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NOMENCLATURE*

A Source strength coefficient

b Slope of velocity profile in shear layer, dU/dz or dU/dr

B (b/<")Ki in Cartesian coordinates, or

(b/u)K in cylindrical coordinates

c Speed of sound

f First solution of ordinary differential equation in
shear layer

g Second (independent) solution

k(z) Adiabatic constant for given z

k1 Wave number in x-direction (Cartesian coordinates)

k_ Wave number in y-direction (Cartesian coordinates)

k t'Jave number = Vk..2+k 2 (Cartesian coordinates);

Wave number in axial direction (cylindrical coordinates)

K Reduced wave number in x-direction = k /«>' (Cartesian
•*- coordinates)

K2 Reduced wave number in y-direction = k2/«"' (Cartesian
coordinates)

K Reduced wave number = k/w' = V K ^+K 2 (cartesian coordinates);

Reduced wave number in axial direction = k/w' (cylindrical
coordinates)

M Mach number (based on jet temperature unless subscript a
appears)

m an integer

n an integer

p Pressure

*The secondary symbols not appearing in this list are defined

where they are introduced in the analysis.
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NOMENCLATURE*

A Source strength coefficient

b Slope of velocity profile in shear layer, dU/dz or dU/dr

B (b/<")Ki in Cartesian coordinates, or

(b/w)K in cylindrical coordinates

c Speed of sound

f First solution of ordinary differential equation in
shear layer

g Second (independent) solution
; \

i Y-l

k(z) Adiabatic constant for given z

k.. Wave number in x-direction (Cartesian coordinates)

k_ Wave number in y-direction (Cartesian coordinates)

k Wave number = .k2+k2
2 (cartesian coordinates);.

Wave number in axial direction (cylindrical coordinates)

K Reduced wave number in x-direction = k /«' (Cartesian
1 coordinates)

K~ Reduced wave number in y-direction = k2/w' (Cartesian
coordinates)

K . Reduced wave number = k/w' = \K 2+K 2 (Cartesian coordinates);
JL <b

Reduced wave number in axial direction = k/o>' (cylindrical
coordinates)

M Mach number (based on jet temperature unless subscript a
appears)

m an integer

n an integer

p Pressure
„•._..«__•••»•*««__•«_« — _ «. _ —. — ••.•««.•, — — «__«» — ••>»**•.*•• — » — •••• — •» — .- _.._*•» — «.

*The secondary symbols not appearing in this list are defined

where they are introduced in the analysis.



Pressure increment from acoustic waves

Ap2 Mean-square pressure from acoustic waves

r Radial cylindrical coordinate

R Radial spherical coordinate = x2
2+y2+z2 = , x

 2+r2

R* Hyperbolic radius = / x2+(l-Ms
2aT)r

2

K Gas constant

R.P. Denotes "real part of"

s Condensation

ST Strouhal number

T Absolute temperature

t Time

u Axial velocity

U(z) or U(r) defines jet velocity profile

v -Lateral or tangential velocity

w Normal or radial velocity

x Streamwise coordinate (coordinates fixed in source)

x0 Streamwise coordinate (coordinates fixed in ambient air)
•*-*- • • • .

y Lateral coordinate

z Normal coordinate

o_ Ratio of jet temperature to ambient temperature

Y Ratio of specific heats

8 Half-width of uniform velocity region

£ w«(z-z s ) when z : . ZQ; </(z-z0) when zs ? ZQ

<u'(r-rs) when rg :> rQ; ui'(r-r0) when rg - ; rQ

9 Angular position in far field measured from upstream jet
axis

p Fluid density . . .

vx



0 Velocity potential

y Angle about x-axis (cylindrical coordinates)

w Generating frequency

oj' oi/C

Subscripts

a refers to ambient

c refers to critical

j refers to jet

s refers to source
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1. INTRODUCTION

Objectives

This analysis is not intended as a comprehensive theory

for the prediction of noise produced by turbulence in jets.

Instead we concentrate on one aspect of this complex problem,

the transmission of acoustical disturbances from the interior

of the jet through a shear layer and into the far field.

These acoustical disturbances are generated by mathematically

defined point sources drifting with the local fluid. We ne-

glect temporarily the more difficult problem of identifying

these mathematical sources with the turbulence which they are

intended to represent.

The problem we have formulated can be treated with some

precision, and with comparatively few assumptions. In spite

of these simplifications the results obtained are often not

predictable by simple intuitive ideas. This is in fact the

main advantage of such an approach, that, for those attempting

to construct more comprehensive theories of jet noise, it

should provide facts not intuitively evident.

Description of Model

The noise generator chosen is a sequence of transient

sources drifting with the local fluid. The jet (either two-

dimensional or circular cylindrical) extends to infinity up-

*This includes both "convection" and "refraction" effects

which are in general inseparable.
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stream and downstream, with velocity profile independent of

streamwise position. Thus the large velocity gradients across

the jet are accounted for, and the smaller gradients in the

streamwise direction are neglected. It seems reasonable to

expect that the major refraction effects will be shown by such

a model.

In making this analysis we consider that turbulence ("self-

noise") is the only true originator of noise, and that "shear

noise", being composed of linear terms, is a part of the trans-

mission process.

It must be emphasized that this is not a stability anal-

ysis. We deal with a distribution of turbulence in the jet

which is essentially independent of time. This steady-state

situation is the end result of the action of instabilities.

We then attempt to find the effect of the jet mean velo-

city profile on the transmission of acoustic disturbances from

one element of turbulence through the jet and into the far

field. The scattering effect of other elements of turbulence

is neglected.

Although supersonic as well as subsonic jets can be

treated by the methods discussed in this report, the supersonic

cases present some anomalous features which require more careful

study. The results given here are therefore confined to sub-

sonic jets.
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2. DESCRIPTION OF METHODS

Generality of Methods'

All of the tasks outlined in this report have in common

certain necessary steps and concepts. The noise may be gener-

ated by sources (i.e. monopole sources), dipoles or quadrupoles.

The noise generators may be on center, off center in a uniform

velocity region or, in some cases, in the shear layer. Temper-

atures may be ambient or varying across the jet. The jet itself

may be two-dimensional or circular. Still, with only minor mod-

ifications certain basic ideas apply, and we review them briefly,

For convenience we will describe the jet as being two-

dimensional. The velocity profile must be independent of

streamwise and lateral positions. For simplicity we will say

"source", and speak of a single (constant velocity gradient)

shear layer on each side of it, but other singularities can be

used, and more complicated shear layers can be treated.

The Source in a Jet

It is first assumed that the pulsating source is at rest

in a completely stationary homogeneous fluid of infinite ex-

tent. The origin of coordinates is fixed in the source, and

the conventional wave equation applies. The velocity potential

produced by the source is readily expressed as the double inte-

gral of the^velocity potentials for all reduced wave numbers,

1C, and K_ in the x (streamwise) and y (lateral) directions.

*See references 1-5..
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This corresponds to the decomposition of the source potential

into an infinite set of plane waves (and exponential disturb-

ances) .

The source and some portion of the surrounding fluid at

rest must next be confined within a jet. From coordinates

fixed in the source this jet is seen as shear layers flowing

past on each side, and outside the shear layers the ambient

fluid flowing by at a fixed velocity. (See Fig. 1.) To ac-

complish this insertion of the source into the jet one must add

to its original velocity potential the potentials for upward-

moving and downward-moving waves reflected off the shear layers.

These two reflected wave amplitudes are as yet unknown.

The Shear Layers and Ambient Air

In the shear layers the conventional wave equation does

not apply. The correct partial differential equation is de-

rived, and by assuming periodic solutions in the streamwise and

lateral directions an ordinary differential equation is obtained

in the coordinate normal to the shear layers. The ordinary

differential equation is solved by power series expansions

about the singular point, and two independent solutions are ob-

tained (in each layer) with amplitudes as yet unknown.

In the ambient air the conventional wave equation applies

again (for coordinates fixed in the ambient fluid). Only out-

ward moving waves need be considered, so (in each ambient re-

gion) one solution of unknown amplitude appears.

There are now eight unknown amplitudes to be determined

and four boundaries between fluid layers. Across each of these
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bounciaries pressure and displacement must be continuous, yield-

ing the necessary eight equations to make the system determinate.

A double integral (over 1C, and K2) for velocity potential in the

ambient air is then obtained as a function of source strength

and frequency.

The Far Field

Only in the far field can this double integral be evalu-

ated easily. There the integrand generally consists of a slow-

ly varying function multiplying a function which oscillates

rapidly about zero. Such functions interact weakly, and sig-

nificant contributions to the integral occur only when (a) the

slowly varying function becomes rapidly varying (i.e. in the

neighborhood of singular points) or (b) when the rapidly oscil-

lating function ceases to be rapidly oscillating (i.e. in the

neighborhood of stationary phase points). Evaluation of the

integral yields the pressure in the far field for coordinates

fixed in the source.

Transient Sources and Retarded Coordinates

A more useful result would be the far-field mean-square

pressure produced by sources in a localized region, say immed-

iately behind a jet nozzle. To obtain this we consider a se-

quence of transient sources, each originating at the same point

relative to the ambient air or nozzle. As one source disappears

after drifting downstream with the fluid, a new one (with random

phase relative to the first) appears at the upstream point. The

mathematical analysis of this process (Kef. 3) is rather tedious.
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However the practical application conforms to a simple rule if

it is assumed (as in the present analysis) that the transient

sources have a lifetime of many cycles. The rule is that the

mean-square pressure in source coordinates should first be

formally transformed to retarded coordinates, fixed in the

nozzle. (See Fig. 2.) The result must then be multiplied by

I 1 + Mx~/RJ , where M is the source Mach number relative to the
£j _ ;

ambient air, X£ is the streamwise distance and R the radius to

the far-field observation point.* (The rule holds also for the

supersonic case if the jl + MX2/R | factors are enclosed by ab-

solute magnitude signs.)

Contrast with Lighthill's Procedure

It may be useful to point out a few of the features in

which our procedure differs from that of Lighthill .

In our analysis only the non-linear terms (the turbulence

itself) are assumed to generate noise. All linear terms, in-

cluding those commonly associated with "shear noise", are in-

cluded in the transmission process.

Also, our sources are at rest in the immediately sur-

rounding fluid and so are defined unambiguously. Lighthill's

* The factor 1 + MX2/R is often written 1 + M cos9 where

0 is the angular position of the far-field observation point

relative to the jet 'axis, © = 0 being measured upstream,

0 = TT downstream.

The travel distance of each transient source and the thickness

of the jet are of course negligible compared to R.
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sources are in motion relative to the neighboring fluid, and

belong to one of the (in principle) infinitely many classes

of moving sources-*.

In Lighthill's model of the noise-producing jet no fluid

moves. Instead, an array of acoustical point sources passes

through the fluid, all sources moving at precisely the same

velocity. It is this simplification of the model which leads

to the elimination of source and dipole noise, and leaves

quadrupoles as the dominant noise generators in Lighthill's

analysis.



-10-

3. DISCUSSION OF DIPOLES AND QUADRUPOLES

Since quadrupoles are frequently assumed to be the pri-

mary noise generators in a jet, our analyses have included

such singularities located on the center-line of a two-

dimensional jet (see Appendix).

However, in examining the construction of dipoles and

quadrupoles in a shear layer we were led to the conclusion

that there is no obvious reason for excluding the simple and

highly efficient monopole source as a primary noise generator.

