfer first from rp

to rd. By a derivation similar to that for Case 1, we obtain
.- |2 Td Ty
5‘1 T r +r yr + r
P p d a p

r g__ifa__n _1

dv, = V

It should be noted that the two cases can be computed with the same equations by

interchanging roles between ra and rp .

Inclination Change

The inclination is changed by a third impulse executed at the node of the orbit on the
equator. The impulse is applied on the intermediate orbit of the in-plane adjustment

at the nodal crossing of larger radius, Although this strategy is not usually optimal,

it iz convenient: it leaves the node invariant, it always permits a solution, and it
separates the in-plane and out-of-plane trim costs. Let the larger nodal radius

vector {of either the pre-trim or intermediate orbit, actually} be R and its corresponding
velocity be V. If the inclination is to be changed by §i, the rotated post-impulse
velocity, V+ will be

+ ' - c - * . . -
V. =cosgi V +{l-cossi)R-V R + singiRxV

and 6V, =V -V

= (cos §1 - 1) V_+(1-cos5i)R -V R +8ingi R x"V'*

2 L2 2 - - » 2
5v3 (l-cos fi) + sin §i vV -V - (RV)
2 .

2 (1 - cos pi) [ﬁxV_i _

4 sirf (%1—‘ IR x V_IZ

bv, = 2 sin( iRXV_‘=Zsin(l—‘;—il-)v

tangential
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To roughly estimate the cost of correcting inclination, assume l RxV |= J—y—r
d

-~ .0
sv T ofE 51 = 22,94 (S—e“% / deg) 5i

Determination of the larger-radius node is somewhat tricky and deserves some

explanation. line of apsides

larger radius node

The argument of pericenter, ¢, is either wl or ¢ 9 as shown in the sketch, .depencf,ling
on which nodal sense is the ascending one, The true anomaly of the larger-radius node

is computed according fo the following scheme.

- m/2 s w2 f=pg-ow

3
E<w<j : f=2p-w
2 2
In either case, cos f = - |cos .
r= 1+ecosf

and the tangential velocity (needed in the plane-change formula) is

_ b _ Ve

Vtange ntial =~ r

If r is smaller than RD, the plane-change is executed at a node of the circularized orbit.

An inclination tolerance, TRINC, offers a band within which no inclination correction is

made. The correction is made only over to the tolerance band.
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Calling Argument:

Purpose:

Common blocks required:

Subroutines required:

SUBROUTINE TRIM2

CALL TRIMZ (ELMI, F, DV, LOPT)

This subroutine determines the optimum two
impulse 180° transfer between two orbits S

CNTRL, CONST, INPUT, PIT

MVTRN, ORBIT

Inputs/Outputs
SYMBOLIC COMMON :
1/0 NAME DIMENSION  BLOCK DEFINITION
I CINF 1 INPUT(446) | Desired inclination of final orbit
' Calling Magnitude of the first and second
0 DV 1 QOperand trim maneuvers
First and second {rim maneuvers in
o D3 3,2 PIT(3) same svstem as ELMI
Calling
1 ELMI 12 Operand Orbital elements of initial orbit
I JC 1 CNTRI(T) Central planet number
Calling Flag used to calculate trim velocity
I LOPT 1 Operand components, Non-zero to calculate
' components
Calling True anomaly of the first manecuver
I ¥ 1 Quperand on the initial orbit
I RFINAL 1 INPUT(444) | Desired final orbit radius
1 VFINAL 1 INPUT(445) | Desired final orbit velocity
State before firsttrim in same
0 XS 6 PIT(12) eoordinate system as ELMI
Reference:

F. T. Sun, "Analytic Solution for Optimal Tivo-Irnpulse 180° Transfer Between
Noncoplanar Orbits and the Optimal Orientation of the Transfer Plane, ATAA

Journal, Vol 7, No. 10, 1969,
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Theory:

This subroutine determines the optimal two-impulse 1800 transfer between noncoplanar
orhits using the method described in the reference. Since a 180° transfer is specified,
the first impulse must be applied ai the intersection of the initial and final orbit planes,
Thus, the angle between the initial and final orbit planes and the position on the initial
orbit where the maneuver is made can be obtained from the spherical trigonometric

_relationships, see Figure 1,

=Tinal orbit

-Initial orhit

Figure 1

The angle from the reference pl‘ane to the common line of nodes in the initial orbit, A ,
can be determined from the input initial true anomaly, f, and the argument of the
ascending node of the initial orbit as,

