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INTRODUCTION

In problems of impact such as those experienced by a vehicle landing on

some planet, entering into some ocean or subjected to some high rate distur-

bances of the external pressure, the compressive stress wave emanating from

the surface of contact could be quite severe. This may cause severe damage

or failure to the vehicle or to the various components within the vehicle.

Therefore, it becomes necessary to mitigate the loads felt by the payload

so that the maximum allowable stress is not exceeded. The purpose of this

effort is to study both analytically and experimentally the attenuation of

the stress waves during passage through single and multilayer structures.

One method of attenuating the magnitude of the incident compressive

stress is to incorporate into the system a material or multilayered material

which may be permitted to deform plastically, thereby mitigating the load.

The problem has been treated thus far with reasonable success by empirical

means, but the intelligent design of such a shock mitigating system requires

the understanding and the application of the theory of elastic and plastic

wave propagation as well as* extensive knowledge of the material properties

of the mitigating device. With the support from the National Aeronautical

and Space Administration to which this final report is submitted, several

basic research studies, both analytically and experimentally, have been

carried out with conclusive results.

The investigation included studies on elastic and plastic stress wave

propagation in the composites and those on shock mitigating material character-

istics such as dynamic stress-strain relations and energy absorption properties.

Studies were performed on the behavior of composites under dynamic loading.

A summary of the studies is presented in the following:



I. Stress wave propagation in composites:

A. Propagation of elastic waves in composites.

B. Propagation of elastic waves through areas of discontinuity.

C. Propagation of radial elastic plastic waves in a circular disk.

D. Elastic and Plastic wave cancellation.

II. Shock mitigating material characteristics:

A. Energy absorption characteristics of several shock mitigating materials.

B. Dynamic stress-strain relations of several shock mitigating materials.

III. Dynamic response of composites:

A. The longitudinal vibration of axially symmetric composite bodies.

B. Shock mitigation models.



I. STRESS WAVE PROPAGATION IN COMPOSITES

A. Prcpagation of Elastic Waves in Composites

The propagation of an initally sharp cylindrical pressure pulse through

a linear elastic fiber reinforced composite medium is analysed, both experi-

mentally and analytically. In the experiment, tests were performed on plates

with single and multiple circular inclusions embedded in a matrix of lower

characferistic impedance. Sharp compression pulses were generated at an

edge of the plate by two methods: the detonation of a charge of lead azide

and the impingement of a sharp knife-edged ram impacted at the opposite end

by a short projectile. Strain gages were mounted on various positions of

the plate to determine the attenuation of the transient stress in the fiber

reinforced composite. The qualitative analytical treatment is based on the

methods of propagating stress discontinuities. Computer programs were written

to numerically determine the changes in the shape of the leading wave front

and the stresses immediately behind it. Experimental results for the attenua-

tion of stress wave on steel-aluminum and steel-brass fiber-matrix composites

compared very well with the computed analytical results when the applied

pressure is generated by small explosive charges. The results did not compare

well when the applied pressure is generated by projectile impact.

Results of this portion of the investigation were presented and published

at the AIAA/ASME/SAE 13th Structures, Structural Dynamics, and Materials

Conference in San Antonio, Texas, April 1972. The paper is entitled, "Experi-

mental and Theoretical Investigation of Stress Wave Attenuation in Fiber

Reinforced Composites." A copy of the paper is included in the Appendixes.

-B. -Propagation of Elastic Waves Through Areas of Discontinuity

Elastic Stress Waves generated in structure consisting of cylindrical

rods with grooves, holes, threads, and screws by the application of pressure



pulses of various durations are investigated both experimentally and analytically.

In the experiment, the stress pulse was introduced by using an air gun to

impact aluminum projectiles on various configured aluminum rods. A schematic

diagram of the experimental set-up is shown in Fig. 1. The 3/Vinch aluminum

rods were machined to the configurations shown in Fig. 2 and 3- Strain gages

were mounted on the rod in diametrically opposed pairs at locations shown in

Figs. 2 and 3. Each pair of gages was connected to a full Wheatstone bridge

using two dummy gages so that bending effects would be cancelled. The effect

of grooves, holes, threads and screws on elastic waves in cylindrical rods

were obtained from the various parameters from the experimental tests. A

typical result is given in Fig. k for tests on a cylindrical rod with a 2 inch

deep hole at the opposite end of impact. The maximum stress measured from

the strain gage is obtained for various hole diameter. This is repeated for

plain hole, hole with thread and hole with thread and screw. Another result

is given in Fig. 5 for tests on a cylindrical rod with a 1 inch deep hole at

the opposite end of impact. This and other results indicated that the threads

and grooves had very little effect on elastic wave propagation. The results

are very realistic and very predictable.

In the theoretical analysis, both a one-dimensional and a two-dimensional

numerical method for the solution of elastic waves in various configured rods

are utilized. For the one dimensional analysis the method of characteristics

is employed to analyze the propagation of stress waves in the rods. A

numerical integration of the characteristic equation in each section, in

conjunction with appropriate procedures to ensure that the conditions on the

external boundaries as well as the continuity conditions at the intersections

are satisfied, yields the stress and the particle velocity of any arbitrary

location. For the two-dimensional analysis, the exact equations of motion
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governing elastic, axisymmetric wave propagation in a cylindrical rod are

approximated by a first-order finite-difference scheme. This difference

scheme is based on a displacement rather than a velocity formulation,

thereby making it unnecessary to explicitly introduce an artificial viscosity

term into the finite-difference equations. Numerical results are obtained

using the resulting difference equations.in conjunction with the boundary

and initia-1 conditions. The numerical results compared very well with the

experimental data. From a design standpoint, it is very desirable to be

able to predict the magnitude of the transmitted and reflected protions of

the waves.

Results of this protion of the investigation constituted the basic

material for a Master's thesis and a paper submitted for presentation in

the S.E.S.A. Winter Annual Meeting in Seattle, Washington, Oct. 1972. A

copy of the thesis is included in the Appendixes.

C. Propagation of Radial Elastic-Plastic V/aves in a Circular Disk.

The prupose of this work was to investigate the problem of radial

elastic-plastic stress wave propagation in a thin, finite, work hardening

disk using the method of characteristics and the method of successive elastic

approximations. In this method the characteristic equations, derived for

the elastic case, are applied to the plastic regime by allowing the modulus

of elasticity E and the wave speed C appearing in the equations to assume

values corresponding to the tangent modulus of the plastic stress-strain curve.

The value of Poisson1 Ratio, v> is taken as 1/2 in the plastic range.

Three characteristic equations were derived from the governing conserva-

tion and elastic constituent equations as outlined in a paper by Chou and

Koenig. They were used subsequently, along with the Prandtl-Reuss incremental

plasticity theory and the method of successive elastic solutions, to calculate
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the problem variables at the nodes of the characteristic network which was

generated in a step-by-step fashion as the solution progressed.

A modest experimental program consisting of two experimental techniques

was conducted to check the accuracy of the proposed analytical method. A

circular disk was used with a hole at the center to accommodate a pressure

pulse applied either hydraulically or explosively to the inner surface.

The hydraulic method produced .poor results and was ,discarded in favor of

the explosive technique.

The disk material was 1100-0 aluminum which exhibits a 0.2 percent

offset yield strength of 5000 psi and a proportional limit of 2500 psi.

Strain-rate effects were not included in the theory.

Two 350 ohm Micro-Measurement strain gages were used in addition to a

TEKTRONIX Model 551 dual beam osci1loscope to obtain radialand circum-

frential strain time histories at a radial distance of 0.75 inches on a

k inch 0-0.. specimen.

A Piezotronics Model 109A ballistics pressure transducer was used

with one channel of a second Model 551 TEKTRONIX dual beam oscilloscope

to record the applied pressure pulse. A computer program incorporating

the analytical procedures described previously was used to check the strain

histories measured on the specimens. In addition, the theoretical solutions

for a ramp followed by a steady state pressure were run as approximate

checks against the known, closed form, static elastic and elastic-plastic

solutions for a thick-walled cylinder.

Reasonable agreement between the theoretical and experimental results

supports the hypothesis that this method can be used to solve problems of

wave propagation in systems subjected to combined states of stress.
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Results of this portion of the investigation constituted the basic

material for a Ph.D. Thesis. A copy of the thesis is included in the

Appendixes.

0. Elastic and Plastic Wave Cancellation

In order to understand this concept, it should be recalled that

after a material has been loaded to a point where plastic deformation

occurs,, while the load is being released, the displacement will obey the

Hooke's law instead of retracting its original path. Since stress waves

will propagate at a speed directly proportional to the square root of the

slope of the stress-strain curve, it may be seen that the transmission of
••̂ "~N.

stress waves during the unloading will take i'palce much faster than the
V_x

transmission of the loading stresses above the yield point. Therefore, this

method of m i t i g a t i n g the appl ied impulse is to make use of the overtaking

and cancel la t ion of h igh- in tens i ty p las t ic stress waves by the fas ter- t ravel ing

elastic unloading stress waves.

A study was made to fu r the r develop the one-dimensional stress wave

theory and conf i rm the method by which stress a t tenuat ion is a t ta ined. A

one-dimensional e las t ic-plast ic code was developed for the ca lcu la t ions of

the stress deformation and pa r t i c l e velocity his tgry. This code is app l i cab le

to problems of one-dimensional l ong i tud ina l wave propagation in rods and

radial stress-wave propagation in c i r cu l a r disks . The method of characterist ics

was used and the character is t ic equations were derived from the governing

e q u i l i b r i u m and e las t ic constituent equations. These equations were used

subsequently along w i t h an incremental p las t i c i ty theory embodying the method

of successive elast ic approximations, to ca lcu la te the problem var iables

at the nodes of the characteristic network which was generated in a step-by-

step fashion as the solut ion progresses.
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A series of experimental tests were performed in order to verify

the analytical results. One such experiment utilizes an air gun to

accelerate a steel rod and impact it against an instrumented test rod protected

by various mitigating materials or by various multilayered mitigating materials.

A stress wave was developed in the test rod which was measured with strain

gages. The reduced stress obtained was analyzed as a function of the applied

force pulse, the material properties of the mitigators., the length of the

mitigators, and the number and combination of the mitigators for optimum

mitigation. The results, as shown in Figures 6 and 7 indicated that the

polymer group, such as ethocel, teflon, lexan, and polyurethane, is very

efficient for shock mitigation from both a weight and volume standpoint.

Then to verify the concept of wave cancellation, the theoretical

determination of the stress and the strain distributions in a test where

an air gun was used to accelerate a lexan rod and impact it against a second

stationary lexan rod placed in front of an elastic measuring bar was performed.

The stress and strain distributions obtained in such a dynamic compression
f

test compared very satisfactorily with the stress and the strain distributions

deduced from the theoretical analysis. Figures 8 through 10 give the comparison

of the strain measurements from the strain gages to the theoretically calculated

values for various lengths of mitigators with lexan projectiles of 1/2, 1,

and 2 inches in length, respectively. Figure 11 gives the comparison of

the strain measurements from the strain gages to the theoretically calculated

values with a steel projectile 1 inch in length. From these results, it

could be recommended that for design purposes, a mitigator length-to-projectile

length ratio of 0.5 seems to offer the optimum shock mitigation for the

materials tested.
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II. SHOCK MITIGATING MATERIAL CHARACTERISTICS

A. Energy Absorption Characteristics of Several Shock Mitigating Materials

The scope of this investigation is limited to the determination of the

absorption characteristic with respect to the thickness of the shock mitigating

materials under low impact velocity conditions. The materials tested included

styrofoam, polyethylene, high and low density polyurethene and Balsa wood.

Specimens 3/^ inches in diameter were placed coaxially at the muzzle

of the 3/^ inch gun with one end in contact with an instrumented rod, (Fig. 12).

The impact was initiated by a low velocity bullet crushing against the specimen.

The peak stress measured with strain gages in the instrumented rod was compared

with that resulted in direct impact of the bullet to the instrumented rod.

Similar experiments were also conducted by means of a 6 inch dia. drop weight

tester, (Fig. 13). In this case, the specimens were crushed between a falling

cylindrical weight and a stationary instrumented platform.

Experimental results indicated that for styrofoam, ployethylene and Balsa

wood, the shock absorption capability generally increases with thickness. On

the other hand, polyurethene was found to be a very poor shock absorbing

material. The high density polyurethene retained virtually the same thickness

under impact. The low density polyurethene was compressed easily but bounced

back to its original thickness while offering little shock mitigating capa-

bility up to as thick as 4 inches.

Shock mitigating characteristics for styrofoam, polyethene and Balsa

wood are presented in Figures \k through 17-

B. Dynamic Stress-Strain Relations of Several Shock Mitigating Materials

Lightweight foam materials are used abundantly in contemporary design

for shock isolation. It is well known that the dynamic properties of many

materials differ from the static properties. Tests were performed to obtain

dynamic stress-strain data for a representative foam material-rigid polyurethane foam.
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Three densities of the foam (nominal 3.5, 7.0 and 14.5 Ib/ f t ) were

tested in compression and tension over a wide range of s train rates. The

—2 4
rates were varied between 10 and 10 in/in/sec for the compression tests

and between 10 and 10 in/in/sec for the tension tests. The foam was

tested pa ra l l e l to the di rect ion of rise and perpendicular to the d i rec t ion

of rise, to check for anisotropy.

.Str.es.s-strain relations-were thus-obta ined as - func t ions of s t ra in rate

for each of the densities and rise directions. Yie ld strengths and elastic

moduli were then determined as funct ions of s t ra in rate from the compressive

stress-strain data. No def ini te yie ld points were observed in tension.

Therefore, u l t ima te strengths and e las t ic modu l i were obtained as funct ions

of s t rain Jrage from the tensile stress-strain data.

^—xTwo test apparatus were required to obtain data over the wide range of

strain rates. A Plastechon Model 581 Universal testing machine was used to

-2
produce the rates of s t ra in between 10 and 10 in/in/sec. A sp l i t Hopkinson

pressure bar was used to produce the rates of s t ra in between 10 and 10 in/in/sec

in compression.

One inch diameter cy l ind r i ca l specimens having lengths of 0.5, 1 and 2

inches and axes p a r a l l e l and perpendicu la r to the foam rise di rect ion were

tested in compression using the Model 581 machine. The 0.4 inch diameter

cy l indr ica l specimens having lengths of 0.2, 0.4, and 0.7 inches were

tested in compression on the sp l i t Hopkinson bar. Specimens having 0.375

inches square cross-sections and 1.625 inch gauge lengths were tested in

tension on the Model 581 machine.

