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SUMMARY

The conventional six4engina reaction control jet relay attitude
control law with deadband is shown to be a good linear approximation
to a weighted time-fuel optimal control law. Techniques for evaluating
the value of the relative weighting between time and fuel for a
particular relay control law is studied along with techniques to
interrelate other parameters for the two control laws.

Vehicle attitude control laws employing control moment gyros
are then investigated. Steering laws obtained from the expressi&n
for.the reaction torquelof the gyro configuration are compared to a
total optiﬁal attitude control law that is derived from optimal linear
regulator theory. This total optimal attitude control law has com-
putational disadvantages in the solving of the matrix Riccati equation.
Several computational algorithms for solving the matrix Riccati
equation are investigated with respect to accuracy, coﬁputational

storage requirements, and computational speed.
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I. INTRODUCTION

Some aspects of optimal attitude control systems are examined in
this study. The conventional six-engine reaction control jet relay
attitude control law with deadband is compared to an optimal weighted
time-fuel attitude control law. The relay attitude control is shown
to be a good linear approximation to the weighted time~fuel optimal
control law, then a procedure is developed to determine the optimal
control law weighting of time and fuel that corresponds to a given
relay attitude control law with deadband. This time-fuel weightiﬁg
value is determined by selecting the value that minimizes the mean
square errotr between the switching curves of the two control laws.
Nekt, a procedure is_de#eloped to determine the six-engine relay atti-
tude confrol law with deadband that most closely corresponds to a
‘given optimal weighted time-fuel attitude control laﬁ.

| Vehicle attitude control laws employing contrel moment gyros
(CMGs) are then investigated. The reaction torque of the gyro con-
figuration on the vehicle is determined in terms of the gimbal angles,
the gimbal rates, and the vehicle rates. This expression cannot be
solved for the gimbal rates directly, so different procedu:es for
obtaining the gimbal rates are examined. Basic approaches to obtain=~
ing these steering laws given the commanded torque are compared with an

optimal control moment gyro attitude control law that is obtained
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from optimal linear regulator theory. This system is reduced to the
linear regulator by frequently linearizing the system as the CMG
gimbal angies travel some prescribed amowunt frbm.their previous
nominal wvalue., This total optimal CMG attitude contrel law has some
computational didadvantages in attempting to solve the matrix Riccati
equation on a flight control coméuter. A sensitivity analysis is
performed on the gain matrix to determine if any gains can be considered
constant. Several comﬁutational algorithms for solving the Riccati
equation are investigated with respect to accuracy, computational

storage requirements, and computational speed.



II. RELATION OF A REACTION CONTROL JET CONTROL LAW
TO AN OPTIMAL WEIGHTED TIME~FUEL CONTROL LAW

The attitude contrdliléw for the conventional six engine reaction
control jet system has the phase plane portrait shown in Figure II-1.
Although it is suspected that this control law was originally developed
empirically, it will be shown that this law closely approximates one
determined by utilizing optimal control procedures.

The analysis will be simplified by assuming that the system
dynamics can be represented as 1/s2. It will also be assumed that the
‘position, ¢, can be obtained by integrating the body rate, $, directly
and that the position and rate signals can be measured. With these
simplifications, the system to be controlled is depicted in Figure II-2.

The state equations for this single-axis system are

1T o (11-1)
X, = U :

For a reaction control jet control system, the elements to be
considered in a performance ﬁeasure are time, fuel, and final state.
The performance measure will noﬁ penalize the final state, but rather
the final state will be constrained to lie within the deadzone limits

(i.e., |¢(tf)[j¢d3). Thus, the performance measure weighting time and

fuel is
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te
J(u) = j A+ |u(e) |} de (I1-2)

to

where A is the relétive weighting of time and fuel, and u(t) is the
control law. Since the final position is constrained to 1ie within
the deadzone limits, this problem can be solved for ¢(tf) = (0 and the
results shifted to the limits ¢(tg) = ¢qp and ¢(tg) = -¢4p for the
solution to the deadzone problem.

For this problem, the Hamiltonian is
H=2x+ |u| + p1 %9 + pou (II-3)

The necessary conditions for optimality.are

L S (11-4)
apl ‘
M % _ 0 (11-5)
__ Py =0 (11-6)
9%y - '
- _BH_ _ ﬁz = '.ﬁ]_ , (II-7)
9%,
2
laf + 8,8 < [u] + ,u | (11-8)

where the hat above the states, costates, and control indicates the

optimal trajectories and the optimal control history. Pontryagin's

minimum principle, Equatioﬁ (I1-8), reveals that the form of the optimal



control is

41 for ﬁz < -1
0 for -1 < ﬁz <1
g = - ’ (11-9)
-1 for fp > 1

singular for o = =1

Integrating Equations (II-6) and (II-7) yields the following solutions
to the costate eguations
R (11-10)
by = -Gt + Gy
where C1 and C, are constants of integration. The solution for Py in-
dicates two things about the‘optimal control since 1 is expressed as a
function of the costate trajectory, fy. First, singular control exists
only for the special case with ;=0 and C,=tl. If ¢ 1s any value
other than zero, P, cannot remain at *1 for any finite period of time.
For Cl=0’ §2=C2 indicating the condition that Cz=il for the existence
of singular control. Secondly, for Cl#O, ﬁz changes sign no more than
once fat t=C2/01) and passes through f,=-1 and ﬁ2=+1 no more than once,
resulting in two control switchings at most. This indicates that the
form of the optimal control law in its most general form will be
{1,0,-1} or {-1,0,1}. Depending on the initial conditions, the first
elements in these contrel strategies might be unneceassary. These special

case control strategies are {0,-1}, {0,1}, {-1}, and {1}.



Integrating Equation (II-5) with d=t] yields the solution for %, as

12 = *+t + C3' (11-11)

where Cg is a constant of integration. Then integrating Equation

(1I-4) yields

2, = #5t2 + Gt + C, | (1I-12)

where C, is a constant of integration. Solving quation (II-11) for t
and substituting this result into the expression for ﬁl given by

Equation (II-12) gives the trajectories in the phase plane for u=tl as

%) = Hs2¢ + Cg | (TI-13)
where C5 = C, - %kcza for u = +1
and Cq = C; + %03 for u = -1

Integrating Equation (II-5) when =0 reveals that 5 is simply a constant
for any such period in the optimal control history. Then, intggrating

Equation (II-4) ylelds

2 = kit + kK (I1-14)

where k; and k; are the constants of integration. Therefore, when G=0,
%, remains constant and R, 1ncreases or decreases with time depending on

the value of RZ at the time 4 is switched to zero.



The parabolas defined by Equation (I1-13) for Cg=0 are the min-
imum time switching curves that will bring the system into the origin of
the phase plane. The remaining step is to determine the switching lines
that define the switch from di=-1 to =0 and the switch from o=+l to 0=0.
Following the procedure employed’by Kirk [1], t, denotes the time when
the Optimai control swifches from +1 to 0 and t; denotes the time when
the optimal control switches from 0 to -1. Figure II-3 shows some
candidate trajectories for a given initial con&ition. Since t, occurs
: somewhere on the segment C-K, points D, F, and H are candidate points
on thé switching curve that switches G from +1 to 0. The points E, G,
and I are corresponding candidate switching points for the switchlfrom
0 to -1 since t) ﬁust occur on the segment K-0, Equation (II-13) relates

ﬁl and 32 on E-0, so that

£, (t) = kg3 (1), (II-15)

which leads to
2 () = %% (ty) . (I1-16)

Integrating Equation (II-5) with d=0, for the switch from d=+1 to G=0

occurring at t=t,, ylelds
Rz(t) = k3 = ﬁ(to) (I1-17)

Then,'integrating'Equation (I1-4) gives



%

» X1

Figure II-3. Some candidates for the optimal trajectory with initial
conditions Xl({)) = X9 and - X, (0) = L
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ty . ty
j %) (t)de = .g 22(t°)dt _ (1I-18)

l'.O tD

Therefore, performing the integration of (II-18) yields
ﬂl(tl) = 21(to) + xz(to)[t1 - tol (TT-19)

As was earlier determined using Pontryagin's minimum principle, fip=*1

for control switchings. Using this result in Equations (II-10) yields

{

ﬁz(to) = -Cjt, + Cy = -1 | (I1-20)

(II-21)

i
=

Since 22(t) ig a constant for (=0, then ﬁz(to) = ﬁz(tl). Since the

Hamiltonian is required to be identically zero along the optimal

trajectory, at t=t,

A+ Jaleg) [+ CiR (e + By(E)E(E,) = 0O | (II-22)
but lace )| + By(e)a(E,) = 0 i (11-23)

since f,(r,) = -1. Therefore,

A+ CiRy(ty) = 0 | (11-24)

Solving Equatibn (EI-24) for C; gives
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Ci = - _A (11-25)
29 (to)‘

Subtracting Equation (II-21) from Equation’ (II-20) yields

[ty - t,) = -2/¢p (1I-26)

which, using Equation (II-25), becomes

[ty - £,] . 2%5(t,) (11-27)
A |

Equating the expressions for Rl(tl) given by Equations (II-16) and

(I1-19) gives

585 () = <R3 (t ) = R (r)) + Ry(tr) [t - t.] (I1-28)