A=ftw Q)
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Then, the angle between the two orbit planes, o , can be determined from,

sin 8 = sin i; sin i, / sin A

. + id - 3j
sm()‘zﬂtan( 5 )

where i is the inclination

(2)

B is the angle from the reference plane to the common line of

nodes in the final orbit plane,

the subscripts i and d refer to the initial and desired orbits,

respectively,

The radius and velocity components can he determined from standard orbital

relationships at the initial true anomaly, f,

The orientation of the transfer plane with respeet to the initial and final orbit

planes is described in Figure 2,

transfer

Figure 2

The angles wy and u describe the orientation of the transfer plane with respect to

If the inclination of the transfer plane with respect to the initi

;o= Q{Jx_ K ( 2
av L :Vrl ¥ [VTI -
+{1-.2 qfwz—-
n+l

the initial and final orbit planes, respectively.

4

1
L

then the optimal velocity can now be determined us ing Sun's equation 10,

2n

n+l

COSQ_&-&-

9

al plane is specified,

(3)



where o is the gravitational constant, T is toe radius at £= A u..;:,l‘ VR:L and V‘I‘l are the

raiial and transversal velocity components on the initial orbit relative to loeal circular

veloeity (V/y p/r ), and n is rd/ri.

The equation above is somewhat simplified from Sun's equation since the final orbit
is circular. Thus, \i{
2

{4)
Vg = 1L

il

0

If the velocity of each trim maneuver is desired, then

e 1/2
1-2 COS ty + "2"'
AVE _ 4, L 'n_+i 2. nt
AV o 2n + _'_2_
\r‘ ‘Q’ e VTl cos "'“1
1/ (5)
and 2 2n 2n
y - 'Q—— v ‘4 ——
AV - A Ti 2 n+l v T1 cos a’l n+1
-.-—...——2 = 1 o Jn e
AV

’ 2 2
1i- s 4 —
2 3 n+l cos Y n+1

where A Vl and A \’2 denote the magnitudes of the first and second trim

maneuvers.

The direction these impulses are applied can be determined by noting the following
relationships,

AVR1 T Verr1i” Vm1
AV, = <V sinw, (6)
AVpp T Vorp " Vpp oSy
The second trim is determined in a similar manner as
AR2 7 Vpa " Vet
AVg = Vg Sinw, (7)
AVTQ = Vo cosw, - Voirs

440



In the above equations the components of velocity are defined as follows,

v radial component of velocity of the
R1,2 i . .
initial or final orbit.
v Transversal component of velocity of the initial or
Ti,2 . .
final orbit.
VTTl 9 Transversal component of velocity of the initial or

final orbit written in the iransfer plane.

Radial component of velocity of the transfer orbit at
initial and final orbit crossings.

VRT1,2
All components of velocity, except the radial components of the transfer orbit in
equations 6 and 7, are fixed by specifying the initial and final orbits. The radial
component of velocity is determined from the condition that the total trim velocity

is to be minimized. The total trim velocity is

2 2 2
= = + -
AV AVl + sz ?/A V’I‘l AVN + (VRTl VRl) (8)
+ Q v ‘ v 2 V., -V 2
&V *BVyy (Vgg = Vgo)
Also,
Yer1 T VRr2
(9)
= 0
VRZ ]
since a 180° transfer is specified and the final orbit is to be circular, Now, the
partial derivative of the trim velocity with respect to VRTl can be written a's',
AV Vet Vm + VRT1 = 0
®VRr1 AV, av,
or
Vo V
VR’I‘l A2l {10)
A Vl
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The components of the trim velocity obtained from eguations 6, 7, and 10 describe
the trim velocity with respect to the transfer plane. The trim velocity vector in
the same coordinate system of the initial orbit is obtained through a three Fuler

angle rotation pictured in the figure below,

Z
4

In the figure above, x corresponds to the radial direction, y to the transversal

direction,and z to the normal direction.

The angular elements of the reference orbit define the Euler angles. Thus the

transformation from the x, y, z system to the X, Y, Z system is

< - cosi cos ) -sinyd cos sin i sin ) ~ <
~cos 1 sin Osiny -cos i sin Qcos B
vi = cos i sin ) -5in ¢ sin -gsin i cos )
+eos 1 cos Osin Y +cos 1 cos D cos P Y
Z L sinicosy sin i siny cos i N z

whereyy = I+

The above equation is used to transform the trim velocity components from an orbit

plane coordinate system to the system of the reference orbit,

Optimum Inclination of the Transfer Plane

The condition for the optimal orientation of the transfer plane is expressed by
2 1/2
sinewp  _ 1-2/ cosw, +P, /
sin ey