A discussion of these ideas follows.

We visualize a dipole as being the limit approached when

a source and sink* of equal strength are brought together, the

strength being inversely proportional to the separation dis-

tance. In a region of uniform fluid velocity (such as assumed

at the centerline) this presents no conceptual problem. The

source and sink, each drifting with the fluid, travel at the

same velocity and maintain the same relative positions. In a

shear layer this may not be true. Roth the length and direc-

tion of the line connecting source and sink may vary. One

might suppose that in the limit, when source and sink coincide,

this would be unimportant. However for a constant velocity

gradient in the z-direction the percentage change in length

and the rotation of the axis are independent of the z displace-

ment, and may be 40 percent and 90 degrees, respectively, when

source and sink travel one jet diameter (or less). Another,

and possibly more important, problem is that the faster moving

* a pulsating source 180-degrees out of phase
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source generally produces much greater pressures in the far

field. As the source and sink approach each other this effect

might be lost except that their strengths are being increased

in the process of dipole construction. To illustrate this

possibility we consider d(0g)/dz as compared to d(z0s)/dz,

where 0S is source potential and z0 crudely weights the effec-

tive strength for radiation. The former is proportional to the

potential of an ordinary dipole, but the latter contains a

residual source potential.

What we now suggest is that the absence of any net source

strength in the entire jet does not necessarily result in

purely dipole radiation, nor does the absence of a net dipole

strength result in purely quadrupole radiation in our analysis.

Thus one of the commonly used arguments in the exclusion of

source and dipole radiation apparently does not apply here.

There may be other and better reasons for choosing quadrupoles

in some instances. Until these are clarified, however, we

propose to deal with the simpler source noise generation in the

subsequent tasks of this study.
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4. THE SOURCE IN THE SHEAR LAYER OP

A TtVO-DIMENSIONAL J£T

A. DEVELOPMENT OF EQUATIONS

Symmetric and Anti-Symmetric Solutions

To analyze the case of a source located in the shear layer

of a jet (Fig. 3), we first assume a narrow region (width 26)

of uniform velocity (U ) within the shear layer. The source iss

located in this uniform-velocity region, and is traveling with

it, so that the source is at rest relative to the immediately

surrounding fluid. In a coordinate system moving with the

source the jet velocity distribution is then as sketched in Fig.

4. This problem can be solved by the methods briefly outlined

in Section 2. The thickness of the uniform-flow region is then

allowed to approach zero.

In order to reduce the number of simultaneous equations

to be solved we utilize in practice the properties of symmetri-

cal and anti-symmetrical solutions. First, we assume two sources

symmetrically disposed about the centerline of the jet and pulsa-

ting exactly in phase. This problem is completely symmetrical

and can be solved in the half-jet by requiring no displacement

at the centerline. Next, the anti-symmetrical problem is solved

considering the symmetrically disposed sources to be pulsating

180-degrees out of phase. This problem is also solved in the
\

half-jet, but using zero pressure at the jet centerline. The

superposition of velocity potentials for these two cases gives
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HALF-JET

Region 2

Source
RegionIB
Region 6

Region 1A

Region 0

Jet Centerline: Symmetric case - zero displacement

Anti-symmetric case - zero pressure

Fig. 4 JET GEOMETRY AND VELOCITY PROFILE

(Coordinates Fixed in Source)
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the result for a single source (of double strength). The mean-

square pressure is then found for a single source of the proper

strength.

Since the jet is symmetrical we can expect, on the average,

to find a similar source on the opposite side of the jet, but

with random phase relative to the first source, and we add their

mean-square pressures. (Note that the earlier use of in-phase

and out-of-phase source pairs was a purely mathematical exped-

ient for constructing a single source on one side of the jet.)

Coordinate Systems

The basic coordinate system (x,y,z) is fixed in the source,

with x the streamwise, y the lateral and z the normal coordinate.

Coordinates fixed in the ambient air are x^iVtZ, and those fixed

in the uniform flow region at the jet center are XQ,V,Z, where

x = v-TT t •**O ** U o *• > -

^ (1)

xn = x+(UrU_)t\J J 3

Here U_ and U, are, respectively, the absolute magnitudes of£> J

the source and jet velocities relative to the ambient air, and

t is time.

The Central Uniform-Flow Region

In Region 0 (see Fig. 4) the flow is uniform, and the con-

ventional wave equation is satisfied in coordinates fixed in the

fluid:

&„ „ + $.... + 0_ - d/c2)0̂  = 0 (2)
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where 0 is the velocity potential, c is the speed of sound and

t is time.

To satisfy the wave equation, provide for upward- and

downward-moving waves and satisfy the condition of zero dis-

placement (or zero pressure) at the jet centerline we choose 0

to be

0^ = Aw' R.P. R < exp iw' (K x+K y-ct+z'/FL+K (M.-M )12-K2 )
1— 1 & 1 J S J

(3)

where x = x -(U.-U )t. As mentioned earlier we are dealing with
0 j s

two cases here. The symmetric case represents a source at z = z

and a source at z = -z , and in the half-jet at z = 0 there is
S

required

(d00/dz) = 0 (4)

The anti-symmetric case represents a source at z = z and a
S

"sink" at z = -zs, and in the half jet at z = 0

(ajzin/at) = o (5)*
0 x=const.x0=const

This latter case is indicated by the minus sign in parentheses

before the second term of Eq. (3) .
p

In £q. (3) , A = (source strength)/8w , the source strength

being the maximum volume introduced per unit time. w1 = w/c

where w is the generating frequency in radians per second and

*pressure (Ap) = -
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c is the speed of sound. R is a complex reflection coefficient,

R = R'-t-iR". K± = k.j/w', K2 = k̂ w', K2 = KL^ + K 2. k and k

are respectively the wave numbers in the x and y directions. M.

is the maximum jet Mach number (M. = U./c) and M is the source
J J s

Mach number (M = U /c). R.P. denotes "the real part of". (The
s s

jet is here assumed to be at ambient temperature, so that

p and c retain constant values throughout the flow field.)

The Source Region and the Ambient Air

In Region 8 (see Fig. 4) we have

0 = Aw' R.P.< exp! i 01' (K x+K y-ct+ jz-z /1-K2" ) j

+ P expjiw'CK X+K y-ct-z/l-K
2 )j/Vl-K2

+ J expjji. «' (^x+K^y-ct+zVl-K2" )J/-vl-K2 (6)

where the first term, integrated from -«> to +00 in both K.. and

KO» gives the potential for a source in a homogeneous fluid of

infinite extent. The second and third terras account for down-

ward and upward moving waves reflected off the boundaries of the

8-region. P and J are respectively P'+iP" and J'+iJ", complex

reflection coefficients.

In region 2 (Fig. 4), the ambient air, we have

\
0_ = Au' R.P. S exp-ji
2 I

i »'|̂ K1(x2+Ust)+K2y-cti(z-z1)V(l-K1Ms)2-K
2j I

•- J

••-- - (7)

where the lower sign is used for reversed waves (c-K U < 0 and
.i. s

2 2
(1-K1M ) > K ). Otherwise the, upper sign is used (ordinary

J. . S

waves when C-K..U > 0 and (1-K M ) > K ; exponential decay when
X S X S
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2 2 —(1-K^Mg) < K ). S is a complex transmission coefficient here

defined as S^ = S'+iS" for convenience in satisfying boundary

conditions in complex form. (In some of our previous analyses

S was defined as S"-iS' , but this change causes no confusion in

the final result where only S|2+S"2 appears.)

The Shear Layer Regions

So far we have considered only the regions of uniform flow.

The shear layer regions must be treated differently, using s,

the condensation, and w, the vertical velocity, instead of the

velocity potential 0. The conventional wave equation is re-

placed by a more complicated form which, upon the assumption of

simple harmonic forms in the x and y directions, yields an or-

dinary differential equation (Eq. (17), given later) in the z

(or C) direction.

In Region IB (see Fig. 4)

s = R.P. Q D (C D ) expji tu 'dC.x+K y-ct)n (8)
D D L 1 .4

w = R.P. [-ic/(l-B£;B)] QB expfiw'a^x+K^y-ct)] (9)

where

B = (b/u)K and b = dU/dz (10)

U is the local shear velocity in the layer, t, is a coordinate
B

in the z direction defined by

(11)

0 is a complex function of CD and Q is the derivative of this
B B Bk
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function with respect to C . (Note that R, P, J are complex
B

coefficients but independent of the z (or £) coordinate.)

QB is composed of solutions of the ordinary differential

equation which applies in a shear layer (Eq. (17) ) as will be

indicated later.

In Region 1A, similarly,

s = R.P. QAUA) exp[i »' (KjX+Kgy-ct). (12)

w = R.P. | -ic/U-BC )! Q exp[ia,'(K x+K y-ct)j (13)
i A • A to JL. 4& — •

where £ is a coordinate in the z direction defined by
A

C. = »«rz . (zc-8)| (14)
/* L O ,.;

Now, if 8.— 0, CA— CB— Cv
 where

C = o.'(z-zs) (15)

IVe may write

QA = aA £«;) * HA g ( C )

(16)

where f(C) and g(?) are solutions of the shear layer differen-

tial equation .

, + 2BF. -i- (l-B£)j (1-BC)2 - K2| F = 0 (17):-

and a , ba, an, bB are complex coefficients *to be determined by• A A D D „

the boundary conditions.

f(C) and g(O have the forms1
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Cn (1-BC)
Q , CQ = 1

n even
(18)

g(C) = ]C Cn (1'B^n » Ci = °» C3
 = i

n odd

where

c =
 K C(n-2) - C(n-4)

n n(n-3)B2

The Boundary Conditions

At the jet centerline we have already provided for apply-

ing the condition of zero normal displacement (symmetrical case)

or zero pressure (anti-symmetrical case). Across each interface

between two regions the pressure, Ap, and the normal velocity ,

w, must be continuous. (In uniform-flow regions w = 0 and
£*

Ap = -p$ with coordinates fixed in the fluid. In shear
>2

layers w is given previously and Ap = pc s.)

The application of these boundary conditions and the solu-

tion of the resulting set of simultaneous equations is a tedious

but straight-forward process. Only the results are given here.

The Transmission Coefficients and Final Results

The transmission coefficients may be written

More precisely the normal displacement must be continuous, but
where there are-no discontinuities in streamwise velocity, as
in this case, normal velocity is also correct. ,
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J ~™

S« =

Den.

±2(l-K1Ms)'/(l-K1Ms)
2-K^[f(0)[ ]g-g(O) C ' J f j

Den.

sin«r0

and where

= C(z=zQ) = -«(Mj-

Den. =

[ Vg(Cl)[ JfJ <20>

where in the symmetric case (S1 = S_', S" = S ")
^~~ L~ - — -•"••" - - S S

,. ., • rp ~T2—2'
L J. & = g r ( C n ^ COS«TQ + ,/J.1+K. (Mi-M_) j -K sinc-Q B ^ n y

O > ^ ^ i j o V / • v / •

(21)

L Jf = ^ f ( ^ o ^ COSO-Q + , / [ l+K,(Mi-M )J -K sincx

and in the anti-symmetric case (S1 = S ' , S" = S ")
r ""'""" - ------ " "~~ •" ' -, cL £L

cos <TO

(22)

(23)

(24)

K 1 M ) 2 - K 2 ! ! f ( C 1 ) r j -gCt .K :if]
2 (25)

1 S _.i i. 1 g JL ij
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(The sign choice in S1 corresponds to the sign choice in Eq.