Using Equation (II-27), Equation (II-28) becomes

285 () = 2, () , 283(c,) (11-29)
X

which can be solved for ﬁl(to) to give the switching line in the phase

plane as

) 2;4 25(c,) | & (11-30)

In an analogous manner the switching curve for G=-1 to =0 is determined

to be



i2

%1(tg) - %4_-3 23 (t ) | - (T1-31)

Figure 1I-4 shows several of these optimal switching curves for
various values of A. These resulté confirm the intuitive feeling that
as A approaches infinity the weighted time-fuel law approaches the
minimum time control law. Figure II-5 shows some weighted time-
fuel optimal trajectories for three sets of initial conditions with A=1.
Now, to analyze the original deadzone problem, these results will
be shifted to ¢(ty) = b4n and p(tg) = -¢4p Dy a change of variables.
The phase plane portrait that is obtained by this shift is shown in
Figure II-6, However, since the control law only maintains ¢ within
a deadband, then the inner switching curves are meaningless. The
internal A switching curves, B-F and C-G, will bé omitted because
another of the switching curves has preceded these curves in performing
its originally intended switching function, The internal winimum time
optimal switching curves, A-B-C and F-G-H, could possibly be used
along with the external switching curves, I-C-D and E-F-J. They are
omitted because any overshoot resulting from applying u=11 along the
internal minimum time switching curves places the system out of the
deadzone. Their omiséion also more clearly indicates that the optimal
contrel is (=0 in the shaded‘region of Figure 1I-6. Since this
contains part of the deadzone region, contrel effort is mnecessary
because the control objectives have been met. Since the internal

minimum time switching lines, B~C and F-G, are special cases of the
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A=10
-1
A=l
A=,1
|
> =%
A=.1
kel
0=+1
x10
time-cptimal ;I
curve

Figure I1-4. Optimal weighted time-fuel switching curves for x=.1,1,10.
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P=%9

Figure II-5. Optimal weighted time-fuel trajectories for intial
conditions A,B,C with A=1.
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> ¢

Figure II-6. Shifted weighted time-fuel optimal switching-curves to
glve the optimal deadzone weighted time-fuel control law.
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region just mentioned and G=0 on both sides of these curves, they will
be omitted. The resulting optimal attitude control law comppsed of
switching curves I-C-D and E-F-J in Figure II-6 is shown in Figure II-7
along with the presently employed reaction control jgt attitude control
law superimposed forlcomparison.

The control system that gives the presently employed reaction
control jet control law is shown in Figure II-8. Before determining
an expression for a value of A that gives the optimal weighted time-~
fuel control law that corresponds to a particular rate ledge and rate
limit control law, some of the terms shown in Figures II-7 and
II-8 will be defined. r is ﬁhe limiting value for ¢ in the ¢
feedback loop in Figure II-8. Figﬁre II-7 reveals that the sloping
deadzone curves reach their limiting wvalues for ¢=1¢R. The mgximum
rate of the system in the (=0 region is $1im’ while therminimum rafe
in the =0 region for [6|>0R 1s d;ledge. ¢, 1s the commanded vehicle
attitude, and P48 is the width of the deadzone about ¢,. Finally, A
is the rate feedback gain.

The rate ledge and rate limit can be reléted to the states which,
in turn, are related to A inrthe phase plane. These expressions may
be solved for the value of A that pgives a weighted time-fuel curve
which intersects the rate ledge at ¢=¢0 as shown in Figure I1I-7.

For [¢[59R the equations for the switching cutrves can be determined

using Figure II-8 to be
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Figure I1~7. Phase plane of the reaction control jet control law and
the corresponding optimal control law.
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Apd + ¢ = dgp
Mo+ ¢ =~
Equation (II-13) defines the corresponding optimal switching curves as
42 + ¢ = dqp
(11-33)

5% + 0 = -dgp

Substituting +¢p for ¢ in Equations (II-32) and (II-33), solving these
equations for &, and equating the expressions for ¢ gives the expression

for Al to be

Al = ¢p + b4m ! (I1-34)
2

The rate limit and rate ledge are obtained from Equations (II-32) by
solving for $ with $=tdp- These expressions for the rate limit and

rate ledge control law are

$1im =~ /2(¢g + ¢4p) (II-35)
¢ledge = (g - ¢dB)1 /m (11-36)

The expression for the optimal switching curve corresponding to Equa-
tion (II-36) is given by Equation (II-30). Solving Equation (II-30) for

&2 and including the shift from the origin to -¢4p gives

2 _ _ By, | -
¢ g ¢+ tap) - (11-38)
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Squaring Equation (II-36) and equating the expressions for $2 yields

24 - d4p)? 2 -
TRy (4 + $45) (11-38)
¢r + b4 At o4 o

Equation (II-38) may be solved for either A or ¢0 corresponding tc the

intersection of the rate ledge and the optimal switching curve., Solving

for =85 yields

¢g = -2+ & (dp - 94p)° -%4n (11-39)
A S 2

while solving for A gives

2
A ~4(¢g - dqp) (1I-40)

) (4g - ap)> + (4 + dgp) (4g + $ap)

The optimal weighted time-fuel control law that most closely
corresponds to a particular reaction control jet {RCJ) control system
may be determined by minimizing the mean square rate errors between
the two switching curves. The value of A determined minimizes the
mean square error for a given value of $nax? the largest expected

attitude error. The square error, f(,¢), is defined as

£059) = Gopeimal = Prate Ledge)” | (11-41)

Solving Equation (II-37) gives the expression for $optimal as

: - : 1/2
b = - B (¢ + dgp) (11-42)
optimal ‘Y 14 dB
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$1edge is obtained from Equations (II-32) and (1I-36) as

(G + pg) |2 V2, cgrcps - b4
bz + bap | |

$rate ledge = ﬁ (I1-43)

(¢ - ¢d ), _____2___ 1/2: -~ <p< = ¢R
R B (¢R.+ ¢dB max

The value of A that minimizes the mean square error is obtained by

solving

3 1 Tmax . eyds] =0 (11-44)
A ]é

max ¢dB
-¢'dB

The integral in Equation (II-44) must be divided intec two reglons since
$rate ledge is defined by two different expressions over the interval
from -¢4p to ~9ax* Substituting Equations (II-42) and (II~43) into

Equation (II~41) and performing the squaring operation yields

fl(l ,d)) ’ '¢R<¢’< - ¢dB

fQ,9) = (11-45)
fz(?\ 9¢) s "¢ma_x<¢< - ¢R :
where,  £10..8) _ . 208+ 4ap) L 4(b + 0| ALg+ a5 | 172
» j AR = - dB :
A+ 04 + QL + 4)(¢’R fg‘bd]_;’) +
208 + dgp)? (11-46)

¢+ dap
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1/2

and A ,9) = gﬁm&) 4(¢R - ¢dB) AL + dap) +
‘ Q + 4) (¢R + ¢dB)
2(9p = $45)7 (11-47)
Using (II-45), Equation (II1-44) now becomes
- R ~$max '
2 }' £10,0)d + X £,0,0d8] =0 (11-48)
A

-tdB —¢r

where Equation (II-44) has been multiplied by the constant (‘bma.x ~ ¢dB)°

Evaluation of equations in the form of Equation (II-44) is aided

with the use of Leibniz rule, which is

b(t) b(t) - '
8 g(t,u)du = ag(r,u) du + g(t,a(t))db(t) -
ot ot dt
a(t) a(t)
g(t,b(t)) da(t) . (11-49)
dt

Applying Leibniz rule, Equation (II-48) becomes -

_¢R

—b
& 2£,0,9) d¢ . S P 26,0.,9) dp = 0 (1I-50)
) e

~%4p ~9R

The partial derivatives_ required in Equation (II-50) are obtained by
taking the partial derivatives with respect to A of Equations (II-46)

and (II-47). These partial derivatives are



" 23
210,09 _ BUt 4an) 8[-@ + %B_)] 3/2

‘ | 2
3 o+ 6% g+ o) 0+ 0
(I1-51)
3520,8) _ BG * dam)  8log - bp)-(p + oq5)) 1/
2 o +0? At e o+ 0

Substituting Equatiohs (II-51) into Equation (II~50) and evaluating

the indicated integrals yields

Ky . T Ky o0 (11-52)
M204 )32 q w2 A2 42
where Kl = 8 [(2/5)(¢R N ¢dB)S/z] (II-53a)

(¢’R + ¢dB) 172

Ky = 4(pay = $48)2 ' (11-53b)

(4R + dgp)i/2

CII—53c)

Combining like terms in Equations (II-53a) and (II-53c), then substituting

the result in Equation (II-52) gives

Ry .2 _ 0 (11-54)

A2 o 32 &+ 02

ahere K, o 6/ Cp = 44p) (bnay = 0432 - (32/15) (o - 8,572
2

1
(¢'R + ¢dB)
(I1-55)
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Multiplying Equation (II-54)'by AQ + 4)2 and transposing terms so that

only terms involving A are on one side of the equation ylelds,

A /2 _
Ao+ 4

Squaring Equation (II-56) and solving for A gives the expression for

(II-56)

'y

the 4 that minimizes the mean square rate error between the two switching
curves as
A 4K : (II-57)

i K - K&

As an example, suppose a RCJ control system has ¢gg = 2, ¢£ = 4,
and ¢,y = 10. Figure II-7 shows the relationship of these terms to
the control law. To find the weighted time-fuel optimal control most
closely corresponding to the RCJ system, the constants Ky and K4 are
first computed using Equations (II-53) and (II~55), respectively.