Conclusions are drawn that nominal 3.5, 7.0 and 14.5 Ib/ft r ig id

polyurethane foams are s t ra in rate sensitive in compression. The yield

strength increases cons is tent ly over the range of s t ra in rates between 10



and 10 in/in/sec. The ultimate tensile strength and tensile elastic modulus

_2
are also not rate dependent between 10 and 10 in/in/sec. Any anisotropic

behavior is small and obscurred by the scatter in the data. An increase in

foam density results in an increase in both the yield strength, ultimate

strength and elastic modulus.
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III. DYNAMIC RESPONSE OF COMPOSITES

A. The Longitudinal Vibration of Axially Symmetric Composite Bodies.

The natural frequencies and corresponding mode shapes for composite,

axisymmetric bodies of varying area undergoing longitudinal vibrations are

determined both experimentally and theoretically. Composite rods, cones and

conical shells of Lucite, Nylon, Polycarbonate and Polyethylene are investi-

gated. ,Str,a.in.measurements are taken from .strain gages mounted on the surface

of the models which are excited at varying frequencies by a shaker table.

Lumped parameter approximations of the continuous bodies are solved numerically

on the digital computer for both fixed-free and free-free boundaries in order

to determine the natural frequencies, mode shapes and relative strains. The

method of characterisitcs is utilized in a wave propagation approach to obtain

the response of a point in the model to a random input. The random input

selected is white noise. The natural frequencies are obtained by performing

a Fast Fourier Transform Analysis on the response.

Results of this portion of the investigation were published in the

Shock and Vibration Bulletin, Bulletin k2, Part 5, pp. 227-23^, January 1972.

The paper is entitled "Longitudinal Vibration of Composite Bodies of Varying

Area". A copy of the paper is included in the Appendixes.

B. Shock Mitigation Model

Many materials, e.g., rigid polyurethane foam, exhibit elastic, perfectly

plastic stress-strain curves until compaction occurs at large strains. Stresses

greater than the yield stress cannot be transmitted by such materials until

compaction occurs. An investigation has been initiated using a lumped parameter

spring mass analysis (for the constant area case) and a multiple spring mass

analysis (for the changing area case), see Figure 18.
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The cnitigator is divided into a series of masses connected by springs

and dashpots, figure 18. The force-deflection characteristics of the springs

are related to the stress-strain relation of the mitigating material and the

cross-sectional area of the corresponding mass. - A rigid, perfectly plastic

or linearly work-hardening, locking stress-strain curve is assumed for the

material, Figure 19- No deflection recovery is allowed upon unloading. The

dashpot is .considered a locking device and can be used to incorporate strain

rate effects.

The following experiments were performed to verify the theoretical analysis.

The tests consist of impacting cylindrical and conical mitigators with cylindrical

projectiles and measuring the transmitted force, Figure 20. The stress and

strain distributions obtained in such dynamic compression tests will be compared

with those calculated from the theoretical analysis. Two of the test results

of the transmitted strain measurements are shown in Figures 21 and 22 for

cylindrical and conical mitigators, respectively. It was observed that the

transmitted strain did not remain at a constant, level as expected for the

constant area case. This drop in strain could be due to the strain-rate

effect, since the rate of strain decreases as the mitigator is being crushed,

thereby lowering the yield strength of the mitigator.

The projectile energy was varied by varying both the projectile mass

and velocity. The energy absorbtion capability of the foam was varied by

varying the length of the mitigator. In the future, the energy absorption

capability wil l be varied.by varying the foam density.
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ABSTRACT -

Title of Thesis: THE PROPAGATION OF ELASTIC STRESS WAVES IN

DISCONTINUOUS STRUCTURES

Supachai Limpisvasti, Master of Science, 1972

Thesis directed by: Drs. C. Y. Tsui and J. C. S. Yang

The propagation of elastic stress waves of various pulse durations in

cylindrical rods with grooves, holes, threaded holes and threaded holes

••with screws were investigated both experimentally and analytically.

In the experimental tests, the input stress pulse was generated in

the configured aluminum rod by the impact of a projectile issuing from

an air gun. Dynamic strain gages were used as the sensing device.

Analytical results were obtained by the method of characteristics

for one dimensional wave propagation.

••• The effects of various sites of grooves, holes, etc. on elastic
' • ' • „ ' * i .

stress wave propagation were examined and the decay of stress in regions

close to the section of discontinuity was also studied. . •
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- LIST OF STOBOLS

A = area of bar

A_ «= unstrained area of bar

6 « Lagraigian coordinate

Aij - area of hole

C - velocity of propagation of a wave front with

respect to the body

E — modulus of elasticity

g ss shift rate of vave front
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.M - mass .

t « . ' time .

U ts particle velocity

3j " fs Eulerian corordinate
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= density . •

s= unstrained density
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tp « impact function

m = mass flow rate
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INTRODUCTION

Recently, increasing interest has developed in the transient response

of structural elements involving the propagation of elastic stress waves.

Among the different methods used in these investigations, a numerical

method based on the integration of the characteristic equations along

characteristic lines has proved to be simple and accurate. Chou with

Mortimer (1) used this method to find the solution of the propagation

of discontinuities in one dimensional plane elastic vjave and then with

Kpeing (2) to find solutions of a step input stress for one dimensional

cylindrical and spherical elastic waves. Also, Meng and McNiven (3)

-analysed the transient excitation of an elastic rod by this method.

The method of characteristics is not restricted to single layer,

homogeneous, constant area, elastic structures. Yang and Hasset (*0

investigated stress waves in multilayered axisytnmetrical bodies of

varying area. Mao and Radar (5) investigated the longitudinal stress

propagation in non-uniform elastic and viscoelastic bars.

The purpose of this thesis is to investigate both experimentally

and analytically the propagation of elastic stress waves due to an impact

loading in discontinuous structures such as rods with grooves, holes,

threaded holes and threaded holes with screws.

For the analytical approach, the method of characteristics for
*

one dimensional wave propagation is employed.

The distinguishing feature of impulsive loading arises from the



fact that the action of a suddenly applied load is not simultaneously

felt at all parts of the body. Parts of the body remote from the point

of application of the load remain undisturbed until the stress wave

in reaction to the load is propagated to those parts. The finite

velocity of propagation of such waves depends upon inertial effects

and upon mechanical properties of the material comprising the body.

The governing equation of the propagation of stress waves can be

developed by means of either the Eulerian or the Lagrangian coordinate

system. The Lagrangian coordinate system, however, exhibits one

significant advantage over the Eulerian coordinate system in that the

former provides a simpler expression for the law of conservation of mass.

Therefore, in this thesis, the governing equation will be expressed in

the Lagrangian coordinate system.

In the experimental investigations, strain gages vere used as sensing

devices to measure the strain caused by the propagation of the elastic

stress wave in the specimen. Strain gages have been used by many investi-

gators in such studies, giving very reliable results especially in the

elastic range. Bickle (6) published the results of the use of strain

gages for the measurement of propagating strain waves and applied them

to many cases. Valather and Baker (?) used strain gages in investigating

-wave propagation and obtained good results. The input loading pulse is

obtained by impacting various aluminum projectiles against the specimen

with the aid of an air gun. The results will be analyzed and compared

with analytical solutions.



CHAPTER I

THEORETICAL SOLUTION

In the theoretical analysis of stress wave propagation in the elastic

region* three methods of solution are generally used, namely, the

Laplace,transformation method, the mode superposition method and the

method of characteristics. In this thesis, the method of characteristics

will be employed because the mathematics involved in the solution is

simple and because the method can be applied very simply to any arbitrary

input wave form.

The problem .is easily described in the Lagrangian coordinate

•system vith a single spatial variable, a, referred to the initial .

position of each layer of particles. In this system, the co-ordinate

moves along with the particles which results in certain mathematical

simplifications. In addition, since many strain measuring devices are

attached to a set of particles and move along with these particles, the

strain measurements are directly related to those predicted from this

formulation.
I -

Unstrained Bar (t=0)

X *~

• •

OX \ ua
Ida) !-*-

*f a

Strained Bar (t=t)

Strained Bar (t=t-n£

dx
Inertial Reference Line total



A* Method of Characteristics.

The particle velocity is defined as:

u
at a

vhere x is the Eulerian coordinate, t is time and a is the Lagrangian

coordinate. Since the engineering strain is caused by the change in x

due to a change in a, it can be defined as:

(|*\ d a - d a. \ d a j t
t •« ' - — da" - ~"

I ^~" ~ I A = 1 "+" C • • • • • « « • • « • • « • • • « • « « « » * • « • • (1 /

For an infinitesimal alice of an object, the mass, M, will be the

sane for the strained and the unstrained conditions:

M = /3Art da = />
/«. ° /

<* da
t

-
a/t "

0
"* ^ T ̂ " •••••*•••••«•*••*•*•••••• \Z/

Also, the rate of mass, ra, entering the vave front vd.ll be equal to

that leaving the vave front:

M = C/3A = (C - du)(/5A + dOoA) )

where C is the velocity of proapgation of the vave front with respect

to the object.



Therefore da = C d(o A) ..*......................( 3 )
• • 7̂ ~"

According to momentum equation, the net force across the vave front

is equal to the change in momentum across the wave front

- d( ̂A) + CA. = -( C - du ) m *-dn -

mdu

or, ou — • A. CM ••••••••••••••••••••••( H" /
c/JT

Equating du yields,

d(̂ A)

From ( 2 )
Z)

C2 = ( 1 +6 )2d <T

In the elastic region,"the slope of the stress-strain curve is equal

to the modulus of elasticity, giving

C2 - (1 + £)2E
7* .

which implies that the velocity of disturbance is depenent on strain.

In Eolerian co-ordinate, the distance covered by the disturbance in

tine dt is,
dx = ( u ± C ) dt

From the definition of total change in x

dx -Y^X) dt +/3x ^da .
idt/a

Equating the two equations yields:

+ C = / £ x \ d a



Therefore, the wave speed in terms of the ̂ .agrangian co-ordinate system

is: da = + C_ = + C
dt ~ "

This wave speed is sometimes called the shift rate,=-§, in the solutions

by the method of characteristics.. *

Therefore,

(dt") ( 1+1 )2

«= Jj_ in the elastic region,

or

Define the impact function <p as:

or
/>

Newton's law, the Komentum equation of an infinitesimal slice of an

object at constant time can be derived as;

-^Ao + A off" da - fa = ( n^^ da

or 8u - •'.

therefore ^ u - gd<p = 0 ..«•...«*........».*...( 5)
"bT - -frZ

Differentiating (1) with respect to t yields,

^xN = B u =
^ a J "b a

therefore g^u - &tp = 0 •••••••••••••••••••••••.( 6 )
da ^ t



Combining ( 5 ) and ( 6 ) yields,

£ (u-q>) + g5(u + <p) •=» 0
• <Tt . - "Si!

and
0

Therefore d(u + q>)rg^ ( ul± tp ) =0

Bat d ( u r < p > - ^ . ( ^ i q > ) d t 4-g ( u - cp ) da
* • dt +

d ( u - c p ) «3 ( u - «p ) .^4r 3 (• u z 9 ) da
dt * St "5"a dt

also ± g * da
dt

Therefore d_(urtp) = 3 (u-cp) +
dt ' + "

. ̂ - vhieh is the Characteristic equation.

The equation establishes that, along the lines of slope + g

( u + «p ) equals to a constant.
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B« Boundary and Initial Conditions.

At the interface of any two materials, the forces and the

particle velocities are equal:

Material B

Material A

In the elastic region:

F

Therefore

br

EA B

If the structures are of the same material the relationship above

reduces to

» A



In this thesis the body of the specimen is initially at rest

and undisturbed, and thus the field variables vanish identically

ahead of the first vave front.

If, at time t = 0,a continuous particle velocity (or stress)

is applied at the boundary, discontinuity in cp and u -will

propagated along with the wave front. The characteristic equation

can be conveniently used to compute the magnitudes of the propagating

discontinuities.
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CHAPTER II ••' .
•

- • ' ' EXPERIMENTAL INVESTIGATIONS

A* Experimental Arrangements

Specimens are impacted by a projectile issuing from a 0.?5 inch

inside•diameter air gun. The air gun consists of two main parts; a high

pressure chamber and a barrel, 120 inches in length. It is mounted on

a steel I- Beam and maintained at a horizontal level. Along the air

gun barrel, vented holes are drilled to let out the air pressure behind

the projectile to provide a constant impact velocity. The pressure

chamber is pressurized by air from the air main. .

••..- - In the experiments, the compressed air can be released by

operating a solenoid valve operated by a 12 Volts B.C. battery. The
**-'" î X . ̂

projectiles made from machined aluminum rods of various lengths are

loaded through the open end of the gun barrel. Two adjustable teflon

supports are mounted on the J- Beam close to the open end of the air
'. " " •" •-

gun« Teflon was used to reduce the friction between the support and the

specimen after it was hit by the projectile so that free impact could

be achieved. ( Fig. 1 ) •

The specimens were machined from 10 inches long, 0.75 inch diameter
-'' >'' :' f -
aluminum rods to the proper configurations ( Figs. 2 and 3 )• Four 0.25

inch long dynamic strain gages were mounted on each specimen as sensing

devices. The gages were mounted in- diametrically opposite pairs to cancel

Tiny stress due to bending effects.
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B« Esqperimental Procedure

Each pair of strain gages was connected to the opposite

arms of the VJheatstone circuit of a bridge amplifier together with

resistors as dummy gages. For discussion purposes, the location

.,of .the first ,pair of-strain-gages from the impact end of the specimen

is called station 1, that of the downstream pair is called

station 2,respectively. The bridge amplifiers were calibrated at

the same gain for the consistancy of results. Every specimen was

grounded to eliminate noise which might be introduced through

the gages.

The output signals from the bridge amplifiers were

'connected to a dual beam oscilloscope. The signals from stationci

and 2 were given by the upper beam and the lower beam^respectively.

The oscilloscope was set at internal trigger and single sweep mode

using the signal from station 1 as the triggering signal.

Soon after the projectile hit the specimen, the first

stress pulse which passes through gages at station 1 is transmitted

through the bridge amplifier to the oscilloscope. The rising part

of this pulse triggers the single sweep;, sett ing and gives the shape

Of the pulse. At the same time the lower beam which represents the

signal from station 2 traces along the reference line until the

gages "feel" the first stress pulse passing through.



The traces were recorded by a Polaroid scope-camera. An

of the recorded signals is given in Fig ̂ .

SS

Xr;

•Station !•

-Station 2».

Rate • 20 .u sec/cm

Sensitivity 2V/cm

Fig. 4̂- Example of the Recorded-Signals.

A cohqplete list of major instrumentations and test facilities is

given in Appendix II,
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C» Experimental Programs.