(7).)

Application of the far-field analysis (using the principle

of stationary phase) and transformation to retarded coordinates

gives the critical K values as

x /R
K, =

1 1+MSX2/R

(26)

K = y/R
2 l+M X./R

S /i

where x0 ,y,z (and R = •x 2+y2+z2 ) are the retarded coordinates
^ ' ^

fixed in the nozzle*.

From the far-field potential for a permanent source of

frequency <•» (the case so far considered), the far-field poten-

tial for the transient source seque'nce described previously

(Section 2) can be obtained by methods derived in Ref. 4. The

final result for mean-square pressure in the far field, assuming

each transient source goes through 2n cycles of frequency o> , is

R2 R2 l+Mx2/R
5

CO

2 f UAn)• - J - 2
(S'2+S"2) - _ (2?)

or, if each transient source is assumed to go through many

cycles,

— ̂  2Tr2A2,2u>n
2 z2 |S t 2Un) + S"2Un)|

Ap2 = - - --—2- -- i - -2-- - g ° J (28)
R2 R2 l+Mx2/R 5

''The nozzle is here assumed to be stationary in the ambient air.
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In these equations S' = i(Ss'+Sa
f), S" = i(Ss"+sa"), subscripts

s and a denoting values found from Eqs. (20) for the symmetric

and anti-symmetric problems, respectively. The result is the

mean-square pressure for a single off-center source of strength

2
Sir A. M is the source Mach number (M ). (For a single source

5

on the far side of the jet, the mean-square pressure is given

by Eq. (27) or Eq. (28) with S' = i(Ss'-Sa«), S" = i(Ss"-Sa").)

Henceforth, for convenience we drop the subscript 0 on the

generating frequency which will be designated simply w. This

should cause no confusion.

Special Case: Source in Central Uniform-Flow Region

The special case of a source at the center of a shear

2 3layer jet has been treated in detail in earlier work * . If

the source is not on the centerline but is in the uniform-flow

region inside the shear layers, the analysis is similar. There

is no need to consider the special 8-region introduced when the

source is in the shear layer, and the component source solution

(i.e. the first term of Eq. (6) ) is added to the central region

potential in Eq. (3) , where now M& = Mi. In the shear layer

we define

C = «'(z-z0) (29)

(replacing the previous Eq. (15)), so that in the definitions

of Eqs. (21)-(25) we have

«o"V° """ •"-'"-••" '

(30)

MS =
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The transmission coefficients reduce, in the symmetric case, to

3B(1-MSK1) V
/(l-MsK1)

2-K5|f(ci) L Jg-g^) I J f]
S ' = +2 COS<r
O

S " = 2 cosa* s

Den.

3B(l-MsK1)[ft(C1)[ V
g(tl)L Jf]

Den.

(31)

where

<r = u>'z /1-K2N (32)
s s

and lift L Jg are defined in Eqs. (21) (with r = 0). For the

anti-symmetric transmission coefficients, cos<r is replaced by

sin<r_ and L If, L J« are of course given by Eqs. (22).
5 I K

B. DISCUSSION OP COMPUTED RESULTS FOR

SOURCES OFF THE CENTBRLINE

Typical Examples (for M: = 0.7)

Fig. 5 illustrates the effect of moving a source off the

centerline within the central uniform-velocity region of the

jet. The greatest mean-square pressure occurs when the source

is on the "near" side (.nearest the side on which the measurement

is made). However the variation is small, and the average of

near and far side sources (shown in Fig. 6) is negligibly dif-

ferent from a source on the centerline. These results are for

a Strouhal number of 0.2, and would not necessarily hold for

Strouhal numbers of 1.0 or 2.0.
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20 15

Jet

AP

M -z = 0

6 = cos"1(x2/R)

10

Fig. 5 POLAR PLOT OF FAR-FIELD MEAN-SQUARE PRESSURE

FOR THREE SOURCE POSITIONS IN THE UN I FORM-VELOCITY

PART OF THE JET (Two-Dimensional Jet, M. = 0.7,

ST = 0.2, = 0.25)
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z.

z

z

"1. .x"i
= z

s • ~x-
x^Ms~rJ Source

~ zo
= o - -MJ—H -

Source

z = z /z,s s' 1

= 0.25 <M = .?)

ze = 0.75 (M_ = .233)

Fig. 6 FAR-FIBLD MEAN-SQUARE PRESSURE FOR SEVERAL

SOURCE POSITIONS IN A SHEAR-LAYER JET

(Two-Dimensional Jet, M. = 0.7, ST =' 0.2,

ZC/Z1 = °«25-)
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In Fig. 6 the central region of uniform velocity is one-

quarter of the jet thickness (as in Fig. 5). However the

sources are placed in the shear layer one-third and two-thirds

of the way out in the linear velocity profile region. Here the

far-field mean-square pressures shown are the average for a

near side and a far side source, whose effects are similar at

this Strouhal number of 0.2. Fig. 7 shows similar results for

a source at the mid-point of the shear layer when the central

uniform-velocity region covers half the jet thickness.

The most obvious conclusion to be drawn from Figs. 6 and

7 is that a source of given strength and frequency radiates

much less noise when traveling at reduced velocity in the shear

layer than when traveling with the central portion of the jet.

If the shear layer is to compete with the central region in

noise production it must contain many more or much stronger

sources. This is, of course, the case where the potential-core

region of the jet persists. Further downstream the central

region of the jet may become important.

Residual Source and Dipole Radiation in the Present Analysis

It is also of interest to observe in Fig. 6 the sources one-

third and two-thirds of the way out in the shear layer, assuming

them to be 180-degrees out of phase. Such a source-sink pair

could not radiate at all like a dipole because of the great

difference in the magnitude of the noise radiated individually.

The radiation would be primarily that of a source, and this is

why we stated earlier that elementary reasoning does not appear

to justify the elimination of source and dipole radiation in

favor of the less efficient quadrupole radiation in this analysis,
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z
z
z

Jet

= 2
Szo-

. . M« )Source

z = 0 Mj

©Source

20 15

- -z. = 0 (Mc = .7)
5 S

z_ = .5 (M_ = .7)

.zs = .75 (Ms = .35)

= COS
V

I
5

~1 (x^R)

10

Fig. 7 FAR-FIELD MEAN-SQUARE PRESSURE FOR SEVERAL

SOURCE POSITIONS IN A SHEAR-LAYER JET

(Two-Dimensional Jet, M= = 0.7, ST = 0.2,

zjz, = 0.5.)
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Comparison with Lighthill's Analysis

The disappearance of source and dipole radiation in

Lighthill's analysis is a peculiarity of the highly simplified

model chosen to represent the jet. In that case the entire air

mass (jet as well as ambient air) is essentially motionless,

the acoustic singularities being convected, all at the same

velocity, through the jet region. This means, for example,

that any two sources of the same strength and frequency radiate

energy to the far field in precisely the same amount and pat-

tern except for phase. Position of the sources in the jet is

unimportant for this model. Thus cancellation of the source

strength causes cancellation of the source-like radiation in

the far field. Similarly, cancellation of the dipole strength

causes cancellation of the dipole-like radiation in the far

field, leaving only quadrupole effects.

In contrast to this model, the present one puts the jet air

in motion with velocity depending on the chosen velocity profile,

The acoustic singularities travel with the jet air. Then two

sources, for example, having the same strength and frequency

generally do not radiate to the far field in the same amount

and pattern. Consequently, cancellation of the source strength

does not generally cancel the source-like radiation in the far

field.
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5. THE CIRCULAR CYLINDRICAL JET

AT CONSTANT TEMPERATURE

A. DEVELOPMENT OF EQUATIONS

I. THE SHEAR LAYER

To study the transmission of acoustic disturbances through

an annular fluid layer in which the velocity (U) varies with r,

we start with the basic continuity equation and Euler's equation
•7

(Eqs. 1.2 and 2.3, respectively, in Landau and Lifshitz )

+ div(,V) =0 (33)

£X + (V.grad)V = - I grad p (34)

where p is density, p pressure, and V is the velocity vector.

In cylindrical coordinates (x,̂ ,,r) we will denote three mutually

perpendicular velocity components as u,v,w, where u is the x-

direction velocity (parallel to the axis of the jet), w is the

radial (r-direction) velocity in a plane normal to "the jet axis,

and v is the tangential (^-direction) velocity in that plane.

In this notation the continuity equation is written

+ £ = 0 (33a)
at dx r r dy dr r

and the three components of the Euler equation are
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2H. + u^i + - ^H. + v£H. = - 1 §2.
at ax r a<// ar /> ax

2! + u2!+!2l + w2! + £ £ = - . I - 2 E ' (34a,b,c)
at ax r ay ar r />r a* f '

2aw + u£w + v aw + wa_w v - _ i ap
at ax r a^ ar r /> ar

Let u = U( r ) + Au , p - p (1+s) and p = prt+*cs ,
o u

? o —
where s is the "condensation" and * = /» c (see Lamb , pp.

o

476-479). (f>Q is the density of the undisturbed fluid in the

shear layer and p is the mean pressure which is constant at

its ambient value.) Assuming small perturbations and retaining

only first-order terms, the equations of motion become

Aut + U( r ) Auv + w l!_(r) = - c2 svL A r x

vt + U ( r ) vx = - c2 s^/r (35)

w, + U( r ) w = - c
t- A

2

.. + sv U(r) •»• Au^ +J + \ t + ™ . = Q (36)
t A A i , • . . x x

Eliminating Au, v and w in turn gives

sttt + 3Ustt + 3U2stvv + U
3sVVY

v fc« l» i> l«j^. C.A^^ AJtA

- c2 j (V
2s) + U(V

2s)Y + 2U,c2sw = 0 (37)j ** J* r r?c

Let

(cos)
s = F(r ) cos(m^) sin(kx-<i»t) (38)
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where k is wave number in the x-direction and w is the frequency.

The tangential wave number, m, is integral so that s is single-

valued. Substituting Eq. (38) into (37) gives

ij w O J i)

)" / 1*. X I \ " & / f ft • I \ ̂ i T2 — f\ / O f\ \- (k/o>') - m /(i?+rnw') iF = 0 (39)

where 17 = o>'(r-r ) and w' = w/c .

For a linear velocity profile U(r) = b(r-r ) , and if we

denote B = bkc/u>2 = (b/o»)K where K = k/uf , the differential

equation of the shear layer is

+ (l-B,)j(,+r0«')
2{(l-B,)2 - K2j- m2JF = 0 (40)

A solution of this equation can be obtained in the form

F = £ Cn (l-B,)
n (41)

0

where, if we denote /A = 1+Br w1,

c0 = GI = c2 = o
(42)

G3 is arbitrary

and

n(n-3)B2M
2 C = B%(n-l)(2n-7) C .
^ n ! ^ n-l

- <(n-2)(n-4)B2-K2M
2-m2B2>

(43)
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(Note that Cn is zero if n < 0.)