For the example, these constants are calculated to be
Ky = 256
K, =93

Substituting these wvalues into Equation (II-57) yielﬁs A as
A = .61

This system places more emphasis on conserving fuel since the control

law penalizes fuel consumption 1.7 times as heavily as it does time.
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However, since fuel is limited to the fixed amount the vehicle can
carry, a RCJ system will usually place more emphasis on fuel conservaticn.
The previous results were obtained from the standpoint of
beginning with the conventional RCJ control system with the parameters
¢4p» ®gs and bmax Blven. The optimal weighted time-fuel control system
that most closely corresponds to the RCJ contro} system is obtained by
solving Equation (II-57) for the A that minimizés the mean square
error between the two rate ledge switching curves. Now the problem
will be approached in the reverse direction. The value-of A in the
weighted time-fuel performance measure along with the desired ¢dB and
$max for the RCJ control system are given. The problem ié to find the
RCJ system most closely corresponding to this optimal control system.
An expression for ¢p can be obtained in a manner analogous to the
technique used to obtain an expression for A. For this case, Equatidn

(I1-44) becomes

3 1 P £, 9)d0 (11-58)
R | Pmax ~ 4dB .
_¢d.B

where £(¢p, ¢) is the same expression as that defined for fQi, ¢) in
Equation (II-41) with the roles of A and ¢4 aé known and unknown vari-
ables interchanged. Applying the same procedure employed to determine
an expression for A results in a sixth order expression in ¢p. This
expression can be solved with a digital computer using rooct-solving

algorithms. However, a more appealing approach is presentéd here.
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The initial step is to obtain a second order expression in ¢y in
terms of ¢0 using Equation (II-39). Rearranging Equation (II-39) and

performing the squaring operation on (¢p - ¢dB) yields

.¢RZ + a9y +ap=0 ' _ (II-59)

*2¢dB + A (¢0 + ¢dB)

where a;
A+ 4

ag = dgg° + —2— (89 + bg5) b4p
- A+ &

The quadratic formula is used to determine ¢p for a given.¢0 as

bg = —21t(af - 4ag)! /2 (XI-60)

-2

Eqﬁation (II-60) is used to obtain an initial guess of the value of g,
This value of ¢R is obtained by initially guessing the value of bg to
be midway between ¢4p and ¢ .. since thié would be a reasonable guess
for the value that minimizes the mean square error. Therefore,

fmax = 44p | (11-61)

%0 = ~%4p - 5

for the initial guess of ¢4.
In the expression for A given by Equation (II-57), only K, is a
function of ¢i. For the given value of A, the desired value of Ky » K4d’

is obtained by solving (II-56) to give
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) 1/2
K,.=K.| A | (11-62)
4d 2(1 +4) -

A Taylor series expansion of Kﬁ(¢R) is obtained from Equation (II-55) in
order to systematically improve the 1lnitial guess at ¢p. Using only

the linear terms in the Taylor series, Equation (II-55) becomes

K (op) = K, (dpo) + Ky 7(dpg) 8¢y _ ' (I1-63)
wheré 8¢p = ¢p - R0
K, "(8pg) = (16/3) (bpay - $gg) >/ 2B - (32/15)(C - D) (II-64a)
B . Uro ¥ 9gp) /% - 5(eg + ¢d3>_l/2(¢30 - $4p) (1I-64b)
(dgo * d4p) |
¢ - 2-5Cro - 9g8)> (o + dap)™/? - (1I-64c)
(bgo + 93

($ro + ¢qB)

(I11-644)

$ro 1s the present guess for ¢r and K, (¢po) 1is giveﬁ by Equation‘(II-BS).

Solving (1I-63) for d¢g used to update ¢p yields

S¢p = Ralor) ~ Ky(ro) _ Ksg — K4 (dpe) (11-65)
Kq'(¢Rﬁ) Kﬁ'(¢RQ)
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The improved guess for ¢g is now given as
¢g = ¢R0 + 6¢R (I1-66)

As an example of applying this procedure, congider the earlier

example where A was computed to be .61 with $gg = 2 and Ppax = 10.

The initial value of ¢ is computed frdm (IT-61) as
4o = =6

Using this value of ¢q, ¢ is determined from (IT~60) to be
b = 3.74

K, {(¢po) is computed from (II-55) as

K&(3'74) = 83.5

K,q is determined from (IT-62) to be

Kpqg = 93
Next, solving (II-65) for the update, d¢p, gives

Sép = 93 ~ 83.5 _ .252
37.8

The new value of ¢p is given by (II-66) as
g = 3.74 + .252 = 3.992
Computing the new value of K4(¢RD) gives

K,(3.99) = 92.9
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For this case only one update was required to obtain an accurate value
for ¢R' This value of ¢p can then be used to determine Al using
Equation (I1I-34), the rate limit using Equation'(II-BS), and the rate

ledge using Equation (II-36). These values are computed to be

4 = 1.73
 $1im = 3-46

9ledge = 1-16

These values along with the given ¢4q determine the RCJ control system
that most closely corresponds to the given optimal weighted time-fuel
control system. The results obtained in these examples illustrate

the uniqueness of these procedures. That is, if:the procedure is
applied to find an optimal weighted time-fuel coﬁtrol system correspond-
ing to a given RCJ system and then the reverse procedure applied to

this optimal time-fuel system, the RCJ system obtained will be the
original one. Figure II-% shows the optimal control system and its
corresponding RCJ control system for the two examples given.

In summary, under the assumption of second order dynamics, the
conventional RCJ control system is shown to be a good linear approxima-
tion to an optimal weighted time~fuel control system. Furthermore, for
$dB> Pmax’ and $g given, an expression is derived that gives the value
of A weighting time and fuel. This X 1is chosen such that the mean
square error between the switching curves of fhe RCJ system and the

optimal control system corresponding to this value of A is minimized.
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Also, an iterative procgdure is presented to determine ¢p for the RCJ
control system that corresponds to an optimal weighted time-fuel
control system with.kkgiveﬁ. This procedure also requires knowledge
of the desired ¢4 and ¢max for the RCJ control system. The procedure
produces unique results in that applying the procedure followed by

its reverse procedure yields the originai system.

Pigure II-9. Phase Plane for Example System.



ITI. SOME BASIC IDEAS RELATED TO THE USE OF CONTROL
MOMENT GYROS FOR ATTITUDE CONTROL

A reaction control jet (RCJ) mass expulsion system can provide
control within a band of a desired operating state. Control moment
gyros (CMGs), based on the principle of momentum exchange, can provide
the fine-pointing capability required for many space missions. Morine
and 0'Connor describe the CMGC and its relative merits in [2].

The principle of momentum exchange-is.a consequence of Newton's
second law of angular motion which states that the total external
moment, ﬁéit’ acting on a system, is proportional to the time rate of

change of angular momentum with respect to inertial gpace. This can

be written as

o dH
M = system {(I11-1)
de Inertial Space

Considering the system to be composed of a vehicle and a controller,

Equation (IIT-1) can be integrated to yield

f—)— d“+ - > .+-
Mextdt = Hoxe = Heontror * Hvehicle - Hsystem(0+) (I11-2)

Equation (III-2) illustrates that the controller momentum can be used to
balance external torques as well as change the spacecraft attitude by

varying the vehicle angular momentum.

31
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Since electrical emergy 1s used as the prime source of power,
the concept of momentum exchange using CMGs.is desirable because it
provides continuous vehicle contrpl and a recoverable energy source.
Cyclic disturbance torques can also be handledron a continuous basis
over a long period of time. However, constant external disturbances
applied to the vehicle will eventually cause the controller to reach its
. maximum capacity, and thus saturate the (MG, This saturation will re-
quire the expulsion of propellants to remove some momentum from the
saturated CMG. This propellant expulsion task may be accomplished at
a convenient time during the mission. |

The CMG is essentially a gimballed wheel rotating at a constant
speed which provides a constant angular momentum magnitude capable of
variable orientation relative to the spacecraft. Exchange of momentum
between the wvehicle and the controller is effected by causing a change
in direction of the constant momentum magnitude of the CMG.

Figure III-1 shows schematically a two degree of freedom CMG.
It consists of a wheel that rotates at a constant speéd. This wheel is
held in a housing which is called the inner gimbal, The inner gimbal
is coupled to the outer gimbal through the (1) pivot which is perpendicular
to the wheel spin vector as shown in Figure III-1l. The outer gimbal is
held to the base through the (3) pivot which is perpendicular #0 the
(1) pivot. The (1) and (3) pivots are driven by geared D. C. torque
motors.