To study the configuration effects in stress wave propagation,

specimens vere made with strain gages mounted at various positions as
i

shown in Figs* 2 and 3» The tolerance of machining of the specimens was

+ 0,005". In the grooved specimen (Fig.2), the length of the groove in

one-set rof experiments was changed from 0.125Hto 2.93?"with the diameter

of the groove held at 0»531M» In another set of experiments, the diameter

of the groove was changed from 0.40" to 0.70" with the length of the groove

held at 2.00".

To study the effects of threads in stress wave propagation,

experiments were conducted using specimens with plain holes, threaded

holes and threaded holes with screws. The parameters were the depth and

the diameter. The threads were American Standard and the sizes corresponding

to:the sizes of the holes being used in the investigations.

Tn all above experiments, three different lengths of projectile were

also used. . • : • : : :: :.=.:-:.: .: : .: --

'Torstudy the stress decay in regions close to a section of

discontinuity, specimens similar to those in Fig. 2 were made. Three sets of

experiments were conducted, in the first two sets the diameters of the

grooves were held at 0.531" and 0.**5" respectively while the length of the

groove was varied from 0.125" to 2.50". In the third set of experiment,

the distance from station 2 to the downstream edge of the groove was

held at 0.10" while the diameter was changed from 0.40" to 0.70".

Experimental programs with the grooved specimen and the hole

specimen are summarized in Tables 1 and 2.



1?

TABLE 1

Experimental Program with Grooved Specimen .

Length of Groove^ A ( in.) Diameter of Groove-^ DQ (in.) Projectile length (in<

0.125 0.760 i.oo

0.250 0.600 1.50

0.500 °«575 2.00

l.-OOO 0.550

1.500 0,531

2.000 0.525 '

2.500 0.500

2.750 : 0.̂ 75

"2.875 0.1*50

2.937 0.̂ 00

I>0 = °»531"f c " 2.000" A = 2.00", C = 2.00"

D
0 * 0»450", C = 3.000" A = 2.00", C = 3.00"
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. ' . CHAPTER lU

RESULTS, DISCUSSIONS AND CONCLUSIONS

A* Comparison of Experimental Results to Numerical Solutions

A computer written by Yang ( Ref. ̂ , Appendix I) was used to obtain -'

results to numerically check against those of the experiments. The 10"

.long .specimen was divided .into 100 .imaginary layers of 0.1" in thickness.

Because the computer program is based on the calculation along grid networks,

the smaller the characteristic grid, the more accurate the results will'rbe.

For an input pulse of duration 20/z.sec and a wave speed of 0.2 incĥ "-sec

in aluminum , the input pulse will be sampled into 20 sample periods of

1/̂ sec, each. This sample period yields acceptable results.

At a boundary of discontinuity,(Fig.5), the stress magnitudes of

the reflected and the transmitted waves are related to the magnitude of

the incident wave by the formulas,

<S = £( A - A )

At

Vhere *• = Reflected Stress

St = Transmitted Stress

. ^O = Incident Stress
»

• • • :AO = Original Area

A. = Transmitted Area
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-Transreitted Wave

,-Incident V7ave

.Fig. 5 Stress Wave at a Section of Discontinuity

The. stress and particle velocity at the free end must

..satisfy'the end conditions; In this case, the free surface --

can not be subjected to any longitudinal stress,therefore the

stresses of the incident and reflected waves must add up algebraically

to Bero. The sense of the stress in the reflected wave is the '„

opposite of the incident vave and the magnitudes are the same.

The particle velocities for the reflected waves add up to double

the particle velocity in the incident wave. (Fig 6)

'Reflected Wave

I •Incident Wave

Fig. 6 Stress Wave at a Free End
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Numerical computations vere done for stress vave propagation in a

grooved specimen and in a-.-hole ̂specimen. In the computations, the input

stress pulse given by the gages at station 1. vas approximated by a sine

vave* The comparisonaof the numerical computations to the experimental

results is very good as can be seen from Figs. 7 and 8.
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B. Configuration Effects.

1» Effects of Grooves, Holes, Threads, Threaded Holes and Threaded Holes

•with Screws.

As the stress wave propagates through the discontinuity, part

of the wave is reflected and part transmitted; their magnitudes are

dependent upon the area ratio at the boundary. This phenomenon repeats

itself at the next discontinuity but with a time difference. The

stress at any point in the specimen at any time is the algebraic sum

of the magnitudes of the waves arriving at that point at that time.

A hole in a specimen constitutes a reduction in area in that

section of the specimen. For one dimensional analysis and calculation

of stress waves propagation, the hole section can be treated as a solid

rod with a cross- sectional area A , smaller than that of the specimen.

AO = Cross-sectional Area

of Specimen

•Ajj. = Cross-sectional Area

of Hole

Aj. = Cross-sectional Area

of Solid Rod

L = Depth of Hole

Fig.9 Modification of Hole Parameters in Calculation.



25

For the threaded holes, American Standard taps of diameters equal to

of the plain holes vere used.

In this case, the cross-sectional area is smaller than that of the

plain hole due to the threads. Since the depth of the threads- is small

compared to the diameter ( see Table 3 )> the overall effects to stress

wave propagation are expected to be small. In calculations, an effective

area of ( AO - A^ + lÂ . ) where A is the annular area of the thread-.*
2

can conveniently be used.

TABLE 3

American Standard Threads

Thread/inch Outside Diameter (inch) Thread Depth (inch)

20 0.25 0.019

16 0.375 0.037

13 0.50 o.<&o

Vhen a screw is tighten in the threaded hole, the specimen

theoretically will act as a solid rod. However, due to machining

errors there are gaps between the threads and the screw which can

be considered as a small hole in the-rod.The magnitude of the

stress is expected to be higher than that of the solid rod.

Experimental results of stress wave propagation in rods with hole

-threaded hole and threaded hole with screw are presented in Fig.10.
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The comparison of the maximum stresses $~ at station 2 to the
max

input stress pulse <J" , for the cases of plain hole, threaded hole and

threaded hole with screw are plotted in Figs. 11 and 12.

Prom the plots, it can be seen that as the diameter of the hole

becomes larger, giving smaller annular area for stress waves propagation,

the stress peaks gradually increase. For the case of threaded hole with

screw, the peak values approach a certain constant value slightly larger

than that of the solid rod.
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b) Threaded Hole

c) Threaded Hole with Screw

Fig. 10 Sample Results of Plain Hole, Threaded Role and Threaded

Hole with Screw in Stress Wave Propagation.

( A = 2.00" , DQ = 0.25")
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2« Effects of the Length of Projectile

fhe stress wave is generated by collision of the projectile to

the specimen. 3y the method of characteristics, it can be easily shown

that the duration of the pulse is equal to twice the time elapsed T in

stress propagating through the projectile's length. The field variables

u and «p for the projectile and the specimen in Fig 13 show that contact

will be maintained for a duration of 2T.Nhen

duration, there will be no contact since u^»

u= u» = V . After this
X T 2

Separation Point time

Pig. 13 Pulse Duration of a 2" long Aluminum Projectile

Prom the experiments, the duration of the applied pulse is

slightly longer than theoretical result because the alignment in

colliding is not perfect.



The experimental results of the pulse durations for the

projectiles of length 1", 1«5" a™* 2M are shown in Fig 14-.

a)

c)

X,
f'-^

1" projectile pulse duration

i'..: - ii«»s.J

'(1 • ~-v§J
i~J i-~'--:J&

SrC • -••*

1«5W projectile pulse duration

2" projectile pulse duration

Fig. 1̂  "Experimental Results Showing Change of Pulse -Duration

Due to Various Projectile Length



C. The Stress Decay in Regions Close to a Section of Discontinuity

The behavior of stress wave propagation in discontinuous structures

resembles the flow of a fluid through pipes of unequal diameters (Fig. 15).

It will be some distance downstreams from the discontinuous boundary before

the stress resumes its predicted proper magnitude.

xo—~j

Fig. 15 Stress Flow Analogy at A Section of Discontinuity

To investigate the phenomenon of stress decay in the vicinity of

an area of discontinuity, grooved specimens with step TO (Fig.15) were made

with strain gages mounted at a distance, XQ, downstream from the section

of discontinuity. The stress decay can be-detected by comparing the first

peak stress at station 2 to that obtained from the theoretical calculations,

This first peak stress is the stress felt by the strain gages at station 2

as the input stress wave first swept by. For a sufficiently large value

of XQ « the experimental and the theoretical peak stresses should be equal.



33

The program of investigation has been outlined inxfche section

of Experimental Programs. Briefly, with YQ =0.109"t X -was varied from

0,15" to 1,00", The result of the comparison, of the peak stress, m̂̂

to the input stress (fo, vas plotted in Fig, 16. It can "be seen that

a distance X = 3.U Y from the section of discontinuity is required foro o

the stress to completely resume its predicted magnitude.

Additional experiments were conducted with XQ = 0.10" while Yo

vas varied from O.kO" to 0.70". The ratio of 6" to S~o was plotted in

Fig. 17» The result indicates that the gages at station 2 detect very

little stress for value of Y0^l«5
X

A sample result of the experiment ( X0 = 0.125, Yo= 0.109"

CLS compared to the numerical solution is presented in Fig. 18.
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D» Conclusions and Recommendations

From the analysis of the experimental results, it is concluded

that:

1) It is possible to apply one dimensional wave theory to obtain

stress information for discontinuous structures. ( A computer program

-.has'been---writ ten-for-the purpose-of obtaining such information.)

2) Small discontinuity in structures such as threaded hole,

threaded hole with screw has little effect in stress wave propagation.

In the analysis plain holes using an average area can conveniently

be used in place of the threaded holes. For design purposes, structures

consisting of threaded holes and threaded holes with screws can be TO

conservatively approximated using dimensions of the plain holes.

-• 3) As in the cases of fluid flow through the pipe sections,

streamlining will not be reached until some distance downstream.

Stress wave propagation shows the same behavior. Experimental results

indicate .that to obtain the proper stress magnitude, strain gages

should be placed at a distance from the section of discontinuity at

least equal to 3«^ times the length of the -step.



38

APPENDIX I . .

NUMERICAL PROCEDURE AND COMPUTER PROGRAM ( Ref. 4 )

Consider the grid system of the characteristic lines in the

a-t plane as shown in Fig 19. The ordinate a= â  represents

the boundary of the specimen, where the inputs(external disturbances)

are applied. The numerical procedure involving stepwise integration

along the characteristics of u± cp = constant along the line of

..slope * g is employed to compute the response for various inputs.
&'.

The stresses and the particle velocity are calculated at all

grid points.

D

time t

Fig 19 Characteristic Network
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Since the external input has a finite rise time, ip and u

are identically zero along the wave front ABO the grid points

are devided into 3 groups

- interior points

- boundary points

- interface points

Boundary Points

-Along the boundaries at a = a^ and a •— a one of

the two variables f> and u is perscribed as a function of time,

The remaining variable may be determined by representing the

characteristic equation in finite difference form along the

characteristic curve referring to Fig 19i since the field variables

vanished at A and B for the interior boundary a = a^ , only

the equation along g - (C to 3 is used). For the exterior

boundary a = ao , only the equation along g + (E to F) is

employed. • • - . - •

Points

The field variables vanish at B and G, and they have been

computed at the boundary point C, the value of *? and u at the

grid point H can then be computed by employing the characteristic

equations in finite difference form along CH (g+ ) and GH (g-)



The computation at other interior points proceeds step by step

procedure. Thus, to compute the field variables at S , we employ

the values at P and R, which have previously been computed, and

we-use the characteristic finite difference equations along g-

and g +, respectively.

Interface Points

—ft

: Fig 20 Detail of Grid at Interface

To compute the field variables near an interface, we consider

the points N^ and N,, , which are located on different sides of

an interface, but very close to the interface, as shown in Fig 20.

There are altogether four unknown field variables, at the points

~ IL-and K_ • Above the interface, the characteristic equation

_along &, can be utilized. Underneath the interface, we can use

the characteristic equation along LN . Two additional equations,

adding to a total of four equations, are obtained from the interface

conditions (7) and (g), which relate the field variables at

and N» '



The four field variables at the interface can thus be computed

by solving four algebraic equations simultaneously.

The computations described above were carried out on a

digital computer. It is apparent that the smaller the characteristic

grid, the more accurate the numerical results -will be.

Care must be exercised to ensure that the g + characteristic

lines reaching an interface meet up with the g - characteristics

of the next layer which carry the reflected waves from the next

Interface. This can be accomplished by relating the increments

A a in the 1th and (i-H)th layer by the relation

where and are the dilatatlonal wve speed ̂  tfae

and (i+l)th layers.



•RUN TOD3AR,30*-01-122»YANG'
•FOR*IS MAIN
C- • C(N)= C(I)/C(I+1) RATIO OF WAVE VELOCITY
C E(N)= EU)/SO RATIO OF MODULING TO INPUT STRESS
C K IS THE NO OF LAYERS . - ' '
C KKCN) IS THP LAST GRID'PT. OF EACH LAYER
C V(N) IS THc- POISSON RATIO
C S(2,I) IS THE RADIAL STRESS
C . U(2,I) IS THE PARTICLE VELOCITY
c . JT.JE IDENTIFIES THE TRIANGULAR INPUT
C - L IS THE TIME THAT PROGRAM EN-OS

DIMENSION U(2,1000),5(2,1000)
DIMENSION KK(3),H(2)
REAl Jl.JT
REAP 1»L,<,JT

1 FORf.AT (2X»2I4,F5. 1) • •
READ 2, M(l.) ,H(2)

2 FORM\T (2X»2F5.3) '
REAC 3,K<(1)»KK(2),K<(3)

3 FORN XT (2X»3I4)
Kl = ̂ <(K)
D 0 6 D I = 1 » K 1 .
'S'Cltl )=0.
U(1»I)=0. ' '

DO ?00 J=2»L
J1=J-1
IF (Jl-JT) 75*75,78

75 R=J1/JT
S(2»l)=SIN(3.1417*R) .
GO TO 90

78 S(2»l)=0. :
90 U(2»1)=U(1,2)+S(1,2)-S(2,1) i

DO 400 N=1,K : , !