To obtain a linearly independent second solution we set

V = F In jl-Bij + £ An (1-B,)" (44)^ 1 t A—^ n
0

where F., is the solution already obtained (Eqs. (4l)-(43)) and

0 3

AI = o
2 2 2 2 2 2 2 2 (45)

A2 = .- 3MC3(B m +K /i )/2(B m -K ^ )

A^ is arbitrary

and

V An =
 J- M

2B2(2n-3) Cn

+ AtB
2{(4n-9) Cn.j + (n-l)(2n-7) An-1j

- 2B2(n-3) Cn_2 - { (n-2) (n-4)B
2

+ 2fi An-5 "' An-6 ! (46)

(An is zero if n< 0.)

For simplicity we designate the arbitrary constants as a,b

and denote F.. ~ f , F? ~ g, and write

= a f(7) > b -g(^) - - - - - - - (47)
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with
aa

n
c
n

0

g(i,) = f(,) lnl-B7 + An (1-B̂ ) (49)
0

where C3 = 1, A3 = 1 and Cn, An as above. (b in Eq. (47)

should not be confused with the slope of the velocity profile

used earlier. )

Eqs. (48) and (49) express two independent solutions of the

differential equation (Eq. (40)) as series expansions about the

singular point r/ = 1/B. The series converge for those points 17

whose distance from 77 = 1/B is less than the distance from

rj = 1/B to the other singular point of the differential equation

at r) = -O/'TQ. Hence these solutions may not be valid over the

entire shear layer. In such cases another series solution may

be obtained by expanding about some other point; we choose the

outer edge of the shear layer, 7=1;.,= wf(r..-r ). The con-

vergence of this new series is then limited to. those values of

17 which are closer to 77 . than the nearer of the two singular

points of the differential equation. This solution of Eq. (40)

is obtained in the form

oo

an (l7-V (50)

0

a and a1 are arbitrary and, if we denote (l-BiO/B = * ,

"•'r = RT we obtain
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an = -

- < (n-3)(n-5)-(Q1+m
2)>an_3 + Q2

a
n-4

^ •*'

* Q3an-5 + Q4an-6 ' ̂n-J (51)

where

QQ = vR1
2(B2v2-K2)

Q1 = 2R1>/3B2 - 3v2B2R1
2 - 2i/RxK2 + K2Ra

2

Q2 = V
3B2 - dv^Rj + 3i/B2R1

2 - VK2 + 2RXK2 (52)

2 2 2 2 2Q3 = 6 v B R 1 - 3vB - E + K

(an is zero for n < 0.)

In this case two independent solutions are obtained by

letting first one and then the other of the arbitrary constants

be zero. Thus we may write, as before,

F(tj) = a f(Tj) + b gd;) (53)

where a,b are arbitrary and

a
n -̂̂ i)" with ao = 1» ' (54)

0
a, = 0,

_ an
 as given above;

• ' :"

an (Tj-̂ j)11 with a0 = 0, (55)
0

al = !•

a as given above.
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In some cases neither series solution (Eqs. (48) and (49)

nor Eqs. (54) and (55)) is valid over the entire shear layer*

One series can be applied in one part of the shear layer,

however, and the other series in another part of the shear

layer, and there is an overlapping region where both series are

valid, in such cases the solutions must be matched at some

point within this overlapping region. This is accomplished by

establishing conditions of equal pressure and equal radial vel-

ocity at the matching point, so that the arbitrary constants

a,b in Eq. (47) are thereby related to those in Eq. (53).

(The second singular point of the differential equation,

i.e. that at 77 = -u'r , corresponds to r = 0, the center of the

jet. AS long as the shear layer does not extend in to the jet

center (a condition which is met by the numerical examples

studied later) it is not required to obtain a solution by ex-

pansion about this point. In some cases such a solution might

be useful to expedite convergence, however.)

II. THE SOURCE IN A CIRCULAR SHEAR-LAYER JET

Basic Solution

In cylindrical coordinates, the wave equation governing

the propagation of small disturbances in a homogeneous fluid

is

+ + = -- (56)
r dr dr r dy2 dx2 c2 dt2

where 0 is a velocity potential, c is the speed of sound and
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t is time. x,^,r are the cylindrical coordinates of a point

in the homogeneous fluid.

A solution of Eq. (56) for an acoustical point source,

located at the origin and at rest with respect to the fluid, is

iUx-u.t) (i) r-j—f
R.P. J e HQ (rVo,'

2-k20 = wA R.P. e H (rVo,'2-k2 ) dk (57)

2where A = (source strength)/8ir , source strength being defined

as maximum volume emitted per unit time, u> is the source fre-

quency, w' = «»/c, k is wave number in the x-direction, H (a)

is the Hankel function of the first kind of order zero and

argument a, and R.P. denotes "real part of".

Eq. (57) represents the source as a superposition over

all wave numbers of cylindrical waves (k <= <o/c) and exponential

disturbances (k>w/c).

If the source is not at the origin, but at some point

0,^ ,rg, an appropriate wave- expansion formula (see, for ex-

ample, Magnus and Oberhettinger , p. 21, formula 3b) applied

to Eq. (57) gives

00

« . C i(kx-wt) r 3--.-X
0 = irA2j «ra coslm^-^g)] R.P. J e Jm

(rs ̂ "k } '
0 -<»

(.. -y .

1) P P
L_ (r/v«« -k^ ) dk ; r > rs

0
(1) r-o —--^

(58)

cosfmOf' -*.:'] «
(1)

• "m <rs

...

_«

/e
-OO _

i(kx-u»t)
Jm ( r

/ - " 2 "
Vc*« -k^ ) dk ; r <
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where «Q = 1, «m = 2 for m = 1,2,3,..«, Jm is the Bessel func-

tion of the first kind of order ra, and H^ ' is the corresponding

Hankel function.

Eq. (58) can be derived alternatively by representing the

off-center source as a 8-function constructed by superimposing

an infinite Fourier series of ring-sources, each of radius r
5

and having tangentially-varying source strength proportional

to A c o s f m f y - ^ ) ! . The velocity potential of the rath ring-

source is given by the corresponding m term of the series in

Eq. (58). (Viewing the source in this manner has practical

utility later on when computing the far-field pressures.)

Source in Shear Layer

To analyze the problem of a source located in the shear

layer of a cylindrical jet (Fig. 8), it is convenient to first

assume an annular region (Ar = 28) of uniform velocity, Ugt

within the shear layer. The source is located in this uniform-

velocity region, and is traveling with it, so that the source

is at rest relative to the immediately surrounding fluid. In

a coordinate system moving with the source the jet velocity

distribution is as sketched in Fig. 9 . This problem can be

solved, and the thickness of the annular region containing the

source is then allowed to vanish (8— ••()).

Since the jet is symmetrical we can expect, on the average,

to find similar sources at all angles i>c in the jet, but with3

random phase relative to each other. Their mean-square pres-

sures are additive.
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r = r

= i
= 0

Fig. 8 STREAMWISE GROSS-SECTION OF CIRCULAR

CYLINDRICAL J£T WITH SOURCE IN SHEAR-LAYER,

SHOWING VELOCITY PROFILE AND GEOMETRY
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(Coordinates fixed in the source)
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Coordinate Systems

Hie basic coordinate system (x,̂ ,r) is fixed relative to

the source, with x the streamwise coordinate parallel to the

jet axis, r the radial coordinate measured from the jet center

line in planes normal to the jet- axis, and ^ the angular coor-

dinate in such planes. Coordinates fixed in the ambient air

are ̂ iVt1 and those fixed in the uniform-flow region at the

center of the jet are X,^,rv where

x- = x-U t
^ 5

(59)
xn = x+OJ.-U )tu J s

Here U and U. are, respectively, the absolute magnitudes ofs j

the source and jet velocities relative to the ambient air, and

t is time.

Jet Temperature and Mach Number

Most of our previous work has assumed that the jet has the

same temperature as the ambient air. We now allow the jet tem-

perature to have a different value from ambient. The jet tem-

perature, T., is assumed constant throughout the jet (r <r.).

Corresponding to this, the speed of sound in the jet is c. and
J

the density is p.. Outside the jet (r > r ) the ambient air has

temperature Ta, and corresponding speed of sound ca and density

pa. The temperature ratio is denoted o :

!il2 (60)
J

Although the temperature discontinuity at the outer jet



-42-

boundary is unrealistic, the analysis will enable a preliminary

investigation of the effects of heating the jet.

We define jet and source Mach numbers based on jet tem-

perature:

(61)

For convenience we define also a Mach number based on the speed

of sound at ambient conditions so that

M = U ./c = /JT M .
a; J a ' T j
J (62)

Mas = V
ca = &£ Ms

The frequency parameter is

•

(63)
wa« = w/Ca =

A non-dimensional wave number is defined as

K = k/w'

Ka = k/«a'

(64)

The Central Una form- Flow Region 0

To satisfy the wave equation, provide for outward and

inward moving waves, arid satisfy the condition of zero radial

velocity (30/dr = 0, i.e. no source at r = 0) at the jet

centerline, 0 is chosen to be
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!_ i»'[Kixo-(UrUs)t l-cst]
R.P.j 1 e J . J .

(65a)
I

\
\

dK (65b)
0 -« "m

where "R^ is a complex coefficient, FL = R^f + î "' *° ^e

determined.

Eq. (65a) is the component potential for one value of m

(i.e. a single one of the source rings mentioned previously)

and one value of wave number K. The total potential is ob-

tained by integrating over all K arid summing over all m, as in

Eq. (65b). Since the individual component terms must each sat-

isfy the differential equation and the boundary conditions, we

will henceforth write only the component solution for each re-

gion of the flow field. The total potential is in each case

the integral (over K) and the sum (over m) of the component

term, as indicated for the central-region potential in Eq. (65b).

If the source is located in the central uniform-flow re-

gion, the source solution from Eq. (58) must be added to Eq.

(65). For greater generality the following analysis will be

applied to the case with the source in the shear layer of the

jet, but the final result for the special case where TS< rQ

will be given later.

The Source Region

In the annular region 8 we have
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(K) = TA«« « m cos [mfy -f )] R.P.I expfiw'CKx-c.t)!in o -• L J J

/ - 3- (1) / - *
Jra(rsw' '̂ ~K } Hm <*""'!-*

(1) / - ̂  _ (2)
"m C'-

rs-«-8 > r > rg (66a)

)] R.P.i exp[iw'(Kx-Cjt)j

/ - o^ (1) / --- ̂
Jm(rw"/l-K

2 ) Hm (rs««Vl-K
2 )

Ĥ r.' K̂̂  ) * ̂  Ĥ r̂o,' '1̂? )}j ;

r_ > r > r -8 (66b)
o 5

The first term in each of these equations is the m,K-component

of the source potential and the other two terms account for

outward and inward moving waves reflected off the boundaries

of the 8-annulus. Em and Gm are, respectively, Em' +
 iE

m"»

G ' + î m"' comPlex reflection coefficients to be determined.

The first term of each of these equations, integrated over

all K and summed over all m, gives the source potential which

at r = rs, <l> = tys fulfills the necessary conditions for the

existence of the source. The other two terms, being the same

in Eq. (66a) and in Eq. (66b), represent a solution which is

continuous in both pressure and velocity across the 8-annulus.