CMGs cffer several advantages over other momentum exchange

devices such as reaction wheels. Since the CMG operates at a constant
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speed for which the efficiency can be optimized, its efficiency is

greatly improved for most operating momentum values. Larger maxitmm
moment control can be obtained will relatively small turning rates of
the large constant momentum. Another CMG advantage is better bandwidth
over the reaction wheel which has a limited bandwidth due to-the physi-
cal characteristics of the wheel. A final advantage of the CMG is that
it has a more linear approach to saturation than do reaction wheels.
These advantageé coupled with the fact that the CMG provides continuous
control and a recoverable energy source makes the CMG an attractive

device for long duration fine-pointing attitude control missions.

A. CMG Equations of Motion

For any control Sys;em using CMGs, it is first necessary to know
the relationship ﬁetween the reaction torque of the CMG configuration
and the gimbal angles and gimbal rates of the gyros. Throughout this
analysis, the CMG configuration assumed will be the conventional SIXPAC
configuration as shown in Figure III-2.

The relationship between the gyro gimbal angles and the reaction
torque will be obtained by first arriving at an expression for the
angular momentum of the configuration, and then applying Equation (III-1)
to determine the tﬁrque;

The initial step in determining an expression for the angular
momentum is to define three gyro spaces [2]. Referring again to Figure
ITr-1, the "A(j)" gpace.or inner gimbal is described by the coordinate

sysFem IiA(j)"IéA(j)’ and'IAA(j). The “A(j) space coordinate system
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is defined such that the IéA(j) vector .is along the spin reference
axis, the IiA(j) vector is along the (1) or inner pivot, and the ISA(j)
vector completes the orthogonal coordinate system. The "C(j)

‘space or outer gimbal space is described by the coordinate system
110(])’ 120(3)’ and 130(1) which is defined such that the llA(j) and

1C(j) vectors are coincident, the IBC(j) vector lies along the (3)

or outer pivot, and the 12C(j) vector completes the orthogonal coordi-

nate system, The base of the CMG or "B(j) space 1s described by

the llB(j)’ 123(j)’ and 13B(j) coordinate syst:@. With these spaces
defined, the zero position of the CMG is defined when the wvectors

lA(J)’ 2A(j)’ and 1 3A(j) are coincident with the vectors llC(j)’

IZC(j)’ and 13C(j) and coincident with the vectors llB(j)’ 12B(j)’
and lBB(j)f
The (1) pivot angle Gl(j) is defined positively when the inner

gimbél is rotated in a positive direction about the IlA(j) vector with
respect to the outer gimbal as shown in Figure ITI-3. . Similarly, the

(3) pivot angle GB(j) is positive when the outer gimbal is rotated in

a positive direction about the IBC(j) vector with respect to the base

as shown in Figure III-4.

Using the definitions of the coordinate systems and gimbal angles

n tri ) £ LR "g f " n
the transformation matrices from () to 4 space, A(J) to

" space, and "C(J)" to "B(j)" space can be obtained. These

"Cs)

transformation matrices are
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Figure II1I-3. Definition of the (1) pivot angle Gl(j)‘

ﬁlzc(j)
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Figure III-4. Definition of the (3) pivot angle 63(j).
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o) [ 0 0 M i
el T 10 %y St Paag)
Bacgy [0 Sy 1) Faaq)
(III-3)
Hea) (%3 Sy b Pae
Hap(s) = [3%3(5) ®3g Y Mew
Hipes) [ O 0 OB
(ILI-4)
I 9 [~ X . 1 3
By (8@ s % 3% | [Mag
B = B3m %am®igy: %Sy | Pag)
Hipeq) | O 819 “1e | o)
_ (III1-3)
where  S§;(4y = sinb;(y i =1,3; §=1,2,3
and Céi(j) = cossi(j) i=1,3;1=1,2,3

This designation for.sines and cosines of angles will be empioyed
throughout this analysis.

Referring to Figure III-2, the transformation matrices from the
base coordinate system of each of the CMGs to the vehicle coordinate

system are determined for the (1) CMG to be



and for the (2) CMG to be

lx‘f

lYv

lZ‘V

—

0

L.

and for the {(3) CMG to

1

-

Ly

1yv

2V

-~

0

0

L

be

0

1 i3y

r- -

1-2]3(3)

1—33(3)
_J .

(I11-6)

(IT11~7)

(II1-8)

Equations (III-6), (III-7), and (III-8) can be used to determine the

resultant momentum vector of the CMG cluster in vehicle coordinates as

My
Hyy

HZ'V

[}

r“zs(l) + Hygeoy * Hyg(3)
Hipay * Ham2) ¥ Hipgay

By T Hap) T Mgy

(111-9)
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Now, since the vector EﬁA(j) in "A(j)" space 1s defined to be along the

~ spin reference axis, the transformation from "A, . "

(1)

space to "

B(j)"

space can be used to obtain the resultant momentum vector of the CMG

configuration in terms of the momentum magnitude of each CMG.

Assuming

the momenium for each CMG to be Hy, the momentum vector for the jth

CMG can be written in "A(j)"

space as
0 Biach)

=| Ho | = {Haa(y)
0 H3A(3)

(II1-10)

Substituting Equation (III-10) into Equation (III-5) gives the momentum

vector of the jth CMG in "B(j)" space as

&)

Substituting the expressions for the CMG momentums in "B(j)"

5031 %1 BB
@31 %1y | Bo = T2m(h)
1) ] H38(3)

(ITI-11)

space from

Equation (III-1l) into Equation (III-9) yields the expression for the

momentum of the CMG cluster in vehicle coordinates as

[ 831,510 =563,5)81 () + 587 oy

8811y * caB(Z)calcz) =8853y%37 (3

H (ITI-12)
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Equation (III-1) can be expressed in vehicle coordinates so that the

torque applied to the vehicle becomes

+ ¥ > > % >
T _/dH +0QxH=H+QxH
dt

vehicle space

(ITI-13)

EY ' >
where H is as defined in Equation (III-12} and Q is_the total angular

velocity of the spacecraft

X

=
ol

(I11-14)

*
- =+
H indicates the time derivative of H with respect to vehicle space.

Substituting the expressions for 7 given by Equation (III-12) and per-

forming the indicated differentiation and cross—product operations yield

.
T = D§ + EQ

where -883(13C81¢1y  %83(1)S81¢1)

D= HO 0 051(1)

“Ci31)%cy S8y

563(2)561(2) 0
—C53(2)551(2) -C63(3)CGI(3)
C61(2) —863(3)061(3)

(III-15)

‘063(2)C51(2)

—563(2)C51(2)

€81 (3)

583(3)5%1(3)

—063(3)561(3)J
(11I-16)



(III-17)

o

E= | -H,
Hy ~H, 0

pte. ey

and - 33(1)
81(1)
. |8 |
g = .3(2) (I1I-18)
81¢2)

83¢3)

41(3)

b P

E. Some Basic Approaches to CMG Steering Laws.

_Basic CMQ steering laws are concerned with commanding gimbal rates
that will cause thé moment exerted on the vehicle by the CMGs to re-
produce the commanded torque as nearly as possible. The general form
of vehicle attitude contrel using CMGs is shown in Figure ITI-5. The
analysis will ﬁonsider the CMGs to be free of any gimbal stops. The
steering laws considered in this section assume that a vehicle control
law to generate the commanded torque is available. Simulation results
are presented in Chapter V for the steering laws presented in this
section.

Since the D matrix is not a square matrix, it does not have zp

inverse and Equation (III~15) cannot be solved for § exactly. The

>

problem is to take any three-dimensional torque vector command Tc and

develop a six—dimensional gimbal rate vector command gc for the CMG
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torque motors. As pointed out by Ross in [3], one obyious solution

to Equation (III-15) is
3. - oD, - B (I1I-19)
where Déi)representg a matrix which satisfies the following equation
DD@ = T (III-20)

where I is the identity matrix. There are an infinite number of De:)
matrices which satisfy this relationship. For example, partitioning
the D matrix so that it can be expressed as
- | ] ) ’ -
D = [Dy 1D2] EIII 21)

suggests that a possible solution to Equation (III-20) is

(ITI-22)

This solution is valid for those orientations where the D; and D2 matrices

are nonsingular.

The above concept can be extended to the case where the solution

to Equation (1I1-15) is

&, = o7l - E). (111-23)

where D'I.is the pseudoinverse of D. p~t can be chosen to be the pseudo-

inverse that gives the solution for the commanded gimbal rates with



Position
Referenc

Attitude

Error :
‘ Vehicle .
| Control:

Law

Moment CMG
 Command Steering
‘ Law

Vehicle Ratef

Commanded
Gimbal

MG
Configuration

Gimbal Angles

Vehicle Attitﬁdg

Vehicle

Figure TII-5.

Dynamics

Vehicle attitude control with control moment gyros.

Y



45 _
the minimum norm if the solutioﬁ is not unique J4]. This can be
thought of as the % vector that has the minimum length of all possible
solutions. This technique does not depend on any matrices being
non-singular.