M=KK(N}-1 . :

IF (N-l) 124,124,125
124 NI=2

GO TO 12^,
125 NI=2+K<(M-1)
-126 DO 130 I=NI ,M . '

. S(2»I)=<U(1»I+1>+S(1,I+1)-U(2,I-1)+S{2»1-1)
U(2»I)=(Utl»I+l)+S(1,1+1)+U(2tI-l)-S<2iI-l)

130 CONTINUE • '
IF (N-K.) 140,420,420

1AO KMMM=KK(N)



MM=KMMM+1
MMM=KK.(N)+2

S < 2 » CMMM } = S ( 2 , K.MMM ) / ( 1 . +H { M ) )
U(2t CMMM) = (U( l»MMM)+s( 1 ,MMM ) +H( N )* ( U ( 2 »M ) -S ( 2 »M
S ( 2 » J M ) = H ( N ) * S ( 2 i K M M M )

4OO CONTINUE
420 .KM,MN = KK(K) •

. S(2»<MMN)=0. ' :

U ( 2 * KMMN ) =U ( 2 >M ) -S ( 2 , M )
250 PRINT 255»J»S(2»1 ) »S{2»21) ,5(2*82) >S(2»83)
255 FORKAT ( 2X » I 4 ,4F10 . 6 )

DO 490 1=1, KMMN
5(1 »I )=S(2» I )
U(1»I ) = U ( 2 » I ) . . .

490 CONTINUE •
500 CONTINUE .

STOP
END



APPENDIX H

UST OF INSTRUMENTATIONS

ITEM

Strain Gage

Bridge Amplifier

Oscilloscope

Wire

SPECIFICATION

Micro-Measurement, Type ED-DY-125AD-350

Resistance 350.0 * 0.3 $ ohms.

Gage Factor 3.2 * 2.0£ at ?5° F

_Gage_length 0.-25 inch :—̂ ~

Ellis-Vishey Bridge Amplifier Kodel

BAM-1B, Cutoff frequency 130,000 C/S

Textronix Type 551 Dual Beam Oscilloscope

vith 1A5 and CA Plug- in units

Alpha ** Shielded T.̂
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ABSTRACT

Title of Thesis: Radial Elastic-Plastic Stress Wave Propagation
with an Unloading Shock in a Circular Disk by
the Method of Characteristics and Successive
Elastic Approximations

Donald W. Seaton, Doctor of Philosophy, 1972

Thesis directed by: Dr. Jackson C. S. Yang
Dr. Arnold E. Seigel

The purpose of this work was to investigate the problem of

radial elastic-plastic stress wave propagation in a thin, finite, work

hardening disk using the method of characteristics and the method of

successive elastic approximations. , In this method the characteristic

equations, derived for the elastic case, are applied to the plastic

regime by allowing the modulus of elasticity E and the wave speed C
*

appearing in the equations to assume values corresponding to the tangent
t

modulus of the plastic stress-strain curve. The value of Poisson's

Ratio, v> is taken as 1/2 in the plastic range.

Three characteristic equations were derived from the governing

conservation and elastic constituent equations as outlined in a paper

* by Chou and Koenig. They were used subsequently, along with the Prandtl-

-Reuss incremental plasticity theory and the method of successive elastic

solutions, to calculate the problem variables at the nodes of the

characteristic network which was generated in a step-by-step fashion

as the solution progressed.
t

A modest experimental program consisting of two experimental

techniques was conducted to check the accuracy of the proposed analytical

. method. A circular'disk was used with a hole at the center to accommodate



a pressure pulse applied either hydraulically or explosively to the

inner surface. The hydraulic method produced poor results and was

discarded in favor of the explosive technique.

• - The disk material was 1100-0 aluminum which exhibits a 0.2'per-

cent offset yield strength of 5000 psi and a proportional limit of 2500

psi. Strain-rate effects were not included in the theory.

Two 350 ohm Micro-Measurement strain gages were used in addi-

tion to a TEKTRONIX Model 551 dual beam oscilloscope to obtain radial

and circumferential strain time histories at a radial distance of 0.75

inches on a 4 inch O.D. specimen»

— '--- A Piezotronics Model 109A ballistics" pressure transducer was

used with one channel of a second Model 551 TEKTRONIX dual beam oscillo-

scope" to record the applied pressure pulse. A computer program in-

corporating the analytical procedures described previously was used to

check the strain histories measured on the specimens. In addition, the
%

theoretical solutions for a ramp followed by a steady state pressure were

run as approximate checks against the known, closed form, static elastic

and elastic-plastic solutions for a thick-walled cylinder.

Reasonable agreement between the theoretical and experimental

results supports the hypothesis that this method can be used to solve

problems of wave propagation in systems subjected to combined states of

stress.
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SECTION I
i

INTRODUCTION

The theoretical study of plastic stress wave .propagation in

solids first received serious attention in 1941 with the pioneering

vork of Von Karman ;and Duwez, later published in 1950 [I}, and the

concurrent work by _G.. 'I. Taylor in England [2] and Rakhmatulin in the

-Soviet Union [3]. ' .

Out of :thi.s work came a strain rate independent theory for the

propagation of one-dimensional, plastic waves. However, as mentioned

-In C^l* strain rate effects were observed in experimental results for

which the rate .of :s.t.raining was reasonably above that encountered in

Static or quasi-static loading. Accordingly, later investigators such

as Malvern [4] modified the basic governing equations to include the

effects of strain irate which resulted in improved agreement between

theoretical predictions and experimental results. Active research has

continued in an e.ffort to develop more accurate experimental techniques

to test the validity of various theoretical formulations as evidenced,

for example, by .the work of Bell [5].

Consi~der.ab.le work is also being done on the propagation of com-

bined states of stress in one or more spatial dimensions such as that
%

presented by Clifton [6], Ziv [71, Chou and Koenig [8], Fyfe and Swift

[9], and Lawrence £10]. '•

It is the purpose of the present work to develop a method of

.solving the problem of radial elastic-plastic stress wave propagation

with an unloading shock in a thin, finite, work hardening circular



disk by combining the method of characteristics and successive elastic

approximations utilizing the Prandtl-Reuss incremental plasticity

theory. A computer program utilizing this method and included as

Appendix D, calculates the time history of the problem variables.
•

By using final values of the appropriate variables as initial values

for a second run, the program can also simulate the case of repetitive

loadings on a single specimen.

The results of a modest experimental program confirming the

theoretical solution is also presented.



SECTION II

PROBLEM DESCRIPTION

As mentioned in Section I, the present work deals with the

theoretical and experimental analysis of the propagation of elastic-

plastic stress waves in a finite, circular disk with a central hole in

which is initiated a symmetric, radial pressure pulse. The outer

boundary of the disk is considered free.

"The characteristic equations governing the propagation of

.elastic stresses and strains are derived in detail in Section III along

with the relationships describing the method of successive elastic

approximations. A thorough discussion of the computational procedures

is given in Section IV. It is sufficient to say here that as the

material is loaded into the plastic range, the elastic characteristic
*

equations are applied in an incremental fashion to each of the character-
» •

istic network nodes which are generated one-by-one as the solution pro-

gresses. During this process the modulus of elasticity E, Poisson's

Ratio, v, and wave speed C, appearing in the elastic equations are ad-

Justed to values corresponding to the local tangent modulus of the

plastic stress-strain curve. The value of Poisson's Ratio, v, is taken

as 1/2 in the plastic range.

In addition to the propagation of elastic-plastic character-

istics, the problem of an unloading shock wave is also treated. This

occurs whenever the equivalent plastic stress at any radial coordinate

decreases with time. The-equations describing the unloading wave

phenomena are also derived in Section III. It is assumed during



unloading that reverse yielding does not occur.

• ' During experimental testing two methods have been used to

initiate the pressure pulse. The first consists of applying the pres-

sure hydraulically by dropping a weight on a piston which compresses a
•

quantity of water constrained in the central specimen hole. This pro-

cedure, however, yields unsatisfactory results. The second method

'uses a fuse ignited explosive charge and has been found to yield more

realistic data.

For the sake of completeness the experimental fixture used in

the hydraulic method and typical test measurements are included although

computer solutions attempting to simulate these measurements are not

.presented, but instead are restricted to the- results simulating the ex-

plosive tests. -

As a result of the applied pulse, a stress wave propagates

radially outward to the free surface where it reflects and propagates
»

inward to repeat the cycle. The amplitude of the pulse has been chosesn• • .

so that the material behind the wave fronts is .eventually stressed into

the plastic range throughout a central, annular region of the disk. The

state of stress is one of plane stress wherein only the radial and cir-

cumferential components are significant. There are, however, radial,

circumferential, and axial components of strain.

The strain history is measured at one radial location with two

"350 ohm Micro-Measurement strain gages mounted 90° from one another on

the flat surface of the disk. The sensitive axis of one gage is oriented

along -the radial direction while the axis of the remaining one is posi-

tioned along the tangential or circumferential direction. (See Figure

Ib.) The gage outputs are recorded on a Type 551 TEKTRONIX dual beam



and polaroid film.

-The input pressure pulse signature is measured vith a

-Pie'zotronics quartz transducer, Model 109A, mounted in the support

plate with the input surface centered immediately below the central

4wJld-in the specimen. (See Figure la.) The output of the trans-

-ducer is also recorded on one channel of a Type 551 TEKTRONIX dual

-beam oscilloscope and on polaroid film.

" A more complete description of the experimental procedure and a

detailed sketch of the apparatus can be found 'in Section V and Figures

la - le respectively.
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• ' . ; . . • . . SECTION III

DEVELOPMENT OF GOVERNING EQUATIONS

*

. .-. -- -If we consider an infinitesimal element removed from a sector

of a disk and subjected to a circumferentially symmetrical state of

plane stress as shown in Figure (2), we may easily show that the equi-

librium equation in the radial direction is

oo c - a.. ..

^-1-
Here, and in what follows, we are referring to polar, Lagrangian type

coordinates where the origin of the coordinate system is fixed at the

center of the disk. There is no equilibrium equation in the 9-

direction since we are assuming circumferential symmetry. Furthermore,
»

since plane stress is being considered there are no stress components
i . .

in the Z- direction. Two other equations which are at our disposal

include the elastic constituitive equations; i.e., the stress equations

in the r, 6, and z directions. It will be seen, however, that only two

of these are required to provide three equations in three unknowns;

a , aft> and the particle velocity v.

The constituitive equations are

'

ee
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Differentiating the first two of these with respect to time
• •

and noting that the particle velocity v = — gives,

ov 1 r°<7r Sc

or ~ E Lot " - ' ' 3"5

Characteristic Equations •

Equations 3-1, 3-5, and 3-6 are sufficient to derive the

characteristic relationships which consist of a set of differential

•equations relating the dependent variables a , aQ, and v to the inde-r o

pendent.variables r and t along the characteristic lines in the r-t

plane. These are lines along which weak disturbances propagate and

across which the dependent variables' are continuous but the derivatives

of the variables may be discontinuous.

There is more than one way to derive these equations, (see £6]

for instance) but in view of the above definition, it is perhaps easiest

to solve 3-1, 3-5, and 3-6 directly for the derivatives by Cramer's rule

and then to impose conditions which will cause the derivatives to become

undefined.

Accordingly, we rearrange the equations in the following form

and also include the general relationships for the differential changes

-Of o , a., and v as a function of infinitesimal changes in r and t.
r . y ' • •
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I" "oT " i" "Ft " d7

~ E dt + E dt ^ r

da da
*J ̂ * •!» *•! #• ' S5 rt/T

dr - dt . ,; r

. " • " • .. dafl da. • -
. _ dr + _ dt « dae

We may solve the above system for —r— , for example, by Cramer'sor

rule. The result is a fraction consisting of a determinant in both

numerator and denominator. If the denominator is set equal to zero and

expanded, we get a relationship describing the slopes, or directions,

of the characteristics in the r-t plane. Similarly, if we set the

determinant in the numerator equal to zero we obtain the differential

equations relating the unknown variables along the characteristics.

(See Appendix B.) The same relationship would be obtained if we chose

to solve for any of the other derivatives.-

» The results of these computations show that the characteristic

directions are given by the following three equations

— - - c 3-9dt c J y



. '•,- dr « 0 . 3-10

Along the first of these directions, _ . .

t "l J
- (ar - aQ) + pucvj -^ 3-11

Along the second, -

da + pc dv = [- (a - aQ) - pvcv j -~ 3-12
. ' . • - . . . . - . * • . . • L . r . y j r

and finally, along the third,

dV=v[d C Te -E rd t] 3'13

In these equations E, c, and u are to be regarded as variable
•

quantities the values of which depend upon whether the state of stress

.the material is in the elastic or plastic regime.

Plasticity Relations
%

Equations 3-1 to 3-13 are sufficient to define the state of

stress and strain in a perfectly elastic, homogeneous, isotropic,

strain rate independent material at constant temperature. However,

vhen the stresses become sufficiently high a yield point is reached

and the material behaves plastically thereafter or until unloading

occurs. In the latter case unloading proceeds along a curve parallel

to the original elastic curve resulting in a permanent- set when the

stresses reach zero. Upon reloading, the material remains elastic

until the stresses again become equal to the maximum value previously

attained. (See Figure 3.) It is also assumed in what follows that the

stress-strain curve in compression is identical to that in tension.
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A detailed development and discussion of the various plasticity

theories in common use is given in [11] as well as in a number of other

excellent references. Therefore, only a brief outline will be given

of the theory which is used here.

In the case of uniaxial loading, a material specimen will

behave elastically only until the applied stress reaches the yield

•point afl. Beyond this value plastic deformation occurs and the

relationship between the stress and strain is no longer linear; i.e.,

yielding is said to occur when a applied ^ afl. When a multi-axial

stress state prevails one of several possible yield criteria is used

to define the onset of yielding. In this work the Von Mises or Dis-

tortion Energy criterion for biaxial stress is used in which yielding

is assumed to occur when

* o 3-14

This function, however, is also the definition of the equivalent

stress, o , which represents the "effective stress" on the material.
eq • -- --

Thus, yielding occurs when

When a- becomes greater than <JQS the functional relationship

between the stresses and strains is non-linear. The extension of

3-2, 3-3, and 3-4 to include the plastic strains can.be written

S: e f

E fa ' UCTr] + eeP + dee? 3~16
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de1 3-17

"- These equations suggest that the strains are computed from the

applied loads in an incremental fashion. This is done with the aid of

the Prandtl-Reuss equations which are given in general differential form

as " " :

P .
dei;J dX 3-18

where S.. is the deviatoric stress tensor and represents the stress com-

ponents which are in excess of the mean hydrostatic stress which.pro-

difces no yielding. For the case at hand, this can be written

Since the mean stress is defined as

5

*the deviatoric stress tensor finally becomes

•ij

X • CTe " cz
3

0

ow

0 0

0 .z r ft

3

0 z r 6
3

3-19
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By Invoking the yield criterion it is shown in [11] that the constant

dep
d\ « 3/2 -

where dep is the equivalent plastic strain increment and is given by

dep = <de* - de*)2 + (de* - de*)2 + (de* - de*) 3-20

Substituting this relationship and 3-19 into 3-18 gives the following .

expressions for the plastic strain increments in finite difference form

with a = 0.z

-. p -i

r ' CTeJ

r
L2ae ' ar

P ACP
e " *eq

&e - - A c ' - Lei 3-23

•Equation 3-23 follows from the fact that the first order approxi-

mation for the relative change in volume.of-a strained element is,

-='r + C9 + e2vo r e z

which in the plastic range is neglected in comparison with the deforma-

tions. Furthermore, it may also be shown that the relative volume

change is given by . .
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which implies that v - 1/2 when the change in volume can be neglected,

i.e., in the plastic regime. .