Thus the boundary conditions at r = rs are satisfied.
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The Ambient Air

Outside the jet (Region 2, the ambient air, in Fig. 9 )

we have

00 (K) = irAw' « cosfinty-* )"j R.P. S expj iw1 { K(x +U t)-c.t}j
2m m "- s -I - [ _ m L ' 2 s j J

( 1 7 i , ?> ~*^ *~î  {
• H (r«,« V(c./c )2(l-KMc)

2-K2 ) (67)
HI J 3. 5 _j

where Sm is the complex transmission coefficient, S"m
 = s

ra'
 + is

m'

Note that w ' = w/Ci and K = k/w1 , as before, so that the c. mul-

tiplying t in the exponential term is due to this definition of

w1 in terms of jet temperature rather than ambient. The temper-

ature difference effect appears in the argument of the Hankel

function. That is, Eq. (67) is a solution of the local wave

equation (Eq. (56), with x = xg and c = ca).

When KM > 1 and (c,/c )2(1-KM)2> K2, H^( ) in Eq. ,(67)s j a s m
(2)

must be replaced by H ( ), the Hankel function of the second

kind. This is, in cylindrical coordinates, the "reversed wave"

case discussed in previous reports2.

The Shear Layer Regions

So far we have considered only the regions of uniform flow.

The shear layer regions must be treated differently, using s,

the condensation, and w, the radial velocity, instead of the

velocity potential 0. The development of the shear layer equa-

tion for a circular cylindrical jet with linearly varying velo-

city profile was given earlier. As shown then, the conventional
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wave equation is replaced by a more complicated form which,

upon the assumption of simple harmonic forms in the x and <J»

directions, yields an ordinary differential equation (Eq. (40))

in the r (or 17 ) direction. Two independent solutions (f(̂ ) and

g(i?)) of the shear layer equation are found by series expansion

and have the forms shown previously. These are combined to give

the shear-layer region solutions used below.

In Region IB (see Fig. 9 ) we may write

iu)t
sm =

w =
ill

R.P.

R.P.
iw'(Kx-Cit)"

(68)

(69)

where B = (b/o»)K and b = dU/dr. U is the local shear velocity

in the layer. 17 is a coordinate in the r-direction defined by

- (rs+8)] (70)

Qn is a complex function of ijr, and is a combination of the

solutions fm('t) t 8m(
tJ) of the ordinary differential equation

which applies in the shear layer. Q is the derivative of

Qo with respect to IJR. .

Similarly, in Region 1A (Fig. 9 ) we write

sm =

w_ = cosrra(*-f_)i R.P.ra s'J

iw'(Kx-cjt)
(72)

where 17 is a coordinate in the r-direction defined by
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'A = "'Lr - (rs-»! (73)

Now if 8 — «-0

i, = w'(r-rs) (74)

We may write

m
(75)

where, as stated already, fm(*?)f gm^)
 are solutions of the

shear-layer equation, a* , b. , a"R , bR are complex coef-
™m ™-m °m °m

ficients to be determined when all the boundary conditions

are satisfied.

The Boundary Conditions

At the jet centerline the condition of zero radial velocity

has already been provided for and, similarly, at the radius of

the source location, r = rc, the solution was constructed too

provide continuity except for the required existence of the

source at r = rs, ^ = ̂ s. Across each interface between any

two of the flow regions the pressure (Ap) and the radial velo-

city (w) must be continuous.

In the uniform-flow regions w = 0 and Ap _=.-?/>. 0. if the

uniform-flow region is within the jet or Ap = -̂ a$a outside the

jet, with coordinates fixed in the local fluid in each case. In
o

the shear-layer regions w is given previously and Ap = ^c s«
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Application of the pressure and velocity boundary con-

ditions (at the four boundaries rQ, r s-8,
 r
s
+*» ri) results

in a set of eight simultaneous equations to be solved for the

eight unknown coefficients (a , b , a_ , bn , R , S. 1 . G )
^m Am °m am m mm m

Solution is tedious but straight-forward.

The Transmission Coefficient

For convenience, the following notation is used:

(76)

o-0 = «u 'r0yjJL+K(Mj-M s) j2-K2

<r = cu1 i* vl -If 2 ^77^s s

«-, = ««'r </(c./CQ)2(l-KMo)2-K2"j. j. v j a, 5

—..___...._ ...... ..., (78)
(2, = '/(Cj/ca)

2(l-KMs)
2-K2

Then the complex transmission coefficient is

2i (A>j//»a) fm(i?1)gm

s = _ - - 5 - - (79)

where

„ ,, fgm0 fm0

(80)
[]n = : if c:ie - L : c 3fu Zm0 gml graO rml
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and

(81)

(82)
(l)

The prime following the Bessel or Hankel function indicates

the derivative (e.g. Ĵ 'Cag)' = [d{jm̂ )}/d°J(r_<r >•

In the reversed wave case (K >- 1/MS and ̂  real), F^ (<r1)t

H^ H^) are replaced by ̂  (ô ), Hm '(orj) in Eq. (82).

Special Case: rs <
 ro

If the source is located in the central uniform-flow region

rather than in the shear layer, the preceding analysis is slight-

ly simplified. In this case we define

i» = «'(r-r0) (83)

Then r, 1 = u'Cr.̂ )̂, rjQ = 0; also o-Q = «' iQ\f\-^ . The

transmission coefficient then reduces to

S = -- - - - (84)
-

(Note that Mg = M- in this case of course.)
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Additional Interfaces and "Matched" Solutions

Note that we have considered the shear layer to be linear,

with uniform slope throughout. It is apparent that a more com-

plex multi-slope profile, as sketched in Fig. lOa, could be

studied by the same methods if conditions of continuous pressure

and normal velocity are applied at each interface between linear

segments of the shear-layer velocity profile (e.g. at r = a,

r = b, in Fig. lOa). Each interface thus adds two equations to

the set of simultaneous equations which must be solved for the

transmission (and other) coefficients, and the form of the trans-

mission coefficient is then somewhat more complicated than that

shown in Eqs. (79) and (84).

Essentially the same method is employed when no single

series-expansion of the shear layer solutions f(̂ ), g(»j) exists

which is convergent over the entire shear layer (see paragraph

following Eq. (55)). In this case the shear layer is divided

by an imaginary interface at r = re, though the slope of the

shear layer may be the same on either side of r (Fig. 10b).

r is chosen anywhere in the region where both pairs of series-
V- «WÎ B̂ ™»«»

expansion formulas are valid; then one pair (Eqs. (48) and (49))

is useful in one part of the shear layer (rQ 4 r 4 re) and the

other pair (Eqs. (54) and (55)) is useful in re 4 r 4 r±. Con-

ditions of continuous pressure and continuous radial velocity at

the imaginary interface r = r add two equations to the set of

simultaneous equations containing the unknown amplitude coef-

ficients. Two forms of the transmission coefficient are ob-

tained (for the single-slope velocity profile case) depending

on whether the source radius rs is greater or less than re.

The solution is omitted here for brevity.
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= b

= a

U :
r
r

ro
0

Fig. lOa JET WITH MULTI-SLOPE SHEAR LAYER.

r = 1
re

= 0

'*=•-»—•. -.;„».-

Fig. 10b SINGLE-SLOPE SHEAR-LAYER JET WITH

IMAGINARY "INTERFACE" AT r = rm.
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Par-Pield Result and Extension to Transient Source Case

The velocity potential outside the jet is

00

EQ- (67)t contains the transmission coefficient S^

the determination of which has just been described. In the

far field, the integral of Eq. (85) can be evaluated by the

method of stationary phase. This analysis has previously been

given in some detail for the two-dimensional jet case2* , and

only the results for the circular cylindrical jet will be

summarized here.

For -/«FrjT Ms (= Ma ) < 1 there is only one point of sta-

tionary phase, located at K = Kc:

Kc = V«T* (x/R*-Ms'/7T)/(l-Ms
2oT) (86)

where

R* = •:x2+(i-Ms2«T)r2
N = '/x2+(l-Mas

2) r? (87)

In the far field, then,

OD

-2UA/R*)

• R.P.[i Sm(Kc) e j (88)

where

w«y = u'v^fR* - Mc v"ô x]/(l - M0
2a-r) (89)

C i.l_ S 1 . J S X ' •

3 Q J

Using Apz = p^ 02 ^ (with x = constant in taking the t deri-

vative) gives the mean-square pressure in the far field:



R*2(l-Ms
2oT)

2
1 -
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R*

oo eo

0 0
«m 'n

j. (C IQ II_C MO t \ | ~nc- f"*v\d nfuv\ -*•!^^m ̂ n ^ an '| cos^— ;sinv— ;-si 1(90)

(n is used here and in Eq. (93) as a dummy index in the double

summation.)

The analysis so far has been applied to the "permanent"

source, i.e. an acoustical source drifting downstream with the

local fluid for all time. For the sequence of transient sources

described earlier Ap2 is obtained-* »4 by formally converting Eq.

(90) to retarded coordinates and multiplying by (l+Ma x-̂ /R) •

The retarded coordinates are X2»r,^,; R where

R = \/x 2+r2
£i

The original coordinates fixed in the source are x,r,y>;R*

where R* is defined by Eq. (87). The equations for coordinate

transformation, from Refs. 3 or 4, are

R* = R + M
(91)

x = x0 + M0 R£ a_

Changing to retarded coordinates the critical K values become

Msx2/R). (92)

or, in the notation of £q. (64),

Kac =
(92a)
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Ap2 for the transient source sequence is

~ 2 . 2 2 2——. 2 r A P& «

+ (S * S "-S "S *)

(93)

Note that each transient source is assumed to go through many

cycles. The transmission coefficients are evaluated at KC

(£q. (92)). When the absolute magnitude of the Jl+Masx2/Rj

factor is used, as indicated, Eq. (93) is applicable for Mag ^ 1.

Eq. (93) is the far-field mean-square pressure for one

source (i.e. one transient source sequence) located at ^ = Vs»

r = rs. Since the jet is symmetrical we can expect, on the

average, to find a similar source located at any \f/s around the

jet, each with random phase relative to all of. the others.

Their mean-square pressures are additive. The average mean-

square pressure due to a ring of random-phase sources is

-2ir

Ap2 = •£- J Ap2( ŝ) d ŝ (94)
v o

or

,
l+MasX2/R| 0



-55-

Note that each value of m in Eq. (95) represents the

average mean-square pressure in the far field due to a tran-

sient ring-source having source strength proportional to

cosj mGj»- ŝ)j . Since each of the ring sources with m > 0 has

zero net source strength, it might be expected that radiation

from positive sections of the ring would tend more and more to

cancel the radiation from negative sections of the ring, so the

net acoustic radiation into the far field would be small for

large m. Computations for subsonic jet examples indicate this

to be the case (though it may not be true for supersonic jets).

iVhen M- <r 1 the terms of Eq. (95) tend to drop rather quickly
J

in magnitude as m increases from zero, so that in practice only

a few terms in the summation usually are required, and computing

time is thereby benefited.

B. RESULTS FOR

JET TEMPERATURE = AMBIENT TEMPERATURE

This section contains a comparison of far-field mean-square

pressures produced by sources in circular cylindrical jets and

in two-dimensional jets, at subsonic velocities. Comparisons

are made for the following conditions:

1. Source at the center of a high Mach number subsonic

jet.

2. Source in the shear layer of a high Mach number

subsonic jet.

3. Source in an extended constant-velocity region

centrally located in a high Mach number subsonic
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jet.

4. Source at the center of a low Mach number jet.

For the two-dimensional jet, pressures were evaluated only

in streamwise planes containing the source and normal to the

plane of the jet. A simulation of circular jet effects from

such data would at least require evaluation of pressures in

planes other than normal to the two-dimensional jet plane. Some

of the differences between circular and two-dimensional jet ef-

fects pointed out in the following pages can in a crude sense be

attributed to the neglect of non-normal planes in the two-

dimensional calculations.