It is desirable to design a control scheme that would minimize
~the amount of control effoft required to achieve a given quality of
control. One appfoach [5] is to find the law which minimizes a per-
formance index such as

.
J =i§l ; Gi(j)qi +k£x’y’z (T, - Tk)2 (I11-24)

3
j=1,2,3

The qi's relatively weight the control effort degired from the inpner
and outer torque motors with respect to the quality of control. TIn
order to obtain an algebraic control law in termé of system parameters,
the performance index islpresented in terms of summations. This
evaluates the system on a point-by-point basis in time which indicates
that this law actually places a stronger constraint on the system

than the integral performance measure which evaluates the system per-
formance on an average basis. Expressing Equation (III-24) in vector

form gives
S0 o 4 > > T > 5 .
J=3Tq3 + (T, - T)T(Tc -~ T) ' (II1-25)

Substituting Equation (III-15) into (IIT-25) yields
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A b i
J=?§TQ'§+(?C-D%—E?E)T(’fc—ng—m)

S :
~8T Q8+ T T~ 08 - T - 3 ot 3T pT Da
-+ - % -
+ 3 T e - 2P ET T + 9  E T ps + o ET B0

(I1I-26)

In order to minimize J, the partial derivative BJ/B@T must be equated

to the zero vector. Simplifying this expression yields

&

33 =[ﬁ T DT(_fC - E0) + DT D %} 2 =0 (111-27)
34

3 .
Solving Equation (III-27) for &§ gives
$. = [q + 0f p}1 DT(’fc - E) (111-28)

a ié the positive definite weiphting matrix determining the relative
control effort of the inner and outer gimbal torque motors. Defining
6'1 as Kgy, the steering law gain, and referring to Equation (ITI-24),
it is observed that increasing Kg; will increase the quality of control
at the expense of higher gimbal rates; 'Figure IIT-6 shows a scheme
to realize this CMG contr&l law with D’ referred to as the "Transpose
Steering Law " [3].

The above steering laws have not considered the problem of gimbal
stops or antiparallel orientations. While the laws can be modified to

protect against these conditions, this is not considered in this
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investigation. The basic steering laws developed in this chapter
from the CMG equations of motion are compared to a total optimal CMG

control law (presented in Chapter IV) im Chapter V.

pl . = K

it

SL

Figure III-6. A scheme to implement the transpose steering law.



IV. A TOTAL OPTIMAL CMG ATTITUDE CONTROL LAW

The steering laws presented in Chapter III assumed that a controller
provided a commanded torque as input to the CMG steering law. In this
chapter a control law is developed that commands the CMG gimbal rates
based on the input of the attitude error angles and the error rates.

The variables of the non-linear, multi-input, multi-output CMG system

are treated in a special way so that the tools of linear system theory

can be applied to this problem. The feedback control policy is determined
.using the state variable approach and optimal control theory. The
development of this control pelicy utilizes Kalm;n's work showing that

the optimal contr01 £or a non-linear system can be given by thé scelution
of the optimization problem for a set of system equations linearized

about the current operating peint [6].

The system presented in this chapter is a special case of the one
developed by Skelton in [7] using the concepts described above. The
system presented here differs in that the gyros are considered to be
free of gimbal stops andrthe problem of antiparallel orientations is not
considered., The result of applying this approach is a closed loop law
that generates the six gimbal rate commands as a linear combination of
the vehicle rates and vehicle attitudes. The gains multiplying these
variables are updated as a function of the changes in the gimbal angles.

The states of the system are chosen to be the attitude errors,

vehicle rate errors, and gimbal angles so that

48
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. “1

61(1)
él(2)
181(3)
S3q1)

é3(_2)

§3(3)

o4

il

=

49

(Iv-1)

(Iv-2)

(1v-3)

(IV-4)
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For the SIXPAC CMG system, the equation for the vehicle can be written as

_§=J“1[D3+E§-§xJ'§+'_fex] (1V-5)

where . %ex = the external torque applied to tﬁe vehicle
J = the inertla dyadic of the vehicle
and D, E, 3, and § are as described in Chapter III.
When the primary external torque is due to gravity gradient, it

is shown in [8] that this torque can be expressed as
> >
Toy = T, () + G(x) 8 (IV-6)

where ;;(t) is a time dependent gravity gradient torque evaluated at a
nominal attitude and the elements of the G matrix are the first order
partial derivatives of the torque with respect to & and evaluated at
the nominal 8.

The components of the body rates can be related to the Euler
angle rates by manipulating the transforméﬁion from inertial space to
vehicle space. If the Euler sequence of rotatioms is 1, 2, 3, then the
vehicle reference frame (3) may bé rélated to the inertial reference

frame (;) as

-+ > )

v =& = %] %1 (o] z : (19-7)
where 1 D 0

1.e =10 cos8y gind; (Iv-8a)

o -sinel cosal



rcose2 0 -sin92
0 1 0 (IV-8hb)
sinez 0 cose2

L .

r-.c'.oeaﬁl,’ sinG3 0

-sine3 cose3 0 (IV-38c)
0 0 1J

Therefore, using Equations (IV-8) in Equation (IV47), the elements of

0 are determined to be

811

12

13

21

22

23

31

32

33

c0392c0883

c038151n63 +

sin6151n63 -

-c058251n63

coselc0583 -

sinBlcose3 +
sinﬁ2

—sinBlcosG2

coselc0562

sipelsine cosB3

2

C039151n92C0593

sin6_sinf_sind (IV-9)

1 2 3

cosBlsinezsinB3
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It should be noted that the ;6, 29, 39, and § matrices are wmitary
matrices which means that their inverse is equal to their transpose.
This property is used below to get an expression for the vehicle
- angular velocity. The angular velocity of the vehicle can be ex~

pressed in terms of the Euler rates as

- [ - - L
i = Blzl + 62v2 + 63v3
= [z9, v, vyl b (1V-10)
%
83

- .
where v” is an intermediate coordinate system. Equation (IV-7) can
: .

alternately be expressed as

8 6., | 8

1) 1 12 13
v | = 2y 621 + zy 622 + zq 323 {IV-11)
v3 831 832 833
The intermediate coordinate system v is
> >
v o= (telz = (fere’y (1v-12)
- -
Then solving for v in terms of v~ in Equation (IV-12) yields
+
V= eiteT v (1v-13)

Using Equations (IV-8a) and (IV-9) and performing the indicated matrix

multiplications in Equation (IV-13) yields



vy . 611 sin93 813cosel - Blzsinel

va| = v 621 + vz c0383 + v3’ 823c0551 - ezzsinﬁl

Vs 631 0 633cosel - estinel
(1v-14)

Finally, the vehicle coordinate system can alsc be expressed as

vy 1 0 0
Vol = vy 0] + vy 1| + Va 0 (IV-15)
Ak 7 0 0 1

Therefore, from Equations (IV-10), (IVv-11), (IV-14), and (IV-15) the

expression for the vehicle rates becomes

- 17
2y cosﬁzcosB3‘ sin63 0 Bl_

| =| -costysingy cosey O 8y | (1V-16)
93 sine2 0 %ﬂ 93

Solving Equation (IV-16) for the Euler angle rates yields

Al | oaT

8y cos by /cose2 -sin03/cosb, 0 Ql
82 = sin83 cose3 0f |9;]. (Iv-17)
é3 —tan62c0593 ) tanezsin93 %- *?3J

Equations (IV-5) and (IV-17) describe the dynamics of the system to
be controlled. These equations are expressed in terms of the state

variables defined in Equations (IV-1} through (IV-4) as
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Xy x,
iz = W(xz,x3) Xg : (IV-18)
%3 X6

where W is as given in Equation (IV-17) with 82 and 65 replaced by

X9 and x3 respectively, and

i4 | i& %, %4 Xy

. -1 > >

Xg| = J D(§)u + E I Je| x5 | + Tn(t) + 6%

%6 %] L% *g x3

(Iv-19)

and r£7._ rhl_

%g Y2

ig = |ug ' (Iv-20)

0| |

%97 ug

_ilzd 6

- Fx, 0,0 (TV-21)

Expanding Equation (IV-21) about the nominal operatiﬂg point,

-+ -+ . >
X om and U ome into the Taylor Series for x yields
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..).
5 3 + > -
x= f(x ,u ,t) 2f (x - % Yy + EZ (u-u_ )
nom nom 3; - nom ag N nom

Xnom Xom

- > >+

U= om W lhom

>+ > o
+ g(x - xhom' U= U t) (Iv-22)

- .
where g contains the higher order terms.