Equations 3-21, 3-22, and 3-23 are the so-called Prandtl-Reuss

flow rules for the incremental plasticity theory. :

--:0nly one additional set of equations is required to define the

stress-strain time histories. These are the unloading shock relation-

ships to be discussed next.

Unloading Shock .

If at any radial distance r the material is stressed beyond the

yield point so that a ^ SIGMAX, the maximum equivalent stress pre-

viously attained, and subsequently decreases with time, then unloading

Is said to occur as depicted in Figure (3). Since unloading proceeds

along an elastic curve, such a "disturbance" propagates with the elastic

wave speed c . It therefore overtakes the slower plastic waves and may

prevent them from reaching the outer boundary or may itself be prevented

from reaching the boundary. The method of determining this behavior

will be discussed later in this section.
; • • .'
. As previously stated, the characteristic .equations given by 3-8

to 3-13 are applicable to problems in which the variables are continuous

but the derivatives of the variables may be discontinuous. In the case

of an unloading shock the variables themselves are discontinuous across

the shock and are therefore not governed by equations 3-8 to 3-13. The

shock equations, or equations describing the propagation of a discon-

tinuity may be derived however, by employing equations 3-11, 3-12, and

-3-13 in.a limiting, process. The following closely parallels the

derivation given in [8], originally credited to Leonard and Bud'iansky
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aiu} Jahsman.

. Consider an infinitesimally thin shock wave, or discontinuity,

propagating along a + c direction in the r-t plane as shown in.

.Figure (4). •

If we-also consider, as shown in Figure (4), a - c character-

istic intersecting the shock discontinuity, we can write equation 3-12

between two points A and B on either side of the shock with the result

that

B

pCo(VB ' V = J [• (ar " V " pUCV] T
dr

3-24

As B is allowed to approach A, or as dr -* 0,.the integrand contains

bounded values of a , a0, and v so that the right-hand side vanishes.r B . . .

Also, CT _ - a . is finite but different from zero and represents the
tj> Â

Jump in a at point A across the shock propagating along c • If we de-
%

fine

vith analogous expressions for the other variables, equation 3-23 can

be written finally ..

3-25

In a similar fashion, if we had considered the shock to be

propagating along a -.c line and instead of using equation 3-12 we had

written equation 3-11 along a + c characteristic intersecting the shock,

equation 3-25 would be replaced by
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Finally, if equation 3-13 is applied between points A and D in

Figure (4), we get
i

t>rc.s....... - . - _ . . . . . . : D

t p v -i
a* - <r - I E — dt

6D 6A J r J

As'dt -* 0, the integral approaches 0 and we are left with

and since in the limit < r r . - * a - * a A we have finally the static re-rD ru rA

lation at a given value of r. -

. '- 6ar = — 6aQ 3-27
( v . .

Equations 3-25, 3-26, and 3-27 relate the jumps in the variables

c * o~/»> a°d v at a point along a discontinuity in the r-t plane. However,
t v

ve vould also like to know how the amplitudes of these jumps vary as they

propagate outward or inward along + c or - c respectively. This is

done for propagation along the + c direction, for example, by writing

• equation 3-11 along the right hand (upstream) edge of the shock while

applying equations 3-25 and 3-27 across the shock. This provides three

* equations in the three unknowns a , aQ, and v at a desired point alongr 9

'the upstream edge of the shock. The finite difference representation of

these equations will be presented in Section IV.

vr_f::: _ .. . - . . Boundary Conditions .

• There are two boundary conditions in this problem corresponding

to conditions on the inner and outer surfaces, or edges, of the disk.
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TBe"Inner surface experiences an applied pressure as a function of

time which, of course, is equivalent to radial stress a as a function

of time. The outer surface is stress free and hence a = 0.



17

SECTION IV

. i

NUMERICAL ANALYSIS PROCEDURES

Equations 3-11, 3-12, and 3-13 are the differential equations

which will be used to compute the quantities a , an, and v in a stepwiser 9

fashion along the characteristics in the continuous .field region.

Consider a typical r-t plane as depicted in Figure (5) vith a

plot of the input pressure (a ) shown directly below. We divide this

plane into"a number of lines of constant r which shall be designated by

: the index I running from I = 1 to I = NA. (In this analysis A stands

• for segment A. In the future, if one should desire to consider several

concentric disks or rings these may be conveniently labeled B, C, D, etc.)

• The + c characteristics beginning at the 1=1 line and- propagating

(either elastically or plastically) to the I = NA line are denoted by the
»

index J and cover the range from 1 to problem termination or the limit JLIM.
t

By using equations 3-8 and 3-9 in addition to the three differ-

ential, equations, we may construct the characteristic network' of Figure

(5) point-by-point in an incremental fashion. A more detailed description

of this procedure will be given presently.

* -

Finite Difference Equations

Before proceeding further, equations 3-11, 3-12, and 3-13 will be

written in finite difference form then rearranged in their final form as

three linear, algebraic equations in the three unknowns a , aa, and v. Dur-
r o

'ing this process E and C are treated as variables which are functions of the

location of a on the stress-strain curve. In the elastic regime, E and C



.: 18
t

are constants while In the plastic regime E is taken as the tangent

modulus with C assuming the plastic wave speed based upon the current

value of E.

If we consider any two points 1 and 2 along a -f c character-

istic and apply equation 3-11 between them we get

" V

H [" (°r ' a8) + PVCV]1
 + I/ (ar -.V + PVCV]2)

where the right side of the equation has been averaged between points

1 and 2 and the quantity c~ also denotes an average value between the

same points . . •

If we suppose now that the variables are known at point 1 while

those at point 2 represent unknowns, we may transpose all variables with

subscript 1 to the right side of the equation while retaining all sub-

script 2 variables on the left side with the result that,

f, . A* Ar 1
- L(CTe - ar) rT + PUCV r~TT Jar2*«• «. ^ W «. •• 1 • •.„ *. 1 • *.» -I —

Px

L(CT6 - ar> r

-. If we clear parentheses on the left side of this equation, collect

-. -terms in a , O"Q and v, 'and denote by a subscript 2 those variables which
: r D ' .

: are to be evaluated at point 2, we obtain
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Ar i Ar f _ Ar
ov „ - _ . . _ O-AO - pc + pvc., -—TT"1 v'r. xl -, . ^ u . ̂ + r.

" "r* + pVC vl r** r
• ^

CTrl

Since the equation along a-c characteristic differs from (4-1) only

in two algebraic signs, an identical development of equation 3-12 along

a-c line leads to • ' . ' . . .

r, &r -\ &r f
L1 - rTT^-J ^r2 + rTTTJ CT02 + L

* ' [(a0 " Cr) - PVCV]1 rTTT

pC - PVC2 r T T J V2

arl

-In analogous fashion equation 3-13 along a dr = 0 line may be written

.as • —
l p E At (vx + v2) ̂

7 1*82 " ael " ~ 2 " J

where E denotes the average value between two adjacent .points.
t . .

By expanding the above equation as before, collecting terms in

a t <ff.» and v, and placing, subscript 1 and subscript 2 variables on
T 6

opposite sides of the equation we have,

1 . E At _ 1 • E At . ,
v C62 * 2T7 V2 " arl " 7 C62 " 2r~7 vl ' 4"3

Referring again to Figure (5), let (i,j) be a general point

at which the variables a , a., and v are to be solved. Then the ad-r D

jacent point along a + c characteristic at which the variables are
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knowti--£s—labeled (i-l,-j)-i- Similarly, the adjacent point along a - c

characteristic has indices (i-fl,j-l), and finally along the dr - 0 line

the adjacent point is denoted by (i,j-l). -

With this notation equations 4-1, 4-2, and 4-3 can be written

^ih'theif final form, with subscripts for a , aQ, and v enclosed inr o

parentheses. - - • ._ •

r

-UJ - ar(t-l,J)

ar(i-l,j) - p ^^^ - ^ v(i-l, j) (along + c)

4-4

(i.j) + , a (i,
r r *

uc
2 . »J l

&r -i
r + r J v*1'!
1 i-t-1

-[a0a+l,j-D - ar(i+l,j-

crr(i+l,j-l) + p —^ _

(along - c)

4-5
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i 1 + Ei 1-1

cry(l,J-l) .--- ae(i,j-l) -
 1>3

 r * v(i.j-l) (along dr = 0)

4-6

The foregoing relations constitute 3 equations in 3 unknowns

• and are of the :form AX = B where [x3 is the column matrix of unknowns,

[A3 is the coefficient matrix, and [Bj is the column vector corresponding

to the right .sijde of the equations. The system as given by 4-4 through

4-6 is valid f or _an interior point of the characteristic grid; however,

along the i = .1 .line cr is given as the applied pressure vs. time. In

this case only two equations along the - c and dr = 0 lines are used.

Thus, cr is transposed to the right side of the equations as a known

quantity and equations 4-5 and 4-6 are solved as 2 equations in the two

unknowns a. and v.
o »

Similarly, when i = NA at the outer edge of the disk, only the
t

equations along the + c and dr = 0 directions are used with a =0.

Again we have 2 equations. (4-4 and 4-6) in 2 unknowns a0 and v.9

The equations used to compute the variation in shock amplitude as

a function of radial distance r for the general case have already. been
*

briefly discussed. The finite difference form of the equations follows.

Referring to Figure 5, we may develop equation 3-11 between

points (i,-j) and (i-l,j) along the upstream edge of the shock in a man-

ner analogous to that leading to 4-1 except that the values of c assume

only the elastic value c .
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v(t-
(l-l.J)]

- pco v(i-l,j) 4-7

Similarly, equation 3-25 may be written

pco 4-8

Finally, equation 3-27 can be written

cr(i,j) - ̂Q(i,j) = ar(i,j-l) - iCTe(i,j-l) 4-9

Equations 4-7, 4-8, and 4-9 thus .comprise -the unloading shock equations.

Computational Procedures

An outline of the computational procedures will be given next

AS an aid to understanding the program computer listings given in

Appendix D.

In thi-s problem either a smoothly increasing and decreasing

pressure pulse as a function of time is considered or a ramp input

followed by a constant plateau.

Referring again to Figure 5 and Appendix D , after the initial

data is read into the computer the following computations are performed:

(line numbers refer to the computer listing in Appendix D)
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1) A differentiation subroutine is called to compute the

value of E (tangent modulus) at selected points along

the specimen stress-strain curve (line 0046).

2) The variable plastic wave velocity C(I) and the constant

elastic wave velocity CO are computed at points corre-

sponding to the previously determined values of E (lines

0048 and 0061).

3) . Lines of constant R are determined using the input incre-

ment AR (line 0064).

4) The intercept time of ah elastic wave with each of the

constant r lines is determined.(line 0067).

5) All variables along this line except C and E are set = 0.

These are set equal to their elastic values (line 0069).

6) From point i = 2, j = 1, the time of intercept of an elastic

wave with the 1=1 line is computed (line 0092). This is
" -- - *

point 1=1, J = 2.
i

7) The Aitken-Lagrangian interpolation routine (ATSM and ALI)

" is called to interpolate the value of input pressure, a ,

at this point (line 0094).

8) Equations 4-5 and 4-6 are called with GAUSS to solve.for

C- and v at this point (line 0104).
o

9) The equivalent stress is computed and a check is made to

see if yielding or unloading has begun (line 0106).

10) New values of C and E are interpolated, for recomputing

the average values specified in the equation coefficients

(line 0115). -Equations 4-5 and 4-6 are solved a second

time for "improved" values of a. and v.
6
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11) Using the final values of a , a~ and v, the elastic

strains are computed (line 0139).

12) Beginning with line 0159 the iterative.calculations for
•

the plastic strain increments are .carried out prior to
•

adding them to the elastic strains (line 0182). See

Step 15 for a more thorough discussion.

13) From point i = 1, j = 2 the intercept of a + c character-

istic with the i = 2 line is computed. This point is the

initial estimate of TA(2,2) (line 0198). Similarly from

point i = 3, j - 1, the intercept of a - c characteristic

with the i = 2 line is computed. This is denoted by TANN

"(line 0202). In general TAPP and TANN will not coincide

in the plastic regime in which case the earlier arrival is

designated as the actual tine intercept for that particular

i, J point. In this example i = 2, j = 2. If TAPP > TANN

an interpolation subroutine (TRANSL) is called in which the

values of the variables at point i = 1, j = 2 are reduced

linearly by the ratio (TAPP-TANN)/ [TAPP-TA(2,1) ]. In this

way a new value of TAPP originating from a new point corre-

sponding to the values of the interpolated variables more

"closely coincides with the value of TANN. If the stress

field were entirely elastic in this region the foregoing

procedure would be equivalent to translating the character-

istic line segment defining the TAPP intercept parallel to

itself until TAPP coincided with TANN. Of course, if the

field is completely elastic then TAPP and TANN automatically

coincide.
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If TANK > TAPP a similar procedure is carried out

with the interpolation being performed now on the variables

along the i = 3 line. Of course, in this particular case

vhen j = 2 an interpolation cannot be carried out since it

would involve variables on the j = 1 line and also a j = 0

. line which is non-existent. At all other points, however,

for which j > 2 the interpolation is performed (line 0218).

1A) The process described in Step 13 is continued for each i

line through i = NA. The procedure then returns to the

i = 1 line with j incremented by one and is repeated until

all of the input values of pressure vs. time have been used

or until the unloading shock occurs (line 0112).-

15) Whenever the value of a at a given point becomes > SIGMAX,

which is the largest plastic value of a attained thus far
eq

along a particular i line, the material is continuing to
*

yield. An initial estimate is made of the equivalent plastic
> •'

strain increment Ae by taking the difference between the

current and preceding interpolated values of plastic strain

after the latter has been increased by the elastic strain

Increments (line 0164). This value is then used in equations

. 3-21 to 3-23 to compute estimates of the individual plastic

strain increments (lines 0168 - 0170). These are used in

equation 3-20 to compute an improved estimate of &e . The

Iteration is repeated until two successive estimates of the

strain increments differ by no more than TESTEP, an assigned

test value.. t •

16) Several checks are made at each point after the final
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computation of equivalent stress. If a > a , i.e.,
. . • eq o

the material is in the' plastic range at a given value of

i, and if a at a point (i, j) becomes less than the

value at point (i, j-1) then unloading has occurred and

an elastic unloading shock propagates radially outward

from this point (lines 0108 - 0112 typically). Unloading

is assumed to occur first along the 1=1 line

[SIGEQ < SIGM.\X(1)]. If it occurs along some other I line

an error message is printed and the program terminated.