1 ——2,01 cos uy +p12
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1/2

9 ) Ta/ra\
o = -I—u d/rl 1
! ( a7ty ) Vi

1/2
o = 2 4 T1/7d
o
2 rytry
Equation 12 along with the condition &
= 13
Wy = O tuy (13)

vields a set of equations which can be solved for uy OT uy to yield thé optimum
orientation of the iransfer plane. The solutions to equation 12 resulted in a sixth
order polvnomial in sin w. The equation was solved numerically in order to avoid

the cumbersome task of solving a sixth order equation. A Newton-Raphson procedure
was emploved to determine the solution to equation 13, Sun, in the reference, states
that the solution is unique. Thus, the task of finding multiple solutions with the

Newion-Raphson method is not required.

Descripfion:

The initial orbital elements and argument of the ascending node of the final orbit is
brought into the subroutine via the argument list, The angular components of the

initial and final orbits are used in equations 1 and 2 to determine the position on the
initial orbit where the trim maneuver will take place. Next, the transversal and radial
components of velocity and other quantities reduired for Sun's equations are determined.
The Newton-Raphson techﬁique described by equations 12 and 13 are used to determine

the inclination of the transfer orbii: with respect to the initial orbit,

The magnitude of the veloeity is determined from Sun's equation 10. If only the
magnitude of the velocity is required, the subroutine returns.. ‘This option is executed
through the LOPT flag brought in through the argument list. If the flag is equal to zero,
only the velocity magnitude is calculated, Otherwise, the components of the trim velocity

in the same coordinate system as the initial orbital elements are determined,

_Equations 6, 7 and 10 are used to determine the components of the trim velocity in the

transfer plane. The first trim velocity is rotated from the {ransfer plane to the initial
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orbit piane by 2 rotation through an angle sy about the radial velocity component.

This rotation is expressed by,

DX 1 0 0 éVR
DY; = 0 CcOS Uy sin uy AVT | (14)
DZ . 0 -sin “‘1 cos (,._:l AVN

Next, the rotation defined by equation 11 is employed to obtain the first trim velocity

in the desired system. The angwlar quantities in this rotation are obtained from the
initial orbit.

The trim velocity from equation 14 is added to the initial state to determine the transfer
orbit initial conditions, ’}"hese conditions are used in ORBIT to determine the elements
of the transfer orbit. The normal, radial and transversal components from equation 7
are used directly in equation 11 to determine the second trim velocity in the desired
svsitem . The elements used in eqguation 11 are from the transfer orbit for the second

trim. The logic to rotate the trim components are accomplished in a loop. The IK

flag is used to determine the current maneuver.
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SUBROUTINE TRIM2

Determine initial trim position from
equations 1 and 2.

!

" Determine transversal components
and quantities for velocity determin-
ation,

‘|

Newton-Raphson iteration to deter-
mihe orientation of fransfer orbit

using equations 12 and 13.

!

Calculate magnitude from equation 3

LOPT

# 0

Get magnitudes of each maneuver
from equation 5.

ARETURN

Determine velocity components of first

trim in transfer plane from equations
6 and 10,

Rotate to initial orbit plane using uy. -
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Determine initial position and velocity
vectors from ORBIT.

i
Determine rofation matrix of equa-
tion 11 from ELDI elements

J,

Rotate trim velocity using MVTRN

=2 H{ RETURN

Add rotated first trim to initial
velocity

Determine transfer orbit from QRBIT
and put in ELMI

T

ELMI(3) = ELMI(3) + 7

¥

Determine second trim from
equation 7

IK =2
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FUNCTION TRMN

Calling Sequence: Y = TRMN (J, Q, E)

Purpose: ’This function calculates the mean anomaly
' from the true anomaly and vice-versa.
Common Blocks Required: CONST

Subroutines Required: None

Input / Cutput

SYMBOLIC COMMON
1/0 NAME DIMENSION  BLOCK ' DEFINITION
Calling
I E , 1 Operand Eccentricity
Calling Flag to determine the computation
1 o d 1 Operand =1 Calculate mean from true anomaly
=-1 Calculate true from mean anomaly
I DI 1 CONST(2) pi, 7
I P12 1 CONST(3) twice pi
| Calling :
1 Q 1 QOperand - Input mean or true anomaly

Theory:

1. Calculation of the mean anomaly from the true anomaly. The equations to determine
" the mean anomaly are dependent on the eccentricity, e. If e is less than 1, the mean

anomaly is obtained as follows,

E = cosdl [(cos f+e)/(l+e cos i)]

where  E is the eccentric anomaly and
f is the input true anomaly.