1. Source at the Center of the Jet; M; = 0.7

In Fig. 11 the far-field mean-square pressures are shown

for a source at the center of a circular cylindrical jet. The

maximum Mach number in the jet is 0.7 which is held constant

throughout a small region near the jet center. The radius of

this region is 0.1 times the jet radius, and the jet velocity

varies linearly outside this region to a value of zero at the

edge of the jet. The numerical calculations are simplified by

having a central constant-velocity region, and the cross-

sectional area of the central region is in this case only one-

percent of the total cross-sectional area of the jet. Strouhal

numbers (S-p) of 0.1, 0.2, 0.5 and 1.0 are shown, where

(j (jet diameter)
O«i — - - - - - - . _ • ,
x 27T (maximum jet velocity)
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Jet

e\w

100 80

K = -1
\

0 20

Fig. 11 FAR-FIELD MEAN-SQUARE PRESSURE DUE TO A

SOURCE AT THE CENTER OF A CIRCULAR JET.

MJ = 0.7; rQ = 0.1.
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e-.w

K = -1

Jet
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A .2 n ^ / f t 2.2 2 2xAp R /(2ir A /» u> )

—O Source

e

20 40

Fig. 12 FAR-FIELD MEAN-SQUARE PRESSURE DUE TO A

SOURCE AT THE CENTER OF A TWO-DIMENSIONAL JET.

Mi = 0.7; ZQ = 0.
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For comparison Fig. 12 shows far-field mean-square pres-

sures for a source at the center of a two-dimensional jet.

Again the maximum Mach number of the jet is 0.7. The jet velo-

city varies linearly from the jet center to the edge, although

for strict comparison one should perhaps maintain a central

constant-velocity region with thickness one-percent of the jet

thickness.

Comparison of Figs. 11 and 12 shows that for the circular

cylindrical jet the pressure lobes are wider and are rotated in

closer to the downstream axis. For a Strouhal number of 0.2

the mean-square pressures are of similar magnitude. However the

variation of mean-square pressure with Strouhal number is con-

siderably greater for the circular jet.

On Figs. 11 and 12 (and most following figures) the radial

line with e on one side and w on the other indicates the boundary

between the region in which the disturbances leaving the source

might be termed "pseudo-sound" (e) and are exponentially de-

caying in z (or r) and the region in which disturbances leaving

the source are "true sound", or true waves (w). It is evident

that most of the far-field noise for the examples shown in Figs.

11 and 12 is produced by disturbances originating as pseudo-

sound.

All of the pressure lobes obtained in this st.udy are

closed curves, i.e. Ap2-*0 as 6-*-0 and as 6 -*•»•. The plotted

curves have sometimes not been completed in the vicinity of

Q = ir (as, for example, the ST = 0.1 curve in Fig. 11). This

is because the computer output was obtained only for certain
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specified e-values which in some cases were not closely enough

spaced to allow good fairing of the Ap^-curves near 9 = «••

This is a small region, however, and we have simply left that

part of the curves unplotted, since it did not seem worthwhile

to re-run the program with more 8-values.

2. Source in the Shear Layer

Fig. 13 shows far-field mean-square pressures for a source

half-way out in the shear layer of a circular cylindrical jet.

The source therefore travels at half the maximum jet velocity

and its Mach number is 0.35, while the small constant-velocity

region at the center of the jet has a Mach number of 0.7.

Comparing this with Pig. 14 , a corresponding case for the two-

dimensional jet, we see again that the pressure lobes are

broadened and extend in closer to the downstream axis. For the

lower Strouhal numbers the variation of mean-square pressure

with Strouhal number is increased as before. For ST = 1 and

,ST = 2 the two-dimensional jet shows a reversal in trend with

the peaks moving out from the downstream axis. This reversal

does not appear for the circular jet, though it might occur at

still higher ST. values. Such effects might appear as the

wavelength of the sound is reduced to the order of the jet

diameter. For the smaller Strouhal numbers, the far-field

noise again mainly originates at the source as pseudo-sound,

but this is less true as the Strouhal number increases.
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r.=l

e\w

K = -1

9

Fig. 13 PAR-FIELD MEAN-SQUARE PRESSURE DUE TO A SOURCE

HALF-WAY OUT IN THE SHEAR LAYER OF A CIRCULAR JET.

M. =. 0.7; MS = 0.35; "rQ = 0.1



-62-

\,

e\w

K = -1
"2.0

Jet
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z = 1.0

D z=0.5

z=0

&

Fig. 14 FAR-FIELD MEAN-SQUARE PRESSURE DUE TO A SOURCE HALF-WAY

OUT IN THE SHEAR LAYER OF A TWO-DIMENSIONAL JET.

MJ = 0.7; Ms = 0.35; ZQ = 0.
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3. Source in an Extended Constant-Velocity Region

Centrally Located in a High-Velocity Jet

For the example chosen the constant-velocity region in the

circular jet extends from the center to one-half the total jet

radius, and in the two-dimensional jet from the center to one-

quarter of the jet semi-thickness. In each case one-quarter of

the cross-sectional area of the jet is in the constant-velocity

region.

In Figs. 15 and 16 mean-square pressures (in the far field)

are shown for sources at the center and at the edges of the

constant-velocity region. The maximum jet Mach number is 0.7

and the Strouhal number is 0.2 in all cases. For the circular

jet (Fig. 15) a source at the center produces slightly lower

pressures than sources at the edge of the constant-velocity

region. This occurs in the angular range where source distur-

bances decay exponentially in the central region (angles (9)

greater than 126-degrees), and it is probably this exponential

decay which weakens the effect of the source at the center.

The two-dimensional jet, Fig. 16, shows a similar result, the

effectiveness of the sources progressively decreasing as their

disturbances have to traverse increasing thicknesses of the

central region.

The pressure lobes for the circular jet are somewhat

broader and rotated in slightly towards the downstream axis by

comparison with the two-dimensional jet. At this one Strouhal

number of 0.2 the pressures are appreciably lower for the

circular jet.
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Fig. 15 MEAN-SQUARE PRESSURE IN THE FAR FIELD DUE TO A SOURCE

IN A CIRCULAR JET, FOR TWO SOURCE LOCATIONS:

FS = 0 and 1FS = 0.5.

= 0.7; S = 0.2; rQ = 0.5.
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Fig. 16 .MEAN-SQUARE PRESSURE IN THE FAR FIELD DUE TO A. SOURCE

IN A TWO-DIMENSIONAL JET, FOR THREE SOURCE LOCATIONS: z& = 0

(center of jet), z;s ',= 0.25 (nearer edge gf.central constant-

velocity region) and ~zs = -0.25 (farther edge of central region),
' , ' • / * ; . '

Mj = 0.7; ST =0 .2 ; - . z 0 = 0.25. .
-# • •
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4. Source at the Center of a Low Mach Number Jet

Figs. 17 and 18 show far-field mean-square pressures for

sources at the center of a Mach 0.3 jet. In the two-dimensional

jet (Fig. 18) the velocity falls off linearly from the center to

the outer edge. In the circular jet (Fig. 17) the velocity is

constant out to 0.1 times the jet radius, and then falls off

linearly to the outer edge. (Only one-percent of the jet cross-

sectional area is in this central region.)

As in the higher Mach number case, the principle effects

of changing from the two-dimensional to the circular jet are,

first, that the pressure lobes broaden and extend in closer to

the downstream axis and, second, that the pressure variation

with Strouhal number is accentuated.

Note again the radial line marking the boundary between

the region where disturbances leaving the source are pseudo-

sound (e) and the region where disturbances leaving the source

are true waves (w). At a Mach number of zero (a trivial case

not shown here, with Ap2 R2/(2ti2lA2p2ai2) = 1) all far-field

noise is produced by disturbances which leave the source as true

sound. It is therefore remarkable that at a Mach number of only

0.3 most of the far-field noise is produced_by disturbances

originating as pseudo-sound. Since pseudo-sound corresponds to

the 90-degree out-of-phase components of pressure and velocity

it transmits energy only by interference with reflected waves,

in the transmission through the jet these exponentially decaying

disturbances become true waves, and so can transmit energy to

the far field without assistance.
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Fig. 17 FAR-FIELD MEAN-SQUARE .PRESSURE DUE TO A

SOURCE AT,, THE CENTER OF A CIRCULAR JET

M, = 0.3; I- = 0.1
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Fig. 18 FAR-FIELD MEAN-SQUARE PRESSURE DUE TO A SOURCE

AT THE CENTER OF A TWO-DIMENSIONAL JET.

Mj = 0 . 3 ; 20 = 0.
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C. RESULTS FOR

JET TEMPERATURE ABOVE AMBIENT TEMPERATURE

As an example for numerical computations, we have chosen

a circular cylindrical jet with uniform velocity throughout

a core covering the inner half of the total radius. The velo-

city decreases linearly over the outer half radius, reaching

zero at the outer edge of the jet. All comparisons are made

at fixed jet velocity, so that the jet Mach number based on

the ambient speed of sound is 0.7 (Ma- = 0.7). (Qualitatively

similar results, not shown here, are obtained at a Mach number

of 0.3.) The ratio of jet temperature (uniform across the jet)

to ambient temperature is designated by a^t and values of 1, 2,

4 and 6 are considered.

Figs. 19 - 22 show results for Strouhal numbers of 0.2,

0.1, 0.01, and 0.001, respectively. The very low Strouhal

numbers are included to show that in the limit of zero frequency

(or zero jet diameter) the temperature effect disappears. The

curves then merge and the value of Ap2R2/(2.9-2̂ 2., 2̂ 2) becomes
3,

jl+M cosQ |~ , which is the value for a modified moving source5.

At higher Strouhal numbers (up to and including 0.2, at. least)

increasing the jet temperature reduces the magnitude of the

pressure lobes and rotates them away from the downstream jet

axis. This trend may alter at still higher Strouhal numbers,
o

which have not yet been investigated.

It must be remembered that the source strength here is

Srr̂ A., and represents the maximum volume introduced by the

pulsating source per unit time. Only if this source strength

is unaffected by heating the jet (with velocity profile fixed)

will the reduction in mean-square pressure with increasing

jet .temperature be observed.
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Fig. 19 PAR-FIELD MEAN-SQUARE PRESSURE DUE TO SOURCE

AT CENTER OF UNIFORMLY HEATED CIRCULAR JET.

Ma = U/C = °*7; = 0>2 ; ?= °'5*
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Fig. 20 FAR-FIELD MEAN-SQUARE PRESSURE DUE TO SOURCE

AT CENTER OF UNIFORMLY HEATED CIRCULAR JET.

-M- •=-'Uj/ca-=-0..-7-; -ST = 0.1; r0 = 0.5.
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Fig. 21 Ma. = Uj/ca = 0.7; ST = 0.01; rQ = 0.5.
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400 300 200 100 100

R2/(2T2A2/,aV

Fig. 22 Ma. = Uj/ca = 0.7; S^, = 0.001; rQ = 0.5.

FAR-FIELD MEAN-SQUARE PRESSURE DUE TO SOURCE

AT CENTER OF UNIFORMLY HEATED CIRCULAR JET.
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6. PRELIMINARY ANALYSIS FOR

LINEARLY VARYING TEMPERATURE IN JETS

Introduction

In previous analyses we have considered mean* velocity

variations across the jet, but the mean temperature of the jet

has been held constant (either at the ambient value or higher).