Defining
> -
¥ X" Xom
(Iv-23)
> -+ -+
and v=1u-1u
nom
the general form of the linearized equations is
L - -+
y = Ay + Bv (IV-24)
af
where A, = =1 and B, = EEL-
13 X i] du
j—>+ j‘*"’
T xX=X b S
» ST0D 5 »1°
U=Un m WUhom

The steady state gimbal rate, Gﬁom' is obtained as the equilibrium

5
solution of Equation (IV-5}, (i.e. @ = & = (), as

- -»

ﬁnom = D-I(Tn + G8) ' (IV-25)
where D-I is the pseudoinverse of the nonsquare D matrix and Equation
(IV-6) has been substituted into Equation (IV-5). ﬁnom is considered

a constant in Equation (IV-25) since the time constants of the gravity

gradient torques are large compared to the time constants of the
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stabilized control system,

It is desirable to keep the average attitude and rate errors
small as well as prevent excessive peak errors in attitude and rate.
Therefore, the perfdrm;nce measure for the optimal system penalizes
position and rate terms to avoid excessively large control efforts.
Since gimbal stops are not considered here, tﬂere is no reason to

penalize the gimbal angles. The performance measure is

+ T ) »
. - -+ Y
p3) = [ %538 + atIo + 6TRs bt ~ (1V-26)
0 e’ a - e e
h 5 =%-3% =3%-3%
where e °  ‘command "~ “hom

and % =3 - %

Since B op = 0, Equation (IV-26) can be written in terms of the defined

state variables as

- T +T -+ =T .->
P(u) =J( % 4y Qy + v Rvpdt (Iv=-27)
0
where L3x3 _ 03x3 03x3

Q= {0333 Jax3 03x3

3x3 03x3



and x;, 0 0o 0o 0o 0]
0 ty 0 0 0 0
R= )0 0 rs 0 0 0
0 0 0 T, 0 0
0 0 0 0 re 0
_9 0 0 0 0 T |

The term QLJT represents the vehicle kinetic energy and minimiz-
ing the integral of the vehicle kinetic energy conserves vehicle energy
expenditure. L and R eiements are generally chosen smaller than
J because of this aspect of energy conservation.

Kalman shows in [6] that a system described by Equation (IV-24)
minimizes a functional of the form of Equation (IV-27) (where Q is any
positive semi-definite matrix and R is any pozitive definite matrix)

subject to the constraints

- -+
y@ =y,

;Iw) = unspecified
> -1.T =
when v = ~R "B Ky (I1v-28)

where K is the symmetric, positive definite gain matrix that is the

solution to the matrix Riccati equation

K = -KA - ATK - Q + KBR TB'K (1V-29)
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Equations (IV-28) and (IV~29) give the optimal solution if the syétem
given by Equation (IV-24) is completely controllable., If the system
is not completely controllable, the solution is optimal only when
the uncontrollable states are not penalized.

The solution to the linear regulator problem is the solution to
the non-linear plant if the linearized model is updated frequently.
The linearized model must be updated as a function of time, gimbal
angles, and vehicle attitude commands. The gimbal angles will be the
fastest to change and usually can provide the criterion for updating
the linearized model. Equations (IV-28) and (IV-29) give a sub-
optimal solution as a result of the frequent updating of the linéarized
model, but if the updating period is long compared to the system time
constants, then this solution approaches the optimal. An implementation

of this sub-optimal control system is shown in Figure IV-1.

A. Sensitivity Analysis of the Riccati Equation

A-difficulty in implementing the optimal control system given by
Equations (IV-28) and (IV~-29) centers about finding the steady state
solution to the matrix Riccatl equation given by Equation (IV-29).
Problems encountered are excessive computation time for the desired
accuracy of the Riccati equation solution. Two approaches are consider-
ed to decrease the degree of these difficulties. First a sensitivity
analysis of the gains with respect to the gimbal angles is performed

to determine if some gains may be considered constant. Those constant
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gains would not have to be computed at each linearization update, thus

saving on computation time. In Section B different solution techniques

are evaluated with respect to computation time and accuracy tc determine

which solution metﬁod is most acceptable with respect to these requirements.
As is pointed out by Skelton in [7], it is sufficient to solve the

sixth order Riccati equation when the gimbal angles are not penalized.

The reduced sixth order system is

X 0 W X 0]

e

(IV-30)

0 -h, hzT
-1
Ay=J3"|hy 0 ~h,
| -h, by 0]
B, = I Ip|+ »
1 A=x
nom

and J is the inertia dyadic of the vehicle., Since the gimbal angles are
not penalized in the performance measure, only the sixth order case

will be considered here.

Rewriting Equation (IV-29) in the steady state and showing explicit

dependence on a parameter a yields

AT(a)K(u) + K(a) - K{a)S(a)K{a} + Q =0 (1v-31)
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where S(a) = B(u)R—lﬂT(a)

Taking the partial of Equation (IV-31) with respect to a gives

T

BA T 3K , 8K 3A 3K 38 3K _
pa K HA gyt g At Ky -3 SK- Ky R-Ks 0 =0
' (1v-32)

Combining like terms simplifies Equation (IV-32) to

K oa-s0)+ a-5s0T Lo gy- 0Tk + ke (1V-33)

da da -
where n = da/de

6 = dS/da
and with all matrices evaluated at a = a5 The form of Equation (IV-33)
is

FG+ GF +H=0 (IV-34)
where F = d&/de

G=A- SK

T

and H=Kn + nK - KK

Kleinman presents an algorithm in [ 9] that is used to iteratively solve
equations of the same form as Equation (IV-34) numerically. The

stea&y state Riccatil solutiqn for several initial gimbal angle configura-
tions (K(ag)) is computed here; then Equation (IV-34) is iteratively
scived for dK/do using Kleinman's algorithm. The percentage variation

in K for a Ag change in a gimbal angle is approximated as
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K . dK Aq . -
54 T (1Iv-35)

where SE is the sensitivity of K with respect to parameter o

1, 62, ..'66

and Ac is the incremental change in the gimbal angle o.

a is a gimbal angle, a = §

Performing these operations for gimbal angle orientations that are
combinations of 0° and 30° gimbal angles is sufficient to indicate
that no gains are insensitive enough to gimbal angle variations to
consider them constant.

The diagonal elements of the steady-state solution to the Riccati
equation are generally much less sensitive to gimbal angle variations
than are the off-diagonal terxrms. Table IV-1 gives the range of the
valﬁes of the off-diagonal terms of the gain matrix for the various
.gimbal angle configurations that are considered. For these same cases,
Table IV-2 gives the range of the sensitivities of theée off-diagonal

terms to 5° incremental changes in the §, gimbal angle. Results are

1
presented only for the 61 gimbal angle sensitivity because these re-
sults are typical of those obtained for the sensitivities of these
elements to the other five gimbal angles. Since Table IV-2 indicates
the extrene sensitivity-of the off-diagonal terms to gimbal angle
variations, only the diagonal terms can possibly be insensitive enough
to gimbal angle variations to be considered constant.

The range of the values‘of the Riccatl gain matrix diagonal

terms are given in Table IV-3 for the different gimbal angle configura-

tions analyzed. Table IV-4 describes the range of the maximum
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Table IV~1. Range of Riccati Gain Matrix Off-Diagonal
Elements For Several Combinations of 0°
and 30° Gimbal Angles,

Gain Matrix Element Range of Matrix Element Values
Max Min
‘ 4 4
Kl2 1.75 x 10 -4.32 x 10
K 5.27 x 105 | -4.30 x 10®
13
K., 2.51 x 10° 1.55 x 10°
K 6.09 x 10° | -1.51 x 10°
15
K 1.91 x 10° -1.49 x 10°
16
K 4.34 x 10° -8.03 x 10%
23 |
4 5
Kyy 6.14 x 10 -1.49 x 10
Ky 1.60 x 10° 1.28 x 10°
4 1.55 x 105 -2.86 x 105
26
Ky, 1.83 x 10° | -1.49 x 10°
Ky 1.56 x 10° -2.85 x 10°
K 1.84 x 10° 1.27 x 10°
36 - -
K,s 2.52 x 10° | -6.08 x 10°
4 5
K 7.84 x 10 -6.06 x 10
46
5 6
K56 6.67 x 10 -1.20 x 10
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Table IV-2, Range of Sensitivity of Riccati Gain Matrix Off-
Diagonal Elements to Variatione in &, Gimbal Angle
For Several Combinations of 0° and 36° Gimbal Angles.
5° Variation in &, is Used.

1
Gain Matrix | Range of Sensitivity of Matrix Element Values
Element : (Absolute Value)
., Max Min

K 7,77 x 10° | 4.42 x 1073
12

K 2.43 x 10° 3.05 x 10" %
13-

K 9.81 7.74 x 1074
14 y .

K, 2,79 x 10% 2.11 x 1072

K 7.36 x 10 2.73 x 107F
16 L] »

K. - 4.33 x 10% 7.83 x 107>
23

K 2.39 x 10° 1.23 x 1072
24

K ' 1.53 2.09 x 108
25 & . .

K 1.35 x 10° 1.54 x 1072
26

K 9.55 x 102 1.12 x 1071
34

K, 8.41 x 10° 5.89 x 10”4
5

K 2.74 1.01 x 1073

. 36 [ ] .

K 4.04 x 10° 3.23 x 1072
45

X 1.22 x 10° 4.37 x 10°°2
46

Ko 5.79 x 10° 1.68 x 10°3
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Table IV-3. Range of Riccati Gain Matrix Diagonal Elements For
Several Combinations of 0° and 30° Gimbal Angles.