If ISWITCH = 1 transfer to the unloading shock computations

I s bypassed. . - . - . . -

-17) The time intercepts of this shock with each i line are com-

puted (line 0353).

18) At each intercept point a search is made for bounding values

Of time, TA (line 0354).
• - . »

19) The problem variables are interpolated between these values

Of time and are stored as the downstream'(earlier time)

values along the shock. If the shock line does not cross

any of the j-lines and therefore there are no bounding

values, then the last previous values are stored along the

•downstream edge of the shock (line 0379).

20) Equations 4-7, 4-8, and 4-9 are called to compute the values

of the variables upstream of the shock. The process is con-

tinued to the i = NA-1 line (line 0405).

21) At each i line a comparison is made between the values of

O downstrea'm and upstream of the shock. If the down-
eq • .

stream value is less than the upstream value, the shock
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computations continue, otherwise the shock computations

are terminated (line 0453).

22) At the 1 = NA line a =0. The jump in the value of v

across the reflected shock is computed from equation 3-26

f-Iiner 0461) along with the accompanying values of cr09

the strains. The shock computations are then terminated.

23) All previously computed variables for values of time

greater than the shock intercept times are set equal to

zero (line 0368). ' .

24) If the shock does not propagate to the NA line but is

terminated as discussed in Step 21, the time intercepts of

-the extended shock line are computed (line 0473) .

' 25) At each of these points a search is made for the bounding

values of time and the problem variables are interpolated

(line 0477) as in Steps 18 and 19 and are stored. All later
- •,

values previously comppted, if any, are set equal to 0.

26) The calculations then return to the 1=1 line and the

usual characteristic computations continue in the elastic

mode until the values of input pressure are exhausted. The

final stresses and strains thus computed are the residual

stresses and permanent set strains.
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SECTION V.

EXPERIMENTAL EQUIPMENT

As mentioned previously, a modest experimental program con-

sisting of two methods for initiating a pressure pulse was conducted

to verify the theoretically predicted solutions for the distribution

of strain history in the specimens.

A schematic diagram of the experimental fixture used in the

hydraulic technique is shown in Figure 1 while Figure 6 presents a

photograph of the fixture and instrumentation. The explosive method

utilizes only the support plate and a tripod supported steel rod cover-

Ing the specimen central hole to retain and better distribute the ex-

plosive gases. . .

A pressure pulse is initiated on the inside surface of the
«

specimen by igniting a quantity of explosive with a fuse or by dropping
. . >

a weight onto a plunger in the case of the hydraulic method. Since it

has been stated that the hydraulic method produced poor results, the

following equipment specifications and configurations are those used

with the explosive method. -

Two 350 ohm strain gages are mounted on the surface of the disk

-—at a radial distance of 0.75 inches from the center. One gage is

oriented with its sensitive axis along the radial direction while the

second is mounted with its sensitive axis oriented perpendicular to the

first in order to measure circumferential strain. The gages are connected

to a bridge circuit and amplifier which in turn transfers the signals to

a 2-channel oscilloscope where they are permanently recorded on
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Polaroid film. . .

The pressure pulse is sensed by a Piezo-electric pressure

transducer and integral amplifier unit before proceeding to a single

channel of a dual channel oscilloscope where it is also recorded on

film. .-. r .--.:::. T:--: - • - . - : .-._::- :•- .:-.'-' - - . '

.. . Listed below are the manufacturers, model or type numbers,

and major performance parameters of the various instruments used with

the explosives technique.

Strain
Gages

Pressure
irTransducer

Bridge

Bridge
Amplifier

Manufacturer

Micro-Measurements
Company

Piezotronics

Leeds & Northrop
Company

Vishay Instrument
Company

Oscilloscopes TEKTRONIX

. Plug-in
Unit

Model/Type

Type: •
ED-DY-125AD-350

Model: 109A

Model: 551
dual beam

Type: 53/54C

Performance
Parameters

350 ohm
gage factor =3.20

pressure 0-80000
psij frequency
range 0-500000
.hertz; rise time
1 micro-sec.

frequency range
0-120,000 hertz

frequency range
0-120,000 hertz

pre-amp rise time
0.01 micro-sec.
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SECTION VI
* - •••

' • RESULTS

• \

The hydraulic tests were the first ones conducted and re-

sulted in typical pressure histories and strain histories as shown in

Figures 7 and 8. As can be seen in Figure 8, the circumferential strain

initially is compressive before becoming tensile which is contrary to

expectations. Furthermore, the time at which'the first positive pulse

" of the radial strain peaks is much too long relative to the peak of the

pressure pulse. As a result there was some doubt as to whether the re-

—horded strain signatures were due solely to the pressure pulse. It was

anticipated that plate bending modes may also have been excited, es-

pecially in view of the bending moment applied by the 0-ring seals dur-

ing clamping.

As a result of these considerations it was decided to conduct

the explosive test program to obtain more reliable data. The strain

histories from the explosive tests presented in Figures 11 and 12 show

much better behavior than those of the hydraulic method. Accordingly,

the results obtained from the hydraulic method will, not be discussed

further while" those of the explosive program and two other test cases,

as well as the multiple runs option on a prestressed specimen will be

considered subsequently.

Three test cases have been evaluated as a means of verifying

the validity of the theoretical solution. In addition, a fourth c.ase

has been" run to illustrate the use of the multiple runs option in which

a set of final permanent stress and strain distributions and equivalent
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• yield stresses for each I-line are used as initial values for a

succeeding run. • '

The cases considered include: •

a) Steady state elastic solution with specimen 1 of

Figure Ib

b) Steady state elastic-plastic solution with specimen 1

o f Figure I b - . ' . ' •

c) Transient solution using the pressure pulse of Figures

10 and 12 with specimen 2 of Figure Ib

d) Transient solution using a previously stressed specimen

. (specimen 1 from Figure Ib) with the pressure pulse

... shown in Figure 25. . .

. Each of these cases will be discussed individually. In each

instance, a positive stress denotes compression while, a negative stress

denotes tension.
»
»

Case a) The steady elastic solution" has been obtained by applying a

pressure input consisting of a ramp to 5000 psi in 8 |j,sec followed by

• a constant plateau of 5000 psi to 225 p,sec and program termination.

A fictitious yield stress = 20000 psi has been used to insure an elastic

^ stress field. The final stresses at four selected radial locations have

been obtained from Figures 13, 14, 15, and 16 and are tabulated below

In addition to the values calculated from the standard thick walled

cylinder equations from reference 12. It is noteworthy that during

the first 25 to 35 u- seconds, depending upon the particular I-line,

The thick walled cylinder equations referenced in cases (a)
and (b) assume a state of plane strain rather than plane stress. These
equations nevertheless serve as a useful approximate check.
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these curves behave in the same manner as those given in reference 8.

Thereafter the disturbing effects of the reflected waves from the free

boundary are evident in the form of oscillations about the estimated,

best-fit steady state solution. These appear to continue indefinitely
«

in the absence of damping effects.

Computer solution

Thick Walled Cylinder

'e

1 = 1
R - 0.75

5000

-5000*

5000

-5260

1 = 3
R = 1.00

2800*

-2800*

2750

-3020

1 = 7
R » 1.50

1200*

-1400*

1140

-1425

I = 19
R = 3.00

200*

-500*

178

-464

. ^Estimated best fit steady state solution.

The agreement between the computer solutions and the known

solutions is quite good, on the order of 5 to 10 percent.
%

Case b) The steady state elastic-pl'astic solution has been obtained in a

manner identical to that of the previous case except that the actual

yield stress of 2500 psi has been used.

In this case the circumferential stress does not attain as

* large a negative (tension) value as in the elastic case. Furthermore,

because of the slower plastic wave speed the effects of the reflected

vaves do not arrive at the 1=1 line until a later time.

The final stresses at the same radial locations as case (a)

have been obtained from Figures 17, 18, 19, and 20. They are tabulated

below in addition to the values calculated from the elastic-linear

. strain hardening, thick walled cylinder equations given in reference 11

using an equivalent yield stress of 4000 psi. Again agreement between
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the computer solutions and the closed form solutions is reasonably good

with an error on the order of 5 to 10 percent except for the circum-

ferential stress at the 1=3 line. Also note that it is somewhat

difficult to accurately estimate the best-fit steady state response in

2
the oscillating region of the curves.

I » 1
R - 0.75

5000

-500*

5000

-415

1 = 3
R = 1.00

3600*

-800*

3740

-515

1 = 7
R = 1.50

1800*

-2000*

2060 .

-1960

I » 19
R - 3.00

300*

-800*

280

-800-

Computer solution a

Thick Walled Cylinder a :

*Estimated best fit steady state solution.

• .

Case c) Figures 21 and 22 present the stress-time computer solutions

along the 1=1 and I = 24 lines using the typical pressure pulse of

Figures 10 and 12 while Figures 23 .and 24 present the-strain-time

solutions for the same data at the same radial locations.' The I = 24
•- •

line (R = 0.75 in.) corresponds to the location of the strain gages on

the experimental specimen. These provide the only means of correlating

the experimental and theoretical results for this test data. Figure 11

presents typical tracings of the experimental strains -while Figure 12

shows a plot of the same data. The plotted data has also been super-

imposed on the computed solutions of Figure 24 for ease of comparison.

The information required to convert the experimental pressure

and strain tracings to actual pressure and strain values is 'given below.

The calibration factors were taken from the appropriate instrument

2
See Footnote (1) page
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manufacturer's Instruction manual.

Oscilloscope Settings During Explosive Tests,

Vertical Sensitivity Sweep Rate-
(mv/cm) (jisec/cm)

Pressure transducer • 200 2

Radial stress gage 50 ; 2

Circumferential strain gage 50 2

The slope of the pressure input/voltage output calibration

curve of the pressure transducer is 18.3 psi/mv.

A known test signal from the strain gage bridge instrument was

used in conjunction with the manufacturer's calibration factor to con-

vert the strain gage data to actual strain values. This conversion

factor is 1.95 y. in/in per mv.

Comparison of the experimental data in Figure 24 with the com-
*

puted solutions indicates that the magnitude of the first positive peak

of the measured radial strain is 56 y, in/in while the computed value is

42 \l in/in. The corresponding values for the second positive peak are

51 p. in/in versus 15 \j, in/in respectively. It can be seen that the

times at which the measured and theoretical peaks occur agree exactly.
' -

Similarly, the first negative peak of the experimental results agrees

precisely with the computed value, whereas the second negative experi-

mental peak is -55 p- in/in compared to the smaller theoretical result

of -15 I* in/in and occurs approximately 1 p.sec later.

The behavior of the circumferential-strain is predicted with

reasonable accuracy; the major difference being in the magnitude.

Experimentally, -28 |jt in/in was obtained versus -18 p. in/in for the
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predicted value. The.times at which these peaks occur are again seen

to be identical. *

Although there are some discrepancies between the experimental

' and theoretical results as discussed above, the shape and phasing of

the curves is excellent. In view of the somewhat unsophisticated ex-

perimental technique used it is also considered that the magnitude of

the.curves are in reasonable agreement. In particular, the discharge

of a quantity of powder in the central specimen hole creates a pressure

pulse that is not entirely uniform over the depth of the hole. As a

result, a purely radial pressure pulse is not realized, but instead a

complicated system of oblique waves resulting in reflections from the

—specimen free surfaces, the generation of shear waves, and.complicated

• wave interaction effects.

In view of these considerations it is concluded that the ex-

perimental data presented is in agreement with the theoretical calcu-

lations to within the expected accuracy of the experimental technique.

Case d) This run has been conducted to illustrate the analysis of a

previously stressed specimen wherein each I-line begins with permanent

set values of the stresses, strains, and yield stress obtained from a

previous run. These are read in either as initial values along the

. J » 1 line or merely as values associated with each particular I-line.

To illustrate, the following arbitrary but typical values of the

variables were input as initial data for specimen 1 which was subdivided

Into 32 I-lines.
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Variable I-line Range Value

EPSEQICO 1-7 . .0021265

8-32 '.0002500

SIGMAO(I) 1- 7 ' 4823.8

. 8 - 3 2 2500.0

STNRA(I,1) All .0001

STNCA(I,1) - All . - .0001

STNZA(I,1) All •? .0001

SRADA(I,1) All 500 -

SCIRCA(I,1) All . " - 500

Typical results from this run using a 7000 psi input pulse

are shown in Figures 25 and 26 for the stress and strain distributions

along the 1=1 line. . .

As can be seen from the plots, the initial values of the

variables are those input as the initial 'conditions. Thereafter the

stress and strain time histories proceed in a rather normal manner but

are displaced positively or negatively in accordance with the initial

permanent set values. " • . .
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SECTION VII

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK

Section VI has presented the results of the computer studies

which have been run to verify the validity of the theoretical analyses

in comparison with known solutions and experimental test results.

The elastic steady state and elastic-plastic steady state solu-

tions agree quite well with known closed-form solutions. In addition, the

test results agree with the theoretically predicted solutions to within

the expected accuracy of the experimental techniques. The case showing

the multiple runs option with a prestressed specimen yields results that

would be expected.

In view of the above, the following recommendations for addi-

tional work are suggested:

1) Extend the program to include other similar geometries such

as spheres and cylinders with various end conditions.

.2) Incorporate the capability to evaluate strain rate effects.

- 3) Add a subprogram to predict reverse yielding during unloading

and to compute the associated stress and strain distributions.

In final summary, it is concluded that the method of analysis

presented in this work and the accompanying computer programs provide a

means of calculating the transient stress wave and unloading shock wave

behavior in a disk or open-ended cylinder in which the plane stress

assumption is not greatly in error. Of even more importance, it lends

some validity to the assumption that this general approach could be

applied to any problem involving propagation, of one-dimensional stress

waves under states of combined stress in the elastic-plastic range.
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SEIJSCTED NOMENCLATURE AND COMPUTER NAMES

Symbol

A, B.

Computer Name

(bar)

c

D

E

e

i

J

CO, CA

DEPP

EO, EA

STNRA

STNCA

STNZA

I

J

NU

RA

RHO

ij

Description

Points on r-t shock diagram (Figure 4).
Coefficient matrices.

Denotes average of two adjacent values.

Elastic or plastic wave speed.

Point on r-t shock diagram (Figure 4).

Denotes jump or discontinuity in quantity
in parentheses.

Equivalent plastic strain increment.

Plastic strain increment.

Modulus of elasticity or plastic tangent
modulus .

Radial strain.

Circumferential strain.
> .

Axial or longitudinal strain.

Radial coordinate line number.