Then the mean anomaly, M, is obtained from Kepler's equation, as

M = E-~-esinE
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11,

When hyperbolic motion is encountered e > 1, the mean anomaly is obtained by

first caleculating the auxiliary variable, F, from
Fy _ e-1 S
o (£} = St & ) @)

Then the mean anomaly is determined from

M = esinhF-F ©(4)

Calculating the true anomaly given the mean anomaly, Kepler's equation, equation (2,
is solved for the eccentric anomaly given the mean anomaly. This is a transcendental

equation and an iterative procedure is required to solve for E,
If a first-order Taylor series is used to represent Kepler's equation, it becomes
V4
M =0 By * %) (EO)"AisjE.O (5)

where © (E) = E,-esinE,

I
(Zﬁ(EO) = 1-ecosEg

If we assume that

? (Ey) =M,
then ,
M-M, = AM =0 (Ej)) AE,,
or M-M }
AE = O o (6)

\] 1+ e cos EO ‘.

A corrective term is added to the derivative of § in order to help convergence.
Thus the change in eccentric anomaly is given by

‘M - Mo '
E =
Akg 1 +ecos Eg +.0le cosd E0 (7)
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The iterative process uses equations (2) and (7) as follows:

1. The initial mean anomaly is input, MO'
A guess is made for the corresponding eccentric anomaly, EO'
Equation {2) is used to determine the mean anoxnaly corresponding to EO‘
The change in eccentric anomaly, A.EO, ig determined from equation (7).
A new eccentric anomaly is determined from E = E + AE.

Equation (2) is used to obtain a new mean anomaly M.

T R = ST U SR X

If (M - M) is sufficiently small the solution has converged. If not,

steps 4 through 7 are repeated until it is small,

The true anomaly is calculated from the eccentric anomaly using

gin f = -?j 1-e2 gin E
and a (8)
cosf= — cosE-e
T
The solution of Kepler's equation for hyperbolic orbits is essentially the same except
that equation (2) is replaced by equation (4) and equation (7) is replaced by
_ M - My :
AF 1 + e cosh FO 9)
The true anomaly is calculated from the auxiliary variable, F, using the inverse
tangent
2 a
g4 -1 sinh F
f =
tan cos F-e ) (10)
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FUNCTION TRMN

Go,

<0

>0
1< <1

A

Determine mean anomaly

from equations (3} and(4)

(s

®‘_

e=e+, 0001

L

Determine mean anomaly
from equations (1) and(2)

= - + i
AM MO E e&unE0

equation (2)

change in mean anomaly using

Calculate AE using equation (7)

!

]5}=E+‘;:'§,}‘g:0

> 2010y 2

AM‘ )
<2(10)'12

Calculate true anomaly from

equation (8)
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J;’

AM=M0+F-esinhF

~equation (4)

change in the mean anomaly using

Calculate AF using equation (9)

F=F+ATF

=2 (10)"12 AM

<2 (10)"12

Caleulate true anomaly

from equation (10)

K

RETURN
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SUBROUTINE TUBE1

Available from NASA Goddard Space Flight Center.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE TWELVE

CALL TWELVE (T)

This subroutine integrétes a set of simultaneous
differential equations using a twelfth-order
predictor-corrector type method.

CONST, CNTRL, INPUT, INTVAR, PERT

DVMAG, EQNS, RKSEVN

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
1 H 1 INTVAR(14) | Compute interval
1 JC 1 CNTRLAT) Central planet number
1 KDIS 1 CNTRL{5) Discontinuity flag
Trajectory propagation
I METH 1 INPUT(13) indicator
Derivatives of the
1 RATES 6 INTVAR(S) dependent variables
: CALLING Initial time on input and time
/0 T 1 OPERAND on end of step or return
Correcior convergence
I TOL 1 INPUT(8) tolerance
1 X 1 INTVAR(l) Independent variable
1/0 Y 6 INTVAR(2) Dependent variables
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Theory:

A set of simultaneous differential equations are numerically integrated over the

time step, H. The scheme employed is a predictor-corrector scheme of summed

ordinate form, Two sets of predictor and corrector equations are contained in

this routine., When second derivatives of the quantities to be integrated are

available, a Stérmer predictor and a Cowell corrector are used. An Adams-

Bashforth predictor and an Adams-Moulton corrector are employed when only

the first derivatives are available, A predictor-corrector numerical integration

scheme determines the state at the end of the step as follows:

1-

The predictor equation is used to extrapolate for the state at
the end of the step (T + H) using the back derivatives {or second

derivatives) at times T, T-H, T-2H, ete.