Gain Martrix Range of Matrix Element Values
Element Max . Min
K 3.83 x 10° 3.54 x 10°
11 |
K 2.39 x 10° 2.30 x 10°
22
K 2.43 x 10° 2.28 x 10°
33
5 5
Ky 8.89 x 10 5.10 x 10
K 5.78 x 10° 4.41 x 10°
55
Ry 6.84 x 10° 4.38 x 10°

Table IV-4. Range of Maximum Value of Semsitivities (for 5° Gimbal
Angle Increments) of Gain Matrix Diagonal Elements to
the Six Gimbal Angles.

Gain Matrix Range of Sensitivity of Matrix Element Values
Element _ (Absclute Value)
Max _ Min
-2
Kll 1.30 2.93 x 10
K 2,93 1.79 x 1071
22 L] »
K 1.47 1.93 x 1071
33 L] »
K 4.66 3.94 x 1071
44 . . .
K55 5.86 1.25
K66 4.81 1.27
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sensitivities of these gain elements with respect to variations in
the six gimbal angles. Table IV-4 illustrates that the diagonal terms
are much less sensitive to the gimbal angles than the off-diagonal
terms; however, 1t also Indicates that no elements of the Ricecati gain
matrix are insensitive enough to the gimbal angles to be cénsidered
constant. As a conseguence, all elements of the gain matrix must be
computed at each linearization update and no computational time can
be saved by considering some elements to be constant.

Thesé results were obtained by using the same system as Skelton
in[7]. Therefore, the procedure employed in this section should be
employed for the system under consideration. If an element of the
gain matrix is determined to be insensitive to given parameter varia-
tions within a speéified degree, then that element may be considered

constant thus reducing required computational time.

B. Numerical Solution Techniques for the Riccati Equation

A conventional Runge-Kutta integration scheme is used in [ 7] to
solve Equation IV-29 for K in the steady state. Some other numerical
techniques are considered here and compared to determine if another
algorithm might give the Ricecati gain matrix with less computaticnal
time and accuracy comparable to a Runge-Kutta method.

Two other integration algorithms, Euler and Modified Euler, are
evaluated along with the Runge~Kutta scheme. These should have smaller

computational times at a cost to the accuracy of the steady state solution.
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Russell presents a mathematical technique in [ 11] that accelerates
the convergance of a transient computer solution to steady state con-
ditions thus- substantially reducing execution time. This procedure is
applicable when

(1) the boundary conditions ;nd internal constraints are
either comstant or cyclic

(2) the steady state results are independent of the initial
conditions, and

(3) only the steady state solution is desired.

There are two accelerations techniques —-- exponential extrapolation
and constant proportionality adjustment. Ez;:ponential extrapolation
involves fitting an exponential curve through three points in the
transient solution and predicting the steady state wvalue. The general

form of the fitting curve is given as

Y(t) = c, + cze'c3t (IV-36)

Assuming the wvalues of the three points along the transient solution
to be ¥y, Yy, and ¥,, then the steady state value for Y(t) in Equation

(Iv-36) is given as

2
Y, Y, - ¥ o
Y(t = w) = 1-3 2 (IV-37)

Yl + Y3 - 2Y2

The solution adjustment is obtained from Equation (IV-37) as

¥y -%Y 2

AY =13 2 -y (Iv-138)

Yl + Y3 - ZYZ
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The constant proportionality adjustment is
sy = sxrp] 2 N1 (1v-39)
At

ﬁhere SKIP is a constant multiplication factor input by the user,
This methed is usually less accurate than exponential extrapolationm,
but it usually requires less computation time as well as requiring
less storage space.

Since the possibility of solution instability is enhanced with
the accelerated integrafion‘techniques, the sign of the adjustment to
the gain values can be checked. If the sign changes, then the ig—
cremental adjustment is modified by a constant reduction factor to
prevent instability or at least to retard it. If the sign change is
indicative of a simple overshoot rather than instability, the modifica-
tion to the incremental adjustment should speed up the solution computa-
tionally.

In [9) and [ 12] Kleinman presents an iterative algebraic technique
to solve for the linear regulator Riccati gain matrix; If Vk, k=20,
1, e is the unique positive definite solution of the linear algebraic

equation

T T or o _
Aka+VkAk+Q+LkRLk—0 {IV-40)

where recursively,

~1.T
L =K BV, k=1,2,.. (IV-41)

A

A - BLk (IV~42)
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and where L0 is chosen such that the matrix AO = A~ BL0 has eigenvalues

with negative real parts, then

K< Vg S % 2 oee k=0, 1 (1V43)

and Lim Y =K (TV-44)

where K is the steady state solution to Equation (IV-29). Kleinman
presents the computational algorithms to implement this procedure in [ 9].

A program for the Linear Quadratic Loss (LQL) problem [ 13] uses
Potter's algebraic method [ 14] to obtain the steady state solution to
the Riccati equation. Potter's method involves finding the eigenvectors
(or pseudo eigenvectors) corresponding to eigenvalues with negative

real parts of the 2n x 2n Hamiltonian matrix,

A -pr1aT
H = . (IV-45)
- -A

Spectral factorization of the Hamiltonian matrix is used to obtain these
eigenvalues. The stable eigenvectors are then used to form a 2n x n
matrix whose columms are the real eigenvectors. If the eigenvectors

are in complex conjugate pairs, two vectors made up of the real and
imaginary parts of one of the complex eigenvectors are used instead

of the complex entries, If this 2Zn x n matrix so formed is

[D} (IV-46)
E
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then the steady state solution to the Riccati equation is determined

to be

g = gp L (IV-47)

Using the same system parameters as in [ 7], solutions to the
Ricecati equation are obtained using the previous algorithms. Since
the algorithms would be programmed on a particular fiight control com
puter, the actual computation times for these procedures would be
meaningless. Therefore, the tabular results presented in the remainder
of this chaptef are normalized. The minimm value of the parameter for
all cases considered is assigﬁed the value zero while the maximum
value is assigned the value 100. All intermediate values are assigned

a value between O and 100 in the following linear fashion,

min | 159 : (IV-48)

where p, is the normalized parameter value,
pj 1s the actual parameter value,
Pmin is the minimum parameter value,

and is the maximum parameter value.

Poax
Since the steady state solution to the Riccati equation is desired,
the derivatives of each of the gains at the computed solution point

gives a measure of the solution accuracy. For the results included in

the remainder of this chapter, the accuracy comparison values are

obtained by summing the absolute values of all the elements of the
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gain derivative matrix. These values are then normalized according
to Equation {IV-48).

Euler, Modified Euler, and Runge-Kutta integration procedures
are examined in this analysis. Additionally, these solution techniques
are examined with exponential acceleration and proportional accelera-
tion, both with and without the instability retardation routine.”
Finally, the Kleinman and Potter algebraic routines are compared to
the integration routines. Since a conventional Runge;Kutta integra-
tion algorithm is used in [Tj, this case is included in several of the
following tables for the purpose of comparison.

The integration routines are very semnsitive to the integration
time increment. Table IV-5 illustrates the expected decrease in com—
-putational time for an increase in the integration time increment for
the conventional Runge-Kutta integration solution,

For those cases including instability suppression, the value of
the constant factor to modify the solution adjustment i1s chosen to be
.1. This value represents a good choice, but not necessarily a best
choice. Solutions to the Riccati equation are obtained using other
yalues, but there is no general trend. In some instances .l gives the
better result with respéct‘to computational time and accuracy, while
in other instances .025 and .25 éive better results for the three
values, Table IV-6 compares the three integration methods to each
other with and without instability suppression. The instability

suyppression has a more noticeable effect on the Euler and Modified
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Table IV-53. Computational Time and Accuracy for the
Runge-Kutta Integration as a Function of
the Integration Time Increment (At).

At Normalized Normalized Computational
Accuracy Time

-.0001 * ®

~.005 * %

-.01 * %

-.05 2.79 36.17

~-.1 1.59 17.86

--5 -14 3-19

* indicates that the total computational time was larger
than that allowed for this analysis.

Table IV-6. Comparison of Integration Sclution
Methods For At = -,5.
Soluticn Method Normalized | Normalized Normalized
Accuracy Computational | Weights of
Time Time & Accuracy
Runge-Kutta . 14 3.19 3.33
Runge-Kutta
(Instability Suppression) 14 3.23 3.37
Modified Euler .07 2.91 2.98
Modified Euler
(Instability Suppression) .17 2.23 2.40
Euler 0 .08 .08
Euler
(Instability Suppression) .10 7.77 7.87
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Euler routines. If computétional time and accuracy are weighted
equally as in Table IV-6, then the Euler algorithm accomplishes the
desired results most efficiently.

The exponential acceleration of integration solutions is discarded
for this system because the transient solution is not approximated by
an exponential very well. As a result, the solution either goes un-
stable or requires a prohibitive amount of computation time if the
instability suppression is included.

The linearly accelerated integration algorithms are sensitive to
the vélue of the constant of proportionality used to accelerate the
soltuion. If this constant is chosen too-large, this procedure wilil
also result in unstable solutions or prohibitive computation times if
instability'suppression is used. Table IV-7 provides a comparison of
some solutions to Equation (IV-29) obtainéd sy Epler integration and
linearly accelerated Euler integfation. The linearly accelerated
routine produces slightly better results than the simple Euler integra-
tion routine, For a particular system, a value for the constant pro-
portion adjustment can be obtained empirically. This must be done to
minimize the possibility of unstable solutions.