Here we permit temperature to vary across the jet also, and car-

ry the development as far as the ordinary differential equation

for the shear layer in both two-dimensional and circular jets.

For simplicity we show the development only for the two-

dimensional jet. The ordinary differential equation for pres-

sure as a function of z has one singular point if the tempera-

ture is constant. This singular point may be in the region of

interest (the shear layer) or outside it. In the former case

the expansion must be made about this point and is everywhere

convergent. Linearly varying temperature introduces a second

singular point where T = 0. This point never falls in the re-

gion of interest, but it does limit the radius of convergence

for the expansion about any other point. In some cases two

matched expansions are then required, which complicates the

computation.

In a circular jet a third singular point appears (at the

center of the jet) and this, imposing further limits on con-

vergence, might require more than two matched expansions in

some cases. Thus the programming of the calculations would be

more complicated for the circular jet.

*mean refers to a time average eliminating turbulent velocities.
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Development of Equations for Two-Dimensional Jet

Let x,y,z be coordinates measured -longitudinally, laterally

and normal to the "plane" of the two-dimensional jet, and u,v,w

be the corresponding velocities. Then, indicating perturbation

quantities (which are functions of x,y,z and t) by Au, etc., we

have

u = U(z) + Au

v = Av

w = Aw

T = TQ(z) -•• AT

P = /°0(
z) + A/>

P = P0 + Ap

where

P0 = constant = Parabient = />o(-z>--R TQ(z)

and where ft is the gas constant, assumed fixed. U(z) gives the

mean velocity profile, T_(z) the mean temperature profile and

A>0(z) the mean density profile. The mean pressure, pQ, is

constant throughout the jet and ambient fluid, and the mean

temperature and density profiles are simply related through the

equation of state. The dynamical equations can now be written

as8
Ap

Aut + U(z) Auv + Aw U_(z) + — -^- = 0T x z

Avt -t- U(z) Avx + — £l_ =0 (96)

AP_.
Awt •»• U(z) Awx + - ±— = 0
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and the equation of continuity becomes

Apt + U ( z ) A / > x + / » _ ( z ) fAuv + Av_. + Aw_ I +: />0 Aw = 0 (97)
*• • ^k \J !A V ^.i ^7

Here we have four equations and five unknowns: Au, Av, Aw,

Ap and A/>. However, if we assume that the entropy of. each fluid

element is unchanged when an acoustic wave passes through (e.g.

see Blokh

particle,

see Blokhintsev10, NACA TO 1399, p. 21) then, following a fluid

= k(z) r l>n(z>!
y-1 = rKTft(z) = c

2(z) (98)

where k(z) is the adiabatic constant for a given z and y is the

ratio of specific heats. (Note that entropy is not assumed

constant throughout the jet nor even at one point in the jet.)

c(z) is the local speed of sound.

From Eq. (98)

(99)
dt dt C2(z)

Also, the substantial derivatives, dA/>/dt and dAp/dt, are

+ ̂  (z) Aw + U(z) A/»dt
(100)

dAp
= Apt •+ U(z) APX

Eliminating dA/»/dt and dAp/dt between Eqs. (99) and (100):

Apt + U(z) A/>x = -9rrtpt + UCz) ApJ - PO (2) AW (101)
ri rx c^Xz) T T ^EJ • °z

This relation between Ap and A^> gives us the required added
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equation to make the previous set determinate. If, for con-

venience, we express Ap as

Ap = ,(z) c(z) o- (102)

(noting that

become

c2(z) is a constant), then the four equations

Aut + U(z) Aux + Uz(z) Aw + C
2(z) <TX = 0

Av Av +
x

a- = 0
y

(103)

Aw + U(z) Aw + C(z) a- = 0
t A. Z

U(z) Aux + Av = 0

Eliminating Au, Av and Aw gives

*ttt + 3 U(2) 'ttx + 3 utz) 'txx

- C2(z)j(V2a)t + U(z)

u(z) ' = 0

xxx

C2(z)

(104)

For Lc2(z)J = 0 (i.e. a constant temperature jet) <r be-
"~~ Z

comes s, the condensation, and Eq. (104) becomes Eq. 3 of Kef. 4

or Eq. 5 of Ref. 1.

For U(z) -~ 0, the case of a static heated layer, we get

C2(z)
(105)
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Returning to Eq. (104), let

(r(xty,z,t) = F(z) cos(k2y) sin(k x-u>t)

Substituting this in Eq. (104) gives an ordinary differential

equation for P as a function of z.

P + F — . (C2)*! - <"rzz rz
Err^--k2j=o (106)

The simplest temperature (or c2) variation with z is

linear. In that case the equation has two singular points:

one, where (w-Uk^) = 0, may fall within the region of interest

(the linear shear layer); the other, where c2 = 0, never lies

in the region of interest. If F is expanded as a power series

in z, one expansion must be made about each singular point in

the region of interest. Other singular points limit the radius

of convergence of such expansions and may require the use of

matched expansions about two different points. Such procedures

have already been described in connection with the circular jet

at constant temperature, which has two singular points.

The Circular Cylindrical Jet

For the circular cylindrical jet the axial, angular and

radial coordinates are x, ^ and r. The corresponding pertur-

bation velocities are u,v,w.

The" "partial" differentia'! "equation for"V~i~s
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»ttt + 3 U *ttx * 3 v2 *txx * u3 'xxx

- C2(V2<r)t + U C7
2«r)J + 2 U_ c

A_ ^*L_

where U = U(r), c = c (r) and the perturbation pressure, Ap, is

Ap = />Q(r) c
2(r) o- (/>0(

r) c2(r) is a constant).

If we let

<r(x,^,r,t) = F(r) cos(m̂ ) sin(kx-wt)

then F(r) is defined .by

. VW-UK;
p i -•*-. + I + Pi —— T ' ' ' T r

2U_k 1 d(rc2)! U-Uk)'
* - i !

rr r U-Uk) re2 dr c2
/ 2 m

- (*' *
(108)

Note that k here corresponds to k1 in the two-dimensional jet.

For temperature (or c2) varying linearly with r, singular

points occur for (w-Uk) =0, r = 0 and c2 = 0. Obtaining solu-

tions by series expansions is therefore more complicated than

in the two-dimensional case which has only two singular points

instead of three. .
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7. DISCUSSION OF APPLICABILITY

As stated earlier this work is not intended to provide

a comprehensive theory of the noise produced by turbulence in

jets. Instead, we have concentrated on one aspect of the prob-

lem with the purpose of providing facts (not intuitively evi-

dent) which can be used in formulating a more comprehensive

theory. Utilization of this material in a more general theory

requires consideration of a number of factors. Some of these

(not necessarily in order of importance) are as follo\vs:

(1) What singularity (source, dipole, quadrupole or other

type) should be considered as the noise generator?

(2) Since we consider that turbulence is the only true

generator, we are interested in experimental methods capable of

distinguishing between turbulent velocity fluctuations (asso-

ciated with vorticity and non-linear terms) and the linear

fluctuations associated with transmission in our analysis.

(3) Frequencies recorded by an instrument at rest in the

ambient fluid are not the same as the generating frequencies

(because of the Doppler effect). The frequency correction is

easily made, but the plotting of mean-square pressure curves

for fixed observed frequencies requires the use of an energy

spectrum, since a given generating frequency produces differ-

ent observed frequencies at different angular positions in the

far field.""""" -- - < - - , - _ - -

(4) Various generating regions of the jet must be con-

sidered.
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(5) The limitations imposed by considering the jet to be

infinitely long should be studied, especially at low frequencies.

The final factor ((5)) is now considered in some detail.

There are really two parts to this question. The first part

might be stated as follows: Assuming coordinates fixed in the

source, how much of the jet upstream and downstream of the

source is really essential to the analysis? The second part of

the question relates to the transient source analysis in re-

tarded coordinates: How far does a given transient source tra-

vel relative to the nozzle, and can it be assumed to pass through

many cycles in this lifetime?

The first part of the question relates to refraction ef-

fects, which do not appear explicitly in Lighthill's work.

However, the second part of the question relates to convection

effects and so may apply also to Lighthill's analysis.

Part 1 (coordinates fixed in the source)

When the generating frequency is low the wavelength of the

disturbance is large, and may be many times the jet thickness.

Our analysis deals primarily with wavelengths in the streamwise

direction and, since we assume an infinitely long jet, many

cycles may appear in the jet for any given wavelength. On the

other hand, in a real jet of finite length, perhaps only a

fraction of a cycle may appear. This raises a question as to

the applicability of our analysis at low frequency.

However, in certain cases we have examined the results

obtained for infinitely long jets in the limit of zero fre-

quency. For example a source drifting with the fluid in an
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infinitely long jet becomes a "modified moving source"* in this

limit. Such a result is also what one would anticipate for a

source in a finite length jet, since the modified moving source

merely requires a small neighborhood of fluid traveling with

it. A second example is a source in a jet, but at rest rela-

tive to the external air. This source is necessarily moving

relative to the jet fluid, and is considered a modified moving

source. Analyzed by infinite jet methods in the limit of zero

frequency the result is a simple source radiating uniformly in

all directions. This is again quite consistent with what one

would expect for the finite jet in the zero frequency limit.

Another intuitive argument is obtained by approaching the

finite jet problem (qualitatively) by modifying the boundary

conditions for the infinitely long jet. Consider a jet of

circular cross-section and, with the source as a center, con-

struct a spherical surface which passes through the jet about

one and one-half diameters upstream and downstream from the

source. The portion of the sphere within the jet intercepts

a solid angle which is five percent of the total for the sphere.

It is within this limited angular range that the boundary con-

ditions would have to be modified for the finite jet if uniform

conditions are assumed over the three-diameter length. This

suggests, though it certainly does not prove, that the radia-

tion field outside the jet might not be seriously altered by

the restriction of jet length.

It should be mentioned here that there 'is a region in

which infinite-jet theory is definitely incorrect. This is a

*The modified moving source is defined and described in Ref. 5
and compared with the conventional moving source. The existence
of other types of moving sources also is noted.
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relatively small angular region in the far field near the jet

axis. Here infinite-jet theory predicts mean-square pressures

approaching zero at the axis, which would not be true for a

real jet of finite length. Since the region is small and the

pressures are ordinarily small we are not usually much con-

cerned with this difficulty.

The preceding discussion may serve to indicate that

intuitive arguments sometimes conflict and must be handled

with caution. The range of conditions under which infinite-jet

analysis is useful must be considered unknown at present.

Part 2 (retarded coordinates and transient sources)

The mean-square pressure for a sequence of transient

sources contains an integral of the sum of the squared trans-

mission coefficients over the entire frequency range (Eq. (27)).

There is, however, a weighting factor in the integrand which,

if each transient source goes through many cycles during its

existence, becomes a delta-function. In this limit the mean-

square pressure formula is much simplified (£q. (28)), becoming

independent of the transmission coefficients except at the basic

frequency. A simple rule can then be used to obtain the mean-

square pressure in retarded coordinates for the transient

source sequence from that in source coordinates for a single

permanent source: Make a formal transformation of the latter

to retarded coordinates and multiply by JJL + Mxg/RJ . On exam-

ining Lighthill's work we found that his original result had

been corrected by Ffowcs-Williams by applying a multiplicative
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f actor of [l + MX2/RJ . If we assume that this corresponds to

our transient source effect, then the Lighthill - Ff owcs-Williams

result would be applicable in the limit when each transient

quadrupole goes through many cycles.