The derivatives are determined at time T+H using the state

determined in 1.

The corrector equation is used to determine the state at T + H
using the back values of the derivatives at T, T-H, T-2H, etc,

and the derivative at T + H from 2,

The state obtained from the corrector equation is compared to
the predictor state. If the difference is less than TOL, the

solution is converged,

If the solution has not converged, the derivative is determined
using the corrector state at T+H and flow is transferred to

Step 3. A total of 3 iterations are allowed.

The predictor equations are

Y

K+1

p

10
2 H . )
= h S -+ o ‘e
& i§= _i, i Y 11-i Stormer (1)
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I % ‘
= h S+ ‘ Adams-Bashforth 1
}__, o, Y ams-Bash . (1)

*
where oei .emd.:}t‘i are constants described in Table 1,

and ISI{ and Hsk are the first and second sums defined by

I 1 .l
Sert T S T Y

I _u 1
S T St Sen

or if first derivatives only are available

I L e
W "R ]

The Cowell and Adams-Moulton corrector equations used are,

c 2 lm e ]
Y = + Y :
ki =B St 2o B Yoy  Cowell
i1
(2)
- 19 ‘ ] .
c ~ I " * . '
YK+1 = h Sk + Z i Bi Yll-—i Adams-Moulton
*
where Bi and Bi are constants described in Table I
The table of back derivatives is established using a seventh-order.ten-cycle .
Runge-Kutta integration scheme when the discontinuity flag is set to 1, This
flag is set on the first step, or at engine ignition or burnout times. The initial
first and second sums are obtained from the corrector equation as follows,
I Y 10 | |
10 - X
s, = - B Y
—5 . s ‘
9 W 1Z=; i 711 | (3)
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S = & B E B; Yy
L. 1 .- (3)
S0 " 89t Yy .
I oy I

s .
S0t St Sy

If the first derivative is used, the sum is obtained from

Y 10
1 10 * .
Sg * o - 2 By Yy
i=1
. 1 -
810 = 8 * Yy

Only the first sum is needed.

Description:

Logic to numerically integrate either first or second derivative equatibns is
contained in the routine. The METH flag is fested to determine which set of
equations to use, A series of flags are internally set according to the value of
METH. These flags are used to determine the size of DO LOOPS and values of

subscripts. The purpose of the flags are

1st 2nd :
FLAG Deriv:  Deriv: DESCRIPTION
NK 6 3 Number of quantities integrated
NO 0 3 Used to pick out the first derivatives
when integrating second derivative
equations,
IN 2 1 Subscript to identify the integration
coefficients,
I8 1 2 Subscript to identify the first or second
sum., ‘
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KDIS is tested to determine if it is necessary to proceed into the start-up logic.
This logic is used to set up the back values of the derivatives in the XDD array.
The values are obtained by integrating the set of equations with the seventh-order
Runge-Kutta scheme, The compute interval is halved and the integration
accomplished with RKSEVN. The derivatives at the end of every second- step are
loaded into the XDD array. After the Start—up integration, the first and second
sums are initialized using equations (3},
Next, the predicted value is obfained from equation (1). Subroutine EQNS is used

to get the derivatives of the function using the predicted state.

The corrector equation is employed to obtain the corrected value and the test for
convergence is made. The integration is compléte if convergence is obtained,
If not, the derivation is obtained with the corrected state and the corrector equation

employed again, Three iterations are allowed.

The derivative array, XDD, and the sums, 8, are updated after convergence is

achieved.

Note: This subroutine must be used with a constant, fixed step compute interval
as there are no provisions for modifying the back value table.
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SUBROUTINE TWELVE

Z A
I

]

el
w iz

- b o

=

NO =3
IN=1
IS=2

ENTER
NK =3
=2 \M/v <2 e

Start-up procedure., Use
=1 RKSEVN to set up XDD array

KDIS/ Set initial sums using
' equation (3). |

p

Get predicted value, YK+1’ using

o]

guation (1)

g

) R
Call EQNS to obtain :
derivative at T+H

k

Get corrected value, Yc

K41’ USing

|__equation {2)

<TOL >3

Update XDD and
8 arrays

T =T+H

RETURN
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Stormer Predictor

14
.709333000140291806

-2.94977592767957351
7.565365663552188551 -
-12,9585332742103575
15,3441157607824274
-12,6715074479918229
7.19372036335578001
-2.68438193943402276
.594237726972101971
-.0592405641233766233