For all solution techniques considered, Table IV-8 presents those
algorithms requiring the least computational time, Table IV-9 presents
those techniques giving the most accurate solutions, and Table IV-10
presents the best solutioﬁ methods for an equal weighting of time and
accufacy. The Euler integration routine with a step-size of -.5 gives

the best results of the algorithms employed to solve the Ricecati
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Table IV-7, Comparison of Euler Integration and

Linearly Accelerated Euler Integration
Solutions to the Riccatl Equation.

Algorithm At Normalized Normalized Equal Weighting

: Accuracy Computational of Time and Accuracy
Time

Euler -ol 1.01 3-54 4.55

Euler -.05 2.98 8.22 11.19

Acc Euler -1 .08 3.05 3.14

Ace Euler -.05 1.93 2.51 4.43

Acc Euler -.01 32.04 : 12.41 ' 44,44

Table IV-8. The Solution Methods Requiring the Least Computational Time.

Algorithm At Normalized Computational Time
Potter's Algebraié * 0
Euler -.5 .08
Euler (Linear Acceleration) -.1 1.65
Modified Euler -5 2.23
Euler (Linear Acceleratiomn) -.05 2.51
. Runge-Kutta -.5 3.19
{for comparison)

* An Algebraic Technique
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Table IV-9. The Solution Methods Resulting in the Best Accuracy.

Al gorithm : At Normalized Accuraéy
Euler -.5 0
Modified Euler -.5 .07
Euler (Linear Acceleration) -.1 .08
Euler (Instability Suppression) -.5 .10
Runge-Kutta =.5 14
Kleinman Iterative * A7

* Algebraic Algorithm

Table IV-10. The Solution Methods Providing the Best
Tradeoff Between Time and Accuracy.

Algorithm At Normalized Weighting of
Accuracy and Comp Time
.ﬁuler - -5 | .08
Potter's Method * .95
Euler (Linear Acceleration) -.1 | 2.22
Modified Euler -5 2.40
Euler (Linear Acceleration) ~,05 3.28

* Algebraic Algorithm
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equation. Table IV-11 compares the two algebraic techniques with the
Euler integration solutiorl because the integration sclutions have the
property that the numerical solution goes unstable if the step-size is
chosen to be too large. In contrast, larger step-sizes give better
accuracy and computational time trade-offs. This is not true for the
algebra;c techniques so that, depending on the application, it may be

desirable to use the less efficient algebraic algorithms.
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Table IV-11l. Algebraic Techniques Compared With

the Euler Algorithm With At = -.5
and the Runge-Kutta Algorithm With

At = -5,
Algorithm Normalized Normalized Normalized Accuracy
Accuracy Computational and Time Weighting
Time
Runge Kutta .14 : 3.19 3.33
Euler 0 .08 .08
Potter's Method .95 0 ' .95
Kleinman Iterative .17 15.76 15.94




V. SIMULATION RESULTS

Simulation results are presented in this chapter to compare the
basic CMG steering laws presented in Chapter III with the total
‘;ptimal CMG control law presented in Cﬁapter IV. The system parameters
used in these simulations are those used in [71.

It is stated in Chapter III that the three basic steering laws
presented there require a controller that provides a commanded torque
as an input to these steering laws. Since thése basic steering laws
are compared to the total optimal control law, the forque comman&ed
by the controller will be determined from optimai control considerations.

- These conditioms should provide a falr comparison of the system
responses.

Thé control law that gives the coﬁmanded torque for the basic
steering laws is developed in a manner analogous to that used te
develop the total optimal control law in Chapter IV. Equation (IV-27)
again describes the perfqrmance measure, but the terms in the per-
formance measure refer to different varisbles. The sixth ordér state
vector is composed of the wvehicle attitude errors and attitude rate
errors while the control vector is the torque command vector; The R
matrix is chosen as the'identity matrix while the Q matrix relatively

weights the elements of the state vector as well as relatively weighting

the state vector with control effort expenditure. Linearizing the

78
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state equations about the commanded vehicle attitude and the nominal
vehicle rates puts this problem in the form of the linear regulator
problem as in Chapter IV. The resulting optimal control torque is
linear negative feedback of the position and rate errors.. If a par-
ticular response is desired, the closed-loop system matrix may be
examined and varied by varying the state feedback to obtain the desired
closed-loop eigenvalues since the optimal law is known to be constant
negative feedback of the states. This approach will result in the
desired response without being concerned with the problem of determin-
ing the welghting matrices to give this response.

The partitioned inverse steering law described by Equation (III-19)
and the pseudoinverse steering law described by Equation (III-23) are
Both open-loop steering laws. (Algorithms for computing the pseudo-
inverse are given in [15]). As a result, these steering strategies do
not consider the CMG cross-coupling effects. Consequently, the system
using these steering laws goes unstable as shown in Figure V-1. This
response is typical for both of these open-loop steering laws.

These steering laws are modified by negatively feeding back the
actual torque on the vehicle to force the basic steering law to create
‘a torque that more closely follows the commanded torque. This negative
feedback may be implemented by using the measured gimbal angles and

gimbal rates to compute the actual torque using

- -> - -
T = D§ + EQ " (v-1)
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since D and E are both functions of the gimbal aﬁglés only. Implement-—
ing this negative feedback has the advantage of decreasing any detri-
mental cross-coupling effects as may be observed in Figures V-2 and
V-3. Figures V-2 through V-5 present the responses of the different
systems to initial position and rate errors in one axis only. The
cross~-coupling effects for the control laws may be compared to one
another by examining the axes that had no initial errors in them.
Figure V-6 compares the responses of the four systems to an
initial position and rate error in one axis only. The other axes are
not included in Figures V-6 through V-1l because Figures V-2 through
V-5 have illustrated how small the cross-coupling effects are. The
pseudoinverse steering law and the optimal steering law give almost
the same response. This response is underdamped, hut faster than the
partitioned inverse steering law and the total optimal CMG control law.
The partitioned inverse steering law gives én overdamped response that
is faster than the total optimal control law but slower than the other
two steering laws. This partitioned inverse steering law gives the
best respbnse for the weighting matrices chosen in these cases. The
response of the total optimal CMG control law is similar to the
partitioned inverse steering law, but it is slower in achieving the
desired control. Figures V-7 through V-11 comﬁare the responses of
the four systems to one another for initial errors in two axes and
three axes. Examination of these cases reveals that the same comments

apply to them that applied to Figure V-6,
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Figure V-3, Attitude vs. Time for an initial error in ome axls using the pseudoinverse steering hw.
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Initial Conditions Key
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-Figure V-4, Attitude vs. Time for an initial error in gne axis wsing the optimal steering law.
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Initial Conditions Key
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Figure V-5, Attitude vs. Time for an initial error in one axis using the total
optimal CMG attitude control law. -
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Initial Conditions

Eey
By = 0 ‘wx =0 Optimal Steering

f 6, (deg) By = 0 wy = o ——=-- Partitioned Inverse Steering
8, = 2 w, = .02 - Pseudoinverse Steering
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Figure V-6. Comparison of the four CMG econtrol laws for an initial error in one axis.
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Injtial Conditions Key
o ' bx =0 w, =0 Optimal Steering
A e,(deg) 8, = .2 =.02 @ == =—- Partitioned Inverse Steering
y y Yy
8, = .2 w, = .02 -+ - -- - Pseudoinverse Steering
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Figure V-7. Comparison of the four CMG control laws for an initial error in two axes.
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Initial Conditions Key
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By = 2 wy = .02 ——~-— Partitioned Inverse Steering
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Figure V-8. Comparison of the four CMG control laws for an iaitial error in two axes.
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Initial Conditions Key

O = -2 wy = .02 Pseudoinverse Steering
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Figure V-9. Comparison of the four CMG control laws for an initial error in three axes.
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Initial Conditions Key
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Figure V-10. Comparison of the four CMG control laws for an initial error in three axes.
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Initial Conditions Key

B = +2 Wy = .02 Pseudoinverse Steering
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Figure V~11.
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Comparison of the four CMG control laws for an initial error in three axes.
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These results are not presented to imply that one of these
systems 1s better than the other in an absolute sense. The responses
of these systéms may be varied by changing the relative weightings of
some of the parameters. The partitioned inverse steering law and the
pseudoinverse.steering law will have different responses only 1f the
relative weighting of wvehicle position and rate errors against control
effort is changed in the development of the vehicle control law.
The optimal steering law response may be varied by changing the relative
weighting between the gimbal rates and the torque error in the develop-
ment of the optimal steering law. It may also be varied by changing
the vehicle control law as for the other steering laws. The response
of the total optimal CMG control law may be changed by changing the
relative weighting of position and rate errorxs of the vehicle against
the commanded gimbal rates. Keeping in mind this possibility of varying
these responses, the main point to be made by these simulation results
is that the basic steering laws with an optimal vehicle control law
can control the vehicle as well as the total optimal CMG attitude
control law. Furthermore, these basic steering laws are implemented
without the computational problems associlated with the total optimal
control law. It is suggested that future investigations compare and

analyze these systems in more detail.
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