+• c Characteristic number.

Constant relating plastic strain incre
ment and deviatoric stress tensor.

Poisson's ratio.

Pressure.

Radial coordinate distance.

Mass density. •

Deviatoric stress tensor.

SRADA Radial stress.
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Symbol

<7«

eq

t

u

V

Vo

V

V

1,2

Computer Name Description

SCIRCA Circumferential stress. .

SIGEQ

S1GMAO

TA

VA

Axial or longitudinal stress.

Equivalent stress.

Mean stress.

Yield stress. . '

Time. :

Radial displacement.

Particle velocity.

Initial elemental volume.

Final elemental volume.

Axial or longitudinal displacement.

Subscripts denoting adjacent character-
istic points or variables on either side
of an unloading shock.
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ADDITIONAL SELECTED COMPUTER NAMES

Computer Name

ALI

ATSM

CINTRP

DELEP

DELRA

DEPRP

DEPCP

DEPZP

DERIVL

EINTRP

EPSEQ

EQSEQ1

EPSILN

GAUSS

* ISTART.

ISWST

ITERM

N

NA

NE

NT

Description

Aitken-Lagrangian Interpolation Routine.

A subroutine which orders tabular data suitable
for use in ALI.

Interpolated wave speed c.

Increment between SIGMAE and EPSILN entries.

Increment in radial coordinate r. .

Radial plastic strain increment.

Circumferential plastic strain increment.
•-.

Axial or longitudinal plastic strain increment.

A subroutine which computes the derivatives of a
tabulated function.

Interpolated elastic or plastic modulus.

Equivalent plastic strain.
>

Initial estimate of equivalent plastic strain.

A tabular entry of strain from the stress-strain
curve.

A subroutine which solves systems of linear equations
by Gaussian Elimination. '

I-line at which unloading shock starts.

Internal indicator controlling when strains during
unloading are to be computed.

I-l.ine at which unloading .shock terminates.

Integer index.

Number of radial coordinate lines in characteristic
-grid.

Number of entries.of tabulated stress-strain curve.

Number of entries of tabulated stress-time input.



Computer Name

RA1

SIGE

SIGMAE

SIGMAT

SIGMAX(I)

SIGN

SIGT

TA

.TANN .

TAPP

TESTEP

TIM

TRANSL

XEPRP

* XEPCP

XEPZP

41

Description
*

Inside radius of disk. ~ .

Stress in called subroutine variable list.

Tabulated stress values from stress-strain curve.
• . .

Tabulated stress values from stress-time input.

Maximum equivalent stress attained along the ith r
line.

A'subroutine which assigns the algebraic sign of one
variable to another variable.

Stress in called subroutine variable list.

Time.

.The trial time intercept of a - c characteristic
"segment on an r line from the r + 1 line.

• "

The trial time intercept point of a + c character-
istic line segment.on an r line from an r - 1 line.

A small test number used to determine the convergence
of an iterated variable.

Time in called subroutine variable list.

A linear interpolation routine used to effectively
translate the variables associated with the larger

~~of the. TAPP or TANN intercepts to coincide with
those of the smaller.

. Intermediate value of radial plastic strain incre-
ment during iteration.

Intermediate value of circumferential plastic strain
increment during iteration.

Intermediate value of axial or longitudinal plastic
'strain increment during iteration.
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Fig. 5.—Characteristic Network with
Indexing Notations and Applied Pressure Schematic.
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Fig. 6.--Experimental Fixture and Instrumentation
(Photograph)
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Fig. 7.--Pressure Pulse Experimental
Data Using Specimen 1 of Figure Ib (Hydraulic Method)
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Fig..8.--Strain History Experimental
Data Using Specimen 1 of Figure Ib (Hydraulic Method)
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Strain History Experimental Data (Hydraulic Method)
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Fig. 10.--Pressure Pulse Experimental
Data Using Specimen 2 of Figure Ib (Explosive Method).
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Fig. 11.—Strain History Experimental
Data Using Specimen 2 of Figure Ib (Explosive Method),
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. Fig. 12.—Plot of Pressure Pulse
and Strain History Experimental. Data (Explosive Method),
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APPENDIX B
•

. CHARACTERISTIC DERIVATIONS

From Section III equations 3-1, 3-5, and 3-6 are

&0r A
 ar " g9 Bv

- *r. ~~ P Bt

?_ Ba,

ar E

y0 Ba

r E v

Writing this system in determinant form along with the

differential changes in CT , <7Q, and v givesr o . . •

oar

E Bt E Bt Br
f

v^r +I?fi - - • • • • » i
E Bt E Bt r

da

or

Ba,
dr + -TT

dr + dt = dv
Br Bt



Solving for —^— by Cramer's Rule yields

vhere

1

0

o
B -

dr

0

0

and A is given on page

1

0

B c dr 0

dr

0

oar
fcr "

0

_._ _i._ _
E"

£
" E

dt

0 .

0

A
B

0

0

0

0

dr

0

Expanding

0

1
E~

H.
" E

dt

0

0

v>
E

I
E

0

0

t

0 0 - p

-1 -l V,
I o o

0 0 - ^ 0

dt 0 0

0 dr dt .

B on Column 3 gives

P * P
* .

- 1 0

0 0

0 0

dr . dt

Continued expansion on Column 1 provides the following re-

duction



B = (dr)

—

1

E .

V,

~ E

dt

0

_ JL
E

I
E

0

0

- L -

0
— :

0

dr

•

0

0

0

dt

- -

-dr

0

I
E

"E

0

c

0

" E

E

0

0

- 1

0

dr

75

- P

0

0

dt

By expanding the first on row 3 and the second on row 1 we arrive at

B •= (dr)(l)(dt)

y.
E

i
E

0

1

0

dr '

o

0

dt

-

+ (dr)2(- p)-

-

I
E

u.
" E

0

£
" E

i
E •

0

- 1

0

dr

or finally,

B «= (dr)(dt).f+ £ dtl - p(dr)2 f(i) dr - - drl .
. 1_ b J L.\C</ Tf£. J

2 2

Clearing of brackets and setting the result to zero gives

B - + dr(dt) - p(dr) + p —
3J 0 .

If we factor the common term dr we obtain

E2

This equation is satisfied only when

dr = 0

or



The second relationship can be written

• 5 -E E

1

2
(v - 1)

76

P(v2 -

therefore

dr4t *Lptt;»2>J

Similarly, determinant A

-

ae " ary o
r

' 1
V V
r " E

da dtr

da- 06

dv 0

ai

is

o,

0

o

0

dr

0

\a <

»

0

V
" E

I
E

0

dt

0

•1-

0

1

0

0

0

dr

-VP

0

0

0

0

dt

Expanding on Column 3
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A » (dr)

• •

"

O» "* CTw r
T

0

r

dar

dv

E

1L
E

dt

0

v
E

E

0

0

.

- 1

0

0

dr

' P

0

.0

0

dt

Expanding on row 1

(dr)
ag - 0-r

-

i - ± - 1 0
E E

- — - o oE E

dt 0 0 0

0 0 dr dt

,,,,
« i -i '-•
£ - £ I o
r E E

d a d t 0 0

dv 0 0 dr

Expanding the first on Column 4 and the second on row 4 yields

<dr)

A « dr dt

T^) <dt>

1 1 i

E E °

dt 0 0-

•"

p

+ (-p) (-Ddv

^—

I -Z -1
E E

-^. I o
E E .

dt 0 0

o I . i
E E

y. .2. 1.
r " E . i"

.da dt 0

llS
'

- ar
i dt) dr p dv -t- -r da. - f dt = - fe da,)]



• • . - • • 78

Clearing parentheses and setting A = 0 gives

o ae " ar ~ I ~ 2 1
A " dr dt - - — + p dr dv dt - - p dr da —• r & t r ^

• "' ' '2
*.pidr2'|dt J+:p dr 2-

— Fdt2 — - - + p dv dt - p dr 'da ~ + p dr v dt - + p dr J~ da 1 = 0E L. • r r £* r • £• r j

either dr = 0 or the bracket =0. In the latter case, rewriting

- a „ da 2
r dt + p dv "dt = p df -~ - p dr v - dt - p dr J- dar £ r £< r

2Multiplying by dr and divide by dt

dr dCTdr\ r r v
j Lp T ~ p U r

' P

. dr _,_ /dr\2 2 . E 2.. 2
since rr = ± c. or VdTJ = ° a — = c (1 - u

<a * CT) da v da
r 2 T r v r 1dr ± pc dv = cZ I - - S__ . .„ 2L dc . -^ - \

Lc2(l - v2) r C2(l - v2) J

2 r- da.
c

c(l T V ) .
»7dt]
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*ae " ar^ r v 2 i—2__ dr ± pc dv - 'Ldcr - p v - c dtj

Replacing dt by ± — gives
• »

(ae — ar) ~ ± pc dv *= ĵ dar + puc ~ drj

or finally, rearranging - •

da •+• pc dv = (aQ - a ± pvcv) — 3-11. and
r e r r 3-12

The top sign re.fers to propagation along the + c div action and the

bottom sign to propagation along the - c direction.

Along dr = 0, there is no wave propagation therefore we can ex-

press a static relation that holds between the stresses and velocity

from equation 3-6.

I . B. r
E dt E dt

E — dt = da.. - u dar y r

.. da
E r d9 = l ' V daT

o

2*t I i
r d9 J vda0o •

or . •

3-13
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. APPENDIX C
- - »

COMPUTER PROGRAM INPUT
• •

_ • _ . _ t__

Following is a list of the program input, the card format,

and a definition of each item with clarifying discussion as required.

• "•....-. . • Format (8F10.0)

DELRA - radial increment of disk (in.)- This quantity controls the

characteristic mesh spacing and also strongly controls how

rapidly the solution progresses. Too large a value could re-

sult in unacceptable accuracy of the finite difference equations
•

:• . while too.small a value will cause excessively small increments

:--- of the input pressure to be interpolated thereby increasing

machine running time. In the present studies values from 1/8

to 1/64 in. have been used.

RAI - inside radius of disk (in.).

„,_ . " 7 ••-.-•' |"lbtn see3!RHO - specimen density ——
L in* J

EO - modulus of elasticity (Ibf/in2)

NU - Poisson's Ratio

DELEP - the increment between tabulated values of EPSILN(I). In the

differentiation subroutine used in this work (DERIVL) this

increment must be a constant. .

TESTEP- a test value used to test convergence of the plastic strain

increments during iteration. In the present work .00002 was

used.
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Format (615)

NA - - 1 + number of radial increments into which the disk has been

divided. It also equals the number of I lines.

HE - number of tabulated entries in stress-strain arrays

/• £SIGMAE(I) - EPSILN(I)]. '

NT " number of tabulated entries in stress-time input

[SIGMA.T(I) - TIME(I)]. . •

•NRUNS --an indicator-showing whether the current run is the first with

unstressed material or a succeeding run with prestressed material

from a previous run. For the former case set NRUNS = 1; for the

latter NRUNS = 2. See also discussion of SIGMA-O(I).

JLIM - an indicator which terminates the program when J ̂  JLIM. Used

either as a normal termination condition or to prevent "runaway".

KK - an indicator which controls whether or not plastic wave speeds

will be computed. If KK = 1 only an elastic analysis is con-
%

templated and plastic moduli and wave speeds are not computed.
»

If KK ̂  1 plastic moduli and both elastic and plastic wave speeds

are calculated. • '

INPUT - an indicator used to bypass the unloading shock calculations, for

example, when the input consists of a "ramp" followed by a con-

stant- plateau and one wishes to ensure that inadvertent round-off

or interpolating errors do not cause SIGEQ to be less than

SIGMAX(I) and thereby cause unloading. If INPUT = 1 the shock

calculations are bypassed. If INPUT j£ 1 the shock calculations

vill be allowed to occur.
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SIGMAO(I) - the stress at the: proportional limit where the stress-
' ' :

strain curve ceases to be linear. This value is read in as an

array; one for each I line. When an analysis of a previously
•

unstressed disk is to be done each SIGMA.O(I) is assigned the

value of - the proportional limit. However, when the disk has

" been previously stressed into the plastic range, some or all

of-the I-lines will have experienced stresses above the pro-

•~ "' - portional limit. The maximum stresses for each I-line are

printed out as SIGMAX(I). Those greater than the original pro-

portional limit should be read in as the values of SIGMA.O(I)

prior to a succeeding run. They become, in effect, new pro-

portional limits for their respective I-lines. When SIGMAX(I)

is- less than the original proportional limit, then the SIGMAO(I)

' for that line should be the original proportional limit.

STNRA(I), STNCA(I), STNZA(I) - these are the residual permanent set
>

strains and are read in as 0 prior to an initial problem run.
> ' .

For succeeding runs the final values from the previous run

which occurred after the disk was completely unloaded are to be

used. . . .

EPSEQI(I) - equivalent plastic strain initially computed by the program

as the strain corresponding to the proportional limit. The

final values corresponding to SIGMAX(I) are printed as output

and are to-be read in as initial values for succeeding runs.

Format (8F10.0)

TIME(I), SIGMAT(I) - tabular values of input time and corresponding

pressure stress on the inner edge of the disk.
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EPSILN(I), SIGMAE(I) - tabular values of strain (EPSIIfl) and corre-

sponding stress from the stress-strain curve of the material.

Only values for the plastic range are to be read, i.e., above

the proportional limit.

. Format (815)

IBRANCH - an indicator controlling the input of initial value data.

If set = 1, initial values of the yield point, 3 strains, the

Strain corresponding to the yield point, and 2 stress components

are read in for each I-line. If < 0 the yield point is set to

2500 psi with all other values =0.

The following input data is listed at the end of the program

and is used when output plots of the stresses and strains as a function

of titne for selected I-lines are desired.

Format (615)
\

NPLOTl - the number of I-lines for which plots are desired.
i

IPLOT(Il) - the specific I-line numbers for which plots are desired.

Format (8F10.0)

XMIN - the minimum value of time utilized in the plot. This would

usually be 0.

DELT - the increment in time per inch of plot space available.

YHENl - the minimum values to be plotted of SRADA, SCIRCA, and VA on

the same graph. If positive and negative values occur then

YMINl should be chosen to at least encompass the largest nega-

•- j. tive number.