TABLE I

INTERPOLATION COEFFICIENTS

Adams-Bashforth
Predictor

o¥*

3.4519884004562823

~-13,8168372652617444
35.4336533489658489
~60,8353967251883918
72.1837392401194484

-59,7076813146344396

33.9395351414141414
~12,6774970438512105
2.80868181442400192
-.280189596443936721

Cowell Corrector
B

. 0592405641233766233
.116927358906525573
-.283950542127625460
.456997940716690716
-.518014808301266634
.415493601691513357
~.230988982082732082
. 0848526685505852171
-.0185565538820747153
. 00183208573833573833
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Adams-Moulton
Corrector

B*
.280189596443936721
. 650092436016915182
-1,20830542528459194
1.81090177569344235
~1.,99558147196168029
1.575260936247394538
-.867866061407728073
.316787568141734808
-.0689652038740580406
. 006785849928463470685




Calling Sequence:

Purpose:

SUBROUTINE TWOPIT

CALL TWOPIT(ELM, DUT)

This subroutine is used in conjunction with
TRIM 2 to determine the minimuwm two-
impulse, plane-change post-injection trim

maneuver,

Common Blocks Beq'u:ired—: CONST
Subroutines Required: TRIMZ2
Input/OQutput

SYMBOLIC PROGRAM COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
0 ‘ DVT 1 Calling Argument Total velocity requirement
I ELM 6 Calling Argument Pre-trim orbit
1 PI 1 CONST(2)
Description:

This subroutine is used in conjunction with TRIM2 to determine the optimum place

on the initial orbit {o initiate the two-impulse plane-change maneuver, Subroutine

TRIM?2 determines the optimum maneuver between two orbits, However, the

position on the initial orbit must be specified,

This subroutine uses a half-interval

search to find the position on the initial orbit which results in the minimum trim

regquirements,

The search is accomplished by stepping the true anomaly around the initial orbit,

On each step, subroutine TRIM 2 is called to determine the velocity requirement,
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As TWOPIT steps along the true anomaly, the true anomalies on the two previous
steps and their corresponding velocity requirements are saved in the OS5 and DVS
arrays. The DVS array and the current velocity, DVT, is used to determine if

a minimum velocity requirement has been passed. If a minimum is not passed
the logic continues to step true anomaly. The subroutine goes into its half-
interval search phase when the minimum criterion is satisfied, The LPASS

flag is non-zero when in the halfinterval phase.

It is known that the minimum occurs between the current true anomaly and the

true anomaly stored in OS(1) when the half-interval search phase is begun, see

Figure 1. ov bl N _ . _ o o -
DUSLLY-—- - - ]
= | :
£ ' '
& VS - - ~a - - '
H 1 ! !
g* : i . p
Q i t
m : | : }
£ i | ; , i
3 os) o os@ @ o
=

TRUE ANOMALY
The true ainomaly interval is halved and added onto the value in OS(1), Then-
the velocity requirement at this point is determined ( @ in the figure), If the
velocity at (T) is less than 08(2), the minimum must oceur between 0S(1) and
08(2). If this condition is true, the interval is halved again and the process
repeated between the points OS(1) and @ . If the velocity at @ is greater
than 08(2), the minimum lies between@ and ¢. The velocity requirement
is then determined at () . If the velocity at @ is less than DVS(2), the

minimum must occur between 0S(2) and ¢, Then,

H

0S(1) = 08(2)
05(2) )
DVS(1) = DVS(2)
DVS(2) = DV (D)
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and flow transfers back to the beginning of the half-interval gsearch, If the
velocity at 2 is greater than DVS(2), the minimum occurs between @ and @ .

For this case

os@) =@

0S(2) = 08(2)
Dvs (1) = DV (D))
0S (2) = DVS (2)

The flow returns to the beginning of the search,

The search is terminated when the interval in true anomaly has been halved
enough times to cause it to become less than a stopping value. Logic is in-
cluded to search the entire orbit for minimums. This is required because there
are many local minimums, The subroutine terminates when the final true
anomaly is more than 27 greater than the initial value. Prior to termination,
TRIM2 is called with the value of true anomaly corresponding to the absolute
minimum and the input flag set to obtain components of the trim along with

its magnitude.
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SUBROUTINE TWOPIT

' ENTER )

20,

Set constants
LPASS = 0
ISTEP = 0
Get velocity requirement
TRIM 2

ISTEP = ISTEP + 1 j

DyT

;-J‘!, R_ETURN’

% DVS(2)

Minimum between
0O8(1) and OS{(2)