It can readily be shown that, for a pulsating source at

the center of the jet, the distance traveled downstream from

the nozzle during one cycle is equal to the jet thickness divid-

ed by the Strouhal number. Thus if the Strouhal number, S , is

0.1 the source travels ten jet diameters in completing one

cycle. For ST = 0.2 the source completes a cycle while moving

downstream five jet diameters. Thus for low ST (or low fre-

quency) it is difficult to justify the assumption that the

transient source passes through many cycles. However, we have

an equation (Eq. (27)) which provides for transient sources

passing through a reduced number of cycles down to one cycle.

In this equation is a factor which becomes a delta-function

in the limit as n — *• oo, :

2 22 (w/w ) sin (2irnw/o) )
- y_ - _P_ = F (109)

In Fig. 23 we examine this factor as a function of u/wn for

two cycles (n = 1) and for one cycle (n = •§•). (2n must be an

integer.) Also, we examine a related factor,, not derived here,

which applies to,, half -cycles:

8
* II" I * * ' • I 1 ' I

= F ' (110)
2 e 2, 2 -v2 8TT m (. ui /w „ - 1) •. - . ^
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(In Bq. (110) m must be odd, and m = 1 corresponds to one-half

cycle.)

Fig. 23 suggests that, if the pulsating source passes

through only one cycle or one-half cycle in its lifetime, the

factor deviates materially from the delta-function. In some

such cases the delta-function may still be an adequate approx-

imation. In others it may be necessary to use the more general

equation (Eq. (27)) instead of the simpler one (Eq. (28)) which

applies when n approaches infinity. There may be an alterna-

tive way to define amplitude vs. frequency for the noise-

generating sources, permitting use of the simpler equation in

all cases, but that is beyond the scope of this study.



-86-

CONCLUSIONS

(1) The acoustical source traveling with the local fluid

produces two types of disturbances. One we will term

true sound, which consists of true waves carrying energy.

The other we will call pseudo-sound (characterized by

exponential decay in our analysis) which transmits energy

only by interference with reflected waves. At a Mach

number of zero all the far-field noise originates as true

sound at the source. However at a Mach number as low as

0.3 most of the far-field noise originates as pseudo-

sound at the source.

(2) A review of the methods for theoretically constructing

quadrupoles in a shear layer suggests that there is no

elementary reason for discarding dipole and source radia-

tion in our analysis. If mean velocity varies across the

jet, then the absence of any net source strength in the

entire jet does not necessarily make source radiation

unimportant. Similarly the absence of any net dipole

strength does not result in purely quadrupole radiation.
;

The dominance of quadrupole radiation in jet noise appears

to be a feature of Lighthill's simplified model of the

jet, but it is not necessarily characteristic of real jets,

(3) Moving a source off the centerline of the jet generally

has little effect on the noise radiated as long as the

source remains within the central high-velocity region of

the jet. However, a source of the same strength halfway
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out in the shear layer has greatly reduced noise radia-

tion (which is probably to be expected because of the

reduced speed of convection).

(4) The noise radiated by sources on the centerline of cir-

cular cylindrical and two-dimensional jets is compared for

similar velocity profiles, Mach numbers and jet thicknesses.

The circular jet cases show pressure lobes which are broader

and rotated in closer to the downstream jet axis. Also,
• O

the variation of far-field noise/(frequency) with Strouhal

number is greater for the circular jet. Here, source

strength, defined as maximum volume introduced per unit

time, is fixed.

(5) The effect of raising the jet temperature above ambient

with fixed jet velocity and source strength is illustrated.

The Mach number based on ambient temperature is 0.7 for

the examples given, and Strouhal numbers up to 0.2 are

considered. The major effects are a reduction in magni-

tude of the mean-square pressure, and rotation of the

pressure lobes away from the downstream jet axis.

f

(6) A primary effect of changing from a source to a quadrupole

(both on the centerline) is that pressure peaks generally

rotate in towards the downstream.jet axis (see Appendix).
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Appendix: PI POLES AND QUADRUPQLES IN A TWO-DIMENSIONAL JBT

Equations for Mean-Square Pressure

In our previous reports2-4 the acoustical source (i.e.

monopole source) on the jet centerline has been taken as the

noise generator. Since quadrupoles are frequently considered

as the primary noise generators in a jet, we have extended the

analysis to include dipoles (three types) and quadrupoles (six

types), all located on the centerline of a two-dimensional jet.

Only the results of the analysis will be given here. Details

of the derivation are omitted since they follow the methods

described earlier (see Section 2), methods which were devel-

oped for the source in Refs. 2-4 and which are applied in

detail for the source in the shear layer in Section 4 of this

report. Following are the expressions for far-field mean-square
~

pressure (Ap̂ ) for these singularities, including the source.

The source strength is here taken as the maximum volume

per unit time introduced by the source. (Lighthill uses rate of

change of mass flow as source strength.) A source strength fac-

tor A is defined such that source strength = 8*̂ . The corres-

ponding dipole strength factor is then Ad = AJ£ where i is the
p

distance separating a source and a sink, each of strength Sir A.

Similarly, the quadrupole strength factor is A = i\i> . Aps
2 is

the mean-square pressure produced by a source of unit strength

factor,

source

O O p

A?" = A2 Ap"2" = A2 2 f " (z/R)2[s"2(«)+S' 2(u.)] (A-l)
R2J1+MX2/RJ5
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x-axis dipole

Ap2 = Aps
2 Ad

2
 w'2 (A-2)

y-axis dipole

° = Ap 2 Ar (A-3)

2-axis dipole

2 2 2 2^ = Ar> ^ A .^ ,..tZ
1 -

(x,/R)2-<-(y/R)2

(A-4)

x-x quadrupole

Ap2 = Ap 2 A 2 w'4
*S q

(A-5)

y-y quadrupole

Ap2 = Aps
2 Aq

2 (A-6)

z-z quadrupole

Ap2 = Aps
2 Aq

2

-.2
(*2/R)2+(y/R)2

(1+MX2/R)'Z
(A-7)

x-y quadrupole

AP2 = APS
2 Aq

2 «'4 (X2/R)2 (y/R)2/(l+Mx2/R)4

x-z quadrupole

— o o o A S,"2(w)+S,'2(«) (x_/R)2

A n 2 - A D 2 A 2 o l 4 A
l
 A Vup nps A o . . .

S"2(w)+S l2(o,) (1+MX2/R)2

(A-8)

1 2

(A-9)
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y-2 quadrupole

. „ S "2(u>)-«-S ' 2 (w)
2 2 2 4 A A

S"2(a>)+S'2(«)

(y/R)2

(l+Mx /R)2

<b

(x,./R)2+(y/R)2

1 2

(1+Mx /R)2

(A-10)

Here, ^ is the mass density of the ambient air, <a is the gener-

ating frequency of the transient singularities, and u>« is *»/c

where c is the velocity of sound. Xg, y and z are respectively

the streamwise, lateral and normal distances of the observation

point from the noise-generating region of the plane jet, and

R = Yx 2+y2+z2 f M is the Mach number of the transient sources
£t

(or dipoles or quadrupoles) relative to the ambient air. .

S1 and S" are related to the ,in-phase and out-of-phase

transmission coefficients for symmetrical disturbances of the
2

jet (zero normal displacement at the jet centerline). S ' and
- • • • -A

S " are similarly related to transmission coefficients for anti

symmetrical disturbances (zero pressure at the jet centerline).

For all of these S-terms programmed computations are desirable.

(Expressions for S',S" were derived in Ref. 2. These and S ',
.. ' • . A

S." follow as special'cases (i.e. for z_ = 0) ofcoefficients
i\ • - S

derived in Section 4. Using the notation of Section 4, Eqs.

(29), (30) and (32) in particular, we find that

Den.

(A-ll)

Den.
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where the -L_ ..£, = J values of Eq. (22) are needed here.

These also enter the denominator term, Den., Eq. (25).)

Discussion of Equations

Of the nine additional noise generators considered here,

five (those involving only x and y axes) can be obtained by

differentiation of the source far field. Three of the remain-

ing four require anti-symmetric transmission coefficients, and

the fourth (the z-z quadrupole) retains symmetric transmission

coefficients but is not obtained by simple differentiation in

the far field.

Since for the two-dimensional jet we are examining pri-

marily the Ap2 in the plane y = 0, we are not now concerned with

singularities having a y-axis. Also, we are more interested in

quadrupoles than in dipoles, and this leaves the x-x, z-z and

x-z quadrupoles for our attention. For simplicity, we consider

now the x-x and z-z longitudinal quadrupoles and show in Fig.

24 the sum of the Ap2 values for these two (Eq. (A-5) plus Eq.

(A-7)). (If they wet re assumed to pulsate in .phase a source-like

Ap2 would result.)

Fig. 25 shows for comparison purposes the Ap2 for a

source (Eq. (A-l)).

Discussion of Figures

These figures show radial plots of Ap2 for jet Mach num-

bers 0.3 and 0,7, for a source and for the j"(x-x) + (z-z)l quad-

rupole (both located on the jet centerline in a jet with linear

shear layers extending in to the centerline). The Strouhal
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10

Quadrupole

0

R2/(2lr
2Aq

2«'V«2)

Fig. 24 MEAN-SQUARE. PRESSURE IN THE FAR FIELD (POLAR PLOT)

" 5 —7
Ap^tx-x quadrupole) + Ap^(z-z quadrupole).

Quadrupole at centerline;" maximum jet Mach numbers

0.3 and 0.7
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< )Source

0

~~2 D2 / r- 2.2 2 2.
Ap R /(2r A ^ w )

50 40

2.0

10

Fig. 25 MEAN-SQUARE PRESSURE IN THE FAR FIELD (POLAR PLOT):

Source at centerline; maximum jet Mach numbers 0.3

and 0.7.
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number, ST, is defined as

S = (w/2ir)(jet thickness)/(jet velocity)

where u> is the source or quadrupole frequency. Results are

shown for S™ = 0.1, 0.2, 0.5 and 2.0. The radial line with

e on one side and w on the other indicates the boundary be-

tween the region in which the disturbances leaving the singu-

larity might be termed "pseudo-sound" and are exponentially

decaying in z (e) and the region in which disturbances leaving

the singularity are "true sound", or true waves (w). At a

Mach number of zero all far-field noise is produced by dis-

turbances which leave the noise generator as true sound. How-

ever, as noted in other examples, at a Mach number of only 0.3

most of the far-field noise is produced by disturbances ori-

ginating as pseudo-sound.
A

The amplitudes for Ap*5 are of interest (at present) only

for comparing like Strouhal numbers at different Mach numbers

for a given type of noise generator. It can be seen that for

a fixed strength of the noise generator Ap2 rises rapidly with

increasing Mach number. Before attempting to construct a power

law for noise level as a function of Mach number other factors

must be considered. For example, the dependence of noise gen-

erator strength on Mach number, the possibility that noise

generator type depends on Mach number, the conversion of gener-

ating frequency to observed frequency, the contributions of

various portions of the jet (which travel at different velo-

cities) are some of these factors. -

A primary effect of changing from sources to quadrupoles

is that the pressure peaks generally rotate in towards the

downstream axis.
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