DELYl - the increment in YMINl per inch of plot space available.
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YMIN2- the minimum values to be plotted of STNRA, STNCA, and STNZA

on the same graph. If positive and negative values occur then

"YMIN2 should be chosen to at least encompass the largest nega-

tive number. •

DELY2 - the increment in YXLN2 per inch of plot space available.
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APPENDIX D

COMPUTER PROGRAM LISTING

The computer program listing and sample output pages are not

included in this report.
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LONGITUDINAL VIBRATION OF COMPOSITE BODIES

OF VARYING AREA
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The natural frequencies and corresponding mode shapes for composite,
axisymmetric bodies of varying area undergoing longitudinal vibrations
are determined both experimentally and theoretically. Composite rods,
cones and conical shells of Lucite, Nylon, Polycarbonate and Polyethylene
are investigated. Strain measurements are taken from strain gages
mounted on the surface of the models which are excited at varying fre-
quencies by a shaker table. Lumped parameter approximations of the
continuous bodies are solved numerically on the digital computer for both
fixed-free and free-free boundaries in order to determine the natural
frequencies, mode shapes and relative strains. The method of character-
istics is utilized in a wave propagation approach to obtain the response
of a point in the model to a random input. The random input selected
is white noise. The natural frequencies are obtained by performing a
Fast Fourier Transform Analysis on the response.

LIST OF SYMBOLS

A cross-sectional area

a Lagrangian coordinate

a., influence coefficients
ij

c shift rate

E modulus of elasticity

f. fundamental frequency

g gravitational constant

K spring constant

L length

t time

u particle velocity

x distance from base

e engineering strain

p density

o engineering stress

<f impact function

* Graduate Assistant
t Associate Professor
Associate Professor

INTRODUCTION

In recent years engineers have been re-
quired to design ballistic range models which
are capable of being launched at hypersonic
velocities for aerodynamic tests of b a l l i s t i c
missiles and space craft. At such velocities
the designer is confronted with the dual prob-
lem of using materials which are structurally
strong enough to withstand the severe loading
conditions and materials which minimize the
ablation of the missile nose due to aero-
dynamic heating. These models are frequently
used to study boundary layer transition which
could be influenced by modal vibration. The
purpose of this paper is to study the vi-
bration characteristics of the model as it is
being tested in the range, and to develop an
analytical means of predicting the transient
response of the model under dynamic loadings.

The problem of vibration in continuous
systems such as cylindrical rods has been in-
vestigated extensively in various research
papers and textbooks C'"'4!- However, vehicles
are generally made up of conical shells, sec-
tions with abrupt changes in area, and lam-
inated sections of different materials. There
is a definite lack of experimental and
analytical developments concerning vibration
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and wave propagation in structures of varying
area and/or multi-layered with changing im-
pedances.

Experimental tests were performed using a
shaker table to excite the models. Models
were made from Plexi-glass (Lucite), Nylon,
Polycarbonate (Lexan), Polyethylene, and the
combination thereof. Strain gages and accel-
erometers were mounted on various positions on
the model to determine the natural frequency,
mode shape, and transient responses in the
model. Two theoretical approaches, classical
and wave propagation, were utilized. Natural
modes of vibration and mode shapes were deter-
mined by first the classical approach, which
constitutes'the solution to the boundary value
problem and in turn the eigenvalue problem.
Numerical solutions were obtained by using a
system of spring-masses. In the wave propa-
gation approach the method of characteristics
was utilized. A numerical integration of the
characteristic equations for the range model,in
conjunction with appropriate procedures to en-
'sure that the conditions on the external boun-
daries as well as the continuity conditions at
the sections with the step changes in area and
varying impedances are satisfied, will yield
-the stress, displacement, and the particle
velocity anywhere in the model [sj. Since this
method is applicable for any type of loading,
the natural frequencies can be obtained by
applying a random input to the model and then
performing a Fourier analysis on the response
of some point in the model.

EXPERIMENTAL INVESTIGATIONS

A variety of models including rods, com-
posite rods, composite cones and composite con-
ical shells were fabricated and tested.
Sketches of these models are shown in Fig. 1.
Plastic materials were utilized rather than
metals in order to maintain lower natural fre-
quencies. An upper limit on the frequency of
the forcing function was imposed by the shaker
which was used - MB Electronics Model PM-50.

All models were constructed from solid
plastic rods which were turned on a lathe to
their final dimensions. In the case of a com-
posite model, the sections were glued together
using an epoxy adhesive. Strain gages were
then mounted on the surface and the model was
glued to a base plate which was bolted to the
shaker table. As the input frequency to the
shaker was varied, the output from the strain
gages was noted. In this manner the natural
frequency of each model was determined.

Since the elastic modulus of many plastic
materials varies due to manufacturing incon-
sistencies, age and environment in addition to
the effects of turning on the later, exper-
-iments were performed in order to determine
the proper value of the modulus for the materi-
als being used. Solid rods were used as the
test specimen since the fundamental frequency

equation for longitudinal vibration of free-
fixed rods is well established.

">
The fundamental natural frequency of each rod
was determined experimentally as was the density
Using this information and Eq. (I) the value of
the modulus for each material was calculated.
These experimentally determined values are
given in Table 1, and are used in all subse-
quent calculations.

TABLE 1

Experimentally Determined Values of the
Modulus of Elasticity and Density

Material

Polyethylene

Lucite

Nylon

Lexan

E (Ib/in2)

2.8xl05

3.3xl05

6.0xl05

3-9xl05

p(lb/in3)

Q.03̂ 8

0.0̂ 20

0.0̂ 30

O.OM»7

A series of tests involving composite rods
made up of two rods glued end to end were per-
formed. These experimental results, given in
Table 2 and Fig. 2, are restricted to the
first two natural frequencies due to the upper
frequency limit of the shaker. The results of
the lumped parameter computer analysis which is
explained in the next section is also given
there.

The next series of tests involved com-
posite cones made up of a base and a tip glued
together. Experiments were performed with the
base and tip of the same materials as well as
different materials. Table 3 and Fig. 3
illustrate the results of these experiments and
also the lumped parameter computer results.
This also gave a check on the influence of the
epoxy bond between the sections. Based on the
results, it was concluded that the influence
of the epoxy was negligible.

The final experiments were performed using
a concial shell as the base and a conical solid
of a different material as the tip. These re-
sults are shown in Table *» and Fig. b.

LUMPED PARAMETER COMPUTER ANALYSIS

The physical models are approximated by a
lumped parameter system consisting of con-
centrated mass elements and concentrated spring
elements. Each model is divided into equal
length segments with the mass treated as con-
centrated at the mid-point of the segment. The
rods are divided into 16 segments and the cones
into 2U segments. The mass of each segment
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varies as its volume in the case of the cones.
The mass elements are connected by spring
elements with spring constants determined from
the properties of the material according to the
equation:

*(i)U
where x is measured from the base and:

K. . = spring constant between i th and
(i-1) th positions

x(5) = distance at i th position

x(i-l) = distance at (i-1) th position

The computer program utilizes the influence co-
efficients, a.., which are determined by

••u—ji , K(L) (3)

The computer program which is used to
analyze the lumped parameter models first deter-
mines the eigenvalues by (1) pre-multiplying
the mass matrix by the influence coefficients
to obtain the dynamic matrix, (2) transforming
the dynamic matrix to aHessenberg matrix. The
natural frequencies are then determined from
the eigenvalues. The eigenvectors and mode
shapes are then calculated

Natural frequencies obtained by this
method are compared to the experimental results
in Table's 2,3, and k and in Figures 2,3, and k.
The first and second mode shapes and corres-
ponding material frequencies, for additional
Composite cones, both solids and shells, are
computed by this lumped parameter appraoch.
These results are given in Table 5 and in
Figures 5 and 6. The relative values of strain
for the first and second modes are also com-
puted and are shown in Figures 7 and 8.

Table 2

Composite Rods, Experimental vs. Lumped Parameter Frequencies
(See Fig. 2 for dimensions)

Material

Base

Polyethylene

Nylon

Nylon

Tip

Lucite

Lexan

Polyethylene

Frequency (KHz)

Experin
1st

1.6'

2.0

2.25

nental
2nd

5.35

6.0

5.6

Lumped P
1st

l.6*»

2.16

2.28

arameter
2nd

5.27

5.98

5.68

Table 3

Composite Cones, Experimental vs. Lumped Parameter Frequencies
(See Fig. 3 for dimensions)

Material

Base

Polyethylene

Polyethylene

Polyethylene

Tip

Nylon

Lucite

Polyethylene

Frequency (KHz)

Experirr
1st

k.itS

V.5

b.S

ental
2nd

JOJ2

9.2

Lumped pa
1st

1».52

.̂53

I*. 61*

rameter
2nd

10.17

9.21

9.26
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Table U

Composite Cone, Shell Base with Solid Tip, Experimental vs Lumped Parameter
Frequencies.

(See Fig.'1* for dimensions)

Material

Base

Polyethylene

Tip

Luci te

Frequency. (KHz)

Experi
1st

3.15

mental
2nd

8.1

Lumped Pa
1st

3.18

rameter
2nd

8.H»

Table 5

Composite Cones, Lumped Parameter Frequencies
(Base 1 in. dia. x 3 in. long, Tip 3 in. long)

Material

Base

Poly, solid

Poly, solid

0.1 in. Poly
shell

0. 1 in. Poly
shell

0.2 in. Poly
shell

Tip

Poly, solid

Lucite solid

Lucite solid

Poly, solid

Poly, soli-d

Frequency (KHz)

1st

k.M

l».i»5

3.60

3.80

4.38

2nd

9-25

9-21

10.06

10.22

11.01

Graph Symbol

6

*

•

o

D

<Q} (b) (c)

Fig. 1 - Experimental models

_ > ltalp«d-p4r«xM««r method

1

i-H
'*:'h

1 i

JL

ii

0- -Folltle* 1,

0- -

V\\

TRBJOEBCt IkHs)

Fig. 2 - Composite rods, experimental vs.
lumped parameter frequencies
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Fig. 3 - Composite cones, experimental vs.
lumped parameter frequencies
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Fig. 5 - Composite cones, first mode shapes
(see Table 5 for symbols)
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Fig. k - Composite cones, shell base with
solid tip, experimental vs. lumped
parameter frequencies
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Fig. 6 - Composite cones, second mode shapes
(see Table 5 for symbols)
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o .5 i.o
DISTANCE

Fig. 7 - Composite cones - first mode strain
(see Table 5 for symbols)

1.01

.5-

-.5-

-i.o

DISTABCS
.5 1.0

Fig. 8 - Composite cones - second mode
strain
(see Table 5 for symbols)

WAVE PROPAGATION ANALYSIS

The stress wave propagation theory used in
this analysis was developed independently by T.
Von Karman 00 and G. I. Taylor [_7] in 19^2
and used by many investigators in various forms
since that time. It is a one dimensional
elastic-plastic theory used to determine the
transient properties of solid materials under
dynamic loading.

The response of materials is governed by
the equations of continuity and momentum which
are given in the Lagrangian coordinate system
as follows:

at

3u
at 33

From the above equations the characteristic
equations may be obtained:

a t

where

and

<r
PA

I dor

cde

(5)

(6)

(7)

(8)

A numerical integration of the characteristic
equations in the range model, in conjunction
with appropriate procedures to ensure that the
conditions on the external boundaries as well
as the continuity conditions at the sections
with the step changes in area and varying im-
pedances are satisfied, w i l l yield the stress,
displacement, and the particle velocity any-
where in the model £53 • Since this method is
applicable for any type of loading a random in-
put was applied to the model. The random in-
put signal selected is white noise which has
a delta function as its autocorrelation
function. The transient response at a point
on the model was obtained numerically on the
IBM 709** computer. A Fast Fourier Transform
method was performed on the response to obtain
the natural frequencies of the structure. The
advantages of. the Fast Fourier Transform are
two-fold.- The number of actual arithmetic
operations is reduced drastically, causing
increases in speed of several orders of
magnitude for reasonable record lengths. Also,
because of the fewer operations performed,
truncation and roundoff errors are reduced,
producing a more accurate result. The results
.of the wave propagation analysis are compared
to the lumped parameter analysis for free-free
boundaries in Figures 9,10 and 11 for various
models.
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Fig. 9 - Composite cone, natural frequencies,
polyethylene base, lucite tip

-WIT* propagation luthod
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Fig. 10 - Composite cone, natural frequen-
cies, lucite shell base,

polyethylene tip

200

--- lUBp«d-param»ter

1.0-

J\

0 100 200
FREQUENCY (kHz)

Fig. M - Composite cone, natural frequen-
cies, polyethylene shell base,
polyethylene tip

DISCUSSION OF RESULTS

The natural frequencies for various com-
posite rods, cones and conical shells obtained
experimentally and by the lumped parameter
approach compare favorably. The maximum de-
viation is less than 3% for the composite cones
and conical shells. The second natural fre-
quency for the polyethylene-lucite cone was
not obtained experimentally because of
difficulties in the experimental set-up(Table
3). Subsequent modifications eliminated the
difficulties, however the dzta was not retaken.

Unfortunately the material properties of
the different plastic materials do not vary
greatly. The use of materials having a wider
range of properties should give more sig-
nificant results for composite bodies. Metals
offer certain advantages over plastics such as
a wider range of properties, more stable proper-
ties,and easier machining-particularly for
conical shells. The use of metals is recom-
mended if a higher frequency input is available.

The mode shapes and relative strains are
presented from the lumped parameter approach
only. Since strain gages were employed at only
two locations on each model, comparison was
possible only at those points. Therefore these
results were not considered significant and are
not presented.

Comparison of the two theoretical pre-
dictions, lumped parameter and wave propagation,
for the free-free boundary was very erratic and
poor. The fundamental natural frequencies for
the various composite cones and conical shells
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compared reasonably well but not the higher
modes. This confirmed the fact that while
elastic wave propagation analysis might give
good results for problems with a short duration
input loading, it does not give very good
results for long time input loading. In
addition, the wave propagation analysis is a
one-dimensional analysis. For conical modes
where the area varies, it is dependent on the
cone angle and the number of grid points
used in representing the model. For one
dimensional problems such as longitudinal
vibration of composite rods, axial ly
symmetric longitudinal vibration of circular
cylinders and spherical shells, good agree-

.,ments.,can .be-expected. (Natural frequencies
were obtained for two-layer composite rods,
cylindrical and spherical shells using the wave
propagation approach. Results compared well
with the theoretically computed results. The
results for these calculations and comparison
are not presented in this paper.)

CONCLUSIONS

f
The lumped parameter method using a series

of mass elements and linear springs can be used
to analyze the longitudinal vibration problem
of composite axisymmetric bodies of varying
area as verified by experimental vibration
tests on simple composite rods, cones and con-
ical shells.

The one dimensional elastic wave prop-
agation approach utilized in computing the
natural frequencies of the composite models
did not give good results. In order to obtain
better results using the one dimensional wave
propagation analysis for the changing area
problem with a long time input loading, much
finer gird points must be utilized which re-
quire increased running time and storage space
on the computer.

More research is needed to determine the
effect of cone angle, impedance change, mater-
ial properties,etc^ on the vibration charac-
teristic.
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