O2) =0
DVS(2) = DVT

330 \I&
Tnitialize 27 ISTED
DVs, 08
array
0O =0+DELQ

Not
Passed

Update OS, DVS

0O =0 + DELO

Pasgged

DELO = 1/2 DELO

<O STOP

DELO

> OSTOP

Set true anomaly
for @ of figure
0 =08(1) + DELO

®

400
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Set up true anomalyj
for (2) of figure
0S8 =0

DVSS = DVT

0 = 0§(2) + DELO




> DVS(2)

DVT >—
<DVS(2)

Minimum after OS(2)
0S(1) = 05(2)
DVS(1) = DVS(2)
03(2) = O

DVS(2) = DVT

<DELVTS

Y

Minimum between () and &)
0S(l) = OSS
DVS(1) = DVSS

S

DELVTS = DVT
» OSAV =0

{

LPASS = 0
ISTEP = 0
DELO = DELOIL
0O = 0+ DELO

o)

> Initial O +2 g
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_§

Get components of frim
at absolute minimum (OSAV)
TRIM2

RETURN




Calling Sequence:

Purpose:

Common Blocks Used:

SUBROUTINE UPDATE

CALL UPDATE

This subroutine sets up the array of back
derivatives used for interpolation in subroutine

INTERP,

INPUT, INTER, INTVAR, STATE

Subroutines Used: None
Input / Qutput
| SYMBOLIC | COMMON |
I/0 ° NAME DIMENSION | BLOCK { DE FINITION
Array of back derivatives of the
0] ACL 6,10 INTER(71) { integration variables
Counter used to indicate the
I INT 1 INTER{131)§ current value in arrays
Array of back values of the
0 POS 6, 10 INTER(11) | integration variables
Current derivatives of the
1 RATES 6 INTVAR{8)| integration variables
1 T 1 STATE(10)| Current time
O X 10 INTER(1) Times of the back values
I Y 6 INTVAR(2)] Current integration variables
Description:

This subroutine sets up arrays which contain the back values of the integration variables,

derivatives of the inlegration variables and times at which the back values are stored in

the arrays. The INT flag is used as an indicator to determine which back value is current.

. The back value arrays can hold up to ten back values. Only five of these back values are

used. The longer table decreases the number of times components in the table must be

moved.

If INT is larger than 10, the last five back values of the table are set in the first

five slots and INT reset to 5. If INT is zero, the back values arrays are restored to zero.
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Calling Sequence:

Purposge:

SUBROUTINE VIEW

CALL VIEW (X,Y,J, A)

To calculate the lighting characteristics
of a planet as seen by the spacecraft.

Common Blocks Required: CONST
Subroutines Required: None
Inputs / Outputs
SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DESCRIPTION
&) A 1 CALLING Percent of planet lighted
ARGUMENT
I J 1 CALLING
ARGUMENT Planet number
1 RE 12 CONST(17) Equatorial radius of the planets
1 X 3 CALLING
ARGUMENT Vector from spacecraft to the
planet,
I Y 3 CALLING '
ARCUMENT Vector from Sun to planet.
Theory:

Let 8 be the s/c-planet-sun-angle

X, ¥, % system centered at the planet with

x toward the s/e, z normal to the s/c-planet-sun plane, and y in the plane

x,y',2' system same as x,y, z,
x' is toward the Sun.,

except rotated about z an angle@such that

Then the equation for the terminator circle formed on the planet by the Sun is described

as
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‘2+z'2 = r 2 '
y < )
x' = -%
8
where
T = Tr cosa
5
X =T sin a
8

and T, is the planet's radius

a is the half cone angle -

The rotation from the x,y,z system to x',y', z' is obtdined from

x! cos@ sind 0 X
y' -gin@ cosf 0 v
z! 0 0 1

Equation (1) written in the s/c system becomes
x cos@ +ysinf = -x - :

8
2 9 (2)
(-x sin@ +ycosf)y +z = r

The s/c also sees a circle on the planet described by
2 . ZZ - 2 '

y , c
(3)

X =X
C

where
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xc = re sin 3

r =r COSB
c e

B = sin_1 f_e_
r

The terminator ellipse will intersect the viewing circle where the plane x = xc

intersects the ellipse, or

x cos § +tysing =-x
c 8
and (4)
2
(—xcsin @ +ycos g )2 +22 =r

thus the intersection points are

= =X = 0
y1 S 'ch S0

(5)

sin @

where

o<
0

~Xx sin@ + | -x_ -x cos@ cos g
c s "¢
sin @

L2
-x sin @ - x cosg ~X cosf ~X = X COS
c s c I )

sin@ sin @

The sun ellipse can be rewritten as
- + i
x = Xs y sin@
cosg A
12
-X + i
(xs ysing sin@+ y cos @ +z‘2 = r2
cos @ '
= 6)
. 2 27]2 {
-x 8 + in~ 6
X ing +ysin @ +ycos@ 4 g2 = p 2

cos @
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. 2
(——-———-_xssm6+y\ 2 2

+ =z = 7
cos @ / ’ 8

The shaded area of the disk in the figure below is obtained from

A
2
A =J(Y"Y1) dz
1
f%cose\[—é_'— + xssmﬂ -y, dz.
z (7)
_ cosﬂ \} _Ig:_ +z(xs‘sin6-y1) 2
S
Z
1

The area of the rest of the circle (the crossed-hatched area) is determined from

2 : | '
1[ 2 2 -
L. o+}y P v + r ° sin by _
Z c 1 c -1-;-- _ (8)
c ' _
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Description:

The areas determined in equations (7) and (8) are determined in a straightforward
manner. The initial vectors are input via the argument list while the planet's ra-
dius is in CONST common. The area determined by the sum of equations (7) and
(8) is divided by the total area to determine the percent lighted. If the 'spacecraft-
planet-Sun angle is greater than 50 degrees, the percent caiculated is the darkened

area, Thus, the percent is subtracted from 100 to determine the lighted area.
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Calling Sequence:

Purpose:

Common Blocks Required:

Subroutines Required:

Input / Output

SUBROUTINE VISIB

CALL VISIB (TIME, XIN, JC, KEL)

VISIB computes tracking station visibility.

CONST, INPUT, OBSIT, PLNET

DOT, DVMAG, MVTRN, M50EPM

SYMBOLIC COMMON
1/0 NAME DIMENSION BLOCK DEFINITION
I TIME 1 Call List Time from anchor epoch (sec)
1 XIN 6 Call List Spacecraft's position vector(EE50, ki)
i
I
I JC 1 Call List | Central body of XIN
\ deg
0 KEL 10 Call List | Visibility or elevation array “TU
Radians~to-degrees
I RTD 1 CONST(1) i conversion factor
T RAD 12 CONST(17) | Planetary or lunar radii (km)
I DJO 1 INPUT(46) | Julian date of anchor epoch (days)
I OBSL 10 INPUT(410) Tracker longitude array{deg)
1 XOBS 10,3 OBSIT(21) | Tracker radius vectors (EPM, km)
Celestial body states at TIME relative
I XP 6,12 PLNET(1) | toJC (km, km/sec)

Method:

~ VISIB is called both for visibility at midcourse time and for visibility at retro ignition. In |

either case, the spacecraft's position, X, is transformed into Earth's eguator and prime

meridian coordinates where the trackers'’ positions, R

S = X—Rt, is used to compute the elevation angle, El.

El =

90° - cos‘1

SI‘t

( S'Rn
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reside. The slant range vector,




The KEL element corresponding to El is the integer part of

£l i,
10
if El is positive and zero otherwise. Thus, if the elevation is negative at the I-th
tracker, KEL (1) =0. If elevation is between 0° and 10°, KEL () = 1, if it is
between 10° and 20°, KEL (I) = 2, ete.

If the central body is not the Earth, the spacecraft's position is first translated to be
Earth-centered before computing the slant range vector. In addition, occultation by
the central body is checked. If the central body indeed occults the spacecrait from
the I-th tracker, KEL (I) = 0,even if the elevation is positive, The criterion for
occultation is as follows. Let R be the spacecraft's position relative to JC and rm

be the physical radius of JC., Then if

the spacecraft is occulted, Otherwise it is not, If the spacecraft is occulted while
the state is Earth-centered (way out past the Moon)) it would not be detected because

the test would not be made,
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FUNCTION VNORM

Calling Sequence: CALI VNORM (X, Y)
Purpose: This function determines the magnitude of a
' vector and a unit vector in the same direction
as the input vector,
Common Blocks Required:' None

Subroutines Required: None

Input / Output

SYMBOLIC { COMMON

1/0 NAME i DIMENSION! BLOCK ¢ DETINITION
CALLING

1 X 3 OPERAND | Input vector
CALLING

0 Y 3 OPERAND | Unit vector along X
FUNCTION

0 VNORM 1 NAME Absolute value of X

Description:

The absolute valile of the input vector, X, is determined from

2

2 2
R = JXI +X2 +X3

where Xi’ i=1, 3, are the components of X. The components of the unit vector Y are

determined from

Y. = X. /R i=1,3
1 1
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